• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31 
32 static struct {
33 	bool sample_id_all;
34 	bool exclude_guest;
35 	bool mmap2;
36 	bool cloexec;
37 	bool clockid;
38 	bool clockid_wrong;
39 } perf_missing_features;
40 
41 static clockid_t clockid;
42 
perf_evsel__no_extra_init(struct perf_evsel * evsel __maybe_unused)43 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
44 {
45 	return 0;
46 }
47 
perf_evsel__no_extra_fini(struct perf_evsel * evsel __maybe_unused)48 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
49 {
50 }
51 
52 static struct {
53 	size_t	size;
54 	int	(*init)(struct perf_evsel *evsel);
55 	void	(*fini)(struct perf_evsel *evsel);
56 } perf_evsel__object = {
57 	.size = sizeof(struct perf_evsel),
58 	.init = perf_evsel__no_extra_init,
59 	.fini = perf_evsel__no_extra_fini,
60 };
61 
perf_evsel__object_config(size_t object_size,int (* init)(struct perf_evsel * evsel),void (* fini)(struct perf_evsel * evsel))62 int perf_evsel__object_config(size_t object_size,
63 			      int (*init)(struct perf_evsel *evsel),
64 			      void (*fini)(struct perf_evsel *evsel))
65 {
66 
67 	if (object_size == 0)
68 		goto set_methods;
69 
70 	if (perf_evsel__object.size > object_size)
71 		return -EINVAL;
72 
73 	perf_evsel__object.size = object_size;
74 
75 set_methods:
76 	if (init != NULL)
77 		perf_evsel__object.init = init;
78 
79 	if (fini != NULL)
80 		perf_evsel__object.fini = fini;
81 
82 	return 0;
83 }
84 
85 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
86 
__perf_evsel__sample_size(u64 sample_type)87 int __perf_evsel__sample_size(u64 sample_type)
88 {
89 	u64 mask = sample_type & PERF_SAMPLE_MASK;
90 	int size = 0;
91 	int i;
92 
93 	for (i = 0; i < 64; i++) {
94 		if (mask & (1ULL << i))
95 			size++;
96 	}
97 
98 	size *= sizeof(u64);
99 
100 	return size;
101 }
102 
103 /**
104  * __perf_evsel__calc_id_pos - calculate id_pos.
105  * @sample_type: sample type
106  *
107  * This function returns the position of the event id (PERF_SAMPLE_ID or
108  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
109  * sample_event.
110  */
__perf_evsel__calc_id_pos(u64 sample_type)111 static int __perf_evsel__calc_id_pos(u64 sample_type)
112 {
113 	int idx = 0;
114 
115 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
116 		return 0;
117 
118 	if (!(sample_type & PERF_SAMPLE_ID))
119 		return -1;
120 
121 	if (sample_type & PERF_SAMPLE_IP)
122 		idx += 1;
123 
124 	if (sample_type & PERF_SAMPLE_TID)
125 		idx += 1;
126 
127 	if (sample_type & PERF_SAMPLE_TIME)
128 		idx += 1;
129 
130 	if (sample_type & PERF_SAMPLE_ADDR)
131 		idx += 1;
132 
133 	return idx;
134 }
135 
136 /**
137  * __perf_evsel__calc_is_pos - calculate is_pos.
138  * @sample_type: sample type
139  *
140  * This function returns the position (counting backwards) of the event id
141  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
142  * sample_id_all is used there is an id sample appended to non-sample events.
143  */
__perf_evsel__calc_is_pos(u64 sample_type)144 static int __perf_evsel__calc_is_pos(u64 sample_type)
145 {
146 	int idx = 1;
147 
148 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
149 		return 1;
150 
151 	if (!(sample_type & PERF_SAMPLE_ID))
152 		return -1;
153 
154 	if (sample_type & PERF_SAMPLE_CPU)
155 		idx += 1;
156 
157 	if (sample_type & PERF_SAMPLE_STREAM_ID)
158 		idx += 1;
159 
160 	return idx;
161 }
162 
perf_evsel__calc_id_pos(struct perf_evsel * evsel)163 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
164 {
165 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
166 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
167 }
168 
__perf_evsel__set_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)169 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
170 				  enum perf_event_sample_format bit)
171 {
172 	if (!(evsel->attr.sample_type & bit)) {
173 		evsel->attr.sample_type |= bit;
174 		evsel->sample_size += sizeof(u64);
175 		perf_evsel__calc_id_pos(evsel);
176 	}
177 }
178 
__perf_evsel__reset_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)179 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
180 				    enum perf_event_sample_format bit)
181 {
182 	if (evsel->attr.sample_type & bit) {
183 		evsel->attr.sample_type &= ~bit;
184 		evsel->sample_size -= sizeof(u64);
185 		perf_evsel__calc_id_pos(evsel);
186 	}
187 }
188 
perf_evsel__set_sample_id(struct perf_evsel * evsel,bool can_sample_identifier)189 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
190 			       bool can_sample_identifier)
191 {
192 	if (can_sample_identifier) {
193 		perf_evsel__reset_sample_bit(evsel, ID);
194 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
195 	} else {
196 		perf_evsel__set_sample_bit(evsel, ID);
197 	}
198 	evsel->attr.read_format |= PERF_FORMAT_ID;
199 }
200 
perf_evsel__init(struct perf_evsel * evsel,struct perf_event_attr * attr,int idx)201 void perf_evsel__init(struct perf_evsel *evsel,
202 		      struct perf_event_attr *attr, int idx)
203 {
204 	evsel->idx	   = idx;
205 	evsel->tracking	   = !idx;
206 	evsel->attr	   = *attr;
207 	evsel->leader	   = evsel;
208 	evsel->unit	   = "";
209 	evsel->scale	   = 1.0;
210 	evsel->evlist	   = NULL;
211 	evsel->bpf_fd	   = -1;
212 	INIT_LIST_HEAD(&evsel->node);
213 	INIT_LIST_HEAD(&evsel->config_terms);
214 	perf_evsel__object.init(evsel);
215 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
216 	perf_evsel__calc_id_pos(evsel);
217 	evsel->cmdline_group_boundary = false;
218 }
219 
perf_evsel__new_idx(struct perf_event_attr * attr,int idx)220 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
221 {
222 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
223 
224 	if (evsel != NULL)
225 		perf_evsel__init(evsel, attr, idx);
226 
227 	return evsel;
228 }
229 
230 /*
231  * Returns pointer with encoded error via <linux/err.h> interface.
232  */
perf_evsel__newtp_idx(const char * sys,const char * name,int idx)233 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
234 {
235 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
236 	int err = -ENOMEM;
237 
238 	if (evsel == NULL) {
239 		goto out_err;
240 	} else {
241 		struct perf_event_attr attr = {
242 			.type	       = PERF_TYPE_TRACEPOINT,
243 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
244 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
245 		};
246 
247 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
248 			goto out_free;
249 
250 		evsel->tp_format = trace_event__tp_format(sys, name);
251 		if (IS_ERR(evsel->tp_format)) {
252 			err = PTR_ERR(evsel->tp_format);
253 			goto out_free;
254 		}
255 
256 		event_attr_init(&attr);
257 		attr.config = evsel->tp_format->id;
258 		attr.sample_period = 1;
259 		perf_evsel__init(evsel, &attr, idx);
260 	}
261 
262 	return evsel;
263 
264 out_free:
265 	zfree(&evsel->name);
266 	free(evsel);
267 out_err:
268 	return ERR_PTR(err);
269 }
270 
271 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
272 	"cycles",
273 	"instructions",
274 	"cache-references",
275 	"cache-misses",
276 	"branches",
277 	"branch-misses",
278 	"bus-cycles",
279 	"stalled-cycles-frontend",
280 	"stalled-cycles-backend",
281 	"ref-cycles",
282 };
283 
__perf_evsel__hw_name(u64 config)284 static const char *__perf_evsel__hw_name(u64 config)
285 {
286 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
287 		return perf_evsel__hw_names[config];
288 
289 	return "unknown-hardware";
290 }
291 
perf_evsel__add_modifiers(struct perf_evsel * evsel,char * bf,size_t size)292 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
293 {
294 	int colon = 0, r = 0;
295 	struct perf_event_attr *attr = &evsel->attr;
296 	bool exclude_guest_default = false;
297 
298 #define MOD_PRINT(context, mod)	do {					\
299 		if (!attr->exclude_##context) {				\
300 			if (!colon) colon = ++r;			\
301 			r += scnprintf(bf + r, size - r, "%c", mod);	\
302 		} } while(0)
303 
304 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
305 		MOD_PRINT(kernel, 'k');
306 		MOD_PRINT(user, 'u');
307 		MOD_PRINT(hv, 'h');
308 		exclude_guest_default = true;
309 	}
310 
311 	if (attr->precise_ip) {
312 		if (!colon)
313 			colon = ++r;
314 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
315 		exclude_guest_default = true;
316 	}
317 
318 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
319 		MOD_PRINT(host, 'H');
320 		MOD_PRINT(guest, 'G');
321 	}
322 #undef MOD_PRINT
323 	if (colon)
324 		bf[colon - 1] = ':';
325 	return r;
326 }
327 
perf_evsel__hw_name(struct perf_evsel * evsel,char * bf,size_t size)328 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
329 {
330 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
331 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
332 }
333 
334 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
335 	"cpu-clock",
336 	"task-clock",
337 	"page-faults",
338 	"context-switches",
339 	"cpu-migrations",
340 	"minor-faults",
341 	"major-faults",
342 	"alignment-faults",
343 	"emulation-faults",
344 	"dummy",
345 };
346 
__perf_evsel__sw_name(u64 config)347 static const char *__perf_evsel__sw_name(u64 config)
348 {
349 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
350 		return perf_evsel__sw_names[config];
351 	return "unknown-software";
352 }
353 
perf_evsel__sw_name(struct perf_evsel * evsel,char * bf,size_t size)354 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
355 {
356 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
357 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
358 }
359 
__perf_evsel__bp_name(char * bf,size_t size,u64 addr,u64 type)360 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
361 {
362 	int r;
363 
364 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
365 
366 	if (type & HW_BREAKPOINT_R)
367 		r += scnprintf(bf + r, size - r, "r");
368 
369 	if (type & HW_BREAKPOINT_W)
370 		r += scnprintf(bf + r, size - r, "w");
371 
372 	if (type & HW_BREAKPOINT_X)
373 		r += scnprintf(bf + r, size - r, "x");
374 
375 	return r;
376 }
377 
perf_evsel__bp_name(struct perf_evsel * evsel,char * bf,size_t size)378 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
379 {
380 	struct perf_event_attr *attr = &evsel->attr;
381 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
382 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
383 }
384 
385 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
386 				[PERF_EVSEL__MAX_ALIASES] = {
387  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
388  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
389  { "LLC",	"L2",							},
390  { "dTLB",	"d-tlb",	"Data-TLB",				},
391  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
392  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
393  { "node",								},
394 };
395 
396 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
397 				   [PERF_EVSEL__MAX_ALIASES] = {
398  { "load",	"loads",	"read",					},
399  { "store",	"stores",	"write",				},
400  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
401 };
402 
403 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
404 				       [PERF_EVSEL__MAX_ALIASES] = {
405  { "refs",	"Reference",	"ops",		"access",		},
406  { "misses",	"miss",							},
407 };
408 
409 #define C(x)		PERF_COUNT_HW_CACHE_##x
410 #define CACHE_READ	(1 << C(OP_READ))
411 #define CACHE_WRITE	(1 << C(OP_WRITE))
412 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
413 #define COP(x)		(1 << x)
414 
415 /*
416  * cache operartion stat
417  * L1I : Read and prefetch only
418  * ITLB and BPU : Read-only
419  */
420 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
421  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
422  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
423  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
424  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
425  [C(ITLB)]	= (CACHE_READ),
426  [C(BPU)]	= (CACHE_READ),
427  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
428 };
429 
perf_evsel__is_cache_op_valid(u8 type,u8 op)430 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
431 {
432 	if (perf_evsel__hw_cache_stat[type] & COP(op))
433 		return true;	/* valid */
434 	else
435 		return false;	/* invalid */
436 }
437 
__perf_evsel__hw_cache_type_op_res_name(u8 type,u8 op,u8 result,char * bf,size_t size)438 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
439 					    char *bf, size_t size)
440 {
441 	if (result) {
442 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
443 				 perf_evsel__hw_cache_op[op][0],
444 				 perf_evsel__hw_cache_result[result][0]);
445 	}
446 
447 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
448 			 perf_evsel__hw_cache_op[op][1]);
449 }
450 
__perf_evsel__hw_cache_name(u64 config,char * bf,size_t size)451 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
452 {
453 	u8 op, result, type = (config >>  0) & 0xff;
454 	const char *err = "unknown-ext-hardware-cache-type";
455 
456 	if (type > PERF_COUNT_HW_CACHE_MAX)
457 		goto out_err;
458 
459 	op = (config >>  8) & 0xff;
460 	err = "unknown-ext-hardware-cache-op";
461 	if (op > PERF_COUNT_HW_CACHE_OP_MAX)
462 		goto out_err;
463 
464 	result = (config >> 16) & 0xff;
465 	err = "unknown-ext-hardware-cache-result";
466 	if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
467 		goto out_err;
468 
469 	err = "invalid-cache";
470 	if (!perf_evsel__is_cache_op_valid(type, op))
471 		goto out_err;
472 
473 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
474 out_err:
475 	return scnprintf(bf, size, "%s", err);
476 }
477 
perf_evsel__hw_cache_name(struct perf_evsel * evsel,char * bf,size_t size)478 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
479 {
480 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
481 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
482 }
483 
perf_evsel__raw_name(struct perf_evsel * evsel,char * bf,size_t size)484 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
485 {
486 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
487 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
488 }
489 
perf_evsel__name(struct perf_evsel * evsel)490 const char *perf_evsel__name(struct perf_evsel *evsel)
491 {
492 	char bf[128];
493 
494 	if (!evsel)
495 		goto out_unknown;
496 
497 	if (evsel->name)
498 		return evsel->name;
499 
500 	switch (evsel->attr.type) {
501 	case PERF_TYPE_RAW:
502 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
503 		break;
504 
505 	case PERF_TYPE_HARDWARE:
506 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
507 		break;
508 
509 	case PERF_TYPE_HW_CACHE:
510 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
511 		break;
512 
513 	case PERF_TYPE_SOFTWARE:
514 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
515 		break;
516 
517 	case PERF_TYPE_TRACEPOINT:
518 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
519 		break;
520 
521 	case PERF_TYPE_BREAKPOINT:
522 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
523 		break;
524 
525 	default:
526 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
527 			  evsel->attr.type);
528 		break;
529 	}
530 
531 	evsel->name = strdup(bf);
532 
533 	if (evsel->name)
534 		return evsel->name;
535 out_unknown:
536 	return "unknown";
537 }
538 
perf_evsel__group_name(struct perf_evsel * evsel)539 const char *perf_evsel__group_name(struct perf_evsel *evsel)
540 {
541 	return evsel->group_name ?: "anon group";
542 }
543 
perf_evsel__group_desc(struct perf_evsel * evsel,char * buf,size_t size)544 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
545 {
546 	int ret;
547 	struct perf_evsel *pos;
548 	const char *group_name = perf_evsel__group_name(evsel);
549 
550 	ret = scnprintf(buf, size, "%s", group_name);
551 
552 	ret += scnprintf(buf + ret, size - ret, " { %s",
553 			 perf_evsel__name(evsel));
554 
555 	for_each_group_member(pos, evsel)
556 		ret += scnprintf(buf + ret, size - ret, ", %s",
557 				 perf_evsel__name(pos));
558 
559 	ret += scnprintf(buf + ret, size - ret, " }");
560 
561 	return ret;
562 }
563 
564 static void
perf_evsel__config_callgraph(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * param)565 perf_evsel__config_callgraph(struct perf_evsel *evsel,
566 			     struct record_opts *opts,
567 			     struct callchain_param *param)
568 {
569 	bool function = perf_evsel__is_function_event(evsel);
570 	struct perf_event_attr *attr = &evsel->attr;
571 
572 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
573 
574 	if (param->record_mode == CALLCHAIN_LBR) {
575 		if (!opts->branch_stack) {
576 			if (attr->exclude_user) {
577 				pr_warning("LBR callstack option is only available "
578 					   "to get user callchain information. "
579 					   "Falling back to framepointers.\n");
580 			} else {
581 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
582 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
583 							PERF_SAMPLE_BRANCH_CALL_STACK;
584 			}
585 		} else
586 			 pr_warning("Cannot use LBR callstack with branch stack. "
587 				    "Falling back to framepointers.\n");
588 	}
589 
590 	if (param->record_mode == CALLCHAIN_DWARF) {
591 		if (!function) {
592 			perf_evsel__set_sample_bit(evsel, REGS_USER);
593 			perf_evsel__set_sample_bit(evsel, STACK_USER);
594 			attr->sample_regs_user = PERF_REGS_MASK;
595 			attr->sample_stack_user = param->dump_size;
596 			attr->exclude_callchain_user = 1;
597 		} else {
598 			pr_info("Cannot use DWARF unwind for function trace event,"
599 				" falling back to framepointers.\n");
600 		}
601 	}
602 
603 	if (function) {
604 		pr_info("Disabling user space callchains for function trace event.\n");
605 		attr->exclude_callchain_user = 1;
606 	}
607 }
608 
609 static void
perf_evsel__reset_callgraph(struct perf_evsel * evsel,struct callchain_param * param)610 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
611 			    struct callchain_param *param)
612 {
613 	struct perf_event_attr *attr = &evsel->attr;
614 
615 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
616 	if (param->record_mode == CALLCHAIN_LBR) {
617 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
618 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
619 					      PERF_SAMPLE_BRANCH_CALL_STACK);
620 	}
621 	if (param->record_mode == CALLCHAIN_DWARF) {
622 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
623 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
624 	}
625 }
626 
apply_config_terms(struct perf_evsel * evsel,struct record_opts * opts)627 static void apply_config_terms(struct perf_evsel *evsel,
628 			       struct record_opts *opts)
629 {
630 	struct perf_evsel_config_term *term;
631 	struct list_head *config_terms = &evsel->config_terms;
632 	struct perf_event_attr *attr = &evsel->attr;
633 	/* callgraph default */
634 	struct callchain_param param = {
635 		.record_mode = callchain_param.record_mode,
636 	};
637 	u32 dump_size = 0;
638 	char *callgraph_buf = NULL;
639 
640 	list_for_each_entry(term, config_terms, list) {
641 		switch (term->type) {
642 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
643 			attr->sample_period = term->val.period;
644 			attr->freq = 0;
645 			break;
646 		case PERF_EVSEL__CONFIG_TERM_FREQ:
647 			attr->sample_freq = term->val.freq;
648 			attr->freq = 1;
649 			break;
650 		case PERF_EVSEL__CONFIG_TERM_TIME:
651 			if (term->val.time)
652 				perf_evsel__set_sample_bit(evsel, TIME);
653 			else
654 				perf_evsel__reset_sample_bit(evsel, TIME);
655 			break;
656 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
657 			callgraph_buf = term->val.callgraph;
658 			break;
659 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
660 			dump_size = term->val.stack_user;
661 			break;
662 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
663 			/*
664 			 * attr->inherit should has already been set by
665 			 * perf_evsel__config. If user explicitly set
666 			 * inherit using config terms, override global
667 			 * opt->no_inherit setting.
668 			 */
669 			attr->inherit = term->val.inherit ? 1 : 0;
670 			break;
671 		default:
672 			break;
673 		}
674 	}
675 
676 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
677 	if ((callgraph_buf != NULL) || (dump_size > 0)) {
678 
679 		/* parse callgraph parameters */
680 		if (callgraph_buf != NULL) {
681 			if (!strcmp(callgraph_buf, "no")) {
682 				param.enabled = false;
683 				param.record_mode = CALLCHAIN_NONE;
684 			} else {
685 				param.enabled = true;
686 				if (parse_callchain_record(callgraph_buf, &param)) {
687 					pr_err("per-event callgraph setting for %s failed. "
688 					       "Apply callgraph global setting for it\n",
689 					       evsel->name);
690 					return;
691 				}
692 			}
693 		}
694 		if (dump_size > 0) {
695 			dump_size = round_up(dump_size, sizeof(u64));
696 			param.dump_size = dump_size;
697 		}
698 
699 		/* If global callgraph set, clear it */
700 		if (callchain_param.enabled)
701 			perf_evsel__reset_callgraph(evsel, &callchain_param);
702 
703 		/* set perf-event callgraph */
704 		if (param.enabled)
705 			perf_evsel__config_callgraph(evsel, opts, &param);
706 	}
707 }
708 
709 /*
710  * The enable_on_exec/disabled value strategy:
711  *
712  *  1) For any type of traced program:
713  *    - all independent events and group leaders are disabled
714  *    - all group members are enabled
715  *
716  *     Group members are ruled by group leaders. They need to
717  *     be enabled, because the group scheduling relies on that.
718  *
719  *  2) For traced programs executed by perf:
720  *     - all independent events and group leaders have
721  *       enable_on_exec set
722  *     - we don't specifically enable or disable any event during
723  *       the record command
724  *
725  *     Independent events and group leaders are initially disabled
726  *     and get enabled by exec. Group members are ruled by group
727  *     leaders as stated in 1).
728  *
729  *  3) For traced programs attached by perf (pid/tid):
730  *     - we specifically enable or disable all events during
731  *       the record command
732  *
733  *     When attaching events to already running traced we
734  *     enable/disable events specifically, as there's no
735  *     initial traced exec call.
736  */
perf_evsel__config(struct perf_evsel * evsel,struct record_opts * opts)737 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
738 {
739 	struct perf_evsel *leader = evsel->leader;
740 	struct perf_event_attr *attr = &evsel->attr;
741 	int track = evsel->tracking;
742 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
743 
744 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
745 	attr->inherit	    = !opts->no_inherit;
746 
747 	perf_evsel__set_sample_bit(evsel, IP);
748 	perf_evsel__set_sample_bit(evsel, TID);
749 
750 	if (evsel->sample_read) {
751 		perf_evsel__set_sample_bit(evsel, READ);
752 
753 		/*
754 		 * We need ID even in case of single event, because
755 		 * PERF_SAMPLE_READ process ID specific data.
756 		 */
757 		perf_evsel__set_sample_id(evsel, false);
758 
759 		/*
760 		 * Apply group format only if we belong to group
761 		 * with more than one members.
762 		 */
763 		if (leader->nr_members > 1) {
764 			attr->read_format |= PERF_FORMAT_GROUP;
765 			attr->inherit = 0;
766 		}
767 	}
768 
769 	/*
770 	 * We default some events to have a default interval. But keep
771 	 * it a weak assumption overridable by the user.
772 	 */
773 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
774 				     opts->user_interval != ULLONG_MAX)) {
775 		if (opts->freq) {
776 			perf_evsel__set_sample_bit(evsel, PERIOD);
777 			attr->freq		= 1;
778 			attr->sample_freq	= opts->freq;
779 		} else {
780 			attr->sample_period = opts->default_interval;
781 		}
782 	}
783 
784 	/*
785 	 * Disable sampling for all group members other
786 	 * than leader in case leader 'leads' the sampling.
787 	 */
788 	if ((leader != evsel) && leader->sample_read) {
789 		attr->sample_freq   = 0;
790 		attr->sample_period = 0;
791 	}
792 
793 	if (opts->no_samples)
794 		attr->sample_freq = 0;
795 
796 	if (opts->inherit_stat)
797 		attr->inherit_stat = 1;
798 
799 	if (opts->sample_address) {
800 		perf_evsel__set_sample_bit(evsel, ADDR);
801 		attr->mmap_data = track;
802 	}
803 
804 	/*
805 	 * We don't allow user space callchains for  function trace
806 	 * event, due to issues with page faults while tracing page
807 	 * fault handler and its overall trickiness nature.
808 	 */
809 	if (perf_evsel__is_function_event(evsel))
810 		evsel->attr.exclude_callchain_user = 1;
811 
812 	if (callchain_param.enabled && !evsel->no_aux_samples)
813 		perf_evsel__config_callgraph(evsel, opts, &callchain_param);
814 
815 	if (opts->sample_intr_regs) {
816 		attr->sample_regs_intr = opts->sample_intr_regs;
817 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
818 	}
819 
820 	if (target__has_cpu(&opts->target))
821 		perf_evsel__set_sample_bit(evsel, CPU);
822 
823 	if (opts->period)
824 		perf_evsel__set_sample_bit(evsel, PERIOD);
825 
826 	/*
827 	 * When the user explicitely disabled time don't force it here.
828 	 */
829 	if (opts->sample_time &&
830 	    (!perf_missing_features.sample_id_all &&
831 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
832 	     opts->sample_time_set)))
833 		perf_evsel__set_sample_bit(evsel, TIME);
834 
835 	if (opts->raw_samples && !evsel->no_aux_samples) {
836 		perf_evsel__set_sample_bit(evsel, TIME);
837 		perf_evsel__set_sample_bit(evsel, RAW);
838 		perf_evsel__set_sample_bit(evsel, CPU);
839 	}
840 
841 	if (opts->sample_address)
842 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
843 
844 	if (opts->no_buffering) {
845 		attr->watermark = 0;
846 		attr->wakeup_events = 1;
847 	}
848 	if (opts->branch_stack && !evsel->no_aux_samples) {
849 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
850 		attr->branch_sample_type = opts->branch_stack;
851 	}
852 
853 	if (opts->sample_weight)
854 		perf_evsel__set_sample_bit(evsel, WEIGHT);
855 
856 	attr->task  = track;
857 	attr->mmap  = track;
858 	attr->mmap2 = track && !perf_missing_features.mmap2;
859 	attr->comm  = track;
860 
861 	if (opts->record_switch_events)
862 		attr->context_switch = track;
863 
864 	if (opts->sample_transaction)
865 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
866 
867 	if (opts->running_time) {
868 		evsel->attr.read_format |=
869 			PERF_FORMAT_TOTAL_TIME_ENABLED |
870 			PERF_FORMAT_TOTAL_TIME_RUNNING;
871 	}
872 
873 	/*
874 	 * XXX see the function comment above
875 	 *
876 	 * Disabling only independent events or group leaders,
877 	 * keeping group members enabled.
878 	 */
879 	if (perf_evsel__is_group_leader(evsel))
880 		attr->disabled = 1;
881 
882 	/*
883 	 * Setting enable_on_exec for independent events and
884 	 * group leaders for traced executed by perf.
885 	 */
886 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
887 		!opts->initial_delay)
888 		attr->enable_on_exec = 1;
889 
890 	if (evsel->immediate) {
891 		attr->disabled = 0;
892 		attr->enable_on_exec = 0;
893 	}
894 
895 	clockid = opts->clockid;
896 	if (opts->use_clockid) {
897 		attr->use_clockid = 1;
898 		attr->clockid = opts->clockid;
899 	}
900 
901 	if (evsel->precise_max)
902 		perf_event_attr__set_max_precise_ip(attr);
903 
904 	/*
905 	 * Apply event specific term settings,
906 	 * it overloads any global configuration.
907 	 */
908 	apply_config_terms(evsel, opts);
909 }
910 
perf_evsel__alloc_fd(struct perf_evsel * evsel,int ncpus,int nthreads)911 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
912 {
913 	int cpu, thread;
914 
915 	if (evsel->system_wide)
916 		nthreads = 1;
917 
918 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
919 
920 	if (evsel->fd) {
921 		for (cpu = 0; cpu < ncpus; cpu++) {
922 			for (thread = 0; thread < nthreads; thread++) {
923 				FD(evsel, cpu, thread) = -1;
924 			}
925 		}
926 	}
927 
928 	return evsel->fd != NULL ? 0 : -ENOMEM;
929 }
930 
perf_evsel__run_ioctl(struct perf_evsel * evsel,int ncpus,int nthreads,int ioc,void * arg)931 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
932 			  int ioc,  void *arg)
933 {
934 	int cpu, thread;
935 
936 	if (evsel->system_wide)
937 		nthreads = 1;
938 
939 	for (cpu = 0; cpu < ncpus; cpu++) {
940 		for (thread = 0; thread < nthreads; thread++) {
941 			int fd = FD(evsel, cpu, thread),
942 			    err = ioctl(fd, ioc, arg);
943 
944 			if (err)
945 				return err;
946 		}
947 	}
948 
949 	return 0;
950 }
951 
perf_evsel__apply_filter(struct perf_evsel * evsel,int ncpus,int nthreads,const char * filter)952 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
953 			     const char *filter)
954 {
955 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
956 				     PERF_EVENT_IOC_SET_FILTER,
957 				     (void *)filter);
958 }
959 
perf_evsel__set_filter(struct perf_evsel * evsel,const char * filter)960 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
961 {
962 	char *new_filter = strdup(filter);
963 
964 	if (new_filter != NULL) {
965 		free(evsel->filter);
966 		evsel->filter = new_filter;
967 		return 0;
968 	}
969 
970 	return -1;
971 }
972 
perf_evsel__append_filter(struct perf_evsel * evsel,const char * op,const char * filter)973 int perf_evsel__append_filter(struct perf_evsel *evsel,
974 			      const char *op, const char *filter)
975 {
976 	char *new_filter;
977 
978 	if (evsel->filter == NULL)
979 		return perf_evsel__set_filter(evsel, filter);
980 
981 	if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
982 		free(evsel->filter);
983 		evsel->filter = new_filter;
984 		return 0;
985 	}
986 
987 	return -1;
988 }
989 
perf_evsel__enable(struct perf_evsel * evsel,int ncpus,int nthreads)990 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
991 {
992 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
993 				     PERF_EVENT_IOC_ENABLE,
994 				     0);
995 }
996 
perf_evsel__alloc_id(struct perf_evsel * evsel,int ncpus,int nthreads)997 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
998 {
999 	if (ncpus == 0 || nthreads == 0)
1000 		return 0;
1001 
1002 	if (evsel->system_wide)
1003 		nthreads = 1;
1004 
1005 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1006 	if (evsel->sample_id == NULL)
1007 		return -ENOMEM;
1008 
1009 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1010 	if (evsel->id == NULL) {
1011 		xyarray__delete(evsel->sample_id);
1012 		evsel->sample_id = NULL;
1013 		return -ENOMEM;
1014 	}
1015 
1016 	return 0;
1017 }
1018 
perf_evsel__free_fd(struct perf_evsel * evsel)1019 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1020 {
1021 	xyarray__delete(evsel->fd);
1022 	evsel->fd = NULL;
1023 }
1024 
perf_evsel__free_id(struct perf_evsel * evsel)1025 static void perf_evsel__free_id(struct perf_evsel *evsel)
1026 {
1027 	xyarray__delete(evsel->sample_id);
1028 	evsel->sample_id = NULL;
1029 	zfree(&evsel->id);
1030 }
1031 
perf_evsel__free_config_terms(struct perf_evsel * evsel)1032 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1033 {
1034 	struct perf_evsel_config_term *term, *h;
1035 
1036 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1037 		list_del(&term->list);
1038 		free(term);
1039 	}
1040 }
1041 
perf_evsel__close_fd(struct perf_evsel * evsel,int ncpus,int nthreads)1042 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1043 {
1044 	int cpu, thread;
1045 
1046 	if (evsel->system_wide)
1047 		nthreads = 1;
1048 
1049 	for (cpu = 0; cpu < ncpus; cpu++)
1050 		for (thread = 0; thread < nthreads; ++thread) {
1051 			close(FD(evsel, cpu, thread));
1052 			FD(evsel, cpu, thread) = -1;
1053 		}
1054 }
1055 
perf_evsel__exit(struct perf_evsel * evsel)1056 void perf_evsel__exit(struct perf_evsel *evsel)
1057 {
1058 	assert(list_empty(&evsel->node));
1059 	assert(evsel->evlist == NULL);
1060 	perf_evsel__free_counts(evsel);
1061 	perf_evsel__free_fd(evsel);
1062 	perf_evsel__free_id(evsel);
1063 	perf_evsel__free_config_terms(evsel);
1064 	close_cgroup(evsel->cgrp);
1065 	cpu_map__put(evsel->cpus);
1066 	cpu_map__put(evsel->own_cpus);
1067 	thread_map__put(evsel->threads);
1068 	zfree(&evsel->group_name);
1069 	zfree(&evsel->name);
1070 	perf_evsel__object.fini(evsel);
1071 }
1072 
perf_evsel__delete(struct perf_evsel * evsel)1073 void perf_evsel__delete(struct perf_evsel *evsel)
1074 {
1075 	perf_evsel__exit(evsel);
1076 	free(evsel);
1077 }
1078 
perf_evsel__compute_deltas(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1079 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1080 				struct perf_counts_values *count)
1081 {
1082 	struct perf_counts_values tmp;
1083 
1084 	if (!evsel->prev_raw_counts)
1085 		return;
1086 
1087 	if (cpu == -1) {
1088 		tmp = evsel->prev_raw_counts->aggr;
1089 		evsel->prev_raw_counts->aggr = *count;
1090 	} else {
1091 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1092 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1093 	}
1094 
1095 	count->val = count->val - tmp.val;
1096 	count->ena = count->ena - tmp.ena;
1097 	count->run = count->run - tmp.run;
1098 }
1099 
perf_counts_values__scale(struct perf_counts_values * count,bool scale,s8 * pscaled)1100 void perf_counts_values__scale(struct perf_counts_values *count,
1101 			       bool scale, s8 *pscaled)
1102 {
1103 	s8 scaled = 0;
1104 
1105 	if (scale) {
1106 		if (count->run == 0) {
1107 			scaled = -1;
1108 			count->val = 0;
1109 		} else if (count->run < count->ena) {
1110 			scaled = 1;
1111 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1112 		}
1113 	} else
1114 		count->ena = count->run = 0;
1115 
1116 	if (pscaled)
1117 		*pscaled = scaled;
1118 }
1119 
perf_evsel__read(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1120 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1121 		     struct perf_counts_values *count)
1122 {
1123 	memset(count, 0, sizeof(*count));
1124 
1125 	if (FD(evsel, cpu, thread) < 0)
1126 		return -EINVAL;
1127 
1128 	if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1129 		return -errno;
1130 
1131 	return 0;
1132 }
1133 
__perf_evsel__read_on_cpu(struct perf_evsel * evsel,int cpu,int thread,bool scale)1134 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1135 			      int cpu, int thread, bool scale)
1136 {
1137 	struct perf_counts_values count;
1138 	size_t nv = scale ? 3 : 1;
1139 
1140 	if (FD(evsel, cpu, thread) < 0)
1141 		return -EINVAL;
1142 
1143 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1144 		return -ENOMEM;
1145 
1146 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1147 		return -errno;
1148 
1149 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1150 	perf_counts_values__scale(&count, scale, NULL);
1151 	*perf_counts(evsel->counts, cpu, thread) = count;
1152 	return 0;
1153 }
1154 
get_group_fd(struct perf_evsel * evsel,int cpu,int thread)1155 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1156 {
1157 	struct perf_evsel *leader = evsel->leader;
1158 	int fd;
1159 
1160 	if (perf_evsel__is_group_leader(evsel))
1161 		return -1;
1162 
1163 	/*
1164 	 * Leader must be already processed/open,
1165 	 * if not it's a bug.
1166 	 */
1167 	BUG_ON(!leader->fd);
1168 
1169 	fd = FD(leader, cpu, thread);
1170 	BUG_ON(fd == -1);
1171 
1172 	return fd;
1173 }
1174 
1175 struct bit_names {
1176 	int bit;
1177 	const char *name;
1178 };
1179 
__p_bits(char * buf,size_t size,u64 value,struct bit_names * bits)1180 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1181 {
1182 	bool first_bit = true;
1183 	int i = 0;
1184 
1185 	do {
1186 		if (value & bits[i].bit) {
1187 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1188 			first_bit = false;
1189 		}
1190 	} while (bits[++i].name != NULL);
1191 }
1192 
__p_sample_type(char * buf,size_t size,u64 value)1193 static void __p_sample_type(char *buf, size_t size, u64 value)
1194 {
1195 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1196 	struct bit_names bits[] = {
1197 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1198 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1199 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1200 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1201 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1202 		{ .name = NULL, }
1203 	};
1204 #undef bit_name
1205 	__p_bits(buf, size, value, bits);
1206 }
1207 
__p_read_format(char * buf,size_t size,u64 value)1208 static void __p_read_format(char *buf, size_t size, u64 value)
1209 {
1210 #define bit_name(n) { PERF_FORMAT_##n, #n }
1211 	struct bit_names bits[] = {
1212 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1213 		bit_name(ID), bit_name(GROUP),
1214 		{ .name = NULL, }
1215 	};
1216 #undef bit_name
1217 	__p_bits(buf, size, value, bits);
1218 }
1219 
1220 #define BUF_SIZE		1024
1221 
1222 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1223 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1224 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1225 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1226 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1227 
1228 #define PRINT_ATTRn(_n, _f, _p)				\
1229 do {							\
1230 	if (attr->_f) {					\
1231 		_p(attr->_f);				\
1232 		ret += attr__fprintf(fp, _n, buf, priv);\
1233 	}						\
1234 } while (0)
1235 
1236 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1237 
perf_event_attr__fprintf(FILE * fp,struct perf_event_attr * attr,attr__fprintf_f attr__fprintf,void * priv)1238 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1239 			     attr__fprintf_f attr__fprintf, void *priv)
1240 {
1241 	char buf[BUF_SIZE];
1242 	int ret = 0;
1243 
1244 	PRINT_ATTRf(type, p_unsigned);
1245 	PRINT_ATTRf(size, p_unsigned);
1246 	PRINT_ATTRf(config, p_hex);
1247 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1248 	PRINT_ATTRf(sample_type, p_sample_type);
1249 	PRINT_ATTRf(read_format, p_read_format);
1250 
1251 	PRINT_ATTRf(disabled, p_unsigned);
1252 	PRINT_ATTRf(inherit, p_unsigned);
1253 	PRINT_ATTRf(pinned, p_unsigned);
1254 	PRINT_ATTRf(exclusive, p_unsigned);
1255 	PRINT_ATTRf(exclude_user, p_unsigned);
1256 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1257 	PRINT_ATTRf(exclude_hv, p_unsigned);
1258 	PRINT_ATTRf(exclude_idle, p_unsigned);
1259 	PRINT_ATTRf(mmap, p_unsigned);
1260 	PRINT_ATTRf(comm, p_unsigned);
1261 	PRINT_ATTRf(freq, p_unsigned);
1262 	PRINT_ATTRf(inherit_stat, p_unsigned);
1263 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1264 	PRINT_ATTRf(task, p_unsigned);
1265 	PRINT_ATTRf(watermark, p_unsigned);
1266 	PRINT_ATTRf(precise_ip, p_unsigned);
1267 	PRINT_ATTRf(mmap_data, p_unsigned);
1268 	PRINT_ATTRf(sample_id_all, p_unsigned);
1269 	PRINT_ATTRf(exclude_host, p_unsigned);
1270 	PRINT_ATTRf(exclude_guest, p_unsigned);
1271 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1272 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1273 	PRINT_ATTRf(mmap2, p_unsigned);
1274 	PRINT_ATTRf(comm_exec, p_unsigned);
1275 	PRINT_ATTRf(use_clockid, p_unsigned);
1276 	PRINT_ATTRf(context_switch, p_unsigned);
1277 
1278 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1279 	PRINT_ATTRf(bp_type, p_unsigned);
1280 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1281 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1282 	PRINT_ATTRf(branch_sample_type, p_unsigned);
1283 	PRINT_ATTRf(sample_regs_user, p_hex);
1284 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1285 	PRINT_ATTRf(clockid, p_signed);
1286 	PRINT_ATTRf(sample_regs_intr, p_hex);
1287 	PRINT_ATTRf(aux_watermark, p_unsigned);
1288 
1289 	return ret;
1290 }
1291 
__open_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv)1292 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1293 				void *priv __attribute__((unused)))
1294 {
1295 	return fprintf(fp, "  %-32s %s\n", name, val);
1296 }
1297 
__perf_evsel__open(struct perf_evsel * evsel,struct cpu_map * cpus,struct thread_map * threads)1298 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1299 			      struct thread_map *threads)
1300 {
1301 	int cpu, thread, nthreads;
1302 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1303 	int pid = -1, err;
1304 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1305 
1306 	if (evsel->system_wide)
1307 		nthreads = 1;
1308 	else
1309 		nthreads = threads->nr;
1310 
1311 	if (evsel->fd == NULL &&
1312 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1313 		return -ENOMEM;
1314 
1315 	if (evsel->cgrp) {
1316 		flags |= PERF_FLAG_PID_CGROUP;
1317 		pid = evsel->cgrp->fd;
1318 	}
1319 
1320 fallback_missing_features:
1321 	if (perf_missing_features.clockid_wrong)
1322 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1323 	if (perf_missing_features.clockid) {
1324 		evsel->attr.use_clockid = 0;
1325 		evsel->attr.clockid = 0;
1326 	}
1327 	if (perf_missing_features.cloexec)
1328 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1329 	if (perf_missing_features.mmap2)
1330 		evsel->attr.mmap2 = 0;
1331 	if (perf_missing_features.exclude_guest)
1332 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1333 retry_sample_id:
1334 	if (perf_missing_features.sample_id_all)
1335 		evsel->attr.sample_id_all = 0;
1336 
1337 	if (verbose >= 2) {
1338 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1339 		fprintf(stderr, "perf_event_attr:\n");
1340 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1341 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1342 	}
1343 
1344 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1345 
1346 		for (thread = 0; thread < nthreads; thread++) {
1347 			int group_fd;
1348 
1349 			if (!evsel->cgrp && !evsel->system_wide)
1350 				pid = thread_map__pid(threads, thread);
1351 
1352 			group_fd = get_group_fd(evsel, cpu, thread);
1353 retry_open:
1354 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1355 				  pid, cpus->map[cpu], group_fd, flags);
1356 
1357 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1358 								     pid,
1359 								     cpus->map[cpu],
1360 								     group_fd, flags);
1361 			if (FD(evsel, cpu, thread) < 0) {
1362 				err = -errno;
1363 				pr_debug2("sys_perf_event_open failed, error %d\n",
1364 					  err);
1365 				goto try_fallback;
1366 			}
1367 
1368 			if (evsel->bpf_fd >= 0) {
1369 				int evt_fd = FD(evsel, cpu, thread);
1370 				int bpf_fd = evsel->bpf_fd;
1371 
1372 				err = ioctl(evt_fd,
1373 					    PERF_EVENT_IOC_SET_BPF,
1374 					    bpf_fd);
1375 				if (err && errno != EEXIST) {
1376 					pr_err("failed to attach bpf fd %d: %s\n",
1377 					       bpf_fd, strerror(errno));
1378 					err = -EINVAL;
1379 					goto out_close;
1380 				}
1381 			}
1382 
1383 			set_rlimit = NO_CHANGE;
1384 
1385 			/*
1386 			 * If we succeeded but had to kill clockid, fail and
1387 			 * have perf_evsel__open_strerror() print us a nice
1388 			 * error.
1389 			 */
1390 			if (perf_missing_features.clockid ||
1391 			    perf_missing_features.clockid_wrong) {
1392 				err = -EINVAL;
1393 				goto out_close;
1394 			}
1395 		}
1396 	}
1397 
1398 	return 0;
1399 
1400 try_fallback:
1401 	/*
1402 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1403 	 * of them try to increase the limits.
1404 	 */
1405 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1406 		struct rlimit l;
1407 		int old_errno = errno;
1408 
1409 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1410 			if (set_rlimit == NO_CHANGE)
1411 				l.rlim_cur = l.rlim_max;
1412 			else {
1413 				l.rlim_cur = l.rlim_max + 1000;
1414 				l.rlim_max = l.rlim_cur;
1415 			}
1416 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1417 				set_rlimit++;
1418 				errno = old_errno;
1419 				goto retry_open;
1420 			}
1421 		}
1422 		errno = old_errno;
1423 	}
1424 
1425 	if (err != -EINVAL || cpu > 0 || thread > 0)
1426 		goto out_close;
1427 
1428 	/*
1429 	 * Must probe features in the order they were added to the
1430 	 * perf_event_attr interface.
1431 	 */
1432 	if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1433 		perf_missing_features.clockid_wrong = true;
1434 		goto fallback_missing_features;
1435 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1436 		perf_missing_features.clockid = true;
1437 		goto fallback_missing_features;
1438 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1439 		perf_missing_features.cloexec = true;
1440 		goto fallback_missing_features;
1441 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1442 		perf_missing_features.mmap2 = true;
1443 		goto fallback_missing_features;
1444 	} else if (!perf_missing_features.exclude_guest &&
1445 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1446 		perf_missing_features.exclude_guest = true;
1447 		goto fallback_missing_features;
1448 	} else if (!perf_missing_features.sample_id_all) {
1449 		perf_missing_features.sample_id_all = true;
1450 		goto retry_sample_id;
1451 	}
1452 
1453 out_close:
1454 	do {
1455 		while (--thread >= 0) {
1456 			close(FD(evsel, cpu, thread));
1457 			FD(evsel, cpu, thread) = -1;
1458 		}
1459 		thread = nthreads;
1460 	} while (--cpu >= 0);
1461 	return err;
1462 }
1463 
perf_evsel__close(struct perf_evsel * evsel,int ncpus,int nthreads)1464 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1465 {
1466 	if (evsel->fd == NULL)
1467 		return;
1468 
1469 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1470 	perf_evsel__free_fd(evsel);
1471 }
1472 
1473 static struct {
1474 	struct cpu_map map;
1475 	int cpus[1];
1476 } empty_cpu_map = {
1477 	.map.nr	= 1,
1478 	.cpus	= { -1, },
1479 };
1480 
1481 static struct {
1482 	struct thread_map map;
1483 	int threads[1];
1484 } empty_thread_map = {
1485 	.map.nr	 = 1,
1486 	.threads = { -1, },
1487 };
1488 
perf_evsel__open(struct perf_evsel * evsel,struct cpu_map * cpus,struct thread_map * threads)1489 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1490 		     struct thread_map *threads)
1491 {
1492 	if (cpus == NULL) {
1493 		/* Work around old compiler warnings about strict aliasing */
1494 		cpus = &empty_cpu_map.map;
1495 	}
1496 
1497 	if (threads == NULL)
1498 		threads = &empty_thread_map.map;
1499 
1500 	return __perf_evsel__open(evsel, cpus, threads);
1501 }
1502 
perf_evsel__open_per_cpu(struct perf_evsel * evsel,struct cpu_map * cpus)1503 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1504 			     struct cpu_map *cpus)
1505 {
1506 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1507 }
1508 
perf_evsel__open_per_thread(struct perf_evsel * evsel,struct thread_map * threads)1509 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1510 				struct thread_map *threads)
1511 {
1512 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1513 }
1514 
perf_evsel__parse_id_sample(const struct perf_evsel * evsel,const union perf_event * event,struct perf_sample * sample)1515 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1516 				       const union perf_event *event,
1517 				       struct perf_sample *sample)
1518 {
1519 	u64 type = evsel->attr.sample_type;
1520 	const u64 *array = event->sample.array;
1521 	bool swapped = evsel->needs_swap;
1522 	union u64_swap u;
1523 
1524 	array += ((event->header.size -
1525 		   sizeof(event->header)) / sizeof(u64)) - 1;
1526 
1527 	if (type & PERF_SAMPLE_IDENTIFIER) {
1528 		sample->id = *array;
1529 		array--;
1530 	}
1531 
1532 	if (type & PERF_SAMPLE_CPU) {
1533 		u.val64 = *array;
1534 		if (swapped) {
1535 			/* undo swap of u64, then swap on individual u32s */
1536 			u.val64 = bswap_64(u.val64);
1537 			u.val32[0] = bswap_32(u.val32[0]);
1538 		}
1539 
1540 		sample->cpu = u.val32[0];
1541 		array--;
1542 	}
1543 
1544 	if (type & PERF_SAMPLE_STREAM_ID) {
1545 		sample->stream_id = *array;
1546 		array--;
1547 	}
1548 
1549 	if (type & PERF_SAMPLE_ID) {
1550 		sample->id = *array;
1551 		array--;
1552 	}
1553 
1554 	if (type & PERF_SAMPLE_TIME) {
1555 		sample->time = *array;
1556 		array--;
1557 	}
1558 
1559 	if (type & PERF_SAMPLE_TID) {
1560 		u.val64 = *array;
1561 		if (swapped) {
1562 			/* undo swap of u64, then swap on individual u32s */
1563 			u.val64 = bswap_64(u.val64);
1564 			u.val32[0] = bswap_32(u.val32[0]);
1565 			u.val32[1] = bswap_32(u.val32[1]);
1566 		}
1567 
1568 		sample->pid = u.val32[0];
1569 		sample->tid = u.val32[1];
1570 		array--;
1571 	}
1572 
1573 	return 0;
1574 }
1575 
overflow(const void * endp,u16 max_size,const void * offset,u64 size)1576 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1577 			    u64 size)
1578 {
1579 	return size > max_size || offset + size > endp;
1580 }
1581 
1582 #define OVERFLOW_CHECK(offset, size, max_size)				\
1583 	do {								\
1584 		if (overflow(endp, (max_size), (offset), (size)))	\
1585 			return -EFAULT;					\
1586 	} while (0)
1587 
1588 #define OVERFLOW_CHECK_u64(offset) \
1589 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1590 
perf_evsel__parse_sample(struct perf_evsel * evsel,union perf_event * event,struct perf_sample * data)1591 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1592 			     struct perf_sample *data)
1593 {
1594 	u64 type = evsel->attr.sample_type;
1595 	bool swapped = evsel->needs_swap;
1596 	const u64 *array;
1597 	u16 max_size = event->header.size;
1598 	const void *endp = (void *)event + max_size;
1599 	u64 sz;
1600 
1601 	/*
1602 	 * used for cross-endian analysis. See git commit 65014ab3
1603 	 * for why this goofiness is needed.
1604 	 */
1605 	union u64_swap u;
1606 
1607 	memset(data, 0, sizeof(*data));
1608 	data->cpu = data->pid = data->tid = -1;
1609 	data->stream_id = data->id = data->time = -1ULL;
1610 	data->period = evsel->attr.sample_period;
1611 	data->weight = 0;
1612 
1613 	if (event->header.type != PERF_RECORD_SAMPLE) {
1614 		if (!evsel->attr.sample_id_all)
1615 			return 0;
1616 		return perf_evsel__parse_id_sample(evsel, event, data);
1617 	}
1618 
1619 	array = event->sample.array;
1620 
1621 	/*
1622 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1623 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1624 	 * check the format does not go past the end of the event.
1625 	 */
1626 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1627 		return -EFAULT;
1628 
1629 	data->id = -1ULL;
1630 	if (type & PERF_SAMPLE_IDENTIFIER) {
1631 		data->id = *array;
1632 		array++;
1633 	}
1634 
1635 	if (type & PERF_SAMPLE_IP) {
1636 		data->ip = *array;
1637 		array++;
1638 	}
1639 
1640 	if (type & PERF_SAMPLE_TID) {
1641 		u.val64 = *array;
1642 		if (swapped) {
1643 			/* undo swap of u64, then swap on individual u32s */
1644 			u.val64 = bswap_64(u.val64);
1645 			u.val32[0] = bswap_32(u.val32[0]);
1646 			u.val32[1] = bswap_32(u.val32[1]);
1647 		}
1648 
1649 		data->pid = u.val32[0];
1650 		data->tid = u.val32[1];
1651 		array++;
1652 	}
1653 
1654 	if (type & PERF_SAMPLE_TIME) {
1655 		data->time = *array;
1656 		array++;
1657 	}
1658 
1659 	data->addr = 0;
1660 	if (type & PERF_SAMPLE_ADDR) {
1661 		data->addr = *array;
1662 		array++;
1663 	}
1664 
1665 	if (type & PERF_SAMPLE_ID) {
1666 		data->id = *array;
1667 		array++;
1668 	}
1669 
1670 	if (type & PERF_SAMPLE_STREAM_ID) {
1671 		data->stream_id = *array;
1672 		array++;
1673 	}
1674 
1675 	if (type & PERF_SAMPLE_CPU) {
1676 
1677 		u.val64 = *array;
1678 		if (swapped) {
1679 			/* undo swap of u64, then swap on individual u32s */
1680 			u.val64 = bswap_64(u.val64);
1681 			u.val32[0] = bswap_32(u.val32[0]);
1682 		}
1683 
1684 		data->cpu = u.val32[0];
1685 		array++;
1686 	}
1687 
1688 	if (type & PERF_SAMPLE_PERIOD) {
1689 		data->period = *array;
1690 		array++;
1691 	}
1692 
1693 	if (type & PERF_SAMPLE_READ) {
1694 		u64 read_format = evsel->attr.read_format;
1695 
1696 		OVERFLOW_CHECK_u64(array);
1697 		if (read_format & PERF_FORMAT_GROUP)
1698 			data->read.group.nr = *array;
1699 		else
1700 			data->read.one.value = *array;
1701 
1702 		array++;
1703 
1704 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1705 			OVERFLOW_CHECK_u64(array);
1706 			data->read.time_enabled = *array;
1707 			array++;
1708 		}
1709 
1710 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1711 			OVERFLOW_CHECK_u64(array);
1712 			data->read.time_running = *array;
1713 			array++;
1714 		}
1715 
1716 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1717 		if (read_format & PERF_FORMAT_GROUP) {
1718 			const u64 max_group_nr = UINT64_MAX /
1719 					sizeof(struct sample_read_value);
1720 
1721 			if (data->read.group.nr > max_group_nr)
1722 				return -EFAULT;
1723 			sz = data->read.group.nr *
1724 			     sizeof(struct sample_read_value);
1725 			OVERFLOW_CHECK(array, sz, max_size);
1726 			data->read.group.values =
1727 					(struct sample_read_value *)array;
1728 			array = (void *)array + sz;
1729 		} else {
1730 			OVERFLOW_CHECK_u64(array);
1731 			data->read.one.id = *array;
1732 			array++;
1733 		}
1734 	}
1735 
1736 	if (type & PERF_SAMPLE_CALLCHAIN) {
1737 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1738 
1739 		OVERFLOW_CHECK_u64(array);
1740 		data->callchain = (struct ip_callchain *)array++;
1741 		if (data->callchain->nr > max_callchain_nr)
1742 			return -EFAULT;
1743 		sz = data->callchain->nr * sizeof(u64);
1744 		OVERFLOW_CHECK(array, sz, max_size);
1745 		array = (void *)array + sz;
1746 	}
1747 
1748 	if (type & PERF_SAMPLE_RAW) {
1749 		OVERFLOW_CHECK_u64(array);
1750 		u.val64 = *array;
1751 		if (WARN_ONCE(swapped,
1752 			      "Endianness of raw data not corrected!\n")) {
1753 			/* undo swap of u64, then swap on individual u32s */
1754 			u.val64 = bswap_64(u.val64);
1755 			u.val32[0] = bswap_32(u.val32[0]);
1756 			u.val32[1] = bswap_32(u.val32[1]);
1757 		}
1758 		data->raw_size = u.val32[0];
1759 		array = (void *)array + sizeof(u32);
1760 
1761 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1762 		data->raw_data = (void *)array;
1763 		array = (void *)array + data->raw_size;
1764 	}
1765 
1766 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1767 		const u64 max_branch_nr = UINT64_MAX /
1768 					  sizeof(struct branch_entry);
1769 
1770 		OVERFLOW_CHECK_u64(array);
1771 		data->branch_stack = (struct branch_stack *)array++;
1772 
1773 		if (data->branch_stack->nr > max_branch_nr)
1774 			return -EFAULT;
1775 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1776 		OVERFLOW_CHECK(array, sz, max_size);
1777 		array = (void *)array + sz;
1778 	}
1779 
1780 	if (type & PERF_SAMPLE_REGS_USER) {
1781 		OVERFLOW_CHECK_u64(array);
1782 		data->user_regs.abi = *array;
1783 		array++;
1784 
1785 		if (data->user_regs.abi) {
1786 			u64 mask = evsel->attr.sample_regs_user;
1787 
1788 			sz = hweight_long(mask) * sizeof(u64);
1789 			OVERFLOW_CHECK(array, sz, max_size);
1790 			data->user_regs.mask = mask;
1791 			data->user_regs.regs = (u64 *)array;
1792 			array = (void *)array + sz;
1793 		}
1794 	}
1795 
1796 	if (type & PERF_SAMPLE_STACK_USER) {
1797 		OVERFLOW_CHECK_u64(array);
1798 		sz = *array++;
1799 
1800 		data->user_stack.offset = ((char *)(array - 1)
1801 					  - (char *) event);
1802 
1803 		if (!sz) {
1804 			data->user_stack.size = 0;
1805 		} else {
1806 			OVERFLOW_CHECK(array, sz, max_size);
1807 			data->user_stack.data = (char *)array;
1808 			array = (void *)array + sz;
1809 			OVERFLOW_CHECK_u64(array);
1810 			data->user_stack.size = *array++;
1811 			if (WARN_ONCE(data->user_stack.size > sz,
1812 				      "user stack dump failure\n"))
1813 				return -EFAULT;
1814 		}
1815 	}
1816 
1817 	data->weight = 0;
1818 	if (type & PERF_SAMPLE_WEIGHT) {
1819 		OVERFLOW_CHECK_u64(array);
1820 		data->weight = *array;
1821 		array++;
1822 	}
1823 
1824 	data->data_src = PERF_MEM_DATA_SRC_NONE;
1825 	if (type & PERF_SAMPLE_DATA_SRC) {
1826 		OVERFLOW_CHECK_u64(array);
1827 		data->data_src = *array;
1828 		array++;
1829 	}
1830 
1831 	data->transaction = 0;
1832 	if (type & PERF_SAMPLE_TRANSACTION) {
1833 		OVERFLOW_CHECK_u64(array);
1834 		data->transaction = *array;
1835 		array++;
1836 	}
1837 
1838 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1839 	if (type & PERF_SAMPLE_REGS_INTR) {
1840 		OVERFLOW_CHECK_u64(array);
1841 		data->intr_regs.abi = *array;
1842 		array++;
1843 
1844 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1845 			u64 mask = evsel->attr.sample_regs_intr;
1846 
1847 			sz = hweight_long(mask) * sizeof(u64);
1848 			OVERFLOW_CHECK(array, sz, max_size);
1849 			data->intr_regs.mask = mask;
1850 			data->intr_regs.regs = (u64 *)array;
1851 			array = (void *)array + sz;
1852 		}
1853 	}
1854 
1855 	return 0;
1856 }
1857 
perf_event__sample_event_size(const struct perf_sample * sample,u64 type,u64 read_format)1858 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1859 				     u64 read_format)
1860 {
1861 	size_t sz, result = sizeof(struct sample_event);
1862 
1863 	if (type & PERF_SAMPLE_IDENTIFIER)
1864 		result += sizeof(u64);
1865 
1866 	if (type & PERF_SAMPLE_IP)
1867 		result += sizeof(u64);
1868 
1869 	if (type & PERF_SAMPLE_TID)
1870 		result += sizeof(u64);
1871 
1872 	if (type & PERF_SAMPLE_TIME)
1873 		result += sizeof(u64);
1874 
1875 	if (type & PERF_SAMPLE_ADDR)
1876 		result += sizeof(u64);
1877 
1878 	if (type & PERF_SAMPLE_ID)
1879 		result += sizeof(u64);
1880 
1881 	if (type & PERF_SAMPLE_STREAM_ID)
1882 		result += sizeof(u64);
1883 
1884 	if (type & PERF_SAMPLE_CPU)
1885 		result += sizeof(u64);
1886 
1887 	if (type & PERF_SAMPLE_PERIOD)
1888 		result += sizeof(u64);
1889 
1890 	if (type & PERF_SAMPLE_READ) {
1891 		result += sizeof(u64);
1892 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1893 			result += sizeof(u64);
1894 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1895 			result += sizeof(u64);
1896 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1897 		if (read_format & PERF_FORMAT_GROUP) {
1898 			sz = sample->read.group.nr *
1899 			     sizeof(struct sample_read_value);
1900 			result += sz;
1901 		} else {
1902 			result += sizeof(u64);
1903 		}
1904 	}
1905 
1906 	if (type & PERF_SAMPLE_CALLCHAIN) {
1907 		sz = (sample->callchain->nr + 1) * sizeof(u64);
1908 		result += sz;
1909 	}
1910 
1911 	if (type & PERF_SAMPLE_RAW) {
1912 		result += sizeof(u32);
1913 		result += sample->raw_size;
1914 	}
1915 
1916 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1917 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1918 		sz += sizeof(u64);
1919 		result += sz;
1920 	}
1921 
1922 	if (type & PERF_SAMPLE_REGS_USER) {
1923 		if (sample->user_regs.abi) {
1924 			result += sizeof(u64);
1925 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1926 			result += sz;
1927 		} else {
1928 			result += sizeof(u64);
1929 		}
1930 	}
1931 
1932 	if (type & PERF_SAMPLE_STACK_USER) {
1933 		sz = sample->user_stack.size;
1934 		result += sizeof(u64);
1935 		if (sz) {
1936 			result += sz;
1937 			result += sizeof(u64);
1938 		}
1939 	}
1940 
1941 	if (type & PERF_SAMPLE_WEIGHT)
1942 		result += sizeof(u64);
1943 
1944 	if (type & PERF_SAMPLE_DATA_SRC)
1945 		result += sizeof(u64);
1946 
1947 	if (type & PERF_SAMPLE_TRANSACTION)
1948 		result += sizeof(u64);
1949 
1950 	if (type & PERF_SAMPLE_REGS_INTR) {
1951 		if (sample->intr_regs.abi) {
1952 			result += sizeof(u64);
1953 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1954 			result += sz;
1955 		} else {
1956 			result += sizeof(u64);
1957 		}
1958 	}
1959 
1960 	return result;
1961 }
1962 
perf_event__synthesize_sample(union perf_event * event,u64 type,u64 read_format,const struct perf_sample * sample,bool swapped)1963 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1964 				  u64 read_format,
1965 				  const struct perf_sample *sample,
1966 				  bool swapped)
1967 {
1968 	u64 *array;
1969 	size_t sz;
1970 	/*
1971 	 * used for cross-endian analysis. See git commit 65014ab3
1972 	 * for why this goofiness is needed.
1973 	 */
1974 	union u64_swap u;
1975 
1976 	array = event->sample.array;
1977 
1978 	if (type & PERF_SAMPLE_IDENTIFIER) {
1979 		*array = sample->id;
1980 		array++;
1981 	}
1982 
1983 	if (type & PERF_SAMPLE_IP) {
1984 		*array = sample->ip;
1985 		array++;
1986 	}
1987 
1988 	if (type & PERF_SAMPLE_TID) {
1989 		u.val32[0] = sample->pid;
1990 		u.val32[1] = sample->tid;
1991 		if (swapped) {
1992 			/*
1993 			 * Inverse of what is done in perf_evsel__parse_sample
1994 			 */
1995 			u.val32[0] = bswap_32(u.val32[0]);
1996 			u.val32[1] = bswap_32(u.val32[1]);
1997 			u.val64 = bswap_64(u.val64);
1998 		}
1999 
2000 		*array = u.val64;
2001 		array++;
2002 	}
2003 
2004 	if (type & PERF_SAMPLE_TIME) {
2005 		*array = sample->time;
2006 		array++;
2007 	}
2008 
2009 	if (type & PERF_SAMPLE_ADDR) {
2010 		*array = sample->addr;
2011 		array++;
2012 	}
2013 
2014 	if (type & PERF_SAMPLE_ID) {
2015 		*array = sample->id;
2016 		array++;
2017 	}
2018 
2019 	if (type & PERF_SAMPLE_STREAM_ID) {
2020 		*array = sample->stream_id;
2021 		array++;
2022 	}
2023 
2024 	if (type & PERF_SAMPLE_CPU) {
2025 		u.val32[0] = sample->cpu;
2026 		if (swapped) {
2027 			/*
2028 			 * Inverse of what is done in perf_evsel__parse_sample
2029 			 */
2030 			u.val32[0] = bswap_32(u.val32[0]);
2031 			u.val64 = bswap_64(u.val64);
2032 		}
2033 		*array = u.val64;
2034 		array++;
2035 	}
2036 
2037 	if (type & PERF_SAMPLE_PERIOD) {
2038 		*array = sample->period;
2039 		array++;
2040 	}
2041 
2042 	if (type & PERF_SAMPLE_READ) {
2043 		if (read_format & PERF_FORMAT_GROUP)
2044 			*array = sample->read.group.nr;
2045 		else
2046 			*array = sample->read.one.value;
2047 		array++;
2048 
2049 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2050 			*array = sample->read.time_enabled;
2051 			array++;
2052 		}
2053 
2054 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2055 			*array = sample->read.time_running;
2056 			array++;
2057 		}
2058 
2059 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2060 		if (read_format & PERF_FORMAT_GROUP) {
2061 			sz = sample->read.group.nr *
2062 			     sizeof(struct sample_read_value);
2063 			memcpy(array, sample->read.group.values, sz);
2064 			array = (void *)array + sz;
2065 		} else {
2066 			*array = sample->read.one.id;
2067 			array++;
2068 		}
2069 	}
2070 
2071 	if (type & PERF_SAMPLE_CALLCHAIN) {
2072 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2073 		memcpy(array, sample->callchain, sz);
2074 		array = (void *)array + sz;
2075 	}
2076 
2077 	if (type & PERF_SAMPLE_RAW) {
2078 		u.val32[0] = sample->raw_size;
2079 		if (WARN_ONCE(swapped,
2080 			      "Endianness of raw data not corrected!\n")) {
2081 			/*
2082 			 * Inverse of what is done in perf_evsel__parse_sample
2083 			 */
2084 			u.val32[0] = bswap_32(u.val32[0]);
2085 			u.val32[1] = bswap_32(u.val32[1]);
2086 			u.val64 = bswap_64(u.val64);
2087 		}
2088 		*array = u.val64;
2089 		array = (void *)array + sizeof(u32);
2090 
2091 		memcpy(array, sample->raw_data, sample->raw_size);
2092 		array = (void *)array + sample->raw_size;
2093 	}
2094 
2095 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2096 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2097 		sz += sizeof(u64);
2098 		memcpy(array, sample->branch_stack, sz);
2099 		array = (void *)array + sz;
2100 	}
2101 
2102 	if (type & PERF_SAMPLE_REGS_USER) {
2103 		if (sample->user_regs.abi) {
2104 			*array++ = sample->user_regs.abi;
2105 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2106 			memcpy(array, sample->user_regs.regs, sz);
2107 			array = (void *)array + sz;
2108 		} else {
2109 			*array++ = 0;
2110 		}
2111 	}
2112 
2113 	if (type & PERF_SAMPLE_STACK_USER) {
2114 		sz = sample->user_stack.size;
2115 		*array++ = sz;
2116 		if (sz) {
2117 			memcpy(array, sample->user_stack.data, sz);
2118 			array = (void *)array + sz;
2119 			*array++ = sz;
2120 		}
2121 	}
2122 
2123 	if (type & PERF_SAMPLE_WEIGHT) {
2124 		*array = sample->weight;
2125 		array++;
2126 	}
2127 
2128 	if (type & PERF_SAMPLE_DATA_SRC) {
2129 		*array = sample->data_src;
2130 		array++;
2131 	}
2132 
2133 	if (type & PERF_SAMPLE_TRANSACTION) {
2134 		*array = sample->transaction;
2135 		array++;
2136 	}
2137 
2138 	if (type & PERF_SAMPLE_REGS_INTR) {
2139 		if (sample->intr_regs.abi) {
2140 			*array++ = sample->intr_regs.abi;
2141 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2142 			memcpy(array, sample->intr_regs.regs, sz);
2143 			array = (void *)array + sz;
2144 		} else {
2145 			*array++ = 0;
2146 		}
2147 	}
2148 
2149 	return 0;
2150 }
2151 
perf_evsel__field(struct perf_evsel * evsel,const char * name)2152 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2153 {
2154 	return pevent_find_field(evsel->tp_format, name);
2155 }
2156 
perf_evsel__rawptr(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2157 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2158 			 const char *name)
2159 {
2160 	struct format_field *field = perf_evsel__field(evsel, name);
2161 	int offset;
2162 
2163 	if (!field)
2164 		return NULL;
2165 
2166 	offset = field->offset;
2167 
2168 	if (field->flags & FIELD_IS_DYNAMIC) {
2169 		offset = *(int *)(sample->raw_data + field->offset);
2170 		offset &= 0xffff;
2171 	}
2172 
2173 	return sample->raw_data + offset;
2174 }
2175 
perf_evsel__intval(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2176 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2177 		       const char *name)
2178 {
2179 	struct format_field *field = perf_evsel__field(evsel, name);
2180 	void *ptr;
2181 	u64 value;
2182 
2183 	if (!field)
2184 		return 0;
2185 
2186 	ptr = sample->raw_data + field->offset;
2187 
2188 	switch (field->size) {
2189 	case 1:
2190 		return *(u8 *)ptr;
2191 	case 2:
2192 		value = *(u16 *)ptr;
2193 		break;
2194 	case 4:
2195 		value = *(u32 *)ptr;
2196 		break;
2197 	case 8:
2198 		memcpy(&value, ptr, sizeof(u64));
2199 		break;
2200 	default:
2201 		return 0;
2202 	}
2203 
2204 	if (!evsel->needs_swap)
2205 		return value;
2206 
2207 	switch (field->size) {
2208 	case 2:
2209 		return bswap_16(value);
2210 	case 4:
2211 		return bswap_32(value);
2212 	case 8:
2213 		return bswap_64(value);
2214 	default:
2215 		return 0;
2216 	}
2217 
2218 	return 0;
2219 }
2220 
comma_fprintf(FILE * fp,bool * first,const char * fmt,...)2221 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
2222 {
2223 	va_list args;
2224 	int ret = 0;
2225 
2226 	if (!*first) {
2227 		ret += fprintf(fp, ",");
2228 	} else {
2229 		ret += fprintf(fp, ":");
2230 		*first = false;
2231 	}
2232 
2233 	va_start(args, fmt);
2234 	ret += vfprintf(fp, fmt, args);
2235 	va_end(args);
2236 	return ret;
2237 }
2238 
__print_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv)2239 static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2240 {
2241 	return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2242 }
2243 
perf_evsel__fprintf(struct perf_evsel * evsel,struct perf_attr_details * details,FILE * fp)2244 int perf_evsel__fprintf(struct perf_evsel *evsel,
2245 			struct perf_attr_details *details, FILE *fp)
2246 {
2247 	bool first = true;
2248 	int printed = 0;
2249 
2250 	if (details->event_group) {
2251 		struct perf_evsel *pos;
2252 
2253 		if (!perf_evsel__is_group_leader(evsel))
2254 			return 0;
2255 
2256 		if (evsel->nr_members > 1)
2257 			printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2258 
2259 		printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2260 		for_each_group_member(pos, evsel)
2261 			printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2262 
2263 		if (evsel->nr_members > 1)
2264 			printed += fprintf(fp, "}");
2265 		goto out;
2266 	}
2267 
2268 	printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2269 
2270 	if (details->verbose) {
2271 		printed += perf_event_attr__fprintf(fp, &evsel->attr,
2272 						    __print_attr__fprintf, &first);
2273 	} else if (details->freq) {
2274 		const char *term = "sample_freq";
2275 
2276 		if (!evsel->attr.freq)
2277 			term = "sample_period";
2278 
2279 		printed += comma_fprintf(fp, &first, " %s=%" PRIu64,
2280 					 term, (u64)evsel->attr.sample_freq);
2281 	}
2282 out:
2283 	fputc('\n', fp);
2284 	return ++printed;
2285 }
2286 
perf_evsel__fallback(struct perf_evsel * evsel,int err,char * msg,size_t msgsize)2287 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2288 			  char *msg, size_t msgsize)
2289 {
2290 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2291 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2292 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2293 		/*
2294 		 * If it's cycles then fall back to hrtimer based
2295 		 * cpu-clock-tick sw counter, which is always available even if
2296 		 * no PMU support.
2297 		 *
2298 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2299 		 * b0a873e).
2300 		 */
2301 		scnprintf(msg, msgsize, "%s",
2302 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2303 
2304 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2305 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2306 
2307 		zfree(&evsel->name);
2308 		return true;
2309 	}
2310 
2311 	return false;
2312 }
2313 
perf_evsel__open_strerror(struct perf_evsel * evsel,struct target * target,int err,char * msg,size_t size)2314 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2315 			      int err, char *msg, size_t size)
2316 {
2317 	char sbuf[STRERR_BUFSIZE];
2318 
2319 	switch (err) {
2320 	case EPERM:
2321 	case EACCES:
2322 		return scnprintf(msg, size,
2323 		 "You may not have permission to collect %sstats.\n\n"
2324 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2325 		 "which controls use of the performance events system by\n"
2326 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2327 		 "The default value is 1:\n\n"
2328 		 "  -1: Allow use of (almost) all events by all users\n"
2329 		 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2330 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2331 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2332 				 target->system_wide ? "system-wide " : "");
2333 	case ENOENT:
2334 		return scnprintf(msg, size, "The %s event is not supported.",
2335 				 perf_evsel__name(evsel));
2336 	case EMFILE:
2337 		return scnprintf(msg, size, "%s",
2338 			 "Too many events are opened.\n"
2339 			 "Probably the maximum number of open file descriptors has been reached.\n"
2340 			 "Hint: Try again after reducing the number of events.\n"
2341 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2342 	case ENODEV:
2343 		if (target->cpu_list)
2344 			return scnprintf(msg, size, "%s",
2345 	 "No such device - did you specify an out-of-range profile CPU?\n");
2346 		break;
2347 	case EOPNOTSUPP:
2348 		if (evsel->attr.precise_ip)
2349 			return scnprintf(msg, size, "%s",
2350 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2351 #if defined(__i386__) || defined(__x86_64__)
2352 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2353 			return scnprintf(msg, size, "%s",
2354 	"No hardware sampling interrupt available.\n"
2355 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2356 #endif
2357 		break;
2358 	case EBUSY:
2359 		if (find_process("oprofiled"))
2360 			return scnprintf(msg, size,
2361 	"The PMU counters are busy/taken by another profiler.\n"
2362 	"We found oprofile daemon running, please stop it and try again.");
2363 		break;
2364 	case EINVAL:
2365 		if (perf_missing_features.clockid)
2366 			return scnprintf(msg, size, "clockid feature not supported.");
2367 		if (perf_missing_features.clockid_wrong)
2368 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2369 		break;
2370 	default:
2371 		break;
2372 	}
2373 
2374 	return scnprintf(msg, size,
2375 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2376 	"/bin/dmesg may provide additional information.\n"
2377 	"No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2378 			 err, strerror_r(err, sbuf, sizeof(sbuf)),
2379 			 perf_evsel__name(evsel));
2380 }
2381