1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/of.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
16 #include <linux/pm.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
30 #include <linux/aer.h>
31 #include "pci.h"
32
33 const char *pci_power_names[] = {
34 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
35 };
36 EXPORT_SYMBOL_GPL(pci_power_names);
37
38 int isa_dma_bridge_buggy;
39 EXPORT_SYMBOL(isa_dma_bridge_buggy);
40
41 int pci_pci_problems;
42 EXPORT_SYMBOL(pci_pci_problems);
43
44 unsigned int pci_pm_d3_delay;
45
46 static void pci_pme_list_scan(struct work_struct *work);
47
48 static LIST_HEAD(pci_pme_list);
49 static DEFINE_MUTEX(pci_pme_list_mutex);
50 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
51
52 struct pci_pme_device {
53 struct list_head list;
54 struct pci_dev *dev;
55 };
56
57 #define PME_TIMEOUT 1000 /* How long between PME checks */
58
pci_dev_d3_sleep(struct pci_dev * dev)59 static void pci_dev_d3_sleep(struct pci_dev *dev)
60 {
61 unsigned int delay = dev->d3_delay;
62
63 if (delay < pci_pm_d3_delay)
64 delay = pci_pm_d3_delay;
65
66 msleep(delay);
67 }
68
69 #ifdef CONFIG_PCI_DOMAINS
70 int pci_domains_supported = 1;
71 #endif
72
73 #define DEFAULT_CARDBUS_IO_SIZE (256)
74 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
75 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
76 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
77 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
78
79 #define DEFAULT_HOTPLUG_IO_SIZE (256)
80 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
81 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
82 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
83 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
84
85 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
86
87 /*
88 * The default CLS is used if arch didn't set CLS explicitly and not
89 * all pci devices agree on the same value. Arch can override either
90 * the dfl or actual value as it sees fit. Don't forget this is
91 * measured in 32-bit words, not bytes.
92 */
93 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
94 u8 pci_cache_line_size;
95
96 /*
97 * If we set up a device for bus mastering, we need to check the latency
98 * timer as certain BIOSes forget to set it properly.
99 */
100 unsigned int pcibios_max_latency = 255;
101
102 /* If set, the PCIe ARI capability will not be used. */
103 static bool pcie_ari_disabled;
104
105 /**
106 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
107 * @bus: pointer to PCI bus structure to search
108 *
109 * Given a PCI bus, returns the highest PCI bus number present in the set
110 * including the given PCI bus and its list of child PCI buses.
111 */
pci_bus_max_busnr(struct pci_bus * bus)112 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
113 {
114 struct pci_bus *tmp;
115 unsigned char max, n;
116
117 max = bus->busn_res.end;
118 list_for_each_entry(tmp, &bus->children, node) {
119 n = pci_bus_max_busnr(tmp);
120 if (n > max)
121 max = n;
122 }
123 return max;
124 }
125 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
126
127 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)128 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
129 {
130 struct resource *res = &pdev->resource[bar];
131
132 /*
133 * Make sure the BAR is actually a memory resource, not an IO resource
134 */
135 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
136 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
137 return NULL;
138 }
139 return ioremap_nocache(res->start, resource_size(res));
140 }
141 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
142
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)143 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
144 {
145 /*
146 * Make sure the BAR is actually a memory resource, not an IO resource
147 */
148 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
149 WARN_ON(1);
150 return NULL;
151 }
152 return ioremap_wc(pci_resource_start(pdev, bar),
153 pci_resource_len(pdev, bar));
154 }
155 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
156 #endif
157
158
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)159 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
160 u8 pos, int cap, int *ttl)
161 {
162 u8 id;
163 u16 ent;
164
165 pci_bus_read_config_byte(bus, devfn, pos, &pos);
166
167 while ((*ttl)--) {
168 if (pos < 0x40)
169 break;
170 pos &= ~3;
171 pci_bus_read_config_word(bus, devfn, pos, &ent);
172
173 id = ent & 0xff;
174 if (id == 0xff)
175 break;
176 if (id == cap)
177 return pos;
178 pos = (ent >> 8);
179 }
180 return 0;
181 }
182
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)183 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
184 u8 pos, int cap)
185 {
186 int ttl = PCI_FIND_CAP_TTL;
187
188 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
189 }
190
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)191 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
192 {
193 return __pci_find_next_cap(dev->bus, dev->devfn,
194 pos + PCI_CAP_LIST_NEXT, cap);
195 }
196 EXPORT_SYMBOL_GPL(pci_find_next_capability);
197
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)198 static int __pci_bus_find_cap_start(struct pci_bus *bus,
199 unsigned int devfn, u8 hdr_type)
200 {
201 u16 status;
202
203 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
204 if (!(status & PCI_STATUS_CAP_LIST))
205 return 0;
206
207 switch (hdr_type) {
208 case PCI_HEADER_TYPE_NORMAL:
209 case PCI_HEADER_TYPE_BRIDGE:
210 return PCI_CAPABILITY_LIST;
211 case PCI_HEADER_TYPE_CARDBUS:
212 return PCI_CB_CAPABILITY_LIST;
213 }
214
215 return 0;
216 }
217
218 /**
219 * pci_find_capability - query for devices' capabilities
220 * @dev: PCI device to query
221 * @cap: capability code
222 *
223 * Tell if a device supports a given PCI capability.
224 * Returns the address of the requested capability structure within the
225 * device's PCI configuration space or 0 in case the device does not
226 * support it. Possible values for @cap:
227 *
228 * %PCI_CAP_ID_PM Power Management
229 * %PCI_CAP_ID_AGP Accelerated Graphics Port
230 * %PCI_CAP_ID_VPD Vital Product Data
231 * %PCI_CAP_ID_SLOTID Slot Identification
232 * %PCI_CAP_ID_MSI Message Signalled Interrupts
233 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
234 * %PCI_CAP_ID_PCIX PCI-X
235 * %PCI_CAP_ID_EXP PCI Express
236 */
pci_find_capability(struct pci_dev * dev,int cap)237 int pci_find_capability(struct pci_dev *dev, int cap)
238 {
239 int pos;
240
241 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
242 if (pos)
243 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
244
245 return pos;
246 }
247 EXPORT_SYMBOL(pci_find_capability);
248
249 /**
250 * pci_bus_find_capability - query for devices' capabilities
251 * @bus: the PCI bus to query
252 * @devfn: PCI device to query
253 * @cap: capability code
254 *
255 * Like pci_find_capability() but works for pci devices that do not have a
256 * pci_dev structure set up yet.
257 *
258 * Returns the address of the requested capability structure within the
259 * device's PCI configuration space or 0 in case the device does not
260 * support it.
261 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)262 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
263 {
264 int pos;
265 u8 hdr_type;
266
267 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
268
269 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
270 if (pos)
271 pos = __pci_find_next_cap(bus, devfn, pos, cap);
272
273 return pos;
274 }
275 EXPORT_SYMBOL(pci_bus_find_capability);
276
277 /**
278 * pci_find_next_ext_capability - Find an extended capability
279 * @dev: PCI device to query
280 * @start: address at which to start looking (0 to start at beginning of list)
281 * @cap: capability code
282 *
283 * Returns the address of the next matching extended capability structure
284 * within the device's PCI configuration space or 0 if the device does
285 * not support it. Some capabilities can occur several times, e.g., the
286 * vendor-specific capability, and this provides a way to find them all.
287 */
pci_find_next_ext_capability(struct pci_dev * dev,int start,int cap)288 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
289 {
290 u32 header;
291 int ttl;
292 int pos = PCI_CFG_SPACE_SIZE;
293
294 /* minimum 8 bytes per capability */
295 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
296
297 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
298 return 0;
299
300 if (start)
301 pos = start;
302
303 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
304 return 0;
305
306 /*
307 * If we have no capabilities, this is indicated by cap ID,
308 * cap version and next pointer all being 0.
309 */
310 if (header == 0)
311 return 0;
312
313 while (ttl-- > 0) {
314 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
315 return pos;
316
317 pos = PCI_EXT_CAP_NEXT(header);
318 if (pos < PCI_CFG_SPACE_SIZE)
319 break;
320
321 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
322 break;
323 }
324
325 return 0;
326 }
327 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
328
329 /**
330 * pci_find_ext_capability - Find an extended capability
331 * @dev: PCI device to query
332 * @cap: capability code
333 *
334 * Returns the address of the requested extended capability structure
335 * within the device's PCI configuration space or 0 if the device does
336 * not support it. Possible values for @cap:
337 *
338 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
339 * %PCI_EXT_CAP_ID_VC Virtual Channel
340 * %PCI_EXT_CAP_ID_DSN Device Serial Number
341 * %PCI_EXT_CAP_ID_PWR Power Budgeting
342 */
pci_find_ext_capability(struct pci_dev * dev,int cap)343 int pci_find_ext_capability(struct pci_dev *dev, int cap)
344 {
345 return pci_find_next_ext_capability(dev, 0, cap);
346 }
347 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
348
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)349 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
350 {
351 int rc, ttl = PCI_FIND_CAP_TTL;
352 u8 cap, mask;
353
354 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
355 mask = HT_3BIT_CAP_MASK;
356 else
357 mask = HT_5BIT_CAP_MASK;
358
359 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
360 PCI_CAP_ID_HT, &ttl);
361 while (pos) {
362 rc = pci_read_config_byte(dev, pos + 3, &cap);
363 if (rc != PCIBIOS_SUCCESSFUL)
364 return 0;
365
366 if ((cap & mask) == ht_cap)
367 return pos;
368
369 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
370 pos + PCI_CAP_LIST_NEXT,
371 PCI_CAP_ID_HT, &ttl);
372 }
373
374 return 0;
375 }
376 /**
377 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
378 * @dev: PCI device to query
379 * @pos: Position from which to continue searching
380 * @ht_cap: Hypertransport capability code
381 *
382 * To be used in conjunction with pci_find_ht_capability() to search for
383 * all capabilities matching @ht_cap. @pos should always be a value returned
384 * from pci_find_ht_capability().
385 *
386 * NB. To be 100% safe against broken PCI devices, the caller should take
387 * steps to avoid an infinite loop.
388 */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)389 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
390 {
391 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
392 }
393 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
394
395 /**
396 * pci_find_ht_capability - query a device's Hypertransport capabilities
397 * @dev: PCI device to query
398 * @ht_cap: Hypertransport capability code
399 *
400 * Tell if a device supports a given Hypertransport capability.
401 * Returns an address within the device's PCI configuration space
402 * or 0 in case the device does not support the request capability.
403 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
404 * which has a Hypertransport capability matching @ht_cap.
405 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)406 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
407 {
408 int pos;
409
410 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
411 if (pos)
412 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
413
414 return pos;
415 }
416 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
417
418 /**
419 * pci_find_parent_resource - return resource region of parent bus of given region
420 * @dev: PCI device structure contains resources to be searched
421 * @res: child resource record for which parent is sought
422 *
423 * For given resource region of given device, return the resource
424 * region of parent bus the given region is contained in.
425 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)426 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
427 struct resource *res)
428 {
429 const struct pci_bus *bus = dev->bus;
430 struct resource *r;
431 int i;
432
433 pci_bus_for_each_resource(bus, r, i) {
434 if (!r)
435 continue;
436 if (res->start && resource_contains(r, res)) {
437
438 /*
439 * If the window is prefetchable but the BAR is
440 * not, the allocator made a mistake.
441 */
442 if (r->flags & IORESOURCE_PREFETCH &&
443 !(res->flags & IORESOURCE_PREFETCH))
444 return NULL;
445
446 /*
447 * If we're below a transparent bridge, there may
448 * be both a positively-decoded aperture and a
449 * subtractively-decoded region that contain the BAR.
450 * We want the positively-decoded one, so this depends
451 * on pci_bus_for_each_resource() giving us those
452 * first.
453 */
454 return r;
455 }
456 }
457 return NULL;
458 }
459 EXPORT_SYMBOL(pci_find_parent_resource);
460
461 /**
462 * pci_find_pcie_root_port - return PCIe Root Port
463 * @dev: PCI device to query
464 *
465 * Traverse up the parent chain and return the PCIe Root Port PCI Device
466 * for a given PCI Device.
467 */
pci_find_pcie_root_port(struct pci_dev * dev)468 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
469 {
470 struct pci_dev *bridge, *highest_pcie_bridge = NULL;
471
472 bridge = pci_upstream_bridge(dev);
473 while (bridge && pci_is_pcie(bridge)) {
474 highest_pcie_bridge = bridge;
475 bridge = pci_upstream_bridge(bridge);
476 }
477
478 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
479 return NULL;
480
481 return highest_pcie_bridge;
482 }
483 EXPORT_SYMBOL(pci_find_pcie_root_port);
484
485 /**
486 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
487 * @dev: the PCI device to operate on
488 * @pos: config space offset of status word
489 * @mask: mask of bit(s) to care about in status word
490 *
491 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
492 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)493 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
494 {
495 int i;
496
497 /* Wait for Transaction Pending bit clean */
498 for (i = 0; i < 4; i++) {
499 u16 status;
500 if (i)
501 msleep((1 << (i - 1)) * 100);
502
503 pci_read_config_word(dev, pos, &status);
504 if (!(status & mask))
505 return 1;
506 }
507
508 return 0;
509 }
510
511 /**
512 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
513 * @dev: PCI device to have its BARs restored
514 *
515 * Restore the BAR values for a given device, so as to make it
516 * accessible by its driver.
517 */
pci_restore_bars(struct pci_dev * dev)518 static void pci_restore_bars(struct pci_dev *dev)
519 {
520 int i;
521
522 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
523 pci_update_resource(dev, i);
524 }
525
526 static struct pci_platform_pm_ops *pci_platform_pm;
527
pci_set_platform_pm(struct pci_platform_pm_ops * ops)528 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
529 {
530 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
531 || !ops->sleep_wake)
532 return -EINVAL;
533 pci_platform_pm = ops;
534 return 0;
535 }
536
platform_pci_power_manageable(struct pci_dev * dev)537 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
538 {
539 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
540 }
541
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)542 static inline int platform_pci_set_power_state(struct pci_dev *dev,
543 pci_power_t t)
544 {
545 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
546 }
547
platform_pci_choose_state(struct pci_dev * dev)548 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
549 {
550 return pci_platform_pm ?
551 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
552 }
553
platform_pci_sleep_wake(struct pci_dev * dev,bool enable)554 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
555 {
556 return pci_platform_pm ?
557 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
558 }
559
platform_pci_run_wake(struct pci_dev * dev,bool enable)560 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
561 {
562 return pci_platform_pm ?
563 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
564 }
565
platform_pci_need_resume(struct pci_dev * dev)566 static inline bool platform_pci_need_resume(struct pci_dev *dev)
567 {
568 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
569 }
570
571 /**
572 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
573 * given PCI device
574 * @dev: PCI device to handle.
575 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
576 *
577 * RETURN VALUE:
578 * -EINVAL if the requested state is invalid.
579 * -EIO if device does not support PCI PM or its PM capabilities register has a
580 * wrong version, or device doesn't support the requested state.
581 * 0 if device already is in the requested state.
582 * 0 if device's power state has been successfully changed.
583 */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)584 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
585 {
586 u16 pmcsr;
587 bool need_restore = false;
588
589 /* Check if we're already there */
590 if (dev->current_state == state)
591 return 0;
592
593 if (!dev->pm_cap)
594 return -EIO;
595
596 if (state < PCI_D0 || state > PCI_D3hot)
597 return -EINVAL;
598
599 /* Validate current state:
600 * Can enter D0 from any state, but if we can only go deeper
601 * to sleep if we're already in a low power state
602 */
603 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
604 && dev->current_state > state) {
605 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
606 dev->current_state, state);
607 return -EINVAL;
608 }
609
610 /* check if this device supports the desired state */
611 if ((state == PCI_D1 && !dev->d1_support)
612 || (state == PCI_D2 && !dev->d2_support))
613 return -EIO;
614
615 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
616
617 /* If we're (effectively) in D3, force entire word to 0.
618 * This doesn't affect PME_Status, disables PME_En, and
619 * sets PowerState to 0.
620 */
621 switch (dev->current_state) {
622 case PCI_D0:
623 case PCI_D1:
624 case PCI_D2:
625 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
626 pmcsr |= state;
627 break;
628 case PCI_D3hot:
629 case PCI_D3cold:
630 case PCI_UNKNOWN: /* Boot-up */
631 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
632 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
633 need_restore = true;
634 /* Fall-through: force to D0 */
635 default:
636 pmcsr = 0;
637 break;
638 }
639
640 /* enter specified state */
641 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
642
643 /* Mandatory power management transition delays */
644 /* see PCI PM 1.1 5.6.1 table 18 */
645 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
646 pci_dev_d3_sleep(dev);
647 else if (state == PCI_D2 || dev->current_state == PCI_D2)
648 udelay(PCI_PM_D2_DELAY);
649
650 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
651 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
652 if (dev->current_state != state && printk_ratelimit())
653 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
654 dev->current_state);
655
656 /*
657 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
658 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
659 * from D3hot to D0 _may_ perform an internal reset, thereby
660 * going to "D0 Uninitialized" rather than "D0 Initialized".
661 * For example, at least some versions of the 3c905B and the
662 * 3c556B exhibit this behaviour.
663 *
664 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
665 * devices in a D3hot state at boot. Consequently, we need to
666 * restore at least the BARs so that the device will be
667 * accessible to its driver.
668 */
669 if (need_restore)
670 pci_restore_bars(dev);
671
672 if (dev->bus->self)
673 pcie_aspm_pm_state_change(dev->bus->self);
674
675 return 0;
676 }
677
678 /**
679 * pci_update_current_state - Read PCI power state of given device from its
680 * PCI PM registers and cache it
681 * @dev: PCI device to handle.
682 * @state: State to cache in case the device doesn't have the PM capability
683 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)684 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
685 {
686 if (dev->pm_cap) {
687 u16 pmcsr;
688
689 /*
690 * Configuration space is not accessible for device in
691 * D3cold, so just keep or set D3cold for safety
692 */
693 if (dev->current_state == PCI_D3cold)
694 return;
695 if (state == PCI_D3cold) {
696 dev->current_state = PCI_D3cold;
697 return;
698 }
699 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
700 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
701 } else {
702 dev->current_state = state;
703 }
704 }
705
706 /**
707 * pci_platform_power_transition - Use platform to change device power state
708 * @dev: PCI device to handle.
709 * @state: State to put the device into.
710 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)711 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
712 {
713 int error;
714
715 if (platform_pci_power_manageable(dev)) {
716 error = platform_pci_set_power_state(dev, state);
717 if (!error)
718 pci_update_current_state(dev, state);
719 } else
720 error = -ENODEV;
721
722 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
723 dev->current_state = PCI_D0;
724
725 return error;
726 }
727
728 /**
729 * pci_wakeup - Wake up a PCI device
730 * @pci_dev: Device to handle.
731 * @ign: ignored parameter
732 */
pci_wakeup(struct pci_dev * pci_dev,void * ign)733 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
734 {
735 pci_wakeup_event(pci_dev);
736 pm_request_resume(&pci_dev->dev);
737 return 0;
738 }
739
740 /**
741 * pci_wakeup_bus - Walk given bus and wake up devices on it
742 * @bus: Top bus of the subtree to walk.
743 */
pci_wakeup_bus(struct pci_bus * bus)744 static void pci_wakeup_bus(struct pci_bus *bus)
745 {
746 if (bus)
747 pci_walk_bus(bus, pci_wakeup, NULL);
748 }
749
750 /**
751 * __pci_start_power_transition - Start power transition of a PCI device
752 * @dev: PCI device to handle.
753 * @state: State to put the device into.
754 */
__pci_start_power_transition(struct pci_dev * dev,pci_power_t state)755 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
756 {
757 if (state == PCI_D0) {
758 pci_platform_power_transition(dev, PCI_D0);
759 /*
760 * Mandatory power management transition delays, see
761 * PCI Express Base Specification Revision 2.0 Section
762 * 6.6.1: Conventional Reset. Do not delay for
763 * devices powered on/off by corresponding bridge,
764 * because have already delayed for the bridge.
765 */
766 if (dev->runtime_d3cold) {
767 msleep(dev->d3cold_delay);
768 /*
769 * When powering on a bridge from D3cold, the
770 * whole hierarchy may be powered on into
771 * D0uninitialized state, resume them to give
772 * them a chance to suspend again
773 */
774 pci_wakeup_bus(dev->subordinate);
775 }
776 }
777 }
778
779 /**
780 * __pci_dev_set_current_state - Set current state of a PCI device
781 * @dev: Device to handle
782 * @data: pointer to state to be set
783 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)784 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
785 {
786 pci_power_t state = *(pci_power_t *)data;
787
788 dev->current_state = state;
789 return 0;
790 }
791
792 /**
793 * __pci_bus_set_current_state - Walk given bus and set current state of devices
794 * @bus: Top bus of the subtree to walk.
795 * @state: state to be set
796 */
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)797 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
798 {
799 if (bus)
800 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
801 }
802
803 /**
804 * __pci_complete_power_transition - Complete power transition of a PCI device
805 * @dev: PCI device to handle.
806 * @state: State to put the device into.
807 *
808 * This function should not be called directly by device drivers.
809 */
__pci_complete_power_transition(struct pci_dev * dev,pci_power_t state)810 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
811 {
812 int ret;
813
814 if (state <= PCI_D0)
815 return -EINVAL;
816 ret = pci_platform_power_transition(dev, state);
817 /* Power off the bridge may power off the whole hierarchy */
818 if (!ret && state == PCI_D3cold)
819 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
820 return ret;
821 }
822 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
823
824 /**
825 * pci_set_power_state - Set the power state of a PCI device
826 * @dev: PCI device to handle.
827 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
828 *
829 * Transition a device to a new power state, using the platform firmware and/or
830 * the device's PCI PM registers.
831 *
832 * RETURN VALUE:
833 * -EINVAL if the requested state is invalid.
834 * -EIO if device does not support PCI PM or its PM capabilities register has a
835 * wrong version, or device doesn't support the requested state.
836 * 0 if device already is in the requested state.
837 * 0 if device's power state has been successfully changed.
838 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)839 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
840 {
841 int error;
842
843 /* bound the state we're entering */
844 if (state > PCI_D3cold)
845 state = PCI_D3cold;
846 else if (state < PCI_D0)
847 state = PCI_D0;
848 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
849 /*
850 * If the device or the parent bridge do not support PCI PM,
851 * ignore the request if we're doing anything other than putting
852 * it into D0 (which would only happen on boot).
853 */
854 return 0;
855
856 /* Check if we're already there */
857 if (dev->current_state == state)
858 return 0;
859
860 __pci_start_power_transition(dev, state);
861
862 /* This device is quirked not to be put into D3, so
863 don't put it in D3 */
864 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
865 return 0;
866
867 /*
868 * To put device in D3cold, we put device into D3hot in native
869 * way, then put device into D3cold with platform ops
870 */
871 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
872 PCI_D3hot : state);
873
874 if (!__pci_complete_power_transition(dev, state))
875 error = 0;
876
877 return error;
878 }
879 EXPORT_SYMBOL(pci_set_power_state);
880
881 /**
882 * pci_power_up - Put the given device into D0 forcibly
883 * @dev: PCI device to power up
884 */
pci_power_up(struct pci_dev * dev)885 void pci_power_up(struct pci_dev *dev)
886 {
887 __pci_start_power_transition(dev, PCI_D0);
888 pci_raw_set_power_state(dev, PCI_D0);
889 pci_update_current_state(dev, PCI_D0);
890 }
891
892 /**
893 * pci_choose_state - Choose the power state of a PCI device
894 * @dev: PCI device to be suspended
895 * @state: target sleep state for the whole system. This is the value
896 * that is passed to suspend() function.
897 *
898 * Returns PCI power state suitable for given device and given system
899 * message.
900 */
901
pci_choose_state(struct pci_dev * dev,pm_message_t state)902 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
903 {
904 pci_power_t ret;
905
906 if (!dev->pm_cap)
907 return PCI_D0;
908
909 ret = platform_pci_choose_state(dev);
910 if (ret != PCI_POWER_ERROR)
911 return ret;
912
913 switch (state.event) {
914 case PM_EVENT_ON:
915 return PCI_D0;
916 case PM_EVENT_FREEZE:
917 case PM_EVENT_PRETHAW:
918 /* REVISIT both freeze and pre-thaw "should" use D0 */
919 case PM_EVENT_SUSPEND:
920 case PM_EVENT_HIBERNATE:
921 return PCI_D3hot;
922 default:
923 dev_info(&dev->dev, "unrecognized suspend event %d\n",
924 state.event);
925 BUG();
926 }
927 return PCI_D0;
928 }
929 EXPORT_SYMBOL(pci_choose_state);
930
931 #define PCI_EXP_SAVE_REGS 7
932
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)933 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
934 u16 cap, bool extended)
935 {
936 struct pci_cap_saved_state *tmp;
937
938 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
939 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
940 return tmp;
941 }
942 return NULL;
943 }
944
pci_find_saved_cap(struct pci_dev * dev,char cap)945 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
946 {
947 return _pci_find_saved_cap(dev, cap, false);
948 }
949
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)950 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
951 {
952 return _pci_find_saved_cap(dev, cap, true);
953 }
954
pci_save_pcie_state(struct pci_dev * dev)955 static int pci_save_pcie_state(struct pci_dev *dev)
956 {
957 int i = 0;
958 struct pci_cap_saved_state *save_state;
959 u16 *cap;
960
961 if (!pci_is_pcie(dev))
962 return 0;
963
964 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
965 if (!save_state) {
966 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
967 return -ENOMEM;
968 }
969
970 cap = (u16 *)&save_state->cap.data[0];
971 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
972 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
973 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
974 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
975 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
976 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
977 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
978
979 return 0;
980 }
981
pci_restore_pcie_state(struct pci_dev * dev)982 static void pci_restore_pcie_state(struct pci_dev *dev)
983 {
984 int i = 0;
985 struct pci_cap_saved_state *save_state;
986 u16 *cap;
987
988 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
989 if (!save_state)
990 return;
991
992 cap = (u16 *)&save_state->cap.data[0];
993 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
994 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
995 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
996 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
997 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
998 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
999 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1000 }
1001
1002
pci_save_pcix_state(struct pci_dev * dev)1003 static int pci_save_pcix_state(struct pci_dev *dev)
1004 {
1005 int pos;
1006 struct pci_cap_saved_state *save_state;
1007
1008 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1009 if (!pos)
1010 return 0;
1011
1012 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1013 if (!save_state) {
1014 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1015 return -ENOMEM;
1016 }
1017
1018 pci_read_config_word(dev, pos + PCI_X_CMD,
1019 (u16 *)save_state->cap.data);
1020
1021 return 0;
1022 }
1023
pci_restore_pcix_state(struct pci_dev * dev)1024 static void pci_restore_pcix_state(struct pci_dev *dev)
1025 {
1026 int i = 0, pos;
1027 struct pci_cap_saved_state *save_state;
1028 u16 *cap;
1029
1030 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1031 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1032 if (!save_state || !pos)
1033 return;
1034 cap = (u16 *)&save_state->cap.data[0];
1035
1036 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1037 }
1038
1039
1040 /**
1041 * pci_save_state - save the PCI configuration space of a device before suspending
1042 * @dev: - PCI device that we're dealing with
1043 */
pci_save_state(struct pci_dev * dev)1044 int pci_save_state(struct pci_dev *dev)
1045 {
1046 int i;
1047 /* XXX: 100% dword access ok here? */
1048 for (i = 0; i < 16; i++)
1049 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1050 dev->state_saved = true;
1051
1052 i = pci_save_pcie_state(dev);
1053 if (i != 0)
1054 return i;
1055
1056 i = pci_save_pcix_state(dev);
1057 if (i != 0)
1058 return i;
1059
1060 return pci_save_vc_state(dev);
1061 }
1062 EXPORT_SYMBOL(pci_save_state);
1063
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1064 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1065 u32 saved_val, int retry, bool force)
1066 {
1067 u32 val;
1068
1069 pci_read_config_dword(pdev, offset, &val);
1070 if (!force && val == saved_val)
1071 return;
1072
1073 for (;;) {
1074 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1075 offset, val, saved_val);
1076 pci_write_config_dword(pdev, offset, saved_val);
1077 if (retry-- <= 0)
1078 return;
1079
1080 pci_read_config_dword(pdev, offset, &val);
1081 if (val == saved_val)
1082 return;
1083
1084 mdelay(1);
1085 }
1086 }
1087
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1088 static void pci_restore_config_space_range(struct pci_dev *pdev,
1089 int start, int end, int retry,
1090 bool force)
1091 {
1092 int index;
1093
1094 for (index = end; index >= start; index--)
1095 pci_restore_config_dword(pdev, 4 * index,
1096 pdev->saved_config_space[index],
1097 retry, force);
1098 }
1099
pci_restore_config_space(struct pci_dev * pdev)1100 static void pci_restore_config_space(struct pci_dev *pdev)
1101 {
1102 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1103 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1104 /* Restore BARs before the command register. */
1105 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1106 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1107 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1108 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1109
1110 /*
1111 * Force rewriting of prefetch registers to avoid S3 resume
1112 * issues on Intel PCI bridges that occur when these
1113 * registers are not explicitly written.
1114 */
1115 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1116 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1117 } else {
1118 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1119 }
1120 }
1121
1122 /**
1123 * pci_restore_state - Restore the saved state of a PCI device
1124 * @dev: - PCI device that we're dealing with
1125 */
pci_restore_state(struct pci_dev * dev)1126 void pci_restore_state(struct pci_dev *dev)
1127 {
1128 if (!dev->state_saved)
1129 return;
1130
1131 /* PCI Express register must be restored first */
1132 pci_restore_pcie_state(dev);
1133 pci_restore_ats_state(dev);
1134 pci_restore_vc_state(dev);
1135
1136 pci_cleanup_aer_error_status_regs(dev);
1137
1138 pci_restore_config_space(dev);
1139
1140 pci_restore_pcix_state(dev);
1141 pci_restore_msi_state(dev);
1142
1143 /* Restore ACS and IOV configuration state */
1144 pci_enable_acs(dev);
1145 pci_restore_iov_state(dev);
1146
1147 dev->state_saved = false;
1148 }
1149 EXPORT_SYMBOL(pci_restore_state);
1150
1151 struct pci_saved_state {
1152 u32 config_space[16];
1153 struct pci_cap_saved_data cap[0];
1154 };
1155
1156 /**
1157 * pci_store_saved_state - Allocate and return an opaque struct containing
1158 * the device saved state.
1159 * @dev: PCI device that we're dealing with
1160 *
1161 * Return NULL if no state or error.
1162 */
pci_store_saved_state(struct pci_dev * dev)1163 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1164 {
1165 struct pci_saved_state *state;
1166 struct pci_cap_saved_state *tmp;
1167 struct pci_cap_saved_data *cap;
1168 size_t size;
1169
1170 if (!dev->state_saved)
1171 return NULL;
1172
1173 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1174
1175 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1176 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1177
1178 state = kzalloc(size, GFP_KERNEL);
1179 if (!state)
1180 return NULL;
1181
1182 memcpy(state->config_space, dev->saved_config_space,
1183 sizeof(state->config_space));
1184
1185 cap = state->cap;
1186 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1187 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1188 memcpy(cap, &tmp->cap, len);
1189 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1190 }
1191 /* Empty cap_save terminates list */
1192
1193 return state;
1194 }
1195 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1196
1197 /**
1198 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1199 * @dev: PCI device that we're dealing with
1200 * @state: Saved state returned from pci_store_saved_state()
1201 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1202 int pci_load_saved_state(struct pci_dev *dev,
1203 struct pci_saved_state *state)
1204 {
1205 struct pci_cap_saved_data *cap;
1206
1207 dev->state_saved = false;
1208
1209 if (!state)
1210 return 0;
1211
1212 memcpy(dev->saved_config_space, state->config_space,
1213 sizeof(state->config_space));
1214
1215 cap = state->cap;
1216 while (cap->size) {
1217 struct pci_cap_saved_state *tmp;
1218
1219 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1220 if (!tmp || tmp->cap.size != cap->size)
1221 return -EINVAL;
1222
1223 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1224 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1225 sizeof(struct pci_cap_saved_data) + cap->size);
1226 }
1227
1228 dev->state_saved = true;
1229 return 0;
1230 }
1231 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1232
1233 /**
1234 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1235 * and free the memory allocated for it.
1236 * @dev: PCI device that we're dealing with
1237 * @state: Pointer to saved state returned from pci_store_saved_state()
1238 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1239 int pci_load_and_free_saved_state(struct pci_dev *dev,
1240 struct pci_saved_state **state)
1241 {
1242 int ret = pci_load_saved_state(dev, *state);
1243 kfree(*state);
1244 *state = NULL;
1245 return ret;
1246 }
1247 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1248
pcibios_enable_device(struct pci_dev * dev,int bars)1249 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1250 {
1251 return pci_enable_resources(dev, bars);
1252 }
1253
do_pci_enable_device(struct pci_dev * dev,int bars)1254 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1255 {
1256 int err;
1257 struct pci_dev *bridge;
1258 u16 cmd;
1259 u8 pin;
1260
1261 err = pci_set_power_state(dev, PCI_D0);
1262 if (err < 0 && err != -EIO)
1263 return err;
1264
1265 bridge = pci_upstream_bridge(dev);
1266 if (bridge)
1267 pcie_aspm_powersave_config_link(bridge);
1268
1269 err = pcibios_enable_device(dev, bars);
1270 if (err < 0)
1271 return err;
1272 pci_fixup_device(pci_fixup_enable, dev);
1273
1274 if (dev->msi_enabled || dev->msix_enabled)
1275 return 0;
1276
1277 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1278 if (pin) {
1279 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1280 if (cmd & PCI_COMMAND_INTX_DISABLE)
1281 pci_write_config_word(dev, PCI_COMMAND,
1282 cmd & ~PCI_COMMAND_INTX_DISABLE);
1283 }
1284
1285 return 0;
1286 }
1287
1288 /**
1289 * pci_reenable_device - Resume abandoned device
1290 * @dev: PCI device to be resumed
1291 *
1292 * Note this function is a backend of pci_default_resume and is not supposed
1293 * to be called by normal code, write proper resume handler and use it instead.
1294 */
pci_reenable_device(struct pci_dev * dev)1295 int pci_reenable_device(struct pci_dev *dev)
1296 {
1297 if (pci_is_enabled(dev))
1298 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1299 return 0;
1300 }
1301 EXPORT_SYMBOL(pci_reenable_device);
1302
pci_enable_bridge(struct pci_dev * dev)1303 static void pci_enable_bridge(struct pci_dev *dev)
1304 {
1305 struct pci_dev *bridge;
1306 int retval;
1307
1308 bridge = pci_upstream_bridge(dev);
1309 if (bridge)
1310 pci_enable_bridge(bridge);
1311
1312 if (pci_is_enabled(dev)) {
1313 if (!dev->is_busmaster)
1314 pci_set_master(dev);
1315 return;
1316 }
1317
1318 retval = pci_enable_device(dev);
1319 if (retval)
1320 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1321 retval);
1322 pci_set_master(dev);
1323 }
1324
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1325 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1326 {
1327 struct pci_dev *bridge;
1328 int err;
1329 int i, bars = 0;
1330
1331 /*
1332 * Power state could be unknown at this point, either due to a fresh
1333 * boot or a device removal call. So get the current power state
1334 * so that things like MSI message writing will behave as expected
1335 * (e.g. if the device really is in D0 at enable time).
1336 */
1337 pci_update_current_state(dev, dev->current_state);
1338
1339 if (atomic_inc_return(&dev->enable_cnt) > 1)
1340 return 0; /* already enabled */
1341
1342 bridge = pci_upstream_bridge(dev);
1343 if (bridge)
1344 pci_enable_bridge(bridge);
1345
1346 /* only skip sriov related */
1347 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1348 if (dev->resource[i].flags & flags)
1349 bars |= (1 << i);
1350 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1351 if (dev->resource[i].flags & flags)
1352 bars |= (1 << i);
1353
1354 err = do_pci_enable_device(dev, bars);
1355 if (err < 0)
1356 atomic_dec(&dev->enable_cnt);
1357 return err;
1358 }
1359
1360 /**
1361 * pci_enable_device_io - Initialize a device for use with IO space
1362 * @dev: PCI device to be initialized
1363 *
1364 * Initialize device before it's used by a driver. Ask low-level code
1365 * to enable I/O resources. Wake up the device if it was suspended.
1366 * Beware, this function can fail.
1367 */
pci_enable_device_io(struct pci_dev * dev)1368 int pci_enable_device_io(struct pci_dev *dev)
1369 {
1370 return pci_enable_device_flags(dev, IORESOURCE_IO);
1371 }
1372 EXPORT_SYMBOL(pci_enable_device_io);
1373
1374 /**
1375 * pci_enable_device_mem - Initialize a device for use with Memory space
1376 * @dev: PCI device to be initialized
1377 *
1378 * Initialize device before it's used by a driver. Ask low-level code
1379 * to enable Memory resources. Wake up the device if it was suspended.
1380 * Beware, this function can fail.
1381 */
pci_enable_device_mem(struct pci_dev * dev)1382 int pci_enable_device_mem(struct pci_dev *dev)
1383 {
1384 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1385 }
1386 EXPORT_SYMBOL(pci_enable_device_mem);
1387
1388 /**
1389 * pci_enable_device - Initialize device before it's used by a driver.
1390 * @dev: PCI device to be initialized
1391 *
1392 * Initialize device before it's used by a driver. Ask low-level code
1393 * to enable I/O and memory. Wake up the device if it was suspended.
1394 * Beware, this function can fail.
1395 *
1396 * Note we don't actually enable the device many times if we call
1397 * this function repeatedly (we just increment the count).
1398 */
pci_enable_device(struct pci_dev * dev)1399 int pci_enable_device(struct pci_dev *dev)
1400 {
1401 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1402 }
1403 EXPORT_SYMBOL(pci_enable_device);
1404
1405 /*
1406 * Managed PCI resources. This manages device on/off, intx/msi/msix
1407 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1408 * there's no need to track it separately. pci_devres is initialized
1409 * when a device is enabled using managed PCI device enable interface.
1410 */
1411 struct pci_devres {
1412 unsigned int enabled:1;
1413 unsigned int pinned:1;
1414 unsigned int orig_intx:1;
1415 unsigned int restore_intx:1;
1416 u32 region_mask;
1417 };
1418
pcim_release(struct device * gendev,void * res)1419 static void pcim_release(struct device *gendev, void *res)
1420 {
1421 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1422 struct pci_devres *this = res;
1423 int i;
1424
1425 if (dev->msi_enabled)
1426 pci_disable_msi(dev);
1427 if (dev->msix_enabled)
1428 pci_disable_msix(dev);
1429
1430 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1431 if (this->region_mask & (1 << i))
1432 pci_release_region(dev, i);
1433
1434 if (this->restore_intx)
1435 pci_intx(dev, this->orig_intx);
1436
1437 if (this->enabled && !this->pinned)
1438 pci_disable_device(dev);
1439 }
1440
get_pci_dr(struct pci_dev * pdev)1441 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1442 {
1443 struct pci_devres *dr, *new_dr;
1444
1445 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1446 if (dr)
1447 return dr;
1448
1449 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1450 if (!new_dr)
1451 return NULL;
1452 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1453 }
1454
find_pci_dr(struct pci_dev * pdev)1455 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1456 {
1457 if (pci_is_managed(pdev))
1458 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1459 return NULL;
1460 }
1461
1462 /**
1463 * pcim_enable_device - Managed pci_enable_device()
1464 * @pdev: PCI device to be initialized
1465 *
1466 * Managed pci_enable_device().
1467 */
pcim_enable_device(struct pci_dev * pdev)1468 int pcim_enable_device(struct pci_dev *pdev)
1469 {
1470 struct pci_devres *dr;
1471 int rc;
1472
1473 dr = get_pci_dr(pdev);
1474 if (unlikely(!dr))
1475 return -ENOMEM;
1476 if (dr->enabled)
1477 return 0;
1478
1479 rc = pci_enable_device(pdev);
1480 if (!rc) {
1481 pdev->is_managed = 1;
1482 dr->enabled = 1;
1483 }
1484 return rc;
1485 }
1486 EXPORT_SYMBOL(pcim_enable_device);
1487
1488 /**
1489 * pcim_pin_device - Pin managed PCI device
1490 * @pdev: PCI device to pin
1491 *
1492 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1493 * driver detach. @pdev must have been enabled with
1494 * pcim_enable_device().
1495 */
pcim_pin_device(struct pci_dev * pdev)1496 void pcim_pin_device(struct pci_dev *pdev)
1497 {
1498 struct pci_devres *dr;
1499
1500 dr = find_pci_dr(pdev);
1501 WARN_ON(!dr || !dr->enabled);
1502 if (dr)
1503 dr->pinned = 1;
1504 }
1505 EXPORT_SYMBOL(pcim_pin_device);
1506
1507 /*
1508 * pcibios_add_device - provide arch specific hooks when adding device dev
1509 * @dev: the PCI device being added
1510 *
1511 * Permits the platform to provide architecture specific functionality when
1512 * devices are added. This is the default implementation. Architecture
1513 * implementations can override this.
1514 */
pcibios_add_device(struct pci_dev * dev)1515 int __weak pcibios_add_device(struct pci_dev *dev)
1516 {
1517 return 0;
1518 }
1519
1520 /**
1521 * pcibios_release_device - provide arch specific hooks when releasing device dev
1522 * @dev: the PCI device being released
1523 *
1524 * Permits the platform to provide architecture specific functionality when
1525 * devices are released. This is the default implementation. Architecture
1526 * implementations can override this.
1527 */
pcibios_release_device(struct pci_dev * dev)1528 void __weak pcibios_release_device(struct pci_dev *dev) {}
1529
1530 /**
1531 * pcibios_disable_device - disable arch specific PCI resources for device dev
1532 * @dev: the PCI device to disable
1533 *
1534 * Disables architecture specific PCI resources for the device. This
1535 * is the default implementation. Architecture implementations can
1536 * override this.
1537 */
pcibios_disable_device(struct pci_dev * dev)1538 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1539
1540 /**
1541 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1542 * @irq: ISA IRQ to penalize
1543 * @active: IRQ active or not
1544 *
1545 * Permits the platform to provide architecture-specific functionality when
1546 * penalizing ISA IRQs. This is the default implementation. Architecture
1547 * implementations can override this.
1548 */
pcibios_penalize_isa_irq(int irq,int active)1549 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1550
do_pci_disable_device(struct pci_dev * dev)1551 static void do_pci_disable_device(struct pci_dev *dev)
1552 {
1553 u16 pci_command;
1554
1555 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1556 if (pci_command & PCI_COMMAND_MASTER) {
1557 pci_command &= ~PCI_COMMAND_MASTER;
1558 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1559 }
1560
1561 pcibios_disable_device(dev);
1562 }
1563
1564 /**
1565 * pci_disable_enabled_device - Disable device without updating enable_cnt
1566 * @dev: PCI device to disable
1567 *
1568 * NOTE: This function is a backend of PCI power management routines and is
1569 * not supposed to be called drivers.
1570 */
pci_disable_enabled_device(struct pci_dev * dev)1571 void pci_disable_enabled_device(struct pci_dev *dev)
1572 {
1573 if (pci_is_enabled(dev))
1574 do_pci_disable_device(dev);
1575 }
1576
1577 /**
1578 * pci_disable_device - Disable PCI device after use
1579 * @dev: PCI device to be disabled
1580 *
1581 * Signal to the system that the PCI device is not in use by the system
1582 * anymore. This only involves disabling PCI bus-mastering, if active.
1583 *
1584 * Note we don't actually disable the device until all callers of
1585 * pci_enable_device() have called pci_disable_device().
1586 */
pci_disable_device(struct pci_dev * dev)1587 void pci_disable_device(struct pci_dev *dev)
1588 {
1589 struct pci_devres *dr;
1590
1591 dr = find_pci_dr(dev);
1592 if (dr)
1593 dr->enabled = 0;
1594
1595 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1596 "disabling already-disabled device");
1597
1598 if (atomic_dec_return(&dev->enable_cnt) != 0)
1599 return;
1600
1601 do_pci_disable_device(dev);
1602
1603 dev->is_busmaster = 0;
1604 }
1605 EXPORT_SYMBOL(pci_disable_device);
1606
1607 /**
1608 * pcibios_set_pcie_reset_state - set reset state for device dev
1609 * @dev: the PCIe device reset
1610 * @state: Reset state to enter into
1611 *
1612 *
1613 * Sets the PCIe reset state for the device. This is the default
1614 * implementation. Architecture implementations can override this.
1615 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1616 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1617 enum pcie_reset_state state)
1618 {
1619 return -EINVAL;
1620 }
1621
1622 /**
1623 * pci_set_pcie_reset_state - set reset state for device dev
1624 * @dev: the PCIe device reset
1625 * @state: Reset state to enter into
1626 *
1627 *
1628 * Sets the PCI reset state for the device.
1629 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1630 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1631 {
1632 return pcibios_set_pcie_reset_state(dev, state);
1633 }
1634 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1635
1636 /**
1637 * pci_check_pme_status - Check if given device has generated PME.
1638 * @dev: Device to check.
1639 *
1640 * Check the PME status of the device and if set, clear it and clear PME enable
1641 * (if set). Return 'true' if PME status and PME enable were both set or
1642 * 'false' otherwise.
1643 */
pci_check_pme_status(struct pci_dev * dev)1644 bool pci_check_pme_status(struct pci_dev *dev)
1645 {
1646 int pmcsr_pos;
1647 u16 pmcsr;
1648 bool ret = false;
1649
1650 if (!dev->pm_cap)
1651 return false;
1652
1653 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1654 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1655 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1656 return false;
1657
1658 /* Clear PME status. */
1659 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1660 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1661 /* Disable PME to avoid interrupt flood. */
1662 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1663 ret = true;
1664 }
1665
1666 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1667
1668 return ret;
1669 }
1670
1671 /**
1672 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1673 * @dev: Device to handle.
1674 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1675 *
1676 * Check if @dev has generated PME and queue a resume request for it in that
1677 * case.
1678 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)1679 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1680 {
1681 if (pme_poll_reset && dev->pme_poll)
1682 dev->pme_poll = false;
1683
1684 if (pci_check_pme_status(dev)) {
1685 pci_wakeup_event(dev);
1686 pm_request_resume(&dev->dev);
1687 }
1688 return 0;
1689 }
1690
1691 /**
1692 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1693 * @bus: Top bus of the subtree to walk.
1694 */
pci_pme_wakeup_bus(struct pci_bus * bus)1695 void pci_pme_wakeup_bus(struct pci_bus *bus)
1696 {
1697 if (bus)
1698 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1699 }
1700
1701
1702 /**
1703 * pci_pme_capable - check the capability of PCI device to generate PME#
1704 * @dev: PCI device to handle.
1705 * @state: PCI state from which device will issue PME#.
1706 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)1707 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1708 {
1709 if (!dev->pm_cap)
1710 return false;
1711
1712 return !!(dev->pme_support & (1 << state));
1713 }
1714 EXPORT_SYMBOL(pci_pme_capable);
1715
pci_pme_list_scan(struct work_struct * work)1716 static void pci_pme_list_scan(struct work_struct *work)
1717 {
1718 struct pci_pme_device *pme_dev, *n;
1719
1720 mutex_lock(&pci_pme_list_mutex);
1721 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1722 if (pme_dev->dev->pme_poll) {
1723 struct pci_dev *bridge;
1724
1725 bridge = pme_dev->dev->bus->self;
1726 /*
1727 * If bridge is in low power state, the
1728 * configuration space of subordinate devices
1729 * may be not accessible
1730 */
1731 if (bridge && bridge->current_state != PCI_D0)
1732 continue;
1733 /*
1734 * If the device is in D3cold it should not be
1735 * polled either.
1736 */
1737 if (pme_dev->dev->current_state == PCI_D3cold)
1738 continue;
1739
1740 pci_pme_wakeup(pme_dev->dev, NULL);
1741 } else {
1742 list_del(&pme_dev->list);
1743 kfree(pme_dev);
1744 }
1745 }
1746 if (!list_empty(&pci_pme_list))
1747 queue_delayed_work(system_freezable_wq, &pci_pme_work,
1748 msecs_to_jiffies(PME_TIMEOUT));
1749 mutex_unlock(&pci_pme_list_mutex);
1750 }
1751
__pci_pme_active(struct pci_dev * dev,bool enable)1752 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1753 {
1754 u16 pmcsr;
1755
1756 if (!dev->pme_support)
1757 return;
1758
1759 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1760 /* Clear PME_Status by writing 1 to it and enable PME# */
1761 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1762 if (!enable)
1763 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1764
1765 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1766 }
1767
1768 /**
1769 * pci_pme_active - enable or disable PCI device's PME# function
1770 * @dev: PCI device to handle.
1771 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1772 *
1773 * The caller must verify that the device is capable of generating PME# before
1774 * calling this function with @enable equal to 'true'.
1775 */
pci_pme_active(struct pci_dev * dev,bool enable)1776 void pci_pme_active(struct pci_dev *dev, bool enable)
1777 {
1778 __pci_pme_active(dev, enable);
1779
1780 /*
1781 * PCI (as opposed to PCIe) PME requires that the device have
1782 * its PME# line hooked up correctly. Not all hardware vendors
1783 * do this, so the PME never gets delivered and the device
1784 * remains asleep. The easiest way around this is to
1785 * periodically walk the list of suspended devices and check
1786 * whether any have their PME flag set. The assumption is that
1787 * we'll wake up often enough anyway that this won't be a huge
1788 * hit, and the power savings from the devices will still be a
1789 * win.
1790 *
1791 * Although PCIe uses in-band PME message instead of PME# line
1792 * to report PME, PME does not work for some PCIe devices in
1793 * reality. For example, there are devices that set their PME
1794 * status bits, but don't really bother to send a PME message;
1795 * there are PCI Express Root Ports that don't bother to
1796 * trigger interrupts when they receive PME messages from the
1797 * devices below. So PME poll is used for PCIe devices too.
1798 */
1799
1800 if (dev->pme_poll) {
1801 struct pci_pme_device *pme_dev;
1802 if (enable) {
1803 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1804 GFP_KERNEL);
1805 if (!pme_dev) {
1806 dev_warn(&dev->dev, "can't enable PME#\n");
1807 return;
1808 }
1809 pme_dev->dev = dev;
1810 mutex_lock(&pci_pme_list_mutex);
1811 list_add(&pme_dev->list, &pci_pme_list);
1812 if (list_is_singular(&pci_pme_list))
1813 queue_delayed_work(system_freezable_wq,
1814 &pci_pme_work,
1815 msecs_to_jiffies(PME_TIMEOUT));
1816 mutex_unlock(&pci_pme_list_mutex);
1817 } else {
1818 mutex_lock(&pci_pme_list_mutex);
1819 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1820 if (pme_dev->dev == dev) {
1821 list_del(&pme_dev->list);
1822 kfree(pme_dev);
1823 break;
1824 }
1825 }
1826 mutex_unlock(&pci_pme_list_mutex);
1827 }
1828 }
1829
1830 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1831 }
1832 EXPORT_SYMBOL(pci_pme_active);
1833
1834 /**
1835 * __pci_enable_wake - enable PCI device as wakeup event source
1836 * @dev: PCI device affected
1837 * @state: PCI state from which device will issue wakeup events
1838 * @runtime: True if the events are to be generated at run time
1839 * @enable: True to enable event generation; false to disable
1840 *
1841 * This enables the device as a wakeup event source, or disables it.
1842 * When such events involves platform-specific hooks, those hooks are
1843 * called automatically by this routine.
1844 *
1845 * Devices with legacy power management (no standard PCI PM capabilities)
1846 * always require such platform hooks.
1847 *
1848 * RETURN VALUE:
1849 * 0 is returned on success
1850 * -EINVAL is returned if device is not supposed to wake up the system
1851 * Error code depending on the platform is returned if both the platform and
1852 * the native mechanism fail to enable the generation of wake-up events
1853 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool runtime,bool enable)1854 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1855 bool runtime, bool enable)
1856 {
1857 int ret = 0;
1858
1859 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1860 return -EINVAL;
1861
1862 /* Don't do the same thing twice in a row for one device. */
1863 if (!!enable == !!dev->wakeup_prepared)
1864 return 0;
1865
1866 /*
1867 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1868 * Anderson we should be doing PME# wake enable followed by ACPI wake
1869 * enable. To disable wake-up we call the platform first, for symmetry.
1870 */
1871
1872 if (enable) {
1873 int error;
1874
1875 /*
1876 * Enable PME signaling if the device can signal PME from
1877 * D3cold regardless of whether or not it can signal PME from
1878 * the current target state, because that will allow it to
1879 * signal PME when the hierarchy above it goes into D3cold and
1880 * the device itself ends up in D3cold as a result of that.
1881 */
1882 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
1883 pci_pme_active(dev, true);
1884 else
1885 ret = 1;
1886 error = runtime ? platform_pci_run_wake(dev, true) :
1887 platform_pci_sleep_wake(dev, true);
1888 if (ret)
1889 ret = error;
1890 if (!ret)
1891 dev->wakeup_prepared = true;
1892 } else {
1893 if (runtime)
1894 platform_pci_run_wake(dev, false);
1895 else
1896 platform_pci_sleep_wake(dev, false);
1897 pci_pme_active(dev, false);
1898 dev->wakeup_prepared = false;
1899 }
1900
1901 return ret;
1902 }
1903 EXPORT_SYMBOL(__pci_enable_wake);
1904
1905 /**
1906 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1907 * @dev: PCI device to prepare
1908 * @enable: True to enable wake-up event generation; false to disable
1909 *
1910 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1911 * and this function allows them to set that up cleanly - pci_enable_wake()
1912 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1913 * ordering constraints.
1914 *
1915 * This function only returns error code if the device is not capable of
1916 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1917 * enable wake-up power for it.
1918 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)1919 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1920 {
1921 return pci_pme_capable(dev, PCI_D3cold) ?
1922 pci_enable_wake(dev, PCI_D3cold, enable) :
1923 pci_enable_wake(dev, PCI_D3hot, enable);
1924 }
1925 EXPORT_SYMBOL(pci_wake_from_d3);
1926
1927 /**
1928 * pci_target_state - find an appropriate low power state for a given PCI dev
1929 * @dev: PCI device
1930 *
1931 * Use underlying platform code to find a supported low power state for @dev.
1932 * If the platform can't manage @dev, return the deepest state from which it
1933 * can generate wake events, based on any available PME info.
1934 */
pci_target_state(struct pci_dev * dev)1935 static pci_power_t pci_target_state(struct pci_dev *dev)
1936 {
1937 pci_power_t target_state = PCI_D3hot;
1938
1939 if (platform_pci_power_manageable(dev)) {
1940 /*
1941 * Call the platform to choose the target state of the device
1942 * and enable wake-up from this state if supported.
1943 */
1944 pci_power_t state = platform_pci_choose_state(dev);
1945
1946 switch (state) {
1947 case PCI_POWER_ERROR:
1948 case PCI_UNKNOWN:
1949 break;
1950 case PCI_D1:
1951 case PCI_D2:
1952 if (pci_no_d1d2(dev))
1953 break;
1954 default:
1955 target_state = state;
1956 }
1957 } else if (!dev->pm_cap) {
1958 target_state = PCI_D0;
1959 } else if (device_may_wakeup(&dev->dev)) {
1960 /*
1961 * Find the deepest state from which the device can generate
1962 * wake-up events, make it the target state and enable device
1963 * to generate PME#.
1964 */
1965 if (dev->pme_support) {
1966 while (target_state
1967 && !(dev->pme_support & (1 << target_state)))
1968 target_state--;
1969 }
1970 }
1971
1972 return target_state;
1973 }
1974
1975 /**
1976 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1977 * @dev: Device to handle.
1978 *
1979 * Choose the power state appropriate for the device depending on whether
1980 * it can wake up the system and/or is power manageable by the platform
1981 * (PCI_D3hot is the default) and put the device into that state.
1982 */
pci_prepare_to_sleep(struct pci_dev * dev)1983 int pci_prepare_to_sleep(struct pci_dev *dev)
1984 {
1985 pci_power_t target_state = pci_target_state(dev);
1986 int error;
1987
1988 if (target_state == PCI_POWER_ERROR)
1989 return -EIO;
1990
1991 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1992
1993 error = pci_set_power_state(dev, target_state);
1994
1995 if (error)
1996 pci_enable_wake(dev, target_state, false);
1997
1998 return error;
1999 }
2000 EXPORT_SYMBOL(pci_prepare_to_sleep);
2001
2002 /**
2003 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2004 * @dev: Device to handle.
2005 *
2006 * Disable device's system wake-up capability and put it into D0.
2007 */
pci_back_from_sleep(struct pci_dev * dev)2008 int pci_back_from_sleep(struct pci_dev *dev)
2009 {
2010 pci_enable_wake(dev, PCI_D0, false);
2011 return pci_set_power_state(dev, PCI_D0);
2012 }
2013 EXPORT_SYMBOL(pci_back_from_sleep);
2014
2015 /**
2016 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2017 * @dev: PCI device being suspended.
2018 *
2019 * Prepare @dev to generate wake-up events at run time and put it into a low
2020 * power state.
2021 */
pci_finish_runtime_suspend(struct pci_dev * dev)2022 int pci_finish_runtime_suspend(struct pci_dev *dev)
2023 {
2024 pci_power_t target_state = pci_target_state(dev);
2025 int error;
2026
2027 if (target_state == PCI_POWER_ERROR)
2028 return -EIO;
2029
2030 dev->runtime_d3cold = target_state == PCI_D3cold;
2031
2032 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2033
2034 error = pci_set_power_state(dev, target_state);
2035
2036 if (error) {
2037 __pci_enable_wake(dev, target_state, true, false);
2038 dev->runtime_d3cold = false;
2039 }
2040
2041 return error;
2042 }
2043
2044 /**
2045 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2046 * @dev: Device to check.
2047 *
2048 * Return true if the device itself is capable of generating wake-up events
2049 * (through the platform or using the native PCIe PME) or if the device supports
2050 * PME and one of its upstream bridges can generate wake-up events.
2051 */
pci_dev_run_wake(struct pci_dev * dev)2052 bool pci_dev_run_wake(struct pci_dev *dev)
2053 {
2054 struct pci_bus *bus = dev->bus;
2055
2056 if (device_run_wake(&dev->dev))
2057 return true;
2058
2059 if (!dev->pme_support)
2060 return false;
2061
2062 /* PME-capable in principle, but not from the intended sleep state */
2063 if (!pci_pme_capable(dev, pci_target_state(dev)))
2064 return false;
2065
2066 while (bus->parent) {
2067 struct pci_dev *bridge = bus->self;
2068
2069 if (device_run_wake(&bridge->dev))
2070 return true;
2071
2072 bus = bus->parent;
2073 }
2074
2075 /* We have reached the root bus. */
2076 if (bus->bridge)
2077 return device_run_wake(bus->bridge);
2078
2079 return false;
2080 }
2081 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2082
2083 /**
2084 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2085 * @pci_dev: Device to check.
2086 *
2087 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2088 * reconfigured due to wakeup settings difference between system and runtime
2089 * suspend and the current power state of it is suitable for the upcoming
2090 * (system) transition.
2091 *
2092 * If the device is not configured for system wakeup, disable PME for it before
2093 * returning 'true' to prevent it from waking up the system unnecessarily.
2094 */
pci_dev_keep_suspended(struct pci_dev * pci_dev)2095 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2096 {
2097 struct device *dev = &pci_dev->dev;
2098
2099 if (!pm_runtime_suspended(dev)
2100 || pci_target_state(pci_dev) != pci_dev->current_state
2101 || platform_pci_need_resume(pci_dev))
2102 return false;
2103
2104 /*
2105 * At this point the device is good to go unless it's been configured
2106 * to generate PME at the runtime suspend time, but it is not supposed
2107 * to wake up the system. In that case, simply disable PME for it
2108 * (it will have to be re-enabled on exit from system resume).
2109 *
2110 * If the device's power state is D3cold and the platform check above
2111 * hasn't triggered, the device's configuration is suitable and we don't
2112 * need to manipulate it at all.
2113 */
2114 spin_lock_irq(&dev->power.lock);
2115
2116 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2117 !device_may_wakeup(dev))
2118 __pci_pme_active(pci_dev, false);
2119
2120 spin_unlock_irq(&dev->power.lock);
2121 return true;
2122 }
2123
2124 /**
2125 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2126 * @pci_dev: Device to handle.
2127 *
2128 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2129 * it might have been disabled during the prepare phase of system suspend if
2130 * the device was not configured for system wakeup.
2131 */
pci_dev_complete_resume(struct pci_dev * pci_dev)2132 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2133 {
2134 struct device *dev = &pci_dev->dev;
2135
2136 if (!pci_dev_run_wake(pci_dev))
2137 return;
2138
2139 spin_lock_irq(&dev->power.lock);
2140
2141 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2142 __pci_pme_active(pci_dev, true);
2143
2144 spin_unlock_irq(&dev->power.lock);
2145 }
2146
pci_config_pm_runtime_get(struct pci_dev * pdev)2147 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2148 {
2149 struct device *dev = &pdev->dev;
2150 struct device *parent = dev->parent;
2151
2152 if (parent)
2153 pm_runtime_get_sync(parent);
2154 pm_runtime_get_noresume(dev);
2155 /*
2156 * pdev->current_state is set to PCI_D3cold during suspending,
2157 * so wait until suspending completes
2158 */
2159 pm_runtime_barrier(dev);
2160 /*
2161 * Only need to resume devices in D3cold, because config
2162 * registers are still accessible for devices suspended but
2163 * not in D3cold.
2164 */
2165 if (pdev->current_state == PCI_D3cold)
2166 pm_runtime_resume(dev);
2167 }
2168
pci_config_pm_runtime_put(struct pci_dev * pdev)2169 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2170 {
2171 struct device *dev = &pdev->dev;
2172 struct device *parent = dev->parent;
2173
2174 pm_runtime_put(dev);
2175 if (parent)
2176 pm_runtime_put_sync(parent);
2177 }
2178
2179 /**
2180 * pci_pm_init - Initialize PM functions of given PCI device
2181 * @dev: PCI device to handle.
2182 */
pci_pm_init(struct pci_dev * dev)2183 void pci_pm_init(struct pci_dev *dev)
2184 {
2185 int pm;
2186 u16 pmc;
2187
2188 pm_runtime_forbid(&dev->dev);
2189 pm_runtime_set_active(&dev->dev);
2190 pm_runtime_enable(&dev->dev);
2191 device_enable_async_suspend(&dev->dev);
2192 dev->wakeup_prepared = false;
2193
2194 dev->pm_cap = 0;
2195 dev->pme_support = 0;
2196
2197 /* find PCI PM capability in list */
2198 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2199 if (!pm)
2200 return;
2201 /* Check device's ability to generate PME# */
2202 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2203
2204 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2205 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2206 pmc & PCI_PM_CAP_VER_MASK);
2207 return;
2208 }
2209
2210 dev->pm_cap = pm;
2211 dev->d3_delay = PCI_PM_D3_WAIT;
2212 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2213 dev->d3cold_allowed = true;
2214
2215 dev->d1_support = false;
2216 dev->d2_support = false;
2217 if (!pci_no_d1d2(dev)) {
2218 if (pmc & PCI_PM_CAP_D1)
2219 dev->d1_support = true;
2220 if (pmc & PCI_PM_CAP_D2)
2221 dev->d2_support = true;
2222
2223 if (dev->d1_support || dev->d2_support)
2224 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2225 dev->d1_support ? " D1" : "",
2226 dev->d2_support ? " D2" : "");
2227 }
2228
2229 pmc &= PCI_PM_CAP_PME_MASK;
2230 if (pmc) {
2231 dev_printk(KERN_DEBUG, &dev->dev,
2232 "PME# supported from%s%s%s%s%s\n",
2233 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2234 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2235 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2236 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2237 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2238 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2239 dev->pme_poll = true;
2240 /*
2241 * Make device's PM flags reflect the wake-up capability, but
2242 * let the user space enable it to wake up the system as needed.
2243 */
2244 device_set_wakeup_capable(&dev->dev, true);
2245 /* Disable the PME# generation functionality */
2246 pci_pme_active(dev, false);
2247 }
2248 }
2249
pci_ea_flags(struct pci_dev * dev,u8 prop)2250 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2251 {
2252 unsigned long flags = IORESOURCE_PCI_FIXED;
2253
2254 switch (prop) {
2255 case PCI_EA_P_MEM:
2256 case PCI_EA_P_VF_MEM:
2257 flags |= IORESOURCE_MEM;
2258 break;
2259 case PCI_EA_P_MEM_PREFETCH:
2260 case PCI_EA_P_VF_MEM_PREFETCH:
2261 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2262 break;
2263 case PCI_EA_P_IO:
2264 flags |= IORESOURCE_IO;
2265 break;
2266 default:
2267 return 0;
2268 }
2269
2270 return flags;
2271 }
2272
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)2273 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2274 u8 prop)
2275 {
2276 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2277 return &dev->resource[bei];
2278 #ifdef CONFIG_PCI_IOV
2279 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2280 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2281 return &dev->resource[PCI_IOV_RESOURCES +
2282 bei - PCI_EA_BEI_VF_BAR0];
2283 #endif
2284 else if (bei == PCI_EA_BEI_ROM)
2285 return &dev->resource[PCI_ROM_RESOURCE];
2286 else
2287 return NULL;
2288 }
2289
2290 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)2291 static int pci_ea_read(struct pci_dev *dev, int offset)
2292 {
2293 struct resource *res;
2294 int ent_size, ent_offset = offset;
2295 resource_size_t start, end;
2296 unsigned long flags;
2297 u32 dw0, bei, base, max_offset;
2298 u8 prop;
2299 bool support_64 = (sizeof(resource_size_t) >= 8);
2300
2301 pci_read_config_dword(dev, ent_offset, &dw0);
2302 ent_offset += 4;
2303
2304 /* Entry size field indicates DWORDs after 1st */
2305 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2306
2307 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2308 goto out;
2309
2310 bei = (dw0 & PCI_EA_BEI) >> 4;
2311 prop = (dw0 & PCI_EA_PP) >> 8;
2312
2313 /*
2314 * If the Property is in the reserved range, try the Secondary
2315 * Property instead.
2316 */
2317 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2318 prop = (dw0 & PCI_EA_SP) >> 16;
2319 if (prop > PCI_EA_P_BRIDGE_IO)
2320 goto out;
2321
2322 res = pci_ea_get_resource(dev, bei, prop);
2323 if (!res) {
2324 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2325 goto out;
2326 }
2327
2328 flags = pci_ea_flags(dev, prop);
2329 if (!flags) {
2330 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2331 goto out;
2332 }
2333
2334 /* Read Base */
2335 pci_read_config_dword(dev, ent_offset, &base);
2336 start = (base & PCI_EA_FIELD_MASK);
2337 ent_offset += 4;
2338
2339 /* Read MaxOffset */
2340 pci_read_config_dword(dev, ent_offset, &max_offset);
2341 ent_offset += 4;
2342
2343 /* Read Base MSBs (if 64-bit entry) */
2344 if (base & PCI_EA_IS_64) {
2345 u32 base_upper;
2346
2347 pci_read_config_dword(dev, ent_offset, &base_upper);
2348 ent_offset += 4;
2349
2350 flags |= IORESOURCE_MEM_64;
2351
2352 /* entry starts above 32-bit boundary, can't use */
2353 if (!support_64 && base_upper)
2354 goto out;
2355
2356 if (support_64)
2357 start |= ((u64)base_upper << 32);
2358 }
2359
2360 end = start + (max_offset | 0x03);
2361
2362 /* Read MaxOffset MSBs (if 64-bit entry) */
2363 if (max_offset & PCI_EA_IS_64) {
2364 u32 max_offset_upper;
2365
2366 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2367 ent_offset += 4;
2368
2369 flags |= IORESOURCE_MEM_64;
2370
2371 /* entry too big, can't use */
2372 if (!support_64 && max_offset_upper)
2373 goto out;
2374
2375 if (support_64)
2376 end += ((u64)max_offset_upper << 32);
2377 }
2378
2379 if (end < start) {
2380 dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2381 goto out;
2382 }
2383
2384 if (ent_size != ent_offset - offset) {
2385 dev_err(&dev->dev,
2386 "EA Entry Size (%d) does not match length read (%d)\n",
2387 ent_size, ent_offset - offset);
2388 goto out;
2389 }
2390
2391 res->name = pci_name(dev);
2392 res->start = start;
2393 res->end = end;
2394 res->flags = flags;
2395
2396 if (bei <= PCI_EA_BEI_BAR5)
2397 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2398 bei, res, prop);
2399 else if (bei == PCI_EA_BEI_ROM)
2400 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2401 res, prop);
2402 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2403 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2404 bei - PCI_EA_BEI_VF_BAR0, res, prop);
2405 else
2406 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2407 bei, res, prop);
2408
2409 out:
2410 return offset + ent_size;
2411 }
2412
2413 /* Enhanced Allocation Initalization */
pci_ea_init(struct pci_dev * dev)2414 void pci_ea_init(struct pci_dev *dev)
2415 {
2416 int ea;
2417 u8 num_ent;
2418 int offset;
2419 int i;
2420
2421 /* find PCI EA capability in list */
2422 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2423 if (!ea)
2424 return;
2425
2426 /* determine the number of entries */
2427 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2428 &num_ent);
2429 num_ent &= PCI_EA_NUM_ENT_MASK;
2430
2431 offset = ea + PCI_EA_FIRST_ENT;
2432
2433 /* Skip DWORD 2 for type 1 functions */
2434 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2435 offset += 4;
2436
2437 /* parse each EA entry */
2438 for (i = 0; i < num_ent; ++i)
2439 offset = pci_ea_read(dev, offset);
2440 }
2441
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)2442 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2443 struct pci_cap_saved_state *new_cap)
2444 {
2445 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2446 }
2447
2448 /**
2449 * _pci_add_cap_save_buffer - allocate buffer for saving given
2450 * capability registers
2451 * @dev: the PCI device
2452 * @cap: the capability to allocate the buffer for
2453 * @extended: Standard or Extended capability ID
2454 * @size: requested size of the buffer
2455 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)2456 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2457 bool extended, unsigned int size)
2458 {
2459 int pos;
2460 struct pci_cap_saved_state *save_state;
2461
2462 if (extended)
2463 pos = pci_find_ext_capability(dev, cap);
2464 else
2465 pos = pci_find_capability(dev, cap);
2466
2467 if (!pos)
2468 return 0;
2469
2470 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2471 if (!save_state)
2472 return -ENOMEM;
2473
2474 save_state->cap.cap_nr = cap;
2475 save_state->cap.cap_extended = extended;
2476 save_state->cap.size = size;
2477 pci_add_saved_cap(dev, save_state);
2478
2479 return 0;
2480 }
2481
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)2482 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2483 {
2484 return _pci_add_cap_save_buffer(dev, cap, false, size);
2485 }
2486
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)2487 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2488 {
2489 return _pci_add_cap_save_buffer(dev, cap, true, size);
2490 }
2491
2492 /**
2493 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2494 * @dev: the PCI device
2495 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)2496 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2497 {
2498 int error;
2499
2500 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2501 PCI_EXP_SAVE_REGS * sizeof(u16));
2502 if (error)
2503 dev_err(&dev->dev,
2504 "unable to preallocate PCI Express save buffer\n");
2505
2506 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2507 if (error)
2508 dev_err(&dev->dev,
2509 "unable to preallocate PCI-X save buffer\n");
2510
2511 pci_allocate_vc_save_buffers(dev);
2512 }
2513
pci_free_cap_save_buffers(struct pci_dev * dev)2514 void pci_free_cap_save_buffers(struct pci_dev *dev)
2515 {
2516 struct pci_cap_saved_state *tmp;
2517 struct hlist_node *n;
2518
2519 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2520 kfree(tmp);
2521 }
2522
2523 /**
2524 * pci_configure_ari - enable or disable ARI forwarding
2525 * @dev: the PCI device
2526 *
2527 * If @dev and its upstream bridge both support ARI, enable ARI in the
2528 * bridge. Otherwise, disable ARI in the bridge.
2529 */
pci_configure_ari(struct pci_dev * dev)2530 void pci_configure_ari(struct pci_dev *dev)
2531 {
2532 u32 cap;
2533 struct pci_dev *bridge;
2534
2535 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2536 return;
2537
2538 bridge = dev->bus->self;
2539 if (!bridge)
2540 return;
2541
2542 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2543 if (!(cap & PCI_EXP_DEVCAP2_ARI))
2544 return;
2545
2546 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2547 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2548 PCI_EXP_DEVCTL2_ARI);
2549 bridge->ari_enabled = 1;
2550 } else {
2551 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2552 PCI_EXP_DEVCTL2_ARI);
2553 bridge->ari_enabled = 0;
2554 }
2555 }
2556
2557 static int pci_acs_enable;
2558
2559 /**
2560 * pci_request_acs - ask for ACS to be enabled if supported
2561 */
pci_request_acs(void)2562 void pci_request_acs(void)
2563 {
2564 pci_acs_enable = 1;
2565 }
2566
2567 /**
2568 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2569 * @dev: the PCI device
2570 */
pci_std_enable_acs(struct pci_dev * dev)2571 static int pci_std_enable_acs(struct pci_dev *dev)
2572 {
2573 int pos;
2574 u16 cap;
2575 u16 ctrl;
2576
2577 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2578 if (!pos)
2579 return -ENODEV;
2580
2581 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2582 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2583
2584 /* Source Validation */
2585 ctrl |= (cap & PCI_ACS_SV);
2586
2587 /* P2P Request Redirect */
2588 ctrl |= (cap & PCI_ACS_RR);
2589
2590 /* P2P Completion Redirect */
2591 ctrl |= (cap & PCI_ACS_CR);
2592
2593 /* Upstream Forwarding */
2594 ctrl |= (cap & PCI_ACS_UF);
2595
2596 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2597
2598 return 0;
2599 }
2600
2601 /**
2602 * pci_enable_acs - enable ACS if hardware support it
2603 * @dev: the PCI device
2604 */
pci_enable_acs(struct pci_dev * dev)2605 void pci_enable_acs(struct pci_dev *dev)
2606 {
2607 if (!pci_acs_enable)
2608 return;
2609
2610 if (!pci_std_enable_acs(dev))
2611 return;
2612
2613 pci_dev_specific_enable_acs(dev);
2614 }
2615
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)2616 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2617 {
2618 int pos;
2619 u16 cap, ctrl;
2620
2621 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2622 if (!pos)
2623 return false;
2624
2625 /*
2626 * Except for egress control, capabilities are either required
2627 * or only required if controllable. Features missing from the
2628 * capability field can therefore be assumed as hard-wired enabled.
2629 */
2630 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2631 acs_flags &= (cap | PCI_ACS_EC);
2632
2633 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2634 return (ctrl & acs_flags) == acs_flags;
2635 }
2636
2637 /**
2638 * pci_acs_enabled - test ACS against required flags for a given device
2639 * @pdev: device to test
2640 * @acs_flags: required PCI ACS flags
2641 *
2642 * Return true if the device supports the provided flags. Automatically
2643 * filters out flags that are not implemented on multifunction devices.
2644 *
2645 * Note that this interface checks the effective ACS capabilities of the
2646 * device rather than the actual capabilities. For instance, most single
2647 * function endpoints are not required to support ACS because they have no
2648 * opportunity for peer-to-peer access. We therefore return 'true'
2649 * regardless of whether the device exposes an ACS capability. This makes
2650 * it much easier for callers of this function to ignore the actual type
2651 * or topology of the device when testing ACS support.
2652 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)2653 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2654 {
2655 int ret;
2656
2657 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2658 if (ret >= 0)
2659 return ret > 0;
2660
2661 /*
2662 * Conventional PCI and PCI-X devices never support ACS, either
2663 * effectively or actually. The shared bus topology implies that
2664 * any device on the bus can receive or snoop DMA.
2665 */
2666 if (!pci_is_pcie(pdev))
2667 return false;
2668
2669 switch (pci_pcie_type(pdev)) {
2670 /*
2671 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2672 * but since their primary interface is PCI/X, we conservatively
2673 * handle them as we would a non-PCIe device.
2674 */
2675 case PCI_EXP_TYPE_PCIE_BRIDGE:
2676 /*
2677 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2678 * applicable... must never implement an ACS Extended Capability...".
2679 * This seems arbitrary, but we take a conservative interpretation
2680 * of this statement.
2681 */
2682 case PCI_EXP_TYPE_PCI_BRIDGE:
2683 case PCI_EXP_TYPE_RC_EC:
2684 return false;
2685 /*
2686 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2687 * implement ACS in order to indicate their peer-to-peer capabilities,
2688 * regardless of whether they are single- or multi-function devices.
2689 */
2690 case PCI_EXP_TYPE_DOWNSTREAM:
2691 case PCI_EXP_TYPE_ROOT_PORT:
2692 return pci_acs_flags_enabled(pdev, acs_flags);
2693 /*
2694 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2695 * implemented by the remaining PCIe types to indicate peer-to-peer
2696 * capabilities, but only when they are part of a multifunction
2697 * device. The footnote for section 6.12 indicates the specific
2698 * PCIe types included here.
2699 */
2700 case PCI_EXP_TYPE_ENDPOINT:
2701 case PCI_EXP_TYPE_UPSTREAM:
2702 case PCI_EXP_TYPE_LEG_END:
2703 case PCI_EXP_TYPE_RC_END:
2704 if (!pdev->multifunction)
2705 break;
2706
2707 return pci_acs_flags_enabled(pdev, acs_flags);
2708 }
2709
2710 /*
2711 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2712 * to single function devices with the exception of downstream ports.
2713 */
2714 return true;
2715 }
2716
2717 /**
2718 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2719 * @start: starting downstream device
2720 * @end: ending upstream device or NULL to search to the root bus
2721 * @acs_flags: required flags
2722 *
2723 * Walk up a device tree from start to end testing PCI ACS support. If
2724 * any step along the way does not support the required flags, return false.
2725 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)2726 bool pci_acs_path_enabled(struct pci_dev *start,
2727 struct pci_dev *end, u16 acs_flags)
2728 {
2729 struct pci_dev *pdev, *parent = start;
2730
2731 do {
2732 pdev = parent;
2733
2734 if (!pci_acs_enabled(pdev, acs_flags))
2735 return false;
2736
2737 if (pci_is_root_bus(pdev->bus))
2738 return (end == NULL);
2739
2740 parent = pdev->bus->self;
2741 } while (pdev != end);
2742
2743 return true;
2744 }
2745
2746 /**
2747 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2748 * @dev: the PCI device
2749 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2750 *
2751 * Perform INTx swizzling for a device behind one level of bridge. This is
2752 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2753 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2754 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2755 * the PCI Express Base Specification, Revision 2.1)
2756 */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)2757 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2758 {
2759 int slot;
2760
2761 if (pci_ari_enabled(dev->bus))
2762 slot = 0;
2763 else
2764 slot = PCI_SLOT(dev->devfn);
2765
2766 return (((pin - 1) + slot) % 4) + 1;
2767 }
2768
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)2769 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2770 {
2771 u8 pin;
2772
2773 pin = dev->pin;
2774 if (!pin)
2775 return -1;
2776
2777 while (!pci_is_root_bus(dev->bus)) {
2778 pin = pci_swizzle_interrupt_pin(dev, pin);
2779 dev = dev->bus->self;
2780 }
2781 *bridge = dev;
2782 return pin;
2783 }
2784
2785 /**
2786 * pci_common_swizzle - swizzle INTx all the way to root bridge
2787 * @dev: the PCI device
2788 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2789 *
2790 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2791 * bridges all the way up to a PCI root bus.
2792 */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)2793 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2794 {
2795 u8 pin = *pinp;
2796
2797 while (!pci_is_root_bus(dev->bus)) {
2798 pin = pci_swizzle_interrupt_pin(dev, pin);
2799 dev = dev->bus->self;
2800 }
2801 *pinp = pin;
2802 return PCI_SLOT(dev->devfn);
2803 }
2804 EXPORT_SYMBOL_GPL(pci_common_swizzle);
2805
2806 /**
2807 * pci_release_region - Release a PCI bar
2808 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2809 * @bar: BAR to release
2810 *
2811 * Releases the PCI I/O and memory resources previously reserved by a
2812 * successful call to pci_request_region. Call this function only
2813 * after all use of the PCI regions has ceased.
2814 */
pci_release_region(struct pci_dev * pdev,int bar)2815 void pci_release_region(struct pci_dev *pdev, int bar)
2816 {
2817 struct pci_devres *dr;
2818
2819 if (pci_resource_len(pdev, bar) == 0)
2820 return;
2821 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2822 release_region(pci_resource_start(pdev, bar),
2823 pci_resource_len(pdev, bar));
2824 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2825 release_mem_region(pci_resource_start(pdev, bar),
2826 pci_resource_len(pdev, bar));
2827
2828 dr = find_pci_dr(pdev);
2829 if (dr)
2830 dr->region_mask &= ~(1 << bar);
2831 }
2832 EXPORT_SYMBOL(pci_release_region);
2833
2834 /**
2835 * __pci_request_region - Reserved PCI I/O and memory resource
2836 * @pdev: PCI device whose resources are to be reserved
2837 * @bar: BAR to be reserved
2838 * @res_name: Name to be associated with resource.
2839 * @exclusive: whether the region access is exclusive or not
2840 *
2841 * Mark the PCI region associated with PCI device @pdev BR @bar as
2842 * being reserved by owner @res_name. Do not access any
2843 * address inside the PCI regions unless this call returns
2844 * successfully.
2845 *
2846 * If @exclusive is set, then the region is marked so that userspace
2847 * is explicitly not allowed to map the resource via /dev/mem or
2848 * sysfs MMIO access.
2849 *
2850 * Returns 0 on success, or %EBUSY on error. A warning
2851 * message is also printed on failure.
2852 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)2853 static int __pci_request_region(struct pci_dev *pdev, int bar,
2854 const char *res_name, int exclusive)
2855 {
2856 struct pci_devres *dr;
2857
2858 if (pci_resource_len(pdev, bar) == 0)
2859 return 0;
2860
2861 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2862 if (!request_region(pci_resource_start(pdev, bar),
2863 pci_resource_len(pdev, bar), res_name))
2864 goto err_out;
2865 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2866 if (!__request_mem_region(pci_resource_start(pdev, bar),
2867 pci_resource_len(pdev, bar), res_name,
2868 exclusive))
2869 goto err_out;
2870 }
2871
2872 dr = find_pci_dr(pdev);
2873 if (dr)
2874 dr->region_mask |= 1 << bar;
2875
2876 return 0;
2877
2878 err_out:
2879 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2880 &pdev->resource[bar]);
2881 return -EBUSY;
2882 }
2883
2884 /**
2885 * pci_request_region - Reserve PCI I/O and memory resource
2886 * @pdev: PCI device whose resources are to be reserved
2887 * @bar: BAR to be reserved
2888 * @res_name: Name to be associated with resource
2889 *
2890 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2891 * being reserved by owner @res_name. Do not access any
2892 * address inside the PCI regions unless this call returns
2893 * successfully.
2894 *
2895 * Returns 0 on success, or %EBUSY on error. A warning
2896 * message is also printed on failure.
2897 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)2898 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2899 {
2900 return __pci_request_region(pdev, bar, res_name, 0);
2901 }
2902 EXPORT_SYMBOL(pci_request_region);
2903
2904 /**
2905 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2906 * @pdev: PCI device whose resources are to be reserved
2907 * @bar: BAR to be reserved
2908 * @res_name: Name to be associated with resource.
2909 *
2910 * Mark the PCI region associated with PCI device @pdev BR @bar as
2911 * being reserved by owner @res_name. Do not access any
2912 * address inside the PCI regions unless this call returns
2913 * successfully.
2914 *
2915 * Returns 0 on success, or %EBUSY on error. A warning
2916 * message is also printed on failure.
2917 *
2918 * The key difference that _exclusive makes it that userspace is
2919 * explicitly not allowed to map the resource via /dev/mem or
2920 * sysfs.
2921 */
pci_request_region_exclusive(struct pci_dev * pdev,int bar,const char * res_name)2922 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2923 const char *res_name)
2924 {
2925 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2926 }
2927 EXPORT_SYMBOL(pci_request_region_exclusive);
2928
2929 /**
2930 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2931 * @pdev: PCI device whose resources were previously reserved
2932 * @bars: Bitmask of BARs to be released
2933 *
2934 * Release selected PCI I/O and memory resources previously reserved.
2935 * Call this function only after all use of the PCI regions has ceased.
2936 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)2937 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2938 {
2939 int i;
2940
2941 for (i = 0; i < 6; i++)
2942 if (bars & (1 << i))
2943 pci_release_region(pdev, i);
2944 }
2945 EXPORT_SYMBOL(pci_release_selected_regions);
2946
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)2947 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2948 const char *res_name, int excl)
2949 {
2950 int i;
2951
2952 for (i = 0; i < 6; i++)
2953 if (bars & (1 << i))
2954 if (__pci_request_region(pdev, i, res_name, excl))
2955 goto err_out;
2956 return 0;
2957
2958 err_out:
2959 while (--i >= 0)
2960 if (bars & (1 << i))
2961 pci_release_region(pdev, i);
2962
2963 return -EBUSY;
2964 }
2965
2966
2967 /**
2968 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2969 * @pdev: PCI device whose resources are to be reserved
2970 * @bars: Bitmask of BARs to be requested
2971 * @res_name: Name to be associated with resource
2972 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)2973 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2974 const char *res_name)
2975 {
2976 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2977 }
2978 EXPORT_SYMBOL(pci_request_selected_regions);
2979
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)2980 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2981 const char *res_name)
2982 {
2983 return __pci_request_selected_regions(pdev, bars, res_name,
2984 IORESOURCE_EXCLUSIVE);
2985 }
2986 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2987
2988 /**
2989 * pci_release_regions - Release reserved PCI I/O and memory resources
2990 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2991 *
2992 * Releases all PCI I/O and memory resources previously reserved by a
2993 * successful call to pci_request_regions. Call this function only
2994 * after all use of the PCI regions has ceased.
2995 */
2996
pci_release_regions(struct pci_dev * pdev)2997 void pci_release_regions(struct pci_dev *pdev)
2998 {
2999 pci_release_selected_regions(pdev, (1 << 6) - 1);
3000 }
3001 EXPORT_SYMBOL(pci_release_regions);
3002
3003 /**
3004 * pci_request_regions - Reserved PCI I/O and memory resources
3005 * @pdev: PCI device whose resources are to be reserved
3006 * @res_name: Name to be associated with resource.
3007 *
3008 * Mark all PCI regions associated with PCI device @pdev as
3009 * being reserved by owner @res_name. Do not access any
3010 * address inside the PCI regions unless this call returns
3011 * successfully.
3012 *
3013 * Returns 0 on success, or %EBUSY on error. A warning
3014 * message is also printed on failure.
3015 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)3016 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3017 {
3018 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3019 }
3020 EXPORT_SYMBOL(pci_request_regions);
3021
3022 /**
3023 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3024 * @pdev: PCI device whose resources are to be reserved
3025 * @res_name: Name to be associated with resource.
3026 *
3027 * Mark all PCI regions associated with PCI device @pdev as
3028 * being reserved by owner @res_name. Do not access any
3029 * address inside the PCI regions unless this call returns
3030 * successfully.
3031 *
3032 * pci_request_regions_exclusive() will mark the region so that
3033 * /dev/mem and the sysfs MMIO access will not be allowed.
3034 *
3035 * Returns 0 on success, or %EBUSY on error. A warning
3036 * message is also printed on failure.
3037 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)3038 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3039 {
3040 return pci_request_selected_regions_exclusive(pdev,
3041 ((1 << 6) - 1), res_name);
3042 }
3043 EXPORT_SYMBOL(pci_request_regions_exclusive);
3044
3045 /**
3046 * pci_remap_iospace - Remap the memory mapped I/O space
3047 * @res: Resource describing the I/O space
3048 * @phys_addr: physical address of range to be mapped
3049 *
3050 * Remap the memory mapped I/O space described by the @res
3051 * and the CPU physical address @phys_addr into virtual address space.
3052 * Only architectures that have memory mapped IO functions defined
3053 * (and the PCI_IOBASE value defined) should call this function.
3054 */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)3055 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3056 {
3057 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3058 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3059
3060 if (!(res->flags & IORESOURCE_IO))
3061 return -EINVAL;
3062
3063 if (res->end > IO_SPACE_LIMIT)
3064 return -EINVAL;
3065
3066 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3067 pgprot_device(PAGE_KERNEL));
3068 #else
3069 /* this architecture does not have memory mapped I/O space,
3070 so this function should never be called */
3071 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3072 return -ENODEV;
3073 #endif
3074 }
3075
__pci_set_master(struct pci_dev * dev,bool enable)3076 static void __pci_set_master(struct pci_dev *dev, bool enable)
3077 {
3078 u16 old_cmd, cmd;
3079
3080 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3081 if (enable)
3082 cmd = old_cmd | PCI_COMMAND_MASTER;
3083 else
3084 cmd = old_cmd & ~PCI_COMMAND_MASTER;
3085 if (cmd != old_cmd) {
3086 dev_dbg(&dev->dev, "%s bus mastering\n",
3087 enable ? "enabling" : "disabling");
3088 pci_write_config_word(dev, PCI_COMMAND, cmd);
3089 }
3090 dev->is_busmaster = enable;
3091 }
3092
3093 /**
3094 * pcibios_setup - process "pci=" kernel boot arguments
3095 * @str: string used to pass in "pci=" kernel boot arguments
3096 *
3097 * Process kernel boot arguments. This is the default implementation.
3098 * Architecture specific implementations can override this as necessary.
3099 */
pcibios_setup(char * str)3100 char * __weak __init pcibios_setup(char *str)
3101 {
3102 return str;
3103 }
3104
3105 /**
3106 * pcibios_set_master - enable PCI bus-mastering for device dev
3107 * @dev: the PCI device to enable
3108 *
3109 * Enables PCI bus-mastering for the device. This is the default
3110 * implementation. Architecture specific implementations can override
3111 * this if necessary.
3112 */
pcibios_set_master(struct pci_dev * dev)3113 void __weak pcibios_set_master(struct pci_dev *dev)
3114 {
3115 u8 lat;
3116
3117 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3118 if (pci_is_pcie(dev))
3119 return;
3120
3121 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3122 if (lat < 16)
3123 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3124 else if (lat > pcibios_max_latency)
3125 lat = pcibios_max_latency;
3126 else
3127 return;
3128
3129 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3130 }
3131
3132 /**
3133 * pci_set_master - enables bus-mastering for device dev
3134 * @dev: the PCI device to enable
3135 *
3136 * Enables bus-mastering on the device and calls pcibios_set_master()
3137 * to do the needed arch specific settings.
3138 */
pci_set_master(struct pci_dev * dev)3139 void pci_set_master(struct pci_dev *dev)
3140 {
3141 __pci_set_master(dev, true);
3142 pcibios_set_master(dev);
3143 }
3144 EXPORT_SYMBOL(pci_set_master);
3145
3146 /**
3147 * pci_clear_master - disables bus-mastering for device dev
3148 * @dev: the PCI device to disable
3149 */
pci_clear_master(struct pci_dev * dev)3150 void pci_clear_master(struct pci_dev *dev)
3151 {
3152 __pci_set_master(dev, false);
3153 }
3154 EXPORT_SYMBOL(pci_clear_master);
3155
3156 /**
3157 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3158 * @dev: the PCI device for which MWI is to be enabled
3159 *
3160 * Helper function for pci_set_mwi.
3161 * Originally copied from drivers/net/acenic.c.
3162 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3163 *
3164 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3165 */
pci_set_cacheline_size(struct pci_dev * dev)3166 int pci_set_cacheline_size(struct pci_dev *dev)
3167 {
3168 u8 cacheline_size;
3169
3170 if (!pci_cache_line_size)
3171 return -EINVAL;
3172
3173 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3174 equal to or multiple of the right value. */
3175 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3176 if (cacheline_size >= pci_cache_line_size &&
3177 (cacheline_size % pci_cache_line_size) == 0)
3178 return 0;
3179
3180 /* Write the correct value. */
3181 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3182 /* Read it back. */
3183 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3184 if (cacheline_size == pci_cache_line_size)
3185 return 0;
3186
3187 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3188 pci_cache_line_size << 2);
3189
3190 return -EINVAL;
3191 }
3192 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3193
3194 /**
3195 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3196 * @dev: the PCI device for which MWI is enabled
3197 *
3198 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3199 *
3200 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3201 */
pci_set_mwi(struct pci_dev * dev)3202 int pci_set_mwi(struct pci_dev *dev)
3203 {
3204 #ifdef PCI_DISABLE_MWI
3205 return 0;
3206 #else
3207 int rc;
3208 u16 cmd;
3209
3210 rc = pci_set_cacheline_size(dev);
3211 if (rc)
3212 return rc;
3213
3214 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3215 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3216 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3217 cmd |= PCI_COMMAND_INVALIDATE;
3218 pci_write_config_word(dev, PCI_COMMAND, cmd);
3219 }
3220 return 0;
3221 #endif
3222 }
3223 EXPORT_SYMBOL(pci_set_mwi);
3224
3225 /**
3226 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3227 * @dev: the PCI device for which MWI is enabled
3228 *
3229 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3230 * Callers are not required to check the return value.
3231 *
3232 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3233 */
pci_try_set_mwi(struct pci_dev * dev)3234 int pci_try_set_mwi(struct pci_dev *dev)
3235 {
3236 #ifdef PCI_DISABLE_MWI
3237 return 0;
3238 #else
3239 return pci_set_mwi(dev);
3240 #endif
3241 }
3242 EXPORT_SYMBOL(pci_try_set_mwi);
3243
3244 /**
3245 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3246 * @dev: the PCI device to disable
3247 *
3248 * Disables PCI Memory-Write-Invalidate transaction on the device
3249 */
pci_clear_mwi(struct pci_dev * dev)3250 void pci_clear_mwi(struct pci_dev *dev)
3251 {
3252 #ifndef PCI_DISABLE_MWI
3253 u16 cmd;
3254
3255 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3256 if (cmd & PCI_COMMAND_INVALIDATE) {
3257 cmd &= ~PCI_COMMAND_INVALIDATE;
3258 pci_write_config_word(dev, PCI_COMMAND, cmd);
3259 }
3260 #endif
3261 }
3262 EXPORT_SYMBOL(pci_clear_mwi);
3263
3264 /**
3265 * pci_intx - enables/disables PCI INTx for device dev
3266 * @pdev: the PCI device to operate on
3267 * @enable: boolean: whether to enable or disable PCI INTx
3268 *
3269 * Enables/disables PCI INTx for device dev
3270 */
pci_intx(struct pci_dev * pdev,int enable)3271 void pci_intx(struct pci_dev *pdev, int enable)
3272 {
3273 u16 pci_command, new;
3274
3275 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3276
3277 if (enable)
3278 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3279 else
3280 new = pci_command | PCI_COMMAND_INTX_DISABLE;
3281
3282 if (new != pci_command) {
3283 struct pci_devres *dr;
3284
3285 pci_write_config_word(pdev, PCI_COMMAND, new);
3286
3287 dr = find_pci_dr(pdev);
3288 if (dr && !dr->restore_intx) {
3289 dr->restore_intx = 1;
3290 dr->orig_intx = !enable;
3291 }
3292 }
3293 }
3294 EXPORT_SYMBOL_GPL(pci_intx);
3295
3296 /**
3297 * pci_intx_mask_supported - probe for INTx masking support
3298 * @dev: the PCI device to operate on
3299 *
3300 * Check if the device dev support INTx masking via the config space
3301 * command word.
3302 */
pci_intx_mask_supported(struct pci_dev * dev)3303 bool pci_intx_mask_supported(struct pci_dev *dev)
3304 {
3305 bool mask_supported = false;
3306 u16 orig, new;
3307
3308 if (dev->broken_intx_masking)
3309 return false;
3310
3311 pci_cfg_access_lock(dev);
3312
3313 pci_read_config_word(dev, PCI_COMMAND, &orig);
3314 pci_write_config_word(dev, PCI_COMMAND,
3315 orig ^ PCI_COMMAND_INTX_DISABLE);
3316 pci_read_config_word(dev, PCI_COMMAND, &new);
3317
3318 /*
3319 * There's no way to protect against hardware bugs or detect them
3320 * reliably, but as long as we know what the value should be, let's
3321 * go ahead and check it.
3322 */
3323 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3324 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3325 orig, new);
3326 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3327 mask_supported = true;
3328 pci_write_config_word(dev, PCI_COMMAND, orig);
3329 }
3330
3331 pci_cfg_access_unlock(dev);
3332 return mask_supported;
3333 }
3334 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3335
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)3336 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3337 {
3338 struct pci_bus *bus = dev->bus;
3339 bool mask_updated = true;
3340 u32 cmd_status_dword;
3341 u16 origcmd, newcmd;
3342 unsigned long flags;
3343 bool irq_pending;
3344
3345 /*
3346 * We do a single dword read to retrieve both command and status.
3347 * Document assumptions that make this possible.
3348 */
3349 BUILD_BUG_ON(PCI_COMMAND % 4);
3350 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3351
3352 raw_spin_lock_irqsave(&pci_lock, flags);
3353
3354 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3355
3356 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3357
3358 /*
3359 * Check interrupt status register to see whether our device
3360 * triggered the interrupt (when masking) or the next IRQ is
3361 * already pending (when unmasking).
3362 */
3363 if (mask != irq_pending) {
3364 mask_updated = false;
3365 goto done;
3366 }
3367
3368 origcmd = cmd_status_dword;
3369 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3370 if (mask)
3371 newcmd |= PCI_COMMAND_INTX_DISABLE;
3372 if (newcmd != origcmd)
3373 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3374
3375 done:
3376 raw_spin_unlock_irqrestore(&pci_lock, flags);
3377
3378 return mask_updated;
3379 }
3380
3381 /**
3382 * pci_check_and_mask_intx - mask INTx on pending interrupt
3383 * @dev: the PCI device to operate on
3384 *
3385 * Check if the device dev has its INTx line asserted, mask it and
3386 * return true in that case. False is returned if not interrupt was
3387 * pending.
3388 */
pci_check_and_mask_intx(struct pci_dev * dev)3389 bool pci_check_and_mask_intx(struct pci_dev *dev)
3390 {
3391 return pci_check_and_set_intx_mask(dev, true);
3392 }
3393 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3394
3395 /**
3396 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3397 * @dev: the PCI device to operate on
3398 *
3399 * Check if the device dev has its INTx line asserted, unmask it if not
3400 * and return true. False is returned and the mask remains active if
3401 * there was still an interrupt pending.
3402 */
pci_check_and_unmask_intx(struct pci_dev * dev)3403 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3404 {
3405 return pci_check_and_set_intx_mask(dev, false);
3406 }
3407 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3408
pci_set_dma_max_seg_size(struct pci_dev * dev,unsigned int size)3409 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3410 {
3411 return dma_set_max_seg_size(&dev->dev, size);
3412 }
3413 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3414
pci_set_dma_seg_boundary(struct pci_dev * dev,unsigned long mask)3415 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3416 {
3417 return dma_set_seg_boundary(&dev->dev, mask);
3418 }
3419 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3420
3421 /**
3422 * pci_wait_for_pending_transaction - waits for pending transaction
3423 * @dev: the PCI device to operate on
3424 *
3425 * Return 0 if transaction is pending 1 otherwise.
3426 */
pci_wait_for_pending_transaction(struct pci_dev * dev)3427 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3428 {
3429 if (!pci_is_pcie(dev))
3430 return 1;
3431
3432 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3433 PCI_EXP_DEVSTA_TRPND);
3434 }
3435 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3436
pcie_flr(struct pci_dev * dev,int probe)3437 static int pcie_flr(struct pci_dev *dev, int probe)
3438 {
3439 u32 cap;
3440
3441 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3442 if (!(cap & PCI_EXP_DEVCAP_FLR))
3443 return -ENOTTY;
3444
3445 if (probe)
3446 return 0;
3447
3448 if (!pci_wait_for_pending_transaction(dev))
3449 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3450
3451 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3452 msleep(100);
3453 return 0;
3454 }
3455
pci_af_flr(struct pci_dev * dev,int probe)3456 static int pci_af_flr(struct pci_dev *dev, int probe)
3457 {
3458 int pos;
3459 u8 cap;
3460
3461 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3462 if (!pos)
3463 return -ENOTTY;
3464
3465 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3466 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3467 return -ENOTTY;
3468
3469 if (probe)
3470 return 0;
3471
3472 /*
3473 * Wait for Transaction Pending bit to clear. A word-aligned test
3474 * is used, so we use the conrol offset rather than status and shift
3475 * the test bit to match.
3476 */
3477 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3478 PCI_AF_STATUS_TP << 8))
3479 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3480
3481 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3482 msleep(100);
3483 return 0;
3484 }
3485
3486 /**
3487 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3488 * @dev: Device to reset.
3489 * @probe: If set, only check if the device can be reset this way.
3490 *
3491 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3492 * unset, it will be reinitialized internally when going from PCI_D3hot to
3493 * PCI_D0. If that's the case and the device is not in a low-power state
3494 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3495 *
3496 * NOTE: This causes the caller to sleep for twice the device power transition
3497 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3498 * by default (i.e. unless the @dev's d3_delay field has a different value).
3499 * Moreover, only devices in D0 can be reset by this function.
3500 */
pci_pm_reset(struct pci_dev * dev,int probe)3501 static int pci_pm_reset(struct pci_dev *dev, int probe)
3502 {
3503 u16 csr;
3504
3505 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3506 return -ENOTTY;
3507
3508 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3509 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3510 return -ENOTTY;
3511
3512 if (probe)
3513 return 0;
3514
3515 if (dev->current_state != PCI_D0)
3516 return -EINVAL;
3517
3518 csr &= ~PCI_PM_CTRL_STATE_MASK;
3519 csr |= PCI_D3hot;
3520 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3521 pci_dev_d3_sleep(dev);
3522
3523 csr &= ~PCI_PM_CTRL_STATE_MASK;
3524 csr |= PCI_D0;
3525 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3526 pci_dev_d3_sleep(dev);
3527
3528 return 0;
3529 }
3530
pci_reset_secondary_bus(struct pci_dev * dev)3531 void pci_reset_secondary_bus(struct pci_dev *dev)
3532 {
3533 u16 ctrl;
3534
3535 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3536 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3537 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3538 /*
3539 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3540 * this to 2ms to ensure that we meet the minimum requirement.
3541 */
3542 msleep(2);
3543
3544 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3545 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3546
3547 /*
3548 * Trhfa for conventional PCI is 2^25 clock cycles.
3549 * Assuming a minimum 33MHz clock this results in a 1s
3550 * delay before we can consider subordinate devices to
3551 * be re-initialized. PCIe has some ways to shorten this,
3552 * but we don't make use of them yet.
3553 */
3554 ssleep(1);
3555 }
3556
pcibios_reset_secondary_bus(struct pci_dev * dev)3557 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3558 {
3559 pci_reset_secondary_bus(dev);
3560 }
3561
3562 /**
3563 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3564 * @dev: Bridge device
3565 *
3566 * Use the bridge control register to assert reset on the secondary bus.
3567 * Devices on the secondary bus are left in power-on state.
3568 */
pci_reset_bridge_secondary_bus(struct pci_dev * dev)3569 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3570 {
3571 pcibios_reset_secondary_bus(dev);
3572 }
3573 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3574
pci_parent_bus_reset(struct pci_dev * dev,int probe)3575 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3576 {
3577 struct pci_dev *pdev;
3578
3579 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3580 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3581 return -ENOTTY;
3582
3583 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3584 if (pdev != dev)
3585 return -ENOTTY;
3586
3587 if (probe)
3588 return 0;
3589
3590 pci_reset_bridge_secondary_bus(dev->bus->self);
3591
3592 return 0;
3593 }
3594
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,int probe)3595 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3596 {
3597 int rc = -ENOTTY;
3598
3599 if (!hotplug || !try_module_get(hotplug->ops->owner))
3600 return rc;
3601
3602 if (hotplug->ops->reset_slot)
3603 rc = hotplug->ops->reset_slot(hotplug, probe);
3604
3605 module_put(hotplug->ops->owner);
3606
3607 return rc;
3608 }
3609
pci_dev_reset_slot_function(struct pci_dev * dev,int probe)3610 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3611 {
3612 struct pci_dev *pdev;
3613
3614 if (dev->subordinate || !dev->slot ||
3615 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3616 return -ENOTTY;
3617
3618 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3619 if (pdev != dev && pdev->slot == dev->slot)
3620 return -ENOTTY;
3621
3622 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3623 }
3624
__pci_dev_reset(struct pci_dev * dev,int probe)3625 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3626 {
3627 int rc;
3628
3629 might_sleep();
3630
3631 rc = pci_dev_specific_reset(dev, probe);
3632 if (rc != -ENOTTY)
3633 goto done;
3634
3635 rc = pcie_flr(dev, probe);
3636 if (rc != -ENOTTY)
3637 goto done;
3638
3639 rc = pci_af_flr(dev, probe);
3640 if (rc != -ENOTTY)
3641 goto done;
3642
3643 rc = pci_pm_reset(dev, probe);
3644 if (rc != -ENOTTY)
3645 goto done;
3646
3647 rc = pci_dev_reset_slot_function(dev, probe);
3648 if (rc != -ENOTTY)
3649 goto done;
3650
3651 rc = pci_parent_bus_reset(dev, probe);
3652 done:
3653 return rc;
3654 }
3655
pci_dev_lock(struct pci_dev * dev)3656 static void pci_dev_lock(struct pci_dev *dev)
3657 {
3658 pci_cfg_access_lock(dev);
3659 /* block PM suspend, driver probe, etc. */
3660 device_lock(&dev->dev);
3661 }
3662
3663 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)3664 static int pci_dev_trylock(struct pci_dev *dev)
3665 {
3666 if (pci_cfg_access_trylock(dev)) {
3667 if (device_trylock(&dev->dev))
3668 return 1;
3669 pci_cfg_access_unlock(dev);
3670 }
3671
3672 return 0;
3673 }
3674
pci_dev_unlock(struct pci_dev * dev)3675 static void pci_dev_unlock(struct pci_dev *dev)
3676 {
3677 device_unlock(&dev->dev);
3678 pci_cfg_access_unlock(dev);
3679 }
3680
3681 /**
3682 * pci_reset_notify - notify device driver of reset
3683 * @dev: device to be notified of reset
3684 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3685 * completed
3686 *
3687 * Must be called prior to device access being disabled and after device
3688 * access is restored.
3689 */
pci_reset_notify(struct pci_dev * dev,bool prepare)3690 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3691 {
3692 const struct pci_error_handlers *err_handler =
3693 dev->driver ? dev->driver->err_handler : NULL;
3694 if (err_handler && err_handler->reset_notify)
3695 err_handler->reset_notify(dev, prepare);
3696 }
3697
pci_dev_save_and_disable(struct pci_dev * dev)3698 static void pci_dev_save_and_disable(struct pci_dev *dev)
3699 {
3700 pci_reset_notify(dev, true);
3701
3702 /*
3703 * Wake-up device prior to save. PM registers default to D0 after
3704 * reset and a simple register restore doesn't reliably return
3705 * to a non-D0 state anyway.
3706 */
3707 pci_set_power_state(dev, PCI_D0);
3708
3709 pci_save_state(dev);
3710 /*
3711 * Disable the device by clearing the Command register, except for
3712 * INTx-disable which is set. This not only disables MMIO and I/O port
3713 * BARs, but also prevents the device from being Bus Master, preventing
3714 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3715 * compliant devices, INTx-disable prevents legacy interrupts.
3716 */
3717 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3718 }
3719
pci_dev_restore(struct pci_dev * dev)3720 static void pci_dev_restore(struct pci_dev *dev)
3721 {
3722 pci_restore_state(dev);
3723 pci_reset_notify(dev, false);
3724 }
3725
pci_dev_reset(struct pci_dev * dev,int probe)3726 static int pci_dev_reset(struct pci_dev *dev, int probe)
3727 {
3728 int rc;
3729
3730 if (!probe)
3731 pci_dev_lock(dev);
3732
3733 rc = __pci_dev_reset(dev, probe);
3734
3735 if (!probe)
3736 pci_dev_unlock(dev);
3737
3738 return rc;
3739 }
3740
3741 /**
3742 * __pci_reset_function - reset a PCI device function
3743 * @dev: PCI device to reset
3744 *
3745 * Some devices allow an individual function to be reset without affecting
3746 * other functions in the same device. The PCI device must be responsive
3747 * to PCI config space in order to use this function.
3748 *
3749 * The device function is presumed to be unused when this function is called.
3750 * Resetting the device will make the contents of PCI configuration space
3751 * random, so any caller of this must be prepared to reinitialise the
3752 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3753 * etc.
3754 *
3755 * Returns 0 if the device function was successfully reset or negative if the
3756 * device doesn't support resetting a single function.
3757 */
__pci_reset_function(struct pci_dev * dev)3758 int __pci_reset_function(struct pci_dev *dev)
3759 {
3760 return pci_dev_reset(dev, 0);
3761 }
3762 EXPORT_SYMBOL_GPL(__pci_reset_function);
3763
3764 /**
3765 * __pci_reset_function_locked - reset a PCI device function while holding
3766 * the @dev mutex lock.
3767 * @dev: PCI device to reset
3768 *
3769 * Some devices allow an individual function to be reset without affecting
3770 * other functions in the same device. The PCI device must be responsive
3771 * to PCI config space in order to use this function.
3772 *
3773 * The device function is presumed to be unused and the caller is holding
3774 * the device mutex lock when this function is called.
3775 * Resetting the device will make the contents of PCI configuration space
3776 * random, so any caller of this must be prepared to reinitialise the
3777 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3778 * etc.
3779 *
3780 * Returns 0 if the device function was successfully reset or negative if the
3781 * device doesn't support resetting a single function.
3782 */
__pci_reset_function_locked(struct pci_dev * dev)3783 int __pci_reset_function_locked(struct pci_dev *dev)
3784 {
3785 return __pci_dev_reset(dev, 0);
3786 }
3787 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3788
3789 /**
3790 * pci_probe_reset_function - check whether the device can be safely reset
3791 * @dev: PCI device to reset
3792 *
3793 * Some devices allow an individual function to be reset without affecting
3794 * other functions in the same device. The PCI device must be responsive
3795 * to PCI config space in order to use this function.
3796 *
3797 * Returns 0 if the device function can be reset or negative if the
3798 * device doesn't support resetting a single function.
3799 */
pci_probe_reset_function(struct pci_dev * dev)3800 int pci_probe_reset_function(struct pci_dev *dev)
3801 {
3802 return pci_dev_reset(dev, 1);
3803 }
3804
3805 /**
3806 * pci_reset_function - quiesce and reset a PCI device function
3807 * @dev: PCI device to reset
3808 *
3809 * Some devices allow an individual function to be reset without affecting
3810 * other functions in the same device. The PCI device must be responsive
3811 * to PCI config space in order to use this function.
3812 *
3813 * This function does not just reset the PCI portion of a device, but
3814 * clears all the state associated with the device. This function differs
3815 * from __pci_reset_function in that it saves and restores device state
3816 * over the reset.
3817 *
3818 * Returns 0 if the device function was successfully reset or negative if the
3819 * device doesn't support resetting a single function.
3820 */
pci_reset_function(struct pci_dev * dev)3821 int pci_reset_function(struct pci_dev *dev)
3822 {
3823 int rc;
3824
3825 rc = pci_dev_reset(dev, 1);
3826 if (rc)
3827 return rc;
3828
3829 pci_dev_save_and_disable(dev);
3830
3831 rc = pci_dev_reset(dev, 0);
3832
3833 pci_dev_restore(dev);
3834
3835 return rc;
3836 }
3837 EXPORT_SYMBOL_GPL(pci_reset_function);
3838
3839 /**
3840 * pci_try_reset_function - quiesce and reset a PCI device function
3841 * @dev: PCI device to reset
3842 *
3843 * Same as above, except return -EAGAIN if unable to lock device.
3844 */
pci_try_reset_function(struct pci_dev * dev)3845 int pci_try_reset_function(struct pci_dev *dev)
3846 {
3847 int rc;
3848
3849 rc = pci_dev_reset(dev, 1);
3850 if (rc)
3851 return rc;
3852
3853 pci_dev_save_and_disable(dev);
3854
3855 if (pci_dev_trylock(dev)) {
3856 rc = __pci_dev_reset(dev, 0);
3857 pci_dev_unlock(dev);
3858 } else
3859 rc = -EAGAIN;
3860
3861 pci_dev_restore(dev);
3862
3863 return rc;
3864 }
3865 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3866
3867 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)3868 static bool pci_bus_resetable(struct pci_bus *bus)
3869 {
3870 struct pci_dev *dev;
3871
3872
3873 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
3874 return false;
3875
3876 list_for_each_entry(dev, &bus->devices, bus_list) {
3877 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3878 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3879 return false;
3880 }
3881
3882 return true;
3883 }
3884
3885 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)3886 static void pci_bus_lock(struct pci_bus *bus)
3887 {
3888 struct pci_dev *dev;
3889
3890 list_for_each_entry(dev, &bus->devices, bus_list) {
3891 pci_dev_lock(dev);
3892 if (dev->subordinate)
3893 pci_bus_lock(dev->subordinate);
3894 }
3895 }
3896
3897 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)3898 static void pci_bus_unlock(struct pci_bus *bus)
3899 {
3900 struct pci_dev *dev;
3901
3902 list_for_each_entry(dev, &bus->devices, bus_list) {
3903 if (dev->subordinate)
3904 pci_bus_unlock(dev->subordinate);
3905 pci_dev_unlock(dev);
3906 }
3907 }
3908
3909 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)3910 static int pci_bus_trylock(struct pci_bus *bus)
3911 {
3912 struct pci_dev *dev;
3913
3914 list_for_each_entry(dev, &bus->devices, bus_list) {
3915 if (!pci_dev_trylock(dev))
3916 goto unlock;
3917 if (dev->subordinate) {
3918 if (!pci_bus_trylock(dev->subordinate)) {
3919 pci_dev_unlock(dev);
3920 goto unlock;
3921 }
3922 }
3923 }
3924 return 1;
3925
3926 unlock:
3927 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3928 if (dev->subordinate)
3929 pci_bus_unlock(dev->subordinate);
3930 pci_dev_unlock(dev);
3931 }
3932 return 0;
3933 }
3934
3935 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)3936 static bool pci_slot_resetable(struct pci_slot *slot)
3937 {
3938 struct pci_dev *dev;
3939
3940 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3941 if (!dev->slot || dev->slot != slot)
3942 continue;
3943 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3944 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3945 return false;
3946 }
3947
3948 return true;
3949 }
3950
3951 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)3952 static void pci_slot_lock(struct pci_slot *slot)
3953 {
3954 struct pci_dev *dev;
3955
3956 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3957 if (!dev->slot || dev->slot != slot)
3958 continue;
3959 pci_dev_lock(dev);
3960 if (dev->subordinate)
3961 pci_bus_lock(dev->subordinate);
3962 }
3963 }
3964
3965 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)3966 static void pci_slot_unlock(struct pci_slot *slot)
3967 {
3968 struct pci_dev *dev;
3969
3970 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3971 if (!dev->slot || dev->slot != slot)
3972 continue;
3973 if (dev->subordinate)
3974 pci_bus_unlock(dev->subordinate);
3975 pci_dev_unlock(dev);
3976 }
3977 }
3978
3979 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)3980 static int pci_slot_trylock(struct pci_slot *slot)
3981 {
3982 struct pci_dev *dev;
3983
3984 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3985 if (!dev->slot || dev->slot != slot)
3986 continue;
3987 if (!pci_dev_trylock(dev))
3988 goto unlock;
3989 if (dev->subordinate) {
3990 if (!pci_bus_trylock(dev->subordinate)) {
3991 pci_dev_unlock(dev);
3992 goto unlock;
3993 }
3994 }
3995 }
3996 return 1;
3997
3998 unlock:
3999 list_for_each_entry_continue_reverse(dev,
4000 &slot->bus->devices, bus_list) {
4001 if (!dev->slot || dev->slot != slot)
4002 continue;
4003 if (dev->subordinate)
4004 pci_bus_unlock(dev->subordinate);
4005 pci_dev_unlock(dev);
4006 }
4007 return 0;
4008 }
4009
4010 /* Save and disable devices from the top of the tree down */
pci_bus_save_and_disable(struct pci_bus * bus)4011 static void pci_bus_save_and_disable(struct pci_bus *bus)
4012 {
4013 struct pci_dev *dev;
4014
4015 list_for_each_entry(dev, &bus->devices, bus_list) {
4016 pci_dev_save_and_disable(dev);
4017 if (dev->subordinate)
4018 pci_bus_save_and_disable(dev->subordinate);
4019 }
4020 }
4021
4022 /*
4023 * Restore devices from top of the tree down - parent bridges need to be
4024 * restored before we can get to subordinate devices.
4025 */
pci_bus_restore(struct pci_bus * bus)4026 static void pci_bus_restore(struct pci_bus *bus)
4027 {
4028 struct pci_dev *dev;
4029
4030 list_for_each_entry(dev, &bus->devices, bus_list) {
4031 pci_dev_restore(dev);
4032 if (dev->subordinate)
4033 pci_bus_restore(dev->subordinate);
4034 }
4035 }
4036
4037 /* Save and disable devices from the top of the tree down */
pci_slot_save_and_disable(struct pci_slot * slot)4038 static void pci_slot_save_and_disable(struct pci_slot *slot)
4039 {
4040 struct pci_dev *dev;
4041
4042 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4043 if (!dev->slot || dev->slot != slot)
4044 continue;
4045 pci_dev_save_and_disable(dev);
4046 if (dev->subordinate)
4047 pci_bus_save_and_disable(dev->subordinate);
4048 }
4049 }
4050
4051 /*
4052 * Restore devices from top of the tree down - parent bridges need to be
4053 * restored before we can get to subordinate devices.
4054 */
pci_slot_restore(struct pci_slot * slot)4055 static void pci_slot_restore(struct pci_slot *slot)
4056 {
4057 struct pci_dev *dev;
4058
4059 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4060 if (!dev->slot || dev->slot != slot)
4061 continue;
4062 pci_dev_restore(dev);
4063 if (dev->subordinate)
4064 pci_bus_restore(dev->subordinate);
4065 }
4066 }
4067
pci_slot_reset(struct pci_slot * slot,int probe)4068 static int pci_slot_reset(struct pci_slot *slot, int probe)
4069 {
4070 int rc;
4071
4072 if (!slot || !pci_slot_resetable(slot))
4073 return -ENOTTY;
4074
4075 if (!probe)
4076 pci_slot_lock(slot);
4077
4078 might_sleep();
4079
4080 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4081
4082 if (!probe)
4083 pci_slot_unlock(slot);
4084
4085 return rc;
4086 }
4087
4088 /**
4089 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4090 * @slot: PCI slot to probe
4091 *
4092 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4093 */
pci_probe_reset_slot(struct pci_slot * slot)4094 int pci_probe_reset_slot(struct pci_slot *slot)
4095 {
4096 return pci_slot_reset(slot, 1);
4097 }
4098 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4099
4100 /**
4101 * pci_reset_slot - reset a PCI slot
4102 * @slot: PCI slot to reset
4103 *
4104 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4105 * independent of other slots. For instance, some slots may support slot power
4106 * control. In the case of a 1:1 bus to slot architecture, this function may
4107 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4108 * Generally a slot reset should be attempted before a bus reset. All of the
4109 * function of the slot and any subordinate buses behind the slot are reset
4110 * through this function. PCI config space of all devices in the slot and
4111 * behind the slot is saved before and restored after reset.
4112 *
4113 * Return 0 on success, non-zero on error.
4114 */
pci_reset_slot(struct pci_slot * slot)4115 int pci_reset_slot(struct pci_slot *slot)
4116 {
4117 int rc;
4118
4119 rc = pci_slot_reset(slot, 1);
4120 if (rc)
4121 return rc;
4122
4123 pci_slot_save_and_disable(slot);
4124
4125 rc = pci_slot_reset(slot, 0);
4126
4127 pci_slot_restore(slot);
4128
4129 return rc;
4130 }
4131 EXPORT_SYMBOL_GPL(pci_reset_slot);
4132
4133 /**
4134 * pci_try_reset_slot - Try to reset a PCI slot
4135 * @slot: PCI slot to reset
4136 *
4137 * Same as above except return -EAGAIN if the slot cannot be locked
4138 */
pci_try_reset_slot(struct pci_slot * slot)4139 int pci_try_reset_slot(struct pci_slot *slot)
4140 {
4141 int rc;
4142
4143 rc = pci_slot_reset(slot, 1);
4144 if (rc)
4145 return rc;
4146
4147 pci_slot_save_and_disable(slot);
4148
4149 if (pci_slot_trylock(slot)) {
4150 might_sleep();
4151 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4152 pci_slot_unlock(slot);
4153 } else
4154 rc = -EAGAIN;
4155
4156 pci_slot_restore(slot);
4157
4158 return rc;
4159 }
4160 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4161
pci_bus_reset(struct pci_bus * bus,int probe)4162 static int pci_bus_reset(struct pci_bus *bus, int probe)
4163 {
4164 if (!bus->self || !pci_bus_resetable(bus))
4165 return -ENOTTY;
4166
4167 if (probe)
4168 return 0;
4169
4170 pci_bus_lock(bus);
4171
4172 might_sleep();
4173
4174 pci_reset_bridge_secondary_bus(bus->self);
4175
4176 pci_bus_unlock(bus);
4177
4178 return 0;
4179 }
4180
4181 /**
4182 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4183 * @bus: PCI bus to probe
4184 *
4185 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4186 */
pci_probe_reset_bus(struct pci_bus * bus)4187 int pci_probe_reset_bus(struct pci_bus *bus)
4188 {
4189 return pci_bus_reset(bus, 1);
4190 }
4191 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4192
4193 /**
4194 * pci_reset_bus - reset a PCI bus
4195 * @bus: top level PCI bus to reset
4196 *
4197 * Do a bus reset on the given bus and any subordinate buses, saving
4198 * and restoring state of all devices.
4199 *
4200 * Return 0 on success, non-zero on error.
4201 */
pci_reset_bus(struct pci_bus * bus)4202 int pci_reset_bus(struct pci_bus *bus)
4203 {
4204 int rc;
4205
4206 rc = pci_bus_reset(bus, 1);
4207 if (rc)
4208 return rc;
4209
4210 pci_bus_save_and_disable(bus);
4211
4212 rc = pci_bus_reset(bus, 0);
4213
4214 pci_bus_restore(bus);
4215
4216 return rc;
4217 }
4218 EXPORT_SYMBOL_GPL(pci_reset_bus);
4219
4220 /**
4221 * pci_try_reset_bus - Try to reset a PCI bus
4222 * @bus: top level PCI bus to reset
4223 *
4224 * Same as above except return -EAGAIN if the bus cannot be locked
4225 */
pci_try_reset_bus(struct pci_bus * bus)4226 int pci_try_reset_bus(struct pci_bus *bus)
4227 {
4228 int rc;
4229
4230 rc = pci_bus_reset(bus, 1);
4231 if (rc)
4232 return rc;
4233
4234 pci_bus_save_and_disable(bus);
4235
4236 if (pci_bus_trylock(bus)) {
4237 might_sleep();
4238 pci_reset_bridge_secondary_bus(bus->self);
4239 pci_bus_unlock(bus);
4240 } else
4241 rc = -EAGAIN;
4242
4243 pci_bus_restore(bus);
4244
4245 return rc;
4246 }
4247 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4248
4249 /**
4250 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4251 * @dev: PCI device to query
4252 *
4253 * Returns mmrbc: maximum designed memory read count in bytes
4254 * or appropriate error value.
4255 */
pcix_get_max_mmrbc(struct pci_dev * dev)4256 int pcix_get_max_mmrbc(struct pci_dev *dev)
4257 {
4258 int cap;
4259 u32 stat;
4260
4261 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4262 if (!cap)
4263 return -EINVAL;
4264
4265 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4266 return -EINVAL;
4267
4268 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4269 }
4270 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4271
4272 /**
4273 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4274 * @dev: PCI device to query
4275 *
4276 * Returns mmrbc: maximum memory read count in bytes
4277 * or appropriate error value.
4278 */
pcix_get_mmrbc(struct pci_dev * dev)4279 int pcix_get_mmrbc(struct pci_dev *dev)
4280 {
4281 int cap;
4282 u16 cmd;
4283
4284 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4285 if (!cap)
4286 return -EINVAL;
4287
4288 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4289 return -EINVAL;
4290
4291 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4292 }
4293 EXPORT_SYMBOL(pcix_get_mmrbc);
4294
4295 /**
4296 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4297 * @dev: PCI device to query
4298 * @mmrbc: maximum memory read count in bytes
4299 * valid values are 512, 1024, 2048, 4096
4300 *
4301 * If possible sets maximum memory read byte count, some bridges have erratas
4302 * that prevent this.
4303 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)4304 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4305 {
4306 int cap;
4307 u32 stat, v, o;
4308 u16 cmd;
4309
4310 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4311 return -EINVAL;
4312
4313 v = ffs(mmrbc) - 10;
4314
4315 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4316 if (!cap)
4317 return -EINVAL;
4318
4319 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4320 return -EINVAL;
4321
4322 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4323 return -E2BIG;
4324
4325 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4326 return -EINVAL;
4327
4328 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4329 if (o != v) {
4330 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4331 return -EIO;
4332
4333 cmd &= ~PCI_X_CMD_MAX_READ;
4334 cmd |= v << 2;
4335 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4336 return -EIO;
4337 }
4338 return 0;
4339 }
4340 EXPORT_SYMBOL(pcix_set_mmrbc);
4341
4342 /**
4343 * pcie_get_readrq - get PCI Express read request size
4344 * @dev: PCI device to query
4345 *
4346 * Returns maximum memory read request in bytes
4347 * or appropriate error value.
4348 */
pcie_get_readrq(struct pci_dev * dev)4349 int pcie_get_readrq(struct pci_dev *dev)
4350 {
4351 u16 ctl;
4352
4353 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4354
4355 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4356 }
4357 EXPORT_SYMBOL(pcie_get_readrq);
4358
4359 /**
4360 * pcie_set_readrq - set PCI Express maximum memory read request
4361 * @dev: PCI device to query
4362 * @rq: maximum memory read count in bytes
4363 * valid values are 128, 256, 512, 1024, 2048, 4096
4364 *
4365 * If possible sets maximum memory read request in bytes
4366 */
pcie_set_readrq(struct pci_dev * dev,int rq)4367 int pcie_set_readrq(struct pci_dev *dev, int rq)
4368 {
4369 u16 v;
4370
4371 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4372 return -EINVAL;
4373
4374 /*
4375 * If using the "performance" PCIe config, we clamp the
4376 * read rq size to the max packet size to prevent the
4377 * host bridge generating requests larger than we can
4378 * cope with
4379 */
4380 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4381 int mps = pcie_get_mps(dev);
4382
4383 if (mps < rq)
4384 rq = mps;
4385 }
4386
4387 v = (ffs(rq) - 8) << 12;
4388
4389 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4390 PCI_EXP_DEVCTL_READRQ, v);
4391 }
4392 EXPORT_SYMBOL(pcie_set_readrq);
4393
4394 /**
4395 * pcie_get_mps - get PCI Express maximum payload size
4396 * @dev: PCI device to query
4397 *
4398 * Returns maximum payload size in bytes
4399 */
pcie_get_mps(struct pci_dev * dev)4400 int pcie_get_mps(struct pci_dev *dev)
4401 {
4402 u16 ctl;
4403
4404 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4405
4406 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4407 }
4408 EXPORT_SYMBOL(pcie_get_mps);
4409
4410 /**
4411 * pcie_set_mps - set PCI Express maximum payload size
4412 * @dev: PCI device to query
4413 * @mps: maximum payload size in bytes
4414 * valid values are 128, 256, 512, 1024, 2048, 4096
4415 *
4416 * If possible sets maximum payload size
4417 */
pcie_set_mps(struct pci_dev * dev,int mps)4418 int pcie_set_mps(struct pci_dev *dev, int mps)
4419 {
4420 u16 v;
4421
4422 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4423 return -EINVAL;
4424
4425 v = ffs(mps) - 8;
4426 if (v > dev->pcie_mpss)
4427 return -EINVAL;
4428 v <<= 5;
4429
4430 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4431 PCI_EXP_DEVCTL_PAYLOAD, v);
4432 }
4433 EXPORT_SYMBOL(pcie_set_mps);
4434
4435 /**
4436 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4437 * @dev: PCI device to query
4438 * @speed: storage for minimum speed
4439 * @width: storage for minimum width
4440 *
4441 * This function will walk up the PCI device chain and determine the minimum
4442 * link width and speed of the device.
4443 */
pcie_get_minimum_link(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)4444 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4445 enum pcie_link_width *width)
4446 {
4447 int ret;
4448
4449 *speed = PCI_SPEED_UNKNOWN;
4450 *width = PCIE_LNK_WIDTH_UNKNOWN;
4451
4452 while (dev) {
4453 u16 lnksta;
4454 enum pci_bus_speed next_speed;
4455 enum pcie_link_width next_width;
4456
4457 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4458 if (ret)
4459 return ret;
4460
4461 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4462 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4463 PCI_EXP_LNKSTA_NLW_SHIFT;
4464
4465 if (next_speed < *speed)
4466 *speed = next_speed;
4467
4468 if (next_width < *width)
4469 *width = next_width;
4470
4471 dev = dev->bus->self;
4472 }
4473
4474 return 0;
4475 }
4476 EXPORT_SYMBOL(pcie_get_minimum_link);
4477
4478 /**
4479 * pci_select_bars - Make BAR mask from the type of resource
4480 * @dev: the PCI device for which BAR mask is made
4481 * @flags: resource type mask to be selected
4482 *
4483 * This helper routine makes bar mask from the type of resource.
4484 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)4485 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4486 {
4487 int i, bars = 0;
4488 for (i = 0; i < PCI_NUM_RESOURCES; i++)
4489 if (pci_resource_flags(dev, i) & flags)
4490 bars |= (1 << i);
4491 return bars;
4492 }
4493 EXPORT_SYMBOL(pci_select_bars);
4494
4495 /* Some architectures require additional programming to enable VGA */
4496 static arch_set_vga_state_t arch_set_vga_state;
4497
pci_register_set_vga_state(arch_set_vga_state_t func)4498 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4499 {
4500 arch_set_vga_state = func; /* NULL disables */
4501 }
4502
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)4503 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4504 unsigned int command_bits, u32 flags)
4505 {
4506 if (arch_set_vga_state)
4507 return arch_set_vga_state(dev, decode, command_bits,
4508 flags);
4509 return 0;
4510 }
4511
4512 /**
4513 * pci_set_vga_state - set VGA decode state on device and parents if requested
4514 * @dev: the PCI device
4515 * @decode: true = enable decoding, false = disable decoding
4516 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4517 * @flags: traverse ancestors and change bridges
4518 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4519 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)4520 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4521 unsigned int command_bits, u32 flags)
4522 {
4523 struct pci_bus *bus;
4524 struct pci_dev *bridge;
4525 u16 cmd;
4526 int rc;
4527
4528 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4529
4530 /* ARCH specific VGA enables */
4531 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4532 if (rc)
4533 return rc;
4534
4535 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4536 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4537 if (decode == true)
4538 cmd |= command_bits;
4539 else
4540 cmd &= ~command_bits;
4541 pci_write_config_word(dev, PCI_COMMAND, cmd);
4542 }
4543
4544 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4545 return 0;
4546
4547 bus = dev->bus;
4548 while (bus) {
4549 bridge = bus->self;
4550 if (bridge) {
4551 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4552 &cmd);
4553 if (decode == true)
4554 cmd |= PCI_BRIDGE_CTL_VGA;
4555 else
4556 cmd &= ~PCI_BRIDGE_CTL_VGA;
4557 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4558 cmd);
4559 }
4560 bus = bus->parent;
4561 }
4562 return 0;
4563 }
4564
pci_device_is_present(struct pci_dev * pdev)4565 bool pci_device_is_present(struct pci_dev *pdev)
4566 {
4567 u32 v;
4568
4569 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4570 }
4571 EXPORT_SYMBOL_GPL(pci_device_is_present);
4572
pci_ignore_hotplug(struct pci_dev * dev)4573 void pci_ignore_hotplug(struct pci_dev *dev)
4574 {
4575 struct pci_dev *bridge = dev->bus->self;
4576
4577 dev->ignore_hotplug = 1;
4578 /* Propagate the "ignore hotplug" setting to the parent bridge. */
4579 if (bridge)
4580 bridge->ignore_hotplug = 1;
4581 }
4582 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4583
4584 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4585 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4586 static DEFINE_SPINLOCK(resource_alignment_lock);
4587
4588 /**
4589 * pci_specified_resource_alignment - get resource alignment specified by user.
4590 * @dev: the PCI device to get
4591 *
4592 * RETURNS: Resource alignment if it is specified.
4593 * Zero if it is not specified.
4594 */
pci_specified_resource_alignment(struct pci_dev * dev)4595 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4596 {
4597 int seg, bus, slot, func, align_order, count;
4598 resource_size_t align = 0;
4599 char *p;
4600
4601 spin_lock(&resource_alignment_lock);
4602 p = resource_alignment_param;
4603 while (*p) {
4604 count = 0;
4605 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4606 p[count] == '@') {
4607 p += count + 1;
4608 } else {
4609 align_order = -1;
4610 }
4611 if (sscanf(p, "%x:%x:%x.%x%n",
4612 &seg, &bus, &slot, &func, &count) != 4) {
4613 seg = 0;
4614 if (sscanf(p, "%x:%x.%x%n",
4615 &bus, &slot, &func, &count) != 3) {
4616 /* Invalid format */
4617 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4618 p);
4619 break;
4620 }
4621 }
4622 p += count;
4623 if (seg == pci_domain_nr(dev->bus) &&
4624 bus == dev->bus->number &&
4625 slot == PCI_SLOT(dev->devfn) &&
4626 func == PCI_FUNC(dev->devfn)) {
4627 if (align_order == -1)
4628 align = PAGE_SIZE;
4629 else
4630 align = 1 << align_order;
4631 /* Found */
4632 break;
4633 }
4634 if (*p != ';' && *p != ',') {
4635 /* End of param or invalid format */
4636 break;
4637 }
4638 p++;
4639 }
4640 spin_unlock(&resource_alignment_lock);
4641 return align;
4642 }
4643
4644 /*
4645 * This function disables memory decoding and releases memory resources
4646 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4647 * It also rounds up size to specified alignment.
4648 * Later on, the kernel will assign page-aligned memory resource back
4649 * to the device.
4650 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)4651 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4652 {
4653 int i;
4654 struct resource *r;
4655 resource_size_t align, size;
4656 u16 command;
4657
4658 /* check if specified PCI is target device to reassign */
4659 align = pci_specified_resource_alignment(dev);
4660 if (!align)
4661 return;
4662
4663 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4664 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4665 dev_warn(&dev->dev,
4666 "Can't reassign resources to host bridge.\n");
4667 return;
4668 }
4669
4670 dev_info(&dev->dev,
4671 "Disabling memory decoding and releasing memory resources.\n");
4672 pci_read_config_word(dev, PCI_COMMAND, &command);
4673 command &= ~PCI_COMMAND_MEMORY;
4674 pci_write_config_word(dev, PCI_COMMAND, command);
4675
4676 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4677 r = &dev->resource[i];
4678 if (!(r->flags & IORESOURCE_MEM))
4679 continue;
4680 size = resource_size(r);
4681 if (size < align) {
4682 size = align;
4683 dev_info(&dev->dev,
4684 "Rounding up size of resource #%d to %#llx.\n",
4685 i, (unsigned long long)size);
4686 }
4687 r->flags |= IORESOURCE_UNSET;
4688 r->end = size - 1;
4689 r->start = 0;
4690 }
4691 /* Need to disable bridge's resource window,
4692 * to enable the kernel to reassign new resource
4693 * window later on.
4694 */
4695 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4696 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4697 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4698 r = &dev->resource[i];
4699 if (!(r->flags & IORESOURCE_MEM))
4700 continue;
4701 r->flags |= IORESOURCE_UNSET;
4702 r->end = resource_size(r) - 1;
4703 r->start = 0;
4704 }
4705 pci_disable_bridge_window(dev);
4706 }
4707 }
4708
pci_set_resource_alignment_param(const char * buf,size_t count)4709 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4710 {
4711 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4712 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4713 spin_lock(&resource_alignment_lock);
4714 strncpy(resource_alignment_param, buf, count);
4715 resource_alignment_param[count] = '\0';
4716 spin_unlock(&resource_alignment_lock);
4717 return count;
4718 }
4719
pci_get_resource_alignment_param(char * buf,size_t size)4720 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4721 {
4722 size_t count;
4723 spin_lock(&resource_alignment_lock);
4724 count = snprintf(buf, size, "%s", resource_alignment_param);
4725 spin_unlock(&resource_alignment_lock);
4726 return count;
4727 }
4728
pci_resource_alignment_show(struct bus_type * bus,char * buf)4729 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4730 {
4731 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4732 }
4733
pci_resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)4734 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4735 const char *buf, size_t count)
4736 {
4737 return pci_set_resource_alignment_param(buf, count);
4738 }
4739
4740 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4741 pci_resource_alignment_store);
4742
pci_resource_alignment_sysfs_init(void)4743 static int __init pci_resource_alignment_sysfs_init(void)
4744 {
4745 return bus_create_file(&pci_bus_type,
4746 &bus_attr_resource_alignment);
4747 }
4748 late_initcall(pci_resource_alignment_sysfs_init);
4749
pci_no_domains(void)4750 static void pci_no_domains(void)
4751 {
4752 #ifdef CONFIG_PCI_DOMAINS
4753 pci_domains_supported = 0;
4754 #endif
4755 }
4756
4757 #ifdef CONFIG_PCI_DOMAINS
4758 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4759
pci_get_new_domain_nr(void)4760 int pci_get_new_domain_nr(void)
4761 {
4762 return atomic_inc_return(&__domain_nr);
4763 }
4764
4765 #ifdef CONFIG_PCI_DOMAINS_GENERIC
pci_bus_assign_domain_nr(struct pci_bus * bus,struct device * parent)4766 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4767 {
4768 static int use_dt_domains = -1;
4769 int domain = -1;
4770
4771 if (parent)
4772 domain = of_get_pci_domain_nr(parent->of_node);
4773 /*
4774 * Check DT domain and use_dt_domains values.
4775 *
4776 * If DT domain property is valid (domain >= 0) and
4777 * use_dt_domains != 0, the DT assignment is valid since this means
4778 * we have not previously allocated a domain number by using
4779 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4780 * 1, to indicate that we have just assigned a domain number from
4781 * DT.
4782 *
4783 * If DT domain property value is not valid (ie domain < 0), and we
4784 * have not previously assigned a domain number from DT
4785 * (use_dt_domains != 1) we should assign a domain number by
4786 * using the:
4787 *
4788 * pci_get_new_domain_nr()
4789 *
4790 * API and update the use_dt_domains value to keep track of method we
4791 * are using to assign domain numbers (use_dt_domains = 0).
4792 *
4793 * All other combinations imply we have a platform that is trying
4794 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4795 * which is a recipe for domain mishandling and it is prevented by
4796 * invalidating the domain value (domain = -1) and printing a
4797 * corresponding error.
4798 */
4799 if (domain >= 0 && use_dt_domains) {
4800 use_dt_domains = 1;
4801 } else if (domain < 0 && use_dt_domains != 1) {
4802 use_dt_domains = 0;
4803 domain = pci_get_new_domain_nr();
4804 } else {
4805 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4806 parent->of_node->full_name);
4807 domain = -1;
4808 }
4809
4810 bus->domain_nr = domain;
4811 }
4812 #endif
4813 #endif
4814
4815 /**
4816 * pci_ext_cfg_avail - can we access extended PCI config space?
4817 *
4818 * Returns 1 if we can access PCI extended config space (offsets
4819 * greater than 0xff). This is the default implementation. Architecture
4820 * implementations can override this.
4821 */
pci_ext_cfg_avail(void)4822 int __weak pci_ext_cfg_avail(void)
4823 {
4824 return 1;
4825 }
4826
pci_fixup_cardbus(struct pci_bus * bus)4827 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4828 {
4829 }
4830 EXPORT_SYMBOL(pci_fixup_cardbus);
4831
pci_setup(char * str)4832 static int __init pci_setup(char *str)
4833 {
4834 while (str) {
4835 char *k = strchr(str, ',');
4836 if (k)
4837 *k++ = 0;
4838 if (*str && (str = pcibios_setup(str)) && *str) {
4839 if (!strcmp(str, "nomsi")) {
4840 pci_no_msi();
4841 } else if (!strcmp(str, "noaer")) {
4842 pci_no_aer();
4843 } else if (!strncmp(str, "realloc=", 8)) {
4844 pci_realloc_get_opt(str + 8);
4845 } else if (!strncmp(str, "realloc", 7)) {
4846 pci_realloc_get_opt("on");
4847 } else if (!strcmp(str, "nodomains")) {
4848 pci_no_domains();
4849 } else if (!strncmp(str, "noari", 5)) {
4850 pcie_ari_disabled = true;
4851 } else if (!strncmp(str, "cbiosize=", 9)) {
4852 pci_cardbus_io_size = memparse(str + 9, &str);
4853 } else if (!strncmp(str, "cbmemsize=", 10)) {
4854 pci_cardbus_mem_size = memparse(str + 10, &str);
4855 } else if (!strncmp(str, "resource_alignment=", 19)) {
4856 pci_set_resource_alignment_param(str + 19,
4857 strlen(str + 19));
4858 } else if (!strncmp(str, "ecrc=", 5)) {
4859 pcie_ecrc_get_policy(str + 5);
4860 } else if (!strncmp(str, "hpiosize=", 9)) {
4861 pci_hotplug_io_size = memparse(str + 9, &str);
4862 } else if (!strncmp(str, "hpmemsize=", 10)) {
4863 pci_hotplug_mem_size = memparse(str + 10, &str);
4864 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4865 pcie_bus_config = PCIE_BUS_TUNE_OFF;
4866 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
4867 pcie_bus_config = PCIE_BUS_SAFE;
4868 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
4869 pcie_bus_config = PCIE_BUS_PERFORMANCE;
4870 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4871 pcie_bus_config = PCIE_BUS_PEER2PEER;
4872 } else if (!strncmp(str, "pcie_scan_all", 13)) {
4873 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4874 } else {
4875 printk(KERN_ERR "PCI: Unknown option `%s'\n",
4876 str);
4877 }
4878 }
4879 str = k;
4880 }
4881 return 0;
4882 }
4883 early_param("pci", pci_setup);
4884