1 /*
2 * drivers/android/staging/vsoc.c
3 *
4 * Android Virtual System on a Chip (VSoC) driver
5 *
6 * Copyright (C) 2017 Google, Inc.
7 *
8 * Author: ghartman@google.com
9 *
10 * This software is licensed under the terms of the GNU General Public
11 * License version 2, as published by the Free Software Foundation, and
12 * may be copied, distributed, and modified under those terms.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 *
20 * Based on drivers/char/kvm_ivshmem.c - driver for KVM Inter-VM shared memory
21 * Copyright 2009 Cam Macdonell <cam@cs.ualberta.ca>
22 *
23 * Based on cirrusfb.c and 8139cp.c:
24 * Copyright 1999-2001 Jeff Garzik
25 * Copyright 2001-2004 Jeff Garzik
26 */
27
28 #include <linux/dma-mapping.h>
29 #include <linux/freezer.h>
30 #include <linux/futex.h>
31 #include <linux/init.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/proc_fs.h>
37 #include <linux/sched.h>
38 #include <linux/syscalls.h>
39 #include <linux/uaccess.h>
40 #include <linux/interrupt.h>
41 #include <linux/mutex.h>
42 #include <linux/cdev.h>
43 #include <linux/file.h>
44 #include "uapi/vsoc_shm.h"
45
46 #define VSOC_DEV_NAME "vsoc"
47
48 /*
49 * Description of the ivshmem-doorbell PCI device used by QEmu. These
50 * constants follow docs/specs/ivshmem-spec.txt, which can be found in
51 * the QEmu repository. This was last reconciled with the version that
52 * came out with 2.8
53 */
54
55 /*
56 * These constants are determined KVM Inter-VM shared memory device
57 * register offsets
58 */
59 enum {
60 INTR_MASK = 0x00, /* Interrupt Mask */
61 INTR_STATUS = 0x04, /* Interrupt Status */
62 IV_POSITION = 0x08, /* VM ID */
63 DOORBELL = 0x0c, /* Doorbell */
64 };
65
66 static const int REGISTER_BAR; /* Equal to 0 */
67 static const int MAX_REGISTER_BAR_LEN = 0x100;
68 /*
69 * The MSI-x BAR is not used directly.
70 *
71 * static const int MSI_X_BAR = 1;
72 */
73 static const int SHARED_MEMORY_BAR = 2;
74
75 struct vsoc_region_data {
76 char name[VSOC_DEVICE_NAME_SZ + 1];
77 wait_queue_head_t interrupt_wait_queue;
78 /* TODO(b/73664181): Use multiple futex wait queues */
79 wait_queue_head_t futex_wait_queue;
80 /* Flag indicating that an interrupt has been signalled by the host. */
81 atomic_t *incoming_signalled;
82 /* Flag indicating the guest has signalled the host. */
83 atomic_t *outgoing_signalled;
84 bool irq_requested;
85 bool device_created;
86 };
87
88 struct vsoc_device {
89 /* Kernel virtual address of REGISTER_BAR. */
90 void __iomem *regs;
91 /* Physical address of SHARED_MEMORY_BAR. */
92 phys_addr_t shm_phys_start;
93 /* Kernel virtual address of SHARED_MEMORY_BAR. */
94 void __iomem *kernel_mapped_shm;
95 /* Size of the entire shared memory window in bytes. */
96 size_t shm_size;
97 /*
98 * Pointer to the virtual address of the shared memory layout structure.
99 * This is probably identical to kernel_mapped_shm, but saving this
100 * here saves a lot of annoying casts.
101 */
102 struct vsoc_shm_layout_descriptor *layout;
103 /*
104 * Points to a table of region descriptors in the kernel's virtual
105 * address space. Calculated from
106 * vsoc_shm_layout_descriptor.vsoc_region_desc_offset
107 */
108 struct vsoc_device_region *regions;
109 /* Head of a list of permissions that have been granted. */
110 struct list_head permissions;
111 struct pci_dev *dev;
112 /* Per-region (and therefore per-interrupt) information. */
113 struct vsoc_region_data *regions_data;
114 /*
115 * Table of msi-x entries. This has to be separated from struct
116 * vsoc_region_data because the kernel deals with them as an array.
117 */
118 struct msix_entry *msix_entries;
119 /* Mutex that protectes the permission list */
120 struct mutex mtx;
121 /* Major number assigned by the kernel */
122 int major;
123 /* Character device assigned by the kernel */
124 struct cdev cdev;
125 /* Device class assigned by the kernel */
126 struct class *class;
127 /*
128 * Flags that indicate what we've initialized. These are used to do an
129 * orderly cleanup of the device.
130 */
131 bool enabled_device;
132 bool requested_regions;
133 bool cdev_added;
134 bool class_added;
135 bool msix_enabled;
136 };
137
138 static struct vsoc_device vsoc_dev;
139
140 /*
141 * TODO(ghartman): Add a /sys filesystem entry that summarizes the permissions.
142 */
143
144 struct fd_scoped_permission_node {
145 struct fd_scoped_permission permission;
146 struct list_head list;
147 };
148
149 struct vsoc_private_data {
150 struct fd_scoped_permission_node *fd_scoped_permission_node;
151 };
152
153 static long vsoc_ioctl(struct file *, unsigned int, unsigned long);
154 static int vsoc_mmap(struct file *, struct vm_area_struct *);
155 static int vsoc_open(struct inode *, struct file *);
156 static int vsoc_release(struct inode *, struct file *);
157 static ssize_t vsoc_read(struct file *, char __user *, size_t, loff_t *);
158 static ssize_t vsoc_write(struct file *, const char __user *, size_t, loff_t *);
159 static loff_t vsoc_lseek(struct file *filp, loff_t offset, int origin);
160 static int do_create_fd_scoped_permission(
161 struct vsoc_device_region *region_p,
162 struct fd_scoped_permission_node *np,
163 struct fd_scoped_permission_arg __user *arg);
164 static void do_destroy_fd_scoped_permission(
165 struct vsoc_device_region *owner_region_p,
166 struct fd_scoped_permission *perm);
167 static long do_vsoc_describe_region(struct file *,
168 struct vsoc_device_region __user *);
169 static ssize_t vsoc_get_area(struct file *filp, __u32 *perm_off);
170
171 /**
172 * Validate arguments on entry points to the driver.
173 */
vsoc_validate_inode(struct inode * inode)174 inline int vsoc_validate_inode(struct inode *inode)
175 {
176 if (iminor(inode) >= vsoc_dev.layout->region_count) {
177 dev_err(&vsoc_dev.dev->dev,
178 "describe_region: invalid region %d\n", iminor(inode));
179 return -ENODEV;
180 }
181 return 0;
182 }
183
vsoc_validate_filep(struct file * filp)184 inline int vsoc_validate_filep(struct file *filp)
185 {
186 int ret = vsoc_validate_inode(file_inode(filp));
187
188 if (ret)
189 return ret;
190 if (!filp->private_data) {
191 dev_err(&vsoc_dev.dev->dev,
192 "No private data on fd, region %d\n",
193 iminor(file_inode(filp)));
194 return -EBADFD;
195 }
196 return 0;
197 }
198
199 /* Converts from shared memory offset to virtual address */
shm_off_to_virtual_addr(__u32 offset)200 static inline void *shm_off_to_virtual_addr(__u32 offset)
201 {
202 return (void __force *)vsoc_dev.kernel_mapped_shm + offset;
203 }
204
205 /* Converts from shared memory offset to physical address */
shm_off_to_phys_addr(__u32 offset)206 static inline phys_addr_t shm_off_to_phys_addr(__u32 offset)
207 {
208 return vsoc_dev.shm_phys_start + offset;
209 }
210
211 /**
212 * Convenience functions to obtain the region from the inode or file.
213 * Dangerous to call before validating the inode/file.
214 */
vsoc_region_from_inode(struct inode * inode)215 static inline struct vsoc_device_region *vsoc_region_from_inode(
216 struct inode *inode)
217 {
218 return &vsoc_dev.regions[iminor(inode)];
219 }
220
vsoc_region_from_filep(struct file * inode)221 static inline struct vsoc_device_region *vsoc_region_from_filep(
222 struct file *inode)
223 {
224 return vsoc_region_from_inode(file_inode(inode));
225 }
226
vsoc_device_region_size(struct vsoc_device_region * r)227 static inline uint32_t vsoc_device_region_size(struct vsoc_device_region *r)
228 {
229 return r->region_end_offset - r->region_begin_offset;
230 }
231
232 static const struct file_operations vsoc_ops = {
233 .owner = THIS_MODULE,
234 .open = vsoc_open,
235 .mmap = vsoc_mmap,
236 .read = vsoc_read,
237 .unlocked_ioctl = vsoc_ioctl,
238 .compat_ioctl = vsoc_ioctl,
239 .write = vsoc_write,
240 .llseek = vsoc_lseek,
241 .release = vsoc_release,
242 };
243
244 static struct pci_device_id vsoc_id_table[] = {
245 {0x1af4, 0x1110, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
246 {0},
247 };
248
249 MODULE_DEVICE_TABLE(pci, vsoc_id_table);
250
251 static void vsoc_remove_device(struct pci_dev *pdev);
252 static int vsoc_probe_device(struct pci_dev *pdev,
253 const struct pci_device_id *ent);
254
255 static struct pci_driver vsoc_pci_driver = {
256 .name = "vsoc",
257 .id_table = vsoc_id_table,
258 .probe = vsoc_probe_device,
259 .remove = vsoc_remove_device,
260 };
261
do_create_fd_scoped_permission(struct vsoc_device_region * region_p,struct fd_scoped_permission_node * np,struct fd_scoped_permission_arg __user * arg)262 static int do_create_fd_scoped_permission(
263 struct vsoc_device_region *region_p,
264 struct fd_scoped_permission_node *np,
265 struct fd_scoped_permission_arg __user *arg)
266 {
267 struct file *managed_filp;
268 s32 managed_fd;
269 atomic_t *owner_ptr = NULL;
270 struct vsoc_device_region *managed_region_p;
271
272 if (copy_from_user(&np->permission,
273 &arg->perm, sizeof(np->permission)) ||
274 copy_from_user(&managed_fd,
275 &arg->managed_region_fd, sizeof(managed_fd))) {
276 return -EFAULT;
277 }
278 managed_filp = fdget(managed_fd).file;
279 /* Check that it's a valid fd, */
280 if (!managed_filp || vsoc_validate_filep(managed_filp))
281 return -EPERM;
282 /* EEXIST if the given fd already has a permission. */
283 if (((struct vsoc_private_data *)managed_filp->private_data)->
284 fd_scoped_permission_node)
285 return -EEXIST;
286 managed_region_p = vsoc_region_from_filep(managed_filp);
287 /* Check that the provided region is managed by this one */
288 if (&vsoc_dev.regions[managed_region_p->managed_by] != region_p)
289 return -EPERM;
290 /* The area must be well formed and have non-zero size */
291 if (np->permission.begin_offset >= np->permission.end_offset)
292 return -EINVAL;
293 /* The area must fit in the memory window */
294 if (np->permission.end_offset >
295 vsoc_device_region_size(managed_region_p))
296 return -ERANGE;
297 /* The area must be in the region data section */
298 if (np->permission.begin_offset <
299 managed_region_p->offset_of_region_data)
300 return -ERANGE;
301 /* The area must be page aligned */
302 if (!PAGE_ALIGNED(np->permission.begin_offset) ||
303 !PAGE_ALIGNED(np->permission.end_offset))
304 return -EINVAL;
305 /* Owner offset must be naturally aligned in the window */
306 if (np->permission.owner_offset &
307 (sizeof(np->permission.owner_offset) - 1))
308 return -EINVAL;
309 /* The owner flag must reside in the owner memory */
310 if (np->permission.owner_offset + sizeof(np->permission.owner_offset) >
311 vsoc_device_region_size(region_p))
312 return -ERANGE;
313 /* The owner flag must reside in the data section */
314 if (np->permission.owner_offset < region_p->offset_of_region_data)
315 return -EINVAL;
316 /* The owner value must change to claim the memory */
317 if (np->permission.owned_value == VSOC_REGION_FREE)
318 return -EINVAL;
319 owner_ptr =
320 (atomic_t *)shm_off_to_virtual_addr(region_p->region_begin_offset +
321 np->permission.owner_offset);
322 /* We've already verified that this is in the shared memory window, so
323 * it should be safe to write to this address.
324 */
325 if (atomic_cmpxchg(owner_ptr,
326 VSOC_REGION_FREE,
327 np->permission.owned_value) != VSOC_REGION_FREE) {
328 return -EBUSY;
329 }
330 ((struct vsoc_private_data *)managed_filp->private_data)->
331 fd_scoped_permission_node = np;
332 /* The file offset needs to be adjusted if the calling
333 * process did any read/write operations on the fd
334 * before creating the permission.
335 */
336 if (managed_filp->f_pos) {
337 if (managed_filp->f_pos > np->permission.end_offset) {
338 /* If the offset is beyond the permission end, set it
339 * to the end.
340 */
341 managed_filp->f_pos = np->permission.end_offset;
342 } else {
343 /* If the offset is within the permission interval
344 * keep it there otherwise reset it to zero.
345 */
346 if (managed_filp->f_pos < np->permission.begin_offset) {
347 managed_filp->f_pos = 0;
348 } else {
349 managed_filp->f_pos -=
350 np->permission.begin_offset;
351 }
352 }
353 }
354 return 0;
355 }
356
do_destroy_fd_scoped_permission_node(struct vsoc_device_region * owner_region_p,struct fd_scoped_permission_node * node)357 static void do_destroy_fd_scoped_permission_node(
358 struct vsoc_device_region *owner_region_p,
359 struct fd_scoped_permission_node *node)
360 {
361 if (node) {
362 do_destroy_fd_scoped_permission(owner_region_p,
363 &node->permission);
364 mutex_lock(&vsoc_dev.mtx);
365 list_del(&node->list);
366 mutex_unlock(&vsoc_dev.mtx);
367 kfree(node);
368 }
369 }
370
do_destroy_fd_scoped_permission(struct vsoc_device_region * owner_region_p,struct fd_scoped_permission * perm)371 static void do_destroy_fd_scoped_permission(
372 struct vsoc_device_region *owner_region_p,
373 struct fd_scoped_permission *perm)
374 {
375 atomic_t *owner_ptr = NULL;
376 int prev = 0;
377
378 if (!perm)
379 return;
380 owner_ptr = (atomic_t *)shm_off_to_virtual_addr(
381 owner_region_p->region_begin_offset + perm->owner_offset);
382 prev = atomic_xchg(owner_ptr, VSOC_REGION_FREE);
383 if (prev != perm->owned_value)
384 dev_err(&vsoc_dev.dev->dev,
385 "%x-%x: owner (%s) %x: expected to be %x was %x",
386 perm->begin_offset, perm->end_offset,
387 owner_region_p->device_name, perm->owner_offset,
388 perm->owned_value, prev);
389 }
390
do_vsoc_describe_region(struct file * filp,struct vsoc_device_region __user * dest)391 static long do_vsoc_describe_region(struct file *filp,
392 struct vsoc_device_region __user *dest)
393 {
394 struct vsoc_device_region *region_p;
395 int retval = vsoc_validate_filep(filp);
396
397 if (retval)
398 return retval;
399 region_p = vsoc_region_from_filep(filp);
400 if (copy_to_user(dest, region_p, sizeof(*region_p)))
401 return -EFAULT;
402 return 0;
403 }
404
405 /**
406 * Implements the inner logic of cond_wait. Copies to and from userspace are
407 * done in the helper function below.
408 */
handle_vsoc_cond_wait(struct file * filp,struct vsoc_cond_wait * arg)409 static int handle_vsoc_cond_wait(struct file *filp, struct vsoc_cond_wait *arg)
410 {
411 DEFINE_WAIT(wait);
412 u32 region_number = iminor(file_inode(filp));
413 struct vsoc_region_data *data = vsoc_dev.regions_data + region_number;
414 struct hrtimer_sleeper timeout, *to = NULL;
415 int ret = 0;
416 struct vsoc_device_region *region_p = vsoc_region_from_filep(filp);
417 atomic_t *address = NULL;
418 struct timespec ts;
419
420 /* Ensure that the offset is aligned */
421 if (arg->offset & (sizeof(uint32_t) - 1))
422 return -EADDRNOTAVAIL;
423 /* Ensure that the offset is within shared memory */
424 if (((uint64_t)arg->offset) + region_p->region_begin_offset +
425 sizeof(uint32_t) > region_p->region_end_offset)
426 return -E2BIG;
427 address = shm_off_to_virtual_addr(region_p->region_begin_offset +
428 arg->offset);
429
430 /* Ensure that the type of wait is valid */
431 switch (arg->wait_type) {
432 case VSOC_WAIT_IF_EQUAL:
433 break;
434 case VSOC_WAIT_IF_EQUAL_TIMEOUT:
435 to = &timeout;
436 break;
437 default:
438 return -EINVAL;
439 }
440
441 if (to) {
442 /* Copy the user-supplied timesec into the kernel structure.
443 * We do things this way to flatten differences between 32 bit
444 * and 64 bit timespecs.
445 */
446 ts.tv_sec = arg->wake_time_sec;
447 ts.tv_nsec = arg->wake_time_nsec;
448
449 if (!timespec_valid(&ts))
450 return -EINVAL;
451 hrtimer_init_on_stack(&to->timer, CLOCK_MONOTONIC,
452 HRTIMER_MODE_ABS);
453 hrtimer_set_expires_range_ns(&to->timer, timespec_to_ktime(ts),
454 current->timer_slack_ns);
455
456 hrtimer_init_sleeper(to, current);
457 }
458
459 while (1) {
460 prepare_to_wait(&data->futex_wait_queue, &wait,
461 TASK_INTERRUPTIBLE);
462 /*
463 * Check the sentinel value after prepare_to_wait. If the value
464 * changes after this check the writer will call signal,
465 * changing the task state from INTERRUPTIBLE to RUNNING. That
466 * will ensure that schedule() will eventually schedule this
467 * task.
468 */
469 if (atomic_read(address) != arg->value) {
470 ret = 0;
471 break;
472 }
473 if (to) {
474 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
475 if (likely(to->task))
476 freezable_schedule();
477 hrtimer_cancel(&to->timer);
478 if (!to->task) {
479 ret = -ETIMEDOUT;
480 break;
481 }
482 } else {
483 freezable_schedule();
484 }
485 /* Count the number of times that we woke up. This is useful
486 * for unit testing.
487 */
488 ++arg->wakes;
489 if (signal_pending(current)) {
490 ret = -EINTR;
491 break;
492 }
493 }
494 finish_wait(&data->futex_wait_queue, &wait);
495 if (to)
496 destroy_hrtimer_on_stack(&to->timer);
497 return ret;
498 }
499
500 /**
501 * Handles the details of copying from/to userspace to ensure that the copies
502 * happen on all of the return paths of cond_wait.
503 */
do_vsoc_cond_wait(struct file * filp,struct vsoc_cond_wait __user * untrusted_in)504 static int do_vsoc_cond_wait(struct file *filp,
505 struct vsoc_cond_wait __user *untrusted_in)
506 {
507 struct vsoc_cond_wait arg;
508 int rval = 0;
509
510 if (copy_from_user(&arg, untrusted_in, sizeof(arg)))
511 return -EFAULT;
512 /* wakes is an out parameter. Initialize it to something sensible. */
513 arg.wakes = 0;
514 rval = handle_vsoc_cond_wait(filp, &arg);
515 if (copy_to_user(untrusted_in, &arg, sizeof(arg)))
516 return -EFAULT;
517 return rval;
518 }
519
do_vsoc_cond_wake(struct file * filp,uint32_t offset)520 static int do_vsoc_cond_wake(struct file *filp, uint32_t offset)
521 {
522 struct vsoc_device_region *region_p = vsoc_region_from_filep(filp);
523 u32 region_number = iminor(file_inode(filp));
524 struct vsoc_region_data *data = vsoc_dev.regions_data + region_number;
525 /* Ensure that the offset is aligned */
526 if (offset & (sizeof(uint32_t) - 1))
527 return -EADDRNOTAVAIL;
528 /* Ensure that the offset is within shared memory */
529 if (((uint64_t)offset) + region_p->region_begin_offset +
530 sizeof(uint32_t) > region_p->region_end_offset)
531 return -E2BIG;
532 /*
533 * TODO(b/73664181): Use multiple futex wait queues.
534 * We need to wake every sleeper when the condition changes. Typically
535 * only a single thread will be waiting on the condition, but there
536 * are exceptions. The worst case is about 10 threads.
537 */
538 wake_up_interruptible_all(&data->futex_wait_queue);
539 return 0;
540 }
541
vsoc_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)542 static long vsoc_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
543 {
544 int rv = 0;
545 struct vsoc_device_region *region_p;
546 u32 reg_num;
547 struct vsoc_region_data *reg_data;
548 int retval = vsoc_validate_filep(filp);
549
550 if (retval)
551 return retval;
552 region_p = vsoc_region_from_filep(filp);
553 reg_num = iminor(file_inode(filp));
554 reg_data = vsoc_dev.regions_data + reg_num;
555 switch (cmd) {
556 case VSOC_CREATE_FD_SCOPED_PERMISSION:
557 {
558 struct fd_scoped_permission_node *node = NULL;
559
560 node = kzalloc(sizeof(*node), GFP_KERNEL);
561 /* We can't allocate memory for the permission */
562 if (!node)
563 return -ENOMEM;
564 INIT_LIST_HEAD(&node->list);
565 rv = do_create_fd_scoped_permission(
566 region_p,
567 node,
568 (struct fd_scoped_permission_arg __user *)arg);
569 if (!rv) {
570 mutex_lock(&vsoc_dev.mtx);
571 list_add(&node->list, &vsoc_dev.permissions);
572 mutex_unlock(&vsoc_dev.mtx);
573 } else {
574 kfree(node);
575 return rv;
576 }
577 }
578 break;
579
580 case VSOC_GET_FD_SCOPED_PERMISSION:
581 {
582 struct fd_scoped_permission_node *node =
583 ((struct vsoc_private_data *)filp->private_data)->
584 fd_scoped_permission_node;
585 if (!node)
586 return -ENOENT;
587 if (copy_to_user
588 ((struct fd_scoped_permission __user *)arg,
589 &node->permission, sizeof(node->permission)))
590 return -EFAULT;
591 }
592 break;
593
594 case VSOC_MAYBE_SEND_INTERRUPT_TO_HOST:
595 if (!atomic_xchg(
596 reg_data->outgoing_signalled,
597 1)) {
598 writel(reg_num, vsoc_dev.regs + DOORBELL);
599 return 0;
600 } else {
601 return -EBUSY;
602 }
603 break;
604
605 case VSOC_SEND_INTERRUPT_TO_HOST:
606 writel(reg_num, vsoc_dev.regs + DOORBELL);
607 return 0;
608
609 case VSOC_WAIT_FOR_INCOMING_INTERRUPT:
610 wait_event_interruptible(
611 reg_data->interrupt_wait_queue,
612 (atomic_read(reg_data->incoming_signalled) != 0));
613 break;
614
615 case VSOC_DESCRIBE_REGION:
616 return do_vsoc_describe_region(
617 filp,
618 (struct vsoc_device_region __user *)arg);
619
620 case VSOC_SELF_INTERRUPT:
621 atomic_set(reg_data->incoming_signalled, 1);
622 wake_up_interruptible(®_data->interrupt_wait_queue);
623 break;
624
625 case VSOC_COND_WAIT:
626 return do_vsoc_cond_wait(filp,
627 (struct vsoc_cond_wait __user *)arg);
628 case VSOC_COND_WAKE:
629 return do_vsoc_cond_wake(filp, arg);
630
631 default:
632 return -EINVAL;
633 }
634 return 0;
635 }
636
vsoc_read(struct file * filp,char __user * buffer,size_t len,loff_t * poffset)637 static ssize_t vsoc_read(struct file *filp, char __user *buffer, size_t len,
638 loff_t *poffset)
639 {
640 __u32 area_off;
641 const void *area_p;
642 ssize_t area_len;
643 int retval = vsoc_validate_filep(filp);
644
645 if (retval)
646 return retval;
647 area_len = vsoc_get_area(filp, &area_off);
648 area_p = shm_off_to_virtual_addr(area_off);
649 area_p += *poffset;
650 area_len -= *poffset;
651 if (area_len <= 0)
652 return 0;
653 if (area_len < len)
654 len = area_len;
655 if (copy_to_user(buffer, area_p, len))
656 return -EFAULT;
657 *poffset += len;
658 return len;
659 }
660
vsoc_lseek(struct file * filp,loff_t offset,int origin)661 static loff_t vsoc_lseek(struct file *filp, loff_t offset, int origin)
662 {
663 ssize_t area_len = 0;
664 int retval = vsoc_validate_filep(filp);
665
666 if (retval)
667 return retval;
668 area_len = vsoc_get_area(filp, NULL);
669 switch (origin) {
670 case SEEK_SET:
671 break;
672
673 case SEEK_CUR:
674 if (offset > 0 && offset + filp->f_pos < 0)
675 return -EOVERFLOW;
676 offset += filp->f_pos;
677 break;
678
679 case SEEK_END:
680 if (offset > 0 && offset + area_len < 0)
681 return -EOVERFLOW;
682 offset += area_len;
683 break;
684
685 case SEEK_DATA:
686 if (offset >= area_len)
687 return -EINVAL;
688 if (offset < 0)
689 offset = 0;
690 break;
691
692 case SEEK_HOLE:
693 /* Next hole is always the end of the region, unless offset is
694 * beyond that
695 */
696 if (offset < area_len)
697 offset = area_len;
698 break;
699
700 default:
701 return -EINVAL;
702 }
703
704 if (offset < 0 || offset > area_len)
705 return -EINVAL;
706 filp->f_pos = offset;
707
708 return offset;
709 }
710
vsoc_write(struct file * filp,const char __user * buffer,size_t len,loff_t * poffset)711 static ssize_t vsoc_write(struct file *filp, const char __user *buffer,
712 size_t len, loff_t *poffset)
713 {
714 __u32 area_off;
715 void *area_p;
716 ssize_t area_len;
717 int retval = vsoc_validate_filep(filp);
718
719 if (retval)
720 return retval;
721 area_len = vsoc_get_area(filp, &area_off);
722 area_p = shm_off_to_virtual_addr(area_off);
723 area_p += *poffset;
724 area_len -= *poffset;
725 if (area_len <= 0)
726 return 0;
727 if (area_len < len)
728 len = area_len;
729 if (copy_from_user(area_p, buffer, len))
730 return -EFAULT;
731 *poffset += len;
732 return len;
733 }
734
vsoc_interrupt(int irq,void * region_data_v)735 static irqreturn_t vsoc_interrupt(int irq, void *region_data_v)
736 {
737 struct vsoc_region_data *region_data =
738 (struct vsoc_region_data *)region_data_v;
739 int reg_num = region_data - vsoc_dev.regions_data;
740
741 if (unlikely(!region_data))
742 return IRQ_NONE;
743
744 if (unlikely(reg_num < 0 ||
745 reg_num >= vsoc_dev.layout->region_count)) {
746 dev_err(&vsoc_dev.dev->dev,
747 "invalid irq @%p reg_num=0x%04x\n",
748 region_data, reg_num);
749 return IRQ_NONE;
750 }
751 if (unlikely(vsoc_dev.regions_data + reg_num != region_data)) {
752 dev_err(&vsoc_dev.dev->dev,
753 "irq not aligned @%p reg_num=0x%04x\n",
754 region_data, reg_num);
755 return IRQ_NONE;
756 }
757 wake_up_interruptible(®ion_data->interrupt_wait_queue);
758 return IRQ_HANDLED;
759 }
760
vsoc_probe_device(struct pci_dev * pdev,const struct pci_device_id * ent)761 static int vsoc_probe_device(struct pci_dev *pdev,
762 const struct pci_device_id *ent)
763 {
764 int result;
765 int i;
766 resource_size_t reg_size;
767 dev_t devt;
768
769 vsoc_dev.dev = pdev;
770 result = pci_enable_device(pdev);
771 if (result) {
772 dev_err(&pdev->dev,
773 "pci_enable_device failed %s: error %d\n",
774 pci_name(pdev), result);
775 return result;
776 }
777 vsoc_dev.enabled_device = true;
778 result = pci_request_regions(pdev, "vsoc");
779 if (result < 0) {
780 dev_err(&pdev->dev, "pci_request_regions failed\n");
781 vsoc_remove_device(pdev);
782 return -EBUSY;
783 }
784 vsoc_dev.requested_regions = true;
785 /* Set up the control registers in BAR 0 */
786 reg_size = pci_resource_len(pdev, REGISTER_BAR);
787 if (reg_size > MAX_REGISTER_BAR_LEN)
788 vsoc_dev.regs =
789 pci_iomap(pdev, REGISTER_BAR, MAX_REGISTER_BAR_LEN);
790 else
791 vsoc_dev.regs = pci_iomap(pdev, REGISTER_BAR, reg_size);
792
793 if (!vsoc_dev.regs) {
794 dev_err(&pdev->dev,
795 "cannot map registers of size %zu\n",
796 (size_t)reg_size);
797 vsoc_remove_device(pdev);
798 return -EBUSY;
799 }
800
801 /* Map the shared memory in BAR 2 */
802 vsoc_dev.shm_phys_start = pci_resource_start(pdev, SHARED_MEMORY_BAR);
803 vsoc_dev.shm_size = pci_resource_len(pdev, SHARED_MEMORY_BAR);
804
805 dev_info(&pdev->dev, "shared memory @ DMA %pa size=0x%zx\n",
806 &vsoc_dev.shm_phys_start, vsoc_dev.shm_size);
807 vsoc_dev.kernel_mapped_shm = pci_iomap_wc(pdev, SHARED_MEMORY_BAR, 0);
808 if (!vsoc_dev.kernel_mapped_shm) {
809 dev_err(&vsoc_dev.dev->dev, "cannot iomap region\n");
810 vsoc_remove_device(pdev);
811 return -EBUSY;
812 }
813
814 vsoc_dev.layout = (struct vsoc_shm_layout_descriptor __force *)
815 vsoc_dev.kernel_mapped_shm;
816 dev_info(&pdev->dev, "major_version: %d\n",
817 vsoc_dev.layout->major_version);
818 dev_info(&pdev->dev, "minor_version: %d\n",
819 vsoc_dev.layout->minor_version);
820 dev_info(&pdev->dev, "size: 0x%x\n", vsoc_dev.layout->size);
821 dev_info(&pdev->dev, "regions: %d\n", vsoc_dev.layout->region_count);
822 if (vsoc_dev.layout->major_version !=
823 CURRENT_VSOC_LAYOUT_MAJOR_VERSION) {
824 dev_err(&vsoc_dev.dev->dev,
825 "driver supports only major_version %d\n",
826 CURRENT_VSOC_LAYOUT_MAJOR_VERSION);
827 vsoc_remove_device(pdev);
828 return -EBUSY;
829 }
830 result = alloc_chrdev_region(&devt, 0, vsoc_dev.layout->region_count,
831 VSOC_DEV_NAME);
832 if (result) {
833 dev_err(&vsoc_dev.dev->dev, "alloc_chrdev_region failed\n");
834 vsoc_remove_device(pdev);
835 return -EBUSY;
836 }
837 vsoc_dev.major = MAJOR(devt);
838 cdev_init(&vsoc_dev.cdev, &vsoc_ops);
839 vsoc_dev.cdev.owner = THIS_MODULE;
840 result = cdev_add(&vsoc_dev.cdev, devt, vsoc_dev.layout->region_count);
841 if (result) {
842 dev_err(&vsoc_dev.dev->dev, "cdev_add error\n");
843 vsoc_remove_device(pdev);
844 return -EBUSY;
845 }
846 vsoc_dev.cdev_added = true;
847 vsoc_dev.class = class_create(THIS_MODULE, VSOC_DEV_NAME);
848 if (IS_ERR(vsoc_dev.class)) {
849 dev_err(&vsoc_dev.dev->dev, "class_create failed\n");
850 vsoc_remove_device(pdev);
851 return PTR_ERR(vsoc_dev.class);
852 }
853 vsoc_dev.class_added = true;
854 vsoc_dev.regions = (struct vsoc_device_region __force *)
855 ((void *)vsoc_dev.layout +
856 vsoc_dev.layout->vsoc_region_desc_offset);
857 vsoc_dev.msix_entries = kcalloc(
858 vsoc_dev.layout->region_count,
859 sizeof(vsoc_dev.msix_entries[0]), GFP_KERNEL);
860 if (!vsoc_dev.msix_entries) {
861 dev_err(&vsoc_dev.dev->dev,
862 "unable to allocate msix_entries\n");
863 vsoc_remove_device(pdev);
864 return -ENOSPC;
865 }
866 vsoc_dev.regions_data = kcalloc(
867 vsoc_dev.layout->region_count,
868 sizeof(vsoc_dev.regions_data[0]), GFP_KERNEL);
869 if (!vsoc_dev.regions_data) {
870 dev_err(&vsoc_dev.dev->dev,
871 "unable to allocate regions' data\n");
872 vsoc_remove_device(pdev);
873 return -ENOSPC;
874 }
875 for (i = 0; i < vsoc_dev.layout->region_count; ++i)
876 vsoc_dev.msix_entries[i].entry = i;
877
878 result = pci_enable_msix_exact(vsoc_dev.dev, vsoc_dev.msix_entries,
879 vsoc_dev.layout->region_count);
880 if (result) {
881 dev_info(&pdev->dev, "pci_enable_msix failed: %d\n", result);
882 vsoc_remove_device(pdev);
883 return -ENOSPC;
884 }
885 /* Check that all regions are well formed */
886 for (i = 0; i < vsoc_dev.layout->region_count; ++i) {
887 const struct vsoc_device_region *region = vsoc_dev.regions + i;
888
889 if (!PAGE_ALIGNED(region->region_begin_offset) ||
890 !PAGE_ALIGNED(region->region_end_offset)) {
891 dev_err(&vsoc_dev.dev->dev,
892 "region %d not aligned (%x:%x)", i,
893 region->region_begin_offset,
894 region->region_end_offset);
895 vsoc_remove_device(pdev);
896 return -EFAULT;
897 }
898 if (region->region_begin_offset >= region->region_end_offset ||
899 region->region_end_offset > vsoc_dev.shm_size) {
900 dev_err(&vsoc_dev.dev->dev,
901 "region %d offsets are wrong: %x %x %zx",
902 i, region->region_begin_offset,
903 region->region_end_offset, vsoc_dev.shm_size);
904 vsoc_remove_device(pdev);
905 return -EFAULT;
906 }
907 if (region->managed_by >= vsoc_dev.layout->region_count) {
908 dev_err(&vsoc_dev.dev->dev,
909 "region %d has invalid owner: %u",
910 i, region->managed_by);
911 vsoc_remove_device(pdev);
912 return -EFAULT;
913 }
914 }
915 vsoc_dev.msix_enabled = true;
916 for (i = 0; i < vsoc_dev.layout->region_count; ++i) {
917 const struct vsoc_device_region *region = vsoc_dev.regions + i;
918 size_t name_sz = sizeof(vsoc_dev.regions_data[i].name) - 1;
919 const struct vsoc_signal_table_layout *h_to_g_signal_table =
920 ®ion->host_to_guest_signal_table;
921 const struct vsoc_signal_table_layout *g_to_h_signal_table =
922 ®ion->guest_to_host_signal_table;
923
924 vsoc_dev.regions_data[i].name[name_sz] = '\0';
925 memcpy(vsoc_dev.regions_data[i].name, region->device_name,
926 name_sz);
927 dev_info(&pdev->dev, "region %d name=%s\n",
928 i, vsoc_dev.regions_data[i].name);
929 init_waitqueue_head(
930 &vsoc_dev.regions_data[i].interrupt_wait_queue);
931 init_waitqueue_head(&vsoc_dev.regions_data[i].futex_wait_queue);
932 vsoc_dev.regions_data[i].incoming_signalled =
933 shm_off_to_virtual_addr(region->region_begin_offset) +
934 h_to_g_signal_table->interrupt_signalled_offset;
935 vsoc_dev.regions_data[i].outgoing_signalled =
936 shm_off_to_virtual_addr(region->region_begin_offset) +
937 g_to_h_signal_table->interrupt_signalled_offset;
938 result = request_irq(
939 vsoc_dev.msix_entries[i].vector,
940 vsoc_interrupt, 0,
941 vsoc_dev.regions_data[i].name,
942 vsoc_dev.regions_data + i);
943 if (result) {
944 dev_info(&pdev->dev,
945 "request_irq failed irq=%d vector=%d\n",
946 i, vsoc_dev.msix_entries[i].vector);
947 vsoc_remove_device(pdev);
948 return -ENOSPC;
949 }
950 vsoc_dev.regions_data[i].irq_requested = true;
951 if (!device_create(vsoc_dev.class, NULL,
952 MKDEV(vsoc_dev.major, i),
953 NULL, vsoc_dev.regions_data[i].name)) {
954 dev_err(&vsoc_dev.dev->dev, "device_create failed\n");
955 vsoc_remove_device(pdev);
956 return -EBUSY;
957 }
958 vsoc_dev.regions_data[i].device_created = true;
959 }
960 return 0;
961 }
962
963 /*
964 * This should undo all of the allocations in the probe function in reverse
965 * order.
966 *
967 * Notes:
968 *
969 * The device may have been partially initialized, so double check
970 * that the allocations happened.
971 *
972 * This function may be called multiple times, so mark resources as freed
973 * as they are deallocated.
974 */
vsoc_remove_device(struct pci_dev * pdev)975 static void vsoc_remove_device(struct pci_dev *pdev)
976 {
977 int i;
978 /*
979 * pdev is the first thing to be set on probe and the last thing
980 * to be cleared here. If it's NULL then there is no cleanup.
981 */
982 if (!pdev || !vsoc_dev.dev)
983 return;
984 dev_info(&pdev->dev, "remove_device\n");
985 if (vsoc_dev.regions_data) {
986 for (i = 0; i < vsoc_dev.layout->region_count; ++i) {
987 if (vsoc_dev.regions_data[i].device_created) {
988 device_destroy(vsoc_dev.class,
989 MKDEV(vsoc_dev.major, i));
990 vsoc_dev.regions_data[i].device_created = false;
991 }
992 if (vsoc_dev.regions_data[i].irq_requested)
993 free_irq(vsoc_dev.msix_entries[i].vector, NULL);
994 vsoc_dev.regions_data[i].irq_requested = false;
995 }
996 kfree(vsoc_dev.regions_data);
997 vsoc_dev.regions_data = NULL;
998 }
999 if (vsoc_dev.msix_enabled) {
1000 pci_disable_msix(pdev);
1001 vsoc_dev.msix_enabled = false;
1002 }
1003 kfree(vsoc_dev.msix_entries);
1004 vsoc_dev.msix_entries = NULL;
1005 vsoc_dev.regions = NULL;
1006 if (vsoc_dev.class_added) {
1007 class_destroy(vsoc_dev.class);
1008 vsoc_dev.class_added = false;
1009 }
1010 if (vsoc_dev.cdev_added) {
1011 cdev_del(&vsoc_dev.cdev);
1012 vsoc_dev.cdev_added = false;
1013 }
1014 if (vsoc_dev.major && vsoc_dev.layout) {
1015 unregister_chrdev_region(MKDEV(vsoc_dev.major, 0),
1016 vsoc_dev.layout->region_count);
1017 vsoc_dev.major = 0;
1018 }
1019 vsoc_dev.layout = NULL;
1020 if (vsoc_dev.kernel_mapped_shm) {
1021 pci_iounmap(pdev, vsoc_dev.kernel_mapped_shm);
1022 vsoc_dev.kernel_mapped_shm = NULL;
1023 }
1024 if (vsoc_dev.regs) {
1025 pci_iounmap(pdev, vsoc_dev.regs);
1026 vsoc_dev.regs = NULL;
1027 }
1028 if (vsoc_dev.requested_regions) {
1029 pci_release_regions(pdev);
1030 vsoc_dev.requested_regions = false;
1031 }
1032 if (vsoc_dev.enabled_device) {
1033 pci_disable_device(pdev);
1034 vsoc_dev.enabled_device = false;
1035 }
1036 /* Do this last: it indicates that the device is not initialized. */
1037 vsoc_dev.dev = NULL;
1038 }
1039
vsoc_cleanup_module(void)1040 static void __exit vsoc_cleanup_module(void)
1041 {
1042 vsoc_remove_device(vsoc_dev.dev);
1043 pci_unregister_driver(&vsoc_pci_driver);
1044 }
1045
vsoc_init_module(void)1046 static int __init vsoc_init_module(void)
1047 {
1048 int err = -ENOMEM;
1049
1050 INIT_LIST_HEAD(&vsoc_dev.permissions);
1051 mutex_init(&vsoc_dev.mtx);
1052
1053 err = pci_register_driver(&vsoc_pci_driver);
1054 if (err < 0)
1055 return err;
1056 return 0;
1057 }
1058
vsoc_open(struct inode * inode,struct file * filp)1059 static int vsoc_open(struct inode *inode, struct file *filp)
1060 {
1061 /* Can't use vsoc_validate_filep because filp is still incomplete */
1062 int ret = vsoc_validate_inode(inode);
1063
1064 if (ret)
1065 return ret;
1066 filp->private_data =
1067 kzalloc(sizeof(struct vsoc_private_data), GFP_KERNEL);
1068 if (!filp->private_data)
1069 return -ENOMEM;
1070 return 0;
1071 }
1072
vsoc_release(struct inode * inode,struct file * filp)1073 static int vsoc_release(struct inode *inode, struct file *filp)
1074 {
1075 struct vsoc_private_data *private_data = NULL;
1076 struct fd_scoped_permission_node *node = NULL;
1077 struct vsoc_device_region *owner_region_p = NULL;
1078 int retval = vsoc_validate_filep(filp);
1079
1080 if (retval)
1081 return retval;
1082 private_data = (struct vsoc_private_data *)filp->private_data;
1083 if (!private_data)
1084 return 0;
1085
1086 node = private_data->fd_scoped_permission_node;
1087 if (node) {
1088 owner_region_p = vsoc_region_from_inode(inode);
1089 if (owner_region_p->managed_by != VSOC_REGION_WHOLE) {
1090 owner_region_p =
1091 &vsoc_dev.regions[owner_region_p->managed_by];
1092 }
1093 do_destroy_fd_scoped_permission_node(owner_region_p, node);
1094 private_data->fd_scoped_permission_node = NULL;
1095 }
1096 kfree(private_data);
1097 filp->private_data = NULL;
1098
1099 return 0;
1100 }
1101
1102 /*
1103 * Returns the device relative offset and length of the area specified by the
1104 * fd scoped permission. If there is no fd scoped permission set, a default
1105 * permission covering the entire region is assumed, unless the region is owned
1106 * by another one, in which case the default is a permission with zero size.
1107 */
vsoc_get_area(struct file * filp,__u32 * area_offset)1108 static ssize_t vsoc_get_area(struct file *filp, __u32 *area_offset)
1109 {
1110 __u32 off = 0;
1111 ssize_t length = 0;
1112 struct vsoc_device_region *region_p;
1113 struct fd_scoped_permission *perm;
1114
1115 region_p = vsoc_region_from_filep(filp);
1116 off = region_p->region_begin_offset;
1117 perm = &((struct vsoc_private_data *)filp->private_data)->
1118 fd_scoped_permission_node->permission;
1119 if (perm) {
1120 off += perm->begin_offset;
1121 length = perm->end_offset - perm->begin_offset;
1122 } else if (region_p->managed_by == VSOC_REGION_WHOLE) {
1123 /* No permission set and the regions is not owned by another,
1124 * default to full region access.
1125 */
1126 length = vsoc_device_region_size(region_p);
1127 } else {
1128 /* return zero length, access is denied. */
1129 length = 0;
1130 }
1131 if (area_offset)
1132 *area_offset = off;
1133 return length;
1134 }
1135
vsoc_mmap(struct file * filp,struct vm_area_struct * vma)1136 static int vsoc_mmap(struct file *filp, struct vm_area_struct *vma)
1137 {
1138 unsigned long len = vma->vm_end - vma->vm_start;
1139 __u32 area_off;
1140 phys_addr_t mem_off;
1141 ssize_t area_len;
1142 int retval = vsoc_validate_filep(filp);
1143
1144 if (retval)
1145 return retval;
1146 area_len = vsoc_get_area(filp, &area_off);
1147 /* Add the requested offset */
1148 area_off += (vma->vm_pgoff << PAGE_SHIFT);
1149 area_len -= (vma->vm_pgoff << PAGE_SHIFT);
1150 if (area_len < len)
1151 return -EINVAL;
1152 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1153 mem_off = shm_off_to_phys_addr(area_off);
1154 if (io_remap_pfn_range(vma, vma->vm_start, mem_off >> PAGE_SHIFT,
1155 len, vma->vm_page_prot))
1156 return -EAGAIN;
1157 return 0;
1158 }
1159
1160 module_init(vsoc_init_module);
1161 module_exit(vsoc_cleanup_module);
1162
1163 MODULE_LICENSE("GPL");
1164 MODULE_AUTHOR("Greg Hartman <ghartman@google.com>");
1165 MODULE_DESCRIPTION("VSoC interpretation of QEmu's ivshmem device");
1166 MODULE_VERSION("1.0");
1167