• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/of.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
16 #include <linux/pm.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
30 #include <linux/aer.h>
31 #include "pci.h"
32 
33 const char *pci_power_names[] = {
34 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
35 };
36 EXPORT_SYMBOL_GPL(pci_power_names);
37 
38 int isa_dma_bridge_buggy;
39 EXPORT_SYMBOL(isa_dma_bridge_buggy);
40 
41 int pci_pci_problems;
42 EXPORT_SYMBOL(pci_pci_problems);
43 
44 unsigned int pci_pm_d3_delay;
45 
46 static void pci_pme_list_scan(struct work_struct *work);
47 
48 static LIST_HEAD(pci_pme_list);
49 static DEFINE_MUTEX(pci_pme_list_mutex);
50 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
51 
52 struct pci_pme_device {
53 	struct list_head list;
54 	struct pci_dev *dev;
55 };
56 
57 #define PME_TIMEOUT 1000 /* How long between PME checks */
58 
pci_dev_d3_sleep(struct pci_dev * dev)59 static void pci_dev_d3_sleep(struct pci_dev *dev)
60 {
61 	unsigned int delay = dev->d3_delay;
62 
63 	if (delay < pci_pm_d3_delay)
64 		delay = pci_pm_d3_delay;
65 
66 	msleep(delay);
67 }
68 
69 #ifdef CONFIG_PCI_DOMAINS
70 int pci_domains_supported = 1;
71 #endif
72 
73 #define DEFAULT_CARDBUS_IO_SIZE		(256)
74 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
75 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
76 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
77 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
78 
79 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
80 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
81 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
82 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
83 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
84 
85 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
86 
87 /*
88  * The default CLS is used if arch didn't set CLS explicitly and not
89  * all pci devices agree on the same value.  Arch can override either
90  * the dfl or actual value as it sees fit.  Don't forget this is
91  * measured in 32-bit words, not bytes.
92  */
93 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
94 u8 pci_cache_line_size;
95 
96 /*
97  * If we set up a device for bus mastering, we need to check the latency
98  * timer as certain BIOSes forget to set it properly.
99  */
100 unsigned int pcibios_max_latency = 255;
101 
102 /* If set, the PCIe ARI capability will not be used. */
103 static bool pcie_ari_disabled;
104 
105 /**
106  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
107  * @bus: pointer to PCI bus structure to search
108  *
109  * Given a PCI bus, returns the highest PCI bus number present in the set
110  * including the given PCI bus and its list of child PCI buses.
111  */
pci_bus_max_busnr(struct pci_bus * bus)112 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
113 {
114 	struct pci_bus *tmp;
115 	unsigned char max, n;
116 
117 	max = bus->busn_res.end;
118 	list_for_each_entry(tmp, &bus->children, node) {
119 		n = pci_bus_max_busnr(tmp);
120 		if (n > max)
121 			max = n;
122 	}
123 	return max;
124 }
125 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
126 
127 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)128 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
129 {
130 	struct resource *res = &pdev->resource[bar];
131 
132 	/*
133 	 * Make sure the BAR is actually a memory resource, not an IO resource
134 	 */
135 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
136 		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
137 		return NULL;
138 	}
139 	return ioremap_nocache(res->start, resource_size(res));
140 }
141 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
142 
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)143 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
144 {
145 	/*
146 	 * Make sure the BAR is actually a memory resource, not an IO resource
147 	 */
148 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
149 		WARN_ON(1);
150 		return NULL;
151 	}
152 	return ioremap_wc(pci_resource_start(pdev, bar),
153 			  pci_resource_len(pdev, bar));
154 }
155 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
156 #endif
157 
158 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)159 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
160 				   u8 pos, int cap, int *ttl)
161 {
162 	u8 id;
163 	u16 ent;
164 
165 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
166 
167 	while ((*ttl)--) {
168 		if (pos < 0x40)
169 			break;
170 		pos &= ~3;
171 		pci_bus_read_config_word(bus, devfn, pos, &ent);
172 
173 		id = ent & 0xff;
174 		if (id == 0xff)
175 			break;
176 		if (id == cap)
177 			return pos;
178 		pos = (ent >> 8);
179 	}
180 	return 0;
181 }
182 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)183 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
184 			       u8 pos, int cap)
185 {
186 	int ttl = PCI_FIND_CAP_TTL;
187 
188 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
189 }
190 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)191 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
192 {
193 	return __pci_find_next_cap(dev->bus, dev->devfn,
194 				   pos + PCI_CAP_LIST_NEXT, cap);
195 }
196 EXPORT_SYMBOL_GPL(pci_find_next_capability);
197 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)198 static int __pci_bus_find_cap_start(struct pci_bus *bus,
199 				    unsigned int devfn, u8 hdr_type)
200 {
201 	u16 status;
202 
203 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
204 	if (!(status & PCI_STATUS_CAP_LIST))
205 		return 0;
206 
207 	switch (hdr_type) {
208 	case PCI_HEADER_TYPE_NORMAL:
209 	case PCI_HEADER_TYPE_BRIDGE:
210 		return PCI_CAPABILITY_LIST;
211 	case PCI_HEADER_TYPE_CARDBUS:
212 		return PCI_CB_CAPABILITY_LIST;
213 	}
214 
215 	return 0;
216 }
217 
218 /**
219  * pci_find_capability - query for devices' capabilities
220  * @dev: PCI device to query
221  * @cap: capability code
222  *
223  * Tell if a device supports a given PCI capability.
224  * Returns the address of the requested capability structure within the
225  * device's PCI configuration space or 0 in case the device does not
226  * support it.  Possible values for @cap:
227  *
228  *  %PCI_CAP_ID_PM           Power Management
229  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
230  *  %PCI_CAP_ID_VPD          Vital Product Data
231  *  %PCI_CAP_ID_SLOTID       Slot Identification
232  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
233  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
234  *  %PCI_CAP_ID_PCIX         PCI-X
235  *  %PCI_CAP_ID_EXP          PCI Express
236  */
pci_find_capability(struct pci_dev * dev,int cap)237 int pci_find_capability(struct pci_dev *dev, int cap)
238 {
239 	int pos;
240 
241 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
242 	if (pos)
243 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
244 
245 	return pos;
246 }
247 EXPORT_SYMBOL(pci_find_capability);
248 
249 /**
250  * pci_bus_find_capability - query for devices' capabilities
251  * @bus:   the PCI bus to query
252  * @devfn: PCI device to query
253  * @cap:   capability code
254  *
255  * Like pci_find_capability() but works for pci devices that do not have a
256  * pci_dev structure set up yet.
257  *
258  * Returns the address of the requested capability structure within the
259  * device's PCI configuration space or 0 in case the device does not
260  * support it.
261  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)262 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
263 {
264 	int pos;
265 	u8 hdr_type;
266 
267 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
268 
269 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
270 	if (pos)
271 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
272 
273 	return pos;
274 }
275 EXPORT_SYMBOL(pci_bus_find_capability);
276 
277 /**
278  * pci_find_next_ext_capability - Find an extended capability
279  * @dev: PCI device to query
280  * @start: address at which to start looking (0 to start at beginning of list)
281  * @cap: capability code
282  *
283  * Returns the address of the next matching extended capability structure
284  * within the device's PCI configuration space or 0 if the device does
285  * not support it.  Some capabilities can occur several times, e.g., the
286  * vendor-specific capability, and this provides a way to find them all.
287  */
pci_find_next_ext_capability(struct pci_dev * dev,int start,int cap)288 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
289 {
290 	u32 header;
291 	int ttl;
292 	int pos = PCI_CFG_SPACE_SIZE;
293 
294 	/* minimum 8 bytes per capability */
295 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
296 
297 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
298 		return 0;
299 
300 	if (start)
301 		pos = start;
302 
303 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
304 		return 0;
305 
306 	/*
307 	 * If we have no capabilities, this is indicated by cap ID,
308 	 * cap version and next pointer all being 0.
309 	 */
310 	if (header == 0)
311 		return 0;
312 
313 	while (ttl-- > 0) {
314 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
315 			return pos;
316 
317 		pos = PCI_EXT_CAP_NEXT(header);
318 		if (pos < PCI_CFG_SPACE_SIZE)
319 			break;
320 
321 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
322 			break;
323 	}
324 
325 	return 0;
326 }
327 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
328 
329 /**
330  * pci_find_ext_capability - Find an extended capability
331  * @dev: PCI device to query
332  * @cap: capability code
333  *
334  * Returns the address of the requested extended capability structure
335  * within the device's PCI configuration space or 0 if the device does
336  * not support it.  Possible values for @cap:
337  *
338  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
339  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
340  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
341  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
342  */
pci_find_ext_capability(struct pci_dev * dev,int cap)343 int pci_find_ext_capability(struct pci_dev *dev, int cap)
344 {
345 	return pci_find_next_ext_capability(dev, 0, cap);
346 }
347 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
348 
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)349 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
350 {
351 	int rc, ttl = PCI_FIND_CAP_TTL;
352 	u8 cap, mask;
353 
354 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
355 		mask = HT_3BIT_CAP_MASK;
356 	else
357 		mask = HT_5BIT_CAP_MASK;
358 
359 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
360 				      PCI_CAP_ID_HT, &ttl);
361 	while (pos) {
362 		rc = pci_read_config_byte(dev, pos + 3, &cap);
363 		if (rc != PCIBIOS_SUCCESSFUL)
364 			return 0;
365 
366 		if ((cap & mask) == ht_cap)
367 			return pos;
368 
369 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
370 					      pos + PCI_CAP_LIST_NEXT,
371 					      PCI_CAP_ID_HT, &ttl);
372 	}
373 
374 	return 0;
375 }
376 /**
377  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
378  * @dev: PCI device to query
379  * @pos: Position from which to continue searching
380  * @ht_cap: Hypertransport capability code
381  *
382  * To be used in conjunction with pci_find_ht_capability() to search for
383  * all capabilities matching @ht_cap. @pos should always be a value returned
384  * from pci_find_ht_capability().
385  *
386  * NB. To be 100% safe against broken PCI devices, the caller should take
387  * steps to avoid an infinite loop.
388  */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)389 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
390 {
391 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
392 }
393 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
394 
395 /**
396  * pci_find_ht_capability - query a device's Hypertransport capabilities
397  * @dev: PCI device to query
398  * @ht_cap: Hypertransport capability code
399  *
400  * Tell if a device supports a given Hypertransport capability.
401  * Returns an address within the device's PCI configuration space
402  * or 0 in case the device does not support the request capability.
403  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
404  * which has a Hypertransport capability matching @ht_cap.
405  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)406 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
407 {
408 	int pos;
409 
410 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
411 	if (pos)
412 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
413 
414 	return pos;
415 }
416 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
417 
418 /**
419  * pci_find_parent_resource - return resource region of parent bus of given region
420  * @dev: PCI device structure contains resources to be searched
421  * @res: child resource record for which parent is sought
422  *
423  *  For given resource region of given device, return the resource
424  *  region of parent bus the given region is contained in.
425  */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)426 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
427 					  struct resource *res)
428 {
429 	const struct pci_bus *bus = dev->bus;
430 	struct resource *r;
431 	int i;
432 
433 	pci_bus_for_each_resource(bus, r, i) {
434 		if (!r)
435 			continue;
436 		if (res->start && resource_contains(r, res)) {
437 
438 			/*
439 			 * If the window is prefetchable but the BAR is
440 			 * not, the allocator made a mistake.
441 			 */
442 			if (r->flags & IORESOURCE_PREFETCH &&
443 			    !(res->flags & IORESOURCE_PREFETCH))
444 				return NULL;
445 
446 			/*
447 			 * If we're below a transparent bridge, there may
448 			 * be both a positively-decoded aperture and a
449 			 * subtractively-decoded region that contain the BAR.
450 			 * We want the positively-decoded one, so this depends
451 			 * on pci_bus_for_each_resource() giving us those
452 			 * first.
453 			 */
454 			return r;
455 		}
456 	}
457 	return NULL;
458 }
459 EXPORT_SYMBOL(pci_find_parent_resource);
460 
461 /**
462  * pci_find_pcie_root_port - return PCIe Root Port
463  * @dev: PCI device to query
464  *
465  * Traverse up the parent chain and return the PCIe Root Port PCI Device
466  * for a given PCI Device.
467  */
pci_find_pcie_root_port(struct pci_dev * dev)468 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
469 {
470 	struct pci_dev *bridge, *highest_pcie_bridge = NULL;
471 
472 	bridge = pci_upstream_bridge(dev);
473 	while (bridge && pci_is_pcie(bridge)) {
474 		highest_pcie_bridge = bridge;
475 		bridge = pci_upstream_bridge(bridge);
476 	}
477 
478 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
479 		return NULL;
480 
481 	return highest_pcie_bridge;
482 }
483 EXPORT_SYMBOL(pci_find_pcie_root_port);
484 
485 /**
486  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
487  * @dev: the PCI device to operate on
488  * @pos: config space offset of status word
489  * @mask: mask of bit(s) to care about in status word
490  *
491  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
492  */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)493 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
494 {
495 	int i;
496 
497 	/* Wait for Transaction Pending bit clean */
498 	for (i = 0; i < 4; i++) {
499 		u16 status;
500 		if (i)
501 			msleep((1 << (i - 1)) * 100);
502 
503 		pci_read_config_word(dev, pos, &status);
504 		if (!(status & mask))
505 			return 1;
506 	}
507 
508 	return 0;
509 }
510 
511 /**
512  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
513  * @dev: PCI device to have its BARs restored
514  *
515  * Restore the BAR values for a given device, so as to make it
516  * accessible by its driver.
517  */
pci_restore_bars(struct pci_dev * dev)518 static void pci_restore_bars(struct pci_dev *dev)
519 {
520 	int i;
521 
522 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
523 		pci_update_resource(dev, i);
524 }
525 
526 static struct pci_platform_pm_ops *pci_platform_pm;
527 
pci_set_platform_pm(struct pci_platform_pm_ops * ops)528 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
529 {
530 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
531 	    || !ops->sleep_wake)
532 		return -EINVAL;
533 	pci_platform_pm = ops;
534 	return 0;
535 }
536 
platform_pci_power_manageable(struct pci_dev * dev)537 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
538 {
539 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
540 }
541 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)542 static inline int platform_pci_set_power_state(struct pci_dev *dev,
543 					       pci_power_t t)
544 {
545 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
546 }
547 
platform_pci_choose_state(struct pci_dev * dev)548 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
549 {
550 	return pci_platform_pm ?
551 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
552 }
553 
platform_pci_sleep_wake(struct pci_dev * dev,bool enable)554 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
555 {
556 	return pci_platform_pm ?
557 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
558 }
559 
platform_pci_run_wake(struct pci_dev * dev,bool enable)560 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
561 {
562 	return pci_platform_pm ?
563 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
564 }
565 
platform_pci_need_resume(struct pci_dev * dev)566 static inline bool platform_pci_need_resume(struct pci_dev *dev)
567 {
568 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
569 }
570 
571 /**
572  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
573  *                           given PCI device
574  * @dev: PCI device to handle.
575  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
576  *
577  * RETURN VALUE:
578  * -EINVAL if the requested state is invalid.
579  * -EIO if device does not support PCI PM or its PM capabilities register has a
580  * wrong version, or device doesn't support the requested state.
581  * 0 if device already is in the requested state.
582  * 0 if device's power state has been successfully changed.
583  */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)584 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
585 {
586 	u16 pmcsr;
587 	bool need_restore = false;
588 
589 	/* Check if we're already there */
590 	if (dev->current_state == state)
591 		return 0;
592 
593 	if (!dev->pm_cap)
594 		return -EIO;
595 
596 	if (state < PCI_D0 || state > PCI_D3hot)
597 		return -EINVAL;
598 
599 	/* Validate current state:
600 	 * Can enter D0 from any state, but if we can only go deeper
601 	 * to sleep if we're already in a low power state
602 	 */
603 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
604 	    && dev->current_state > state) {
605 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
606 			dev->current_state, state);
607 		return -EINVAL;
608 	}
609 
610 	/* check if this device supports the desired state */
611 	if ((state == PCI_D1 && !dev->d1_support)
612 	   || (state == PCI_D2 && !dev->d2_support))
613 		return -EIO;
614 
615 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
616 
617 	/* If we're (effectively) in D3, force entire word to 0.
618 	 * This doesn't affect PME_Status, disables PME_En, and
619 	 * sets PowerState to 0.
620 	 */
621 	switch (dev->current_state) {
622 	case PCI_D0:
623 	case PCI_D1:
624 	case PCI_D2:
625 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
626 		pmcsr |= state;
627 		break;
628 	case PCI_D3hot:
629 	case PCI_D3cold:
630 	case PCI_UNKNOWN: /* Boot-up */
631 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
632 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
633 			need_restore = true;
634 		/* Fall-through: force to D0 */
635 	default:
636 		pmcsr = 0;
637 		break;
638 	}
639 
640 	/* enter specified state */
641 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
642 
643 	/* Mandatory power management transition delays */
644 	/* see PCI PM 1.1 5.6.1 table 18 */
645 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
646 		pci_dev_d3_sleep(dev);
647 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
648 		udelay(PCI_PM_D2_DELAY);
649 
650 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
651 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
652 	if (dev->current_state != state && printk_ratelimit())
653 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
654 			 dev->current_state);
655 
656 	/*
657 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
658 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
659 	 * from D3hot to D0 _may_ perform an internal reset, thereby
660 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
661 	 * For example, at least some versions of the 3c905B and the
662 	 * 3c556B exhibit this behaviour.
663 	 *
664 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
665 	 * devices in a D3hot state at boot.  Consequently, we need to
666 	 * restore at least the BARs so that the device will be
667 	 * accessible to its driver.
668 	 */
669 	if (need_restore)
670 		pci_restore_bars(dev);
671 
672 	if (dev->bus->self)
673 		pcie_aspm_pm_state_change(dev->bus->self);
674 
675 	return 0;
676 }
677 
678 /**
679  * pci_update_current_state - Read PCI power state of given device from its
680  *                            PCI PM registers and cache it
681  * @dev: PCI device to handle.
682  * @state: State to cache in case the device doesn't have the PM capability
683  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)684 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
685 {
686 	if (dev->pm_cap) {
687 		u16 pmcsr;
688 
689 		/*
690 		 * Configuration space is not accessible for device in
691 		 * D3cold, so just keep or set D3cold for safety
692 		 */
693 		if (dev->current_state == PCI_D3cold)
694 			return;
695 		if (state == PCI_D3cold) {
696 			dev->current_state = PCI_D3cold;
697 			return;
698 		}
699 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
700 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
701 	} else {
702 		dev->current_state = state;
703 	}
704 }
705 
706 /**
707  * pci_platform_power_transition - Use platform to change device power state
708  * @dev: PCI device to handle.
709  * @state: State to put the device into.
710  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)711 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
712 {
713 	int error;
714 
715 	if (platform_pci_power_manageable(dev)) {
716 		error = platform_pci_set_power_state(dev, state);
717 		if (!error)
718 			pci_update_current_state(dev, state);
719 	} else
720 		error = -ENODEV;
721 
722 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
723 		dev->current_state = PCI_D0;
724 
725 	return error;
726 }
727 
728 /**
729  * pci_wakeup - Wake up a PCI device
730  * @pci_dev: Device to handle.
731  * @ign: ignored parameter
732  */
pci_wakeup(struct pci_dev * pci_dev,void * ign)733 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
734 {
735 	pci_wakeup_event(pci_dev);
736 	pm_request_resume(&pci_dev->dev);
737 	return 0;
738 }
739 
740 /**
741  * pci_wakeup_bus - Walk given bus and wake up devices on it
742  * @bus: Top bus of the subtree to walk.
743  */
pci_wakeup_bus(struct pci_bus * bus)744 static void pci_wakeup_bus(struct pci_bus *bus)
745 {
746 	if (bus)
747 		pci_walk_bus(bus, pci_wakeup, NULL);
748 }
749 
750 /**
751  * __pci_start_power_transition - Start power transition of a PCI device
752  * @dev: PCI device to handle.
753  * @state: State to put the device into.
754  */
__pci_start_power_transition(struct pci_dev * dev,pci_power_t state)755 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
756 {
757 	if (state == PCI_D0) {
758 		pci_platform_power_transition(dev, PCI_D0);
759 		/*
760 		 * Mandatory power management transition delays, see
761 		 * PCI Express Base Specification Revision 2.0 Section
762 		 * 6.6.1: Conventional Reset.  Do not delay for
763 		 * devices powered on/off by corresponding bridge,
764 		 * because have already delayed for the bridge.
765 		 */
766 		if (dev->runtime_d3cold) {
767 			msleep(dev->d3cold_delay);
768 			/*
769 			 * When powering on a bridge from D3cold, the
770 			 * whole hierarchy may be powered on into
771 			 * D0uninitialized state, resume them to give
772 			 * them a chance to suspend again
773 			 */
774 			pci_wakeup_bus(dev->subordinate);
775 		}
776 	}
777 }
778 
779 /**
780  * __pci_dev_set_current_state - Set current state of a PCI device
781  * @dev: Device to handle
782  * @data: pointer to state to be set
783  */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)784 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
785 {
786 	pci_power_t state = *(pci_power_t *)data;
787 
788 	dev->current_state = state;
789 	return 0;
790 }
791 
792 /**
793  * __pci_bus_set_current_state - Walk given bus and set current state of devices
794  * @bus: Top bus of the subtree to walk.
795  * @state: state to be set
796  */
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)797 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
798 {
799 	if (bus)
800 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
801 }
802 
803 /**
804  * __pci_complete_power_transition - Complete power transition of a PCI device
805  * @dev: PCI device to handle.
806  * @state: State to put the device into.
807  *
808  * This function should not be called directly by device drivers.
809  */
__pci_complete_power_transition(struct pci_dev * dev,pci_power_t state)810 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
811 {
812 	int ret;
813 
814 	if (state <= PCI_D0)
815 		return -EINVAL;
816 	ret = pci_platform_power_transition(dev, state);
817 	/* Power off the bridge may power off the whole hierarchy */
818 	if (!ret && state == PCI_D3cold)
819 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
820 	return ret;
821 }
822 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
823 
824 /**
825  * pci_set_power_state - Set the power state of a PCI device
826  * @dev: PCI device to handle.
827  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
828  *
829  * Transition a device to a new power state, using the platform firmware and/or
830  * the device's PCI PM registers.
831  *
832  * RETURN VALUE:
833  * -EINVAL if the requested state is invalid.
834  * -EIO if device does not support PCI PM or its PM capabilities register has a
835  * wrong version, or device doesn't support the requested state.
836  * 0 if device already is in the requested state.
837  * 0 if device's power state has been successfully changed.
838  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)839 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
840 {
841 	int error;
842 
843 	/* bound the state we're entering */
844 	if (state > PCI_D3cold)
845 		state = PCI_D3cold;
846 	else if (state < PCI_D0)
847 		state = PCI_D0;
848 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
849 		/*
850 		 * If the device or the parent bridge do not support PCI PM,
851 		 * ignore the request if we're doing anything other than putting
852 		 * it into D0 (which would only happen on boot).
853 		 */
854 		return 0;
855 
856 	/* Check if we're already there */
857 	if (dev->current_state == state)
858 		return 0;
859 
860 	__pci_start_power_transition(dev, state);
861 
862 	/* This device is quirked not to be put into D3, so
863 	   don't put it in D3 */
864 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
865 		return 0;
866 
867 	/*
868 	 * To put device in D3cold, we put device into D3hot in native
869 	 * way, then put device into D3cold with platform ops
870 	 */
871 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
872 					PCI_D3hot : state);
873 
874 	if (!__pci_complete_power_transition(dev, state))
875 		error = 0;
876 
877 	return error;
878 }
879 EXPORT_SYMBOL(pci_set_power_state);
880 
881 /**
882  * pci_power_up - Put the given device into D0 forcibly
883  * @dev: PCI device to power up
884  */
pci_power_up(struct pci_dev * dev)885 void pci_power_up(struct pci_dev *dev)
886 {
887 	__pci_start_power_transition(dev, PCI_D0);
888 	pci_raw_set_power_state(dev, PCI_D0);
889 	pci_update_current_state(dev, PCI_D0);
890 }
891 
892 /**
893  * pci_choose_state - Choose the power state of a PCI device
894  * @dev: PCI device to be suspended
895  * @state: target sleep state for the whole system. This is the value
896  *	that is passed to suspend() function.
897  *
898  * Returns PCI power state suitable for given device and given system
899  * message.
900  */
901 
pci_choose_state(struct pci_dev * dev,pm_message_t state)902 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
903 {
904 	pci_power_t ret;
905 
906 	if (!dev->pm_cap)
907 		return PCI_D0;
908 
909 	ret = platform_pci_choose_state(dev);
910 	if (ret != PCI_POWER_ERROR)
911 		return ret;
912 
913 	switch (state.event) {
914 	case PM_EVENT_ON:
915 		return PCI_D0;
916 	case PM_EVENT_FREEZE:
917 	case PM_EVENT_PRETHAW:
918 		/* REVISIT both freeze and pre-thaw "should" use D0 */
919 	case PM_EVENT_SUSPEND:
920 	case PM_EVENT_HIBERNATE:
921 		return PCI_D3hot;
922 	default:
923 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
924 			 state.event);
925 		BUG();
926 	}
927 	return PCI_D0;
928 }
929 EXPORT_SYMBOL(pci_choose_state);
930 
931 #define PCI_EXP_SAVE_REGS	7
932 
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)933 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
934 						       u16 cap, bool extended)
935 {
936 	struct pci_cap_saved_state *tmp;
937 
938 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
939 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
940 			return tmp;
941 	}
942 	return NULL;
943 }
944 
pci_find_saved_cap(struct pci_dev * dev,char cap)945 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
946 {
947 	return _pci_find_saved_cap(dev, cap, false);
948 }
949 
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)950 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
951 {
952 	return _pci_find_saved_cap(dev, cap, true);
953 }
954 
pci_save_pcie_state(struct pci_dev * dev)955 static int pci_save_pcie_state(struct pci_dev *dev)
956 {
957 	int i = 0;
958 	struct pci_cap_saved_state *save_state;
959 	u16 *cap;
960 
961 	if (!pci_is_pcie(dev))
962 		return 0;
963 
964 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
965 	if (!save_state) {
966 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
967 		return -ENOMEM;
968 	}
969 
970 	cap = (u16 *)&save_state->cap.data[0];
971 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
972 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
973 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
974 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
975 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
976 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
977 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
978 
979 	return 0;
980 }
981 
pci_restore_pcie_state(struct pci_dev * dev)982 static void pci_restore_pcie_state(struct pci_dev *dev)
983 {
984 	int i = 0;
985 	struct pci_cap_saved_state *save_state;
986 	u16 *cap;
987 
988 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
989 	if (!save_state)
990 		return;
991 
992 	cap = (u16 *)&save_state->cap.data[0];
993 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
994 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
995 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
996 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
997 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
998 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
999 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1000 }
1001 
1002 
pci_save_pcix_state(struct pci_dev * dev)1003 static int pci_save_pcix_state(struct pci_dev *dev)
1004 {
1005 	int pos;
1006 	struct pci_cap_saved_state *save_state;
1007 
1008 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1009 	if (!pos)
1010 		return 0;
1011 
1012 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1013 	if (!save_state) {
1014 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1015 		return -ENOMEM;
1016 	}
1017 
1018 	pci_read_config_word(dev, pos + PCI_X_CMD,
1019 			     (u16 *)save_state->cap.data);
1020 
1021 	return 0;
1022 }
1023 
pci_restore_pcix_state(struct pci_dev * dev)1024 static void pci_restore_pcix_state(struct pci_dev *dev)
1025 {
1026 	int i = 0, pos;
1027 	struct pci_cap_saved_state *save_state;
1028 	u16 *cap;
1029 
1030 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1031 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1032 	if (!save_state || !pos)
1033 		return;
1034 	cap = (u16 *)&save_state->cap.data[0];
1035 
1036 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1037 }
1038 
1039 
1040 /**
1041  * pci_save_state - save the PCI configuration space of a device before suspending
1042  * @dev: - PCI device that we're dealing with
1043  */
pci_save_state(struct pci_dev * dev)1044 int pci_save_state(struct pci_dev *dev)
1045 {
1046 	int i;
1047 	/* XXX: 100% dword access ok here? */
1048 	for (i = 0; i < 16; i++)
1049 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1050 	dev->state_saved = true;
1051 
1052 	i = pci_save_pcie_state(dev);
1053 	if (i != 0)
1054 		return i;
1055 
1056 	i = pci_save_pcix_state(dev);
1057 	if (i != 0)
1058 		return i;
1059 
1060 	return pci_save_vc_state(dev);
1061 }
1062 EXPORT_SYMBOL(pci_save_state);
1063 
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1064 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1065 				     u32 saved_val, int retry, bool force)
1066 {
1067 	u32 val;
1068 
1069 	pci_read_config_dword(pdev, offset, &val);
1070 	if (!force && val == saved_val)
1071 		return;
1072 
1073 	for (;;) {
1074 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1075 			offset, val, saved_val);
1076 		pci_write_config_dword(pdev, offset, saved_val);
1077 		if (retry-- <= 0)
1078 			return;
1079 
1080 		pci_read_config_dword(pdev, offset, &val);
1081 		if (val == saved_val)
1082 			return;
1083 
1084 		mdelay(1);
1085 	}
1086 }
1087 
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1088 static void pci_restore_config_space_range(struct pci_dev *pdev,
1089 					   int start, int end, int retry,
1090 					   bool force)
1091 {
1092 	int index;
1093 
1094 	for (index = end; index >= start; index--)
1095 		pci_restore_config_dword(pdev, 4 * index,
1096 					 pdev->saved_config_space[index],
1097 					 retry, force);
1098 }
1099 
pci_restore_config_space(struct pci_dev * pdev)1100 static void pci_restore_config_space(struct pci_dev *pdev)
1101 {
1102 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1103 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1104 		/* Restore BARs before the command register. */
1105 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1106 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1107 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1108 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1109 
1110 		/*
1111 		 * Force rewriting of prefetch registers to avoid S3 resume
1112 		 * issues on Intel PCI bridges that occur when these
1113 		 * registers are not explicitly written.
1114 		 */
1115 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1116 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1117 	} else {
1118 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1119 	}
1120 }
1121 
1122 /**
1123  * pci_restore_state - Restore the saved state of a PCI device
1124  * @dev: - PCI device that we're dealing with
1125  */
pci_restore_state(struct pci_dev * dev)1126 void pci_restore_state(struct pci_dev *dev)
1127 {
1128 	if (!dev->state_saved)
1129 		return;
1130 
1131 	/* PCI Express register must be restored first */
1132 	pci_restore_pcie_state(dev);
1133 	pci_restore_ats_state(dev);
1134 	pci_restore_vc_state(dev);
1135 
1136 	pci_cleanup_aer_error_status_regs(dev);
1137 
1138 	pci_restore_config_space(dev);
1139 
1140 	pci_restore_pcix_state(dev);
1141 	pci_restore_msi_state(dev);
1142 
1143 	/* Restore ACS and IOV configuration state */
1144 	pci_enable_acs(dev);
1145 	pci_restore_iov_state(dev);
1146 
1147 	dev->state_saved = false;
1148 }
1149 EXPORT_SYMBOL(pci_restore_state);
1150 
1151 struct pci_saved_state {
1152 	u32 config_space[16];
1153 	struct pci_cap_saved_data cap[0];
1154 };
1155 
1156 /**
1157  * pci_store_saved_state - Allocate and return an opaque struct containing
1158  *			   the device saved state.
1159  * @dev: PCI device that we're dealing with
1160  *
1161  * Return NULL if no state or error.
1162  */
pci_store_saved_state(struct pci_dev * dev)1163 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1164 {
1165 	struct pci_saved_state *state;
1166 	struct pci_cap_saved_state *tmp;
1167 	struct pci_cap_saved_data *cap;
1168 	size_t size;
1169 
1170 	if (!dev->state_saved)
1171 		return NULL;
1172 
1173 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1174 
1175 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1176 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1177 
1178 	state = kzalloc(size, GFP_KERNEL);
1179 	if (!state)
1180 		return NULL;
1181 
1182 	memcpy(state->config_space, dev->saved_config_space,
1183 	       sizeof(state->config_space));
1184 
1185 	cap = state->cap;
1186 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1187 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1188 		memcpy(cap, &tmp->cap, len);
1189 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1190 	}
1191 	/* Empty cap_save terminates list */
1192 
1193 	return state;
1194 }
1195 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1196 
1197 /**
1198  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1199  * @dev: PCI device that we're dealing with
1200  * @state: Saved state returned from pci_store_saved_state()
1201  */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1202 int pci_load_saved_state(struct pci_dev *dev,
1203 			 struct pci_saved_state *state)
1204 {
1205 	struct pci_cap_saved_data *cap;
1206 
1207 	dev->state_saved = false;
1208 
1209 	if (!state)
1210 		return 0;
1211 
1212 	memcpy(dev->saved_config_space, state->config_space,
1213 	       sizeof(state->config_space));
1214 
1215 	cap = state->cap;
1216 	while (cap->size) {
1217 		struct pci_cap_saved_state *tmp;
1218 
1219 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1220 		if (!tmp || tmp->cap.size != cap->size)
1221 			return -EINVAL;
1222 
1223 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1224 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1225 		       sizeof(struct pci_cap_saved_data) + cap->size);
1226 	}
1227 
1228 	dev->state_saved = true;
1229 	return 0;
1230 }
1231 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1232 
1233 /**
1234  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1235  *				   and free the memory allocated for it.
1236  * @dev: PCI device that we're dealing with
1237  * @state: Pointer to saved state returned from pci_store_saved_state()
1238  */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1239 int pci_load_and_free_saved_state(struct pci_dev *dev,
1240 				  struct pci_saved_state **state)
1241 {
1242 	int ret = pci_load_saved_state(dev, *state);
1243 	kfree(*state);
1244 	*state = NULL;
1245 	return ret;
1246 }
1247 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1248 
pcibios_enable_device(struct pci_dev * dev,int bars)1249 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1250 {
1251 	return pci_enable_resources(dev, bars);
1252 }
1253 
do_pci_enable_device(struct pci_dev * dev,int bars)1254 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1255 {
1256 	int err;
1257 	struct pci_dev *bridge;
1258 	u16 cmd;
1259 	u8 pin;
1260 
1261 	err = pci_set_power_state(dev, PCI_D0);
1262 	if (err < 0 && err != -EIO)
1263 		return err;
1264 
1265 	bridge = pci_upstream_bridge(dev);
1266 	if (bridge)
1267 		pcie_aspm_powersave_config_link(bridge);
1268 
1269 	err = pcibios_enable_device(dev, bars);
1270 	if (err < 0)
1271 		return err;
1272 	pci_fixup_device(pci_fixup_enable, dev);
1273 
1274 	if (dev->msi_enabled || dev->msix_enabled)
1275 		return 0;
1276 
1277 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1278 	if (pin) {
1279 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1280 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1281 			pci_write_config_word(dev, PCI_COMMAND,
1282 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  * pci_reenable_device - Resume abandoned device
1290  * @dev: PCI device to be resumed
1291  *
1292  *  Note this function is a backend of pci_default_resume and is not supposed
1293  *  to be called by normal code, write proper resume handler and use it instead.
1294  */
pci_reenable_device(struct pci_dev * dev)1295 int pci_reenable_device(struct pci_dev *dev)
1296 {
1297 	if (pci_is_enabled(dev))
1298 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1299 	return 0;
1300 }
1301 EXPORT_SYMBOL(pci_reenable_device);
1302 
pci_enable_bridge(struct pci_dev * dev)1303 static void pci_enable_bridge(struct pci_dev *dev)
1304 {
1305 	struct pci_dev *bridge;
1306 	int retval;
1307 
1308 	bridge = pci_upstream_bridge(dev);
1309 	if (bridge)
1310 		pci_enable_bridge(bridge);
1311 
1312 	if (pci_is_enabled(dev)) {
1313 		if (!dev->is_busmaster)
1314 			pci_set_master(dev);
1315 		return;
1316 	}
1317 
1318 	retval = pci_enable_device(dev);
1319 	if (retval)
1320 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1321 			retval);
1322 	pci_set_master(dev);
1323 }
1324 
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1325 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1326 {
1327 	struct pci_dev *bridge;
1328 	int err;
1329 	int i, bars = 0;
1330 
1331 	/*
1332 	 * Power state could be unknown at this point, either due to a fresh
1333 	 * boot or a device removal call.  So get the current power state
1334 	 * so that things like MSI message writing will behave as expected
1335 	 * (e.g. if the device really is in D0 at enable time).
1336 	 */
1337 	pci_update_current_state(dev, dev->current_state);
1338 
1339 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1340 		return 0;		/* already enabled */
1341 
1342 	bridge = pci_upstream_bridge(dev);
1343 	if (bridge)
1344 		pci_enable_bridge(bridge);
1345 
1346 	/* only skip sriov related */
1347 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1348 		if (dev->resource[i].flags & flags)
1349 			bars |= (1 << i);
1350 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1351 		if (dev->resource[i].flags & flags)
1352 			bars |= (1 << i);
1353 
1354 	err = do_pci_enable_device(dev, bars);
1355 	if (err < 0)
1356 		atomic_dec(&dev->enable_cnt);
1357 	return err;
1358 }
1359 
1360 /**
1361  * pci_enable_device_io - Initialize a device for use with IO space
1362  * @dev: PCI device to be initialized
1363  *
1364  *  Initialize device before it's used by a driver. Ask low-level code
1365  *  to enable I/O resources. Wake up the device if it was suspended.
1366  *  Beware, this function can fail.
1367  */
pci_enable_device_io(struct pci_dev * dev)1368 int pci_enable_device_io(struct pci_dev *dev)
1369 {
1370 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1371 }
1372 EXPORT_SYMBOL(pci_enable_device_io);
1373 
1374 /**
1375  * pci_enable_device_mem - Initialize a device for use with Memory space
1376  * @dev: PCI device to be initialized
1377  *
1378  *  Initialize device before it's used by a driver. Ask low-level code
1379  *  to enable Memory resources. Wake up the device if it was suspended.
1380  *  Beware, this function can fail.
1381  */
pci_enable_device_mem(struct pci_dev * dev)1382 int pci_enable_device_mem(struct pci_dev *dev)
1383 {
1384 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1385 }
1386 EXPORT_SYMBOL(pci_enable_device_mem);
1387 
1388 /**
1389  * pci_enable_device - Initialize device before it's used by a driver.
1390  * @dev: PCI device to be initialized
1391  *
1392  *  Initialize device before it's used by a driver. Ask low-level code
1393  *  to enable I/O and memory. Wake up the device if it was suspended.
1394  *  Beware, this function can fail.
1395  *
1396  *  Note we don't actually enable the device many times if we call
1397  *  this function repeatedly (we just increment the count).
1398  */
pci_enable_device(struct pci_dev * dev)1399 int pci_enable_device(struct pci_dev *dev)
1400 {
1401 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1402 }
1403 EXPORT_SYMBOL(pci_enable_device);
1404 
1405 /*
1406  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1407  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1408  * there's no need to track it separately.  pci_devres is initialized
1409  * when a device is enabled using managed PCI device enable interface.
1410  */
1411 struct pci_devres {
1412 	unsigned int enabled:1;
1413 	unsigned int pinned:1;
1414 	unsigned int orig_intx:1;
1415 	unsigned int restore_intx:1;
1416 	u32 region_mask;
1417 };
1418 
pcim_release(struct device * gendev,void * res)1419 static void pcim_release(struct device *gendev, void *res)
1420 {
1421 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1422 	struct pci_devres *this = res;
1423 	int i;
1424 
1425 	if (dev->msi_enabled)
1426 		pci_disable_msi(dev);
1427 	if (dev->msix_enabled)
1428 		pci_disable_msix(dev);
1429 
1430 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1431 		if (this->region_mask & (1 << i))
1432 			pci_release_region(dev, i);
1433 
1434 	if (this->restore_intx)
1435 		pci_intx(dev, this->orig_intx);
1436 
1437 	if (this->enabled && !this->pinned)
1438 		pci_disable_device(dev);
1439 }
1440 
get_pci_dr(struct pci_dev * pdev)1441 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1442 {
1443 	struct pci_devres *dr, *new_dr;
1444 
1445 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1446 	if (dr)
1447 		return dr;
1448 
1449 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1450 	if (!new_dr)
1451 		return NULL;
1452 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1453 }
1454 
find_pci_dr(struct pci_dev * pdev)1455 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1456 {
1457 	if (pci_is_managed(pdev))
1458 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1459 	return NULL;
1460 }
1461 
1462 /**
1463  * pcim_enable_device - Managed pci_enable_device()
1464  * @pdev: PCI device to be initialized
1465  *
1466  * Managed pci_enable_device().
1467  */
pcim_enable_device(struct pci_dev * pdev)1468 int pcim_enable_device(struct pci_dev *pdev)
1469 {
1470 	struct pci_devres *dr;
1471 	int rc;
1472 
1473 	dr = get_pci_dr(pdev);
1474 	if (unlikely(!dr))
1475 		return -ENOMEM;
1476 	if (dr->enabled)
1477 		return 0;
1478 
1479 	rc = pci_enable_device(pdev);
1480 	if (!rc) {
1481 		pdev->is_managed = 1;
1482 		dr->enabled = 1;
1483 	}
1484 	return rc;
1485 }
1486 EXPORT_SYMBOL(pcim_enable_device);
1487 
1488 /**
1489  * pcim_pin_device - Pin managed PCI device
1490  * @pdev: PCI device to pin
1491  *
1492  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1493  * driver detach.  @pdev must have been enabled with
1494  * pcim_enable_device().
1495  */
pcim_pin_device(struct pci_dev * pdev)1496 void pcim_pin_device(struct pci_dev *pdev)
1497 {
1498 	struct pci_devres *dr;
1499 
1500 	dr = find_pci_dr(pdev);
1501 	WARN_ON(!dr || !dr->enabled);
1502 	if (dr)
1503 		dr->pinned = 1;
1504 }
1505 EXPORT_SYMBOL(pcim_pin_device);
1506 
1507 /*
1508  * pcibios_add_device - provide arch specific hooks when adding device dev
1509  * @dev: the PCI device being added
1510  *
1511  * Permits the platform to provide architecture specific functionality when
1512  * devices are added. This is the default implementation. Architecture
1513  * implementations can override this.
1514  */
pcibios_add_device(struct pci_dev * dev)1515 int __weak pcibios_add_device(struct pci_dev *dev)
1516 {
1517 	return 0;
1518 }
1519 
1520 /**
1521  * pcibios_release_device - provide arch specific hooks when releasing device dev
1522  * @dev: the PCI device being released
1523  *
1524  * Permits the platform to provide architecture specific functionality when
1525  * devices are released. This is the default implementation. Architecture
1526  * implementations can override this.
1527  */
pcibios_release_device(struct pci_dev * dev)1528 void __weak pcibios_release_device(struct pci_dev *dev) {}
1529 
1530 /**
1531  * pcibios_disable_device - disable arch specific PCI resources for device dev
1532  * @dev: the PCI device to disable
1533  *
1534  * Disables architecture specific PCI resources for the device. This
1535  * is the default implementation. Architecture implementations can
1536  * override this.
1537  */
pcibios_disable_device(struct pci_dev * dev)1538 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1539 
1540 /**
1541  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1542  * @irq: ISA IRQ to penalize
1543  * @active: IRQ active or not
1544  *
1545  * Permits the platform to provide architecture-specific functionality when
1546  * penalizing ISA IRQs. This is the default implementation. Architecture
1547  * implementations can override this.
1548  */
pcibios_penalize_isa_irq(int irq,int active)1549 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1550 
do_pci_disable_device(struct pci_dev * dev)1551 static void do_pci_disable_device(struct pci_dev *dev)
1552 {
1553 	u16 pci_command;
1554 
1555 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1556 	if (pci_command & PCI_COMMAND_MASTER) {
1557 		pci_command &= ~PCI_COMMAND_MASTER;
1558 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1559 	}
1560 
1561 	pcibios_disable_device(dev);
1562 }
1563 
1564 /**
1565  * pci_disable_enabled_device - Disable device without updating enable_cnt
1566  * @dev: PCI device to disable
1567  *
1568  * NOTE: This function is a backend of PCI power management routines and is
1569  * not supposed to be called drivers.
1570  */
pci_disable_enabled_device(struct pci_dev * dev)1571 void pci_disable_enabled_device(struct pci_dev *dev)
1572 {
1573 	if (pci_is_enabled(dev))
1574 		do_pci_disable_device(dev);
1575 }
1576 
1577 /**
1578  * pci_disable_device - Disable PCI device after use
1579  * @dev: PCI device to be disabled
1580  *
1581  * Signal to the system that the PCI device is not in use by the system
1582  * anymore.  This only involves disabling PCI bus-mastering, if active.
1583  *
1584  * Note we don't actually disable the device until all callers of
1585  * pci_enable_device() have called pci_disable_device().
1586  */
pci_disable_device(struct pci_dev * dev)1587 void pci_disable_device(struct pci_dev *dev)
1588 {
1589 	struct pci_devres *dr;
1590 
1591 	dr = find_pci_dr(dev);
1592 	if (dr)
1593 		dr->enabled = 0;
1594 
1595 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1596 		      "disabling already-disabled device");
1597 
1598 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1599 		return;
1600 
1601 	do_pci_disable_device(dev);
1602 
1603 	dev->is_busmaster = 0;
1604 }
1605 EXPORT_SYMBOL(pci_disable_device);
1606 
1607 /**
1608  * pcibios_set_pcie_reset_state - set reset state for device dev
1609  * @dev: the PCIe device reset
1610  * @state: Reset state to enter into
1611  *
1612  *
1613  * Sets the PCIe reset state for the device. This is the default
1614  * implementation. Architecture implementations can override this.
1615  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1616 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1617 					enum pcie_reset_state state)
1618 {
1619 	return -EINVAL;
1620 }
1621 
1622 /**
1623  * pci_set_pcie_reset_state - set reset state for device dev
1624  * @dev: the PCIe device reset
1625  * @state: Reset state to enter into
1626  *
1627  *
1628  * Sets the PCI reset state for the device.
1629  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1630 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1631 {
1632 	return pcibios_set_pcie_reset_state(dev, state);
1633 }
1634 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1635 
1636 /**
1637  * pci_check_pme_status - Check if given device has generated PME.
1638  * @dev: Device to check.
1639  *
1640  * Check the PME status of the device and if set, clear it and clear PME enable
1641  * (if set).  Return 'true' if PME status and PME enable were both set or
1642  * 'false' otherwise.
1643  */
pci_check_pme_status(struct pci_dev * dev)1644 bool pci_check_pme_status(struct pci_dev *dev)
1645 {
1646 	int pmcsr_pos;
1647 	u16 pmcsr;
1648 	bool ret = false;
1649 
1650 	if (!dev->pm_cap)
1651 		return false;
1652 
1653 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1654 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1655 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1656 		return false;
1657 
1658 	/* Clear PME status. */
1659 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1660 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1661 		/* Disable PME to avoid interrupt flood. */
1662 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1663 		ret = true;
1664 	}
1665 
1666 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1667 
1668 	return ret;
1669 }
1670 
1671 /**
1672  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1673  * @dev: Device to handle.
1674  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1675  *
1676  * Check if @dev has generated PME and queue a resume request for it in that
1677  * case.
1678  */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)1679 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1680 {
1681 	if (pme_poll_reset && dev->pme_poll)
1682 		dev->pme_poll = false;
1683 
1684 	if (pci_check_pme_status(dev)) {
1685 		pci_wakeup_event(dev);
1686 		pm_request_resume(&dev->dev);
1687 	}
1688 	return 0;
1689 }
1690 
1691 /**
1692  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1693  * @bus: Top bus of the subtree to walk.
1694  */
pci_pme_wakeup_bus(struct pci_bus * bus)1695 void pci_pme_wakeup_bus(struct pci_bus *bus)
1696 {
1697 	if (bus)
1698 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1699 }
1700 
1701 
1702 /**
1703  * pci_pme_capable - check the capability of PCI device to generate PME#
1704  * @dev: PCI device to handle.
1705  * @state: PCI state from which device will issue PME#.
1706  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)1707 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1708 {
1709 	if (!dev->pm_cap)
1710 		return false;
1711 
1712 	return !!(dev->pme_support & (1 << state));
1713 }
1714 EXPORT_SYMBOL(pci_pme_capable);
1715 
pci_pme_list_scan(struct work_struct * work)1716 static void pci_pme_list_scan(struct work_struct *work)
1717 {
1718 	struct pci_pme_device *pme_dev, *n;
1719 
1720 	mutex_lock(&pci_pme_list_mutex);
1721 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1722 		if (pme_dev->dev->pme_poll) {
1723 			struct pci_dev *bridge;
1724 
1725 			bridge = pme_dev->dev->bus->self;
1726 			/*
1727 			 * If bridge is in low power state, the
1728 			 * configuration space of subordinate devices
1729 			 * may be not accessible
1730 			 */
1731 			if (bridge && bridge->current_state != PCI_D0)
1732 				continue;
1733 			/*
1734 			 * If the device is in D3cold it should not be
1735 			 * polled either.
1736 			 */
1737 			if (pme_dev->dev->current_state == PCI_D3cold)
1738 				continue;
1739 
1740 			pci_pme_wakeup(pme_dev->dev, NULL);
1741 		} else {
1742 			list_del(&pme_dev->list);
1743 			kfree(pme_dev);
1744 		}
1745 	}
1746 	if (!list_empty(&pci_pme_list))
1747 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1748 				   msecs_to_jiffies(PME_TIMEOUT));
1749 	mutex_unlock(&pci_pme_list_mutex);
1750 }
1751 
__pci_pme_active(struct pci_dev * dev,bool enable)1752 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1753 {
1754 	u16 pmcsr;
1755 
1756 	if (!dev->pme_support)
1757 		return;
1758 
1759 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1760 	/* Clear PME_Status by writing 1 to it and enable PME# */
1761 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1762 	if (!enable)
1763 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1764 
1765 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1766 }
1767 
1768 /**
1769  * pci_pme_active - enable or disable PCI device's PME# function
1770  * @dev: PCI device to handle.
1771  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1772  *
1773  * The caller must verify that the device is capable of generating PME# before
1774  * calling this function with @enable equal to 'true'.
1775  */
pci_pme_active(struct pci_dev * dev,bool enable)1776 void pci_pme_active(struct pci_dev *dev, bool enable)
1777 {
1778 	__pci_pme_active(dev, enable);
1779 
1780 	/*
1781 	 * PCI (as opposed to PCIe) PME requires that the device have
1782 	 * its PME# line hooked up correctly. Not all hardware vendors
1783 	 * do this, so the PME never gets delivered and the device
1784 	 * remains asleep. The easiest way around this is to
1785 	 * periodically walk the list of suspended devices and check
1786 	 * whether any have their PME flag set. The assumption is that
1787 	 * we'll wake up often enough anyway that this won't be a huge
1788 	 * hit, and the power savings from the devices will still be a
1789 	 * win.
1790 	 *
1791 	 * Although PCIe uses in-band PME message instead of PME# line
1792 	 * to report PME, PME does not work for some PCIe devices in
1793 	 * reality.  For example, there are devices that set their PME
1794 	 * status bits, but don't really bother to send a PME message;
1795 	 * there are PCI Express Root Ports that don't bother to
1796 	 * trigger interrupts when they receive PME messages from the
1797 	 * devices below.  So PME poll is used for PCIe devices too.
1798 	 */
1799 
1800 	if (dev->pme_poll) {
1801 		struct pci_pme_device *pme_dev;
1802 		if (enable) {
1803 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1804 					  GFP_KERNEL);
1805 			if (!pme_dev) {
1806 				dev_warn(&dev->dev, "can't enable PME#\n");
1807 				return;
1808 			}
1809 			pme_dev->dev = dev;
1810 			mutex_lock(&pci_pme_list_mutex);
1811 			list_add(&pme_dev->list, &pci_pme_list);
1812 			if (list_is_singular(&pci_pme_list))
1813 				queue_delayed_work(system_freezable_wq,
1814 						   &pci_pme_work,
1815 						   msecs_to_jiffies(PME_TIMEOUT));
1816 			mutex_unlock(&pci_pme_list_mutex);
1817 		} else {
1818 			mutex_lock(&pci_pme_list_mutex);
1819 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1820 				if (pme_dev->dev == dev) {
1821 					list_del(&pme_dev->list);
1822 					kfree(pme_dev);
1823 					break;
1824 				}
1825 			}
1826 			mutex_unlock(&pci_pme_list_mutex);
1827 		}
1828 	}
1829 
1830 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1831 }
1832 EXPORT_SYMBOL(pci_pme_active);
1833 
1834 /**
1835  * __pci_enable_wake - enable PCI device as wakeup event source
1836  * @dev: PCI device affected
1837  * @state: PCI state from which device will issue wakeup events
1838  * @runtime: True if the events are to be generated at run time
1839  * @enable: True to enable event generation; false to disable
1840  *
1841  * This enables the device as a wakeup event source, or disables it.
1842  * When such events involves platform-specific hooks, those hooks are
1843  * called automatically by this routine.
1844  *
1845  * Devices with legacy power management (no standard PCI PM capabilities)
1846  * always require such platform hooks.
1847  *
1848  * RETURN VALUE:
1849  * 0 is returned on success
1850  * -EINVAL is returned if device is not supposed to wake up the system
1851  * Error code depending on the platform is returned if both the platform and
1852  * the native mechanism fail to enable the generation of wake-up events
1853  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool runtime,bool enable)1854 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1855 		      bool runtime, bool enable)
1856 {
1857 	int ret = 0;
1858 
1859 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1860 		return -EINVAL;
1861 
1862 	/* Don't do the same thing twice in a row for one device. */
1863 	if (!!enable == !!dev->wakeup_prepared)
1864 		return 0;
1865 
1866 	/*
1867 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1868 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1869 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1870 	 */
1871 
1872 	if (enable) {
1873 		int error;
1874 
1875 		/*
1876 		 * Enable PME signaling if the device can signal PME from
1877 		 * D3cold regardless of whether or not it can signal PME from
1878 		 * the current target state, because that will allow it to
1879 		 * signal PME when the hierarchy above it goes into D3cold and
1880 		 * the device itself ends up in D3cold as a result of that.
1881 		 */
1882 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
1883 			pci_pme_active(dev, true);
1884 		else
1885 			ret = 1;
1886 		error = runtime ? platform_pci_run_wake(dev, true) :
1887 					platform_pci_sleep_wake(dev, true);
1888 		if (ret)
1889 			ret = error;
1890 		if (!ret)
1891 			dev->wakeup_prepared = true;
1892 	} else {
1893 		if (runtime)
1894 			platform_pci_run_wake(dev, false);
1895 		else
1896 			platform_pci_sleep_wake(dev, false);
1897 		pci_pme_active(dev, false);
1898 		dev->wakeup_prepared = false;
1899 	}
1900 
1901 	return ret;
1902 }
1903 EXPORT_SYMBOL(__pci_enable_wake);
1904 
1905 /**
1906  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1907  * @dev: PCI device to prepare
1908  * @enable: True to enable wake-up event generation; false to disable
1909  *
1910  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1911  * and this function allows them to set that up cleanly - pci_enable_wake()
1912  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1913  * ordering constraints.
1914  *
1915  * This function only returns error code if the device is not capable of
1916  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1917  * enable wake-up power for it.
1918  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)1919 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1920 {
1921 	return pci_pme_capable(dev, PCI_D3cold) ?
1922 			pci_enable_wake(dev, PCI_D3cold, enable) :
1923 			pci_enable_wake(dev, PCI_D3hot, enable);
1924 }
1925 EXPORT_SYMBOL(pci_wake_from_d3);
1926 
1927 /**
1928  * pci_target_state - find an appropriate low power state for a given PCI dev
1929  * @dev: PCI device
1930  *
1931  * Use underlying platform code to find a supported low power state for @dev.
1932  * If the platform can't manage @dev, return the deepest state from which it
1933  * can generate wake events, based on any available PME info.
1934  */
pci_target_state(struct pci_dev * dev)1935 static pci_power_t pci_target_state(struct pci_dev *dev)
1936 {
1937 	pci_power_t target_state = PCI_D3hot;
1938 
1939 	if (platform_pci_power_manageable(dev)) {
1940 		/*
1941 		 * Call the platform to choose the target state of the device
1942 		 * and enable wake-up from this state if supported.
1943 		 */
1944 		pci_power_t state = platform_pci_choose_state(dev);
1945 
1946 		switch (state) {
1947 		case PCI_POWER_ERROR:
1948 		case PCI_UNKNOWN:
1949 			break;
1950 		case PCI_D1:
1951 		case PCI_D2:
1952 			if (pci_no_d1d2(dev))
1953 				break;
1954 		default:
1955 			target_state = state;
1956 		}
1957 	} else if (!dev->pm_cap) {
1958 		target_state = PCI_D0;
1959 	} else if (device_may_wakeup(&dev->dev)) {
1960 		/*
1961 		 * Find the deepest state from which the device can generate
1962 		 * wake-up events, make it the target state and enable device
1963 		 * to generate PME#.
1964 		 */
1965 		if (dev->pme_support) {
1966 			while (target_state
1967 			      && !(dev->pme_support & (1 << target_state)))
1968 				target_state--;
1969 		}
1970 	}
1971 
1972 	return target_state;
1973 }
1974 
1975 /**
1976  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1977  * @dev: Device to handle.
1978  *
1979  * Choose the power state appropriate for the device depending on whether
1980  * it can wake up the system and/or is power manageable by the platform
1981  * (PCI_D3hot is the default) and put the device into that state.
1982  */
pci_prepare_to_sleep(struct pci_dev * dev)1983 int pci_prepare_to_sleep(struct pci_dev *dev)
1984 {
1985 	pci_power_t target_state = pci_target_state(dev);
1986 	int error;
1987 
1988 	if (target_state == PCI_POWER_ERROR)
1989 		return -EIO;
1990 
1991 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1992 
1993 	error = pci_set_power_state(dev, target_state);
1994 
1995 	if (error)
1996 		pci_enable_wake(dev, target_state, false);
1997 
1998 	return error;
1999 }
2000 EXPORT_SYMBOL(pci_prepare_to_sleep);
2001 
2002 /**
2003  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2004  * @dev: Device to handle.
2005  *
2006  * Disable device's system wake-up capability and put it into D0.
2007  */
pci_back_from_sleep(struct pci_dev * dev)2008 int pci_back_from_sleep(struct pci_dev *dev)
2009 {
2010 	pci_enable_wake(dev, PCI_D0, false);
2011 	return pci_set_power_state(dev, PCI_D0);
2012 }
2013 EXPORT_SYMBOL(pci_back_from_sleep);
2014 
2015 /**
2016  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2017  * @dev: PCI device being suspended.
2018  *
2019  * Prepare @dev to generate wake-up events at run time and put it into a low
2020  * power state.
2021  */
pci_finish_runtime_suspend(struct pci_dev * dev)2022 int pci_finish_runtime_suspend(struct pci_dev *dev)
2023 {
2024 	pci_power_t target_state = pci_target_state(dev);
2025 	int error;
2026 
2027 	if (target_state == PCI_POWER_ERROR)
2028 		return -EIO;
2029 
2030 	dev->runtime_d3cold = target_state == PCI_D3cold;
2031 
2032 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2033 
2034 	error = pci_set_power_state(dev, target_state);
2035 
2036 	if (error) {
2037 		__pci_enable_wake(dev, target_state, true, false);
2038 		dev->runtime_d3cold = false;
2039 	}
2040 
2041 	return error;
2042 }
2043 
2044 /**
2045  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2046  * @dev: Device to check.
2047  *
2048  * Return true if the device itself is capable of generating wake-up events
2049  * (through the platform or using the native PCIe PME) or if the device supports
2050  * PME and one of its upstream bridges can generate wake-up events.
2051  */
pci_dev_run_wake(struct pci_dev * dev)2052 bool pci_dev_run_wake(struct pci_dev *dev)
2053 {
2054 	struct pci_bus *bus = dev->bus;
2055 
2056 	if (device_run_wake(&dev->dev))
2057 		return true;
2058 
2059 	if (!dev->pme_support)
2060 		return false;
2061 
2062 	/* PME-capable in principle, but not from the intended sleep state */
2063 	if (!pci_pme_capable(dev, pci_target_state(dev)))
2064 		return false;
2065 
2066 	while (bus->parent) {
2067 		struct pci_dev *bridge = bus->self;
2068 
2069 		if (device_run_wake(&bridge->dev))
2070 			return true;
2071 
2072 		bus = bus->parent;
2073 	}
2074 
2075 	/* We have reached the root bus. */
2076 	if (bus->bridge)
2077 		return device_run_wake(bus->bridge);
2078 
2079 	return false;
2080 }
2081 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2082 
2083 /**
2084  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2085  * @pci_dev: Device to check.
2086  *
2087  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2088  * reconfigured due to wakeup settings difference between system and runtime
2089  * suspend and the current power state of it is suitable for the upcoming
2090  * (system) transition.
2091  *
2092  * If the device is not configured for system wakeup, disable PME for it before
2093  * returning 'true' to prevent it from waking up the system unnecessarily.
2094  */
pci_dev_keep_suspended(struct pci_dev * pci_dev)2095 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2096 {
2097 	struct device *dev = &pci_dev->dev;
2098 
2099 	if (!pm_runtime_suspended(dev)
2100 	    || pci_target_state(pci_dev) != pci_dev->current_state
2101 	    || platform_pci_need_resume(pci_dev))
2102 		return false;
2103 
2104 	/*
2105 	 * At this point the device is good to go unless it's been configured
2106 	 * to generate PME at the runtime suspend time, but it is not supposed
2107 	 * to wake up the system.  In that case, simply disable PME for it
2108 	 * (it will have to be re-enabled on exit from system resume).
2109 	 *
2110 	 * If the device's power state is D3cold and the platform check above
2111 	 * hasn't triggered, the device's configuration is suitable and we don't
2112 	 * need to manipulate it at all.
2113 	 */
2114 	spin_lock_irq(&dev->power.lock);
2115 
2116 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2117 	    !device_may_wakeup(dev))
2118 		__pci_pme_active(pci_dev, false);
2119 
2120 	spin_unlock_irq(&dev->power.lock);
2121 	return true;
2122 }
2123 
2124 /**
2125  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2126  * @pci_dev: Device to handle.
2127  *
2128  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2129  * it might have been disabled during the prepare phase of system suspend if
2130  * the device was not configured for system wakeup.
2131  */
pci_dev_complete_resume(struct pci_dev * pci_dev)2132 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2133 {
2134 	struct device *dev = &pci_dev->dev;
2135 
2136 	if (!pci_dev_run_wake(pci_dev))
2137 		return;
2138 
2139 	spin_lock_irq(&dev->power.lock);
2140 
2141 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2142 		__pci_pme_active(pci_dev, true);
2143 
2144 	spin_unlock_irq(&dev->power.lock);
2145 }
2146 
pci_config_pm_runtime_get(struct pci_dev * pdev)2147 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2148 {
2149 	struct device *dev = &pdev->dev;
2150 	struct device *parent = dev->parent;
2151 
2152 	if (parent)
2153 		pm_runtime_get_sync(parent);
2154 	pm_runtime_get_noresume(dev);
2155 	/*
2156 	 * pdev->current_state is set to PCI_D3cold during suspending,
2157 	 * so wait until suspending completes
2158 	 */
2159 	pm_runtime_barrier(dev);
2160 	/*
2161 	 * Only need to resume devices in D3cold, because config
2162 	 * registers are still accessible for devices suspended but
2163 	 * not in D3cold.
2164 	 */
2165 	if (pdev->current_state == PCI_D3cold)
2166 		pm_runtime_resume(dev);
2167 }
2168 
pci_config_pm_runtime_put(struct pci_dev * pdev)2169 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2170 {
2171 	struct device *dev = &pdev->dev;
2172 	struct device *parent = dev->parent;
2173 
2174 	pm_runtime_put(dev);
2175 	if (parent)
2176 		pm_runtime_put_sync(parent);
2177 }
2178 
2179 /**
2180  * pci_pm_init - Initialize PM functions of given PCI device
2181  * @dev: PCI device to handle.
2182  */
pci_pm_init(struct pci_dev * dev)2183 void pci_pm_init(struct pci_dev *dev)
2184 {
2185 	int pm;
2186 	u16 pmc;
2187 
2188 	pm_runtime_forbid(&dev->dev);
2189 	pm_runtime_set_active(&dev->dev);
2190 	pm_runtime_enable(&dev->dev);
2191 	device_enable_async_suspend(&dev->dev);
2192 	dev->wakeup_prepared = false;
2193 
2194 	dev->pm_cap = 0;
2195 	dev->pme_support = 0;
2196 
2197 	/* find PCI PM capability in list */
2198 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2199 	if (!pm)
2200 		return;
2201 	/* Check device's ability to generate PME# */
2202 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2203 
2204 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2205 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2206 			pmc & PCI_PM_CAP_VER_MASK);
2207 		return;
2208 	}
2209 
2210 	dev->pm_cap = pm;
2211 	dev->d3_delay = PCI_PM_D3_WAIT;
2212 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2213 	dev->d3cold_allowed = true;
2214 
2215 	dev->d1_support = false;
2216 	dev->d2_support = false;
2217 	if (!pci_no_d1d2(dev)) {
2218 		if (pmc & PCI_PM_CAP_D1)
2219 			dev->d1_support = true;
2220 		if (pmc & PCI_PM_CAP_D2)
2221 			dev->d2_support = true;
2222 
2223 		if (dev->d1_support || dev->d2_support)
2224 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2225 				   dev->d1_support ? " D1" : "",
2226 				   dev->d2_support ? " D2" : "");
2227 	}
2228 
2229 	pmc &= PCI_PM_CAP_PME_MASK;
2230 	if (pmc) {
2231 		dev_printk(KERN_DEBUG, &dev->dev,
2232 			 "PME# supported from%s%s%s%s%s\n",
2233 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2234 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2235 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2236 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2237 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2238 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2239 		dev->pme_poll = true;
2240 		/*
2241 		 * Make device's PM flags reflect the wake-up capability, but
2242 		 * let the user space enable it to wake up the system as needed.
2243 		 */
2244 		device_set_wakeup_capable(&dev->dev, true);
2245 		/* Disable the PME# generation functionality */
2246 		pci_pme_active(dev, false);
2247 	}
2248 }
2249 
pci_ea_flags(struct pci_dev * dev,u8 prop)2250 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2251 {
2252 	unsigned long flags = IORESOURCE_PCI_FIXED;
2253 
2254 	switch (prop) {
2255 	case PCI_EA_P_MEM:
2256 	case PCI_EA_P_VF_MEM:
2257 		flags |= IORESOURCE_MEM;
2258 		break;
2259 	case PCI_EA_P_MEM_PREFETCH:
2260 	case PCI_EA_P_VF_MEM_PREFETCH:
2261 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2262 		break;
2263 	case PCI_EA_P_IO:
2264 		flags |= IORESOURCE_IO;
2265 		break;
2266 	default:
2267 		return 0;
2268 	}
2269 
2270 	return flags;
2271 }
2272 
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)2273 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2274 					    u8 prop)
2275 {
2276 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2277 		return &dev->resource[bei];
2278 #ifdef CONFIG_PCI_IOV
2279 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2280 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2281 		return &dev->resource[PCI_IOV_RESOURCES +
2282 				      bei - PCI_EA_BEI_VF_BAR0];
2283 #endif
2284 	else if (bei == PCI_EA_BEI_ROM)
2285 		return &dev->resource[PCI_ROM_RESOURCE];
2286 	else
2287 		return NULL;
2288 }
2289 
2290 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)2291 static int pci_ea_read(struct pci_dev *dev, int offset)
2292 {
2293 	struct resource *res;
2294 	int ent_size, ent_offset = offset;
2295 	resource_size_t start, end;
2296 	unsigned long flags;
2297 	u32 dw0, bei, base, max_offset;
2298 	u8 prop;
2299 	bool support_64 = (sizeof(resource_size_t) >= 8);
2300 
2301 	pci_read_config_dword(dev, ent_offset, &dw0);
2302 	ent_offset += 4;
2303 
2304 	/* Entry size field indicates DWORDs after 1st */
2305 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2306 
2307 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2308 		goto out;
2309 
2310 	bei = (dw0 & PCI_EA_BEI) >> 4;
2311 	prop = (dw0 & PCI_EA_PP) >> 8;
2312 
2313 	/*
2314 	 * If the Property is in the reserved range, try the Secondary
2315 	 * Property instead.
2316 	 */
2317 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2318 		prop = (dw0 & PCI_EA_SP) >> 16;
2319 	if (prop > PCI_EA_P_BRIDGE_IO)
2320 		goto out;
2321 
2322 	res = pci_ea_get_resource(dev, bei, prop);
2323 	if (!res) {
2324 		dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2325 		goto out;
2326 	}
2327 
2328 	flags = pci_ea_flags(dev, prop);
2329 	if (!flags) {
2330 		dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2331 		goto out;
2332 	}
2333 
2334 	/* Read Base */
2335 	pci_read_config_dword(dev, ent_offset, &base);
2336 	start = (base & PCI_EA_FIELD_MASK);
2337 	ent_offset += 4;
2338 
2339 	/* Read MaxOffset */
2340 	pci_read_config_dword(dev, ent_offset, &max_offset);
2341 	ent_offset += 4;
2342 
2343 	/* Read Base MSBs (if 64-bit entry) */
2344 	if (base & PCI_EA_IS_64) {
2345 		u32 base_upper;
2346 
2347 		pci_read_config_dword(dev, ent_offset, &base_upper);
2348 		ent_offset += 4;
2349 
2350 		flags |= IORESOURCE_MEM_64;
2351 
2352 		/* entry starts above 32-bit boundary, can't use */
2353 		if (!support_64 && base_upper)
2354 			goto out;
2355 
2356 		if (support_64)
2357 			start |= ((u64)base_upper << 32);
2358 	}
2359 
2360 	end = start + (max_offset | 0x03);
2361 
2362 	/* Read MaxOffset MSBs (if 64-bit entry) */
2363 	if (max_offset & PCI_EA_IS_64) {
2364 		u32 max_offset_upper;
2365 
2366 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2367 		ent_offset += 4;
2368 
2369 		flags |= IORESOURCE_MEM_64;
2370 
2371 		/* entry too big, can't use */
2372 		if (!support_64 && max_offset_upper)
2373 			goto out;
2374 
2375 		if (support_64)
2376 			end += ((u64)max_offset_upper << 32);
2377 	}
2378 
2379 	if (end < start) {
2380 		dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2381 		goto out;
2382 	}
2383 
2384 	if (ent_size != ent_offset - offset) {
2385 		dev_err(&dev->dev,
2386 			"EA Entry Size (%d) does not match length read (%d)\n",
2387 			ent_size, ent_offset - offset);
2388 		goto out;
2389 	}
2390 
2391 	res->name = pci_name(dev);
2392 	res->start = start;
2393 	res->end = end;
2394 	res->flags = flags;
2395 
2396 	if (bei <= PCI_EA_BEI_BAR5)
2397 		dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2398 			   bei, res, prop);
2399 	else if (bei == PCI_EA_BEI_ROM)
2400 		dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2401 			   res, prop);
2402 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2403 		dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2404 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2405 	else
2406 		dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2407 			   bei, res, prop);
2408 
2409 out:
2410 	return offset + ent_size;
2411 }
2412 
2413 /* Enhanced Allocation Initalization */
pci_ea_init(struct pci_dev * dev)2414 void pci_ea_init(struct pci_dev *dev)
2415 {
2416 	int ea;
2417 	u8 num_ent;
2418 	int offset;
2419 	int i;
2420 
2421 	/* find PCI EA capability in list */
2422 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2423 	if (!ea)
2424 		return;
2425 
2426 	/* determine the number of entries */
2427 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2428 					&num_ent);
2429 	num_ent &= PCI_EA_NUM_ENT_MASK;
2430 
2431 	offset = ea + PCI_EA_FIRST_ENT;
2432 
2433 	/* Skip DWORD 2 for type 1 functions */
2434 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2435 		offset += 4;
2436 
2437 	/* parse each EA entry */
2438 	for (i = 0; i < num_ent; ++i)
2439 		offset = pci_ea_read(dev, offset);
2440 }
2441 
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)2442 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2443 	struct pci_cap_saved_state *new_cap)
2444 {
2445 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2446 }
2447 
2448 /**
2449  * _pci_add_cap_save_buffer - allocate buffer for saving given
2450  *                            capability registers
2451  * @dev: the PCI device
2452  * @cap: the capability to allocate the buffer for
2453  * @extended: Standard or Extended capability ID
2454  * @size: requested size of the buffer
2455  */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)2456 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2457 				    bool extended, unsigned int size)
2458 {
2459 	int pos;
2460 	struct pci_cap_saved_state *save_state;
2461 
2462 	if (extended)
2463 		pos = pci_find_ext_capability(dev, cap);
2464 	else
2465 		pos = pci_find_capability(dev, cap);
2466 
2467 	if (!pos)
2468 		return 0;
2469 
2470 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2471 	if (!save_state)
2472 		return -ENOMEM;
2473 
2474 	save_state->cap.cap_nr = cap;
2475 	save_state->cap.cap_extended = extended;
2476 	save_state->cap.size = size;
2477 	pci_add_saved_cap(dev, save_state);
2478 
2479 	return 0;
2480 }
2481 
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)2482 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2483 {
2484 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2485 }
2486 
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)2487 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2488 {
2489 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2490 }
2491 
2492 /**
2493  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2494  * @dev: the PCI device
2495  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)2496 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2497 {
2498 	int error;
2499 
2500 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2501 					PCI_EXP_SAVE_REGS * sizeof(u16));
2502 	if (error)
2503 		dev_err(&dev->dev,
2504 			"unable to preallocate PCI Express save buffer\n");
2505 
2506 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2507 	if (error)
2508 		dev_err(&dev->dev,
2509 			"unable to preallocate PCI-X save buffer\n");
2510 
2511 	pci_allocate_vc_save_buffers(dev);
2512 }
2513 
pci_free_cap_save_buffers(struct pci_dev * dev)2514 void pci_free_cap_save_buffers(struct pci_dev *dev)
2515 {
2516 	struct pci_cap_saved_state *tmp;
2517 	struct hlist_node *n;
2518 
2519 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2520 		kfree(tmp);
2521 }
2522 
2523 /**
2524  * pci_configure_ari - enable or disable ARI forwarding
2525  * @dev: the PCI device
2526  *
2527  * If @dev and its upstream bridge both support ARI, enable ARI in the
2528  * bridge.  Otherwise, disable ARI in the bridge.
2529  */
pci_configure_ari(struct pci_dev * dev)2530 void pci_configure_ari(struct pci_dev *dev)
2531 {
2532 	u32 cap;
2533 	struct pci_dev *bridge;
2534 
2535 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2536 		return;
2537 
2538 	bridge = dev->bus->self;
2539 	if (!bridge)
2540 		return;
2541 
2542 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2543 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2544 		return;
2545 
2546 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2547 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2548 					 PCI_EXP_DEVCTL2_ARI);
2549 		bridge->ari_enabled = 1;
2550 	} else {
2551 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2552 					   PCI_EXP_DEVCTL2_ARI);
2553 		bridge->ari_enabled = 0;
2554 	}
2555 }
2556 
2557 static int pci_acs_enable;
2558 
2559 /**
2560  * pci_request_acs - ask for ACS to be enabled if supported
2561  */
pci_request_acs(void)2562 void pci_request_acs(void)
2563 {
2564 	pci_acs_enable = 1;
2565 }
2566 
2567 /**
2568  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2569  * @dev: the PCI device
2570  */
pci_std_enable_acs(struct pci_dev * dev)2571 static int pci_std_enable_acs(struct pci_dev *dev)
2572 {
2573 	int pos;
2574 	u16 cap;
2575 	u16 ctrl;
2576 
2577 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2578 	if (!pos)
2579 		return -ENODEV;
2580 
2581 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2582 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2583 
2584 	/* Source Validation */
2585 	ctrl |= (cap & PCI_ACS_SV);
2586 
2587 	/* P2P Request Redirect */
2588 	ctrl |= (cap & PCI_ACS_RR);
2589 
2590 	/* P2P Completion Redirect */
2591 	ctrl |= (cap & PCI_ACS_CR);
2592 
2593 	/* Upstream Forwarding */
2594 	ctrl |= (cap & PCI_ACS_UF);
2595 
2596 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2597 
2598 	return 0;
2599 }
2600 
2601 /**
2602  * pci_enable_acs - enable ACS if hardware support it
2603  * @dev: the PCI device
2604  */
pci_enable_acs(struct pci_dev * dev)2605 void pci_enable_acs(struct pci_dev *dev)
2606 {
2607 	if (!pci_acs_enable)
2608 		return;
2609 
2610 	if (!pci_std_enable_acs(dev))
2611 		return;
2612 
2613 	pci_dev_specific_enable_acs(dev);
2614 }
2615 
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)2616 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2617 {
2618 	int pos;
2619 	u16 cap, ctrl;
2620 
2621 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2622 	if (!pos)
2623 		return false;
2624 
2625 	/*
2626 	 * Except for egress control, capabilities are either required
2627 	 * or only required if controllable.  Features missing from the
2628 	 * capability field can therefore be assumed as hard-wired enabled.
2629 	 */
2630 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2631 	acs_flags &= (cap | PCI_ACS_EC);
2632 
2633 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2634 	return (ctrl & acs_flags) == acs_flags;
2635 }
2636 
2637 /**
2638  * pci_acs_enabled - test ACS against required flags for a given device
2639  * @pdev: device to test
2640  * @acs_flags: required PCI ACS flags
2641  *
2642  * Return true if the device supports the provided flags.  Automatically
2643  * filters out flags that are not implemented on multifunction devices.
2644  *
2645  * Note that this interface checks the effective ACS capabilities of the
2646  * device rather than the actual capabilities.  For instance, most single
2647  * function endpoints are not required to support ACS because they have no
2648  * opportunity for peer-to-peer access.  We therefore return 'true'
2649  * regardless of whether the device exposes an ACS capability.  This makes
2650  * it much easier for callers of this function to ignore the actual type
2651  * or topology of the device when testing ACS support.
2652  */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)2653 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2654 {
2655 	int ret;
2656 
2657 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2658 	if (ret >= 0)
2659 		return ret > 0;
2660 
2661 	/*
2662 	 * Conventional PCI and PCI-X devices never support ACS, either
2663 	 * effectively or actually.  The shared bus topology implies that
2664 	 * any device on the bus can receive or snoop DMA.
2665 	 */
2666 	if (!pci_is_pcie(pdev))
2667 		return false;
2668 
2669 	switch (pci_pcie_type(pdev)) {
2670 	/*
2671 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2672 	 * but since their primary interface is PCI/X, we conservatively
2673 	 * handle them as we would a non-PCIe device.
2674 	 */
2675 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2676 	/*
2677 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2678 	 * applicable... must never implement an ACS Extended Capability...".
2679 	 * This seems arbitrary, but we take a conservative interpretation
2680 	 * of this statement.
2681 	 */
2682 	case PCI_EXP_TYPE_PCI_BRIDGE:
2683 	case PCI_EXP_TYPE_RC_EC:
2684 		return false;
2685 	/*
2686 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2687 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2688 	 * regardless of whether they are single- or multi-function devices.
2689 	 */
2690 	case PCI_EXP_TYPE_DOWNSTREAM:
2691 	case PCI_EXP_TYPE_ROOT_PORT:
2692 		return pci_acs_flags_enabled(pdev, acs_flags);
2693 	/*
2694 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2695 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2696 	 * capabilities, but only when they are part of a multifunction
2697 	 * device.  The footnote for section 6.12 indicates the specific
2698 	 * PCIe types included here.
2699 	 */
2700 	case PCI_EXP_TYPE_ENDPOINT:
2701 	case PCI_EXP_TYPE_UPSTREAM:
2702 	case PCI_EXP_TYPE_LEG_END:
2703 	case PCI_EXP_TYPE_RC_END:
2704 		if (!pdev->multifunction)
2705 			break;
2706 
2707 		return pci_acs_flags_enabled(pdev, acs_flags);
2708 	}
2709 
2710 	/*
2711 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2712 	 * to single function devices with the exception of downstream ports.
2713 	 */
2714 	return true;
2715 }
2716 
2717 /**
2718  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2719  * @start: starting downstream device
2720  * @end: ending upstream device or NULL to search to the root bus
2721  * @acs_flags: required flags
2722  *
2723  * Walk up a device tree from start to end testing PCI ACS support.  If
2724  * any step along the way does not support the required flags, return false.
2725  */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)2726 bool pci_acs_path_enabled(struct pci_dev *start,
2727 			  struct pci_dev *end, u16 acs_flags)
2728 {
2729 	struct pci_dev *pdev, *parent = start;
2730 
2731 	do {
2732 		pdev = parent;
2733 
2734 		if (!pci_acs_enabled(pdev, acs_flags))
2735 			return false;
2736 
2737 		if (pci_is_root_bus(pdev->bus))
2738 			return (end == NULL);
2739 
2740 		parent = pdev->bus->self;
2741 	} while (pdev != end);
2742 
2743 	return true;
2744 }
2745 
2746 /**
2747  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2748  * @dev: the PCI device
2749  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2750  *
2751  * Perform INTx swizzling for a device behind one level of bridge.  This is
2752  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2753  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2754  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2755  * the PCI Express Base Specification, Revision 2.1)
2756  */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)2757 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2758 {
2759 	int slot;
2760 
2761 	if (pci_ari_enabled(dev->bus))
2762 		slot = 0;
2763 	else
2764 		slot = PCI_SLOT(dev->devfn);
2765 
2766 	return (((pin - 1) + slot) % 4) + 1;
2767 }
2768 
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)2769 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2770 {
2771 	u8 pin;
2772 
2773 	pin = dev->pin;
2774 	if (!pin)
2775 		return -1;
2776 
2777 	while (!pci_is_root_bus(dev->bus)) {
2778 		pin = pci_swizzle_interrupt_pin(dev, pin);
2779 		dev = dev->bus->self;
2780 	}
2781 	*bridge = dev;
2782 	return pin;
2783 }
2784 
2785 /**
2786  * pci_common_swizzle - swizzle INTx all the way to root bridge
2787  * @dev: the PCI device
2788  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2789  *
2790  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2791  * bridges all the way up to a PCI root bus.
2792  */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)2793 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2794 {
2795 	u8 pin = *pinp;
2796 
2797 	while (!pci_is_root_bus(dev->bus)) {
2798 		pin = pci_swizzle_interrupt_pin(dev, pin);
2799 		dev = dev->bus->self;
2800 	}
2801 	*pinp = pin;
2802 	return PCI_SLOT(dev->devfn);
2803 }
2804 EXPORT_SYMBOL_GPL(pci_common_swizzle);
2805 
2806 /**
2807  *	pci_release_region - Release a PCI bar
2808  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2809  *	@bar: BAR to release
2810  *
2811  *	Releases the PCI I/O and memory resources previously reserved by a
2812  *	successful call to pci_request_region.  Call this function only
2813  *	after all use of the PCI regions has ceased.
2814  */
pci_release_region(struct pci_dev * pdev,int bar)2815 void pci_release_region(struct pci_dev *pdev, int bar)
2816 {
2817 	struct pci_devres *dr;
2818 
2819 	if (pci_resource_len(pdev, bar) == 0)
2820 		return;
2821 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2822 		release_region(pci_resource_start(pdev, bar),
2823 				pci_resource_len(pdev, bar));
2824 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2825 		release_mem_region(pci_resource_start(pdev, bar),
2826 				pci_resource_len(pdev, bar));
2827 
2828 	dr = find_pci_dr(pdev);
2829 	if (dr)
2830 		dr->region_mask &= ~(1 << bar);
2831 }
2832 EXPORT_SYMBOL(pci_release_region);
2833 
2834 /**
2835  *	__pci_request_region - Reserved PCI I/O and memory resource
2836  *	@pdev: PCI device whose resources are to be reserved
2837  *	@bar: BAR to be reserved
2838  *	@res_name: Name to be associated with resource.
2839  *	@exclusive: whether the region access is exclusive or not
2840  *
2841  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2842  *	being reserved by owner @res_name.  Do not access any
2843  *	address inside the PCI regions unless this call returns
2844  *	successfully.
2845  *
2846  *	If @exclusive is set, then the region is marked so that userspace
2847  *	is explicitly not allowed to map the resource via /dev/mem or
2848  *	sysfs MMIO access.
2849  *
2850  *	Returns 0 on success, or %EBUSY on error.  A warning
2851  *	message is also printed on failure.
2852  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)2853 static int __pci_request_region(struct pci_dev *pdev, int bar,
2854 				const char *res_name, int exclusive)
2855 {
2856 	struct pci_devres *dr;
2857 
2858 	if (pci_resource_len(pdev, bar) == 0)
2859 		return 0;
2860 
2861 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2862 		if (!request_region(pci_resource_start(pdev, bar),
2863 			    pci_resource_len(pdev, bar), res_name))
2864 			goto err_out;
2865 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2866 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2867 					pci_resource_len(pdev, bar), res_name,
2868 					exclusive))
2869 			goto err_out;
2870 	}
2871 
2872 	dr = find_pci_dr(pdev);
2873 	if (dr)
2874 		dr->region_mask |= 1 << bar;
2875 
2876 	return 0;
2877 
2878 err_out:
2879 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2880 		 &pdev->resource[bar]);
2881 	return -EBUSY;
2882 }
2883 
2884 /**
2885  *	pci_request_region - Reserve PCI I/O and memory resource
2886  *	@pdev: PCI device whose resources are to be reserved
2887  *	@bar: BAR to be reserved
2888  *	@res_name: Name to be associated with resource
2889  *
2890  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2891  *	being reserved by owner @res_name.  Do not access any
2892  *	address inside the PCI regions unless this call returns
2893  *	successfully.
2894  *
2895  *	Returns 0 on success, or %EBUSY on error.  A warning
2896  *	message is also printed on failure.
2897  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)2898 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2899 {
2900 	return __pci_request_region(pdev, bar, res_name, 0);
2901 }
2902 EXPORT_SYMBOL(pci_request_region);
2903 
2904 /**
2905  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2906  *	@pdev: PCI device whose resources are to be reserved
2907  *	@bar: BAR to be reserved
2908  *	@res_name: Name to be associated with resource.
2909  *
2910  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2911  *	being reserved by owner @res_name.  Do not access any
2912  *	address inside the PCI regions unless this call returns
2913  *	successfully.
2914  *
2915  *	Returns 0 on success, or %EBUSY on error.  A warning
2916  *	message is also printed on failure.
2917  *
2918  *	The key difference that _exclusive makes it that userspace is
2919  *	explicitly not allowed to map the resource via /dev/mem or
2920  *	sysfs.
2921  */
pci_request_region_exclusive(struct pci_dev * pdev,int bar,const char * res_name)2922 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2923 				 const char *res_name)
2924 {
2925 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2926 }
2927 EXPORT_SYMBOL(pci_request_region_exclusive);
2928 
2929 /**
2930  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2931  * @pdev: PCI device whose resources were previously reserved
2932  * @bars: Bitmask of BARs to be released
2933  *
2934  * Release selected PCI I/O and memory resources previously reserved.
2935  * Call this function only after all use of the PCI regions has ceased.
2936  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)2937 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2938 {
2939 	int i;
2940 
2941 	for (i = 0; i < 6; i++)
2942 		if (bars & (1 << i))
2943 			pci_release_region(pdev, i);
2944 }
2945 EXPORT_SYMBOL(pci_release_selected_regions);
2946 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)2947 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2948 					  const char *res_name, int excl)
2949 {
2950 	int i;
2951 
2952 	for (i = 0; i < 6; i++)
2953 		if (bars & (1 << i))
2954 			if (__pci_request_region(pdev, i, res_name, excl))
2955 				goto err_out;
2956 	return 0;
2957 
2958 err_out:
2959 	while (--i >= 0)
2960 		if (bars & (1 << i))
2961 			pci_release_region(pdev, i);
2962 
2963 	return -EBUSY;
2964 }
2965 
2966 
2967 /**
2968  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2969  * @pdev: PCI device whose resources are to be reserved
2970  * @bars: Bitmask of BARs to be requested
2971  * @res_name: Name to be associated with resource
2972  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)2973 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2974 				 const char *res_name)
2975 {
2976 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2977 }
2978 EXPORT_SYMBOL(pci_request_selected_regions);
2979 
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)2980 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2981 					   const char *res_name)
2982 {
2983 	return __pci_request_selected_regions(pdev, bars, res_name,
2984 			IORESOURCE_EXCLUSIVE);
2985 }
2986 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2987 
2988 /**
2989  *	pci_release_regions - Release reserved PCI I/O and memory resources
2990  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2991  *
2992  *	Releases all PCI I/O and memory resources previously reserved by a
2993  *	successful call to pci_request_regions.  Call this function only
2994  *	after all use of the PCI regions has ceased.
2995  */
2996 
pci_release_regions(struct pci_dev * pdev)2997 void pci_release_regions(struct pci_dev *pdev)
2998 {
2999 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3000 }
3001 EXPORT_SYMBOL(pci_release_regions);
3002 
3003 /**
3004  *	pci_request_regions - Reserved PCI I/O and memory resources
3005  *	@pdev: PCI device whose resources are to be reserved
3006  *	@res_name: Name to be associated with resource.
3007  *
3008  *	Mark all PCI regions associated with PCI device @pdev as
3009  *	being reserved by owner @res_name.  Do not access any
3010  *	address inside the PCI regions unless this call returns
3011  *	successfully.
3012  *
3013  *	Returns 0 on success, or %EBUSY on error.  A warning
3014  *	message is also printed on failure.
3015  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)3016 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3017 {
3018 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3019 }
3020 EXPORT_SYMBOL(pci_request_regions);
3021 
3022 /**
3023  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3024  *	@pdev: PCI device whose resources are to be reserved
3025  *	@res_name: Name to be associated with resource.
3026  *
3027  *	Mark all PCI regions associated with PCI device @pdev as
3028  *	being reserved by owner @res_name.  Do not access any
3029  *	address inside the PCI regions unless this call returns
3030  *	successfully.
3031  *
3032  *	pci_request_regions_exclusive() will mark the region so that
3033  *	/dev/mem and the sysfs MMIO access will not be allowed.
3034  *
3035  *	Returns 0 on success, or %EBUSY on error.  A warning
3036  *	message is also printed on failure.
3037  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)3038 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3039 {
3040 	return pci_request_selected_regions_exclusive(pdev,
3041 					((1 << 6) - 1), res_name);
3042 }
3043 EXPORT_SYMBOL(pci_request_regions_exclusive);
3044 
3045 /**
3046  *	pci_remap_iospace - Remap the memory mapped I/O space
3047  *	@res: Resource describing the I/O space
3048  *	@phys_addr: physical address of range to be mapped
3049  *
3050  *	Remap the memory mapped I/O space described by the @res
3051  *	and the CPU physical address @phys_addr into virtual address space.
3052  *	Only architectures that have memory mapped IO functions defined
3053  *	(and the PCI_IOBASE value defined) should call this function.
3054  */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)3055 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3056 {
3057 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3058 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3059 
3060 	if (!(res->flags & IORESOURCE_IO))
3061 		return -EINVAL;
3062 
3063 	if (res->end > IO_SPACE_LIMIT)
3064 		return -EINVAL;
3065 
3066 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3067 				  pgprot_device(PAGE_KERNEL));
3068 #else
3069 	/* this architecture does not have memory mapped I/O space,
3070 	   so this function should never be called */
3071 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3072 	return -ENODEV;
3073 #endif
3074 }
3075 
__pci_set_master(struct pci_dev * dev,bool enable)3076 static void __pci_set_master(struct pci_dev *dev, bool enable)
3077 {
3078 	u16 old_cmd, cmd;
3079 
3080 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3081 	if (enable)
3082 		cmd = old_cmd | PCI_COMMAND_MASTER;
3083 	else
3084 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3085 	if (cmd != old_cmd) {
3086 		dev_dbg(&dev->dev, "%s bus mastering\n",
3087 			enable ? "enabling" : "disabling");
3088 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3089 	}
3090 	dev->is_busmaster = enable;
3091 }
3092 
3093 /**
3094  * pcibios_setup - process "pci=" kernel boot arguments
3095  * @str: string used to pass in "pci=" kernel boot arguments
3096  *
3097  * Process kernel boot arguments.  This is the default implementation.
3098  * Architecture specific implementations can override this as necessary.
3099  */
pcibios_setup(char * str)3100 char * __weak __init pcibios_setup(char *str)
3101 {
3102 	return str;
3103 }
3104 
3105 /**
3106  * pcibios_set_master - enable PCI bus-mastering for device dev
3107  * @dev: the PCI device to enable
3108  *
3109  * Enables PCI bus-mastering for the device.  This is the default
3110  * implementation.  Architecture specific implementations can override
3111  * this if necessary.
3112  */
pcibios_set_master(struct pci_dev * dev)3113 void __weak pcibios_set_master(struct pci_dev *dev)
3114 {
3115 	u8 lat;
3116 
3117 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3118 	if (pci_is_pcie(dev))
3119 		return;
3120 
3121 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3122 	if (lat < 16)
3123 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3124 	else if (lat > pcibios_max_latency)
3125 		lat = pcibios_max_latency;
3126 	else
3127 		return;
3128 
3129 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3130 }
3131 
3132 /**
3133  * pci_set_master - enables bus-mastering for device dev
3134  * @dev: the PCI device to enable
3135  *
3136  * Enables bus-mastering on the device and calls pcibios_set_master()
3137  * to do the needed arch specific settings.
3138  */
pci_set_master(struct pci_dev * dev)3139 void pci_set_master(struct pci_dev *dev)
3140 {
3141 	__pci_set_master(dev, true);
3142 	pcibios_set_master(dev);
3143 }
3144 EXPORT_SYMBOL(pci_set_master);
3145 
3146 /**
3147  * pci_clear_master - disables bus-mastering for device dev
3148  * @dev: the PCI device to disable
3149  */
pci_clear_master(struct pci_dev * dev)3150 void pci_clear_master(struct pci_dev *dev)
3151 {
3152 	__pci_set_master(dev, false);
3153 }
3154 EXPORT_SYMBOL(pci_clear_master);
3155 
3156 /**
3157  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3158  * @dev: the PCI device for which MWI is to be enabled
3159  *
3160  * Helper function for pci_set_mwi.
3161  * Originally copied from drivers/net/acenic.c.
3162  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3163  *
3164  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3165  */
pci_set_cacheline_size(struct pci_dev * dev)3166 int pci_set_cacheline_size(struct pci_dev *dev)
3167 {
3168 	u8 cacheline_size;
3169 
3170 	if (!pci_cache_line_size)
3171 		return -EINVAL;
3172 
3173 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3174 	   equal to or multiple of the right value. */
3175 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3176 	if (cacheline_size >= pci_cache_line_size &&
3177 	    (cacheline_size % pci_cache_line_size) == 0)
3178 		return 0;
3179 
3180 	/* Write the correct value. */
3181 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3182 	/* Read it back. */
3183 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3184 	if (cacheline_size == pci_cache_line_size)
3185 		return 0;
3186 
3187 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3188 		   pci_cache_line_size << 2);
3189 
3190 	return -EINVAL;
3191 }
3192 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3193 
3194 /**
3195  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3196  * @dev: the PCI device for which MWI is enabled
3197  *
3198  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3199  *
3200  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3201  */
pci_set_mwi(struct pci_dev * dev)3202 int pci_set_mwi(struct pci_dev *dev)
3203 {
3204 #ifdef PCI_DISABLE_MWI
3205 	return 0;
3206 #else
3207 	int rc;
3208 	u16 cmd;
3209 
3210 	rc = pci_set_cacheline_size(dev);
3211 	if (rc)
3212 		return rc;
3213 
3214 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3215 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3216 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3217 		cmd |= PCI_COMMAND_INVALIDATE;
3218 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3219 	}
3220 	return 0;
3221 #endif
3222 }
3223 EXPORT_SYMBOL(pci_set_mwi);
3224 
3225 /**
3226  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3227  * @dev: the PCI device for which MWI is enabled
3228  *
3229  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3230  * Callers are not required to check the return value.
3231  *
3232  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3233  */
pci_try_set_mwi(struct pci_dev * dev)3234 int pci_try_set_mwi(struct pci_dev *dev)
3235 {
3236 #ifdef PCI_DISABLE_MWI
3237 	return 0;
3238 #else
3239 	return pci_set_mwi(dev);
3240 #endif
3241 }
3242 EXPORT_SYMBOL(pci_try_set_mwi);
3243 
3244 /**
3245  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3246  * @dev: the PCI device to disable
3247  *
3248  * Disables PCI Memory-Write-Invalidate transaction on the device
3249  */
pci_clear_mwi(struct pci_dev * dev)3250 void pci_clear_mwi(struct pci_dev *dev)
3251 {
3252 #ifndef PCI_DISABLE_MWI
3253 	u16 cmd;
3254 
3255 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3256 	if (cmd & PCI_COMMAND_INVALIDATE) {
3257 		cmd &= ~PCI_COMMAND_INVALIDATE;
3258 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3259 	}
3260 #endif
3261 }
3262 EXPORT_SYMBOL(pci_clear_mwi);
3263 
3264 /**
3265  * pci_intx - enables/disables PCI INTx for device dev
3266  * @pdev: the PCI device to operate on
3267  * @enable: boolean: whether to enable or disable PCI INTx
3268  *
3269  * Enables/disables PCI INTx for device dev
3270  */
pci_intx(struct pci_dev * pdev,int enable)3271 void pci_intx(struct pci_dev *pdev, int enable)
3272 {
3273 	u16 pci_command, new;
3274 
3275 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3276 
3277 	if (enable)
3278 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3279 	else
3280 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3281 
3282 	if (new != pci_command) {
3283 		struct pci_devres *dr;
3284 
3285 		pci_write_config_word(pdev, PCI_COMMAND, new);
3286 
3287 		dr = find_pci_dr(pdev);
3288 		if (dr && !dr->restore_intx) {
3289 			dr->restore_intx = 1;
3290 			dr->orig_intx = !enable;
3291 		}
3292 	}
3293 }
3294 EXPORT_SYMBOL_GPL(pci_intx);
3295 
3296 /**
3297  * pci_intx_mask_supported - probe for INTx masking support
3298  * @dev: the PCI device to operate on
3299  *
3300  * Check if the device dev support INTx masking via the config space
3301  * command word.
3302  */
pci_intx_mask_supported(struct pci_dev * dev)3303 bool pci_intx_mask_supported(struct pci_dev *dev)
3304 {
3305 	bool mask_supported = false;
3306 	u16 orig, new;
3307 
3308 	if (dev->broken_intx_masking)
3309 		return false;
3310 
3311 	pci_cfg_access_lock(dev);
3312 
3313 	pci_read_config_word(dev, PCI_COMMAND, &orig);
3314 	pci_write_config_word(dev, PCI_COMMAND,
3315 			      orig ^ PCI_COMMAND_INTX_DISABLE);
3316 	pci_read_config_word(dev, PCI_COMMAND, &new);
3317 
3318 	/*
3319 	 * There's no way to protect against hardware bugs or detect them
3320 	 * reliably, but as long as we know what the value should be, let's
3321 	 * go ahead and check it.
3322 	 */
3323 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3324 		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3325 			orig, new);
3326 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3327 		mask_supported = true;
3328 		pci_write_config_word(dev, PCI_COMMAND, orig);
3329 	}
3330 
3331 	pci_cfg_access_unlock(dev);
3332 	return mask_supported;
3333 }
3334 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3335 
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)3336 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3337 {
3338 	struct pci_bus *bus = dev->bus;
3339 	bool mask_updated = true;
3340 	u32 cmd_status_dword;
3341 	u16 origcmd, newcmd;
3342 	unsigned long flags;
3343 	bool irq_pending;
3344 
3345 	/*
3346 	 * We do a single dword read to retrieve both command and status.
3347 	 * Document assumptions that make this possible.
3348 	 */
3349 	BUILD_BUG_ON(PCI_COMMAND % 4);
3350 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3351 
3352 	raw_spin_lock_irqsave(&pci_lock, flags);
3353 
3354 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3355 
3356 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3357 
3358 	/*
3359 	 * Check interrupt status register to see whether our device
3360 	 * triggered the interrupt (when masking) or the next IRQ is
3361 	 * already pending (when unmasking).
3362 	 */
3363 	if (mask != irq_pending) {
3364 		mask_updated = false;
3365 		goto done;
3366 	}
3367 
3368 	origcmd = cmd_status_dword;
3369 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3370 	if (mask)
3371 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3372 	if (newcmd != origcmd)
3373 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3374 
3375 done:
3376 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3377 
3378 	return mask_updated;
3379 }
3380 
3381 /**
3382  * pci_check_and_mask_intx - mask INTx on pending interrupt
3383  * @dev: the PCI device to operate on
3384  *
3385  * Check if the device dev has its INTx line asserted, mask it and
3386  * return true in that case. False is returned if not interrupt was
3387  * pending.
3388  */
pci_check_and_mask_intx(struct pci_dev * dev)3389 bool pci_check_and_mask_intx(struct pci_dev *dev)
3390 {
3391 	return pci_check_and_set_intx_mask(dev, true);
3392 }
3393 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3394 
3395 /**
3396  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3397  * @dev: the PCI device to operate on
3398  *
3399  * Check if the device dev has its INTx line asserted, unmask it if not
3400  * and return true. False is returned and the mask remains active if
3401  * there was still an interrupt pending.
3402  */
pci_check_and_unmask_intx(struct pci_dev * dev)3403 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3404 {
3405 	return pci_check_and_set_intx_mask(dev, false);
3406 }
3407 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3408 
pci_set_dma_max_seg_size(struct pci_dev * dev,unsigned int size)3409 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3410 {
3411 	return dma_set_max_seg_size(&dev->dev, size);
3412 }
3413 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3414 
pci_set_dma_seg_boundary(struct pci_dev * dev,unsigned long mask)3415 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3416 {
3417 	return dma_set_seg_boundary(&dev->dev, mask);
3418 }
3419 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3420 
3421 /**
3422  * pci_wait_for_pending_transaction - waits for pending transaction
3423  * @dev: the PCI device to operate on
3424  *
3425  * Return 0 if transaction is pending 1 otherwise.
3426  */
pci_wait_for_pending_transaction(struct pci_dev * dev)3427 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3428 {
3429 	if (!pci_is_pcie(dev))
3430 		return 1;
3431 
3432 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3433 				    PCI_EXP_DEVSTA_TRPND);
3434 }
3435 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3436 
pcie_flr(struct pci_dev * dev,int probe)3437 static int pcie_flr(struct pci_dev *dev, int probe)
3438 {
3439 	u32 cap;
3440 
3441 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3442 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3443 		return -ENOTTY;
3444 
3445 	if (probe)
3446 		return 0;
3447 
3448 	if (!pci_wait_for_pending_transaction(dev))
3449 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3450 
3451 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3452 	msleep(100);
3453 	return 0;
3454 }
3455 
pci_af_flr(struct pci_dev * dev,int probe)3456 static int pci_af_flr(struct pci_dev *dev, int probe)
3457 {
3458 	int pos;
3459 	u8 cap;
3460 
3461 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3462 	if (!pos)
3463 		return -ENOTTY;
3464 
3465 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3466 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3467 		return -ENOTTY;
3468 
3469 	if (probe)
3470 		return 0;
3471 
3472 	/*
3473 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3474 	 * is used, so we use the conrol offset rather than status and shift
3475 	 * the test bit to match.
3476 	 */
3477 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3478 				 PCI_AF_STATUS_TP << 8))
3479 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3480 
3481 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3482 	msleep(100);
3483 	return 0;
3484 }
3485 
3486 /**
3487  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3488  * @dev: Device to reset.
3489  * @probe: If set, only check if the device can be reset this way.
3490  *
3491  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3492  * unset, it will be reinitialized internally when going from PCI_D3hot to
3493  * PCI_D0.  If that's the case and the device is not in a low-power state
3494  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3495  *
3496  * NOTE: This causes the caller to sleep for twice the device power transition
3497  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3498  * by default (i.e. unless the @dev's d3_delay field has a different value).
3499  * Moreover, only devices in D0 can be reset by this function.
3500  */
pci_pm_reset(struct pci_dev * dev,int probe)3501 static int pci_pm_reset(struct pci_dev *dev, int probe)
3502 {
3503 	u16 csr;
3504 
3505 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3506 		return -ENOTTY;
3507 
3508 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3509 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3510 		return -ENOTTY;
3511 
3512 	if (probe)
3513 		return 0;
3514 
3515 	if (dev->current_state != PCI_D0)
3516 		return -EINVAL;
3517 
3518 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3519 	csr |= PCI_D3hot;
3520 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3521 	pci_dev_d3_sleep(dev);
3522 
3523 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3524 	csr |= PCI_D0;
3525 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3526 	pci_dev_d3_sleep(dev);
3527 
3528 	return 0;
3529 }
3530 
pci_reset_secondary_bus(struct pci_dev * dev)3531 void pci_reset_secondary_bus(struct pci_dev *dev)
3532 {
3533 	u16 ctrl;
3534 
3535 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3536 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3537 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3538 	/*
3539 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3540 	 * this to 2ms to ensure that we meet the minimum requirement.
3541 	 */
3542 	msleep(2);
3543 
3544 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3545 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3546 
3547 	/*
3548 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3549 	 * Assuming a minimum 33MHz clock this results in a 1s
3550 	 * delay before we can consider subordinate devices to
3551 	 * be re-initialized.  PCIe has some ways to shorten this,
3552 	 * but we don't make use of them yet.
3553 	 */
3554 	ssleep(1);
3555 }
3556 
pcibios_reset_secondary_bus(struct pci_dev * dev)3557 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3558 {
3559 	pci_reset_secondary_bus(dev);
3560 }
3561 
3562 /**
3563  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3564  * @dev: Bridge device
3565  *
3566  * Use the bridge control register to assert reset on the secondary bus.
3567  * Devices on the secondary bus are left in power-on state.
3568  */
pci_reset_bridge_secondary_bus(struct pci_dev * dev)3569 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3570 {
3571 	pcibios_reset_secondary_bus(dev);
3572 }
3573 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3574 
pci_parent_bus_reset(struct pci_dev * dev,int probe)3575 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3576 {
3577 	struct pci_dev *pdev;
3578 
3579 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3580 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3581 		return -ENOTTY;
3582 
3583 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3584 		if (pdev != dev)
3585 			return -ENOTTY;
3586 
3587 	if (probe)
3588 		return 0;
3589 
3590 	pci_reset_bridge_secondary_bus(dev->bus->self);
3591 
3592 	return 0;
3593 }
3594 
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,int probe)3595 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3596 {
3597 	int rc = -ENOTTY;
3598 
3599 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3600 		return rc;
3601 
3602 	if (hotplug->ops->reset_slot)
3603 		rc = hotplug->ops->reset_slot(hotplug, probe);
3604 
3605 	module_put(hotplug->ops->owner);
3606 
3607 	return rc;
3608 }
3609 
pci_dev_reset_slot_function(struct pci_dev * dev,int probe)3610 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3611 {
3612 	struct pci_dev *pdev;
3613 
3614 	if (dev->subordinate || !dev->slot ||
3615 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3616 		return -ENOTTY;
3617 
3618 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3619 		if (pdev != dev && pdev->slot == dev->slot)
3620 			return -ENOTTY;
3621 
3622 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3623 }
3624 
__pci_dev_reset(struct pci_dev * dev,int probe)3625 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3626 {
3627 	int rc;
3628 
3629 	might_sleep();
3630 
3631 	rc = pci_dev_specific_reset(dev, probe);
3632 	if (rc != -ENOTTY)
3633 		goto done;
3634 
3635 	rc = pcie_flr(dev, probe);
3636 	if (rc != -ENOTTY)
3637 		goto done;
3638 
3639 	rc = pci_af_flr(dev, probe);
3640 	if (rc != -ENOTTY)
3641 		goto done;
3642 
3643 	rc = pci_pm_reset(dev, probe);
3644 	if (rc != -ENOTTY)
3645 		goto done;
3646 
3647 	rc = pci_dev_reset_slot_function(dev, probe);
3648 	if (rc != -ENOTTY)
3649 		goto done;
3650 
3651 	rc = pci_parent_bus_reset(dev, probe);
3652 done:
3653 	return rc;
3654 }
3655 
pci_dev_lock(struct pci_dev * dev)3656 static void pci_dev_lock(struct pci_dev *dev)
3657 {
3658 	pci_cfg_access_lock(dev);
3659 	/* block PM suspend, driver probe, etc. */
3660 	device_lock(&dev->dev);
3661 }
3662 
3663 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)3664 static int pci_dev_trylock(struct pci_dev *dev)
3665 {
3666 	if (pci_cfg_access_trylock(dev)) {
3667 		if (device_trylock(&dev->dev))
3668 			return 1;
3669 		pci_cfg_access_unlock(dev);
3670 	}
3671 
3672 	return 0;
3673 }
3674 
pci_dev_unlock(struct pci_dev * dev)3675 static void pci_dev_unlock(struct pci_dev *dev)
3676 {
3677 	device_unlock(&dev->dev);
3678 	pci_cfg_access_unlock(dev);
3679 }
3680 
3681 /**
3682  * pci_reset_notify - notify device driver of reset
3683  * @dev: device to be notified of reset
3684  * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3685  *           completed
3686  *
3687  * Must be called prior to device access being disabled and after device
3688  * access is restored.
3689  */
pci_reset_notify(struct pci_dev * dev,bool prepare)3690 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3691 {
3692 	const struct pci_error_handlers *err_handler =
3693 			dev->driver ? dev->driver->err_handler : NULL;
3694 	if (err_handler && err_handler->reset_notify)
3695 		err_handler->reset_notify(dev, prepare);
3696 }
3697 
pci_dev_save_and_disable(struct pci_dev * dev)3698 static void pci_dev_save_and_disable(struct pci_dev *dev)
3699 {
3700 	pci_reset_notify(dev, true);
3701 
3702 	/*
3703 	 * Wake-up device prior to save.  PM registers default to D0 after
3704 	 * reset and a simple register restore doesn't reliably return
3705 	 * to a non-D0 state anyway.
3706 	 */
3707 	pci_set_power_state(dev, PCI_D0);
3708 
3709 	pci_save_state(dev);
3710 	/*
3711 	 * Disable the device by clearing the Command register, except for
3712 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3713 	 * BARs, but also prevents the device from being Bus Master, preventing
3714 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3715 	 * compliant devices, INTx-disable prevents legacy interrupts.
3716 	 */
3717 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3718 }
3719 
pci_dev_restore(struct pci_dev * dev)3720 static void pci_dev_restore(struct pci_dev *dev)
3721 {
3722 	pci_restore_state(dev);
3723 	pci_reset_notify(dev, false);
3724 }
3725 
pci_dev_reset(struct pci_dev * dev,int probe)3726 static int pci_dev_reset(struct pci_dev *dev, int probe)
3727 {
3728 	int rc;
3729 
3730 	if (!probe)
3731 		pci_dev_lock(dev);
3732 
3733 	rc = __pci_dev_reset(dev, probe);
3734 
3735 	if (!probe)
3736 		pci_dev_unlock(dev);
3737 
3738 	return rc;
3739 }
3740 
3741 /**
3742  * __pci_reset_function - reset a PCI device function
3743  * @dev: PCI device to reset
3744  *
3745  * Some devices allow an individual function to be reset without affecting
3746  * other functions in the same device.  The PCI device must be responsive
3747  * to PCI config space in order to use this function.
3748  *
3749  * The device function is presumed to be unused when this function is called.
3750  * Resetting the device will make the contents of PCI configuration space
3751  * random, so any caller of this must be prepared to reinitialise the
3752  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3753  * etc.
3754  *
3755  * Returns 0 if the device function was successfully reset or negative if the
3756  * device doesn't support resetting a single function.
3757  */
__pci_reset_function(struct pci_dev * dev)3758 int __pci_reset_function(struct pci_dev *dev)
3759 {
3760 	return pci_dev_reset(dev, 0);
3761 }
3762 EXPORT_SYMBOL_GPL(__pci_reset_function);
3763 
3764 /**
3765  * __pci_reset_function_locked - reset a PCI device function while holding
3766  * the @dev mutex lock.
3767  * @dev: PCI device to reset
3768  *
3769  * Some devices allow an individual function to be reset without affecting
3770  * other functions in the same device.  The PCI device must be responsive
3771  * to PCI config space in order to use this function.
3772  *
3773  * The device function is presumed to be unused and the caller is holding
3774  * the device mutex lock when this function is called.
3775  * Resetting the device will make the contents of PCI configuration space
3776  * random, so any caller of this must be prepared to reinitialise the
3777  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3778  * etc.
3779  *
3780  * Returns 0 if the device function was successfully reset or negative if the
3781  * device doesn't support resetting a single function.
3782  */
__pci_reset_function_locked(struct pci_dev * dev)3783 int __pci_reset_function_locked(struct pci_dev *dev)
3784 {
3785 	return __pci_dev_reset(dev, 0);
3786 }
3787 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3788 
3789 /**
3790  * pci_probe_reset_function - check whether the device can be safely reset
3791  * @dev: PCI device to reset
3792  *
3793  * Some devices allow an individual function to be reset without affecting
3794  * other functions in the same device.  The PCI device must be responsive
3795  * to PCI config space in order to use this function.
3796  *
3797  * Returns 0 if the device function can be reset or negative if the
3798  * device doesn't support resetting a single function.
3799  */
pci_probe_reset_function(struct pci_dev * dev)3800 int pci_probe_reset_function(struct pci_dev *dev)
3801 {
3802 	return pci_dev_reset(dev, 1);
3803 }
3804 
3805 /**
3806  * pci_reset_function - quiesce and reset a PCI device function
3807  * @dev: PCI device to reset
3808  *
3809  * Some devices allow an individual function to be reset without affecting
3810  * other functions in the same device.  The PCI device must be responsive
3811  * to PCI config space in order to use this function.
3812  *
3813  * This function does not just reset the PCI portion of a device, but
3814  * clears all the state associated with the device.  This function differs
3815  * from __pci_reset_function in that it saves and restores device state
3816  * over the reset.
3817  *
3818  * Returns 0 if the device function was successfully reset or negative if the
3819  * device doesn't support resetting a single function.
3820  */
pci_reset_function(struct pci_dev * dev)3821 int pci_reset_function(struct pci_dev *dev)
3822 {
3823 	int rc;
3824 
3825 	rc = pci_dev_reset(dev, 1);
3826 	if (rc)
3827 		return rc;
3828 
3829 	pci_dev_save_and_disable(dev);
3830 
3831 	rc = pci_dev_reset(dev, 0);
3832 
3833 	pci_dev_restore(dev);
3834 
3835 	return rc;
3836 }
3837 EXPORT_SYMBOL_GPL(pci_reset_function);
3838 
3839 /**
3840  * pci_try_reset_function - quiesce and reset a PCI device function
3841  * @dev: PCI device to reset
3842  *
3843  * Same as above, except return -EAGAIN if unable to lock device.
3844  */
pci_try_reset_function(struct pci_dev * dev)3845 int pci_try_reset_function(struct pci_dev *dev)
3846 {
3847 	int rc;
3848 
3849 	rc = pci_dev_reset(dev, 1);
3850 	if (rc)
3851 		return rc;
3852 
3853 	pci_dev_save_and_disable(dev);
3854 
3855 	if (pci_dev_trylock(dev)) {
3856 		rc = __pci_dev_reset(dev, 0);
3857 		pci_dev_unlock(dev);
3858 	} else
3859 		rc = -EAGAIN;
3860 
3861 	pci_dev_restore(dev);
3862 
3863 	return rc;
3864 }
3865 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3866 
3867 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)3868 static bool pci_bus_resetable(struct pci_bus *bus)
3869 {
3870 	struct pci_dev *dev;
3871 
3872 
3873 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
3874 		return false;
3875 
3876 	list_for_each_entry(dev, &bus->devices, bus_list) {
3877 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3878 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3879 			return false;
3880 	}
3881 
3882 	return true;
3883 }
3884 
3885 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)3886 static void pci_bus_lock(struct pci_bus *bus)
3887 {
3888 	struct pci_dev *dev;
3889 
3890 	list_for_each_entry(dev, &bus->devices, bus_list) {
3891 		pci_dev_lock(dev);
3892 		if (dev->subordinate)
3893 			pci_bus_lock(dev->subordinate);
3894 	}
3895 }
3896 
3897 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)3898 static void pci_bus_unlock(struct pci_bus *bus)
3899 {
3900 	struct pci_dev *dev;
3901 
3902 	list_for_each_entry(dev, &bus->devices, bus_list) {
3903 		if (dev->subordinate)
3904 			pci_bus_unlock(dev->subordinate);
3905 		pci_dev_unlock(dev);
3906 	}
3907 }
3908 
3909 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)3910 static int pci_bus_trylock(struct pci_bus *bus)
3911 {
3912 	struct pci_dev *dev;
3913 
3914 	list_for_each_entry(dev, &bus->devices, bus_list) {
3915 		if (!pci_dev_trylock(dev))
3916 			goto unlock;
3917 		if (dev->subordinate) {
3918 			if (!pci_bus_trylock(dev->subordinate)) {
3919 				pci_dev_unlock(dev);
3920 				goto unlock;
3921 			}
3922 		}
3923 	}
3924 	return 1;
3925 
3926 unlock:
3927 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3928 		if (dev->subordinate)
3929 			pci_bus_unlock(dev->subordinate);
3930 		pci_dev_unlock(dev);
3931 	}
3932 	return 0;
3933 }
3934 
3935 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)3936 static bool pci_slot_resetable(struct pci_slot *slot)
3937 {
3938 	struct pci_dev *dev;
3939 
3940 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3941 		if (!dev->slot || dev->slot != slot)
3942 			continue;
3943 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3944 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3945 			return false;
3946 	}
3947 
3948 	return true;
3949 }
3950 
3951 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)3952 static void pci_slot_lock(struct pci_slot *slot)
3953 {
3954 	struct pci_dev *dev;
3955 
3956 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3957 		if (!dev->slot || dev->slot != slot)
3958 			continue;
3959 		pci_dev_lock(dev);
3960 		if (dev->subordinate)
3961 			pci_bus_lock(dev->subordinate);
3962 	}
3963 }
3964 
3965 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)3966 static void pci_slot_unlock(struct pci_slot *slot)
3967 {
3968 	struct pci_dev *dev;
3969 
3970 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3971 		if (!dev->slot || dev->slot != slot)
3972 			continue;
3973 		if (dev->subordinate)
3974 			pci_bus_unlock(dev->subordinate);
3975 		pci_dev_unlock(dev);
3976 	}
3977 }
3978 
3979 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)3980 static int pci_slot_trylock(struct pci_slot *slot)
3981 {
3982 	struct pci_dev *dev;
3983 
3984 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3985 		if (!dev->slot || dev->slot != slot)
3986 			continue;
3987 		if (!pci_dev_trylock(dev))
3988 			goto unlock;
3989 		if (dev->subordinate) {
3990 			if (!pci_bus_trylock(dev->subordinate)) {
3991 				pci_dev_unlock(dev);
3992 				goto unlock;
3993 			}
3994 		}
3995 	}
3996 	return 1;
3997 
3998 unlock:
3999 	list_for_each_entry_continue_reverse(dev,
4000 					     &slot->bus->devices, bus_list) {
4001 		if (!dev->slot || dev->slot != slot)
4002 			continue;
4003 		if (dev->subordinate)
4004 			pci_bus_unlock(dev->subordinate);
4005 		pci_dev_unlock(dev);
4006 	}
4007 	return 0;
4008 }
4009 
4010 /* Save and disable devices from the top of the tree down */
pci_bus_save_and_disable(struct pci_bus * bus)4011 static void pci_bus_save_and_disable(struct pci_bus *bus)
4012 {
4013 	struct pci_dev *dev;
4014 
4015 	list_for_each_entry(dev, &bus->devices, bus_list) {
4016 		pci_dev_save_and_disable(dev);
4017 		if (dev->subordinate)
4018 			pci_bus_save_and_disable(dev->subordinate);
4019 	}
4020 }
4021 
4022 /*
4023  * Restore devices from top of the tree down - parent bridges need to be
4024  * restored before we can get to subordinate devices.
4025  */
pci_bus_restore(struct pci_bus * bus)4026 static void pci_bus_restore(struct pci_bus *bus)
4027 {
4028 	struct pci_dev *dev;
4029 
4030 	list_for_each_entry(dev, &bus->devices, bus_list) {
4031 		pci_dev_restore(dev);
4032 		if (dev->subordinate)
4033 			pci_bus_restore(dev->subordinate);
4034 	}
4035 }
4036 
4037 /* Save and disable devices from the top of the tree down */
pci_slot_save_and_disable(struct pci_slot * slot)4038 static void pci_slot_save_and_disable(struct pci_slot *slot)
4039 {
4040 	struct pci_dev *dev;
4041 
4042 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4043 		if (!dev->slot || dev->slot != slot)
4044 			continue;
4045 		pci_dev_save_and_disable(dev);
4046 		if (dev->subordinate)
4047 			pci_bus_save_and_disable(dev->subordinate);
4048 	}
4049 }
4050 
4051 /*
4052  * Restore devices from top of the tree down - parent bridges need to be
4053  * restored before we can get to subordinate devices.
4054  */
pci_slot_restore(struct pci_slot * slot)4055 static void pci_slot_restore(struct pci_slot *slot)
4056 {
4057 	struct pci_dev *dev;
4058 
4059 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4060 		if (!dev->slot || dev->slot != slot)
4061 			continue;
4062 		pci_dev_restore(dev);
4063 		if (dev->subordinate)
4064 			pci_bus_restore(dev->subordinate);
4065 	}
4066 }
4067 
pci_slot_reset(struct pci_slot * slot,int probe)4068 static int pci_slot_reset(struct pci_slot *slot, int probe)
4069 {
4070 	int rc;
4071 
4072 	if (!slot || !pci_slot_resetable(slot))
4073 		return -ENOTTY;
4074 
4075 	if (!probe)
4076 		pci_slot_lock(slot);
4077 
4078 	might_sleep();
4079 
4080 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4081 
4082 	if (!probe)
4083 		pci_slot_unlock(slot);
4084 
4085 	return rc;
4086 }
4087 
4088 /**
4089  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4090  * @slot: PCI slot to probe
4091  *
4092  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4093  */
pci_probe_reset_slot(struct pci_slot * slot)4094 int pci_probe_reset_slot(struct pci_slot *slot)
4095 {
4096 	return pci_slot_reset(slot, 1);
4097 }
4098 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4099 
4100 /**
4101  * pci_reset_slot - reset a PCI slot
4102  * @slot: PCI slot to reset
4103  *
4104  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4105  * independent of other slots.  For instance, some slots may support slot power
4106  * control.  In the case of a 1:1 bus to slot architecture, this function may
4107  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4108  * Generally a slot reset should be attempted before a bus reset.  All of the
4109  * function of the slot and any subordinate buses behind the slot are reset
4110  * through this function.  PCI config space of all devices in the slot and
4111  * behind the slot is saved before and restored after reset.
4112  *
4113  * Return 0 on success, non-zero on error.
4114  */
pci_reset_slot(struct pci_slot * slot)4115 int pci_reset_slot(struct pci_slot *slot)
4116 {
4117 	int rc;
4118 
4119 	rc = pci_slot_reset(slot, 1);
4120 	if (rc)
4121 		return rc;
4122 
4123 	pci_slot_save_and_disable(slot);
4124 
4125 	rc = pci_slot_reset(slot, 0);
4126 
4127 	pci_slot_restore(slot);
4128 
4129 	return rc;
4130 }
4131 EXPORT_SYMBOL_GPL(pci_reset_slot);
4132 
4133 /**
4134  * pci_try_reset_slot - Try to reset a PCI slot
4135  * @slot: PCI slot to reset
4136  *
4137  * Same as above except return -EAGAIN if the slot cannot be locked
4138  */
pci_try_reset_slot(struct pci_slot * slot)4139 int pci_try_reset_slot(struct pci_slot *slot)
4140 {
4141 	int rc;
4142 
4143 	rc = pci_slot_reset(slot, 1);
4144 	if (rc)
4145 		return rc;
4146 
4147 	pci_slot_save_and_disable(slot);
4148 
4149 	if (pci_slot_trylock(slot)) {
4150 		might_sleep();
4151 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4152 		pci_slot_unlock(slot);
4153 	} else
4154 		rc = -EAGAIN;
4155 
4156 	pci_slot_restore(slot);
4157 
4158 	return rc;
4159 }
4160 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4161 
pci_bus_reset(struct pci_bus * bus,int probe)4162 static int pci_bus_reset(struct pci_bus *bus, int probe)
4163 {
4164 	if (!bus->self || !pci_bus_resetable(bus))
4165 		return -ENOTTY;
4166 
4167 	if (probe)
4168 		return 0;
4169 
4170 	pci_bus_lock(bus);
4171 
4172 	might_sleep();
4173 
4174 	pci_reset_bridge_secondary_bus(bus->self);
4175 
4176 	pci_bus_unlock(bus);
4177 
4178 	return 0;
4179 }
4180 
4181 /**
4182  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4183  * @bus: PCI bus to probe
4184  *
4185  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4186  */
pci_probe_reset_bus(struct pci_bus * bus)4187 int pci_probe_reset_bus(struct pci_bus *bus)
4188 {
4189 	return pci_bus_reset(bus, 1);
4190 }
4191 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4192 
4193 /**
4194  * pci_reset_bus - reset a PCI bus
4195  * @bus: top level PCI bus to reset
4196  *
4197  * Do a bus reset on the given bus and any subordinate buses, saving
4198  * and restoring state of all devices.
4199  *
4200  * Return 0 on success, non-zero on error.
4201  */
pci_reset_bus(struct pci_bus * bus)4202 int pci_reset_bus(struct pci_bus *bus)
4203 {
4204 	int rc;
4205 
4206 	rc = pci_bus_reset(bus, 1);
4207 	if (rc)
4208 		return rc;
4209 
4210 	pci_bus_save_and_disable(bus);
4211 
4212 	rc = pci_bus_reset(bus, 0);
4213 
4214 	pci_bus_restore(bus);
4215 
4216 	return rc;
4217 }
4218 EXPORT_SYMBOL_GPL(pci_reset_bus);
4219 
4220 /**
4221  * pci_try_reset_bus - Try to reset a PCI bus
4222  * @bus: top level PCI bus to reset
4223  *
4224  * Same as above except return -EAGAIN if the bus cannot be locked
4225  */
pci_try_reset_bus(struct pci_bus * bus)4226 int pci_try_reset_bus(struct pci_bus *bus)
4227 {
4228 	int rc;
4229 
4230 	rc = pci_bus_reset(bus, 1);
4231 	if (rc)
4232 		return rc;
4233 
4234 	pci_bus_save_and_disable(bus);
4235 
4236 	if (pci_bus_trylock(bus)) {
4237 		might_sleep();
4238 		pci_reset_bridge_secondary_bus(bus->self);
4239 		pci_bus_unlock(bus);
4240 	} else
4241 		rc = -EAGAIN;
4242 
4243 	pci_bus_restore(bus);
4244 
4245 	return rc;
4246 }
4247 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4248 
4249 /**
4250  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4251  * @dev: PCI device to query
4252  *
4253  * Returns mmrbc: maximum designed memory read count in bytes
4254  *    or appropriate error value.
4255  */
pcix_get_max_mmrbc(struct pci_dev * dev)4256 int pcix_get_max_mmrbc(struct pci_dev *dev)
4257 {
4258 	int cap;
4259 	u32 stat;
4260 
4261 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4262 	if (!cap)
4263 		return -EINVAL;
4264 
4265 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4266 		return -EINVAL;
4267 
4268 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4269 }
4270 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4271 
4272 /**
4273  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4274  * @dev: PCI device to query
4275  *
4276  * Returns mmrbc: maximum memory read count in bytes
4277  *    or appropriate error value.
4278  */
pcix_get_mmrbc(struct pci_dev * dev)4279 int pcix_get_mmrbc(struct pci_dev *dev)
4280 {
4281 	int cap;
4282 	u16 cmd;
4283 
4284 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4285 	if (!cap)
4286 		return -EINVAL;
4287 
4288 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4289 		return -EINVAL;
4290 
4291 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4292 }
4293 EXPORT_SYMBOL(pcix_get_mmrbc);
4294 
4295 /**
4296  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4297  * @dev: PCI device to query
4298  * @mmrbc: maximum memory read count in bytes
4299  *    valid values are 512, 1024, 2048, 4096
4300  *
4301  * If possible sets maximum memory read byte count, some bridges have erratas
4302  * that prevent this.
4303  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)4304 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4305 {
4306 	int cap;
4307 	u32 stat, v, o;
4308 	u16 cmd;
4309 
4310 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4311 		return -EINVAL;
4312 
4313 	v = ffs(mmrbc) - 10;
4314 
4315 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4316 	if (!cap)
4317 		return -EINVAL;
4318 
4319 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4320 		return -EINVAL;
4321 
4322 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4323 		return -E2BIG;
4324 
4325 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4326 		return -EINVAL;
4327 
4328 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4329 	if (o != v) {
4330 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4331 			return -EIO;
4332 
4333 		cmd &= ~PCI_X_CMD_MAX_READ;
4334 		cmd |= v << 2;
4335 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4336 			return -EIO;
4337 	}
4338 	return 0;
4339 }
4340 EXPORT_SYMBOL(pcix_set_mmrbc);
4341 
4342 /**
4343  * pcie_get_readrq - get PCI Express read request size
4344  * @dev: PCI device to query
4345  *
4346  * Returns maximum memory read request in bytes
4347  *    or appropriate error value.
4348  */
pcie_get_readrq(struct pci_dev * dev)4349 int pcie_get_readrq(struct pci_dev *dev)
4350 {
4351 	u16 ctl;
4352 
4353 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4354 
4355 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4356 }
4357 EXPORT_SYMBOL(pcie_get_readrq);
4358 
4359 /**
4360  * pcie_set_readrq - set PCI Express maximum memory read request
4361  * @dev: PCI device to query
4362  * @rq: maximum memory read count in bytes
4363  *    valid values are 128, 256, 512, 1024, 2048, 4096
4364  *
4365  * If possible sets maximum memory read request in bytes
4366  */
pcie_set_readrq(struct pci_dev * dev,int rq)4367 int pcie_set_readrq(struct pci_dev *dev, int rq)
4368 {
4369 	u16 v;
4370 
4371 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4372 		return -EINVAL;
4373 
4374 	/*
4375 	 * If using the "performance" PCIe config, we clamp the
4376 	 * read rq size to the max packet size to prevent the
4377 	 * host bridge generating requests larger than we can
4378 	 * cope with
4379 	 */
4380 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4381 		int mps = pcie_get_mps(dev);
4382 
4383 		if (mps < rq)
4384 			rq = mps;
4385 	}
4386 
4387 	v = (ffs(rq) - 8) << 12;
4388 
4389 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4390 						  PCI_EXP_DEVCTL_READRQ, v);
4391 }
4392 EXPORT_SYMBOL(pcie_set_readrq);
4393 
4394 /**
4395  * pcie_get_mps - get PCI Express maximum payload size
4396  * @dev: PCI device to query
4397  *
4398  * Returns maximum payload size in bytes
4399  */
pcie_get_mps(struct pci_dev * dev)4400 int pcie_get_mps(struct pci_dev *dev)
4401 {
4402 	u16 ctl;
4403 
4404 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4405 
4406 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4407 }
4408 EXPORT_SYMBOL(pcie_get_mps);
4409 
4410 /**
4411  * pcie_set_mps - set PCI Express maximum payload size
4412  * @dev: PCI device to query
4413  * @mps: maximum payload size in bytes
4414  *    valid values are 128, 256, 512, 1024, 2048, 4096
4415  *
4416  * If possible sets maximum payload size
4417  */
pcie_set_mps(struct pci_dev * dev,int mps)4418 int pcie_set_mps(struct pci_dev *dev, int mps)
4419 {
4420 	u16 v;
4421 
4422 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4423 		return -EINVAL;
4424 
4425 	v = ffs(mps) - 8;
4426 	if (v > dev->pcie_mpss)
4427 		return -EINVAL;
4428 	v <<= 5;
4429 
4430 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4431 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4432 }
4433 EXPORT_SYMBOL(pcie_set_mps);
4434 
4435 /**
4436  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4437  * @dev: PCI device to query
4438  * @speed: storage for minimum speed
4439  * @width: storage for minimum width
4440  *
4441  * This function will walk up the PCI device chain and determine the minimum
4442  * link width and speed of the device.
4443  */
pcie_get_minimum_link(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)4444 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4445 			  enum pcie_link_width *width)
4446 {
4447 	int ret;
4448 
4449 	*speed = PCI_SPEED_UNKNOWN;
4450 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4451 
4452 	while (dev) {
4453 		u16 lnksta;
4454 		enum pci_bus_speed next_speed;
4455 		enum pcie_link_width next_width;
4456 
4457 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4458 		if (ret)
4459 			return ret;
4460 
4461 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4462 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4463 			PCI_EXP_LNKSTA_NLW_SHIFT;
4464 
4465 		if (next_speed < *speed)
4466 			*speed = next_speed;
4467 
4468 		if (next_width < *width)
4469 			*width = next_width;
4470 
4471 		dev = dev->bus->self;
4472 	}
4473 
4474 	return 0;
4475 }
4476 EXPORT_SYMBOL(pcie_get_minimum_link);
4477 
4478 /**
4479  * pci_select_bars - Make BAR mask from the type of resource
4480  * @dev: the PCI device for which BAR mask is made
4481  * @flags: resource type mask to be selected
4482  *
4483  * This helper routine makes bar mask from the type of resource.
4484  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)4485 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4486 {
4487 	int i, bars = 0;
4488 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4489 		if (pci_resource_flags(dev, i) & flags)
4490 			bars |= (1 << i);
4491 	return bars;
4492 }
4493 EXPORT_SYMBOL(pci_select_bars);
4494 
4495 /* Some architectures require additional programming to enable VGA */
4496 static arch_set_vga_state_t arch_set_vga_state;
4497 
pci_register_set_vga_state(arch_set_vga_state_t func)4498 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4499 {
4500 	arch_set_vga_state = func;	/* NULL disables */
4501 }
4502 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)4503 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4504 				  unsigned int command_bits, u32 flags)
4505 {
4506 	if (arch_set_vga_state)
4507 		return arch_set_vga_state(dev, decode, command_bits,
4508 						flags);
4509 	return 0;
4510 }
4511 
4512 /**
4513  * pci_set_vga_state - set VGA decode state on device and parents if requested
4514  * @dev: the PCI device
4515  * @decode: true = enable decoding, false = disable decoding
4516  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4517  * @flags: traverse ancestors and change bridges
4518  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4519  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)4520 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4521 		      unsigned int command_bits, u32 flags)
4522 {
4523 	struct pci_bus *bus;
4524 	struct pci_dev *bridge;
4525 	u16 cmd;
4526 	int rc;
4527 
4528 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4529 
4530 	/* ARCH specific VGA enables */
4531 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4532 	if (rc)
4533 		return rc;
4534 
4535 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4536 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4537 		if (decode == true)
4538 			cmd |= command_bits;
4539 		else
4540 			cmd &= ~command_bits;
4541 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4542 	}
4543 
4544 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4545 		return 0;
4546 
4547 	bus = dev->bus;
4548 	while (bus) {
4549 		bridge = bus->self;
4550 		if (bridge) {
4551 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4552 					     &cmd);
4553 			if (decode == true)
4554 				cmd |= PCI_BRIDGE_CTL_VGA;
4555 			else
4556 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4557 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4558 					      cmd);
4559 		}
4560 		bus = bus->parent;
4561 	}
4562 	return 0;
4563 }
4564 
pci_device_is_present(struct pci_dev * pdev)4565 bool pci_device_is_present(struct pci_dev *pdev)
4566 {
4567 	u32 v;
4568 
4569 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4570 }
4571 EXPORT_SYMBOL_GPL(pci_device_is_present);
4572 
pci_ignore_hotplug(struct pci_dev * dev)4573 void pci_ignore_hotplug(struct pci_dev *dev)
4574 {
4575 	struct pci_dev *bridge = dev->bus->self;
4576 
4577 	dev->ignore_hotplug = 1;
4578 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4579 	if (bridge)
4580 		bridge->ignore_hotplug = 1;
4581 }
4582 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4583 
4584 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4585 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4586 static DEFINE_SPINLOCK(resource_alignment_lock);
4587 
4588 /**
4589  * pci_specified_resource_alignment - get resource alignment specified by user.
4590  * @dev: the PCI device to get
4591  *
4592  * RETURNS: Resource alignment if it is specified.
4593  *          Zero if it is not specified.
4594  */
pci_specified_resource_alignment(struct pci_dev * dev)4595 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4596 {
4597 	int seg, bus, slot, func, align_order, count;
4598 	resource_size_t align = 0;
4599 	char *p;
4600 
4601 	spin_lock(&resource_alignment_lock);
4602 	p = resource_alignment_param;
4603 	while (*p) {
4604 		count = 0;
4605 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4606 							p[count] == '@') {
4607 			p += count + 1;
4608 		} else {
4609 			align_order = -1;
4610 		}
4611 		if (sscanf(p, "%x:%x:%x.%x%n",
4612 			&seg, &bus, &slot, &func, &count) != 4) {
4613 			seg = 0;
4614 			if (sscanf(p, "%x:%x.%x%n",
4615 					&bus, &slot, &func, &count) != 3) {
4616 				/* Invalid format */
4617 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4618 					p);
4619 				break;
4620 			}
4621 		}
4622 		p += count;
4623 		if (seg == pci_domain_nr(dev->bus) &&
4624 			bus == dev->bus->number &&
4625 			slot == PCI_SLOT(dev->devfn) &&
4626 			func == PCI_FUNC(dev->devfn)) {
4627 			if (align_order == -1)
4628 				align = PAGE_SIZE;
4629 			else
4630 				align = 1 << align_order;
4631 			/* Found */
4632 			break;
4633 		}
4634 		if (*p != ';' && *p != ',') {
4635 			/* End of param or invalid format */
4636 			break;
4637 		}
4638 		p++;
4639 	}
4640 	spin_unlock(&resource_alignment_lock);
4641 	return align;
4642 }
4643 
4644 /*
4645  * This function disables memory decoding and releases memory resources
4646  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4647  * It also rounds up size to specified alignment.
4648  * Later on, the kernel will assign page-aligned memory resource back
4649  * to the device.
4650  */
pci_reassigndev_resource_alignment(struct pci_dev * dev)4651 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4652 {
4653 	int i;
4654 	struct resource *r;
4655 	resource_size_t align, size;
4656 	u16 command;
4657 
4658 	/* check if specified PCI is target device to reassign */
4659 	align = pci_specified_resource_alignment(dev);
4660 	if (!align)
4661 		return;
4662 
4663 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4664 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4665 		dev_warn(&dev->dev,
4666 			"Can't reassign resources to host bridge.\n");
4667 		return;
4668 	}
4669 
4670 	dev_info(&dev->dev,
4671 		"Disabling memory decoding and releasing memory resources.\n");
4672 	pci_read_config_word(dev, PCI_COMMAND, &command);
4673 	command &= ~PCI_COMMAND_MEMORY;
4674 	pci_write_config_word(dev, PCI_COMMAND, command);
4675 
4676 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4677 		r = &dev->resource[i];
4678 		if (!(r->flags & IORESOURCE_MEM))
4679 			continue;
4680 		size = resource_size(r);
4681 		if (size < align) {
4682 			size = align;
4683 			dev_info(&dev->dev,
4684 				"Rounding up size of resource #%d to %#llx.\n",
4685 				i, (unsigned long long)size);
4686 		}
4687 		r->flags |= IORESOURCE_UNSET;
4688 		r->end = size - 1;
4689 		r->start = 0;
4690 	}
4691 	/* Need to disable bridge's resource window,
4692 	 * to enable the kernel to reassign new resource
4693 	 * window later on.
4694 	 */
4695 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4696 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4697 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4698 			r = &dev->resource[i];
4699 			if (!(r->flags & IORESOURCE_MEM))
4700 				continue;
4701 			r->flags |= IORESOURCE_UNSET;
4702 			r->end = resource_size(r) - 1;
4703 			r->start = 0;
4704 		}
4705 		pci_disable_bridge_window(dev);
4706 	}
4707 }
4708 
pci_set_resource_alignment_param(const char * buf,size_t count)4709 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4710 {
4711 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4712 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4713 	spin_lock(&resource_alignment_lock);
4714 	strncpy(resource_alignment_param, buf, count);
4715 	resource_alignment_param[count] = '\0';
4716 	spin_unlock(&resource_alignment_lock);
4717 	return count;
4718 }
4719 
pci_get_resource_alignment_param(char * buf,size_t size)4720 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4721 {
4722 	size_t count;
4723 	spin_lock(&resource_alignment_lock);
4724 	count = snprintf(buf, size, "%s", resource_alignment_param);
4725 	spin_unlock(&resource_alignment_lock);
4726 	return count;
4727 }
4728 
pci_resource_alignment_show(struct bus_type * bus,char * buf)4729 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4730 {
4731 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4732 }
4733 
pci_resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)4734 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4735 					const char *buf, size_t count)
4736 {
4737 	return pci_set_resource_alignment_param(buf, count);
4738 }
4739 
4740 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4741 					pci_resource_alignment_store);
4742 
pci_resource_alignment_sysfs_init(void)4743 static int __init pci_resource_alignment_sysfs_init(void)
4744 {
4745 	return bus_create_file(&pci_bus_type,
4746 					&bus_attr_resource_alignment);
4747 }
4748 late_initcall(pci_resource_alignment_sysfs_init);
4749 
pci_no_domains(void)4750 static void pci_no_domains(void)
4751 {
4752 #ifdef CONFIG_PCI_DOMAINS
4753 	pci_domains_supported = 0;
4754 #endif
4755 }
4756 
4757 #ifdef CONFIG_PCI_DOMAINS
4758 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4759 
pci_get_new_domain_nr(void)4760 int pci_get_new_domain_nr(void)
4761 {
4762 	return atomic_inc_return(&__domain_nr);
4763 }
4764 
4765 #ifdef CONFIG_PCI_DOMAINS_GENERIC
pci_bus_assign_domain_nr(struct pci_bus * bus,struct device * parent)4766 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4767 {
4768 	static int use_dt_domains = -1;
4769 	int domain = -1;
4770 
4771 	if (parent)
4772 		domain = of_get_pci_domain_nr(parent->of_node);
4773 	/*
4774 	 * Check DT domain and use_dt_domains values.
4775 	 *
4776 	 * If DT domain property is valid (domain >= 0) and
4777 	 * use_dt_domains != 0, the DT assignment is valid since this means
4778 	 * we have not previously allocated a domain number by using
4779 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4780 	 * 1, to indicate that we have just assigned a domain number from
4781 	 * DT.
4782 	 *
4783 	 * If DT domain property value is not valid (ie domain < 0), and we
4784 	 * have not previously assigned a domain number from DT
4785 	 * (use_dt_domains != 1) we should assign a domain number by
4786 	 * using the:
4787 	 *
4788 	 * pci_get_new_domain_nr()
4789 	 *
4790 	 * API and update the use_dt_domains value to keep track of method we
4791 	 * are using to assign domain numbers (use_dt_domains = 0).
4792 	 *
4793 	 * All other combinations imply we have a platform that is trying
4794 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4795 	 * which is a recipe for domain mishandling and it is prevented by
4796 	 * invalidating the domain value (domain = -1) and printing a
4797 	 * corresponding error.
4798 	 */
4799 	if (domain >= 0 && use_dt_domains) {
4800 		use_dt_domains = 1;
4801 	} else if (domain < 0 && use_dt_domains != 1) {
4802 		use_dt_domains = 0;
4803 		domain = pci_get_new_domain_nr();
4804 	} else {
4805 		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4806 			parent->of_node->full_name);
4807 		domain = -1;
4808 	}
4809 
4810 	bus->domain_nr = domain;
4811 }
4812 #endif
4813 #endif
4814 
4815 /**
4816  * pci_ext_cfg_avail - can we access extended PCI config space?
4817  *
4818  * Returns 1 if we can access PCI extended config space (offsets
4819  * greater than 0xff). This is the default implementation. Architecture
4820  * implementations can override this.
4821  */
pci_ext_cfg_avail(void)4822 int __weak pci_ext_cfg_avail(void)
4823 {
4824 	return 1;
4825 }
4826 
pci_fixup_cardbus(struct pci_bus * bus)4827 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4828 {
4829 }
4830 EXPORT_SYMBOL(pci_fixup_cardbus);
4831 
pci_setup(char * str)4832 static int __init pci_setup(char *str)
4833 {
4834 	while (str) {
4835 		char *k = strchr(str, ',');
4836 		if (k)
4837 			*k++ = 0;
4838 		if (*str && (str = pcibios_setup(str)) && *str) {
4839 			if (!strcmp(str, "nomsi")) {
4840 				pci_no_msi();
4841 			} else if (!strcmp(str, "noaer")) {
4842 				pci_no_aer();
4843 			} else if (!strncmp(str, "realloc=", 8)) {
4844 				pci_realloc_get_opt(str + 8);
4845 			} else if (!strncmp(str, "realloc", 7)) {
4846 				pci_realloc_get_opt("on");
4847 			} else if (!strcmp(str, "nodomains")) {
4848 				pci_no_domains();
4849 			} else if (!strncmp(str, "noari", 5)) {
4850 				pcie_ari_disabled = true;
4851 			} else if (!strncmp(str, "cbiosize=", 9)) {
4852 				pci_cardbus_io_size = memparse(str + 9, &str);
4853 			} else if (!strncmp(str, "cbmemsize=", 10)) {
4854 				pci_cardbus_mem_size = memparse(str + 10, &str);
4855 			} else if (!strncmp(str, "resource_alignment=", 19)) {
4856 				pci_set_resource_alignment_param(str + 19,
4857 							strlen(str + 19));
4858 			} else if (!strncmp(str, "ecrc=", 5)) {
4859 				pcie_ecrc_get_policy(str + 5);
4860 			} else if (!strncmp(str, "hpiosize=", 9)) {
4861 				pci_hotplug_io_size = memparse(str + 9, &str);
4862 			} else if (!strncmp(str, "hpmemsize=", 10)) {
4863 				pci_hotplug_mem_size = memparse(str + 10, &str);
4864 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4865 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4866 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4867 				pcie_bus_config = PCIE_BUS_SAFE;
4868 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4869 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4870 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4871 				pcie_bus_config = PCIE_BUS_PEER2PEER;
4872 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4873 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4874 			} else {
4875 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4876 						str);
4877 			}
4878 		}
4879 		str = k;
4880 	}
4881 	return 0;
4882 }
4883 early_param("pci", pci_setup);
4884