1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
remote_function(void * data)63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
cpu_function_call(int cpu,remote_function_f func,void * info)115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130
is_kernel_event(struct perf_event * event)131 static bool is_kernel_event(struct perf_event *event)
132 {
133 return event->owner == EVENT_OWNER_KERNEL;
134 }
135
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
140
141 /*
142 * branch priv levels that need permission checks
143 */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
148 enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153
154 /*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171
172 /*
173 * perf event paranoia level:
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
176 * 1 - disallow cpu events for unpriv
177 * 2 - disallow kernel profiling for unpriv
178 * 3 - disallow all unpriv perf event use
179 */
180 #ifdef CONFIG_SECURITY_PERF_EVENTS_RESTRICT
181 int sysctl_perf_event_paranoid __read_mostly = 3;
182 #else
183 int sysctl_perf_event_paranoid __read_mostly = 1;
184 #endif
185
186 /* Minimum for 512 kiB + 1 user control page */
187 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
188
189 /*
190 * max perf event sample rate
191 */
192 #define DEFAULT_MAX_SAMPLE_RATE 100000
193 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
194 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
195
196 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
197
198 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
199 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
200
201 static int perf_sample_allowed_ns __read_mostly =
202 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
203
update_perf_cpu_limits(void)204 static void update_perf_cpu_limits(void)
205 {
206 u64 tmp = perf_sample_period_ns;
207
208 tmp *= sysctl_perf_cpu_time_max_percent;
209 do_div(tmp, 100);
210 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
211 }
212
213 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
214
perf_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)215 int perf_proc_update_handler(struct ctl_table *table, int write,
216 void __user *buffer, size_t *lenp,
217 loff_t *ppos)
218 {
219 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
220
221 if (ret || !write)
222 return ret;
223
224 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
225 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
226 update_perf_cpu_limits();
227
228 return 0;
229 }
230
231 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
232
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)233 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
234 void __user *buffer, size_t *lenp,
235 loff_t *ppos)
236 {
237 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
238
239 if (ret || !write)
240 return ret;
241
242 update_perf_cpu_limits();
243
244 return 0;
245 }
246
247 /*
248 * perf samples are done in some very critical code paths (NMIs).
249 * If they take too much CPU time, the system can lock up and not
250 * get any real work done. This will drop the sample rate when
251 * we detect that events are taking too long.
252 */
253 #define NR_ACCUMULATED_SAMPLES 128
254 static DEFINE_PER_CPU(u64, running_sample_length);
255
perf_duration_warn(struct irq_work * w)256 static void perf_duration_warn(struct irq_work *w)
257 {
258 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
259 u64 avg_local_sample_len;
260 u64 local_samples_len;
261
262 local_samples_len = __this_cpu_read(running_sample_length);
263 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
264
265 printk_ratelimited(KERN_WARNING
266 "perf interrupt took too long (%lld > %lld), lowering "
267 "kernel.perf_event_max_sample_rate to %d\n",
268 avg_local_sample_len, allowed_ns >> 1,
269 sysctl_perf_event_sample_rate);
270 }
271
272 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
273
perf_sample_event_took(u64 sample_len_ns)274 void perf_sample_event_took(u64 sample_len_ns)
275 {
276 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
277 u64 avg_local_sample_len;
278 u64 local_samples_len;
279
280 if (allowed_ns == 0)
281 return;
282
283 /* decay the counter by 1 average sample */
284 local_samples_len = __this_cpu_read(running_sample_length);
285 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
286 local_samples_len += sample_len_ns;
287 __this_cpu_write(running_sample_length, local_samples_len);
288
289 /*
290 * note: this will be biased artifically low until we have
291 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
292 * from having to maintain a count.
293 */
294 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
295
296 if (avg_local_sample_len <= allowed_ns)
297 return;
298
299 if (max_samples_per_tick <= 1)
300 return;
301
302 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
303 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
304 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
305
306 update_perf_cpu_limits();
307
308 if (!irq_work_queue(&perf_duration_work)) {
309 early_printk("perf interrupt took too long (%lld > %lld), lowering "
310 "kernel.perf_event_max_sample_rate to %d\n",
311 avg_local_sample_len, allowed_ns >> 1,
312 sysctl_perf_event_sample_rate);
313 }
314 }
315
316 static atomic64_t perf_event_id;
317
318 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
319 enum event_type_t event_type);
320
321 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
322 enum event_type_t event_type,
323 struct task_struct *task);
324
325 static void update_context_time(struct perf_event_context *ctx);
326 static u64 perf_event_time(struct perf_event *event);
327
perf_event_print_debug(void)328 void __weak perf_event_print_debug(void) { }
329
perf_pmu_name(void)330 extern __weak const char *perf_pmu_name(void)
331 {
332 return "pmu";
333 }
334
perf_clock(void)335 static inline u64 perf_clock(void)
336 {
337 return local_clock();
338 }
339
perf_event_clock(struct perf_event * event)340 static inline u64 perf_event_clock(struct perf_event *event)
341 {
342 return event->clock();
343 }
344
345 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)346 __get_cpu_context(struct perf_event_context *ctx)
347 {
348 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
349 }
350
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)351 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
352 struct perf_event_context *ctx)
353 {
354 raw_spin_lock(&cpuctx->ctx.lock);
355 if (ctx)
356 raw_spin_lock(&ctx->lock);
357 }
358
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)359 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
360 struct perf_event_context *ctx)
361 {
362 if (ctx)
363 raw_spin_unlock(&ctx->lock);
364 raw_spin_unlock(&cpuctx->ctx.lock);
365 }
366
367 #ifdef CONFIG_CGROUP_PERF
368
369 static inline bool
perf_cgroup_match(struct perf_event * event)370 perf_cgroup_match(struct perf_event *event)
371 {
372 struct perf_event_context *ctx = event->ctx;
373 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
374
375 /* @event doesn't care about cgroup */
376 if (!event->cgrp)
377 return true;
378
379 /* wants specific cgroup scope but @cpuctx isn't associated with any */
380 if (!cpuctx->cgrp)
381 return false;
382
383 /*
384 * Cgroup scoping is recursive. An event enabled for a cgroup is
385 * also enabled for all its descendant cgroups. If @cpuctx's
386 * cgroup is a descendant of @event's (the test covers identity
387 * case), it's a match.
388 */
389 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
390 event->cgrp->css.cgroup);
391 }
392
perf_detach_cgroup(struct perf_event * event)393 static inline void perf_detach_cgroup(struct perf_event *event)
394 {
395 css_put(&event->cgrp->css);
396 event->cgrp = NULL;
397 }
398
is_cgroup_event(struct perf_event * event)399 static inline int is_cgroup_event(struct perf_event *event)
400 {
401 return event->cgrp != NULL;
402 }
403
perf_cgroup_event_time(struct perf_event * event)404 static inline u64 perf_cgroup_event_time(struct perf_event *event)
405 {
406 struct perf_cgroup_info *t;
407
408 t = per_cpu_ptr(event->cgrp->info, event->cpu);
409 return t->time;
410 }
411
__update_cgrp_time(struct perf_cgroup * cgrp)412 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
413 {
414 struct perf_cgroup_info *info;
415 u64 now;
416
417 now = perf_clock();
418
419 info = this_cpu_ptr(cgrp->info);
420
421 info->time += now - info->timestamp;
422 info->timestamp = now;
423 }
424
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)425 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
426 {
427 struct perf_cgroup *cgrp = cpuctx->cgrp;
428 struct cgroup_subsys_state *css;
429
430 if (cgrp) {
431 for (css = &cgrp->css; css; css = css->parent) {
432 cgrp = container_of(css, struct perf_cgroup, css);
433 __update_cgrp_time(cgrp);
434 }
435 }
436 }
437
update_cgrp_time_from_event(struct perf_event * event)438 static inline void update_cgrp_time_from_event(struct perf_event *event)
439 {
440 struct perf_cgroup *cgrp;
441
442 /*
443 * ensure we access cgroup data only when needed and
444 * when we know the cgroup is pinned (css_get)
445 */
446 if (!is_cgroup_event(event))
447 return;
448
449 cgrp = perf_cgroup_from_task(current, event->ctx);
450 /*
451 * Do not update time when cgroup is not active
452 */
453 if (cgrp == event->cgrp)
454 __update_cgrp_time(event->cgrp);
455 }
456
457 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)458 perf_cgroup_set_timestamp(struct task_struct *task,
459 struct perf_event_context *ctx)
460 {
461 struct perf_cgroup *cgrp;
462 struct perf_cgroup_info *info;
463 struct cgroup_subsys_state *css;
464
465 /*
466 * ctx->lock held by caller
467 * ensure we do not access cgroup data
468 * unless we have the cgroup pinned (css_get)
469 */
470 if (!task || !ctx->nr_cgroups)
471 return;
472
473 cgrp = perf_cgroup_from_task(task, ctx);
474
475 for (css = &cgrp->css; css; css = css->parent) {
476 cgrp = container_of(css, struct perf_cgroup, css);
477 info = this_cpu_ptr(cgrp->info);
478 info->timestamp = ctx->timestamp;
479 }
480 }
481
482 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
484
485 /*
486 * reschedule events based on the cgroup constraint of task.
487 *
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
490 */
perf_cgroup_switch(struct task_struct * task,int mode)491 static void perf_cgroup_switch(struct task_struct *task, int mode)
492 {
493 struct perf_cpu_context *cpuctx;
494 struct pmu *pmu;
495 unsigned long flags;
496
497 /*
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
500 * avoids preemption.
501 */
502 local_irq_save(flags);
503
504 /*
505 * we reschedule only in the presence of cgroup
506 * constrained events.
507 */
508
509 list_for_each_entry_rcu(pmu, &pmus, entry) {
510 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
511 if (cpuctx->unique_pmu != pmu)
512 continue; /* ensure we process each cpuctx once */
513
514 /*
515 * perf_cgroup_events says at least one
516 * context on this CPU has cgroup events.
517 *
518 * ctx->nr_cgroups reports the number of cgroup
519 * events for a context.
520 */
521 if (cpuctx->ctx.nr_cgroups > 0) {
522 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
523 perf_pmu_disable(cpuctx->ctx.pmu);
524
525 if (mode & PERF_CGROUP_SWOUT) {
526 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
527 /*
528 * must not be done before ctxswout due
529 * to event_filter_match() in event_sched_out()
530 */
531 cpuctx->cgrp = NULL;
532 }
533
534 if (mode & PERF_CGROUP_SWIN) {
535 WARN_ON_ONCE(cpuctx->cgrp);
536 /*
537 * set cgrp before ctxsw in to allow
538 * event_filter_match() to not have to pass
539 * task around
540 * we pass the cpuctx->ctx to perf_cgroup_from_task()
541 * because cgorup events are only per-cpu
542 */
543 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
544 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
545 }
546 perf_pmu_enable(cpuctx->ctx.pmu);
547 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
548 }
549 }
550
551 local_irq_restore(flags);
552 }
553
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)554 static inline void perf_cgroup_sched_out(struct task_struct *task,
555 struct task_struct *next)
556 {
557 struct perf_cgroup *cgrp1;
558 struct perf_cgroup *cgrp2 = NULL;
559
560 rcu_read_lock();
561 /*
562 * we come here when we know perf_cgroup_events > 0
563 * we do not need to pass the ctx here because we know
564 * we are holding the rcu lock
565 */
566 cgrp1 = perf_cgroup_from_task(task, NULL);
567
568 /*
569 * next is NULL when called from perf_event_enable_on_exec()
570 * that will systematically cause a cgroup_switch()
571 */
572 if (next)
573 cgrp2 = perf_cgroup_from_task(next, NULL);
574
575 /*
576 * only schedule out current cgroup events if we know
577 * that we are switching to a different cgroup. Otherwise,
578 * do no touch the cgroup events.
579 */
580 if (cgrp1 != cgrp2)
581 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
582
583 rcu_read_unlock();
584 }
585
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)586 static inline void perf_cgroup_sched_in(struct task_struct *prev,
587 struct task_struct *task)
588 {
589 struct perf_cgroup *cgrp1;
590 struct perf_cgroup *cgrp2 = NULL;
591
592 rcu_read_lock();
593 /*
594 * we come here when we know perf_cgroup_events > 0
595 * we do not need to pass the ctx here because we know
596 * we are holding the rcu lock
597 */
598 cgrp1 = perf_cgroup_from_task(task, NULL);
599
600 /* prev can never be NULL */
601 cgrp2 = perf_cgroup_from_task(prev, NULL);
602
603 /*
604 * only need to schedule in cgroup events if we are changing
605 * cgroup during ctxsw. Cgroup events were not scheduled
606 * out of ctxsw out if that was not the case.
607 */
608 if (cgrp1 != cgrp2)
609 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
610
611 rcu_read_unlock();
612 }
613
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)614 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
615 struct perf_event_attr *attr,
616 struct perf_event *group_leader)
617 {
618 struct perf_cgroup *cgrp;
619 struct cgroup_subsys_state *css;
620 struct fd f = fdget(fd);
621 int ret = 0;
622
623 if (!f.file)
624 return -EBADF;
625
626 css = css_tryget_online_from_dir(f.file->f_path.dentry,
627 &perf_event_cgrp_subsys);
628 if (IS_ERR(css)) {
629 ret = PTR_ERR(css);
630 goto out;
631 }
632
633 cgrp = container_of(css, struct perf_cgroup, css);
634 event->cgrp = cgrp;
635
636 /*
637 * all events in a group must monitor
638 * the same cgroup because a task belongs
639 * to only one perf cgroup at a time
640 */
641 if (group_leader && group_leader->cgrp != cgrp) {
642 perf_detach_cgroup(event);
643 ret = -EINVAL;
644 }
645 out:
646 fdput(f);
647 return ret;
648 }
649
650 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)651 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
652 {
653 struct perf_cgroup_info *t;
654 t = per_cpu_ptr(event->cgrp->info, event->cpu);
655 event->shadow_ctx_time = now - t->timestamp;
656 }
657
658 static inline void
perf_cgroup_defer_enabled(struct perf_event * event)659 perf_cgroup_defer_enabled(struct perf_event *event)
660 {
661 /*
662 * when the current task's perf cgroup does not match
663 * the event's, we need to remember to call the
664 * perf_mark_enable() function the first time a task with
665 * a matching perf cgroup is scheduled in.
666 */
667 if (is_cgroup_event(event) && !perf_cgroup_match(event))
668 event->cgrp_defer_enabled = 1;
669 }
670
671 static inline void
perf_cgroup_mark_enabled(struct perf_event * event,struct perf_event_context * ctx)672 perf_cgroup_mark_enabled(struct perf_event *event,
673 struct perf_event_context *ctx)
674 {
675 struct perf_event *sub;
676 u64 tstamp = perf_event_time(event);
677
678 if (!event->cgrp_defer_enabled)
679 return;
680
681 event->cgrp_defer_enabled = 0;
682
683 event->tstamp_enabled = tstamp - event->total_time_enabled;
684 list_for_each_entry(sub, &event->sibling_list, group_entry) {
685 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
686 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
687 sub->cgrp_defer_enabled = 0;
688 }
689 }
690 }
691 #else /* !CONFIG_CGROUP_PERF */
692
693 static inline bool
perf_cgroup_match(struct perf_event * event)694 perf_cgroup_match(struct perf_event *event)
695 {
696 return true;
697 }
698
perf_detach_cgroup(struct perf_event * event)699 static inline void perf_detach_cgroup(struct perf_event *event)
700 {}
701
is_cgroup_event(struct perf_event * event)702 static inline int is_cgroup_event(struct perf_event *event)
703 {
704 return 0;
705 }
706
perf_cgroup_event_cgrp_time(struct perf_event * event)707 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
708 {
709 return 0;
710 }
711
update_cgrp_time_from_event(struct perf_event * event)712 static inline void update_cgrp_time_from_event(struct perf_event *event)
713 {
714 }
715
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)716 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
717 {
718 }
719
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)720 static inline void perf_cgroup_sched_out(struct task_struct *task,
721 struct task_struct *next)
722 {
723 }
724
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)725 static inline void perf_cgroup_sched_in(struct task_struct *prev,
726 struct task_struct *task)
727 {
728 }
729
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)730 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
731 struct perf_event_attr *attr,
732 struct perf_event *group_leader)
733 {
734 return -EINVAL;
735 }
736
737 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)738 perf_cgroup_set_timestamp(struct task_struct *task,
739 struct perf_event_context *ctx)
740 {
741 }
742
743 void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)744 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
745 {
746 }
747
748 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)749 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
750 {
751 }
752
perf_cgroup_event_time(struct perf_event * event)753 static inline u64 perf_cgroup_event_time(struct perf_event *event)
754 {
755 return 0;
756 }
757
758 static inline void
perf_cgroup_defer_enabled(struct perf_event * event)759 perf_cgroup_defer_enabled(struct perf_event *event)
760 {
761 }
762
763 static inline void
perf_cgroup_mark_enabled(struct perf_event * event,struct perf_event_context * ctx)764 perf_cgroup_mark_enabled(struct perf_event *event,
765 struct perf_event_context *ctx)
766 {
767 }
768 #endif
769
770 /*
771 * set default to be dependent on timer tick just
772 * like original code
773 */
774 #define PERF_CPU_HRTIMER (1000 / HZ)
775 /*
776 * function must be called with interrupts disbled
777 */
perf_mux_hrtimer_handler(struct hrtimer * hr)778 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
779 {
780 struct perf_cpu_context *cpuctx;
781 int rotations = 0;
782
783 WARN_ON(!irqs_disabled());
784
785 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
786 rotations = perf_rotate_context(cpuctx);
787
788 raw_spin_lock(&cpuctx->hrtimer_lock);
789 if (rotations)
790 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
791 else
792 cpuctx->hrtimer_active = 0;
793 raw_spin_unlock(&cpuctx->hrtimer_lock);
794
795 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
796 }
797
__perf_mux_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)798 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
799 {
800 struct hrtimer *timer = &cpuctx->hrtimer;
801 struct pmu *pmu = cpuctx->ctx.pmu;
802 u64 interval;
803
804 /* no multiplexing needed for SW PMU */
805 if (pmu->task_ctx_nr == perf_sw_context)
806 return;
807
808 /*
809 * check default is sane, if not set then force to
810 * default interval (1/tick)
811 */
812 interval = pmu->hrtimer_interval_ms;
813 if (interval < 1)
814 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
815
816 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
817
818 raw_spin_lock_init(&cpuctx->hrtimer_lock);
819 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
820 timer->function = perf_mux_hrtimer_handler;
821 }
822
perf_mux_hrtimer_restart(struct perf_cpu_context * cpuctx)823 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
824 {
825 struct hrtimer *timer = &cpuctx->hrtimer;
826 struct pmu *pmu = cpuctx->ctx.pmu;
827 unsigned long flags;
828
829 /* not for SW PMU */
830 if (pmu->task_ctx_nr == perf_sw_context)
831 return 0;
832
833 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
834 if (!cpuctx->hrtimer_active) {
835 cpuctx->hrtimer_active = 1;
836 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
837 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
838 }
839 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
840
841 return 0;
842 }
843
perf_pmu_disable(struct pmu * pmu)844 void perf_pmu_disable(struct pmu *pmu)
845 {
846 int *count = this_cpu_ptr(pmu->pmu_disable_count);
847 if (!(*count)++)
848 pmu->pmu_disable(pmu);
849 }
850
perf_pmu_enable(struct pmu * pmu)851 void perf_pmu_enable(struct pmu *pmu)
852 {
853 int *count = this_cpu_ptr(pmu->pmu_disable_count);
854 if (!--(*count))
855 pmu->pmu_enable(pmu);
856 }
857
858 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
859
860 /*
861 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
862 * perf_event_task_tick() are fully serialized because they're strictly cpu
863 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
864 * disabled, while perf_event_task_tick is called from IRQ context.
865 */
perf_event_ctx_activate(struct perf_event_context * ctx)866 static void perf_event_ctx_activate(struct perf_event_context *ctx)
867 {
868 struct list_head *head = this_cpu_ptr(&active_ctx_list);
869
870 WARN_ON(!irqs_disabled());
871
872 WARN_ON(!list_empty(&ctx->active_ctx_list));
873
874 list_add(&ctx->active_ctx_list, head);
875 }
876
perf_event_ctx_deactivate(struct perf_event_context * ctx)877 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
878 {
879 WARN_ON(!irqs_disabled());
880
881 WARN_ON(list_empty(&ctx->active_ctx_list));
882
883 list_del_init(&ctx->active_ctx_list);
884 }
885
get_ctx(struct perf_event_context * ctx)886 static void get_ctx(struct perf_event_context *ctx)
887 {
888 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
889 }
890
free_ctx(struct rcu_head * head)891 static void free_ctx(struct rcu_head *head)
892 {
893 struct perf_event_context *ctx;
894
895 ctx = container_of(head, struct perf_event_context, rcu_head);
896 kfree(ctx->task_ctx_data);
897 kfree(ctx);
898 }
899
put_ctx(struct perf_event_context * ctx)900 static void put_ctx(struct perf_event_context *ctx)
901 {
902 if (atomic_dec_and_test(&ctx->refcount)) {
903 if (ctx->parent_ctx)
904 put_ctx(ctx->parent_ctx);
905 if (ctx->task)
906 put_task_struct(ctx->task);
907 call_rcu(&ctx->rcu_head, free_ctx);
908 }
909 }
910
911 /*
912 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
913 * perf_pmu_migrate_context() we need some magic.
914 *
915 * Those places that change perf_event::ctx will hold both
916 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
917 *
918 * Lock ordering is by mutex address. There are two other sites where
919 * perf_event_context::mutex nests and those are:
920 *
921 * - perf_event_exit_task_context() [ child , 0 ]
922 * __perf_event_exit_task()
923 * sync_child_event()
924 * put_event() [ parent, 1 ]
925 *
926 * - perf_event_init_context() [ parent, 0 ]
927 * inherit_task_group()
928 * inherit_group()
929 * inherit_event()
930 * perf_event_alloc()
931 * perf_init_event()
932 * perf_try_init_event() [ child , 1 ]
933 *
934 * While it appears there is an obvious deadlock here -- the parent and child
935 * nesting levels are inverted between the two. This is in fact safe because
936 * life-time rules separate them. That is an exiting task cannot fork, and a
937 * spawning task cannot (yet) exit.
938 *
939 * But remember that that these are parent<->child context relations, and
940 * migration does not affect children, therefore these two orderings should not
941 * interact.
942 *
943 * The change in perf_event::ctx does not affect children (as claimed above)
944 * because the sys_perf_event_open() case will install a new event and break
945 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
946 * concerned with cpuctx and that doesn't have children.
947 *
948 * The places that change perf_event::ctx will issue:
949 *
950 * perf_remove_from_context();
951 * synchronize_rcu();
952 * perf_install_in_context();
953 *
954 * to affect the change. The remove_from_context() + synchronize_rcu() should
955 * quiesce the event, after which we can install it in the new location. This
956 * means that only external vectors (perf_fops, prctl) can perturb the event
957 * while in transit. Therefore all such accessors should also acquire
958 * perf_event_context::mutex to serialize against this.
959 *
960 * However; because event->ctx can change while we're waiting to acquire
961 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
962 * function.
963 *
964 * Lock order:
965 * cred_guard_mutex
966 * task_struct::perf_event_mutex
967 * perf_event_context::mutex
968 * perf_event_context::lock
969 * perf_event::child_mutex;
970 * perf_event::mmap_mutex
971 * mmap_sem
972 */
973 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)974 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
975 {
976 struct perf_event_context *ctx;
977
978 again:
979 rcu_read_lock();
980 ctx = ACCESS_ONCE(event->ctx);
981 if (!atomic_inc_not_zero(&ctx->refcount)) {
982 rcu_read_unlock();
983 goto again;
984 }
985 rcu_read_unlock();
986
987 mutex_lock_nested(&ctx->mutex, nesting);
988 if (event->ctx != ctx) {
989 mutex_unlock(&ctx->mutex);
990 put_ctx(ctx);
991 goto again;
992 }
993
994 return ctx;
995 }
996
997 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)998 perf_event_ctx_lock(struct perf_event *event)
999 {
1000 return perf_event_ctx_lock_nested(event, 0);
1001 }
1002
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1003 static void perf_event_ctx_unlock(struct perf_event *event,
1004 struct perf_event_context *ctx)
1005 {
1006 mutex_unlock(&ctx->mutex);
1007 put_ctx(ctx);
1008 }
1009
1010 /*
1011 * This must be done under the ctx->lock, such as to serialize against
1012 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1013 * calling scheduler related locks and ctx->lock nests inside those.
1014 */
1015 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1016 unclone_ctx(struct perf_event_context *ctx)
1017 {
1018 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1019
1020 lockdep_assert_held(&ctx->lock);
1021
1022 if (parent_ctx)
1023 ctx->parent_ctx = NULL;
1024 ctx->generation++;
1025
1026 return parent_ctx;
1027 }
1028
perf_event_pid(struct perf_event * event,struct task_struct * p)1029 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1030 {
1031 /*
1032 * only top level events have the pid namespace they were created in
1033 */
1034 if (event->parent)
1035 event = event->parent;
1036
1037 return task_tgid_nr_ns(p, event->ns);
1038 }
1039
perf_event_tid(struct perf_event * event,struct task_struct * p)1040 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1041 {
1042 /*
1043 * only top level events have the pid namespace they were created in
1044 */
1045 if (event->parent)
1046 event = event->parent;
1047
1048 return task_pid_nr_ns(p, event->ns);
1049 }
1050
1051 /*
1052 * If we inherit events we want to return the parent event id
1053 * to userspace.
1054 */
primary_event_id(struct perf_event * event)1055 static u64 primary_event_id(struct perf_event *event)
1056 {
1057 u64 id = event->id;
1058
1059 if (event->parent)
1060 id = event->parent->id;
1061
1062 return id;
1063 }
1064
1065 /*
1066 * Get the perf_event_context for a task and lock it.
1067 * This has to cope with with the fact that until it is locked,
1068 * the context could get moved to another task.
1069 */
1070 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1071 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1072 {
1073 struct perf_event_context *ctx;
1074
1075 retry:
1076 /*
1077 * One of the few rules of preemptible RCU is that one cannot do
1078 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1079 * part of the read side critical section was irqs-enabled -- see
1080 * rcu_read_unlock_special().
1081 *
1082 * Since ctx->lock nests under rq->lock we must ensure the entire read
1083 * side critical section has interrupts disabled.
1084 */
1085 local_irq_save(*flags);
1086 rcu_read_lock();
1087 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1088 if (ctx) {
1089 /*
1090 * If this context is a clone of another, it might
1091 * get swapped for another underneath us by
1092 * perf_event_task_sched_out, though the
1093 * rcu_read_lock() protects us from any context
1094 * getting freed. Lock the context and check if it
1095 * got swapped before we could get the lock, and retry
1096 * if so. If we locked the right context, then it
1097 * can't get swapped on us any more.
1098 */
1099 raw_spin_lock(&ctx->lock);
1100 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1101 raw_spin_unlock(&ctx->lock);
1102 rcu_read_unlock();
1103 local_irq_restore(*flags);
1104 goto retry;
1105 }
1106
1107 if (!atomic_inc_not_zero(&ctx->refcount)) {
1108 raw_spin_unlock(&ctx->lock);
1109 ctx = NULL;
1110 }
1111 }
1112 rcu_read_unlock();
1113 if (!ctx)
1114 local_irq_restore(*flags);
1115 return ctx;
1116 }
1117
1118 /*
1119 * Get the context for a task and increment its pin_count so it
1120 * can't get swapped to another task. This also increments its
1121 * reference count so that the context can't get freed.
1122 */
1123 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1124 perf_pin_task_context(struct task_struct *task, int ctxn)
1125 {
1126 struct perf_event_context *ctx;
1127 unsigned long flags;
1128
1129 ctx = perf_lock_task_context(task, ctxn, &flags);
1130 if (ctx) {
1131 ++ctx->pin_count;
1132 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1133 }
1134 return ctx;
1135 }
1136
perf_unpin_context(struct perf_event_context * ctx)1137 static void perf_unpin_context(struct perf_event_context *ctx)
1138 {
1139 unsigned long flags;
1140
1141 raw_spin_lock_irqsave(&ctx->lock, flags);
1142 --ctx->pin_count;
1143 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1144 }
1145
1146 /*
1147 * Update the record of the current time in a context.
1148 */
update_context_time(struct perf_event_context * ctx)1149 static void update_context_time(struct perf_event_context *ctx)
1150 {
1151 u64 now = perf_clock();
1152
1153 ctx->time += now - ctx->timestamp;
1154 ctx->timestamp = now;
1155 }
1156
perf_event_time(struct perf_event * event)1157 static u64 perf_event_time(struct perf_event *event)
1158 {
1159 struct perf_event_context *ctx = event->ctx;
1160
1161 if (is_cgroup_event(event))
1162 return perf_cgroup_event_time(event);
1163
1164 return ctx ? ctx->time : 0;
1165 }
1166
1167 /*
1168 * Update the total_time_enabled and total_time_running fields for a event.
1169 * The caller of this function needs to hold the ctx->lock.
1170 */
update_event_times(struct perf_event * event)1171 static void update_event_times(struct perf_event *event)
1172 {
1173 struct perf_event_context *ctx = event->ctx;
1174 u64 run_end;
1175
1176 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1177 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1178 return;
1179 /*
1180 * in cgroup mode, time_enabled represents
1181 * the time the event was enabled AND active
1182 * tasks were in the monitored cgroup. This is
1183 * independent of the activity of the context as
1184 * there may be a mix of cgroup and non-cgroup events.
1185 *
1186 * That is why we treat cgroup events differently
1187 * here.
1188 */
1189 if (is_cgroup_event(event))
1190 run_end = perf_cgroup_event_time(event);
1191 else if (ctx->is_active)
1192 run_end = ctx->time;
1193 else
1194 run_end = event->tstamp_stopped;
1195
1196 event->total_time_enabled = run_end - event->tstamp_enabled;
1197
1198 if (event->state == PERF_EVENT_STATE_INACTIVE)
1199 run_end = event->tstamp_stopped;
1200 else
1201 run_end = perf_event_time(event);
1202
1203 event->total_time_running = run_end - event->tstamp_running;
1204
1205 }
1206
1207 /*
1208 * Update total_time_enabled and total_time_running for all events in a group.
1209 */
update_group_times(struct perf_event * leader)1210 static void update_group_times(struct perf_event *leader)
1211 {
1212 struct perf_event *event;
1213
1214 update_event_times(leader);
1215 list_for_each_entry(event, &leader->sibling_list, group_entry)
1216 update_event_times(event);
1217 }
1218
1219 static struct list_head *
ctx_group_list(struct perf_event * event,struct perf_event_context * ctx)1220 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1221 {
1222 if (event->attr.pinned)
1223 return &ctx->pinned_groups;
1224 else
1225 return &ctx->flexible_groups;
1226 }
1227
1228 /*
1229 * Add a event from the lists for its context.
1230 * Must be called with ctx->mutex and ctx->lock held.
1231 */
1232 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1233 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1234 {
1235 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1236 event->attach_state |= PERF_ATTACH_CONTEXT;
1237
1238 /*
1239 * If we're a stand alone event or group leader, we go to the context
1240 * list, group events are kept attached to the group so that
1241 * perf_group_detach can, at all times, locate all siblings.
1242 */
1243 if (event->group_leader == event) {
1244 struct list_head *list;
1245
1246 if (is_software_event(event))
1247 event->group_flags |= PERF_GROUP_SOFTWARE;
1248
1249 list = ctx_group_list(event, ctx);
1250 list_add_tail(&event->group_entry, list);
1251 }
1252
1253 if (is_cgroup_event(event))
1254 ctx->nr_cgroups++;
1255
1256 list_add_rcu(&event->event_entry, &ctx->event_list);
1257 ctx->nr_events++;
1258 if (event->attr.inherit_stat)
1259 ctx->nr_stat++;
1260
1261 ctx->generation++;
1262 }
1263
1264 /*
1265 * Initialize event state based on the perf_event_attr::disabled.
1266 */
perf_event__state_init(struct perf_event * event)1267 static inline void perf_event__state_init(struct perf_event *event)
1268 {
1269 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1270 PERF_EVENT_STATE_INACTIVE;
1271 }
1272
__perf_event_read_size(struct perf_event * event,int nr_siblings)1273 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1274 {
1275 int entry = sizeof(u64); /* value */
1276 int size = 0;
1277 int nr = 1;
1278
1279 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1280 size += sizeof(u64);
1281
1282 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1283 size += sizeof(u64);
1284
1285 if (event->attr.read_format & PERF_FORMAT_ID)
1286 entry += sizeof(u64);
1287
1288 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1289 nr += nr_siblings;
1290 size += sizeof(u64);
1291 }
1292
1293 size += entry * nr;
1294 event->read_size = size;
1295 }
1296
__perf_event_header_size(struct perf_event * event,u64 sample_type)1297 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1298 {
1299 struct perf_sample_data *data;
1300 u16 size = 0;
1301
1302 if (sample_type & PERF_SAMPLE_IP)
1303 size += sizeof(data->ip);
1304
1305 if (sample_type & PERF_SAMPLE_ADDR)
1306 size += sizeof(data->addr);
1307
1308 if (sample_type & PERF_SAMPLE_PERIOD)
1309 size += sizeof(data->period);
1310
1311 if (sample_type & PERF_SAMPLE_WEIGHT)
1312 size += sizeof(data->weight);
1313
1314 if (sample_type & PERF_SAMPLE_READ)
1315 size += event->read_size;
1316
1317 if (sample_type & PERF_SAMPLE_DATA_SRC)
1318 size += sizeof(data->data_src.val);
1319
1320 if (sample_type & PERF_SAMPLE_TRANSACTION)
1321 size += sizeof(data->txn);
1322
1323 event->header_size = size;
1324 }
1325
1326 /*
1327 * Called at perf_event creation and when events are attached/detached from a
1328 * group.
1329 */
perf_event__header_size(struct perf_event * event)1330 static void perf_event__header_size(struct perf_event *event)
1331 {
1332 __perf_event_read_size(event,
1333 event->group_leader->nr_siblings);
1334 __perf_event_header_size(event, event->attr.sample_type);
1335 }
1336
perf_event__id_header_size(struct perf_event * event)1337 static void perf_event__id_header_size(struct perf_event *event)
1338 {
1339 struct perf_sample_data *data;
1340 u64 sample_type = event->attr.sample_type;
1341 u16 size = 0;
1342
1343 if (sample_type & PERF_SAMPLE_TID)
1344 size += sizeof(data->tid_entry);
1345
1346 if (sample_type & PERF_SAMPLE_TIME)
1347 size += sizeof(data->time);
1348
1349 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1350 size += sizeof(data->id);
1351
1352 if (sample_type & PERF_SAMPLE_ID)
1353 size += sizeof(data->id);
1354
1355 if (sample_type & PERF_SAMPLE_STREAM_ID)
1356 size += sizeof(data->stream_id);
1357
1358 if (sample_type & PERF_SAMPLE_CPU)
1359 size += sizeof(data->cpu_entry);
1360
1361 event->id_header_size = size;
1362 }
1363
perf_event_validate_size(struct perf_event * event)1364 static bool perf_event_validate_size(struct perf_event *event)
1365 {
1366 /*
1367 * The values computed here will be over-written when we actually
1368 * attach the event.
1369 */
1370 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1371 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1372 perf_event__id_header_size(event);
1373
1374 /*
1375 * Sum the lot; should not exceed the 64k limit we have on records.
1376 * Conservative limit to allow for callchains and other variable fields.
1377 */
1378 if (event->read_size + event->header_size +
1379 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1380 return false;
1381
1382 return true;
1383 }
1384
perf_group_attach(struct perf_event * event)1385 static void perf_group_attach(struct perf_event *event)
1386 {
1387 struct perf_event *group_leader = event->group_leader, *pos;
1388
1389 /*
1390 * We can have double attach due to group movement in perf_event_open.
1391 */
1392 if (event->attach_state & PERF_ATTACH_GROUP)
1393 return;
1394
1395 event->attach_state |= PERF_ATTACH_GROUP;
1396
1397 if (group_leader == event)
1398 return;
1399
1400 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1401
1402 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1403 !is_software_event(event))
1404 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1405
1406 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1407 group_leader->nr_siblings++;
1408
1409 perf_event__header_size(group_leader);
1410
1411 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1412 perf_event__header_size(pos);
1413 }
1414
1415 /*
1416 * Remove a event from the lists for its context.
1417 * Must be called with ctx->mutex and ctx->lock held.
1418 */
1419 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)1420 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1421 {
1422 struct perf_cpu_context *cpuctx;
1423
1424 WARN_ON_ONCE(event->ctx != ctx);
1425 lockdep_assert_held(&ctx->lock);
1426
1427 /*
1428 * We can have double detach due to exit/hot-unplug + close.
1429 */
1430 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1431 return;
1432
1433 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1434
1435 if (is_cgroup_event(event)) {
1436 ctx->nr_cgroups--;
1437 cpuctx = __get_cpu_context(ctx);
1438 /*
1439 * if there are no more cgroup events
1440 * then cler cgrp to avoid stale pointer
1441 * in update_cgrp_time_from_cpuctx()
1442 */
1443 if (!ctx->nr_cgroups)
1444 cpuctx->cgrp = NULL;
1445 }
1446
1447 ctx->nr_events--;
1448 if (event->attr.inherit_stat)
1449 ctx->nr_stat--;
1450
1451 list_del_rcu(&event->event_entry);
1452
1453 if (event->group_leader == event)
1454 list_del_init(&event->group_entry);
1455
1456 update_group_times(event);
1457
1458 /*
1459 * If event was in error state, then keep it
1460 * that way, otherwise bogus counts will be
1461 * returned on read(). The only way to get out
1462 * of error state is by explicit re-enabling
1463 * of the event
1464 */
1465 if (event->state > PERF_EVENT_STATE_OFF)
1466 event->state = PERF_EVENT_STATE_OFF;
1467
1468 ctx->generation++;
1469 }
1470
perf_group_detach(struct perf_event * event)1471 static void perf_group_detach(struct perf_event *event)
1472 {
1473 struct perf_event *sibling, *tmp;
1474 struct list_head *list = NULL;
1475
1476 /*
1477 * We can have double detach due to exit/hot-unplug + close.
1478 */
1479 if (!(event->attach_state & PERF_ATTACH_GROUP))
1480 return;
1481
1482 event->attach_state &= ~PERF_ATTACH_GROUP;
1483
1484 /*
1485 * If this is a sibling, remove it from its group.
1486 */
1487 if (event->group_leader != event) {
1488 list_del_init(&event->group_entry);
1489 event->group_leader->nr_siblings--;
1490 goto out;
1491 }
1492
1493 if (!list_empty(&event->group_entry))
1494 list = &event->group_entry;
1495
1496 /*
1497 * If this was a group event with sibling events then
1498 * upgrade the siblings to singleton events by adding them
1499 * to whatever list we are on.
1500 */
1501 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1502 if (list)
1503 list_move_tail(&sibling->group_entry, list);
1504 sibling->group_leader = sibling;
1505
1506 /* Inherit group flags from the previous leader */
1507 sibling->group_flags = event->group_flags;
1508
1509 WARN_ON_ONCE(sibling->ctx != event->ctx);
1510 }
1511
1512 out:
1513 perf_event__header_size(event->group_leader);
1514
1515 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1516 perf_event__header_size(tmp);
1517 }
1518
1519 /*
1520 * User event without the task.
1521 */
is_orphaned_event(struct perf_event * event)1522 static bool is_orphaned_event(struct perf_event *event)
1523 {
1524 return event && !is_kernel_event(event) && !event->owner;
1525 }
1526
1527 /*
1528 * Event has a parent but parent's task finished and it's
1529 * alive only because of children holding refference.
1530 */
is_orphaned_child(struct perf_event * event)1531 static bool is_orphaned_child(struct perf_event *event)
1532 {
1533 return is_orphaned_event(event->parent);
1534 }
1535
1536 static void orphans_remove_work(struct work_struct *work);
1537
schedule_orphans_remove(struct perf_event_context * ctx)1538 static void schedule_orphans_remove(struct perf_event_context *ctx)
1539 {
1540 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1541 return;
1542
1543 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1544 get_ctx(ctx);
1545 ctx->orphans_remove_sched = true;
1546 }
1547 }
1548
perf_workqueue_init(void)1549 static int __init perf_workqueue_init(void)
1550 {
1551 perf_wq = create_singlethread_workqueue("perf");
1552 WARN(!perf_wq, "failed to create perf workqueue\n");
1553 return perf_wq ? 0 : -1;
1554 }
1555
1556 core_initcall(perf_workqueue_init);
1557
__pmu_filter_match(struct perf_event * event)1558 static inline int __pmu_filter_match(struct perf_event *event)
1559 {
1560 struct pmu *pmu = event->pmu;
1561 return pmu->filter_match ? pmu->filter_match(event) : 1;
1562 }
1563
1564 /*
1565 * Check whether we should attempt to schedule an event group based on
1566 * PMU-specific filtering. An event group can consist of HW and SW events,
1567 * potentially with a SW leader, so we must check all the filters, to
1568 * determine whether a group is schedulable:
1569 */
pmu_filter_match(struct perf_event * event)1570 static inline int pmu_filter_match(struct perf_event *event)
1571 {
1572 struct perf_event *child;
1573
1574 if (!__pmu_filter_match(event))
1575 return 0;
1576
1577 list_for_each_entry(child, &event->sibling_list, group_entry) {
1578 if (!__pmu_filter_match(child))
1579 return 0;
1580 }
1581
1582 return 1;
1583 }
1584
1585 static inline int
event_filter_match(struct perf_event * event)1586 event_filter_match(struct perf_event *event)
1587 {
1588 return (event->cpu == -1 || event->cpu == smp_processor_id())
1589 && perf_cgroup_match(event) && pmu_filter_match(event);
1590 }
1591
1592 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1593 event_sched_out(struct perf_event *event,
1594 struct perf_cpu_context *cpuctx,
1595 struct perf_event_context *ctx)
1596 {
1597 u64 tstamp = perf_event_time(event);
1598 u64 delta;
1599
1600 WARN_ON_ONCE(event->ctx != ctx);
1601 lockdep_assert_held(&ctx->lock);
1602
1603 /*
1604 * An event which could not be activated because of
1605 * filter mismatch still needs to have its timings
1606 * maintained, otherwise bogus information is return
1607 * via read() for time_enabled, time_running:
1608 */
1609 if (event->state == PERF_EVENT_STATE_INACTIVE
1610 && !event_filter_match(event)) {
1611 delta = tstamp - event->tstamp_stopped;
1612 event->tstamp_running += delta;
1613 event->tstamp_stopped = tstamp;
1614 }
1615
1616 if (event->state != PERF_EVENT_STATE_ACTIVE)
1617 return;
1618
1619 perf_pmu_disable(event->pmu);
1620
1621 event->tstamp_stopped = tstamp;
1622 event->pmu->del(event, 0);
1623 event->oncpu = -1;
1624 event->state = PERF_EVENT_STATE_INACTIVE;
1625 if (event->pending_disable) {
1626 event->pending_disable = 0;
1627 event->state = PERF_EVENT_STATE_OFF;
1628 }
1629
1630 if (!is_software_event(event))
1631 cpuctx->active_oncpu--;
1632 if (!--ctx->nr_active)
1633 perf_event_ctx_deactivate(ctx);
1634 if (event->attr.freq && event->attr.sample_freq)
1635 ctx->nr_freq--;
1636 if (event->attr.exclusive || !cpuctx->active_oncpu)
1637 cpuctx->exclusive = 0;
1638
1639 if (is_orphaned_child(event))
1640 schedule_orphans_remove(ctx);
1641
1642 perf_pmu_enable(event->pmu);
1643 }
1644
1645 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1646 group_sched_out(struct perf_event *group_event,
1647 struct perf_cpu_context *cpuctx,
1648 struct perf_event_context *ctx)
1649 {
1650 struct perf_event *event;
1651 int state = group_event->state;
1652
1653 event_sched_out(group_event, cpuctx, ctx);
1654
1655 /*
1656 * Schedule out siblings (if any):
1657 */
1658 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1659 event_sched_out(event, cpuctx, ctx);
1660
1661 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1662 cpuctx->exclusive = 0;
1663 }
1664
1665 struct remove_event {
1666 struct perf_event *event;
1667 bool detach_group;
1668 };
1669
1670 /*
1671 * Cross CPU call to remove a performance event
1672 *
1673 * We disable the event on the hardware level first. After that we
1674 * remove it from the context list.
1675 */
__perf_remove_from_context(void * info)1676 static int __perf_remove_from_context(void *info)
1677 {
1678 struct remove_event *re = info;
1679 struct perf_event *event = re->event;
1680 struct perf_event_context *ctx = event->ctx;
1681 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1682
1683 raw_spin_lock(&ctx->lock);
1684 event_sched_out(event, cpuctx, ctx);
1685 if (re->detach_group)
1686 perf_group_detach(event);
1687 list_del_event(event, ctx);
1688 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1689 ctx->is_active = 0;
1690 cpuctx->task_ctx = NULL;
1691 }
1692 raw_spin_unlock(&ctx->lock);
1693
1694 return 0;
1695 }
1696
1697
1698 /*
1699 * Remove the event from a task's (or a CPU's) list of events.
1700 *
1701 * CPU events are removed with a smp call. For task events we only
1702 * call when the task is on a CPU.
1703 *
1704 * If event->ctx is a cloned context, callers must make sure that
1705 * every task struct that event->ctx->task could possibly point to
1706 * remains valid. This is OK when called from perf_release since
1707 * that only calls us on the top-level context, which can't be a clone.
1708 * When called from perf_event_exit_task, it's OK because the
1709 * context has been detached from its task.
1710 */
perf_remove_from_context(struct perf_event * event,bool detach_group)1711 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1712 {
1713 struct perf_event_context *ctx = event->ctx;
1714 struct task_struct *task = ctx->task;
1715 struct remove_event re = {
1716 .event = event,
1717 .detach_group = detach_group,
1718 };
1719
1720 lockdep_assert_held(&ctx->mutex);
1721
1722 if (!task) {
1723 /*
1724 * Per cpu events are removed via an smp call. The removal can
1725 * fail if the CPU is currently offline, but in that case we
1726 * already called __perf_remove_from_context from
1727 * perf_event_exit_cpu.
1728 */
1729 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1730 return;
1731 }
1732
1733 retry:
1734 if (!task_function_call(task, __perf_remove_from_context, &re))
1735 return;
1736
1737 raw_spin_lock_irq(&ctx->lock);
1738 /*
1739 * If we failed to find a running task, but find the context active now
1740 * that we've acquired the ctx->lock, retry.
1741 */
1742 if (ctx->is_active) {
1743 raw_spin_unlock_irq(&ctx->lock);
1744 /*
1745 * Reload the task pointer, it might have been changed by
1746 * a concurrent perf_event_context_sched_out().
1747 */
1748 task = ctx->task;
1749 goto retry;
1750 }
1751
1752 /*
1753 * Since the task isn't running, its safe to remove the event, us
1754 * holding the ctx->lock ensures the task won't get scheduled in.
1755 */
1756 if (detach_group)
1757 perf_group_detach(event);
1758 list_del_event(event, ctx);
1759 raw_spin_unlock_irq(&ctx->lock);
1760 }
1761
1762 /*
1763 * Cross CPU call to disable a performance event
1764 */
__perf_event_disable(void * info)1765 int __perf_event_disable(void *info)
1766 {
1767 struct perf_event *event = info;
1768 struct perf_event_context *ctx = event->ctx;
1769 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1770
1771 /*
1772 * If this is a per-task event, need to check whether this
1773 * event's task is the current task on this cpu.
1774 *
1775 * Can trigger due to concurrent perf_event_context_sched_out()
1776 * flipping contexts around.
1777 */
1778 if (ctx->task && cpuctx->task_ctx != ctx)
1779 return -EINVAL;
1780
1781 raw_spin_lock(&ctx->lock);
1782
1783 /*
1784 * If the event is on, turn it off.
1785 * If it is in error state, leave it in error state.
1786 */
1787 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1788 update_context_time(ctx);
1789 update_cgrp_time_from_event(event);
1790 update_group_times(event);
1791 if (event == event->group_leader)
1792 group_sched_out(event, cpuctx, ctx);
1793 else
1794 event_sched_out(event, cpuctx, ctx);
1795 event->state = PERF_EVENT_STATE_OFF;
1796 }
1797
1798 raw_spin_unlock(&ctx->lock);
1799
1800 return 0;
1801 }
1802
1803 /*
1804 * Disable a event.
1805 *
1806 * If event->ctx is a cloned context, callers must make sure that
1807 * every task struct that event->ctx->task could possibly point to
1808 * remains valid. This condition is satisifed when called through
1809 * perf_event_for_each_child or perf_event_for_each because they
1810 * hold the top-level event's child_mutex, so any descendant that
1811 * goes to exit will block in sync_child_event.
1812 * When called from perf_pending_event it's OK because event->ctx
1813 * is the current context on this CPU and preemption is disabled,
1814 * hence we can't get into perf_event_task_sched_out for this context.
1815 */
_perf_event_disable(struct perf_event * event)1816 static void _perf_event_disable(struct perf_event *event)
1817 {
1818 struct perf_event_context *ctx = event->ctx;
1819 struct task_struct *task = ctx->task;
1820
1821 if (!task) {
1822 /*
1823 * Disable the event on the cpu that it's on
1824 */
1825 cpu_function_call(event->cpu, __perf_event_disable, event);
1826 return;
1827 }
1828
1829 retry:
1830 if (!task_function_call(task, __perf_event_disable, event))
1831 return;
1832
1833 raw_spin_lock_irq(&ctx->lock);
1834 /*
1835 * If the event is still active, we need to retry the cross-call.
1836 */
1837 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1838 raw_spin_unlock_irq(&ctx->lock);
1839 /*
1840 * Reload the task pointer, it might have been changed by
1841 * a concurrent perf_event_context_sched_out().
1842 */
1843 task = ctx->task;
1844 goto retry;
1845 }
1846
1847 /*
1848 * Since we have the lock this context can't be scheduled
1849 * in, so we can change the state safely.
1850 */
1851 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1852 update_group_times(event);
1853 event->state = PERF_EVENT_STATE_OFF;
1854 }
1855 raw_spin_unlock_irq(&ctx->lock);
1856 }
1857
1858 /*
1859 * Strictly speaking kernel users cannot create groups and therefore this
1860 * interface does not need the perf_event_ctx_lock() magic.
1861 */
perf_event_disable(struct perf_event * event)1862 void perf_event_disable(struct perf_event *event)
1863 {
1864 struct perf_event_context *ctx;
1865
1866 ctx = perf_event_ctx_lock(event);
1867 _perf_event_disable(event);
1868 perf_event_ctx_unlock(event, ctx);
1869 }
1870 EXPORT_SYMBOL_GPL(perf_event_disable);
1871
perf_set_shadow_time(struct perf_event * event,struct perf_event_context * ctx,u64 tstamp)1872 static void perf_set_shadow_time(struct perf_event *event,
1873 struct perf_event_context *ctx,
1874 u64 tstamp)
1875 {
1876 /*
1877 * use the correct time source for the time snapshot
1878 *
1879 * We could get by without this by leveraging the
1880 * fact that to get to this function, the caller
1881 * has most likely already called update_context_time()
1882 * and update_cgrp_time_xx() and thus both timestamp
1883 * are identical (or very close). Given that tstamp is,
1884 * already adjusted for cgroup, we could say that:
1885 * tstamp - ctx->timestamp
1886 * is equivalent to
1887 * tstamp - cgrp->timestamp.
1888 *
1889 * Then, in perf_output_read(), the calculation would
1890 * work with no changes because:
1891 * - event is guaranteed scheduled in
1892 * - no scheduled out in between
1893 * - thus the timestamp would be the same
1894 *
1895 * But this is a bit hairy.
1896 *
1897 * So instead, we have an explicit cgroup call to remain
1898 * within the time time source all along. We believe it
1899 * is cleaner and simpler to understand.
1900 */
1901 if (is_cgroup_event(event))
1902 perf_cgroup_set_shadow_time(event, tstamp);
1903 else
1904 event->shadow_ctx_time = tstamp - ctx->timestamp;
1905 }
1906
1907 #define MAX_INTERRUPTS (~0ULL)
1908
1909 static void perf_log_throttle(struct perf_event *event, int enable);
1910 static void perf_log_itrace_start(struct perf_event *event);
1911
1912 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1913 event_sched_in(struct perf_event *event,
1914 struct perf_cpu_context *cpuctx,
1915 struct perf_event_context *ctx)
1916 {
1917 u64 tstamp = perf_event_time(event);
1918 int ret = 0;
1919
1920 lockdep_assert_held(&ctx->lock);
1921
1922 if (event->state <= PERF_EVENT_STATE_OFF)
1923 return 0;
1924
1925 event->state = PERF_EVENT_STATE_ACTIVE;
1926 event->oncpu = smp_processor_id();
1927
1928 /*
1929 * Unthrottle events, since we scheduled we might have missed several
1930 * ticks already, also for a heavily scheduling task there is little
1931 * guarantee it'll get a tick in a timely manner.
1932 */
1933 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1934 perf_log_throttle(event, 1);
1935 event->hw.interrupts = 0;
1936 }
1937
1938 /*
1939 * The new state must be visible before we turn it on in the hardware:
1940 */
1941 smp_wmb();
1942
1943 perf_pmu_disable(event->pmu);
1944
1945 perf_set_shadow_time(event, ctx, tstamp);
1946
1947 perf_log_itrace_start(event);
1948
1949 if (event->pmu->add(event, PERF_EF_START)) {
1950 event->state = PERF_EVENT_STATE_INACTIVE;
1951 event->oncpu = -1;
1952 ret = -EAGAIN;
1953 goto out;
1954 }
1955
1956 event->tstamp_running += tstamp - event->tstamp_stopped;
1957
1958 if (!is_software_event(event))
1959 cpuctx->active_oncpu++;
1960 if (!ctx->nr_active++)
1961 perf_event_ctx_activate(ctx);
1962 if (event->attr.freq && event->attr.sample_freq)
1963 ctx->nr_freq++;
1964
1965 if (event->attr.exclusive)
1966 cpuctx->exclusive = 1;
1967
1968 if (is_orphaned_child(event))
1969 schedule_orphans_remove(ctx);
1970
1971 out:
1972 perf_pmu_enable(event->pmu);
1973
1974 return ret;
1975 }
1976
1977 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1978 group_sched_in(struct perf_event *group_event,
1979 struct perf_cpu_context *cpuctx,
1980 struct perf_event_context *ctx)
1981 {
1982 struct perf_event *event, *partial_group = NULL;
1983 struct pmu *pmu = ctx->pmu;
1984 u64 now = ctx->time;
1985 bool simulate = false;
1986
1987 if (group_event->state == PERF_EVENT_STATE_OFF)
1988 return 0;
1989
1990 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1991
1992 if (event_sched_in(group_event, cpuctx, ctx)) {
1993 pmu->cancel_txn(pmu);
1994 perf_mux_hrtimer_restart(cpuctx);
1995 return -EAGAIN;
1996 }
1997
1998 /*
1999 * Schedule in siblings as one group (if any):
2000 */
2001 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2002 if (event_sched_in(event, cpuctx, ctx)) {
2003 partial_group = event;
2004 goto group_error;
2005 }
2006 }
2007
2008 if (!pmu->commit_txn(pmu))
2009 return 0;
2010
2011 group_error:
2012 /*
2013 * Groups can be scheduled in as one unit only, so undo any
2014 * partial group before returning:
2015 * The events up to the failed event are scheduled out normally,
2016 * tstamp_stopped will be updated.
2017 *
2018 * The failed events and the remaining siblings need to have
2019 * their timings updated as if they had gone thru event_sched_in()
2020 * and event_sched_out(). This is required to get consistent timings
2021 * across the group. This also takes care of the case where the group
2022 * could never be scheduled by ensuring tstamp_stopped is set to mark
2023 * the time the event was actually stopped, such that time delta
2024 * calculation in update_event_times() is correct.
2025 */
2026 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2027 if (event == partial_group)
2028 simulate = true;
2029
2030 if (simulate) {
2031 event->tstamp_running += now - event->tstamp_stopped;
2032 event->tstamp_stopped = now;
2033 } else {
2034 event_sched_out(event, cpuctx, ctx);
2035 }
2036 }
2037 event_sched_out(group_event, cpuctx, ctx);
2038
2039 pmu->cancel_txn(pmu);
2040
2041 perf_mux_hrtimer_restart(cpuctx);
2042
2043 return -EAGAIN;
2044 }
2045
2046 /*
2047 * Work out whether we can put this event group on the CPU now.
2048 */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)2049 static int group_can_go_on(struct perf_event *event,
2050 struct perf_cpu_context *cpuctx,
2051 int can_add_hw)
2052 {
2053 /*
2054 * Groups consisting entirely of software events can always go on.
2055 */
2056 if (event->group_flags & PERF_GROUP_SOFTWARE)
2057 return 1;
2058 /*
2059 * If an exclusive group is already on, no other hardware
2060 * events can go on.
2061 */
2062 if (cpuctx->exclusive)
2063 return 0;
2064 /*
2065 * If this group is exclusive and there are already
2066 * events on the CPU, it can't go on.
2067 */
2068 if (event->attr.exclusive && cpuctx->active_oncpu)
2069 return 0;
2070 /*
2071 * Otherwise, try to add it if all previous groups were able
2072 * to go on.
2073 */
2074 return can_add_hw;
2075 }
2076
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2077 static void add_event_to_ctx(struct perf_event *event,
2078 struct perf_event_context *ctx)
2079 {
2080 u64 tstamp = perf_event_time(event);
2081
2082 list_add_event(event, ctx);
2083 perf_group_attach(event);
2084 event->tstamp_enabled = tstamp;
2085 event->tstamp_running = tstamp;
2086 event->tstamp_stopped = tstamp;
2087 }
2088
2089 static void task_ctx_sched_out(struct perf_event_context *ctx);
2090 static void
2091 ctx_sched_in(struct perf_event_context *ctx,
2092 struct perf_cpu_context *cpuctx,
2093 enum event_type_t event_type,
2094 struct task_struct *task);
2095
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2096 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2097 struct perf_event_context *ctx,
2098 struct task_struct *task)
2099 {
2100 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2101 if (ctx)
2102 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2103 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2104 if (ctx)
2105 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2106 }
2107
2108 /*
2109 * Cross CPU call to install and enable a performance event
2110 *
2111 * Must be called with ctx->mutex held
2112 */
__perf_install_in_context(void * info)2113 static int __perf_install_in_context(void *info)
2114 {
2115 struct perf_event *event = info;
2116 struct perf_event_context *ctx = event->ctx;
2117 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2118 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2119 struct task_struct *task = current;
2120
2121 perf_ctx_lock(cpuctx, task_ctx);
2122 perf_pmu_disable(cpuctx->ctx.pmu);
2123
2124 /*
2125 * If there was an active task_ctx schedule it out.
2126 */
2127 if (task_ctx)
2128 task_ctx_sched_out(task_ctx);
2129
2130 /*
2131 * If the context we're installing events in is not the
2132 * active task_ctx, flip them.
2133 */
2134 if (ctx->task && task_ctx != ctx) {
2135 if (task_ctx)
2136 raw_spin_unlock(&task_ctx->lock);
2137 raw_spin_lock(&ctx->lock);
2138 task_ctx = ctx;
2139 }
2140
2141 if (task_ctx) {
2142 cpuctx->task_ctx = task_ctx;
2143 task = task_ctx->task;
2144 }
2145
2146 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2147
2148 update_context_time(ctx);
2149 /*
2150 * update cgrp time only if current cgrp
2151 * matches event->cgrp. Must be done before
2152 * calling add_event_to_ctx()
2153 */
2154 update_cgrp_time_from_event(event);
2155
2156 add_event_to_ctx(event, ctx);
2157
2158 /*
2159 * Schedule everything back in
2160 */
2161 perf_event_sched_in(cpuctx, task_ctx, task);
2162
2163 perf_pmu_enable(cpuctx->ctx.pmu);
2164 perf_ctx_unlock(cpuctx, task_ctx);
2165
2166 return 0;
2167 }
2168
2169 /*
2170 * Attach a performance event to a context
2171 *
2172 * First we add the event to the list with the hardware enable bit
2173 * in event->hw_config cleared.
2174 *
2175 * If the event is attached to a task which is on a CPU we use a smp
2176 * call to enable it in the task context. The task might have been
2177 * scheduled away, but we check this in the smp call again.
2178 */
2179 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2180 perf_install_in_context(struct perf_event_context *ctx,
2181 struct perf_event *event,
2182 int cpu)
2183 {
2184 struct task_struct *task = ctx->task;
2185
2186 lockdep_assert_held(&ctx->mutex);
2187
2188 event->ctx = ctx;
2189 if (event->cpu != -1)
2190 event->cpu = cpu;
2191
2192 if (!task) {
2193 /*
2194 * Per cpu events are installed via an smp call and
2195 * the install is always successful.
2196 */
2197 cpu_function_call(cpu, __perf_install_in_context, event);
2198 return;
2199 }
2200
2201 retry:
2202 if (!task_function_call(task, __perf_install_in_context, event))
2203 return;
2204
2205 raw_spin_lock_irq(&ctx->lock);
2206 /*
2207 * If we failed to find a running task, but find the context active now
2208 * that we've acquired the ctx->lock, retry.
2209 */
2210 if (ctx->is_active) {
2211 raw_spin_unlock_irq(&ctx->lock);
2212 /*
2213 * Reload the task pointer, it might have been changed by
2214 * a concurrent perf_event_context_sched_out().
2215 */
2216 task = ctx->task;
2217 goto retry;
2218 }
2219
2220 /*
2221 * Since the task isn't running, its safe to add the event, us holding
2222 * the ctx->lock ensures the task won't get scheduled in.
2223 */
2224 add_event_to_ctx(event, ctx);
2225 raw_spin_unlock_irq(&ctx->lock);
2226 }
2227
2228 /*
2229 * Put a event into inactive state and update time fields.
2230 * Enabling the leader of a group effectively enables all
2231 * the group members that aren't explicitly disabled, so we
2232 * have to update their ->tstamp_enabled also.
2233 * Note: this works for group members as well as group leaders
2234 * since the non-leader members' sibling_lists will be empty.
2235 */
__perf_event_mark_enabled(struct perf_event * event)2236 static void __perf_event_mark_enabled(struct perf_event *event)
2237 {
2238 struct perf_event *sub;
2239 u64 tstamp = perf_event_time(event);
2240
2241 event->state = PERF_EVENT_STATE_INACTIVE;
2242 event->tstamp_enabled = tstamp - event->total_time_enabled;
2243 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2244 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2245 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2246 }
2247 }
2248
2249 /*
2250 * Cross CPU call to enable a performance event
2251 */
__perf_event_enable(void * info)2252 static int __perf_event_enable(void *info)
2253 {
2254 struct perf_event *event = info;
2255 struct perf_event_context *ctx = event->ctx;
2256 struct perf_event *leader = event->group_leader;
2257 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2258 int err;
2259
2260 /*
2261 * There's a time window between 'ctx->is_active' check
2262 * in perf_event_enable function and this place having:
2263 * - IRQs on
2264 * - ctx->lock unlocked
2265 *
2266 * where the task could be killed and 'ctx' deactivated
2267 * by perf_event_exit_task.
2268 */
2269 if (!ctx->is_active)
2270 return -EINVAL;
2271
2272 raw_spin_lock(&ctx->lock);
2273 update_context_time(ctx);
2274
2275 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2276 goto unlock;
2277
2278 /*
2279 * set current task's cgroup time reference point
2280 */
2281 perf_cgroup_set_timestamp(current, ctx);
2282
2283 __perf_event_mark_enabled(event);
2284
2285 if (!event_filter_match(event)) {
2286 if (is_cgroup_event(event))
2287 perf_cgroup_defer_enabled(event);
2288 goto unlock;
2289 }
2290
2291 /*
2292 * If the event is in a group and isn't the group leader,
2293 * then don't put it on unless the group is on.
2294 */
2295 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2296 goto unlock;
2297
2298 if (!group_can_go_on(event, cpuctx, 1)) {
2299 err = -EEXIST;
2300 } else {
2301 if (event == leader)
2302 err = group_sched_in(event, cpuctx, ctx);
2303 else
2304 err = event_sched_in(event, cpuctx, ctx);
2305 }
2306
2307 if (err) {
2308 /*
2309 * If this event can't go on and it's part of a
2310 * group, then the whole group has to come off.
2311 */
2312 if (leader != event) {
2313 group_sched_out(leader, cpuctx, ctx);
2314 perf_mux_hrtimer_restart(cpuctx);
2315 }
2316 if (leader->attr.pinned) {
2317 update_group_times(leader);
2318 leader->state = PERF_EVENT_STATE_ERROR;
2319 }
2320 }
2321
2322 unlock:
2323 raw_spin_unlock(&ctx->lock);
2324
2325 return 0;
2326 }
2327
2328 /*
2329 * Enable a event.
2330 *
2331 * If event->ctx is a cloned context, callers must make sure that
2332 * every task struct that event->ctx->task could possibly point to
2333 * remains valid. This condition is satisfied when called through
2334 * perf_event_for_each_child or perf_event_for_each as described
2335 * for perf_event_disable.
2336 */
_perf_event_enable(struct perf_event * event)2337 static void _perf_event_enable(struct perf_event *event)
2338 {
2339 struct perf_event_context *ctx = event->ctx;
2340 struct task_struct *task = ctx->task;
2341
2342 if (!task) {
2343 /*
2344 * Enable the event on the cpu that it's on
2345 */
2346 cpu_function_call(event->cpu, __perf_event_enable, event);
2347 return;
2348 }
2349
2350 raw_spin_lock_irq(&ctx->lock);
2351 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2352 goto out;
2353
2354 /*
2355 * If the event is in error state, clear that first.
2356 * That way, if we see the event in error state below, we
2357 * know that it has gone back into error state, as distinct
2358 * from the task having been scheduled away before the
2359 * cross-call arrived.
2360 */
2361 if (event->state == PERF_EVENT_STATE_ERROR)
2362 event->state = PERF_EVENT_STATE_OFF;
2363
2364 retry:
2365 if (!ctx->is_active) {
2366 __perf_event_mark_enabled(event);
2367 goto out;
2368 }
2369
2370 raw_spin_unlock_irq(&ctx->lock);
2371
2372 if (!task_function_call(task, __perf_event_enable, event))
2373 return;
2374
2375 raw_spin_lock_irq(&ctx->lock);
2376
2377 /*
2378 * If the context is active and the event is still off,
2379 * we need to retry the cross-call.
2380 */
2381 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2382 /*
2383 * task could have been flipped by a concurrent
2384 * perf_event_context_sched_out()
2385 */
2386 task = ctx->task;
2387 goto retry;
2388 }
2389
2390 out:
2391 raw_spin_unlock_irq(&ctx->lock);
2392 }
2393
2394 /*
2395 * See perf_event_disable();
2396 */
perf_event_enable(struct perf_event * event)2397 void perf_event_enable(struct perf_event *event)
2398 {
2399 struct perf_event_context *ctx;
2400
2401 ctx = perf_event_ctx_lock(event);
2402 _perf_event_enable(event);
2403 perf_event_ctx_unlock(event, ctx);
2404 }
2405 EXPORT_SYMBOL_GPL(perf_event_enable);
2406
_perf_event_refresh(struct perf_event * event,int refresh)2407 static int _perf_event_refresh(struct perf_event *event, int refresh)
2408 {
2409 /*
2410 * not supported on inherited events
2411 */
2412 if (event->attr.inherit || !is_sampling_event(event))
2413 return -EINVAL;
2414
2415 atomic_add(refresh, &event->event_limit);
2416 _perf_event_enable(event);
2417
2418 return 0;
2419 }
2420
2421 /*
2422 * See perf_event_disable()
2423 */
perf_event_refresh(struct perf_event * event,int refresh)2424 int perf_event_refresh(struct perf_event *event, int refresh)
2425 {
2426 struct perf_event_context *ctx;
2427 int ret;
2428
2429 ctx = perf_event_ctx_lock(event);
2430 ret = _perf_event_refresh(event, refresh);
2431 perf_event_ctx_unlock(event, ctx);
2432
2433 return ret;
2434 }
2435 EXPORT_SYMBOL_GPL(perf_event_refresh);
2436
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)2437 static void ctx_sched_out(struct perf_event_context *ctx,
2438 struct perf_cpu_context *cpuctx,
2439 enum event_type_t event_type)
2440 {
2441 struct perf_event *event;
2442 int is_active = ctx->is_active;
2443
2444 ctx->is_active &= ~event_type;
2445 if (likely(!ctx->nr_events))
2446 return;
2447
2448 update_context_time(ctx);
2449 update_cgrp_time_from_cpuctx(cpuctx);
2450 if (!ctx->nr_active)
2451 return;
2452
2453 perf_pmu_disable(ctx->pmu);
2454 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2455 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2456 group_sched_out(event, cpuctx, ctx);
2457 }
2458
2459 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2460 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2461 group_sched_out(event, cpuctx, ctx);
2462 }
2463 perf_pmu_enable(ctx->pmu);
2464 }
2465
2466 /*
2467 * Test whether two contexts are equivalent, i.e. whether they have both been
2468 * cloned from the same version of the same context.
2469 *
2470 * Equivalence is measured using a generation number in the context that is
2471 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2472 * and list_del_event().
2473 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)2474 static int context_equiv(struct perf_event_context *ctx1,
2475 struct perf_event_context *ctx2)
2476 {
2477 lockdep_assert_held(&ctx1->lock);
2478 lockdep_assert_held(&ctx2->lock);
2479
2480 /* Pinning disables the swap optimization */
2481 if (ctx1->pin_count || ctx2->pin_count)
2482 return 0;
2483
2484 /* If ctx1 is the parent of ctx2 */
2485 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2486 return 1;
2487
2488 /* If ctx2 is the parent of ctx1 */
2489 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2490 return 1;
2491
2492 /*
2493 * If ctx1 and ctx2 have the same parent; we flatten the parent
2494 * hierarchy, see perf_event_init_context().
2495 */
2496 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2497 ctx1->parent_gen == ctx2->parent_gen)
2498 return 1;
2499
2500 /* Unmatched */
2501 return 0;
2502 }
2503
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)2504 static void __perf_event_sync_stat(struct perf_event *event,
2505 struct perf_event *next_event)
2506 {
2507 u64 value;
2508
2509 if (!event->attr.inherit_stat)
2510 return;
2511
2512 /*
2513 * Update the event value, we cannot use perf_event_read()
2514 * because we're in the middle of a context switch and have IRQs
2515 * disabled, which upsets smp_call_function_single(), however
2516 * we know the event must be on the current CPU, therefore we
2517 * don't need to use it.
2518 */
2519 switch (event->state) {
2520 case PERF_EVENT_STATE_ACTIVE:
2521 event->pmu->read(event);
2522 /* fall-through */
2523
2524 case PERF_EVENT_STATE_INACTIVE:
2525 update_event_times(event);
2526 break;
2527
2528 default:
2529 break;
2530 }
2531
2532 /*
2533 * In order to keep per-task stats reliable we need to flip the event
2534 * values when we flip the contexts.
2535 */
2536 value = local64_read(&next_event->count);
2537 value = local64_xchg(&event->count, value);
2538 local64_set(&next_event->count, value);
2539
2540 swap(event->total_time_enabled, next_event->total_time_enabled);
2541 swap(event->total_time_running, next_event->total_time_running);
2542
2543 /*
2544 * Since we swizzled the values, update the user visible data too.
2545 */
2546 perf_event_update_userpage(event);
2547 perf_event_update_userpage(next_event);
2548 }
2549
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)2550 static void perf_event_sync_stat(struct perf_event_context *ctx,
2551 struct perf_event_context *next_ctx)
2552 {
2553 struct perf_event *event, *next_event;
2554
2555 if (!ctx->nr_stat)
2556 return;
2557
2558 update_context_time(ctx);
2559
2560 event = list_first_entry(&ctx->event_list,
2561 struct perf_event, event_entry);
2562
2563 next_event = list_first_entry(&next_ctx->event_list,
2564 struct perf_event, event_entry);
2565
2566 while (&event->event_entry != &ctx->event_list &&
2567 &next_event->event_entry != &next_ctx->event_list) {
2568
2569 __perf_event_sync_stat(event, next_event);
2570
2571 event = list_next_entry(event, event_entry);
2572 next_event = list_next_entry(next_event, event_entry);
2573 }
2574 }
2575
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)2576 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2577 struct task_struct *next)
2578 {
2579 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2580 struct perf_event_context *next_ctx;
2581 struct perf_event_context *parent, *next_parent;
2582 struct perf_cpu_context *cpuctx;
2583 int do_switch = 1;
2584
2585 if (likely(!ctx))
2586 return;
2587
2588 cpuctx = __get_cpu_context(ctx);
2589 if (!cpuctx->task_ctx)
2590 return;
2591
2592 rcu_read_lock();
2593 next_ctx = next->perf_event_ctxp[ctxn];
2594 if (!next_ctx)
2595 goto unlock;
2596
2597 parent = rcu_dereference(ctx->parent_ctx);
2598 next_parent = rcu_dereference(next_ctx->parent_ctx);
2599
2600 /* If neither context have a parent context; they cannot be clones. */
2601 if (!parent && !next_parent)
2602 goto unlock;
2603
2604 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2605 /*
2606 * Looks like the two contexts are clones, so we might be
2607 * able to optimize the context switch. We lock both
2608 * contexts and check that they are clones under the
2609 * lock (including re-checking that neither has been
2610 * uncloned in the meantime). It doesn't matter which
2611 * order we take the locks because no other cpu could
2612 * be trying to lock both of these tasks.
2613 */
2614 raw_spin_lock(&ctx->lock);
2615 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2616 if (context_equiv(ctx, next_ctx)) {
2617 /*
2618 * XXX do we need a memory barrier of sorts
2619 * wrt to rcu_dereference() of perf_event_ctxp
2620 */
2621 task->perf_event_ctxp[ctxn] = next_ctx;
2622 next->perf_event_ctxp[ctxn] = ctx;
2623 ctx->task = next;
2624 next_ctx->task = task;
2625
2626 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2627
2628 do_switch = 0;
2629
2630 perf_event_sync_stat(ctx, next_ctx);
2631 }
2632 raw_spin_unlock(&next_ctx->lock);
2633 raw_spin_unlock(&ctx->lock);
2634 }
2635 unlock:
2636 rcu_read_unlock();
2637
2638 if (do_switch) {
2639 raw_spin_lock(&ctx->lock);
2640 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2641 cpuctx->task_ctx = NULL;
2642 raw_spin_unlock(&ctx->lock);
2643 }
2644 }
2645
perf_sched_cb_dec(struct pmu * pmu)2646 void perf_sched_cb_dec(struct pmu *pmu)
2647 {
2648 this_cpu_dec(perf_sched_cb_usages);
2649 }
2650
perf_sched_cb_inc(struct pmu * pmu)2651 void perf_sched_cb_inc(struct pmu *pmu)
2652 {
2653 this_cpu_inc(perf_sched_cb_usages);
2654 }
2655
2656 /*
2657 * This function provides the context switch callback to the lower code
2658 * layer. It is invoked ONLY when the context switch callback is enabled.
2659 */
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)2660 static void perf_pmu_sched_task(struct task_struct *prev,
2661 struct task_struct *next,
2662 bool sched_in)
2663 {
2664 struct perf_cpu_context *cpuctx;
2665 struct pmu *pmu;
2666 unsigned long flags;
2667
2668 if (prev == next)
2669 return;
2670
2671 local_irq_save(flags);
2672
2673 rcu_read_lock();
2674
2675 list_for_each_entry_rcu(pmu, &pmus, entry) {
2676 if (pmu->sched_task) {
2677 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2678
2679 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2680
2681 perf_pmu_disable(pmu);
2682
2683 pmu->sched_task(cpuctx->task_ctx, sched_in);
2684
2685 perf_pmu_enable(pmu);
2686
2687 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2688 }
2689 }
2690
2691 rcu_read_unlock();
2692
2693 local_irq_restore(flags);
2694 }
2695
2696 static void perf_event_switch(struct task_struct *task,
2697 struct task_struct *next_prev, bool sched_in);
2698
2699 #define for_each_task_context_nr(ctxn) \
2700 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2701
2702 /*
2703 * Called from scheduler to remove the events of the current task,
2704 * with interrupts disabled.
2705 *
2706 * We stop each event and update the event value in event->count.
2707 *
2708 * This does not protect us against NMI, but disable()
2709 * sets the disabled bit in the control field of event _before_
2710 * accessing the event control register. If a NMI hits, then it will
2711 * not restart the event.
2712 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)2713 void __perf_event_task_sched_out(struct task_struct *task,
2714 struct task_struct *next)
2715 {
2716 int ctxn;
2717
2718 if (__this_cpu_read(perf_sched_cb_usages))
2719 perf_pmu_sched_task(task, next, false);
2720
2721 if (atomic_read(&nr_switch_events))
2722 perf_event_switch(task, next, false);
2723
2724 for_each_task_context_nr(ctxn)
2725 perf_event_context_sched_out(task, ctxn, next);
2726
2727 /*
2728 * if cgroup events exist on this CPU, then we need
2729 * to check if we have to switch out PMU state.
2730 * cgroup event are system-wide mode only
2731 */
2732 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2733 perf_cgroup_sched_out(task, next);
2734 }
2735
task_ctx_sched_out(struct perf_event_context * ctx)2736 static void task_ctx_sched_out(struct perf_event_context *ctx)
2737 {
2738 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2739
2740 if (!cpuctx->task_ctx)
2741 return;
2742
2743 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2744 return;
2745
2746 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2747 cpuctx->task_ctx = NULL;
2748 }
2749
2750 /*
2751 * Called with IRQs disabled
2752 */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)2753 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2754 enum event_type_t event_type)
2755 {
2756 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2757 }
2758
2759 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)2760 ctx_pinned_sched_in(struct perf_event_context *ctx,
2761 struct perf_cpu_context *cpuctx)
2762 {
2763 struct perf_event *event;
2764
2765 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2766 if (event->state <= PERF_EVENT_STATE_OFF)
2767 continue;
2768 if (!event_filter_match(event))
2769 continue;
2770
2771 /* may need to reset tstamp_enabled */
2772 if (is_cgroup_event(event))
2773 perf_cgroup_mark_enabled(event, ctx);
2774
2775 if (group_can_go_on(event, cpuctx, 1))
2776 group_sched_in(event, cpuctx, ctx);
2777
2778 /*
2779 * If this pinned group hasn't been scheduled,
2780 * put it in error state.
2781 */
2782 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2783 update_group_times(event);
2784 event->state = PERF_EVENT_STATE_ERROR;
2785 }
2786 }
2787 }
2788
2789 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)2790 ctx_flexible_sched_in(struct perf_event_context *ctx,
2791 struct perf_cpu_context *cpuctx)
2792 {
2793 struct perf_event *event;
2794 int can_add_hw = 1;
2795
2796 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2797 /* Ignore events in OFF or ERROR state */
2798 if (event->state <= PERF_EVENT_STATE_OFF)
2799 continue;
2800 /*
2801 * Listen to the 'cpu' scheduling filter constraint
2802 * of events:
2803 */
2804 if (!event_filter_match(event))
2805 continue;
2806
2807 /* may need to reset tstamp_enabled */
2808 if (is_cgroup_event(event))
2809 perf_cgroup_mark_enabled(event, ctx);
2810
2811 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2812 if (group_sched_in(event, cpuctx, ctx))
2813 can_add_hw = 0;
2814 }
2815 }
2816 }
2817
2818 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)2819 ctx_sched_in(struct perf_event_context *ctx,
2820 struct perf_cpu_context *cpuctx,
2821 enum event_type_t event_type,
2822 struct task_struct *task)
2823 {
2824 u64 now;
2825 int is_active = ctx->is_active;
2826
2827 ctx->is_active |= event_type;
2828 if (likely(!ctx->nr_events))
2829 return;
2830
2831 now = perf_clock();
2832 ctx->timestamp = now;
2833 perf_cgroup_set_timestamp(task, ctx);
2834 /*
2835 * First go through the list and put on any pinned groups
2836 * in order to give them the best chance of going on.
2837 */
2838 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2839 ctx_pinned_sched_in(ctx, cpuctx);
2840
2841 /* Then walk through the lower prio flexible groups */
2842 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2843 ctx_flexible_sched_in(ctx, cpuctx);
2844 }
2845
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)2846 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2847 enum event_type_t event_type,
2848 struct task_struct *task)
2849 {
2850 struct perf_event_context *ctx = &cpuctx->ctx;
2851
2852 ctx_sched_in(ctx, cpuctx, event_type, task);
2853 }
2854
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)2855 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2856 struct task_struct *task)
2857 {
2858 struct perf_cpu_context *cpuctx;
2859
2860 cpuctx = __get_cpu_context(ctx);
2861 if (cpuctx->task_ctx == ctx)
2862 return;
2863
2864 perf_ctx_lock(cpuctx, ctx);
2865 perf_pmu_disable(ctx->pmu);
2866 /*
2867 * We want to keep the following priority order:
2868 * cpu pinned (that don't need to move), task pinned,
2869 * cpu flexible, task flexible.
2870 */
2871 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2872
2873 if (ctx->nr_events)
2874 cpuctx->task_ctx = ctx;
2875
2876 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2877
2878 perf_pmu_enable(ctx->pmu);
2879 perf_ctx_unlock(cpuctx, ctx);
2880 }
2881
2882 /*
2883 * Called from scheduler to add the events of the current task
2884 * with interrupts disabled.
2885 *
2886 * We restore the event value and then enable it.
2887 *
2888 * This does not protect us against NMI, but enable()
2889 * sets the enabled bit in the control field of event _before_
2890 * accessing the event control register. If a NMI hits, then it will
2891 * keep the event running.
2892 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)2893 void __perf_event_task_sched_in(struct task_struct *prev,
2894 struct task_struct *task)
2895 {
2896 struct perf_event_context *ctx;
2897 int ctxn;
2898
2899 for_each_task_context_nr(ctxn) {
2900 ctx = task->perf_event_ctxp[ctxn];
2901 if (likely(!ctx))
2902 continue;
2903
2904 perf_event_context_sched_in(ctx, task);
2905 }
2906 /*
2907 * if cgroup events exist on this CPU, then we need
2908 * to check if we have to switch in PMU state.
2909 * cgroup event are system-wide mode only
2910 */
2911 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2912 perf_cgroup_sched_in(prev, task);
2913
2914 if (atomic_read(&nr_switch_events))
2915 perf_event_switch(task, prev, true);
2916
2917 if (__this_cpu_read(perf_sched_cb_usages))
2918 perf_pmu_sched_task(prev, task, true);
2919 }
2920
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)2921 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2922 {
2923 u64 frequency = event->attr.sample_freq;
2924 u64 sec = NSEC_PER_SEC;
2925 u64 divisor, dividend;
2926
2927 int count_fls, nsec_fls, frequency_fls, sec_fls;
2928
2929 count_fls = fls64(count);
2930 nsec_fls = fls64(nsec);
2931 frequency_fls = fls64(frequency);
2932 sec_fls = 30;
2933
2934 /*
2935 * We got @count in @nsec, with a target of sample_freq HZ
2936 * the target period becomes:
2937 *
2938 * @count * 10^9
2939 * period = -------------------
2940 * @nsec * sample_freq
2941 *
2942 */
2943
2944 /*
2945 * Reduce accuracy by one bit such that @a and @b converge
2946 * to a similar magnitude.
2947 */
2948 #define REDUCE_FLS(a, b) \
2949 do { \
2950 if (a##_fls > b##_fls) { \
2951 a >>= 1; \
2952 a##_fls--; \
2953 } else { \
2954 b >>= 1; \
2955 b##_fls--; \
2956 } \
2957 } while (0)
2958
2959 /*
2960 * Reduce accuracy until either term fits in a u64, then proceed with
2961 * the other, so that finally we can do a u64/u64 division.
2962 */
2963 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2964 REDUCE_FLS(nsec, frequency);
2965 REDUCE_FLS(sec, count);
2966 }
2967
2968 if (count_fls + sec_fls > 64) {
2969 divisor = nsec * frequency;
2970
2971 while (count_fls + sec_fls > 64) {
2972 REDUCE_FLS(count, sec);
2973 divisor >>= 1;
2974 }
2975
2976 dividend = count * sec;
2977 } else {
2978 dividend = count * sec;
2979
2980 while (nsec_fls + frequency_fls > 64) {
2981 REDUCE_FLS(nsec, frequency);
2982 dividend >>= 1;
2983 }
2984
2985 divisor = nsec * frequency;
2986 }
2987
2988 if (!divisor)
2989 return dividend;
2990
2991 return div64_u64(dividend, divisor);
2992 }
2993
2994 static DEFINE_PER_CPU(int, perf_throttled_count);
2995 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2996
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)2997 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2998 {
2999 struct hw_perf_event *hwc = &event->hw;
3000 s64 period, sample_period;
3001 s64 delta;
3002
3003 period = perf_calculate_period(event, nsec, count);
3004
3005 delta = (s64)(period - hwc->sample_period);
3006 delta = (delta + 7) / 8; /* low pass filter */
3007
3008 sample_period = hwc->sample_period + delta;
3009
3010 if (!sample_period)
3011 sample_period = 1;
3012
3013 hwc->sample_period = sample_period;
3014
3015 if (local64_read(&hwc->period_left) > 8*sample_period) {
3016 if (disable)
3017 event->pmu->stop(event, PERF_EF_UPDATE);
3018
3019 local64_set(&hwc->period_left, 0);
3020
3021 if (disable)
3022 event->pmu->start(event, PERF_EF_RELOAD);
3023 }
3024 }
3025
3026 /*
3027 * combine freq adjustment with unthrottling to avoid two passes over the
3028 * events. At the same time, make sure, having freq events does not change
3029 * the rate of unthrottling as that would introduce bias.
3030 */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)3031 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3032 int needs_unthr)
3033 {
3034 struct perf_event *event;
3035 struct hw_perf_event *hwc;
3036 u64 now, period = TICK_NSEC;
3037 s64 delta;
3038
3039 /*
3040 * only need to iterate over all events iff:
3041 * - context have events in frequency mode (needs freq adjust)
3042 * - there are events to unthrottle on this cpu
3043 */
3044 if (!(ctx->nr_freq || needs_unthr))
3045 return;
3046
3047 raw_spin_lock(&ctx->lock);
3048 perf_pmu_disable(ctx->pmu);
3049
3050 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3051 if (event->state != PERF_EVENT_STATE_ACTIVE)
3052 continue;
3053
3054 if (!event_filter_match(event))
3055 continue;
3056
3057 perf_pmu_disable(event->pmu);
3058
3059 hwc = &event->hw;
3060
3061 if (hwc->interrupts == MAX_INTERRUPTS) {
3062 hwc->interrupts = 0;
3063 perf_log_throttle(event, 1);
3064 event->pmu->start(event, 0);
3065 }
3066
3067 if (!event->attr.freq || !event->attr.sample_freq)
3068 goto next;
3069
3070 /*
3071 * stop the event and update event->count
3072 */
3073 event->pmu->stop(event, PERF_EF_UPDATE);
3074
3075 now = local64_read(&event->count);
3076 delta = now - hwc->freq_count_stamp;
3077 hwc->freq_count_stamp = now;
3078
3079 /*
3080 * restart the event
3081 * reload only if value has changed
3082 * we have stopped the event so tell that
3083 * to perf_adjust_period() to avoid stopping it
3084 * twice.
3085 */
3086 if (delta > 0)
3087 perf_adjust_period(event, period, delta, false);
3088
3089 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3090 next:
3091 perf_pmu_enable(event->pmu);
3092 }
3093
3094 perf_pmu_enable(ctx->pmu);
3095 raw_spin_unlock(&ctx->lock);
3096 }
3097
3098 /*
3099 * Round-robin a context's events:
3100 */
rotate_ctx(struct perf_event_context * ctx)3101 static void rotate_ctx(struct perf_event_context *ctx)
3102 {
3103 /*
3104 * Rotate the first entry last of non-pinned groups. Rotation might be
3105 * disabled by the inheritance code.
3106 */
3107 if (!ctx->rotate_disable)
3108 list_rotate_left(&ctx->flexible_groups);
3109 }
3110
perf_rotate_context(struct perf_cpu_context * cpuctx)3111 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3112 {
3113 struct perf_event_context *ctx = NULL;
3114 int rotate = 0;
3115
3116 if (cpuctx->ctx.nr_events) {
3117 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3118 rotate = 1;
3119 }
3120
3121 ctx = cpuctx->task_ctx;
3122 if (ctx && ctx->nr_events) {
3123 if (ctx->nr_events != ctx->nr_active)
3124 rotate = 1;
3125 }
3126
3127 if (!rotate)
3128 goto done;
3129
3130 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3131 perf_pmu_disable(cpuctx->ctx.pmu);
3132
3133 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3134 if (ctx)
3135 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3136
3137 rotate_ctx(&cpuctx->ctx);
3138 if (ctx)
3139 rotate_ctx(ctx);
3140
3141 perf_event_sched_in(cpuctx, ctx, current);
3142
3143 perf_pmu_enable(cpuctx->ctx.pmu);
3144 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3145 done:
3146
3147 return rotate;
3148 }
3149
3150 #ifdef CONFIG_NO_HZ_FULL
perf_event_can_stop_tick(void)3151 bool perf_event_can_stop_tick(void)
3152 {
3153 if (atomic_read(&nr_freq_events) ||
3154 __this_cpu_read(perf_throttled_count))
3155 return false;
3156 else
3157 return true;
3158 }
3159 #endif
3160
perf_event_task_tick(void)3161 void perf_event_task_tick(void)
3162 {
3163 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3164 struct perf_event_context *ctx, *tmp;
3165 int throttled;
3166
3167 WARN_ON(!irqs_disabled());
3168
3169 __this_cpu_inc(perf_throttled_seq);
3170 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3171
3172 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3173 perf_adjust_freq_unthr_context(ctx, throttled);
3174 }
3175
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)3176 static int event_enable_on_exec(struct perf_event *event,
3177 struct perf_event_context *ctx)
3178 {
3179 if (!event->attr.enable_on_exec)
3180 return 0;
3181
3182 event->attr.enable_on_exec = 0;
3183 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3184 return 0;
3185
3186 __perf_event_mark_enabled(event);
3187
3188 return 1;
3189 }
3190
3191 /*
3192 * Enable all of a task's events that have been marked enable-on-exec.
3193 * This expects task == current.
3194 */
perf_event_enable_on_exec(int ctxn)3195 static void perf_event_enable_on_exec(int ctxn)
3196 {
3197 struct perf_event_context *ctx, *clone_ctx = NULL;
3198 struct perf_event *event;
3199 unsigned long flags;
3200 int enabled = 0;
3201 int ret;
3202
3203 local_irq_save(flags);
3204 ctx = current->perf_event_ctxp[ctxn];
3205 if (!ctx || !ctx->nr_events)
3206 goto out;
3207
3208 /*
3209 * We must ctxsw out cgroup events to avoid conflict
3210 * when invoking perf_task_event_sched_in() later on
3211 * in this function. Otherwise we end up trying to
3212 * ctxswin cgroup events which are already scheduled
3213 * in.
3214 */
3215 perf_cgroup_sched_out(current, NULL);
3216
3217 raw_spin_lock(&ctx->lock);
3218 task_ctx_sched_out(ctx);
3219
3220 list_for_each_entry(event, &ctx->event_list, event_entry) {
3221 ret = event_enable_on_exec(event, ctx);
3222 if (ret)
3223 enabled = 1;
3224 }
3225
3226 /*
3227 * Unclone this context if we enabled any event.
3228 */
3229 if (enabled)
3230 clone_ctx = unclone_ctx(ctx);
3231
3232 raw_spin_unlock(&ctx->lock);
3233
3234 /*
3235 * Also calls ctxswin for cgroup events, if any:
3236 */
3237 perf_event_context_sched_in(ctx, ctx->task);
3238 out:
3239 local_irq_restore(flags);
3240
3241 if (clone_ctx)
3242 put_ctx(clone_ctx);
3243 }
3244
perf_event_exec(void)3245 void perf_event_exec(void)
3246 {
3247 int ctxn;
3248
3249 rcu_read_lock();
3250 for_each_task_context_nr(ctxn)
3251 perf_event_enable_on_exec(ctxn);
3252 rcu_read_unlock();
3253 }
3254
3255 struct perf_read_data {
3256 struct perf_event *event;
3257 bool group;
3258 int ret;
3259 };
3260
3261 /*
3262 * Cross CPU call to read the hardware event
3263 */
__perf_event_read(void * info)3264 static void __perf_event_read(void *info)
3265 {
3266 struct perf_read_data *data = info;
3267 struct perf_event *sub, *event = data->event;
3268 struct perf_event_context *ctx = event->ctx;
3269 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3270 struct pmu *pmu = event->pmu;
3271
3272 /*
3273 * If this is a task context, we need to check whether it is
3274 * the current task context of this cpu. If not it has been
3275 * scheduled out before the smp call arrived. In that case
3276 * event->count would have been updated to a recent sample
3277 * when the event was scheduled out.
3278 */
3279 if (ctx->task && cpuctx->task_ctx != ctx)
3280 return;
3281
3282 raw_spin_lock(&ctx->lock);
3283 if (ctx->is_active) {
3284 update_context_time(ctx);
3285 update_cgrp_time_from_event(event);
3286 }
3287
3288 update_event_times(event);
3289 if (event->state != PERF_EVENT_STATE_ACTIVE)
3290 goto unlock;
3291
3292 if (!data->group) {
3293 pmu->read(event);
3294 data->ret = 0;
3295 goto unlock;
3296 }
3297
3298 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3299
3300 pmu->read(event);
3301
3302 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3303 update_event_times(sub);
3304 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3305 /*
3306 * Use sibling's PMU rather than @event's since
3307 * sibling could be on different (eg: software) PMU.
3308 */
3309 sub->pmu->read(sub);
3310 }
3311 }
3312
3313 data->ret = pmu->commit_txn(pmu);
3314
3315 unlock:
3316 raw_spin_unlock(&ctx->lock);
3317 }
3318
perf_event_count(struct perf_event * event)3319 static inline u64 perf_event_count(struct perf_event *event)
3320 {
3321 if (event->pmu->count)
3322 return event->pmu->count(event);
3323
3324 return __perf_event_count(event);
3325 }
3326
3327 /*
3328 * NMI-safe method to read a local event, that is an event that
3329 * is:
3330 * - either for the current task, or for this CPU
3331 * - does not have inherit set, for inherited task events
3332 * will not be local and we cannot read them atomically
3333 * - must not have a pmu::count method
3334 */
perf_event_read_local(struct perf_event * event)3335 u64 perf_event_read_local(struct perf_event *event)
3336 {
3337 unsigned long flags;
3338 u64 val;
3339
3340 /*
3341 * Disabling interrupts avoids all counter scheduling (context
3342 * switches, timer based rotation and IPIs).
3343 */
3344 local_irq_save(flags);
3345
3346 /* If this is a per-task event, it must be for current */
3347 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3348 event->hw.target != current);
3349
3350 /* If this is a per-CPU event, it must be for this CPU */
3351 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3352 event->cpu != smp_processor_id());
3353
3354 /*
3355 * It must not be an event with inherit set, we cannot read
3356 * all child counters from atomic context.
3357 */
3358 WARN_ON_ONCE(event->attr.inherit);
3359
3360 /*
3361 * It must not have a pmu::count method, those are not
3362 * NMI safe.
3363 */
3364 WARN_ON_ONCE(event->pmu->count);
3365
3366 /*
3367 * If the event is currently on this CPU, its either a per-task event,
3368 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3369 * oncpu == -1).
3370 */
3371 if (event->oncpu == smp_processor_id())
3372 event->pmu->read(event);
3373
3374 val = local64_read(&event->count);
3375 local_irq_restore(flags);
3376
3377 return val;
3378 }
3379
perf_event_read(struct perf_event * event,bool group)3380 static int perf_event_read(struct perf_event *event, bool group)
3381 {
3382 int ret = 0;
3383
3384 /*
3385 * If event is enabled and currently active on a CPU, update the
3386 * value in the event structure:
3387 */
3388 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3389 struct perf_read_data data = {
3390 .event = event,
3391 .group = group,
3392 .ret = 0,
3393 };
3394 smp_call_function_single(event->oncpu,
3395 __perf_event_read, &data, 1);
3396 ret = data.ret;
3397 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3398 struct perf_event_context *ctx = event->ctx;
3399 unsigned long flags;
3400
3401 raw_spin_lock_irqsave(&ctx->lock, flags);
3402 /*
3403 * may read while context is not active
3404 * (e.g., thread is blocked), in that case
3405 * we cannot update context time
3406 */
3407 if (ctx->is_active) {
3408 update_context_time(ctx);
3409 update_cgrp_time_from_event(event);
3410 }
3411 if (group)
3412 update_group_times(event);
3413 else
3414 update_event_times(event);
3415 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3416 }
3417
3418 return ret;
3419 }
3420
3421 /*
3422 * Initialize the perf_event context in a task_struct:
3423 */
__perf_event_init_context(struct perf_event_context * ctx)3424 static void __perf_event_init_context(struct perf_event_context *ctx)
3425 {
3426 raw_spin_lock_init(&ctx->lock);
3427 mutex_init(&ctx->mutex);
3428 INIT_LIST_HEAD(&ctx->active_ctx_list);
3429 INIT_LIST_HEAD(&ctx->pinned_groups);
3430 INIT_LIST_HEAD(&ctx->flexible_groups);
3431 INIT_LIST_HEAD(&ctx->event_list);
3432 atomic_set(&ctx->refcount, 1);
3433 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3434 }
3435
3436 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)3437 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3438 {
3439 struct perf_event_context *ctx;
3440
3441 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3442 if (!ctx)
3443 return NULL;
3444
3445 __perf_event_init_context(ctx);
3446 if (task) {
3447 ctx->task = task;
3448 get_task_struct(task);
3449 }
3450 ctx->pmu = pmu;
3451
3452 return ctx;
3453 }
3454
3455 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)3456 find_lively_task_by_vpid(pid_t vpid)
3457 {
3458 struct task_struct *task;
3459
3460 rcu_read_lock();
3461 if (!vpid)
3462 task = current;
3463 else
3464 task = find_task_by_vpid(vpid);
3465 if (task)
3466 get_task_struct(task);
3467 rcu_read_unlock();
3468
3469 if (!task)
3470 return ERR_PTR(-ESRCH);
3471
3472 return task;
3473 }
3474
3475 /*
3476 * Returns a matching context with refcount and pincount.
3477 */
3478 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)3479 find_get_context(struct pmu *pmu, struct task_struct *task,
3480 struct perf_event *event)
3481 {
3482 struct perf_event_context *ctx, *clone_ctx = NULL;
3483 struct perf_cpu_context *cpuctx;
3484 void *task_ctx_data = NULL;
3485 unsigned long flags;
3486 int ctxn, err;
3487 int cpu = event->cpu;
3488
3489 if (!task) {
3490 /* Must be root to operate on a CPU event: */
3491 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3492 return ERR_PTR(-EACCES);
3493
3494 /*
3495 * We could be clever and allow to attach a event to an
3496 * offline CPU and activate it when the CPU comes up, but
3497 * that's for later.
3498 */
3499 if (!cpu_online(cpu))
3500 return ERR_PTR(-ENODEV);
3501
3502 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3503 ctx = &cpuctx->ctx;
3504 get_ctx(ctx);
3505 raw_spin_lock_irqsave(&ctx->lock, flags);
3506 ++ctx->pin_count;
3507 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3508
3509 return ctx;
3510 }
3511
3512 err = -EINVAL;
3513 ctxn = pmu->task_ctx_nr;
3514 if (ctxn < 0)
3515 goto errout;
3516
3517 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3518 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3519 if (!task_ctx_data) {
3520 err = -ENOMEM;
3521 goto errout;
3522 }
3523 }
3524
3525 retry:
3526 ctx = perf_lock_task_context(task, ctxn, &flags);
3527 if (ctx) {
3528 clone_ctx = unclone_ctx(ctx);
3529 ++ctx->pin_count;
3530
3531 if (task_ctx_data && !ctx->task_ctx_data) {
3532 ctx->task_ctx_data = task_ctx_data;
3533 task_ctx_data = NULL;
3534 }
3535 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3536
3537 if (clone_ctx)
3538 put_ctx(clone_ctx);
3539 } else {
3540 ctx = alloc_perf_context(pmu, task);
3541 err = -ENOMEM;
3542 if (!ctx)
3543 goto errout;
3544
3545 if (task_ctx_data) {
3546 ctx->task_ctx_data = task_ctx_data;
3547 task_ctx_data = NULL;
3548 }
3549
3550 err = 0;
3551 mutex_lock(&task->perf_event_mutex);
3552 /*
3553 * If it has already passed perf_event_exit_task().
3554 * we must see PF_EXITING, it takes this mutex too.
3555 */
3556 if (task->flags & PF_EXITING)
3557 err = -ESRCH;
3558 else if (task->perf_event_ctxp[ctxn])
3559 err = -EAGAIN;
3560 else {
3561 get_ctx(ctx);
3562 ++ctx->pin_count;
3563 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3564 }
3565 mutex_unlock(&task->perf_event_mutex);
3566
3567 if (unlikely(err)) {
3568 put_ctx(ctx);
3569
3570 if (err == -EAGAIN)
3571 goto retry;
3572 goto errout;
3573 }
3574 }
3575
3576 kfree(task_ctx_data);
3577 return ctx;
3578
3579 errout:
3580 kfree(task_ctx_data);
3581 return ERR_PTR(err);
3582 }
3583
3584 static void perf_event_free_filter(struct perf_event *event);
3585 static void perf_event_free_bpf_prog(struct perf_event *event);
3586
free_event_rcu(struct rcu_head * head)3587 static void free_event_rcu(struct rcu_head *head)
3588 {
3589 struct perf_event *event;
3590
3591 event = container_of(head, struct perf_event, rcu_head);
3592 if (event->ns)
3593 put_pid_ns(event->ns);
3594 perf_event_free_filter(event);
3595 kfree(event);
3596 }
3597
3598 static void ring_buffer_attach(struct perf_event *event,
3599 struct ring_buffer *rb);
3600
unaccount_event_cpu(struct perf_event * event,int cpu)3601 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3602 {
3603 if (event->parent)
3604 return;
3605
3606 if (is_cgroup_event(event))
3607 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3608 }
3609
unaccount_event(struct perf_event * event)3610 static void unaccount_event(struct perf_event *event)
3611 {
3612 if (event->parent)
3613 return;
3614
3615 if (event->attach_state & PERF_ATTACH_TASK)
3616 static_key_slow_dec_deferred(&perf_sched_events);
3617 if (event->attr.mmap || event->attr.mmap_data)
3618 atomic_dec(&nr_mmap_events);
3619 if (event->attr.comm)
3620 atomic_dec(&nr_comm_events);
3621 if (event->attr.task)
3622 atomic_dec(&nr_task_events);
3623 if (event->attr.freq)
3624 atomic_dec(&nr_freq_events);
3625 if (event->attr.context_switch) {
3626 static_key_slow_dec_deferred(&perf_sched_events);
3627 atomic_dec(&nr_switch_events);
3628 }
3629 if (is_cgroup_event(event))
3630 static_key_slow_dec_deferred(&perf_sched_events);
3631 if (has_branch_stack(event))
3632 static_key_slow_dec_deferred(&perf_sched_events);
3633
3634 unaccount_event_cpu(event, event->cpu);
3635 }
3636
3637 /*
3638 * The following implement mutual exclusion of events on "exclusive" pmus
3639 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3640 * at a time, so we disallow creating events that might conflict, namely:
3641 *
3642 * 1) cpu-wide events in the presence of per-task events,
3643 * 2) per-task events in the presence of cpu-wide events,
3644 * 3) two matching events on the same context.
3645 *
3646 * The former two cases are handled in the allocation path (perf_event_alloc(),
3647 * __free_event()), the latter -- before the first perf_install_in_context().
3648 */
exclusive_event_init(struct perf_event * event)3649 static int exclusive_event_init(struct perf_event *event)
3650 {
3651 struct pmu *pmu = event->pmu;
3652
3653 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3654 return 0;
3655
3656 /*
3657 * Prevent co-existence of per-task and cpu-wide events on the
3658 * same exclusive pmu.
3659 *
3660 * Negative pmu::exclusive_cnt means there are cpu-wide
3661 * events on this "exclusive" pmu, positive means there are
3662 * per-task events.
3663 *
3664 * Since this is called in perf_event_alloc() path, event::ctx
3665 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3666 * to mean "per-task event", because unlike other attach states it
3667 * never gets cleared.
3668 */
3669 if (event->attach_state & PERF_ATTACH_TASK) {
3670 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3671 return -EBUSY;
3672 } else {
3673 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3674 return -EBUSY;
3675 }
3676
3677 return 0;
3678 }
3679
exclusive_event_destroy(struct perf_event * event)3680 static void exclusive_event_destroy(struct perf_event *event)
3681 {
3682 struct pmu *pmu = event->pmu;
3683
3684 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3685 return;
3686
3687 /* see comment in exclusive_event_init() */
3688 if (event->attach_state & PERF_ATTACH_TASK)
3689 atomic_dec(&pmu->exclusive_cnt);
3690 else
3691 atomic_inc(&pmu->exclusive_cnt);
3692 }
3693
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)3694 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3695 {
3696 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3697 (e1->cpu == e2->cpu ||
3698 e1->cpu == -1 ||
3699 e2->cpu == -1))
3700 return true;
3701 return false;
3702 }
3703
3704 /* Called under the same ctx::mutex as perf_install_in_context() */
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)3705 static bool exclusive_event_installable(struct perf_event *event,
3706 struct perf_event_context *ctx)
3707 {
3708 struct perf_event *iter_event;
3709 struct pmu *pmu = event->pmu;
3710
3711 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3712 return true;
3713
3714 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3715 if (exclusive_event_match(iter_event, event))
3716 return false;
3717 }
3718
3719 return true;
3720 }
3721
__free_event(struct perf_event * event)3722 static void __free_event(struct perf_event *event)
3723 {
3724 if (!event->parent) {
3725 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3726 put_callchain_buffers();
3727 }
3728
3729 perf_event_free_bpf_prog(event);
3730
3731 if (event->destroy)
3732 event->destroy(event);
3733
3734 if (event->ctx)
3735 put_ctx(event->ctx);
3736
3737 if (event->pmu) {
3738 exclusive_event_destroy(event);
3739 module_put(event->pmu->module);
3740 }
3741
3742 call_rcu(&event->rcu_head, free_event_rcu);
3743 }
3744
_free_event(struct perf_event * event)3745 static void _free_event(struct perf_event *event)
3746 {
3747 irq_work_sync(&event->pending);
3748
3749 unaccount_event(event);
3750
3751 if (event->rb) {
3752 /*
3753 * Can happen when we close an event with re-directed output.
3754 *
3755 * Since we have a 0 refcount, perf_mmap_close() will skip
3756 * over us; possibly making our ring_buffer_put() the last.
3757 */
3758 mutex_lock(&event->mmap_mutex);
3759 ring_buffer_attach(event, NULL);
3760 mutex_unlock(&event->mmap_mutex);
3761 }
3762
3763 if (is_cgroup_event(event))
3764 perf_detach_cgroup(event);
3765
3766 __free_event(event);
3767 }
3768
3769 /*
3770 * Used to free events which have a known refcount of 1, such as in error paths
3771 * where the event isn't exposed yet and inherited events.
3772 */
free_event(struct perf_event * event)3773 static void free_event(struct perf_event *event)
3774 {
3775 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3776 "unexpected event refcount: %ld; ptr=%p\n",
3777 atomic_long_read(&event->refcount), event)) {
3778 /* leak to avoid use-after-free */
3779 return;
3780 }
3781
3782 _free_event(event);
3783 }
3784
3785 /*
3786 * Remove user event from the owner task.
3787 */
perf_remove_from_owner(struct perf_event * event)3788 static void perf_remove_from_owner(struct perf_event *event)
3789 {
3790 struct task_struct *owner;
3791
3792 rcu_read_lock();
3793 owner = ACCESS_ONCE(event->owner);
3794 /*
3795 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3796 * !owner it means the list deletion is complete and we can indeed
3797 * free this event, otherwise we need to serialize on
3798 * owner->perf_event_mutex.
3799 */
3800 smp_read_barrier_depends();
3801 if (owner) {
3802 /*
3803 * Since delayed_put_task_struct() also drops the last
3804 * task reference we can safely take a new reference
3805 * while holding the rcu_read_lock().
3806 */
3807 get_task_struct(owner);
3808 }
3809 rcu_read_unlock();
3810
3811 if (owner) {
3812 /*
3813 * If we're here through perf_event_exit_task() we're already
3814 * holding ctx->mutex which would be an inversion wrt. the
3815 * normal lock order.
3816 *
3817 * However we can safely take this lock because its the child
3818 * ctx->mutex.
3819 */
3820 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3821
3822 /*
3823 * We have to re-check the event->owner field, if it is cleared
3824 * we raced with perf_event_exit_task(), acquiring the mutex
3825 * ensured they're done, and we can proceed with freeing the
3826 * event.
3827 */
3828 if (event->owner)
3829 list_del_init(&event->owner_entry);
3830 mutex_unlock(&owner->perf_event_mutex);
3831 put_task_struct(owner);
3832 }
3833 }
3834
put_event(struct perf_event * event)3835 static void put_event(struct perf_event *event)
3836 {
3837 struct perf_event_context *ctx;
3838
3839 if (!atomic_long_dec_and_test(&event->refcount))
3840 return;
3841
3842 if (!is_kernel_event(event))
3843 perf_remove_from_owner(event);
3844
3845 /*
3846 * There are two ways this annotation is useful:
3847 *
3848 * 1) there is a lock recursion from perf_event_exit_task
3849 * see the comment there.
3850 *
3851 * 2) there is a lock-inversion with mmap_sem through
3852 * perf_read_group(), which takes faults while
3853 * holding ctx->mutex, however this is called after
3854 * the last filedesc died, so there is no possibility
3855 * to trigger the AB-BA case.
3856 */
3857 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3858 WARN_ON_ONCE(ctx->parent_ctx);
3859 perf_remove_from_context(event, true);
3860 perf_event_ctx_unlock(event, ctx);
3861
3862 _free_event(event);
3863 }
3864
perf_event_release_kernel(struct perf_event * event)3865 int perf_event_release_kernel(struct perf_event *event)
3866 {
3867 put_event(event);
3868 return 0;
3869 }
3870 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3871
3872 /*
3873 * Called when the last reference to the file is gone.
3874 */
perf_release(struct inode * inode,struct file * file)3875 static int perf_release(struct inode *inode, struct file *file)
3876 {
3877 put_event(file->private_data);
3878 return 0;
3879 }
3880
3881 /*
3882 * Remove all orphanes events from the context.
3883 */
orphans_remove_work(struct work_struct * work)3884 static void orphans_remove_work(struct work_struct *work)
3885 {
3886 struct perf_event_context *ctx;
3887 struct perf_event *event, *tmp;
3888
3889 ctx = container_of(work, struct perf_event_context,
3890 orphans_remove.work);
3891
3892 mutex_lock(&ctx->mutex);
3893 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3894 struct perf_event *parent_event = event->parent;
3895
3896 if (!is_orphaned_child(event))
3897 continue;
3898
3899 perf_remove_from_context(event, true);
3900
3901 mutex_lock(&parent_event->child_mutex);
3902 list_del_init(&event->child_list);
3903 mutex_unlock(&parent_event->child_mutex);
3904
3905 free_event(event);
3906 put_event(parent_event);
3907 }
3908
3909 raw_spin_lock_irq(&ctx->lock);
3910 ctx->orphans_remove_sched = false;
3911 raw_spin_unlock_irq(&ctx->lock);
3912 mutex_unlock(&ctx->mutex);
3913
3914 put_ctx(ctx);
3915 }
3916
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)3917 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3918 {
3919 struct perf_event *child;
3920 u64 total = 0;
3921
3922 *enabled = 0;
3923 *running = 0;
3924
3925 mutex_lock(&event->child_mutex);
3926
3927 (void)perf_event_read(event, false);
3928 total += perf_event_count(event);
3929
3930 *enabled += event->total_time_enabled +
3931 atomic64_read(&event->child_total_time_enabled);
3932 *running += event->total_time_running +
3933 atomic64_read(&event->child_total_time_running);
3934
3935 list_for_each_entry(child, &event->child_list, child_list) {
3936 (void)perf_event_read(child, false);
3937 total += perf_event_count(child);
3938 *enabled += child->total_time_enabled;
3939 *running += child->total_time_running;
3940 }
3941 mutex_unlock(&event->child_mutex);
3942
3943 return total;
3944 }
3945 EXPORT_SYMBOL_GPL(perf_event_read_value);
3946
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)3947 static int __perf_read_group_add(struct perf_event *leader,
3948 u64 read_format, u64 *values)
3949 {
3950 struct perf_event_context *ctx = leader->ctx;
3951 struct perf_event *sub;
3952 unsigned long flags;
3953 int n = 1; /* skip @nr */
3954 int ret;
3955
3956 ret = perf_event_read(leader, true);
3957 if (ret)
3958 return ret;
3959
3960 /*
3961 * Since we co-schedule groups, {enabled,running} times of siblings
3962 * will be identical to those of the leader, so we only publish one
3963 * set.
3964 */
3965 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3966 values[n++] += leader->total_time_enabled +
3967 atomic64_read(&leader->child_total_time_enabled);
3968 }
3969
3970 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3971 values[n++] += leader->total_time_running +
3972 atomic64_read(&leader->child_total_time_running);
3973 }
3974
3975 /*
3976 * Write {count,id} tuples for every sibling.
3977 */
3978 values[n++] += perf_event_count(leader);
3979 if (read_format & PERF_FORMAT_ID)
3980 values[n++] = primary_event_id(leader);
3981
3982 raw_spin_lock_irqsave(&ctx->lock, flags);
3983
3984 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3985 values[n++] += perf_event_count(sub);
3986 if (read_format & PERF_FORMAT_ID)
3987 values[n++] = primary_event_id(sub);
3988 }
3989
3990 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3991 return 0;
3992 }
3993
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)3994 static int perf_read_group(struct perf_event *event,
3995 u64 read_format, char __user *buf)
3996 {
3997 struct perf_event *leader = event->group_leader, *child;
3998 struct perf_event_context *ctx = leader->ctx;
3999 int ret;
4000 u64 *values;
4001
4002 lockdep_assert_held(&ctx->mutex);
4003
4004 values = kzalloc(event->read_size, GFP_KERNEL);
4005 if (!values)
4006 return -ENOMEM;
4007
4008 values[0] = 1 + leader->nr_siblings;
4009
4010 /*
4011 * By locking the child_mutex of the leader we effectively
4012 * lock the child list of all siblings.. XXX explain how.
4013 */
4014 mutex_lock(&leader->child_mutex);
4015
4016 ret = __perf_read_group_add(leader, read_format, values);
4017 if (ret)
4018 goto unlock;
4019
4020 list_for_each_entry(child, &leader->child_list, child_list) {
4021 ret = __perf_read_group_add(child, read_format, values);
4022 if (ret)
4023 goto unlock;
4024 }
4025
4026 mutex_unlock(&leader->child_mutex);
4027
4028 ret = event->read_size;
4029 if (copy_to_user(buf, values, event->read_size))
4030 ret = -EFAULT;
4031 goto out;
4032
4033 unlock:
4034 mutex_unlock(&leader->child_mutex);
4035 out:
4036 kfree(values);
4037 return ret;
4038 }
4039
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)4040 static int perf_read_one(struct perf_event *event,
4041 u64 read_format, char __user *buf)
4042 {
4043 u64 enabled, running;
4044 u64 values[4];
4045 int n = 0;
4046
4047 values[n++] = perf_event_read_value(event, &enabled, &running);
4048 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4049 values[n++] = enabled;
4050 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4051 values[n++] = running;
4052 if (read_format & PERF_FORMAT_ID)
4053 values[n++] = primary_event_id(event);
4054
4055 if (copy_to_user(buf, values, n * sizeof(u64)))
4056 return -EFAULT;
4057
4058 return n * sizeof(u64);
4059 }
4060
is_event_hup(struct perf_event * event)4061 static bool is_event_hup(struct perf_event *event)
4062 {
4063 bool no_children;
4064
4065 if (event->state != PERF_EVENT_STATE_EXIT)
4066 return false;
4067
4068 mutex_lock(&event->child_mutex);
4069 no_children = list_empty(&event->child_list);
4070 mutex_unlock(&event->child_mutex);
4071 return no_children;
4072 }
4073
4074 /*
4075 * Read the performance event - simple non blocking version for now
4076 */
4077 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)4078 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4079 {
4080 u64 read_format = event->attr.read_format;
4081 int ret;
4082
4083 /*
4084 * Return end-of-file for a read on a event that is in
4085 * error state (i.e. because it was pinned but it couldn't be
4086 * scheduled on to the CPU at some point).
4087 */
4088 if (event->state == PERF_EVENT_STATE_ERROR)
4089 return 0;
4090
4091 if (count < event->read_size)
4092 return -ENOSPC;
4093
4094 WARN_ON_ONCE(event->ctx->parent_ctx);
4095 if (read_format & PERF_FORMAT_GROUP)
4096 ret = perf_read_group(event, read_format, buf);
4097 else
4098 ret = perf_read_one(event, read_format, buf);
4099
4100 return ret;
4101 }
4102
4103 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)4104 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4105 {
4106 struct perf_event *event = file->private_data;
4107 struct perf_event_context *ctx;
4108 int ret;
4109
4110 ctx = perf_event_ctx_lock(event);
4111 ret = __perf_read(event, buf, count);
4112 perf_event_ctx_unlock(event, ctx);
4113
4114 return ret;
4115 }
4116
perf_poll(struct file * file,poll_table * wait)4117 static unsigned int perf_poll(struct file *file, poll_table *wait)
4118 {
4119 struct perf_event *event = file->private_data;
4120 struct ring_buffer *rb;
4121 unsigned int events = POLLHUP;
4122
4123 poll_wait(file, &event->waitq, wait);
4124
4125 if (is_event_hup(event))
4126 return events;
4127
4128 /*
4129 * Pin the event->rb by taking event->mmap_mutex; otherwise
4130 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4131 */
4132 mutex_lock(&event->mmap_mutex);
4133 rb = event->rb;
4134 if (rb)
4135 events = atomic_xchg(&rb->poll, 0);
4136 mutex_unlock(&event->mmap_mutex);
4137 return events;
4138 }
4139
_perf_event_reset(struct perf_event * event)4140 static void _perf_event_reset(struct perf_event *event)
4141 {
4142 (void)perf_event_read(event, false);
4143 local64_set(&event->count, 0);
4144 perf_event_update_userpage(event);
4145 }
4146
4147 /*
4148 * Holding the top-level event's child_mutex means that any
4149 * descendant process that has inherited this event will block
4150 * in sync_child_event if it goes to exit, thus satisfying the
4151 * task existence requirements of perf_event_enable/disable.
4152 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))4153 static void perf_event_for_each_child(struct perf_event *event,
4154 void (*func)(struct perf_event *))
4155 {
4156 struct perf_event *child;
4157
4158 WARN_ON_ONCE(event->ctx->parent_ctx);
4159
4160 mutex_lock(&event->child_mutex);
4161 func(event);
4162 list_for_each_entry(child, &event->child_list, child_list)
4163 func(child);
4164 mutex_unlock(&event->child_mutex);
4165 }
4166
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))4167 static void perf_event_for_each(struct perf_event *event,
4168 void (*func)(struct perf_event *))
4169 {
4170 struct perf_event_context *ctx = event->ctx;
4171 struct perf_event *sibling;
4172
4173 lockdep_assert_held(&ctx->mutex);
4174
4175 event = event->group_leader;
4176
4177 perf_event_for_each_child(event, func);
4178 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4179 perf_event_for_each_child(sibling, func);
4180 }
4181
4182 struct period_event {
4183 struct perf_event *event;
4184 u64 value;
4185 };
4186
__perf_event_period(void * info)4187 static int __perf_event_period(void *info)
4188 {
4189 struct period_event *pe = info;
4190 struct perf_event *event = pe->event;
4191 struct perf_event_context *ctx = event->ctx;
4192 u64 value = pe->value;
4193 bool active;
4194
4195 raw_spin_lock(&ctx->lock);
4196 if (event->attr.freq) {
4197 event->attr.sample_freq = value;
4198 } else {
4199 event->attr.sample_period = value;
4200 event->hw.sample_period = value;
4201 }
4202
4203 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4204 if (active) {
4205 perf_pmu_disable(ctx->pmu);
4206 event->pmu->stop(event, PERF_EF_UPDATE);
4207 }
4208
4209 local64_set(&event->hw.period_left, 0);
4210
4211 if (active) {
4212 event->pmu->start(event, PERF_EF_RELOAD);
4213 perf_pmu_enable(ctx->pmu);
4214 }
4215 raw_spin_unlock(&ctx->lock);
4216
4217 return 0;
4218 }
4219
perf_event_period(struct perf_event * event,u64 __user * arg)4220 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4221 {
4222 struct period_event pe = { .event = event, };
4223 struct perf_event_context *ctx = event->ctx;
4224 struct task_struct *task;
4225 u64 value;
4226
4227 if (!is_sampling_event(event))
4228 return -EINVAL;
4229
4230 if (copy_from_user(&value, arg, sizeof(value)))
4231 return -EFAULT;
4232
4233 if (!value)
4234 return -EINVAL;
4235
4236 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4237 return -EINVAL;
4238
4239 task = ctx->task;
4240 pe.value = value;
4241
4242 if (!task) {
4243 cpu_function_call(event->cpu, __perf_event_period, &pe);
4244 return 0;
4245 }
4246
4247 retry:
4248 if (!task_function_call(task, __perf_event_period, &pe))
4249 return 0;
4250
4251 raw_spin_lock_irq(&ctx->lock);
4252 if (ctx->is_active) {
4253 raw_spin_unlock_irq(&ctx->lock);
4254 task = ctx->task;
4255 goto retry;
4256 }
4257
4258 if (event->attr.freq) {
4259 event->attr.sample_freq = value;
4260 } else {
4261 event->attr.sample_period = value;
4262 event->hw.sample_period = value;
4263 }
4264
4265 local64_set(&event->hw.period_left, 0);
4266 raw_spin_unlock_irq(&ctx->lock);
4267
4268 return 0;
4269 }
4270
4271 static const struct file_operations perf_fops;
4272
perf_fget_light(int fd,struct fd * p)4273 static inline int perf_fget_light(int fd, struct fd *p)
4274 {
4275 struct fd f = fdget(fd);
4276 if (!f.file)
4277 return -EBADF;
4278
4279 if (f.file->f_op != &perf_fops) {
4280 fdput(f);
4281 return -EBADF;
4282 }
4283 *p = f;
4284 return 0;
4285 }
4286
4287 static int perf_event_set_output(struct perf_event *event,
4288 struct perf_event *output_event);
4289 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4290 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4291
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)4292 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4293 {
4294 void (*func)(struct perf_event *);
4295 u32 flags = arg;
4296
4297 switch (cmd) {
4298 case PERF_EVENT_IOC_ENABLE:
4299 func = _perf_event_enable;
4300 break;
4301 case PERF_EVENT_IOC_DISABLE:
4302 func = _perf_event_disable;
4303 break;
4304 case PERF_EVENT_IOC_RESET:
4305 func = _perf_event_reset;
4306 break;
4307
4308 case PERF_EVENT_IOC_REFRESH:
4309 return _perf_event_refresh(event, arg);
4310
4311 case PERF_EVENT_IOC_PERIOD:
4312 return perf_event_period(event, (u64 __user *)arg);
4313
4314 case PERF_EVENT_IOC_ID:
4315 {
4316 u64 id = primary_event_id(event);
4317
4318 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4319 return -EFAULT;
4320 return 0;
4321 }
4322
4323 case PERF_EVENT_IOC_SET_OUTPUT:
4324 {
4325 int ret;
4326 if (arg != -1) {
4327 struct perf_event *output_event;
4328 struct fd output;
4329 ret = perf_fget_light(arg, &output);
4330 if (ret)
4331 return ret;
4332 output_event = output.file->private_data;
4333 ret = perf_event_set_output(event, output_event);
4334 fdput(output);
4335 } else {
4336 ret = perf_event_set_output(event, NULL);
4337 }
4338 return ret;
4339 }
4340
4341 case PERF_EVENT_IOC_SET_FILTER:
4342 return perf_event_set_filter(event, (void __user *)arg);
4343
4344 case PERF_EVENT_IOC_SET_BPF:
4345 return perf_event_set_bpf_prog(event, arg);
4346
4347 default:
4348 return -ENOTTY;
4349 }
4350
4351 if (flags & PERF_IOC_FLAG_GROUP)
4352 perf_event_for_each(event, func);
4353 else
4354 perf_event_for_each_child(event, func);
4355
4356 return 0;
4357 }
4358
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4359 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4360 {
4361 struct perf_event *event = file->private_data;
4362 struct perf_event_context *ctx;
4363 long ret;
4364
4365 ctx = perf_event_ctx_lock(event);
4366 ret = _perf_ioctl(event, cmd, arg);
4367 perf_event_ctx_unlock(event, ctx);
4368
4369 return ret;
4370 }
4371
4372 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4373 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4374 unsigned long arg)
4375 {
4376 switch (_IOC_NR(cmd)) {
4377 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4378 case _IOC_NR(PERF_EVENT_IOC_ID):
4379 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4380 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4381 cmd &= ~IOCSIZE_MASK;
4382 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4383 }
4384 break;
4385 }
4386 return perf_ioctl(file, cmd, arg);
4387 }
4388 #else
4389 # define perf_compat_ioctl NULL
4390 #endif
4391
perf_event_task_enable(void)4392 int perf_event_task_enable(void)
4393 {
4394 struct perf_event_context *ctx;
4395 struct perf_event *event;
4396
4397 mutex_lock(¤t->perf_event_mutex);
4398 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
4399 ctx = perf_event_ctx_lock(event);
4400 perf_event_for_each_child(event, _perf_event_enable);
4401 perf_event_ctx_unlock(event, ctx);
4402 }
4403 mutex_unlock(¤t->perf_event_mutex);
4404
4405 return 0;
4406 }
4407
perf_event_task_disable(void)4408 int perf_event_task_disable(void)
4409 {
4410 struct perf_event_context *ctx;
4411 struct perf_event *event;
4412
4413 mutex_lock(¤t->perf_event_mutex);
4414 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
4415 ctx = perf_event_ctx_lock(event);
4416 perf_event_for_each_child(event, _perf_event_disable);
4417 perf_event_ctx_unlock(event, ctx);
4418 }
4419 mutex_unlock(¤t->perf_event_mutex);
4420
4421 return 0;
4422 }
4423
perf_event_index(struct perf_event * event)4424 static int perf_event_index(struct perf_event *event)
4425 {
4426 if (event->hw.state & PERF_HES_STOPPED)
4427 return 0;
4428
4429 if (event->state != PERF_EVENT_STATE_ACTIVE)
4430 return 0;
4431
4432 return event->pmu->event_idx(event);
4433 }
4434
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4435 static void calc_timer_values(struct perf_event *event,
4436 u64 *now,
4437 u64 *enabled,
4438 u64 *running)
4439 {
4440 u64 ctx_time;
4441
4442 *now = perf_clock();
4443 ctx_time = event->shadow_ctx_time + *now;
4444 *enabled = ctx_time - event->tstamp_enabled;
4445 *running = ctx_time - event->tstamp_running;
4446 }
4447
perf_event_init_userpage(struct perf_event * event)4448 static void perf_event_init_userpage(struct perf_event *event)
4449 {
4450 struct perf_event_mmap_page *userpg;
4451 struct ring_buffer *rb;
4452
4453 rcu_read_lock();
4454 rb = rcu_dereference(event->rb);
4455 if (!rb)
4456 goto unlock;
4457
4458 userpg = rb->user_page;
4459
4460 /* Allow new userspace to detect that bit 0 is deprecated */
4461 userpg->cap_bit0_is_deprecated = 1;
4462 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4463 userpg->data_offset = PAGE_SIZE;
4464 userpg->data_size = perf_data_size(rb);
4465
4466 unlock:
4467 rcu_read_unlock();
4468 }
4469
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)4470 void __weak arch_perf_update_userpage(
4471 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4472 {
4473 }
4474
4475 /*
4476 * Callers need to ensure there can be no nesting of this function, otherwise
4477 * the seqlock logic goes bad. We can not serialize this because the arch
4478 * code calls this from NMI context.
4479 */
perf_event_update_userpage(struct perf_event * event)4480 void perf_event_update_userpage(struct perf_event *event)
4481 {
4482 struct perf_event_mmap_page *userpg;
4483 struct ring_buffer *rb;
4484 u64 enabled, running, now;
4485
4486 rcu_read_lock();
4487 rb = rcu_dereference(event->rb);
4488 if (!rb)
4489 goto unlock;
4490
4491 /*
4492 * compute total_time_enabled, total_time_running
4493 * based on snapshot values taken when the event
4494 * was last scheduled in.
4495 *
4496 * we cannot simply called update_context_time()
4497 * because of locking issue as we can be called in
4498 * NMI context
4499 */
4500 calc_timer_values(event, &now, &enabled, &running);
4501
4502 userpg = rb->user_page;
4503 /*
4504 * Disable preemption so as to not let the corresponding user-space
4505 * spin too long if we get preempted.
4506 */
4507 preempt_disable();
4508 ++userpg->lock;
4509 barrier();
4510 userpg->index = perf_event_index(event);
4511 userpg->offset = perf_event_count(event);
4512 if (userpg->index)
4513 userpg->offset -= local64_read(&event->hw.prev_count);
4514
4515 userpg->time_enabled = enabled +
4516 atomic64_read(&event->child_total_time_enabled);
4517
4518 userpg->time_running = running +
4519 atomic64_read(&event->child_total_time_running);
4520
4521 arch_perf_update_userpage(event, userpg, now);
4522
4523 barrier();
4524 ++userpg->lock;
4525 preempt_enable();
4526 unlock:
4527 rcu_read_unlock();
4528 }
4529
perf_mmap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)4530 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4531 {
4532 struct perf_event *event = vma->vm_file->private_data;
4533 struct ring_buffer *rb;
4534 int ret = VM_FAULT_SIGBUS;
4535
4536 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4537 if (vmf->pgoff == 0)
4538 ret = 0;
4539 return ret;
4540 }
4541
4542 rcu_read_lock();
4543 rb = rcu_dereference(event->rb);
4544 if (!rb)
4545 goto unlock;
4546
4547 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4548 goto unlock;
4549
4550 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4551 if (!vmf->page)
4552 goto unlock;
4553
4554 get_page(vmf->page);
4555 vmf->page->mapping = vma->vm_file->f_mapping;
4556 vmf->page->index = vmf->pgoff;
4557
4558 ret = 0;
4559 unlock:
4560 rcu_read_unlock();
4561
4562 return ret;
4563 }
4564
ring_buffer_attach(struct perf_event * event,struct ring_buffer * rb)4565 static void ring_buffer_attach(struct perf_event *event,
4566 struct ring_buffer *rb)
4567 {
4568 struct ring_buffer *old_rb = NULL;
4569 unsigned long flags;
4570
4571 if (event->rb) {
4572 /*
4573 * Should be impossible, we set this when removing
4574 * event->rb_entry and wait/clear when adding event->rb_entry.
4575 */
4576 WARN_ON_ONCE(event->rcu_pending);
4577
4578 old_rb = event->rb;
4579 spin_lock_irqsave(&old_rb->event_lock, flags);
4580 list_del_rcu(&event->rb_entry);
4581 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4582
4583 event->rcu_batches = get_state_synchronize_rcu();
4584 event->rcu_pending = 1;
4585 }
4586
4587 if (rb) {
4588 if (event->rcu_pending) {
4589 cond_synchronize_rcu(event->rcu_batches);
4590 event->rcu_pending = 0;
4591 }
4592
4593 spin_lock_irqsave(&rb->event_lock, flags);
4594 list_add_rcu(&event->rb_entry, &rb->event_list);
4595 spin_unlock_irqrestore(&rb->event_lock, flags);
4596 }
4597
4598 rcu_assign_pointer(event->rb, rb);
4599
4600 if (old_rb) {
4601 ring_buffer_put(old_rb);
4602 /*
4603 * Since we detached before setting the new rb, so that we
4604 * could attach the new rb, we could have missed a wakeup.
4605 * Provide it now.
4606 */
4607 wake_up_all(&event->waitq);
4608 }
4609 }
4610
ring_buffer_wakeup(struct perf_event * event)4611 static void ring_buffer_wakeup(struct perf_event *event)
4612 {
4613 struct ring_buffer *rb;
4614
4615 rcu_read_lock();
4616 rb = rcu_dereference(event->rb);
4617 if (rb) {
4618 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4619 wake_up_all(&event->waitq);
4620 }
4621 rcu_read_unlock();
4622 }
4623
ring_buffer_get(struct perf_event * event)4624 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4625 {
4626 struct ring_buffer *rb;
4627
4628 rcu_read_lock();
4629 rb = rcu_dereference(event->rb);
4630 if (rb) {
4631 if (!atomic_inc_not_zero(&rb->refcount))
4632 rb = NULL;
4633 }
4634 rcu_read_unlock();
4635
4636 return rb;
4637 }
4638
ring_buffer_put(struct ring_buffer * rb)4639 void ring_buffer_put(struct ring_buffer *rb)
4640 {
4641 if (!atomic_dec_and_test(&rb->refcount))
4642 return;
4643
4644 WARN_ON_ONCE(!list_empty(&rb->event_list));
4645
4646 call_rcu(&rb->rcu_head, rb_free_rcu);
4647 }
4648
perf_mmap_open(struct vm_area_struct * vma)4649 static void perf_mmap_open(struct vm_area_struct *vma)
4650 {
4651 struct perf_event *event = vma->vm_file->private_data;
4652
4653 atomic_inc(&event->mmap_count);
4654 atomic_inc(&event->rb->mmap_count);
4655
4656 if (vma->vm_pgoff)
4657 atomic_inc(&event->rb->aux_mmap_count);
4658
4659 if (event->pmu->event_mapped)
4660 event->pmu->event_mapped(event);
4661 }
4662
4663 /*
4664 * A buffer can be mmap()ed multiple times; either directly through the same
4665 * event, or through other events by use of perf_event_set_output().
4666 *
4667 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4668 * the buffer here, where we still have a VM context. This means we need
4669 * to detach all events redirecting to us.
4670 */
perf_mmap_close(struct vm_area_struct * vma)4671 static void perf_mmap_close(struct vm_area_struct *vma)
4672 {
4673 struct perf_event *event = vma->vm_file->private_data;
4674 struct ring_buffer *rb = ring_buffer_get(event);
4675 struct user_struct *mmap_user = rb->mmap_user;
4676 int mmap_locked = rb->mmap_locked;
4677 unsigned long size = perf_data_size(rb);
4678 bool detach_rest = false;
4679
4680 if (event->pmu->event_unmapped)
4681 event->pmu->event_unmapped(event);
4682
4683 /*
4684 * rb->aux_mmap_count will always drop before rb->mmap_count and
4685 * event->mmap_count, so it is ok to use event->mmap_mutex to
4686 * serialize with perf_mmap here.
4687 */
4688 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4689 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4690 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4691 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4692
4693 rb_free_aux(rb);
4694 mutex_unlock(&event->mmap_mutex);
4695 }
4696
4697 if (atomic_dec_and_test(&rb->mmap_count))
4698 detach_rest = true;
4699
4700 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4701 goto out_put;
4702
4703 ring_buffer_attach(event, NULL);
4704 mutex_unlock(&event->mmap_mutex);
4705
4706 /* If there's still other mmap()s of this buffer, we're done. */
4707 if (!detach_rest)
4708 goto out_put;
4709
4710 /*
4711 * No other mmap()s, detach from all other events that might redirect
4712 * into the now unreachable buffer. Somewhat complicated by the
4713 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4714 */
4715 again:
4716 rcu_read_lock();
4717 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4718 if (!atomic_long_inc_not_zero(&event->refcount)) {
4719 /*
4720 * This event is en-route to free_event() which will
4721 * detach it and remove it from the list.
4722 */
4723 continue;
4724 }
4725 rcu_read_unlock();
4726
4727 mutex_lock(&event->mmap_mutex);
4728 /*
4729 * Check we didn't race with perf_event_set_output() which can
4730 * swizzle the rb from under us while we were waiting to
4731 * acquire mmap_mutex.
4732 *
4733 * If we find a different rb; ignore this event, a next
4734 * iteration will no longer find it on the list. We have to
4735 * still restart the iteration to make sure we're not now
4736 * iterating the wrong list.
4737 */
4738 if (event->rb == rb)
4739 ring_buffer_attach(event, NULL);
4740
4741 mutex_unlock(&event->mmap_mutex);
4742 put_event(event);
4743
4744 /*
4745 * Restart the iteration; either we're on the wrong list or
4746 * destroyed its integrity by doing a deletion.
4747 */
4748 goto again;
4749 }
4750 rcu_read_unlock();
4751
4752 /*
4753 * It could be there's still a few 0-ref events on the list; they'll
4754 * get cleaned up by free_event() -- they'll also still have their
4755 * ref on the rb and will free it whenever they are done with it.
4756 *
4757 * Aside from that, this buffer is 'fully' detached and unmapped,
4758 * undo the VM accounting.
4759 */
4760
4761 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4762 vma->vm_mm->pinned_vm -= mmap_locked;
4763 free_uid(mmap_user);
4764
4765 out_put:
4766 ring_buffer_put(rb); /* could be last */
4767 }
4768
4769 static const struct vm_operations_struct perf_mmap_vmops = {
4770 .open = perf_mmap_open,
4771 .close = perf_mmap_close, /* non mergable */
4772 .fault = perf_mmap_fault,
4773 .page_mkwrite = perf_mmap_fault,
4774 };
4775
perf_mmap(struct file * file,struct vm_area_struct * vma)4776 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4777 {
4778 struct perf_event *event = file->private_data;
4779 unsigned long user_locked, user_lock_limit;
4780 struct user_struct *user = current_user();
4781 unsigned long locked, lock_limit;
4782 struct ring_buffer *rb = NULL;
4783 unsigned long vma_size;
4784 unsigned long nr_pages;
4785 long user_extra = 0, extra = 0;
4786 int ret = 0, flags = 0;
4787
4788 /*
4789 * Don't allow mmap() of inherited per-task counters. This would
4790 * create a performance issue due to all children writing to the
4791 * same rb.
4792 */
4793 if (event->cpu == -1 && event->attr.inherit)
4794 return -EINVAL;
4795
4796 if (!(vma->vm_flags & VM_SHARED))
4797 return -EINVAL;
4798
4799 vma_size = vma->vm_end - vma->vm_start;
4800
4801 if (vma->vm_pgoff == 0) {
4802 nr_pages = (vma_size / PAGE_SIZE) - 1;
4803 } else {
4804 /*
4805 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4806 * mapped, all subsequent mappings should have the same size
4807 * and offset. Must be above the normal perf buffer.
4808 */
4809 u64 aux_offset, aux_size;
4810
4811 if (!event->rb)
4812 return -EINVAL;
4813
4814 nr_pages = vma_size / PAGE_SIZE;
4815
4816 mutex_lock(&event->mmap_mutex);
4817 ret = -EINVAL;
4818
4819 rb = event->rb;
4820 if (!rb)
4821 goto aux_unlock;
4822
4823 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4824 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4825
4826 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4827 goto aux_unlock;
4828
4829 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4830 goto aux_unlock;
4831
4832 /* already mapped with a different offset */
4833 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4834 goto aux_unlock;
4835
4836 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4837 goto aux_unlock;
4838
4839 /* already mapped with a different size */
4840 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4841 goto aux_unlock;
4842
4843 if (!is_power_of_2(nr_pages))
4844 goto aux_unlock;
4845
4846 if (!atomic_inc_not_zero(&rb->mmap_count))
4847 goto aux_unlock;
4848
4849 if (rb_has_aux(rb)) {
4850 atomic_inc(&rb->aux_mmap_count);
4851 ret = 0;
4852 goto unlock;
4853 }
4854
4855 atomic_set(&rb->aux_mmap_count, 1);
4856 user_extra = nr_pages;
4857
4858 goto accounting;
4859 }
4860
4861 /*
4862 * If we have rb pages ensure they're a power-of-two number, so we
4863 * can do bitmasks instead of modulo.
4864 */
4865 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4866 return -EINVAL;
4867
4868 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4869 return -EINVAL;
4870
4871 WARN_ON_ONCE(event->ctx->parent_ctx);
4872 again:
4873 mutex_lock(&event->mmap_mutex);
4874 if (event->rb) {
4875 if (event->rb->nr_pages != nr_pages) {
4876 ret = -EINVAL;
4877 goto unlock;
4878 }
4879
4880 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4881 /*
4882 * Raced against perf_mmap_close() through
4883 * perf_event_set_output(). Try again, hope for better
4884 * luck.
4885 */
4886 mutex_unlock(&event->mmap_mutex);
4887 goto again;
4888 }
4889
4890 goto unlock;
4891 }
4892
4893 user_extra = nr_pages + 1;
4894
4895 accounting:
4896 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4897
4898 /*
4899 * Increase the limit linearly with more CPUs:
4900 */
4901 user_lock_limit *= num_online_cpus();
4902
4903 user_locked = atomic_long_read(&user->locked_vm);
4904
4905 /*
4906 * sysctl_perf_event_mlock may have changed, so that
4907 * user->locked_vm > user_lock_limit
4908 */
4909 if (user_locked > user_lock_limit)
4910 user_locked = user_lock_limit;
4911 user_locked += user_extra;
4912
4913 if (user_locked > user_lock_limit)
4914 extra = user_locked - user_lock_limit;
4915
4916 lock_limit = rlimit(RLIMIT_MEMLOCK);
4917 lock_limit >>= PAGE_SHIFT;
4918 locked = vma->vm_mm->pinned_vm + extra;
4919
4920 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4921 !capable(CAP_IPC_LOCK)) {
4922 ret = -EPERM;
4923 goto unlock;
4924 }
4925
4926 WARN_ON(!rb && event->rb);
4927
4928 if (vma->vm_flags & VM_WRITE)
4929 flags |= RING_BUFFER_WRITABLE;
4930
4931 if (!rb) {
4932 rb = rb_alloc(nr_pages,
4933 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4934 event->cpu, flags);
4935
4936 if (!rb) {
4937 ret = -ENOMEM;
4938 goto unlock;
4939 }
4940
4941 atomic_set(&rb->mmap_count, 1);
4942 rb->mmap_user = get_current_user();
4943 rb->mmap_locked = extra;
4944
4945 ring_buffer_attach(event, rb);
4946
4947 perf_event_init_userpage(event);
4948 perf_event_update_userpage(event);
4949 } else {
4950 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4951 event->attr.aux_watermark, flags);
4952 if (!ret)
4953 rb->aux_mmap_locked = extra;
4954 }
4955
4956 unlock:
4957 if (!ret) {
4958 atomic_long_add(user_extra, &user->locked_vm);
4959 vma->vm_mm->pinned_vm += extra;
4960
4961 atomic_inc(&event->mmap_count);
4962 } else if (rb) {
4963 atomic_dec(&rb->mmap_count);
4964 }
4965 aux_unlock:
4966 mutex_unlock(&event->mmap_mutex);
4967
4968 /*
4969 * Since pinned accounting is per vm we cannot allow fork() to copy our
4970 * vma.
4971 */
4972 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4973 vma->vm_ops = &perf_mmap_vmops;
4974
4975 if (event->pmu->event_mapped)
4976 event->pmu->event_mapped(event);
4977
4978 return ret;
4979 }
4980
perf_fasync(int fd,struct file * filp,int on)4981 static int perf_fasync(int fd, struct file *filp, int on)
4982 {
4983 struct inode *inode = file_inode(filp);
4984 struct perf_event *event = filp->private_data;
4985 int retval;
4986
4987 mutex_lock(&inode->i_mutex);
4988 retval = fasync_helper(fd, filp, on, &event->fasync);
4989 mutex_unlock(&inode->i_mutex);
4990
4991 if (retval < 0)
4992 return retval;
4993
4994 return 0;
4995 }
4996
4997 static const struct file_operations perf_fops = {
4998 .llseek = no_llseek,
4999 .release = perf_release,
5000 .read = perf_read,
5001 .poll = perf_poll,
5002 .unlocked_ioctl = perf_ioctl,
5003 .compat_ioctl = perf_compat_ioctl,
5004 .mmap = perf_mmap,
5005 .fasync = perf_fasync,
5006 };
5007
5008 /*
5009 * Perf event wakeup
5010 *
5011 * If there's data, ensure we set the poll() state and publish everything
5012 * to user-space before waking everybody up.
5013 */
5014
perf_event_fasync(struct perf_event * event)5015 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5016 {
5017 /* only the parent has fasync state */
5018 if (event->parent)
5019 event = event->parent;
5020 return &event->fasync;
5021 }
5022
perf_event_wakeup(struct perf_event * event)5023 void perf_event_wakeup(struct perf_event *event)
5024 {
5025 ring_buffer_wakeup(event);
5026
5027 if (event->pending_kill) {
5028 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5029 event->pending_kill = 0;
5030 }
5031 }
5032
perf_pending_event(struct irq_work * entry)5033 static void perf_pending_event(struct irq_work *entry)
5034 {
5035 struct perf_event *event = container_of(entry,
5036 struct perf_event, pending);
5037 int rctx;
5038
5039 rctx = perf_swevent_get_recursion_context();
5040 /*
5041 * If we 'fail' here, that's OK, it means recursion is already disabled
5042 * and we won't recurse 'further'.
5043 */
5044
5045 if (event->pending_disable) {
5046 event->pending_disable = 0;
5047 __perf_event_disable(event);
5048 }
5049
5050 if (event->pending_wakeup) {
5051 event->pending_wakeup = 0;
5052 perf_event_wakeup(event);
5053 }
5054
5055 if (rctx >= 0)
5056 perf_swevent_put_recursion_context(rctx);
5057 }
5058
5059 /*
5060 * We assume there is only KVM supporting the callbacks.
5061 * Later on, we might change it to a list if there is
5062 * another virtualization implementation supporting the callbacks.
5063 */
5064 struct perf_guest_info_callbacks *perf_guest_cbs;
5065
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)5066 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5067 {
5068 perf_guest_cbs = cbs;
5069 return 0;
5070 }
5071 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5072
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)5073 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5074 {
5075 perf_guest_cbs = NULL;
5076 return 0;
5077 }
5078 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5079
5080 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)5081 perf_output_sample_regs(struct perf_output_handle *handle,
5082 struct pt_regs *regs, u64 mask)
5083 {
5084 int bit;
5085
5086 for_each_set_bit(bit, (const unsigned long *) &mask,
5087 sizeof(mask) * BITS_PER_BYTE) {
5088 u64 val;
5089
5090 val = perf_reg_value(regs, bit);
5091 perf_output_put(handle, val);
5092 }
5093 }
5094
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs,struct pt_regs * regs_user_copy)5095 static void perf_sample_regs_user(struct perf_regs *regs_user,
5096 struct pt_regs *regs,
5097 struct pt_regs *regs_user_copy)
5098 {
5099 if (user_mode(regs)) {
5100 regs_user->abi = perf_reg_abi(current);
5101 regs_user->regs = regs;
5102 } else if (!(current->flags & PF_KTHREAD)) {
5103 perf_get_regs_user(regs_user, regs, regs_user_copy);
5104 } else {
5105 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5106 regs_user->regs = NULL;
5107 }
5108 }
5109
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)5110 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5111 struct pt_regs *regs)
5112 {
5113 regs_intr->regs = regs;
5114 regs_intr->abi = perf_reg_abi(current);
5115 }
5116
5117
5118 /*
5119 * Get remaining task size from user stack pointer.
5120 *
5121 * It'd be better to take stack vma map and limit this more
5122 * precisly, but there's no way to get it safely under interrupt,
5123 * so using TASK_SIZE as limit.
5124 */
perf_ustack_task_size(struct pt_regs * regs)5125 static u64 perf_ustack_task_size(struct pt_regs *regs)
5126 {
5127 unsigned long addr = perf_user_stack_pointer(regs);
5128
5129 if (!addr || addr >= TASK_SIZE)
5130 return 0;
5131
5132 return TASK_SIZE - addr;
5133 }
5134
5135 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)5136 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5137 struct pt_regs *regs)
5138 {
5139 u64 task_size;
5140
5141 /* No regs, no stack pointer, no dump. */
5142 if (!regs)
5143 return 0;
5144
5145 /*
5146 * Check if we fit in with the requested stack size into the:
5147 * - TASK_SIZE
5148 * If we don't, we limit the size to the TASK_SIZE.
5149 *
5150 * - remaining sample size
5151 * If we don't, we customize the stack size to
5152 * fit in to the remaining sample size.
5153 */
5154
5155 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5156 stack_size = min(stack_size, (u16) task_size);
5157
5158 /* Current header size plus static size and dynamic size. */
5159 header_size += 2 * sizeof(u64);
5160
5161 /* Do we fit in with the current stack dump size? */
5162 if ((u16) (header_size + stack_size) < header_size) {
5163 /*
5164 * If we overflow the maximum size for the sample,
5165 * we customize the stack dump size to fit in.
5166 */
5167 stack_size = USHRT_MAX - header_size - sizeof(u64);
5168 stack_size = round_up(stack_size, sizeof(u64));
5169 }
5170
5171 return stack_size;
5172 }
5173
5174 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)5175 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5176 struct pt_regs *regs)
5177 {
5178 /* Case of a kernel thread, nothing to dump */
5179 if (!regs) {
5180 u64 size = 0;
5181 perf_output_put(handle, size);
5182 } else {
5183 unsigned long sp;
5184 unsigned int rem;
5185 u64 dyn_size;
5186
5187 /*
5188 * We dump:
5189 * static size
5190 * - the size requested by user or the best one we can fit
5191 * in to the sample max size
5192 * data
5193 * - user stack dump data
5194 * dynamic size
5195 * - the actual dumped size
5196 */
5197
5198 /* Static size. */
5199 perf_output_put(handle, dump_size);
5200
5201 /* Data. */
5202 sp = perf_user_stack_pointer(regs);
5203 rem = __output_copy_user(handle, (void *) sp, dump_size);
5204 dyn_size = dump_size - rem;
5205
5206 perf_output_skip(handle, rem);
5207
5208 /* Dynamic size. */
5209 perf_output_put(handle, dyn_size);
5210 }
5211 }
5212
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)5213 static void __perf_event_header__init_id(struct perf_event_header *header,
5214 struct perf_sample_data *data,
5215 struct perf_event *event)
5216 {
5217 u64 sample_type = event->attr.sample_type;
5218
5219 data->type = sample_type;
5220 header->size += event->id_header_size;
5221
5222 if (sample_type & PERF_SAMPLE_TID) {
5223 /* namespace issues */
5224 data->tid_entry.pid = perf_event_pid(event, current);
5225 data->tid_entry.tid = perf_event_tid(event, current);
5226 }
5227
5228 if (sample_type & PERF_SAMPLE_TIME)
5229 data->time = perf_event_clock(event);
5230
5231 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5232 data->id = primary_event_id(event);
5233
5234 if (sample_type & PERF_SAMPLE_STREAM_ID)
5235 data->stream_id = event->id;
5236
5237 if (sample_type & PERF_SAMPLE_CPU) {
5238 data->cpu_entry.cpu = raw_smp_processor_id();
5239 data->cpu_entry.reserved = 0;
5240 }
5241 }
5242
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)5243 void perf_event_header__init_id(struct perf_event_header *header,
5244 struct perf_sample_data *data,
5245 struct perf_event *event)
5246 {
5247 if (event->attr.sample_id_all)
5248 __perf_event_header__init_id(header, data, event);
5249 }
5250
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)5251 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5252 struct perf_sample_data *data)
5253 {
5254 u64 sample_type = data->type;
5255
5256 if (sample_type & PERF_SAMPLE_TID)
5257 perf_output_put(handle, data->tid_entry);
5258
5259 if (sample_type & PERF_SAMPLE_TIME)
5260 perf_output_put(handle, data->time);
5261
5262 if (sample_type & PERF_SAMPLE_ID)
5263 perf_output_put(handle, data->id);
5264
5265 if (sample_type & PERF_SAMPLE_STREAM_ID)
5266 perf_output_put(handle, data->stream_id);
5267
5268 if (sample_type & PERF_SAMPLE_CPU)
5269 perf_output_put(handle, data->cpu_entry);
5270
5271 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5272 perf_output_put(handle, data->id);
5273 }
5274
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)5275 void perf_event__output_id_sample(struct perf_event *event,
5276 struct perf_output_handle *handle,
5277 struct perf_sample_data *sample)
5278 {
5279 if (event->attr.sample_id_all)
5280 __perf_event__output_id_sample(handle, sample);
5281 }
5282
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)5283 static void perf_output_read_one(struct perf_output_handle *handle,
5284 struct perf_event *event,
5285 u64 enabled, u64 running)
5286 {
5287 u64 read_format = event->attr.read_format;
5288 u64 values[4];
5289 int n = 0;
5290
5291 values[n++] = perf_event_count(event);
5292 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5293 values[n++] = enabled +
5294 atomic64_read(&event->child_total_time_enabled);
5295 }
5296 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5297 values[n++] = running +
5298 atomic64_read(&event->child_total_time_running);
5299 }
5300 if (read_format & PERF_FORMAT_ID)
5301 values[n++] = primary_event_id(event);
5302
5303 __output_copy(handle, values, n * sizeof(u64));
5304 }
5305
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)5306 static void perf_output_read_group(struct perf_output_handle *handle,
5307 struct perf_event *event,
5308 u64 enabled, u64 running)
5309 {
5310 struct perf_event *leader = event->group_leader, *sub;
5311 u64 read_format = event->attr.read_format;
5312 u64 values[5];
5313 int n = 0;
5314
5315 values[n++] = 1 + leader->nr_siblings;
5316
5317 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5318 values[n++] = enabled;
5319
5320 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5321 values[n++] = running;
5322
5323 if ((leader != event) &&
5324 (leader->state == PERF_EVENT_STATE_ACTIVE))
5325 leader->pmu->read(leader);
5326
5327 values[n++] = perf_event_count(leader);
5328 if (read_format & PERF_FORMAT_ID)
5329 values[n++] = primary_event_id(leader);
5330
5331 __output_copy(handle, values, n * sizeof(u64));
5332
5333 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5334 n = 0;
5335
5336 if ((sub != event) &&
5337 (sub->state == PERF_EVENT_STATE_ACTIVE))
5338 sub->pmu->read(sub);
5339
5340 values[n++] = perf_event_count(sub);
5341 if (read_format & PERF_FORMAT_ID)
5342 values[n++] = primary_event_id(sub);
5343
5344 __output_copy(handle, values, n * sizeof(u64));
5345 }
5346 }
5347
5348 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5349 PERF_FORMAT_TOTAL_TIME_RUNNING)
5350
5351 /*
5352 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5353 *
5354 * The problem is that its both hard and excessively expensive to iterate the
5355 * child list, not to mention that its impossible to IPI the children running
5356 * on another CPU, from interrupt/NMI context.
5357 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)5358 static void perf_output_read(struct perf_output_handle *handle,
5359 struct perf_event *event)
5360 {
5361 u64 enabled = 0, running = 0, now;
5362 u64 read_format = event->attr.read_format;
5363
5364 /*
5365 * compute total_time_enabled, total_time_running
5366 * based on snapshot values taken when the event
5367 * was last scheduled in.
5368 *
5369 * we cannot simply called update_context_time()
5370 * because of locking issue as we are called in
5371 * NMI context
5372 */
5373 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5374 calc_timer_values(event, &now, &enabled, &running);
5375
5376 if (event->attr.read_format & PERF_FORMAT_GROUP)
5377 perf_output_read_group(handle, event, enabled, running);
5378 else
5379 perf_output_read_one(handle, event, enabled, running);
5380 }
5381
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)5382 void perf_output_sample(struct perf_output_handle *handle,
5383 struct perf_event_header *header,
5384 struct perf_sample_data *data,
5385 struct perf_event *event)
5386 {
5387 u64 sample_type = data->type;
5388
5389 perf_output_put(handle, *header);
5390
5391 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5392 perf_output_put(handle, data->id);
5393
5394 if (sample_type & PERF_SAMPLE_IP)
5395 perf_output_put(handle, data->ip);
5396
5397 if (sample_type & PERF_SAMPLE_TID)
5398 perf_output_put(handle, data->tid_entry);
5399
5400 if (sample_type & PERF_SAMPLE_TIME)
5401 perf_output_put(handle, data->time);
5402
5403 if (sample_type & PERF_SAMPLE_ADDR)
5404 perf_output_put(handle, data->addr);
5405
5406 if (sample_type & PERF_SAMPLE_ID)
5407 perf_output_put(handle, data->id);
5408
5409 if (sample_type & PERF_SAMPLE_STREAM_ID)
5410 perf_output_put(handle, data->stream_id);
5411
5412 if (sample_type & PERF_SAMPLE_CPU)
5413 perf_output_put(handle, data->cpu_entry);
5414
5415 if (sample_type & PERF_SAMPLE_PERIOD)
5416 perf_output_put(handle, data->period);
5417
5418 if (sample_type & PERF_SAMPLE_READ)
5419 perf_output_read(handle, event);
5420
5421 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5422 if (data->callchain) {
5423 int size = 1;
5424
5425 if (data->callchain)
5426 size += data->callchain->nr;
5427
5428 size *= sizeof(u64);
5429
5430 __output_copy(handle, data->callchain, size);
5431 } else {
5432 u64 nr = 0;
5433 perf_output_put(handle, nr);
5434 }
5435 }
5436
5437 if (sample_type & PERF_SAMPLE_RAW) {
5438 if (data->raw) {
5439 u32 raw_size = data->raw->size;
5440 u32 real_size = round_up(raw_size + sizeof(u32),
5441 sizeof(u64)) - sizeof(u32);
5442 u64 zero = 0;
5443
5444 perf_output_put(handle, real_size);
5445 __output_copy(handle, data->raw->data, raw_size);
5446 if (real_size - raw_size)
5447 __output_copy(handle, &zero, real_size - raw_size);
5448 } else {
5449 struct {
5450 u32 size;
5451 u32 data;
5452 } raw = {
5453 .size = sizeof(u32),
5454 .data = 0,
5455 };
5456 perf_output_put(handle, raw);
5457 }
5458 }
5459
5460 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5461 if (data->br_stack) {
5462 size_t size;
5463
5464 size = data->br_stack->nr
5465 * sizeof(struct perf_branch_entry);
5466
5467 perf_output_put(handle, data->br_stack->nr);
5468 perf_output_copy(handle, data->br_stack->entries, size);
5469 } else {
5470 /*
5471 * we always store at least the value of nr
5472 */
5473 u64 nr = 0;
5474 perf_output_put(handle, nr);
5475 }
5476 }
5477
5478 if (sample_type & PERF_SAMPLE_REGS_USER) {
5479 u64 abi = data->regs_user.abi;
5480
5481 /*
5482 * If there are no regs to dump, notice it through
5483 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5484 */
5485 perf_output_put(handle, abi);
5486
5487 if (abi) {
5488 u64 mask = event->attr.sample_regs_user;
5489 perf_output_sample_regs(handle,
5490 data->regs_user.regs,
5491 mask);
5492 }
5493 }
5494
5495 if (sample_type & PERF_SAMPLE_STACK_USER) {
5496 perf_output_sample_ustack(handle,
5497 data->stack_user_size,
5498 data->regs_user.regs);
5499 }
5500
5501 if (sample_type & PERF_SAMPLE_WEIGHT)
5502 perf_output_put(handle, data->weight);
5503
5504 if (sample_type & PERF_SAMPLE_DATA_SRC)
5505 perf_output_put(handle, data->data_src.val);
5506
5507 if (sample_type & PERF_SAMPLE_TRANSACTION)
5508 perf_output_put(handle, data->txn);
5509
5510 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5511 u64 abi = data->regs_intr.abi;
5512 /*
5513 * If there are no regs to dump, notice it through
5514 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5515 */
5516 perf_output_put(handle, abi);
5517
5518 if (abi) {
5519 u64 mask = event->attr.sample_regs_intr;
5520
5521 perf_output_sample_regs(handle,
5522 data->regs_intr.regs,
5523 mask);
5524 }
5525 }
5526
5527 if (!event->attr.watermark) {
5528 int wakeup_events = event->attr.wakeup_events;
5529
5530 if (wakeup_events) {
5531 struct ring_buffer *rb = handle->rb;
5532 int events = local_inc_return(&rb->events);
5533
5534 if (events >= wakeup_events) {
5535 local_sub(wakeup_events, &rb->events);
5536 local_inc(&rb->wakeup);
5537 }
5538 }
5539 }
5540 }
5541
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)5542 void perf_prepare_sample(struct perf_event_header *header,
5543 struct perf_sample_data *data,
5544 struct perf_event *event,
5545 struct pt_regs *regs)
5546 {
5547 u64 sample_type = event->attr.sample_type;
5548
5549 header->type = PERF_RECORD_SAMPLE;
5550 header->size = sizeof(*header) + event->header_size;
5551
5552 header->misc = 0;
5553 header->misc |= perf_misc_flags(regs);
5554
5555 __perf_event_header__init_id(header, data, event);
5556
5557 if (sample_type & PERF_SAMPLE_IP)
5558 data->ip = perf_instruction_pointer(regs);
5559
5560 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5561 int size = 1;
5562
5563 data->callchain = perf_callchain(event, regs);
5564
5565 if (data->callchain)
5566 size += data->callchain->nr;
5567
5568 header->size += size * sizeof(u64);
5569 }
5570
5571 if (sample_type & PERF_SAMPLE_RAW) {
5572 int size = sizeof(u32);
5573
5574 if (data->raw)
5575 size += data->raw->size;
5576 else
5577 size += sizeof(u32);
5578
5579 header->size += round_up(size, sizeof(u64));
5580 }
5581
5582 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5583 int size = sizeof(u64); /* nr */
5584 if (data->br_stack) {
5585 size += data->br_stack->nr
5586 * sizeof(struct perf_branch_entry);
5587 }
5588 header->size += size;
5589 }
5590
5591 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5592 perf_sample_regs_user(&data->regs_user, regs,
5593 &data->regs_user_copy);
5594
5595 if (sample_type & PERF_SAMPLE_REGS_USER) {
5596 /* regs dump ABI info */
5597 int size = sizeof(u64);
5598
5599 if (data->regs_user.regs) {
5600 u64 mask = event->attr.sample_regs_user;
5601 size += hweight64(mask) * sizeof(u64);
5602 }
5603
5604 header->size += size;
5605 }
5606
5607 if (sample_type & PERF_SAMPLE_STACK_USER) {
5608 /*
5609 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5610 * processed as the last one or have additional check added
5611 * in case new sample type is added, because we could eat
5612 * up the rest of the sample size.
5613 */
5614 u16 stack_size = event->attr.sample_stack_user;
5615 u16 size = sizeof(u64);
5616
5617 stack_size = perf_sample_ustack_size(stack_size, header->size,
5618 data->regs_user.regs);
5619
5620 /*
5621 * If there is something to dump, add space for the dump
5622 * itself and for the field that tells the dynamic size,
5623 * which is how many have been actually dumped.
5624 */
5625 if (stack_size)
5626 size += sizeof(u64) + stack_size;
5627
5628 data->stack_user_size = stack_size;
5629 header->size += size;
5630 }
5631
5632 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5633 /* regs dump ABI info */
5634 int size = sizeof(u64);
5635
5636 perf_sample_regs_intr(&data->regs_intr, regs);
5637
5638 if (data->regs_intr.regs) {
5639 u64 mask = event->attr.sample_regs_intr;
5640
5641 size += hweight64(mask) * sizeof(u64);
5642 }
5643
5644 header->size += size;
5645 }
5646 }
5647
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)5648 void perf_event_output(struct perf_event *event,
5649 struct perf_sample_data *data,
5650 struct pt_regs *regs)
5651 {
5652 struct perf_output_handle handle;
5653 struct perf_event_header header;
5654
5655 /* protect the callchain buffers */
5656 rcu_read_lock();
5657
5658 perf_prepare_sample(&header, data, event, regs);
5659
5660 if (perf_output_begin(&handle, event, header.size))
5661 goto exit;
5662
5663 perf_output_sample(&handle, &header, data, event);
5664
5665 perf_output_end(&handle);
5666
5667 exit:
5668 rcu_read_unlock();
5669 }
5670
5671 /*
5672 * read event_id
5673 */
5674
5675 struct perf_read_event {
5676 struct perf_event_header header;
5677
5678 u32 pid;
5679 u32 tid;
5680 };
5681
5682 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)5683 perf_event_read_event(struct perf_event *event,
5684 struct task_struct *task)
5685 {
5686 struct perf_output_handle handle;
5687 struct perf_sample_data sample;
5688 struct perf_read_event read_event = {
5689 .header = {
5690 .type = PERF_RECORD_READ,
5691 .misc = 0,
5692 .size = sizeof(read_event) + event->read_size,
5693 },
5694 .pid = perf_event_pid(event, task),
5695 .tid = perf_event_tid(event, task),
5696 };
5697 int ret;
5698
5699 perf_event_header__init_id(&read_event.header, &sample, event);
5700 ret = perf_output_begin(&handle, event, read_event.header.size);
5701 if (ret)
5702 return;
5703
5704 perf_output_put(&handle, read_event);
5705 perf_output_read(&handle, event);
5706 perf_event__output_id_sample(event, &handle, &sample);
5707
5708 perf_output_end(&handle);
5709 }
5710
5711 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5712
5713 static void
perf_event_aux_ctx(struct perf_event_context * ctx,perf_event_aux_output_cb output,void * data)5714 perf_event_aux_ctx(struct perf_event_context *ctx,
5715 perf_event_aux_output_cb output,
5716 void *data)
5717 {
5718 struct perf_event *event;
5719
5720 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5721 if (event->state < PERF_EVENT_STATE_INACTIVE)
5722 continue;
5723 if (!event_filter_match(event))
5724 continue;
5725 output(event, data);
5726 }
5727 }
5728
5729 static void
perf_event_aux_task_ctx(perf_event_aux_output_cb output,void * data,struct perf_event_context * task_ctx)5730 perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5731 struct perf_event_context *task_ctx)
5732 {
5733 rcu_read_lock();
5734 preempt_disable();
5735 perf_event_aux_ctx(task_ctx, output, data);
5736 preempt_enable();
5737 rcu_read_unlock();
5738 }
5739
5740 static void
perf_event_aux(perf_event_aux_output_cb output,void * data,struct perf_event_context * task_ctx)5741 perf_event_aux(perf_event_aux_output_cb output, void *data,
5742 struct perf_event_context *task_ctx)
5743 {
5744 struct perf_cpu_context *cpuctx;
5745 struct perf_event_context *ctx;
5746 struct pmu *pmu;
5747 int ctxn;
5748
5749 /*
5750 * If we have task_ctx != NULL we only notify
5751 * the task context itself. The task_ctx is set
5752 * only for EXIT events before releasing task
5753 * context.
5754 */
5755 if (task_ctx) {
5756 perf_event_aux_task_ctx(output, data, task_ctx);
5757 return;
5758 }
5759
5760 rcu_read_lock();
5761 list_for_each_entry_rcu(pmu, &pmus, entry) {
5762 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5763 if (cpuctx->unique_pmu != pmu)
5764 goto next;
5765 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5766 ctxn = pmu->task_ctx_nr;
5767 if (ctxn < 0)
5768 goto next;
5769 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5770 if (ctx)
5771 perf_event_aux_ctx(ctx, output, data);
5772 next:
5773 put_cpu_ptr(pmu->pmu_cpu_context);
5774 }
5775 rcu_read_unlock();
5776 }
5777
5778 /*
5779 * task tracking -- fork/exit
5780 *
5781 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5782 */
5783
5784 struct perf_task_event {
5785 struct task_struct *task;
5786 struct perf_event_context *task_ctx;
5787
5788 struct {
5789 struct perf_event_header header;
5790
5791 u32 pid;
5792 u32 ppid;
5793 u32 tid;
5794 u32 ptid;
5795 u64 time;
5796 } event_id;
5797 };
5798
perf_event_task_match(struct perf_event * event)5799 static int perf_event_task_match(struct perf_event *event)
5800 {
5801 return event->attr.comm || event->attr.mmap ||
5802 event->attr.mmap2 || event->attr.mmap_data ||
5803 event->attr.task;
5804 }
5805
perf_event_task_output(struct perf_event * event,void * data)5806 static void perf_event_task_output(struct perf_event *event,
5807 void *data)
5808 {
5809 struct perf_task_event *task_event = data;
5810 struct perf_output_handle handle;
5811 struct perf_sample_data sample;
5812 struct task_struct *task = task_event->task;
5813 int ret, size = task_event->event_id.header.size;
5814
5815 if (!perf_event_task_match(event))
5816 return;
5817
5818 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5819
5820 ret = perf_output_begin(&handle, event,
5821 task_event->event_id.header.size);
5822 if (ret)
5823 goto out;
5824
5825 task_event->event_id.pid = perf_event_pid(event, task);
5826 task_event->event_id.tid = perf_event_tid(event, task);
5827
5828 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
5829 task_event->event_id.ppid = perf_event_pid(event,
5830 task->real_parent);
5831 task_event->event_id.ptid = perf_event_pid(event,
5832 task->real_parent);
5833 } else { /* PERF_RECORD_FORK */
5834 task_event->event_id.ppid = perf_event_pid(event, current);
5835 task_event->event_id.ptid = perf_event_tid(event, current);
5836 }
5837
5838 task_event->event_id.time = perf_event_clock(event);
5839
5840 perf_output_put(&handle, task_event->event_id);
5841
5842 perf_event__output_id_sample(event, &handle, &sample);
5843
5844 perf_output_end(&handle);
5845 out:
5846 task_event->event_id.header.size = size;
5847 }
5848
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)5849 static void perf_event_task(struct task_struct *task,
5850 struct perf_event_context *task_ctx,
5851 int new)
5852 {
5853 struct perf_task_event task_event;
5854
5855 if (!atomic_read(&nr_comm_events) &&
5856 !atomic_read(&nr_mmap_events) &&
5857 !atomic_read(&nr_task_events))
5858 return;
5859
5860 task_event = (struct perf_task_event){
5861 .task = task,
5862 .task_ctx = task_ctx,
5863 .event_id = {
5864 .header = {
5865 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5866 .misc = 0,
5867 .size = sizeof(task_event.event_id),
5868 },
5869 /* .pid */
5870 /* .ppid */
5871 /* .tid */
5872 /* .ptid */
5873 /* .time */
5874 },
5875 };
5876
5877 perf_event_aux(perf_event_task_output,
5878 &task_event,
5879 task_ctx);
5880 }
5881
perf_event_fork(struct task_struct * task)5882 void perf_event_fork(struct task_struct *task)
5883 {
5884 perf_event_task(task, NULL, 1);
5885 }
5886
5887 /*
5888 * comm tracking
5889 */
5890
5891 struct perf_comm_event {
5892 struct task_struct *task;
5893 char *comm;
5894 int comm_size;
5895
5896 struct {
5897 struct perf_event_header header;
5898
5899 u32 pid;
5900 u32 tid;
5901 } event_id;
5902 };
5903
perf_event_comm_match(struct perf_event * event)5904 static int perf_event_comm_match(struct perf_event *event)
5905 {
5906 return event->attr.comm;
5907 }
5908
perf_event_comm_output(struct perf_event * event,void * data)5909 static void perf_event_comm_output(struct perf_event *event,
5910 void *data)
5911 {
5912 struct perf_comm_event *comm_event = data;
5913 struct perf_output_handle handle;
5914 struct perf_sample_data sample;
5915 int size = comm_event->event_id.header.size;
5916 int ret;
5917
5918 if (!perf_event_comm_match(event))
5919 return;
5920
5921 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5922 ret = perf_output_begin(&handle, event,
5923 comm_event->event_id.header.size);
5924
5925 if (ret)
5926 goto out;
5927
5928 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5929 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5930
5931 perf_output_put(&handle, comm_event->event_id);
5932 __output_copy(&handle, comm_event->comm,
5933 comm_event->comm_size);
5934
5935 perf_event__output_id_sample(event, &handle, &sample);
5936
5937 perf_output_end(&handle);
5938 out:
5939 comm_event->event_id.header.size = size;
5940 }
5941
perf_event_comm_event(struct perf_comm_event * comm_event)5942 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5943 {
5944 char comm[TASK_COMM_LEN];
5945 unsigned int size;
5946
5947 memset(comm, 0, sizeof(comm));
5948 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5949 size = ALIGN(strlen(comm)+1, sizeof(u64));
5950
5951 comm_event->comm = comm;
5952 comm_event->comm_size = size;
5953
5954 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5955
5956 perf_event_aux(perf_event_comm_output,
5957 comm_event,
5958 NULL);
5959 }
5960
perf_event_comm(struct task_struct * task,bool exec)5961 void perf_event_comm(struct task_struct *task, bool exec)
5962 {
5963 struct perf_comm_event comm_event;
5964
5965 if (!atomic_read(&nr_comm_events))
5966 return;
5967
5968 comm_event = (struct perf_comm_event){
5969 .task = task,
5970 /* .comm */
5971 /* .comm_size */
5972 .event_id = {
5973 .header = {
5974 .type = PERF_RECORD_COMM,
5975 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5976 /* .size */
5977 },
5978 /* .pid */
5979 /* .tid */
5980 },
5981 };
5982
5983 perf_event_comm_event(&comm_event);
5984 }
5985
5986 /*
5987 * mmap tracking
5988 */
5989
5990 struct perf_mmap_event {
5991 struct vm_area_struct *vma;
5992
5993 const char *file_name;
5994 int file_size;
5995 int maj, min;
5996 u64 ino;
5997 u64 ino_generation;
5998 u32 prot, flags;
5999
6000 struct {
6001 struct perf_event_header header;
6002
6003 u32 pid;
6004 u32 tid;
6005 u64 start;
6006 u64 len;
6007 u64 pgoff;
6008 } event_id;
6009 };
6010
perf_event_mmap_match(struct perf_event * event,void * data)6011 static int perf_event_mmap_match(struct perf_event *event,
6012 void *data)
6013 {
6014 struct perf_mmap_event *mmap_event = data;
6015 struct vm_area_struct *vma = mmap_event->vma;
6016 int executable = vma->vm_flags & VM_EXEC;
6017
6018 return (!executable && event->attr.mmap_data) ||
6019 (executable && (event->attr.mmap || event->attr.mmap2));
6020 }
6021
perf_event_mmap_output(struct perf_event * event,void * data)6022 static void perf_event_mmap_output(struct perf_event *event,
6023 void *data)
6024 {
6025 struct perf_mmap_event *mmap_event = data;
6026 struct perf_output_handle handle;
6027 struct perf_sample_data sample;
6028 int size = mmap_event->event_id.header.size;
6029 u32 type = mmap_event->event_id.header.type;
6030 int ret;
6031
6032 if (!perf_event_mmap_match(event, data))
6033 return;
6034
6035 if (event->attr.mmap2) {
6036 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6037 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6038 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6039 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6040 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6041 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6042 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6043 }
6044
6045 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6046 ret = perf_output_begin(&handle, event,
6047 mmap_event->event_id.header.size);
6048 if (ret)
6049 goto out;
6050
6051 mmap_event->event_id.pid = perf_event_pid(event, current);
6052 mmap_event->event_id.tid = perf_event_tid(event, current);
6053
6054 perf_output_put(&handle, mmap_event->event_id);
6055
6056 if (event->attr.mmap2) {
6057 perf_output_put(&handle, mmap_event->maj);
6058 perf_output_put(&handle, mmap_event->min);
6059 perf_output_put(&handle, mmap_event->ino);
6060 perf_output_put(&handle, mmap_event->ino_generation);
6061 perf_output_put(&handle, mmap_event->prot);
6062 perf_output_put(&handle, mmap_event->flags);
6063 }
6064
6065 __output_copy(&handle, mmap_event->file_name,
6066 mmap_event->file_size);
6067
6068 perf_event__output_id_sample(event, &handle, &sample);
6069
6070 perf_output_end(&handle);
6071 out:
6072 mmap_event->event_id.header.size = size;
6073 mmap_event->event_id.header.type = type;
6074 }
6075
perf_event_mmap_event(struct perf_mmap_event * mmap_event)6076 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6077 {
6078 struct vm_area_struct *vma = mmap_event->vma;
6079 struct file *file = vma->vm_file;
6080 int maj = 0, min = 0;
6081 u64 ino = 0, gen = 0;
6082 u32 prot = 0, flags = 0;
6083 unsigned int size;
6084 char tmp[16];
6085 char *buf = NULL;
6086 char *name;
6087
6088 if (vma->vm_flags & VM_READ)
6089 prot |= PROT_READ;
6090 if (vma->vm_flags & VM_WRITE)
6091 prot |= PROT_WRITE;
6092 if (vma->vm_flags & VM_EXEC)
6093 prot |= PROT_EXEC;
6094
6095 if (vma->vm_flags & VM_MAYSHARE)
6096 flags = MAP_SHARED;
6097 else
6098 flags = MAP_PRIVATE;
6099
6100 if (vma->vm_flags & VM_DENYWRITE)
6101 flags |= MAP_DENYWRITE;
6102 if (vma->vm_flags & VM_MAYEXEC)
6103 flags |= MAP_EXECUTABLE;
6104 if (vma->vm_flags & VM_LOCKED)
6105 flags |= MAP_LOCKED;
6106 if (vma->vm_flags & VM_HUGETLB)
6107 flags |= MAP_HUGETLB;
6108
6109 if (file) {
6110 struct inode *inode;
6111 dev_t dev;
6112
6113 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6114 if (!buf) {
6115 name = "//enomem";
6116 goto cpy_name;
6117 }
6118 /*
6119 * d_path() works from the end of the rb backwards, so we
6120 * need to add enough zero bytes after the string to handle
6121 * the 64bit alignment we do later.
6122 */
6123 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6124 if (IS_ERR(name)) {
6125 name = "//toolong";
6126 goto cpy_name;
6127 }
6128 inode = file_inode(vma->vm_file);
6129 dev = inode->i_sb->s_dev;
6130 ino = inode->i_ino;
6131 gen = inode->i_generation;
6132 maj = MAJOR(dev);
6133 min = MINOR(dev);
6134
6135 goto got_name;
6136 } else {
6137 if (vma->vm_ops && vma->vm_ops->name) {
6138 name = (char *) vma->vm_ops->name(vma);
6139 if (name)
6140 goto cpy_name;
6141 }
6142
6143 name = (char *)arch_vma_name(vma);
6144 if (name)
6145 goto cpy_name;
6146
6147 if (vma->vm_start <= vma->vm_mm->start_brk &&
6148 vma->vm_end >= vma->vm_mm->brk) {
6149 name = "[heap]";
6150 goto cpy_name;
6151 }
6152 if (vma->vm_start <= vma->vm_mm->start_stack &&
6153 vma->vm_end >= vma->vm_mm->start_stack) {
6154 name = "[stack]";
6155 goto cpy_name;
6156 }
6157
6158 name = "//anon";
6159 goto cpy_name;
6160 }
6161
6162 cpy_name:
6163 strlcpy(tmp, name, sizeof(tmp));
6164 name = tmp;
6165 got_name:
6166 /*
6167 * Since our buffer works in 8 byte units we need to align our string
6168 * size to a multiple of 8. However, we must guarantee the tail end is
6169 * zero'd out to avoid leaking random bits to userspace.
6170 */
6171 size = strlen(name)+1;
6172 while (!IS_ALIGNED(size, sizeof(u64)))
6173 name[size++] = '\0';
6174
6175 mmap_event->file_name = name;
6176 mmap_event->file_size = size;
6177 mmap_event->maj = maj;
6178 mmap_event->min = min;
6179 mmap_event->ino = ino;
6180 mmap_event->ino_generation = gen;
6181 mmap_event->prot = prot;
6182 mmap_event->flags = flags;
6183
6184 if (!(vma->vm_flags & VM_EXEC))
6185 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6186
6187 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6188
6189 perf_event_aux(perf_event_mmap_output,
6190 mmap_event,
6191 NULL);
6192
6193 kfree(buf);
6194 }
6195
perf_event_mmap(struct vm_area_struct * vma)6196 void perf_event_mmap(struct vm_area_struct *vma)
6197 {
6198 struct perf_mmap_event mmap_event;
6199
6200 if (!atomic_read(&nr_mmap_events))
6201 return;
6202
6203 mmap_event = (struct perf_mmap_event){
6204 .vma = vma,
6205 /* .file_name */
6206 /* .file_size */
6207 .event_id = {
6208 .header = {
6209 .type = PERF_RECORD_MMAP,
6210 .misc = PERF_RECORD_MISC_USER,
6211 /* .size */
6212 },
6213 /* .pid */
6214 /* .tid */
6215 .start = vma->vm_start,
6216 .len = vma->vm_end - vma->vm_start,
6217 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6218 },
6219 /* .maj (attr_mmap2 only) */
6220 /* .min (attr_mmap2 only) */
6221 /* .ino (attr_mmap2 only) */
6222 /* .ino_generation (attr_mmap2 only) */
6223 /* .prot (attr_mmap2 only) */
6224 /* .flags (attr_mmap2 only) */
6225 };
6226
6227 perf_event_mmap_event(&mmap_event);
6228 }
6229
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)6230 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6231 unsigned long size, u64 flags)
6232 {
6233 struct perf_output_handle handle;
6234 struct perf_sample_data sample;
6235 struct perf_aux_event {
6236 struct perf_event_header header;
6237 u64 offset;
6238 u64 size;
6239 u64 flags;
6240 } rec = {
6241 .header = {
6242 .type = PERF_RECORD_AUX,
6243 .misc = 0,
6244 .size = sizeof(rec),
6245 },
6246 .offset = head,
6247 .size = size,
6248 .flags = flags,
6249 };
6250 int ret;
6251
6252 perf_event_header__init_id(&rec.header, &sample, event);
6253 ret = perf_output_begin(&handle, event, rec.header.size);
6254
6255 if (ret)
6256 return;
6257
6258 perf_output_put(&handle, rec);
6259 perf_event__output_id_sample(event, &handle, &sample);
6260
6261 perf_output_end(&handle);
6262 }
6263
6264 /*
6265 * Lost/dropped samples logging
6266 */
perf_log_lost_samples(struct perf_event * event,u64 lost)6267 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6268 {
6269 struct perf_output_handle handle;
6270 struct perf_sample_data sample;
6271 int ret;
6272
6273 struct {
6274 struct perf_event_header header;
6275 u64 lost;
6276 } lost_samples_event = {
6277 .header = {
6278 .type = PERF_RECORD_LOST_SAMPLES,
6279 .misc = 0,
6280 .size = sizeof(lost_samples_event),
6281 },
6282 .lost = lost,
6283 };
6284
6285 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6286
6287 ret = perf_output_begin(&handle, event,
6288 lost_samples_event.header.size);
6289 if (ret)
6290 return;
6291
6292 perf_output_put(&handle, lost_samples_event);
6293 perf_event__output_id_sample(event, &handle, &sample);
6294 perf_output_end(&handle);
6295 }
6296
6297 /*
6298 * context_switch tracking
6299 */
6300
6301 struct perf_switch_event {
6302 struct task_struct *task;
6303 struct task_struct *next_prev;
6304
6305 struct {
6306 struct perf_event_header header;
6307 u32 next_prev_pid;
6308 u32 next_prev_tid;
6309 } event_id;
6310 };
6311
perf_event_switch_match(struct perf_event * event)6312 static int perf_event_switch_match(struct perf_event *event)
6313 {
6314 return event->attr.context_switch;
6315 }
6316
perf_event_switch_output(struct perf_event * event,void * data)6317 static void perf_event_switch_output(struct perf_event *event, void *data)
6318 {
6319 struct perf_switch_event *se = data;
6320 struct perf_output_handle handle;
6321 struct perf_sample_data sample;
6322 int ret;
6323
6324 if (!perf_event_switch_match(event))
6325 return;
6326
6327 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6328 if (event->ctx->task) {
6329 se->event_id.header.type = PERF_RECORD_SWITCH;
6330 se->event_id.header.size = sizeof(se->event_id.header);
6331 } else {
6332 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6333 se->event_id.header.size = sizeof(se->event_id);
6334 se->event_id.next_prev_pid =
6335 perf_event_pid(event, se->next_prev);
6336 se->event_id.next_prev_tid =
6337 perf_event_tid(event, se->next_prev);
6338 }
6339
6340 perf_event_header__init_id(&se->event_id.header, &sample, event);
6341
6342 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6343 if (ret)
6344 return;
6345
6346 if (event->ctx->task)
6347 perf_output_put(&handle, se->event_id.header);
6348 else
6349 perf_output_put(&handle, se->event_id);
6350
6351 perf_event__output_id_sample(event, &handle, &sample);
6352
6353 perf_output_end(&handle);
6354 }
6355
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)6356 static void perf_event_switch(struct task_struct *task,
6357 struct task_struct *next_prev, bool sched_in)
6358 {
6359 struct perf_switch_event switch_event;
6360
6361 /* N.B. caller checks nr_switch_events != 0 */
6362
6363 switch_event = (struct perf_switch_event){
6364 .task = task,
6365 .next_prev = next_prev,
6366 .event_id = {
6367 .header = {
6368 /* .type */
6369 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6370 /* .size */
6371 },
6372 /* .next_prev_pid */
6373 /* .next_prev_tid */
6374 },
6375 };
6376
6377 perf_event_aux(perf_event_switch_output,
6378 &switch_event,
6379 NULL);
6380 }
6381
6382 /*
6383 * IRQ throttle logging
6384 */
6385
perf_log_throttle(struct perf_event * event,int enable)6386 static void perf_log_throttle(struct perf_event *event, int enable)
6387 {
6388 struct perf_output_handle handle;
6389 struct perf_sample_data sample;
6390 int ret;
6391
6392 struct {
6393 struct perf_event_header header;
6394 u64 time;
6395 u64 id;
6396 u64 stream_id;
6397 } throttle_event = {
6398 .header = {
6399 .type = PERF_RECORD_THROTTLE,
6400 .misc = 0,
6401 .size = sizeof(throttle_event),
6402 },
6403 .time = perf_event_clock(event),
6404 .id = primary_event_id(event),
6405 .stream_id = event->id,
6406 };
6407
6408 if (enable)
6409 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6410
6411 perf_event_header__init_id(&throttle_event.header, &sample, event);
6412
6413 ret = perf_output_begin(&handle, event,
6414 throttle_event.header.size);
6415 if (ret)
6416 return;
6417
6418 perf_output_put(&handle, throttle_event);
6419 perf_event__output_id_sample(event, &handle, &sample);
6420 perf_output_end(&handle);
6421 }
6422
perf_log_itrace_start(struct perf_event * event)6423 static void perf_log_itrace_start(struct perf_event *event)
6424 {
6425 struct perf_output_handle handle;
6426 struct perf_sample_data sample;
6427 struct perf_aux_event {
6428 struct perf_event_header header;
6429 u32 pid;
6430 u32 tid;
6431 } rec;
6432 int ret;
6433
6434 if (event->parent)
6435 event = event->parent;
6436
6437 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6438 event->hw.itrace_started)
6439 return;
6440
6441 rec.header.type = PERF_RECORD_ITRACE_START;
6442 rec.header.misc = 0;
6443 rec.header.size = sizeof(rec);
6444 rec.pid = perf_event_pid(event, current);
6445 rec.tid = perf_event_tid(event, current);
6446
6447 perf_event_header__init_id(&rec.header, &sample, event);
6448 ret = perf_output_begin(&handle, event, rec.header.size);
6449
6450 if (ret)
6451 return;
6452
6453 perf_output_put(&handle, rec);
6454 perf_event__output_id_sample(event, &handle, &sample);
6455
6456 perf_output_end(&handle);
6457 }
6458
6459 /*
6460 * Generic event overflow handling, sampling.
6461 */
6462
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)6463 static int __perf_event_overflow(struct perf_event *event,
6464 int throttle, struct perf_sample_data *data,
6465 struct pt_regs *regs)
6466 {
6467 int events = atomic_read(&event->event_limit);
6468 struct hw_perf_event *hwc = &event->hw;
6469 u64 seq;
6470 int ret = 0;
6471
6472 /*
6473 * Non-sampling counters might still use the PMI to fold short
6474 * hardware counters, ignore those.
6475 */
6476 if (unlikely(!is_sampling_event(event)))
6477 return 0;
6478
6479 seq = __this_cpu_read(perf_throttled_seq);
6480 if (seq != hwc->interrupts_seq) {
6481 hwc->interrupts_seq = seq;
6482 hwc->interrupts = 1;
6483 } else {
6484 hwc->interrupts++;
6485 if (unlikely(throttle
6486 && hwc->interrupts >= max_samples_per_tick)) {
6487 __this_cpu_inc(perf_throttled_count);
6488 hwc->interrupts = MAX_INTERRUPTS;
6489 perf_log_throttle(event, 0);
6490 tick_nohz_full_kick();
6491 ret = 1;
6492 }
6493 }
6494
6495 if (event->attr.freq) {
6496 u64 now = perf_clock();
6497 s64 delta = now - hwc->freq_time_stamp;
6498
6499 hwc->freq_time_stamp = now;
6500
6501 if (delta > 0 && delta < 2*TICK_NSEC)
6502 perf_adjust_period(event, delta, hwc->last_period, true);
6503 }
6504
6505 /*
6506 * XXX event_limit might not quite work as expected on inherited
6507 * events
6508 */
6509
6510 event->pending_kill = POLL_IN;
6511 if (events && atomic_dec_and_test(&event->event_limit)) {
6512 ret = 1;
6513 event->pending_kill = POLL_HUP;
6514 event->pending_disable = 1;
6515 irq_work_queue(&event->pending);
6516 }
6517
6518 if (event->overflow_handler)
6519 event->overflow_handler(event, data, regs);
6520 else
6521 perf_event_output(event, data, regs);
6522
6523 if (*perf_event_fasync(event) && event->pending_kill) {
6524 event->pending_wakeup = 1;
6525 irq_work_queue(&event->pending);
6526 }
6527
6528 return ret;
6529 }
6530
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6531 int perf_event_overflow(struct perf_event *event,
6532 struct perf_sample_data *data,
6533 struct pt_regs *regs)
6534 {
6535 return __perf_event_overflow(event, 1, data, regs);
6536 }
6537
6538 /*
6539 * Generic software event infrastructure
6540 */
6541
6542 struct swevent_htable {
6543 struct swevent_hlist *swevent_hlist;
6544 struct mutex hlist_mutex;
6545 int hlist_refcount;
6546
6547 /* Recursion avoidance in each contexts */
6548 int recursion[PERF_NR_CONTEXTS];
6549 };
6550
6551 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6552
6553 /*
6554 * We directly increment event->count and keep a second value in
6555 * event->hw.period_left to count intervals. This period event
6556 * is kept in the range [-sample_period, 0] so that we can use the
6557 * sign as trigger.
6558 */
6559
perf_swevent_set_period(struct perf_event * event)6560 u64 perf_swevent_set_period(struct perf_event *event)
6561 {
6562 struct hw_perf_event *hwc = &event->hw;
6563 u64 period = hwc->last_period;
6564 u64 nr, offset;
6565 s64 old, val;
6566
6567 hwc->last_period = hwc->sample_period;
6568
6569 again:
6570 old = val = local64_read(&hwc->period_left);
6571 if (val < 0)
6572 return 0;
6573
6574 nr = div64_u64(period + val, period);
6575 offset = nr * period;
6576 val -= offset;
6577 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6578 goto again;
6579
6580 return nr;
6581 }
6582
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)6583 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6584 struct perf_sample_data *data,
6585 struct pt_regs *regs)
6586 {
6587 struct hw_perf_event *hwc = &event->hw;
6588 int throttle = 0;
6589
6590 if (!overflow)
6591 overflow = perf_swevent_set_period(event);
6592
6593 if (hwc->interrupts == MAX_INTERRUPTS)
6594 return;
6595
6596 for (; overflow; overflow--) {
6597 if (__perf_event_overflow(event, throttle,
6598 data, regs)) {
6599 /*
6600 * We inhibit the overflow from happening when
6601 * hwc->interrupts == MAX_INTERRUPTS.
6602 */
6603 break;
6604 }
6605 throttle = 1;
6606 }
6607 }
6608
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)6609 static void perf_swevent_event(struct perf_event *event, u64 nr,
6610 struct perf_sample_data *data,
6611 struct pt_regs *regs)
6612 {
6613 struct hw_perf_event *hwc = &event->hw;
6614
6615 local64_add(nr, &event->count);
6616
6617 if (!regs)
6618 return;
6619
6620 if (!is_sampling_event(event))
6621 return;
6622
6623 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6624 data->period = nr;
6625 return perf_swevent_overflow(event, 1, data, regs);
6626 } else
6627 data->period = event->hw.last_period;
6628
6629 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6630 return perf_swevent_overflow(event, 1, data, regs);
6631
6632 if (local64_add_negative(nr, &hwc->period_left))
6633 return;
6634
6635 perf_swevent_overflow(event, 0, data, regs);
6636 }
6637
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)6638 static int perf_exclude_event(struct perf_event *event,
6639 struct pt_regs *regs)
6640 {
6641 if (event->hw.state & PERF_HES_STOPPED)
6642 return 1;
6643
6644 if (regs) {
6645 if (event->attr.exclude_user && user_mode(regs))
6646 return 1;
6647
6648 if (event->attr.exclude_kernel && !user_mode(regs))
6649 return 1;
6650 }
6651
6652 return 0;
6653 }
6654
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)6655 static int perf_swevent_match(struct perf_event *event,
6656 enum perf_type_id type,
6657 u32 event_id,
6658 struct perf_sample_data *data,
6659 struct pt_regs *regs)
6660 {
6661 if (event->attr.type != type)
6662 return 0;
6663
6664 if (event->attr.config != event_id)
6665 return 0;
6666
6667 if (perf_exclude_event(event, regs))
6668 return 0;
6669
6670 return 1;
6671 }
6672
swevent_hash(u64 type,u32 event_id)6673 static inline u64 swevent_hash(u64 type, u32 event_id)
6674 {
6675 u64 val = event_id | (type << 32);
6676
6677 return hash_64(val, SWEVENT_HLIST_BITS);
6678 }
6679
6680 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)6681 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6682 {
6683 u64 hash = swevent_hash(type, event_id);
6684
6685 return &hlist->heads[hash];
6686 }
6687
6688 /* For the read side: events when they trigger */
6689 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)6690 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6691 {
6692 struct swevent_hlist *hlist;
6693
6694 hlist = rcu_dereference(swhash->swevent_hlist);
6695 if (!hlist)
6696 return NULL;
6697
6698 return __find_swevent_head(hlist, type, event_id);
6699 }
6700
6701 /* For the event head insertion and removal in the hlist */
6702 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)6703 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6704 {
6705 struct swevent_hlist *hlist;
6706 u32 event_id = event->attr.config;
6707 u64 type = event->attr.type;
6708
6709 /*
6710 * Event scheduling is always serialized against hlist allocation
6711 * and release. Which makes the protected version suitable here.
6712 * The context lock guarantees that.
6713 */
6714 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6715 lockdep_is_held(&event->ctx->lock));
6716 if (!hlist)
6717 return NULL;
6718
6719 return __find_swevent_head(hlist, type, event_id);
6720 }
6721
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)6722 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6723 u64 nr,
6724 struct perf_sample_data *data,
6725 struct pt_regs *regs)
6726 {
6727 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6728 struct perf_event *event;
6729 struct hlist_head *head;
6730
6731 rcu_read_lock();
6732 head = find_swevent_head_rcu(swhash, type, event_id);
6733 if (!head)
6734 goto end;
6735
6736 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6737 if (perf_swevent_match(event, type, event_id, data, regs))
6738 perf_swevent_event(event, nr, data, regs);
6739 }
6740 end:
6741 rcu_read_unlock();
6742 }
6743
6744 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6745
perf_swevent_get_recursion_context(void)6746 int perf_swevent_get_recursion_context(void)
6747 {
6748 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6749
6750 return get_recursion_context(swhash->recursion);
6751 }
6752 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6753
perf_swevent_put_recursion_context(int rctx)6754 inline void perf_swevent_put_recursion_context(int rctx)
6755 {
6756 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6757
6758 put_recursion_context(swhash->recursion, rctx);
6759 }
6760
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)6761 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6762 {
6763 struct perf_sample_data data;
6764
6765 if (WARN_ON_ONCE(!regs))
6766 return;
6767
6768 perf_sample_data_init(&data, addr, 0);
6769 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6770 }
6771
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)6772 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6773 {
6774 int rctx;
6775
6776 preempt_disable_notrace();
6777 rctx = perf_swevent_get_recursion_context();
6778 if (unlikely(rctx < 0))
6779 goto fail;
6780
6781 ___perf_sw_event(event_id, nr, regs, addr);
6782
6783 perf_swevent_put_recursion_context(rctx);
6784 fail:
6785 preempt_enable_notrace();
6786 }
6787
perf_swevent_read(struct perf_event * event)6788 static void perf_swevent_read(struct perf_event *event)
6789 {
6790 }
6791
perf_swevent_add(struct perf_event * event,int flags)6792 static int perf_swevent_add(struct perf_event *event, int flags)
6793 {
6794 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6795 struct hw_perf_event *hwc = &event->hw;
6796 struct hlist_head *head;
6797
6798 if (is_sampling_event(event)) {
6799 hwc->last_period = hwc->sample_period;
6800 perf_swevent_set_period(event);
6801 }
6802
6803 hwc->state = !(flags & PERF_EF_START);
6804
6805 head = find_swevent_head(swhash, event);
6806 if (WARN_ON_ONCE(!head))
6807 return -EINVAL;
6808
6809 hlist_add_head_rcu(&event->hlist_entry, head);
6810 perf_event_update_userpage(event);
6811
6812 return 0;
6813 }
6814
perf_swevent_del(struct perf_event * event,int flags)6815 static void perf_swevent_del(struct perf_event *event, int flags)
6816 {
6817 hlist_del_rcu(&event->hlist_entry);
6818 }
6819
perf_swevent_start(struct perf_event * event,int flags)6820 static void perf_swevent_start(struct perf_event *event, int flags)
6821 {
6822 event->hw.state = 0;
6823 }
6824
perf_swevent_stop(struct perf_event * event,int flags)6825 static void perf_swevent_stop(struct perf_event *event, int flags)
6826 {
6827 event->hw.state = PERF_HES_STOPPED;
6828 }
6829
6830 /* Deref the hlist from the update side */
6831 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)6832 swevent_hlist_deref(struct swevent_htable *swhash)
6833 {
6834 return rcu_dereference_protected(swhash->swevent_hlist,
6835 lockdep_is_held(&swhash->hlist_mutex));
6836 }
6837
swevent_hlist_release(struct swevent_htable * swhash)6838 static void swevent_hlist_release(struct swevent_htable *swhash)
6839 {
6840 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6841
6842 if (!hlist)
6843 return;
6844
6845 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6846 kfree_rcu(hlist, rcu_head);
6847 }
6848
swevent_hlist_put_cpu(struct perf_event * event,int cpu)6849 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6850 {
6851 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6852
6853 mutex_lock(&swhash->hlist_mutex);
6854
6855 if (!--swhash->hlist_refcount)
6856 swevent_hlist_release(swhash);
6857
6858 mutex_unlock(&swhash->hlist_mutex);
6859 }
6860
swevent_hlist_put(struct perf_event * event)6861 static void swevent_hlist_put(struct perf_event *event)
6862 {
6863 int cpu;
6864
6865 for_each_possible_cpu(cpu)
6866 swevent_hlist_put_cpu(event, cpu);
6867 }
6868
swevent_hlist_get_cpu(struct perf_event * event,int cpu)6869 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6870 {
6871 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6872 int err = 0;
6873
6874 mutex_lock(&swhash->hlist_mutex);
6875 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6876 struct swevent_hlist *hlist;
6877
6878 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6879 if (!hlist) {
6880 err = -ENOMEM;
6881 goto exit;
6882 }
6883 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6884 }
6885 swhash->hlist_refcount++;
6886 exit:
6887 mutex_unlock(&swhash->hlist_mutex);
6888
6889 return err;
6890 }
6891
swevent_hlist_get(struct perf_event * event)6892 static int swevent_hlist_get(struct perf_event *event)
6893 {
6894 int err;
6895 int cpu, failed_cpu;
6896
6897 get_online_cpus();
6898 for_each_possible_cpu(cpu) {
6899 err = swevent_hlist_get_cpu(event, cpu);
6900 if (err) {
6901 failed_cpu = cpu;
6902 goto fail;
6903 }
6904 }
6905 put_online_cpus();
6906
6907 return 0;
6908 fail:
6909 for_each_possible_cpu(cpu) {
6910 if (cpu == failed_cpu)
6911 break;
6912 swevent_hlist_put_cpu(event, cpu);
6913 }
6914
6915 put_online_cpus();
6916 return err;
6917 }
6918
6919 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6920
sw_perf_event_destroy(struct perf_event * event)6921 static void sw_perf_event_destroy(struct perf_event *event)
6922 {
6923 u64 event_id = event->attr.config;
6924
6925 WARN_ON(event->parent);
6926
6927 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6928 swevent_hlist_put(event);
6929 }
6930
perf_swevent_init(struct perf_event * event)6931 static int perf_swevent_init(struct perf_event *event)
6932 {
6933 u64 event_id = event->attr.config;
6934
6935 if (event->attr.type != PERF_TYPE_SOFTWARE)
6936 return -ENOENT;
6937
6938 /*
6939 * no branch sampling for software events
6940 */
6941 if (has_branch_stack(event))
6942 return -EOPNOTSUPP;
6943
6944 switch (event_id) {
6945 case PERF_COUNT_SW_CPU_CLOCK:
6946 case PERF_COUNT_SW_TASK_CLOCK:
6947 return -ENOENT;
6948
6949 default:
6950 break;
6951 }
6952
6953 if (event_id >= PERF_COUNT_SW_MAX)
6954 return -ENOENT;
6955
6956 if (!event->parent) {
6957 int err;
6958
6959 err = swevent_hlist_get(event);
6960 if (err)
6961 return err;
6962
6963 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6964 event->destroy = sw_perf_event_destroy;
6965 }
6966
6967 return 0;
6968 }
6969
6970 static struct pmu perf_swevent = {
6971 .task_ctx_nr = perf_sw_context,
6972
6973 .capabilities = PERF_PMU_CAP_NO_NMI,
6974
6975 .event_init = perf_swevent_init,
6976 .add = perf_swevent_add,
6977 .del = perf_swevent_del,
6978 .start = perf_swevent_start,
6979 .stop = perf_swevent_stop,
6980 .read = perf_swevent_read,
6981 };
6982
6983 #ifdef CONFIG_EVENT_TRACING
6984
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)6985 static int perf_tp_filter_match(struct perf_event *event,
6986 struct perf_sample_data *data)
6987 {
6988 void *record = data->raw->data;
6989
6990 /* only top level events have filters set */
6991 if (event->parent)
6992 event = event->parent;
6993
6994 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6995 return 1;
6996 return 0;
6997 }
6998
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6999 static int perf_tp_event_match(struct perf_event *event,
7000 struct perf_sample_data *data,
7001 struct pt_regs *regs)
7002 {
7003 if (event->hw.state & PERF_HES_STOPPED)
7004 return 0;
7005 /*
7006 * All tracepoints are from kernel-space.
7007 */
7008 if (event->attr.exclude_kernel)
7009 return 0;
7010
7011 if (!perf_tp_filter_match(event, data))
7012 return 0;
7013
7014 return 1;
7015 }
7016
perf_tp_event(u64 addr,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)7017 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
7018 struct pt_regs *regs, struct hlist_head *head, int rctx,
7019 struct task_struct *task)
7020 {
7021 struct perf_sample_data data;
7022 struct perf_event *event;
7023
7024 struct perf_raw_record raw = {
7025 .size = entry_size,
7026 .data = record,
7027 };
7028
7029 perf_sample_data_init(&data, addr, 0);
7030 data.raw = &raw;
7031
7032 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7033 if (perf_tp_event_match(event, &data, regs))
7034 perf_swevent_event(event, count, &data, regs);
7035 }
7036
7037 /*
7038 * If we got specified a target task, also iterate its context and
7039 * deliver this event there too.
7040 */
7041 if (task && task != current) {
7042 struct perf_event_context *ctx;
7043 struct trace_entry *entry = record;
7044
7045 rcu_read_lock();
7046 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7047 if (!ctx)
7048 goto unlock;
7049
7050 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7051 if (event->cpu != smp_processor_id())
7052 continue;
7053 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7054 continue;
7055 if (event->attr.config != entry->type)
7056 continue;
7057 if (perf_tp_event_match(event, &data, regs))
7058 perf_swevent_event(event, count, &data, regs);
7059 }
7060 unlock:
7061 rcu_read_unlock();
7062 }
7063
7064 perf_swevent_put_recursion_context(rctx);
7065 }
7066 EXPORT_SYMBOL_GPL(perf_tp_event);
7067
tp_perf_event_destroy(struct perf_event * event)7068 static void tp_perf_event_destroy(struct perf_event *event)
7069 {
7070 perf_trace_destroy(event);
7071 }
7072
perf_tp_event_init(struct perf_event * event)7073 static int perf_tp_event_init(struct perf_event *event)
7074 {
7075 int err;
7076
7077 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7078 return -ENOENT;
7079
7080 /*
7081 * no branch sampling for tracepoint events
7082 */
7083 if (has_branch_stack(event))
7084 return -EOPNOTSUPP;
7085
7086 err = perf_trace_init(event);
7087 if (err)
7088 return err;
7089
7090 event->destroy = tp_perf_event_destroy;
7091
7092 return 0;
7093 }
7094
7095 static struct pmu perf_tracepoint = {
7096 .task_ctx_nr = perf_sw_context,
7097
7098 .event_init = perf_tp_event_init,
7099 .add = perf_trace_add,
7100 .del = perf_trace_del,
7101 .start = perf_swevent_start,
7102 .stop = perf_swevent_stop,
7103 .read = perf_swevent_read,
7104 };
7105
perf_tp_register(void)7106 static inline void perf_tp_register(void)
7107 {
7108 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7109 }
7110
perf_event_set_filter(struct perf_event * event,void __user * arg)7111 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7112 {
7113 char *filter_str;
7114 int ret;
7115
7116 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7117 return -EINVAL;
7118
7119 filter_str = strndup_user(arg, PAGE_SIZE);
7120 if (IS_ERR(filter_str))
7121 return PTR_ERR(filter_str);
7122
7123 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7124
7125 kfree(filter_str);
7126 return ret;
7127 }
7128
perf_event_free_filter(struct perf_event * event)7129 static void perf_event_free_filter(struct perf_event *event)
7130 {
7131 ftrace_profile_free_filter(event);
7132 }
7133
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)7134 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7135 {
7136 struct bpf_prog *prog;
7137
7138 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7139 return -EINVAL;
7140
7141 if (event->tp_event->prog)
7142 return -EEXIST;
7143
7144 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7145 /* bpf programs can only be attached to u/kprobes */
7146 return -EINVAL;
7147
7148 prog = bpf_prog_get(prog_fd);
7149 if (IS_ERR(prog))
7150 return PTR_ERR(prog);
7151
7152 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7153 /* valid fd, but invalid bpf program type */
7154 bpf_prog_put(prog);
7155 return -EINVAL;
7156 }
7157
7158 event->tp_event->prog = prog;
7159 event->tp_event->bpf_prog_owner = event;
7160
7161 return 0;
7162 }
7163
perf_event_free_bpf_prog(struct perf_event * event)7164 static void perf_event_free_bpf_prog(struct perf_event *event)
7165 {
7166 struct bpf_prog *prog;
7167
7168 if (!event->tp_event)
7169 return;
7170
7171 prog = event->tp_event->prog;
7172 if (prog && event->tp_event->bpf_prog_owner == event) {
7173 event->tp_event->prog = NULL;
7174 bpf_prog_put(prog);
7175 }
7176 }
7177
7178 #else
7179
perf_tp_register(void)7180 static inline void perf_tp_register(void)
7181 {
7182 }
7183
perf_event_set_filter(struct perf_event * event,void __user * arg)7184 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7185 {
7186 return -ENOENT;
7187 }
7188
perf_event_free_filter(struct perf_event * event)7189 static void perf_event_free_filter(struct perf_event *event)
7190 {
7191 }
7192
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)7193 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7194 {
7195 return -ENOENT;
7196 }
7197
perf_event_free_bpf_prog(struct perf_event * event)7198 static void perf_event_free_bpf_prog(struct perf_event *event)
7199 {
7200 }
7201 #endif /* CONFIG_EVENT_TRACING */
7202
7203 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)7204 void perf_bp_event(struct perf_event *bp, void *data)
7205 {
7206 struct perf_sample_data sample;
7207 struct pt_regs *regs = data;
7208
7209 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7210
7211 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7212 perf_swevent_event(bp, 1, &sample, regs);
7213 }
7214 #endif
7215
7216 /*
7217 * hrtimer based swevent callback
7218 */
7219
perf_swevent_hrtimer(struct hrtimer * hrtimer)7220 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7221 {
7222 enum hrtimer_restart ret = HRTIMER_RESTART;
7223 struct perf_sample_data data;
7224 struct pt_regs *regs;
7225 struct perf_event *event;
7226 u64 period;
7227
7228 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7229
7230 if (event->state != PERF_EVENT_STATE_ACTIVE)
7231 return HRTIMER_NORESTART;
7232
7233 event->pmu->read(event);
7234
7235 perf_sample_data_init(&data, 0, event->hw.last_period);
7236 regs = get_irq_regs();
7237
7238 if (regs && !perf_exclude_event(event, regs)) {
7239 if (!(event->attr.exclude_idle && is_idle_task(current)))
7240 if (__perf_event_overflow(event, 1, &data, regs))
7241 ret = HRTIMER_NORESTART;
7242 }
7243
7244 period = max_t(u64, 10000, event->hw.sample_period);
7245 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7246
7247 return ret;
7248 }
7249
perf_swevent_start_hrtimer(struct perf_event * event)7250 static void perf_swevent_start_hrtimer(struct perf_event *event)
7251 {
7252 struct hw_perf_event *hwc = &event->hw;
7253 s64 period;
7254
7255 if (!is_sampling_event(event))
7256 return;
7257
7258 period = local64_read(&hwc->period_left);
7259 if (period) {
7260 if (period < 0)
7261 period = 10000;
7262
7263 local64_set(&hwc->period_left, 0);
7264 } else {
7265 period = max_t(u64, 10000, hwc->sample_period);
7266 }
7267 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7268 HRTIMER_MODE_REL_PINNED);
7269 }
7270
perf_swevent_cancel_hrtimer(struct perf_event * event)7271 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7272 {
7273 struct hw_perf_event *hwc = &event->hw;
7274
7275 if (is_sampling_event(event)) {
7276 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7277 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7278
7279 hrtimer_cancel(&hwc->hrtimer);
7280 }
7281 }
7282
perf_swevent_init_hrtimer(struct perf_event * event)7283 static void perf_swevent_init_hrtimer(struct perf_event *event)
7284 {
7285 struct hw_perf_event *hwc = &event->hw;
7286
7287 if (!is_sampling_event(event))
7288 return;
7289
7290 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7291 hwc->hrtimer.function = perf_swevent_hrtimer;
7292
7293 /*
7294 * Since hrtimers have a fixed rate, we can do a static freq->period
7295 * mapping and avoid the whole period adjust feedback stuff.
7296 */
7297 if (event->attr.freq) {
7298 long freq = event->attr.sample_freq;
7299
7300 event->attr.sample_period = NSEC_PER_SEC / freq;
7301 hwc->sample_period = event->attr.sample_period;
7302 local64_set(&hwc->period_left, hwc->sample_period);
7303 hwc->last_period = hwc->sample_period;
7304 event->attr.freq = 0;
7305 }
7306 }
7307
7308 /*
7309 * Software event: cpu wall time clock
7310 */
7311
cpu_clock_event_update(struct perf_event * event)7312 static void cpu_clock_event_update(struct perf_event *event)
7313 {
7314 s64 prev;
7315 u64 now;
7316
7317 now = local_clock();
7318 prev = local64_xchg(&event->hw.prev_count, now);
7319 local64_add(now - prev, &event->count);
7320 }
7321
cpu_clock_event_start(struct perf_event * event,int flags)7322 static void cpu_clock_event_start(struct perf_event *event, int flags)
7323 {
7324 local64_set(&event->hw.prev_count, local_clock());
7325 perf_swevent_start_hrtimer(event);
7326 }
7327
cpu_clock_event_stop(struct perf_event * event,int flags)7328 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7329 {
7330 perf_swevent_cancel_hrtimer(event);
7331 cpu_clock_event_update(event);
7332 }
7333
cpu_clock_event_add(struct perf_event * event,int flags)7334 static int cpu_clock_event_add(struct perf_event *event, int flags)
7335 {
7336 if (flags & PERF_EF_START)
7337 cpu_clock_event_start(event, flags);
7338 perf_event_update_userpage(event);
7339
7340 return 0;
7341 }
7342
cpu_clock_event_del(struct perf_event * event,int flags)7343 static void cpu_clock_event_del(struct perf_event *event, int flags)
7344 {
7345 cpu_clock_event_stop(event, flags);
7346 }
7347
cpu_clock_event_read(struct perf_event * event)7348 static void cpu_clock_event_read(struct perf_event *event)
7349 {
7350 cpu_clock_event_update(event);
7351 }
7352
cpu_clock_event_init(struct perf_event * event)7353 static int cpu_clock_event_init(struct perf_event *event)
7354 {
7355 if (event->attr.type != PERF_TYPE_SOFTWARE)
7356 return -ENOENT;
7357
7358 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7359 return -ENOENT;
7360
7361 /*
7362 * no branch sampling for software events
7363 */
7364 if (has_branch_stack(event))
7365 return -EOPNOTSUPP;
7366
7367 perf_swevent_init_hrtimer(event);
7368
7369 return 0;
7370 }
7371
7372 static struct pmu perf_cpu_clock = {
7373 .task_ctx_nr = perf_sw_context,
7374
7375 .capabilities = PERF_PMU_CAP_NO_NMI,
7376
7377 .event_init = cpu_clock_event_init,
7378 .add = cpu_clock_event_add,
7379 .del = cpu_clock_event_del,
7380 .start = cpu_clock_event_start,
7381 .stop = cpu_clock_event_stop,
7382 .read = cpu_clock_event_read,
7383 };
7384
7385 /*
7386 * Software event: task time clock
7387 */
7388
task_clock_event_update(struct perf_event * event,u64 now)7389 static void task_clock_event_update(struct perf_event *event, u64 now)
7390 {
7391 u64 prev;
7392 s64 delta;
7393
7394 prev = local64_xchg(&event->hw.prev_count, now);
7395 delta = now - prev;
7396 local64_add(delta, &event->count);
7397 }
7398
task_clock_event_start(struct perf_event * event,int flags)7399 static void task_clock_event_start(struct perf_event *event, int flags)
7400 {
7401 local64_set(&event->hw.prev_count, event->ctx->time);
7402 perf_swevent_start_hrtimer(event);
7403 }
7404
task_clock_event_stop(struct perf_event * event,int flags)7405 static void task_clock_event_stop(struct perf_event *event, int flags)
7406 {
7407 perf_swevent_cancel_hrtimer(event);
7408 task_clock_event_update(event, event->ctx->time);
7409 }
7410
task_clock_event_add(struct perf_event * event,int flags)7411 static int task_clock_event_add(struct perf_event *event, int flags)
7412 {
7413 if (flags & PERF_EF_START)
7414 task_clock_event_start(event, flags);
7415 perf_event_update_userpage(event);
7416
7417 return 0;
7418 }
7419
task_clock_event_del(struct perf_event * event,int flags)7420 static void task_clock_event_del(struct perf_event *event, int flags)
7421 {
7422 task_clock_event_stop(event, PERF_EF_UPDATE);
7423 }
7424
task_clock_event_read(struct perf_event * event)7425 static void task_clock_event_read(struct perf_event *event)
7426 {
7427 u64 now = perf_clock();
7428 u64 delta = now - event->ctx->timestamp;
7429 u64 time = event->ctx->time + delta;
7430
7431 task_clock_event_update(event, time);
7432 }
7433
task_clock_event_init(struct perf_event * event)7434 static int task_clock_event_init(struct perf_event *event)
7435 {
7436 if (event->attr.type != PERF_TYPE_SOFTWARE)
7437 return -ENOENT;
7438
7439 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7440 return -ENOENT;
7441
7442 /*
7443 * no branch sampling for software events
7444 */
7445 if (has_branch_stack(event))
7446 return -EOPNOTSUPP;
7447
7448 perf_swevent_init_hrtimer(event);
7449
7450 return 0;
7451 }
7452
7453 static struct pmu perf_task_clock = {
7454 .task_ctx_nr = perf_sw_context,
7455
7456 .capabilities = PERF_PMU_CAP_NO_NMI,
7457
7458 .event_init = task_clock_event_init,
7459 .add = task_clock_event_add,
7460 .del = task_clock_event_del,
7461 .start = task_clock_event_start,
7462 .stop = task_clock_event_stop,
7463 .read = task_clock_event_read,
7464 };
7465
perf_pmu_nop_void(struct pmu * pmu)7466 static void perf_pmu_nop_void(struct pmu *pmu)
7467 {
7468 }
7469
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)7470 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7471 {
7472 }
7473
perf_pmu_nop_int(struct pmu * pmu)7474 static int perf_pmu_nop_int(struct pmu *pmu)
7475 {
7476 return 0;
7477 }
7478
7479 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7480
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)7481 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7482 {
7483 __this_cpu_write(nop_txn_flags, flags);
7484
7485 if (flags & ~PERF_PMU_TXN_ADD)
7486 return;
7487
7488 perf_pmu_disable(pmu);
7489 }
7490
perf_pmu_commit_txn(struct pmu * pmu)7491 static int perf_pmu_commit_txn(struct pmu *pmu)
7492 {
7493 unsigned int flags = __this_cpu_read(nop_txn_flags);
7494
7495 __this_cpu_write(nop_txn_flags, 0);
7496
7497 if (flags & ~PERF_PMU_TXN_ADD)
7498 return 0;
7499
7500 perf_pmu_enable(pmu);
7501 return 0;
7502 }
7503
perf_pmu_cancel_txn(struct pmu * pmu)7504 static void perf_pmu_cancel_txn(struct pmu *pmu)
7505 {
7506 unsigned int flags = __this_cpu_read(nop_txn_flags);
7507
7508 __this_cpu_write(nop_txn_flags, 0);
7509
7510 if (flags & ~PERF_PMU_TXN_ADD)
7511 return;
7512
7513 perf_pmu_enable(pmu);
7514 }
7515
perf_event_idx_default(struct perf_event * event)7516 static int perf_event_idx_default(struct perf_event *event)
7517 {
7518 return 0;
7519 }
7520
7521 /*
7522 * Ensures all contexts with the same task_ctx_nr have the same
7523 * pmu_cpu_context too.
7524 */
find_pmu_context(int ctxn)7525 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7526 {
7527 struct pmu *pmu;
7528
7529 if (ctxn < 0)
7530 return NULL;
7531
7532 list_for_each_entry(pmu, &pmus, entry) {
7533 if (pmu->task_ctx_nr == ctxn)
7534 return pmu->pmu_cpu_context;
7535 }
7536
7537 return NULL;
7538 }
7539
update_pmu_context(struct pmu * pmu,struct pmu * old_pmu)7540 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7541 {
7542 int cpu;
7543
7544 for_each_possible_cpu(cpu) {
7545 struct perf_cpu_context *cpuctx;
7546
7547 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7548
7549 if (cpuctx->unique_pmu == old_pmu)
7550 cpuctx->unique_pmu = pmu;
7551 }
7552 }
7553
free_pmu_context(struct pmu * pmu)7554 static void free_pmu_context(struct pmu *pmu)
7555 {
7556 struct pmu *i;
7557
7558 mutex_lock(&pmus_lock);
7559 /*
7560 * Like a real lame refcount.
7561 */
7562 list_for_each_entry(i, &pmus, entry) {
7563 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7564 update_pmu_context(i, pmu);
7565 goto out;
7566 }
7567 }
7568
7569 free_percpu(pmu->pmu_cpu_context);
7570 out:
7571 mutex_unlock(&pmus_lock);
7572 }
7573 static struct idr pmu_idr;
7574
7575 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)7576 type_show(struct device *dev, struct device_attribute *attr, char *page)
7577 {
7578 struct pmu *pmu = dev_get_drvdata(dev);
7579
7580 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7581 }
7582 static DEVICE_ATTR_RO(type);
7583
7584 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)7585 perf_event_mux_interval_ms_show(struct device *dev,
7586 struct device_attribute *attr,
7587 char *page)
7588 {
7589 struct pmu *pmu = dev_get_drvdata(dev);
7590
7591 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7592 }
7593
7594 static DEFINE_MUTEX(mux_interval_mutex);
7595
7596 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7597 perf_event_mux_interval_ms_store(struct device *dev,
7598 struct device_attribute *attr,
7599 const char *buf, size_t count)
7600 {
7601 struct pmu *pmu = dev_get_drvdata(dev);
7602 int timer, cpu, ret;
7603
7604 ret = kstrtoint(buf, 0, &timer);
7605 if (ret)
7606 return ret;
7607
7608 if (timer < 1)
7609 return -EINVAL;
7610
7611 /* same value, noting to do */
7612 if (timer == pmu->hrtimer_interval_ms)
7613 return count;
7614
7615 mutex_lock(&mux_interval_mutex);
7616 pmu->hrtimer_interval_ms = timer;
7617
7618 /* update all cpuctx for this PMU */
7619 get_online_cpus();
7620 for_each_online_cpu(cpu) {
7621 struct perf_cpu_context *cpuctx;
7622 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7623 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7624
7625 cpu_function_call(cpu,
7626 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7627 }
7628 put_online_cpus();
7629 mutex_unlock(&mux_interval_mutex);
7630
7631 return count;
7632 }
7633 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7634
7635 static struct attribute *pmu_dev_attrs[] = {
7636 &dev_attr_type.attr,
7637 &dev_attr_perf_event_mux_interval_ms.attr,
7638 NULL,
7639 };
7640 ATTRIBUTE_GROUPS(pmu_dev);
7641
7642 static int pmu_bus_running;
7643 static struct bus_type pmu_bus = {
7644 .name = "event_source",
7645 .dev_groups = pmu_dev_groups,
7646 };
7647
pmu_dev_release(struct device * dev)7648 static void pmu_dev_release(struct device *dev)
7649 {
7650 kfree(dev);
7651 }
7652
pmu_dev_alloc(struct pmu * pmu)7653 static int pmu_dev_alloc(struct pmu *pmu)
7654 {
7655 int ret = -ENOMEM;
7656
7657 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7658 if (!pmu->dev)
7659 goto out;
7660
7661 pmu->dev->groups = pmu->attr_groups;
7662 device_initialize(pmu->dev);
7663 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7664 if (ret)
7665 goto free_dev;
7666
7667 dev_set_drvdata(pmu->dev, pmu);
7668 pmu->dev->bus = &pmu_bus;
7669 pmu->dev->release = pmu_dev_release;
7670 ret = device_add(pmu->dev);
7671 if (ret)
7672 goto free_dev;
7673
7674 out:
7675 return ret;
7676
7677 free_dev:
7678 put_device(pmu->dev);
7679 goto out;
7680 }
7681
7682 static struct lock_class_key cpuctx_mutex;
7683 static struct lock_class_key cpuctx_lock;
7684
perf_pmu_register(struct pmu * pmu,const char * name,int type)7685 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7686 {
7687 int cpu, ret;
7688
7689 mutex_lock(&pmus_lock);
7690 ret = -ENOMEM;
7691 pmu->pmu_disable_count = alloc_percpu(int);
7692 if (!pmu->pmu_disable_count)
7693 goto unlock;
7694
7695 pmu->type = -1;
7696 if (!name)
7697 goto skip_type;
7698 pmu->name = name;
7699
7700 if (type < 0) {
7701 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7702 if (type < 0) {
7703 ret = type;
7704 goto free_pdc;
7705 }
7706 }
7707 pmu->type = type;
7708
7709 if (pmu_bus_running) {
7710 ret = pmu_dev_alloc(pmu);
7711 if (ret)
7712 goto free_idr;
7713 }
7714
7715 skip_type:
7716 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7717 if (pmu->pmu_cpu_context)
7718 goto got_cpu_context;
7719
7720 ret = -ENOMEM;
7721 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7722 if (!pmu->pmu_cpu_context)
7723 goto free_dev;
7724
7725 for_each_possible_cpu(cpu) {
7726 struct perf_cpu_context *cpuctx;
7727
7728 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7729 __perf_event_init_context(&cpuctx->ctx);
7730 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7731 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7732 cpuctx->ctx.pmu = pmu;
7733
7734 __perf_mux_hrtimer_init(cpuctx, cpu);
7735
7736 cpuctx->unique_pmu = pmu;
7737 }
7738
7739 got_cpu_context:
7740 if (!pmu->start_txn) {
7741 if (pmu->pmu_enable) {
7742 /*
7743 * If we have pmu_enable/pmu_disable calls, install
7744 * transaction stubs that use that to try and batch
7745 * hardware accesses.
7746 */
7747 pmu->start_txn = perf_pmu_start_txn;
7748 pmu->commit_txn = perf_pmu_commit_txn;
7749 pmu->cancel_txn = perf_pmu_cancel_txn;
7750 } else {
7751 pmu->start_txn = perf_pmu_nop_txn;
7752 pmu->commit_txn = perf_pmu_nop_int;
7753 pmu->cancel_txn = perf_pmu_nop_void;
7754 }
7755 }
7756
7757 if (!pmu->pmu_enable) {
7758 pmu->pmu_enable = perf_pmu_nop_void;
7759 pmu->pmu_disable = perf_pmu_nop_void;
7760 }
7761
7762 if (!pmu->event_idx)
7763 pmu->event_idx = perf_event_idx_default;
7764
7765 list_add_rcu(&pmu->entry, &pmus);
7766 atomic_set(&pmu->exclusive_cnt, 0);
7767 ret = 0;
7768 unlock:
7769 mutex_unlock(&pmus_lock);
7770
7771 return ret;
7772
7773 free_dev:
7774 device_del(pmu->dev);
7775 put_device(pmu->dev);
7776
7777 free_idr:
7778 if (pmu->type >= PERF_TYPE_MAX)
7779 idr_remove(&pmu_idr, pmu->type);
7780
7781 free_pdc:
7782 free_percpu(pmu->pmu_disable_count);
7783 goto unlock;
7784 }
7785 EXPORT_SYMBOL_GPL(perf_pmu_register);
7786
perf_pmu_unregister(struct pmu * pmu)7787 void perf_pmu_unregister(struct pmu *pmu)
7788 {
7789 mutex_lock(&pmus_lock);
7790 list_del_rcu(&pmu->entry);
7791 mutex_unlock(&pmus_lock);
7792
7793 /*
7794 * We dereference the pmu list under both SRCU and regular RCU, so
7795 * synchronize against both of those.
7796 */
7797 synchronize_srcu(&pmus_srcu);
7798 synchronize_rcu();
7799
7800 free_percpu(pmu->pmu_disable_count);
7801 if (pmu->type >= PERF_TYPE_MAX)
7802 idr_remove(&pmu_idr, pmu->type);
7803 device_del(pmu->dev);
7804 put_device(pmu->dev);
7805 free_pmu_context(pmu);
7806 }
7807 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7808
perf_try_init_event(struct pmu * pmu,struct perf_event * event)7809 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7810 {
7811 struct perf_event_context *ctx = NULL;
7812 int ret;
7813
7814 if (!try_module_get(pmu->module))
7815 return -ENODEV;
7816
7817 if (event->group_leader != event) {
7818 /*
7819 * This ctx->mutex can nest when we're called through
7820 * inheritance. See the perf_event_ctx_lock_nested() comment.
7821 */
7822 ctx = perf_event_ctx_lock_nested(event->group_leader,
7823 SINGLE_DEPTH_NESTING);
7824 BUG_ON(!ctx);
7825 }
7826
7827 event->pmu = pmu;
7828 ret = pmu->event_init(event);
7829
7830 if (ctx)
7831 perf_event_ctx_unlock(event->group_leader, ctx);
7832
7833 if (ret)
7834 module_put(pmu->module);
7835
7836 return ret;
7837 }
7838
perf_init_event(struct perf_event * event)7839 static struct pmu *perf_init_event(struct perf_event *event)
7840 {
7841 struct pmu *pmu = NULL;
7842 int idx;
7843 int ret;
7844
7845 idx = srcu_read_lock(&pmus_srcu);
7846
7847 rcu_read_lock();
7848 pmu = idr_find(&pmu_idr, event->attr.type);
7849 rcu_read_unlock();
7850 if (pmu) {
7851 ret = perf_try_init_event(pmu, event);
7852 if (ret)
7853 pmu = ERR_PTR(ret);
7854 goto unlock;
7855 }
7856
7857 list_for_each_entry_rcu(pmu, &pmus, entry) {
7858 ret = perf_try_init_event(pmu, event);
7859 if (!ret)
7860 goto unlock;
7861
7862 if (ret != -ENOENT) {
7863 pmu = ERR_PTR(ret);
7864 goto unlock;
7865 }
7866 }
7867 pmu = ERR_PTR(-ENOENT);
7868 unlock:
7869 srcu_read_unlock(&pmus_srcu, idx);
7870
7871 return pmu;
7872 }
7873
account_event_cpu(struct perf_event * event,int cpu)7874 static void account_event_cpu(struct perf_event *event, int cpu)
7875 {
7876 if (event->parent)
7877 return;
7878
7879 if (is_cgroup_event(event))
7880 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7881 }
7882
account_event(struct perf_event * event)7883 static void account_event(struct perf_event *event)
7884 {
7885 if (event->parent)
7886 return;
7887
7888 if (event->attach_state & PERF_ATTACH_TASK)
7889 static_key_slow_inc(&perf_sched_events.key);
7890 if (event->attr.mmap || event->attr.mmap_data)
7891 atomic_inc(&nr_mmap_events);
7892 if (event->attr.comm)
7893 atomic_inc(&nr_comm_events);
7894 if (event->attr.task)
7895 atomic_inc(&nr_task_events);
7896 if (event->attr.freq) {
7897 if (atomic_inc_return(&nr_freq_events) == 1)
7898 tick_nohz_full_kick_all();
7899 }
7900 if (event->attr.context_switch) {
7901 atomic_inc(&nr_switch_events);
7902 static_key_slow_inc(&perf_sched_events.key);
7903 }
7904 if (has_branch_stack(event))
7905 static_key_slow_inc(&perf_sched_events.key);
7906 if (is_cgroup_event(event))
7907 static_key_slow_inc(&perf_sched_events.key);
7908
7909 account_event_cpu(event, event->cpu);
7910 }
7911
7912 /*
7913 * Allocate and initialize a event structure
7914 */
7915 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)7916 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7917 struct task_struct *task,
7918 struct perf_event *group_leader,
7919 struct perf_event *parent_event,
7920 perf_overflow_handler_t overflow_handler,
7921 void *context, int cgroup_fd)
7922 {
7923 struct pmu *pmu;
7924 struct perf_event *event;
7925 struct hw_perf_event *hwc;
7926 long err = -EINVAL;
7927
7928 if ((unsigned)cpu >= nr_cpu_ids) {
7929 if (!task || cpu != -1)
7930 return ERR_PTR(-EINVAL);
7931 }
7932
7933 event = kzalloc(sizeof(*event), GFP_KERNEL);
7934 if (!event)
7935 return ERR_PTR(-ENOMEM);
7936
7937 /*
7938 * Single events are their own group leaders, with an
7939 * empty sibling list:
7940 */
7941 if (!group_leader)
7942 group_leader = event;
7943
7944 mutex_init(&event->child_mutex);
7945 INIT_LIST_HEAD(&event->child_list);
7946
7947 INIT_LIST_HEAD(&event->group_entry);
7948 INIT_LIST_HEAD(&event->event_entry);
7949 INIT_LIST_HEAD(&event->sibling_list);
7950 INIT_LIST_HEAD(&event->rb_entry);
7951 INIT_LIST_HEAD(&event->active_entry);
7952 INIT_HLIST_NODE(&event->hlist_entry);
7953
7954
7955 init_waitqueue_head(&event->waitq);
7956 init_irq_work(&event->pending, perf_pending_event);
7957
7958 mutex_init(&event->mmap_mutex);
7959
7960 atomic_long_set(&event->refcount, 1);
7961 event->cpu = cpu;
7962 event->attr = *attr;
7963 event->group_leader = group_leader;
7964 event->pmu = NULL;
7965 event->oncpu = -1;
7966
7967 event->parent = parent_event;
7968
7969 event->ns = get_pid_ns(task_active_pid_ns(current));
7970 event->id = atomic64_inc_return(&perf_event_id);
7971
7972 event->state = PERF_EVENT_STATE_INACTIVE;
7973
7974 if (task) {
7975 event->attach_state = PERF_ATTACH_TASK;
7976 /*
7977 * XXX pmu::event_init needs to know what task to account to
7978 * and we cannot use the ctx information because we need the
7979 * pmu before we get a ctx.
7980 */
7981 event->hw.target = task;
7982 }
7983
7984 event->clock = &local_clock;
7985 if (parent_event)
7986 event->clock = parent_event->clock;
7987
7988 if (!overflow_handler && parent_event) {
7989 overflow_handler = parent_event->overflow_handler;
7990 context = parent_event->overflow_handler_context;
7991 }
7992
7993 event->overflow_handler = overflow_handler;
7994 event->overflow_handler_context = context;
7995
7996 perf_event__state_init(event);
7997
7998 pmu = NULL;
7999
8000 hwc = &event->hw;
8001 hwc->sample_period = attr->sample_period;
8002 if (attr->freq && attr->sample_freq)
8003 hwc->sample_period = 1;
8004 hwc->last_period = hwc->sample_period;
8005
8006 local64_set(&hwc->period_left, hwc->sample_period);
8007
8008 /*
8009 * We currently do not support PERF_SAMPLE_READ on inherited events.
8010 * See perf_output_read().
8011 */
8012 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
8013 goto err_ns;
8014
8015 if (!has_branch_stack(event))
8016 event->attr.branch_sample_type = 0;
8017
8018 if (cgroup_fd != -1) {
8019 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8020 if (err)
8021 goto err_ns;
8022 }
8023
8024 pmu = perf_init_event(event);
8025 if (!pmu)
8026 goto err_ns;
8027 else if (IS_ERR(pmu)) {
8028 err = PTR_ERR(pmu);
8029 goto err_ns;
8030 }
8031
8032 err = exclusive_event_init(event);
8033 if (err)
8034 goto err_pmu;
8035
8036 if (!event->parent) {
8037 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
8038 err = get_callchain_buffers();
8039 if (err)
8040 goto err_per_task;
8041 }
8042 }
8043
8044 /* symmetric to unaccount_event() in _free_event() */
8045 account_event(event);
8046
8047 return event;
8048
8049 err_per_task:
8050 exclusive_event_destroy(event);
8051
8052 err_pmu:
8053 if (event->destroy)
8054 event->destroy(event);
8055 module_put(pmu->module);
8056 err_ns:
8057 if (is_cgroup_event(event))
8058 perf_detach_cgroup(event);
8059 if (event->ns)
8060 put_pid_ns(event->ns);
8061 kfree(event);
8062
8063 return ERR_PTR(err);
8064 }
8065
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)8066 static int perf_copy_attr(struct perf_event_attr __user *uattr,
8067 struct perf_event_attr *attr)
8068 {
8069 u32 size;
8070 int ret;
8071
8072 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8073 return -EFAULT;
8074
8075 /*
8076 * zero the full structure, so that a short copy will be nice.
8077 */
8078 memset(attr, 0, sizeof(*attr));
8079
8080 ret = get_user(size, &uattr->size);
8081 if (ret)
8082 return ret;
8083
8084 if (size > PAGE_SIZE) /* silly large */
8085 goto err_size;
8086
8087 if (!size) /* abi compat */
8088 size = PERF_ATTR_SIZE_VER0;
8089
8090 if (size < PERF_ATTR_SIZE_VER0)
8091 goto err_size;
8092
8093 /*
8094 * If we're handed a bigger struct than we know of,
8095 * ensure all the unknown bits are 0 - i.e. new
8096 * user-space does not rely on any kernel feature
8097 * extensions we dont know about yet.
8098 */
8099 if (size > sizeof(*attr)) {
8100 unsigned char __user *addr;
8101 unsigned char __user *end;
8102 unsigned char val;
8103
8104 addr = (void __user *)uattr + sizeof(*attr);
8105 end = (void __user *)uattr + size;
8106
8107 for (; addr < end; addr++) {
8108 ret = get_user(val, addr);
8109 if (ret)
8110 return ret;
8111 if (val)
8112 goto err_size;
8113 }
8114 size = sizeof(*attr);
8115 }
8116
8117 ret = copy_from_user(attr, uattr, size);
8118 if (ret)
8119 return -EFAULT;
8120
8121 if (attr->__reserved_1)
8122 return -EINVAL;
8123
8124 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8125 return -EINVAL;
8126
8127 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8128 return -EINVAL;
8129
8130 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8131 u64 mask = attr->branch_sample_type;
8132
8133 /* only using defined bits */
8134 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8135 return -EINVAL;
8136
8137 /* at least one branch bit must be set */
8138 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8139 return -EINVAL;
8140
8141 /* propagate priv level, when not set for branch */
8142 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8143
8144 /* exclude_kernel checked on syscall entry */
8145 if (!attr->exclude_kernel)
8146 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8147
8148 if (!attr->exclude_user)
8149 mask |= PERF_SAMPLE_BRANCH_USER;
8150
8151 if (!attr->exclude_hv)
8152 mask |= PERF_SAMPLE_BRANCH_HV;
8153 /*
8154 * adjust user setting (for HW filter setup)
8155 */
8156 attr->branch_sample_type = mask;
8157 }
8158 /* privileged levels capture (kernel, hv): check permissions */
8159 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8160 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8161 return -EACCES;
8162 }
8163
8164 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8165 ret = perf_reg_validate(attr->sample_regs_user);
8166 if (ret)
8167 return ret;
8168 }
8169
8170 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8171 if (!arch_perf_have_user_stack_dump())
8172 return -ENOSYS;
8173
8174 /*
8175 * We have __u32 type for the size, but so far
8176 * we can only use __u16 as maximum due to the
8177 * __u16 sample size limit.
8178 */
8179 if (attr->sample_stack_user >= USHRT_MAX)
8180 return -EINVAL;
8181 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8182 return -EINVAL;
8183 }
8184
8185 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8186 ret = perf_reg_validate(attr->sample_regs_intr);
8187 out:
8188 return ret;
8189
8190 err_size:
8191 put_user(sizeof(*attr), &uattr->size);
8192 ret = -E2BIG;
8193 goto out;
8194 }
8195
8196 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)8197 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8198 {
8199 struct ring_buffer *rb = NULL;
8200 int ret = -EINVAL;
8201
8202 if (!output_event)
8203 goto set;
8204
8205 /* don't allow circular references */
8206 if (event == output_event)
8207 goto out;
8208
8209 /*
8210 * Don't allow cross-cpu buffers
8211 */
8212 if (output_event->cpu != event->cpu)
8213 goto out;
8214
8215 /*
8216 * If its not a per-cpu rb, it must be the same task.
8217 */
8218 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8219 goto out;
8220
8221 /*
8222 * Mixing clocks in the same buffer is trouble you don't need.
8223 */
8224 if (output_event->clock != event->clock)
8225 goto out;
8226
8227 /*
8228 * If both events generate aux data, they must be on the same PMU
8229 */
8230 if (has_aux(event) && has_aux(output_event) &&
8231 event->pmu != output_event->pmu)
8232 goto out;
8233
8234 set:
8235 mutex_lock(&event->mmap_mutex);
8236 /* Can't redirect output if we've got an active mmap() */
8237 if (atomic_read(&event->mmap_count))
8238 goto unlock;
8239
8240 if (output_event) {
8241 /* get the rb we want to redirect to */
8242 rb = ring_buffer_get(output_event);
8243 if (!rb)
8244 goto unlock;
8245 }
8246
8247 ring_buffer_attach(event, rb);
8248
8249 ret = 0;
8250 unlock:
8251 mutex_unlock(&event->mmap_mutex);
8252
8253 out:
8254 return ret;
8255 }
8256
mutex_lock_double(struct mutex * a,struct mutex * b)8257 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8258 {
8259 if (b < a)
8260 swap(a, b);
8261
8262 mutex_lock(a);
8263 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8264 }
8265
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)8266 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8267 {
8268 bool nmi_safe = false;
8269
8270 switch (clk_id) {
8271 case CLOCK_MONOTONIC:
8272 event->clock = &ktime_get_mono_fast_ns;
8273 nmi_safe = true;
8274 break;
8275
8276 case CLOCK_MONOTONIC_RAW:
8277 event->clock = &ktime_get_raw_fast_ns;
8278 nmi_safe = true;
8279 break;
8280
8281 case CLOCK_REALTIME:
8282 event->clock = &ktime_get_real_ns;
8283 break;
8284
8285 case CLOCK_BOOTTIME:
8286 event->clock = &ktime_get_boot_ns;
8287 break;
8288
8289 case CLOCK_TAI:
8290 event->clock = &ktime_get_tai_ns;
8291 break;
8292
8293 default:
8294 return -EINVAL;
8295 }
8296
8297 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8298 return -EINVAL;
8299
8300 return 0;
8301 }
8302
8303 /*
8304 * Variation on perf_event_ctx_lock_nested(), except we take two context
8305 * mutexes.
8306 */
8307 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)8308 __perf_event_ctx_lock_double(struct perf_event *group_leader,
8309 struct perf_event_context *ctx)
8310 {
8311 struct perf_event_context *gctx;
8312
8313 again:
8314 rcu_read_lock();
8315 gctx = READ_ONCE(group_leader->ctx);
8316 if (!atomic_inc_not_zero(&gctx->refcount)) {
8317 rcu_read_unlock();
8318 goto again;
8319 }
8320 rcu_read_unlock();
8321
8322 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8323
8324 if (group_leader->ctx != gctx) {
8325 mutex_unlock(&ctx->mutex);
8326 mutex_unlock(&gctx->mutex);
8327 put_ctx(gctx);
8328 goto again;
8329 }
8330
8331 return gctx;
8332 }
8333
8334 /**
8335 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8336 *
8337 * @attr_uptr: event_id type attributes for monitoring/sampling
8338 * @pid: target pid
8339 * @cpu: target cpu
8340 * @group_fd: group leader event fd
8341 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)8342 SYSCALL_DEFINE5(perf_event_open,
8343 struct perf_event_attr __user *, attr_uptr,
8344 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8345 {
8346 struct perf_event *group_leader = NULL, *output_event = NULL;
8347 struct perf_event *event, *sibling;
8348 struct perf_event_attr attr;
8349 struct perf_event_context *ctx, *uninitialized_var(gctx);
8350 struct file *event_file = NULL;
8351 struct fd group = {NULL, 0};
8352 struct task_struct *task = NULL;
8353 struct pmu *pmu;
8354 int event_fd;
8355 int move_group = 0;
8356 int err;
8357 int f_flags = O_RDWR;
8358 int cgroup_fd = -1;
8359
8360 /* for future expandability... */
8361 if (flags & ~PERF_FLAG_ALL)
8362 return -EINVAL;
8363
8364 if (perf_paranoid_any() && !capable(CAP_SYS_ADMIN))
8365 return -EACCES;
8366
8367 err = perf_copy_attr(attr_uptr, &attr);
8368 if (err)
8369 return err;
8370
8371 if (!attr.exclude_kernel) {
8372 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8373 return -EACCES;
8374 }
8375
8376 if (attr.freq) {
8377 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8378 return -EINVAL;
8379 } else {
8380 if (attr.sample_period & (1ULL << 63))
8381 return -EINVAL;
8382 }
8383
8384 /*
8385 * In cgroup mode, the pid argument is used to pass the fd
8386 * opened to the cgroup directory in cgroupfs. The cpu argument
8387 * designates the cpu on which to monitor threads from that
8388 * cgroup.
8389 */
8390 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8391 return -EINVAL;
8392
8393 if (flags & PERF_FLAG_FD_CLOEXEC)
8394 f_flags |= O_CLOEXEC;
8395
8396 event_fd = get_unused_fd_flags(f_flags);
8397 if (event_fd < 0)
8398 return event_fd;
8399
8400 if (group_fd != -1) {
8401 err = perf_fget_light(group_fd, &group);
8402 if (err)
8403 goto err_fd;
8404 group_leader = group.file->private_data;
8405 if (flags & PERF_FLAG_FD_OUTPUT)
8406 output_event = group_leader;
8407 if (flags & PERF_FLAG_FD_NO_GROUP)
8408 group_leader = NULL;
8409 }
8410
8411 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8412 task = find_lively_task_by_vpid(pid);
8413 if (IS_ERR(task)) {
8414 err = PTR_ERR(task);
8415 goto err_group_fd;
8416 }
8417 }
8418
8419 if (task && group_leader &&
8420 group_leader->attr.inherit != attr.inherit) {
8421 err = -EINVAL;
8422 goto err_task;
8423 }
8424
8425 get_online_cpus();
8426
8427 if (task) {
8428 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
8429 if (err)
8430 goto err_cpus;
8431
8432 /*
8433 * Reuse ptrace permission checks for now.
8434 *
8435 * We must hold cred_guard_mutex across this and any potential
8436 * perf_install_in_context() call for this new event to
8437 * serialize against exec() altering our credentials (and the
8438 * perf_event_exit_task() that could imply).
8439 */
8440 err = -EACCES;
8441 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
8442 goto err_cred;
8443 }
8444
8445 if (flags & PERF_FLAG_PID_CGROUP)
8446 cgroup_fd = pid;
8447
8448 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8449 NULL, NULL, cgroup_fd);
8450 if (IS_ERR(event)) {
8451 err = PTR_ERR(event);
8452 goto err_cred;
8453 }
8454
8455 if (is_sampling_event(event)) {
8456 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8457 err = -ENOTSUPP;
8458 goto err_alloc;
8459 }
8460 }
8461
8462 /*
8463 * Special case software events and allow them to be part of
8464 * any hardware group.
8465 */
8466 pmu = event->pmu;
8467
8468 if (attr.use_clockid) {
8469 err = perf_event_set_clock(event, attr.clockid);
8470 if (err)
8471 goto err_alloc;
8472 }
8473
8474 if (group_leader &&
8475 (is_software_event(event) != is_software_event(group_leader))) {
8476 if (is_software_event(event)) {
8477 /*
8478 * If event and group_leader are not both a software
8479 * event, and event is, then group leader is not.
8480 *
8481 * Allow the addition of software events to !software
8482 * groups, this is safe because software events never
8483 * fail to schedule.
8484 */
8485 pmu = group_leader->pmu;
8486 } else if (is_software_event(group_leader) &&
8487 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8488 /*
8489 * In case the group is a pure software group, and we
8490 * try to add a hardware event, move the whole group to
8491 * the hardware context.
8492 */
8493 move_group = 1;
8494 }
8495 }
8496
8497 /*
8498 * Get the target context (task or percpu):
8499 */
8500 ctx = find_get_context(pmu, task, event);
8501 if (IS_ERR(ctx)) {
8502 err = PTR_ERR(ctx);
8503 goto err_alloc;
8504 }
8505
8506 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8507 err = -EBUSY;
8508 goto err_context;
8509 }
8510
8511 /*
8512 * Look up the group leader (we will attach this event to it):
8513 */
8514 if (group_leader) {
8515 err = -EINVAL;
8516
8517 /*
8518 * Do not allow a recursive hierarchy (this new sibling
8519 * becoming part of another group-sibling):
8520 */
8521 if (group_leader->group_leader != group_leader)
8522 goto err_context;
8523
8524 /* All events in a group should have the same clock */
8525 if (group_leader->clock != event->clock)
8526 goto err_context;
8527
8528 /*
8529 * Make sure we're both events for the same CPU;
8530 * grouping events for different CPUs is broken; since
8531 * you can never concurrently schedule them anyhow.
8532 */
8533 if (group_leader->cpu != event->cpu)
8534 goto err_context;
8535
8536 /*
8537 * Make sure we're both on the same task, or both
8538 * per-CPU events.
8539 */
8540 if (group_leader->ctx->task != ctx->task)
8541 goto err_context;
8542
8543 /*
8544 * Do not allow to attach to a group in a different task
8545 * or CPU context. If we're moving SW events, we'll fix
8546 * this up later, so allow that.
8547 */
8548 if (!move_group && group_leader->ctx != ctx)
8549 goto err_context;
8550
8551 /*
8552 * Only a group leader can be exclusive or pinned
8553 */
8554 if (attr.exclusive || attr.pinned)
8555 goto err_context;
8556 }
8557
8558 if (output_event) {
8559 err = perf_event_set_output(event, output_event);
8560 if (err)
8561 goto err_context;
8562 }
8563
8564 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8565 f_flags);
8566 if (IS_ERR(event_file)) {
8567 err = PTR_ERR(event_file);
8568 event_file = NULL;
8569 goto err_context;
8570 }
8571
8572 if (move_group) {
8573 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
8574
8575 /*
8576 * Check if we raced against another sys_perf_event_open() call
8577 * moving the software group underneath us.
8578 */
8579 if (!(group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8580 /*
8581 * If someone moved the group out from under us, check
8582 * if this new event wound up on the same ctx, if so
8583 * its the regular !move_group case, otherwise fail.
8584 */
8585 if (gctx != ctx) {
8586 err = -EINVAL;
8587 goto err_locked;
8588 } else {
8589 perf_event_ctx_unlock(group_leader, gctx);
8590 move_group = 0;
8591 }
8592 }
8593 } else {
8594 mutex_lock(&ctx->mutex);
8595 }
8596
8597 if (!perf_event_validate_size(event)) {
8598 err = -E2BIG;
8599 goto err_locked;
8600 }
8601
8602 /*
8603 * Must be under the same ctx::mutex as perf_install_in_context(),
8604 * because we need to serialize with concurrent event creation.
8605 */
8606 if (!exclusive_event_installable(event, ctx)) {
8607 /* exclusive and group stuff are assumed mutually exclusive */
8608 WARN_ON_ONCE(move_group);
8609
8610 err = -EBUSY;
8611 goto err_locked;
8612 }
8613
8614 WARN_ON_ONCE(ctx->parent_ctx);
8615
8616 /*
8617 * This is the point on no return; we cannot fail hereafter. This is
8618 * where we start modifying current state.
8619 */
8620
8621 if (move_group) {
8622 /*
8623 * See perf_event_ctx_lock() for comments on the details
8624 * of swizzling perf_event::ctx.
8625 */
8626 perf_remove_from_context(group_leader, false);
8627
8628 list_for_each_entry(sibling, &group_leader->sibling_list,
8629 group_entry) {
8630 perf_remove_from_context(sibling, false);
8631 put_ctx(gctx);
8632 }
8633
8634 /*
8635 * Wait for everybody to stop referencing the events through
8636 * the old lists, before installing it on new lists.
8637 */
8638 synchronize_rcu();
8639
8640 /*
8641 * Install the group siblings before the group leader.
8642 *
8643 * Because a group leader will try and install the entire group
8644 * (through the sibling list, which is still in-tact), we can
8645 * end up with siblings installed in the wrong context.
8646 *
8647 * By installing siblings first we NO-OP because they're not
8648 * reachable through the group lists.
8649 */
8650 list_for_each_entry(sibling, &group_leader->sibling_list,
8651 group_entry) {
8652 perf_event__state_init(sibling);
8653 perf_install_in_context(ctx, sibling, sibling->cpu);
8654 get_ctx(ctx);
8655 }
8656
8657 /*
8658 * Removing from the context ends up with disabled
8659 * event. What we want here is event in the initial
8660 * startup state, ready to be add into new context.
8661 */
8662 perf_event__state_init(group_leader);
8663 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8664 get_ctx(ctx);
8665
8666 /*
8667 * Now that all events are installed in @ctx, nothing
8668 * references @gctx anymore, so drop the last reference we have
8669 * on it.
8670 */
8671 put_ctx(gctx);
8672 }
8673
8674 /*
8675 * Precalculate sample_data sizes; do while holding ctx::mutex such
8676 * that we're serialized against further additions and before
8677 * perf_install_in_context() which is the point the event is active and
8678 * can use these values.
8679 */
8680 perf_event__header_size(event);
8681 perf_event__id_header_size(event);
8682
8683 perf_install_in_context(ctx, event, event->cpu);
8684 perf_unpin_context(ctx);
8685
8686 if (move_group)
8687 perf_event_ctx_unlock(group_leader, gctx);
8688 mutex_unlock(&ctx->mutex);
8689
8690 if (task) {
8691 mutex_unlock(&task->signal->cred_guard_mutex);
8692 put_task_struct(task);
8693 }
8694
8695 put_online_cpus();
8696
8697 event->owner = current;
8698
8699 mutex_lock(¤t->perf_event_mutex);
8700 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
8701 mutex_unlock(¤t->perf_event_mutex);
8702
8703 /*
8704 * Drop the reference on the group_event after placing the
8705 * new event on the sibling_list. This ensures destruction
8706 * of the group leader will find the pointer to itself in
8707 * perf_group_detach().
8708 */
8709 fdput(group);
8710 fd_install(event_fd, event_file);
8711 return event_fd;
8712
8713 err_locked:
8714 if (move_group)
8715 perf_event_ctx_unlock(group_leader, gctx);
8716 mutex_unlock(&ctx->mutex);
8717 /* err_file: */
8718 fput(event_file);
8719 err_context:
8720 perf_unpin_context(ctx);
8721 put_ctx(ctx);
8722 err_alloc:
8723 /*
8724 * If event_file is set, the fput() above will have called ->release()
8725 * and that will take care of freeing the event.
8726 */
8727 if (!event_file)
8728 free_event(event);
8729 err_cred:
8730 if (task)
8731 mutex_unlock(&task->signal->cred_guard_mutex);
8732 err_cpus:
8733 put_online_cpus();
8734 err_task:
8735 if (task)
8736 put_task_struct(task);
8737 err_group_fd:
8738 fdput(group);
8739 err_fd:
8740 put_unused_fd(event_fd);
8741 return err;
8742 }
8743
8744 /**
8745 * perf_event_create_kernel_counter
8746 *
8747 * @attr: attributes of the counter to create
8748 * @cpu: cpu in which the counter is bound
8749 * @task: task to profile (NULL for percpu)
8750 */
8751 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)8752 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8753 struct task_struct *task,
8754 perf_overflow_handler_t overflow_handler,
8755 void *context)
8756 {
8757 struct perf_event_context *ctx;
8758 struct perf_event *event;
8759 int err;
8760
8761 /*
8762 * Get the target context (task or percpu):
8763 */
8764
8765 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8766 overflow_handler, context, -1);
8767 if (IS_ERR(event)) {
8768 err = PTR_ERR(event);
8769 goto err;
8770 }
8771
8772 /* Mark owner so we could distinguish it from user events. */
8773 event->owner = EVENT_OWNER_KERNEL;
8774
8775 ctx = find_get_context(event->pmu, task, event);
8776 if (IS_ERR(ctx)) {
8777 err = PTR_ERR(ctx);
8778 goto err_free;
8779 }
8780
8781 WARN_ON_ONCE(ctx->parent_ctx);
8782 mutex_lock(&ctx->mutex);
8783 if (!exclusive_event_installable(event, ctx)) {
8784 mutex_unlock(&ctx->mutex);
8785 perf_unpin_context(ctx);
8786 put_ctx(ctx);
8787 err = -EBUSY;
8788 goto err_free;
8789 }
8790
8791 perf_install_in_context(ctx, event, event->cpu);
8792 perf_unpin_context(ctx);
8793 mutex_unlock(&ctx->mutex);
8794
8795 return event;
8796
8797 err_free:
8798 free_event(event);
8799 err:
8800 return ERR_PTR(err);
8801 }
8802 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8803
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)8804 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8805 {
8806 struct perf_event_context *src_ctx;
8807 struct perf_event_context *dst_ctx;
8808 struct perf_event *event, *tmp;
8809 LIST_HEAD(events);
8810
8811 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8812 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8813
8814 /*
8815 * See perf_event_ctx_lock() for comments on the details
8816 * of swizzling perf_event::ctx.
8817 */
8818 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8819 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8820 event_entry) {
8821 perf_remove_from_context(event, false);
8822 unaccount_event_cpu(event, src_cpu);
8823 put_ctx(src_ctx);
8824 list_add(&event->migrate_entry, &events);
8825 }
8826
8827 /*
8828 * Wait for the events to quiesce before re-instating them.
8829 */
8830 synchronize_rcu();
8831
8832 /*
8833 * Re-instate events in 2 passes.
8834 *
8835 * Skip over group leaders and only install siblings on this first
8836 * pass, siblings will not get enabled without a leader, however a
8837 * leader will enable its siblings, even if those are still on the old
8838 * context.
8839 */
8840 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8841 if (event->group_leader == event)
8842 continue;
8843
8844 list_del(&event->migrate_entry);
8845 if (event->state >= PERF_EVENT_STATE_OFF)
8846 event->state = PERF_EVENT_STATE_INACTIVE;
8847 account_event_cpu(event, dst_cpu);
8848 perf_install_in_context(dst_ctx, event, dst_cpu);
8849 get_ctx(dst_ctx);
8850 }
8851
8852 /*
8853 * Once all the siblings are setup properly, install the group leaders
8854 * to make it go.
8855 */
8856 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8857 list_del(&event->migrate_entry);
8858 if (event->state >= PERF_EVENT_STATE_OFF)
8859 event->state = PERF_EVENT_STATE_INACTIVE;
8860 account_event_cpu(event, dst_cpu);
8861 perf_install_in_context(dst_ctx, event, dst_cpu);
8862 get_ctx(dst_ctx);
8863 }
8864 mutex_unlock(&dst_ctx->mutex);
8865 mutex_unlock(&src_ctx->mutex);
8866 }
8867 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8868
sync_child_event(struct perf_event * child_event,struct task_struct * child)8869 static void sync_child_event(struct perf_event *child_event,
8870 struct task_struct *child)
8871 {
8872 struct perf_event *parent_event = child_event->parent;
8873 u64 child_val;
8874
8875 if (child_event->attr.inherit_stat)
8876 perf_event_read_event(child_event, child);
8877
8878 child_val = perf_event_count(child_event);
8879
8880 /*
8881 * Add back the child's count to the parent's count:
8882 */
8883 atomic64_add(child_val, &parent_event->child_count);
8884 atomic64_add(child_event->total_time_enabled,
8885 &parent_event->child_total_time_enabled);
8886 atomic64_add(child_event->total_time_running,
8887 &parent_event->child_total_time_running);
8888
8889 /*
8890 * Remove this event from the parent's list
8891 */
8892 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8893 mutex_lock(&parent_event->child_mutex);
8894 list_del_init(&child_event->child_list);
8895 mutex_unlock(&parent_event->child_mutex);
8896
8897 /*
8898 * Make sure user/parent get notified, that we just
8899 * lost one event.
8900 */
8901 perf_event_wakeup(parent_event);
8902
8903 /*
8904 * Release the parent event, if this was the last
8905 * reference to it.
8906 */
8907 put_event(parent_event);
8908 }
8909
8910 static void
__perf_event_exit_task(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)8911 __perf_event_exit_task(struct perf_event *child_event,
8912 struct perf_event_context *child_ctx,
8913 struct task_struct *child)
8914 {
8915 /*
8916 * Do not destroy the 'original' grouping; because of the context
8917 * switch optimization the original events could've ended up in a
8918 * random child task.
8919 *
8920 * If we were to destroy the original group, all group related
8921 * operations would cease to function properly after this random
8922 * child dies.
8923 *
8924 * Do destroy all inherited groups, we don't care about those
8925 * and being thorough is better.
8926 */
8927 perf_remove_from_context(child_event, !!child_event->parent);
8928
8929 /*
8930 * It can happen that the parent exits first, and has events
8931 * that are still around due to the child reference. These
8932 * events need to be zapped.
8933 */
8934 if (child_event->parent) {
8935 sync_child_event(child_event, child);
8936 free_event(child_event);
8937 } else {
8938 child_event->state = PERF_EVENT_STATE_EXIT;
8939 perf_event_wakeup(child_event);
8940 }
8941 }
8942
perf_event_exit_task_context(struct task_struct * child,int ctxn)8943 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8944 {
8945 struct perf_event *child_event, *next;
8946 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8947 unsigned long flags;
8948
8949 if (likely(!child->perf_event_ctxp[ctxn]))
8950 return;
8951
8952 local_irq_save(flags);
8953 /*
8954 * We can't reschedule here because interrupts are disabled,
8955 * and either child is current or it is a task that can't be
8956 * scheduled, so we are now safe from rescheduling changing
8957 * our context.
8958 */
8959 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8960
8961 /*
8962 * Take the context lock here so that if find_get_context is
8963 * reading child->perf_event_ctxp, we wait until it has
8964 * incremented the context's refcount before we do put_ctx below.
8965 */
8966 raw_spin_lock(&child_ctx->lock);
8967 task_ctx_sched_out(child_ctx);
8968 child->perf_event_ctxp[ctxn] = NULL;
8969
8970 /*
8971 * If this context is a clone; unclone it so it can't get
8972 * swapped to another process while we're removing all
8973 * the events from it.
8974 */
8975 clone_ctx = unclone_ctx(child_ctx);
8976 update_context_time(child_ctx);
8977 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8978
8979 if (clone_ctx)
8980 put_ctx(clone_ctx);
8981
8982 /*
8983 * Report the task dead after unscheduling the events so that we
8984 * won't get any samples after PERF_RECORD_EXIT. We can however still
8985 * get a few PERF_RECORD_READ events.
8986 */
8987 perf_event_task(child, child_ctx, 0);
8988
8989 /*
8990 * We can recurse on the same lock type through:
8991 *
8992 * __perf_event_exit_task()
8993 * sync_child_event()
8994 * put_event()
8995 * mutex_lock(&ctx->mutex)
8996 *
8997 * But since its the parent context it won't be the same instance.
8998 */
8999 mutex_lock(&child_ctx->mutex);
9000
9001 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9002 __perf_event_exit_task(child_event, child_ctx, child);
9003
9004 mutex_unlock(&child_ctx->mutex);
9005
9006 put_ctx(child_ctx);
9007 }
9008
9009 /*
9010 * When a child task exits, feed back event values to parent events.
9011 *
9012 * Can be called with cred_guard_mutex held when called from
9013 * install_exec_creds().
9014 */
perf_event_exit_task(struct task_struct * child)9015 void perf_event_exit_task(struct task_struct *child)
9016 {
9017 struct perf_event *event, *tmp;
9018 int ctxn;
9019
9020 mutex_lock(&child->perf_event_mutex);
9021 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9022 owner_entry) {
9023 list_del_init(&event->owner_entry);
9024
9025 /*
9026 * Ensure the list deletion is visible before we clear
9027 * the owner, closes a race against perf_release() where
9028 * we need to serialize on the owner->perf_event_mutex.
9029 */
9030 smp_wmb();
9031 event->owner = NULL;
9032 }
9033 mutex_unlock(&child->perf_event_mutex);
9034
9035 for_each_task_context_nr(ctxn)
9036 perf_event_exit_task_context(child, ctxn);
9037
9038 /*
9039 * The perf_event_exit_task_context calls perf_event_task
9040 * with child's task_ctx, which generates EXIT events for
9041 * child contexts and sets child->perf_event_ctxp[] to NULL.
9042 * At this point we need to send EXIT events to cpu contexts.
9043 */
9044 perf_event_task(child, NULL, 0);
9045 }
9046
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)9047 static void perf_free_event(struct perf_event *event,
9048 struct perf_event_context *ctx)
9049 {
9050 struct perf_event *parent = event->parent;
9051
9052 if (WARN_ON_ONCE(!parent))
9053 return;
9054
9055 mutex_lock(&parent->child_mutex);
9056 list_del_init(&event->child_list);
9057 mutex_unlock(&parent->child_mutex);
9058
9059 put_event(parent);
9060
9061 raw_spin_lock_irq(&ctx->lock);
9062 perf_group_detach(event);
9063 list_del_event(event, ctx);
9064 raw_spin_unlock_irq(&ctx->lock);
9065 free_event(event);
9066 }
9067
9068 /*
9069 * Free an unexposed, unused context as created by inheritance by
9070 * perf_event_init_task below, used by fork() in case of fail.
9071 *
9072 * Not all locks are strictly required, but take them anyway to be nice and
9073 * help out with the lockdep assertions.
9074 */
perf_event_free_task(struct task_struct * task)9075 void perf_event_free_task(struct task_struct *task)
9076 {
9077 struct perf_event_context *ctx;
9078 struct perf_event *event, *tmp;
9079 int ctxn;
9080
9081 for_each_task_context_nr(ctxn) {
9082 ctx = task->perf_event_ctxp[ctxn];
9083 if (!ctx)
9084 continue;
9085
9086 mutex_lock(&ctx->mutex);
9087 again:
9088 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9089 group_entry)
9090 perf_free_event(event, ctx);
9091
9092 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9093 group_entry)
9094 perf_free_event(event, ctx);
9095
9096 if (!list_empty(&ctx->pinned_groups) ||
9097 !list_empty(&ctx->flexible_groups))
9098 goto again;
9099
9100 mutex_unlock(&ctx->mutex);
9101
9102 put_ctx(ctx);
9103 }
9104 }
9105
perf_event_delayed_put(struct task_struct * task)9106 void perf_event_delayed_put(struct task_struct *task)
9107 {
9108 int ctxn;
9109
9110 for_each_task_context_nr(ctxn)
9111 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9112 }
9113
perf_event_get(unsigned int fd)9114 struct perf_event *perf_event_get(unsigned int fd)
9115 {
9116 int err;
9117 struct fd f;
9118 struct perf_event *event;
9119
9120 err = perf_fget_light(fd, &f);
9121 if (err)
9122 return ERR_PTR(err);
9123
9124 event = f.file->private_data;
9125 atomic_long_inc(&event->refcount);
9126 fdput(f);
9127
9128 return event;
9129 }
9130
perf_event_attrs(struct perf_event * event)9131 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9132 {
9133 if (!event)
9134 return ERR_PTR(-EINVAL);
9135
9136 return &event->attr;
9137 }
9138
9139 /*
9140 * inherit a event from parent task to child task:
9141 */
9142 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)9143 inherit_event(struct perf_event *parent_event,
9144 struct task_struct *parent,
9145 struct perf_event_context *parent_ctx,
9146 struct task_struct *child,
9147 struct perf_event *group_leader,
9148 struct perf_event_context *child_ctx)
9149 {
9150 enum perf_event_active_state parent_state = parent_event->state;
9151 struct perf_event *child_event;
9152 unsigned long flags;
9153
9154 /*
9155 * Instead of creating recursive hierarchies of events,
9156 * we link inherited events back to the original parent,
9157 * which has a filp for sure, which we use as the reference
9158 * count:
9159 */
9160 if (parent_event->parent)
9161 parent_event = parent_event->parent;
9162
9163 child_event = perf_event_alloc(&parent_event->attr,
9164 parent_event->cpu,
9165 child,
9166 group_leader, parent_event,
9167 NULL, NULL, -1);
9168 if (IS_ERR(child_event))
9169 return child_event;
9170
9171 if (is_orphaned_event(parent_event) ||
9172 !atomic_long_inc_not_zero(&parent_event->refcount)) {
9173 free_event(child_event);
9174 return NULL;
9175 }
9176
9177 get_ctx(child_ctx);
9178
9179 /*
9180 * Make the child state follow the state of the parent event,
9181 * not its attr.disabled bit. We hold the parent's mutex,
9182 * so we won't race with perf_event_{en, dis}able_family.
9183 */
9184 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9185 child_event->state = PERF_EVENT_STATE_INACTIVE;
9186 else
9187 child_event->state = PERF_EVENT_STATE_OFF;
9188
9189 if (parent_event->attr.freq) {
9190 u64 sample_period = parent_event->hw.sample_period;
9191 struct hw_perf_event *hwc = &child_event->hw;
9192
9193 hwc->sample_period = sample_period;
9194 hwc->last_period = sample_period;
9195
9196 local64_set(&hwc->period_left, sample_period);
9197 }
9198
9199 child_event->ctx = child_ctx;
9200 child_event->overflow_handler = parent_event->overflow_handler;
9201 child_event->overflow_handler_context
9202 = parent_event->overflow_handler_context;
9203
9204 /*
9205 * Precalculate sample_data sizes
9206 */
9207 perf_event__header_size(child_event);
9208 perf_event__id_header_size(child_event);
9209
9210 /*
9211 * Link it up in the child's context:
9212 */
9213 raw_spin_lock_irqsave(&child_ctx->lock, flags);
9214 add_event_to_ctx(child_event, child_ctx);
9215 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9216
9217 /*
9218 * Link this into the parent event's child list
9219 */
9220 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9221 mutex_lock(&parent_event->child_mutex);
9222 list_add_tail(&child_event->child_list, &parent_event->child_list);
9223 mutex_unlock(&parent_event->child_mutex);
9224
9225 return child_event;
9226 }
9227
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)9228 static int inherit_group(struct perf_event *parent_event,
9229 struct task_struct *parent,
9230 struct perf_event_context *parent_ctx,
9231 struct task_struct *child,
9232 struct perf_event_context *child_ctx)
9233 {
9234 struct perf_event *leader;
9235 struct perf_event *sub;
9236 struct perf_event *child_ctr;
9237
9238 leader = inherit_event(parent_event, parent, parent_ctx,
9239 child, NULL, child_ctx);
9240 if (IS_ERR(leader))
9241 return PTR_ERR(leader);
9242 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9243 child_ctr = inherit_event(sub, parent, parent_ctx,
9244 child, leader, child_ctx);
9245 if (IS_ERR(child_ctr))
9246 return PTR_ERR(child_ctr);
9247 }
9248 return 0;
9249 }
9250
9251 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)9252 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9253 struct perf_event_context *parent_ctx,
9254 struct task_struct *child, int ctxn,
9255 int *inherited_all)
9256 {
9257 int ret;
9258 struct perf_event_context *child_ctx;
9259
9260 if (!event->attr.inherit) {
9261 *inherited_all = 0;
9262 return 0;
9263 }
9264
9265 child_ctx = child->perf_event_ctxp[ctxn];
9266 if (!child_ctx) {
9267 /*
9268 * This is executed from the parent task context, so
9269 * inherit events that have been marked for cloning.
9270 * First allocate and initialize a context for the
9271 * child.
9272 */
9273
9274 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9275 if (!child_ctx)
9276 return -ENOMEM;
9277
9278 child->perf_event_ctxp[ctxn] = child_ctx;
9279 }
9280
9281 ret = inherit_group(event, parent, parent_ctx,
9282 child, child_ctx);
9283
9284 if (ret)
9285 *inherited_all = 0;
9286
9287 return ret;
9288 }
9289
9290 /*
9291 * Initialize the perf_event context in task_struct
9292 */
perf_event_init_context(struct task_struct * child,int ctxn)9293 static int perf_event_init_context(struct task_struct *child, int ctxn)
9294 {
9295 struct perf_event_context *child_ctx, *parent_ctx;
9296 struct perf_event_context *cloned_ctx;
9297 struct perf_event *event;
9298 struct task_struct *parent = current;
9299 int inherited_all = 1;
9300 unsigned long flags;
9301 int ret = 0;
9302
9303 if (likely(!parent->perf_event_ctxp[ctxn]))
9304 return 0;
9305
9306 /*
9307 * If the parent's context is a clone, pin it so it won't get
9308 * swapped under us.
9309 */
9310 parent_ctx = perf_pin_task_context(parent, ctxn);
9311 if (!parent_ctx)
9312 return 0;
9313
9314 /*
9315 * No need to check if parent_ctx != NULL here; since we saw
9316 * it non-NULL earlier, the only reason for it to become NULL
9317 * is if we exit, and since we're currently in the middle of
9318 * a fork we can't be exiting at the same time.
9319 */
9320
9321 /*
9322 * Lock the parent list. No need to lock the child - not PID
9323 * hashed yet and not running, so nobody can access it.
9324 */
9325 mutex_lock(&parent_ctx->mutex);
9326
9327 /*
9328 * We dont have to disable NMIs - we are only looking at
9329 * the list, not manipulating it:
9330 */
9331 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9332 ret = inherit_task_group(event, parent, parent_ctx,
9333 child, ctxn, &inherited_all);
9334 if (ret)
9335 goto out_unlock;
9336 }
9337
9338 /*
9339 * We can't hold ctx->lock when iterating the ->flexible_group list due
9340 * to allocations, but we need to prevent rotation because
9341 * rotate_ctx() will change the list from interrupt context.
9342 */
9343 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9344 parent_ctx->rotate_disable = 1;
9345 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9346
9347 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9348 ret = inherit_task_group(event, parent, parent_ctx,
9349 child, ctxn, &inherited_all);
9350 if (ret)
9351 goto out_unlock;
9352 }
9353
9354 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9355 parent_ctx->rotate_disable = 0;
9356
9357 child_ctx = child->perf_event_ctxp[ctxn];
9358
9359 if (child_ctx && inherited_all) {
9360 /*
9361 * Mark the child context as a clone of the parent
9362 * context, or of whatever the parent is a clone of.
9363 *
9364 * Note that if the parent is a clone, the holding of
9365 * parent_ctx->lock avoids it from being uncloned.
9366 */
9367 cloned_ctx = parent_ctx->parent_ctx;
9368 if (cloned_ctx) {
9369 child_ctx->parent_ctx = cloned_ctx;
9370 child_ctx->parent_gen = parent_ctx->parent_gen;
9371 } else {
9372 child_ctx->parent_ctx = parent_ctx;
9373 child_ctx->parent_gen = parent_ctx->generation;
9374 }
9375 get_ctx(child_ctx->parent_ctx);
9376 }
9377
9378 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9379 out_unlock:
9380 mutex_unlock(&parent_ctx->mutex);
9381
9382 perf_unpin_context(parent_ctx);
9383 put_ctx(parent_ctx);
9384
9385 return ret;
9386 }
9387
9388 /*
9389 * Initialize the perf_event context in task_struct
9390 */
perf_event_init_task(struct task_struct * child)9391 int perf_event_init_task(struct task_struct *child)
9392 {
9393 int ctxn, ret;
9394
9395 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9396 mutex_init(&child->perf_event_mutex);
9397 INIT_LIST_HEAD(&child->perf_event_list);
9398
9399 for_each_task_context_nr(ctxn) {
9400 ret = perf_event_init_context(child, ctxn);
9401 if (ret) {
9402 perf_event_free_task(child);
9403 return ret;
9404 }
9405 }
9406
9407 return 0;
9408 }
9409
perf_event_init_all_cpus(void)9410 static void __init perf_event_init_all_cpus(void)
9411 {
9412 struct swevent_htable *swhash;
9413 int cpu;
9414
9415 for_each_possible_cpu(cpu) {
9416 swhash = &per_cpu(swevent_htable, cpu);
9417 mutex_init(&swhash->hlist_mutex);
9418 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9419 }
9420 }
9421
perf_event_init_cpu(int cpu)9422 static void perf_event_init_cpu(int cpu)
9423 {
9424 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9425
9426 mutex_lock(&swhash->hlist_mutex);
9427 if (swhash->hlist_refcount > 0) {
9428 struct swevent_hlist *hlist;
9429
9430 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9431 WARN_ON(!hlist);
9432 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9433 }
9434 mutex_unlock(&swhash->hlist_mutex);
9435 }
9436
9437 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)9438 static void __perf_event_exit_context(void *__info)
9439 {
9440 struct remove_event re = { .detach_group = true };
9441 struct perf_event_context *ctx = __info;
9442
9443 rcu_read_lock();
9444 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9445 __perf_remove_from_context(&re);
9446 rcu_read_unlock();
9447 }
9448
perf_event_exit_cpu_context(int cpu)9449 static void perf_event_exit_cpu_context(int cpu)
9450 {
9451 struct perf_event_context *ctx;
9452 struct pmu *pmu;
9453 int idx;
9454
9455 idx = srcu_read_lock(&pmus_srcu);
9456 list_for_each_entry_rcu(pmu, &pmus, entry) {
9457 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9458
9459 mutex_lock(&ctx->mutex);
9460 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9461 mutex_unlock(&ctx->mutex);
9462 }
9463 srcu_read_unlock(&pmus_srcu, idx);
9464 }
9465
perf_event_exit_cpu(int cpu)9466 static void perf_event_exit_cpu(int cpu)
9467 {
9468 perf_event_exit_cpu_context(cpu);
9469 }
9470 #else
perf_event_exit_cpu(int cpu)9471 static inline void perf_event_exit_cpu(int cpu) { }
9472 #endif
9473
9474 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)9475 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9476 {
9477 int cpu;
9478
9479 for_each_online_cpu(cpu)
9480 perf_event_exit_cpu(cpu);
9481
9482 return NOTIFY_OK;
9483 }
9484
9485 /*
9486 * Run the perf reboot notifier at the very last possible moment so that
9487 * the generic watchdog code runs as long as possible.
9488 */
9489 static struct notifier_block perf_reboot_notifier = {
9490 .notifier_call = perf_reboot,
9491 .priority = INT_MIN,
9492 };
9493
9494 static int
perf_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)9495 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9496 {
9497 unsigned int cpu = (long)hcpu;
9498
9499 switch (action & ~CPU_TASKS_FROZEN) {
9500
9501 case CPU_UP_PREPARE:
9502 case CPU_DOWN_FAILED:
9503 perf_event_init_cpu(cpu);
9504 break;
9505
9506 case CPU_UP_CANCELED:
9507 case CPU_DOWN_PREPARE:
9508 perf_event_exit_cpu(cpu);
9509 break;
9510 default:
9511 break;
9512 }
9513
9514 return NOTIFY_OK;
9515 }
9516
perf_event_init(void)9517 void __init perf_event_init(void)
9518 {
9519 int ret;
9520
9521 idr_init(&pmu_idr);
9522
9523 perf_event_init_all_cpus();
9524 init_srcu_struct(&pmus_srcu);
9525 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9526 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9527 perf_pmu_register(&perf_task_clock, NULL, -1);
9528 perf_tp_register();
9529 perf_cpu_notifier(perf_cpu_notify);
9530 register_reboot_notifier(&perf_reboot_notifier);
9531
9532 ret = init_hw_breakpoint();
9533 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9534
9535 /* do not patch jump label more than once per second */
9536 jump_label_rate_limit(&perf_sched_events, HZ);
9537
9538 /*
9539 * Build time assertion that we keep the data_head at the intended
9540 * location. IOW, validation we got the __reserved[] size right.
9541 */
9542 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9543 != 1024);
9544 }
9545
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)9546 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9547 char *page)
9548 {
9549 struct perf_pmu_events_attr *pmu_attr =
9550 container_of(attr, struct perf_pmu_events_attr, attr);
9551
9552 if (pmu_attr->event_str)
9553 return sprintf(page, "%s\n", pmu_attr->event_str);
9554
9555 return 0;
9556 }
9557
perf_event_sysfs_init(void)9558 static int __init perf_event_sysfs_init(void)
9559 {
9560 struct pmu *pmu;
9561 int ret;
9562
9563 mutex_lock(&pmus_lock);
9564
9565 ret = bus_register(&pmu_bus);
9566 if (ret)
9567 goto unlock;
9568
9569 list_for_each_entry(pmu, &pmus, entry) {
9570 if (!pmu->name || pmu->type < 0)
9571 continue;
9572
9573 ret = pmu_dev_alloc(pmu);
9574 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9575 }
9576 pmu_bus_running = 1;
9577 ret = 0;
9578
9579 unlock:
9580 mutex_unlock(&pmus_lock);
9581
9582 return ret;
9583 }
9584 device_initcall(perf_event_sysfs_init);
9585
9586 #ifdef CONFIG_CGROUP_PERF
9587 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)9588 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9589 {
9590 struct perf_cgroup *jc;
9591
9592 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9593 if (!jc)
9594 return ERR_PTR(-ENOMEM);
9595
9596 jc->info = alloc_percpu(struct perf_cgroup_info);
9597 if (!jc->info) {
9598 kfree(jc);
9599 return ERR_PTR(-ENOMEM);
9600 }
9601
9602 return &jc->css;
9603 }
9604
perf_cgroup_css_free(struct cgroup_subsys_state * css)9605 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9606 {
9607 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9608
9609 free_percpu(jc->info);
9610 kfree(jc);
9611 }
9612
__perf_cgroup_move(void * info)9613 static int __perf_cgroup_move(void *info)
9614 {
9615 struct task_struct *task = info;
9616 rcu_read_lock();
9617 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9618 rcu_read_unlock();
9619 return 0;
9620 }
9621
perf_cgroup_attach(struct cgroup_taskset * tset)9622 static void perf_cgroup_attach(struct cgroup_taskset *tset)
9623 {
9624 struct task_struct *task;
9625 struct cgroup_subsys_state *css;
9626
9627 cgroup_taskset_for_each(task, css, tset)
9628 task_function_call(task, __perf_cgroup_move, task);
9629 }
9630
9631 struct cgroup_subsys perf_event_cgrp_subsys = {
9632 .css_alloc = perf_cgroup_css_alloc,
9633 .css_free = perf_cgroup_css_free,
9634 .attach = perf_cgroup_attach,
9635 };
9636 #endif /* CONFIG_CGROUP_PERF */
9637