• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file implements the perfmon-2 subsystem which is used
3  * to program the IA-64 Performance Monitoring Unit (PMU).
4  *
5  * The initial version of perfmon.c was written by
6  * Ganesh Venkitachalam, IBM Corp.
7  *
8  * Then it was modified for perfmon-1.x by Stephane Eranian and
9  * David Mosberger, Hewlett Packard Co.
10  *
11  * Version Perfmon-2.x is a rewrite of perfmon-1.x
12  * by Stephane Eranian, Hewlett Packard Co.
13  *
14  * Copyright (C) 1999-2005  Hewlett Packard Co
15  *               Stephane Eranian <eranian@hpl.hp.com>
16  *               David Mosberger-Tang <davidm@hpl.hp.com>
17  *
18  * More information about perfmon available at:
19  * 	http://www.hpl.hp.com/research/linux/perfmon
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45 #include <linux/cpu.h>
46 
47 #include <asm/errno.h>
48 #include <asm/intrinsics.h>
49 #include <asm/page.h>
50 #include <asm/perfmon.h>
51 #include <asm/processor.h>
52 #include <asm/signal.h>
53 #include <asm/uaccess.h>
54 #include <asm/delay.h>
55 
56 #ifdef CONFIG_PERFMON
57 /*
58  * perfmon context state
59  */
60 #define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
61 #define PFM_CTX_LOADED		2	/* context is loaded onto a task */
62 #define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
63 #define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
64 
65 #define PFM_INVALID_ACTIVATION	(~0UL)
66 
67 #define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
68 #define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
69 
70 /*
71  * depth of message queue
72  */
73 #define PFM_MAX_MSGS		32
74 #define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75 
76 /*
77  * type of a PMU register (bitmask).
78  * bitmask structure:
79  * 	bit0   : register implemented
80  * 	bit1   : end marker
81  * 	bit2-3 : reserved
82  * 	bit4   : pmc has pmc.pm
83  * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
84  * 	bit6-7 : register type
85  * 	bit8-31: reserved
86  */
87 #define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
88 #define PFM_REG_IMPL		0x1 /* register implemented */
89 #define PFM_REG_END		0x2 /* end marker */
90 #define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91 #define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92 #define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
93 #define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
94 #define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95 
96 #define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
97 #define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
98 
99 #define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
100 
101 /* i assumed unsigned */
102 #define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103 #define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104 
105 /* XXX: these assume that register i is implemented */
106 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108 #define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
109 #define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
110 
111 #define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
112 #define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
113 #define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
114 #define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
115 
116 #define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
117 #define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
118 
119 #define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
120 #define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
121 #define PFM_CTX_TASK(h)		(h)->ctx_task
122 
123 #define PMU_PMC_OI		5 /* position of pmc.oi bit */
124 
125 /* XXX: does not support more than 64 PMDs */
126 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128 
129 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130 
131 #define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133 #define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134 #define PFM_CODE_RR	0	/* requesting code range restriction */
135 #define PFM_DATA_RR	1	/* requestion data range restriction */
136 
137 #define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138 #define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
139 #define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
140 
141 #define RDEP(x)	(1UL<<(x))
142 
143 /*
144  * context protection macros
145  * in SMP:
146  * 	- we need to protect against CPU concurrency (spin_lock)
147  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
148  * in UP:
149  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
150  *
151  * spin_lock_irqsave()/spin_unlock_irqrestore():
152  * 	in SMP: local_irq_disable + spin_lock
153  * 	in UP : local_irq_disable
154  *
155  * spin_lock()/spin_lock():
156  * 	in UP : removed automatically
157  * 	in SMP: protect against context accesses from other CPU. interrupts
158  * 	        are not masked. This is useful for the PMU interrupt handler
159  * 	        because we know we will not get PMU concurrency in that code.
160  */
161 #define PROTECT_CTX(c, f) \
162 	do {  \
163 		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164 		spin_lock_irqsave(&(c)->ctx_lock, f); \
165 		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
166 	} while(0)
167 
168 #define UNPROTECT_CTX(c, f) \
169 	do { \
170 		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172 	} while(0)
173 
174 #define PROTECT_CTX_NOPRINT(c, f) \
175 	do {  \
176 		spin_lock_irqsave(&(c)->ctx_lock, f); \
177 	} while(0)
178 
179 
180 #define UNPROTECT_CTX_NOPRINT(c, f) \
181 	do { \
182 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
183 	} while(0)
184 
185 
186 #define PROTECT_CTX_NOIRQ(c) \
187 	do {  \
188 		spin_lock(&(c)->ctx_lock); \
189 	} while(0)
190 
191 #define UNPROTECT_CTX_NOIRQ(c) \
192 	do { \
193 		spin_unlock(&(c)->ctx_lock); \
194 	} while(0)
195 
196 
197 #ifdef CONFIG_SMP
198 
199 #define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
200 #define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
201 #define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
202 
203 #else /* !CONFIG_SMP */
204 #define SET_ACTIVATION(t) 	do {} while(0)
205 #define GET_ACTIVATION(t) 	do {} while(0)
206 #define INC_ACTIVATION(t) 	do {} while(0)
207 #endif /* CONFIG_SMP */
208 
209 #define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210 #define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
211 #define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
212 
213 #define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214 #define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215 
216 #define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
217 
218 /*
219  * cmp0 must be the value of pmc0
220  */
221 #define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
222 
223 #define PFMFS_MAGIC 0xa0b4d889
224 
225 /*
226  * debugging
227  */
228 #define PFM_DEBUGGING 1
229 #ifdef PFM_DEBUGGING
230 #define DPRINT(a) \
231 	do { \
232 		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
233 	} while (0)
234 
235 #define DPRINT_ovfl(a) \
236 	do { \
237 		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
238 	} while (0)
239 #endif
240 
241 /*
242  * 64-bit software counter structure
243  *
244  * the next_reset_type is applied to the next call to pfm_reset_regs()
245  */
246 typedef struct {
247 	unsigned long	val;		/* virtual 64bit counter value */
248 	unsigned long	lval;		/* last reset value */
249 	unsigned long	long_reset;	/* reset value on sampling overflow */
250 	unsigned long	short_reset;    /* reset value on overflow */
251 	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
252 	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
253 	unsigned long	seed;		/* seed for random-number generator */
254 	unsigned long	mask;		/* mask for random-number generator */
255 	unsigned int 	flags;		/* notify/do not notify */
256 	unsigned long	eventid;	/* overflow event identifier */
257 } pfm_counter_t;
258 
259 /*
260  * context flags
261  */
262 typedef struct {
263 	unsigned int block:1;		/* when 1, task will blocked on user notifications */
264 	unsigned int system:1;		/* do system wide monitoring */
265 	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
266 	unsigned int is_sampling:1;	/* true if using a custom format */
267 	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
268 	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
269 	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
270 	unsigned int no_msg:1;		/* no message sent on overflow */
271 	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
272 	unsigned int reserved:22;
273 } pfm_context_flags_t;
274 
275 #define PFM_TRAP_REASON_NONE		0x0	/* default value */
276 #define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
277 #define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
278 
279 
280 /*
281  * perfmon context: encapsulates all the state of a monitoring session
282  */
283 
284 typedef struct pfm_context {
285 	spinlock_t		ctx_lock;		/* context protection */
286 
287 	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
288 	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
289 
290 	struct task_struct 	*ctx_task;		/* task to which context is attached */
291 
292 	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
293 
294 	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
295 
296 	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
297 	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
298 	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
299 
300 	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
301 	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
302 	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
303 
304 	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
305 
306 	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
307 	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
308 	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
309 	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
310 
311 	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312 
313 	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
314 	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
315 
316 	unsigned long		ctx_saved_psr_up;	/* only contains psr.up value */
317 
318 	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
319 	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
320 	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
321 
322 	int			ctx_fd;			/* file descriptor used my this context */
323 	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
324 
325 	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
326 	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
327 	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
328 	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
329 
330 	wait_queue_head_t 	ctx_msgq_wait;
331 	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
332 	int			ctx_msgq_head;
333 	int			ctx_msgq_tail;
334 	struct fasync_struct	*ctx_async_queue;
335 
336 	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
337 } pfm_context_t;
338 
339 /*
340  * magic number used to verify that structure is really
341  * a perfmon context
342  */
343 #define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
344 
345 #define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
346 
347 #ifdef CONFIG_SMP
348 #define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
349 #define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
350 #else
351 #define SET_LAST_CPU(ctx, v)	do {} while(0)
352 #define GET_LAST_CPU(ctx)	do {} while(0)
353 #endif
354 
355 
356 #define ctx_fl_block		ctx_flags.block
357 #define ctx_fl_system		ctx_flags.system
358 #define ctx_fl_using_dbreg	ctx_flags.using_dbreg
359 #define ctx_fl_is_sampling	ctx_flags.is_sampling
360 #define ctx_fl_excl_idle	ctx_flags.excl_idle
361 #define ctx_fl_going_zombie	ctx_flags.going_zombie
362 #define ctx_fl_trap_reason	ctx_flags.trap_reason
363 #define ctx_fl_no_msg		ctx_flags.no_msg
364 #define ctx_fl_can_restart	ctx_flags.can_restart
365 
366 #define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
367 #define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
368 
369 /*
370  * global information about all sessions
371  * mostly used to synchronize between system wide and per-process
372  */
373 typedef struct {
374 	spinlock_t		pfs_lock;		   /* lock the structure */
375 
376 	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
377 	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
378 	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
379 	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
380 	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
381 } pfm_session_t;
382 
383 /*
384  * information about a PMC or PMD.
385  * dep_pmd[]: a bitmask of dependent PMD registers
386  * dep_pmc[]: a bitmask of dependent PMC registers
387  */
388 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
389 typedef struct {
390 	unsigned int		type;
391 	int			pm_pos;
392 	unsigned long		default_value;	/* power-on default value */
393 	unsigned long		reserved_mask;	/* bitmask of reserved bits */
394 	pfm_reg_check_t		read_check;
395 	pfm_reg_check_t		write_check;
396 	unsigned long		dep_pmd[4];
397 	unsigned long		dep_pmc[4];
398 } pfm_reg_desc_t;
399 
400 /* assume cnum is a valid monitor */
401 #define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
402 
403 /*
404  * This structure is initialized at boot time and contains
405  * a description of the PMU main characteristics.
406  *
407  * If the probe function is defined, detection is based
408  * on its return value:
409  * 	- 0 means recognized PMU
410  * 	- anything else means not supported
411  * When the probe function is not defined, then the pmu_family field
412  * is used and it must match the host CPU family such that:
413  * 	- cpu->family & config->pmu_family != 0
414  */
415 typedef struct {
416 	unsigned long  ovfl_val;	/* overflow value for counters */
417 
418 	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
419 	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
420 
421 	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
422 	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
423 	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
424 	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
425 
426 	char	      *pmu_name;	/* PMU family name */
427 	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
428 	unsigned int  flags;		/* pmu specific flags */
429 	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
430 	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
431 	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
432 	int           (*probe)(void);   /* customized probe routine */
433 	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
434 } pmu_config_t;
435 /*
436  * PMU specific flags
437  */
438 #define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
439 
440 /*
441  * debug register related type definitions
442  */
443 typedef struct {
444 	unsigned long ibr_mask:56;
445 	unsigned long ibr_plm:4;
446 	unsigned long ibr_ig:3;
447 	unsigned long ibr_x:1;
448 } ibr_mask_reg_t;
449 
450 typedef struct {
451 	unsigned long dbr_mask:56;
452 	unsigned long dbr_plm:4;
453 	unsigned long dbr_ig:2;
454 	unsigned long dbr_w:1;
455 	unsigned long dbr_r:1;
456 } dbr_mask_reg_t;
457 
458 typedef union {
459 	unsigned long  val;
460 	ibr_mask_reg_t ibr;
461 	dbr_mask_reg_t dbr;
462 } dbreg_t;
463 
464 
465 /*
466  * perfmon command descriptions
467  */
468 typedef struct {
469 	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
470 	char		*cmd_name;
471 	int		cmd_flags;
472 	unsigned int	cmd_narg;
473 	size_t		cmd_argsize;
474 	int		(*cmd_getsize)(void *arg, size_t *sz);
475 } pfm_cmd_desc_t;
476 
477 #define PFM_CMD_FD		0x01	/* command requires a file descriptor */
478 #define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
479 #define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
480 #define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
481 
482 
483 #define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
484 #define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485 #define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486 #define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487 #define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488 
489 #define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
490 
491 typedef struct {
492 	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
493 	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
494 	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
495 	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
496 	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
497 	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
498 	unsigned long pfm_smpl_handler_calls;
499 	unsigned long pfm_smpl_handler_cycles;
500 	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
501 } pfm_stats_t;
502 
503 /*
504  * perfmon internal variables
505  */
506 static pfm_stats_t		pfm_stats[NR_CPUS];
507 static pfm_session_t		pfm_sessions;	/* global sessions information */
508 
509 static DEFINE_SPINLOCK(pfm_alt_install_check);
510 static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
511 
512 static struct proc_dir_entry 	*perfmon_dir;
513 static pfm_uuid_t		pfm_null_uuid = {0,};
514 
515 static spinlock_t		pfm_buffer_fmt_lock;
516 static LIST_HEAD(pfm_buffer_fmt_list);
517 
518 static pmu_config_t		*pmu_conf;
519 
520 /* sysctl() controls */
521 pfm_sysctl_t pfm_sysctl;
522 EXPORT_SYMBOL(pfm_sysctl);
523 
524 static struct ctl_table pfm_ctl_table[] = {
525 	{
526 		.procname	= "debug",
527 		.data		= &pfm_sysctl.debug,
528 		.maxlen		= sizeof(int),
529 		.mode		= 0666,
530 		.proc_handler	= proc_dointvec,
531 	},
532 	{
533 		.procname	= "debug_ovfl",
534 		.data		= &pfm_sysctl.debug_ovfl,
535 		.maxlen		= sizeof(int),
536 		.mode		= 0666,
537 		.proc_handler	= proc_dointvec,
538 	},
539 	{
540 		.procname	= "fastctxsw",
541 		.data		= &pfm_sysctl.fastctxsw,
542 		.maxlen		= sizeof(int),
543 		.mode		= 0600,
544 		.proc_handler	= proc_dointvec,
545 	},
546 	{
547 		.procname	= "expert_mode",
548 		.data		= &pfm_sysctl.expert_mode,
549 		.maxlen		= sizeof(int),
550 		.mode		= 0600,
551 		.proc_handler	= proc_dointvec,
552 	},
553 	{}
554 };
555 static struct ctl_table pfm_sysctl_dir[] = {
556 	{
557 		.procname	= "perfmon",
558 		.mode		= 0555,
559 		.child		= pfm_ctl_table,
560 	},
561  	{}
562 };
563 static struct ctl_table pfm_sysctl_root[] = {
564 	{
565 		.procname	= "kernel",
566 		.mode		= 0555,
567 		.child		= pfm_sysctl_dir,
568 	},
569  	{}
570 };
571 static struct ctl_table_header *pfm_sysctl_header;
572 
573 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
574 
575 #define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
576 #define pfm_get_cpu_data(a,b)		per_cpu(a, b)
577 
578 static inline void
pfm_put_task(struct task_struct * task)579 pfm_put_task(struct task_struct *task)
580 {
581 	if (task != current) put_task_struct(task);
582 }
583 
584 static inline void
pfm_reserve_page(unsigned long a)585 pfm_reserve_page(unsigned long a)
586 {
587 	SetPageReserved(vmalloc_to_page((void *)a));
588 }
589 static inline void
pfm_unreserve_page(unsigned long a)590 pfm_unreserve_page(unsigned long a)
591 {
592 	ClearPageReserved(vmalloc_to_page((void*)a));
593 }
594 
595 static inline unsigned long
pfm_protect_ctx_ctxsw(pfm_context_t * x)596 pfm_protect_ctx_ctxsw(pfm_context_t *x)
597 {
598 	spin_lock(&(x)->ctx_lock);
599 	return 0UL;
600 }
601 
602 static inline void
pfm_unprotect_ctx_ctxsw(pfm_context_t * x,unsigned long f)603 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
604 {
605 	spin_unlock(&(x)->ctx_lock);
606 }
607 
608 /* forward declaration */
609 static const struct dentry_operations pfmfs_dentry_operations;
610 
611 static struct dentry *
pfmfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)612 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
613 {
614 	return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
615 			PFMFS_MAGIC);
616 }
617 
618 static struct file_system_type pfm_fs_type = {
619 	.name     = "pfmfs",
620 	.mount    = pfmfs_mount,
621 	.kill_sb  = kill_anon_super,
622 };
623 MODULE_ALIAS_FS("pfmfs");
624 
625 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
626 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
627 DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
628 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
629 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
630 
631 
632 /* forward declaration */
633 static const struct file_operations pfm_file_ops;
634 
635 /*
636  * forward declarations
637  */
638 #ifndef CONFIG_SMP
639 static void pfm_lazy_save_regs (struct task_struct *ta);
640 #endif
641 
642 void dump_pmu_state(const char *);
643 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
644 
645 #include "perfmon_itanium.h"
646 #include "perfmon_mckinley.h"
647 #include "perfmon_montecito.h"
648 #include "perfmon_generic.h"
649 
650 static pmu_config_t *pmu_confs[]={
651 	&pmu_conf_mont,
652 	&pmu_conf_mck,
653 	&pmu_conf_ita,
654 	&pmu_conf_gen, /* must be last */
655 	NULL
656 };
657 
658 
659 static int pfm_end_notify_user(pfm_context_t *ctx);
660 
661 static inline void
pfm_clear_psr_pp(void)662 pfm_clear_psr_pp(void)
663 {
664 	ia64_rsm(IA64_PSR_PP);
665 	ia64_srlz_i();
666 }
667 
668 static inline void
pfm_set_psr_pp(void)669 pfm_set_psr_pp(void)
670 {
671 	ia64_ssm(IA64_PSR_PP);
672 	ia64_srlz_i();
673 }
674 
675 static inline void
pfm_clear_psr_up(void)676 pfm_clear_psr_up(void)
677 {
678 	ia64_rsm(IA64_PSR_UP);
679 	ia64_srlz_i();
680 }
681 
682 static inline void
pfm_set_psr_up(void)683 pfm_set_psr_up(void)
684 {
685 	ia64_ssm(IA64_PSR_UP);
686 	ia64_srlz_i();
687 }
688 
689 static inline unsigned long
pfm_get_psr(void)690 pfm_get_psr(void)
691 {
692 	unsigned long tmp;
693 	tmp = ia64_getreg(_IA64_REG_PSR);
694 	ia64_srlz_i();
695 	return tmp;
696 }
697 
698 static inline void
pfm_set_psr_l(unsigned long val)699 pfm_set_psr_l(unsigned long val)
700 {
701 	ia64_setreg(_IA64_REG_PSR_L, val);
702 	ia64_srlz_i();
703 }
704 
705 static inline void
pfm_freeze_pmu(void)706 pfm_freeze_pmu(void)
707 {
708 	ia64_set_pmc(0,1UL);
709 	ia64_srlz_d();
710 }
711 
712 static inline void
pfm_unfreeze_pmu(void)713 pfm_unfreeze_pmu(void)
714 {
715 	ia64_set_pmc(0,0UL);
716 	ia64_srlz_d();
717 }
718 
719 static inline void
pfm_restore_ibrs(unsigned long * ibrs,unsigned int nibrs)720 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
721 {
722 	int i;
723 
724 	for (i=0; i < nibrs; i++) {
725 		ia64_set_ibr(i, ibrs[i]);
726 		ia64_dv_serialize_instruction();
727 	}
728 	ia64_srlz_i();
729 }
730 
731 static inline void
pfm_restore_dbrs(unsigned long * dbrs,unsigned int ndbrs)732 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
733 {
734 	int i;
735 
736 	for (i=0; i < ndbrs; i++) {
737 		ia64_set_dbr(i, dbrs[i]);
738 		ia64_dv_serialize_data();
739 	}
740 	ia64_srlz_d();
741 }
742 
743 /*
744  * PMD[i] must be a counter. no check is made
745  */
746 static inline unsigned long
pfm_read_soft_counter(pfm_context_t * ctx,int i)747 pfm_read_soft_counter(pfm_context_t *ctx, int i)
748 {
749 	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
750 }
751 
752 /*
753  * PMD[i] must be a counter. no check is made
754  */
755 static inline void
pfm_write_soft_counter(pfm_context_t * ctx,int i,unsigned long val)756 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
757 {
758 	unsigned long ovfl_val = pmu_conf->ovfl_val;
759 
760 	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
761 	/*
762 	 * writing to unimplemented part is ignore, so we do not need to
763 	 * mask off top part
764 	 */
765 	ia64_set_pmd(i, val & ovfl_val);
766 }
767 
768 static pfm_msg_t *
pfm_get_new_msg(pfm_context_t * ctx)769 pfm_get_new_msg(pfm_context_t *ctx)
770 {
771 	int idx, next;
772 
773 	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
774 
775 	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
776 	if (next == ctx->ctx_msgq_head) return NULL;
777 
778  	idx = 	ctx->ctx_msgq_tail;
779 	ctx->ctx_msgq_tail = next;
780 
781 	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
782 
783 	return ctx->ctx_msgq+idx;
784 }
785 
786 static pfm_msg_t *
pfm_get_next_msg(pfm_context_t * ctx)787 pfm_get_next_msg(pfm_context_t *ctx)
788 {
789 	pfm_msg_t *msg;
790 
791 	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
792 
793 	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
794 
795 	/*
796 	 * get oldest message
797 	 */
798 	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
799 
800 	/*
801 	 * and move forward
802 	 */
803 	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
804 
805 	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
806 
807 	return msg;
808 }
809 
810 static void
pfm_reset_msgq(pfm_context_t * ctx)811 pfm_reset_msgq(pfm_context_t *ctx)
812 {
813 	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
814 	DPRINT(("ctx=%p msgq reset\n", ctx));
815 }
816 
817 static void *
pfm_rvmalloc(unsigned long size)818 pfm_rvmalloc(unsigned long size)
819 {
820 	void *mem;
821 	unsigned long addr;
822 
823 	size = PAGE_ALIGN(size);
824 	mem  = vzalloc(size);
825 	if (mem) {
826 		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
827 		addr = (unsigned long)mem;
828 		while (size > 0) {
829 			pfm_reserve_page(addr);
830 			addr+=PAGE_SIZE;
831 			size-=PAGE_SIZE;
832 		}
833 	}
834 	return mem;
835 }
836 
837 static void
pfm_rvfree(void * mem,unsigned long size)838 pfm_rvfree(void *mem, unsigned long size)
839 {
840 	unsigned long addr;
841 
842 	if (mem) {
843 		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
844 		addr = (unsigned long) mem;
845 		while ((long) size > 0) {
846 			pfm_unreserve_page(addr);
847 			addr+=PAGE_SIZE;
848 			size-=PAGE_SIZE;
849 		}
850 		vfree(mem);
851 	}
852 	return;
853 }
854 
855 static pfm_context_t *
pfm_context_alloc(int ctx_flags)856 pfm_context_alloc(int ctx_flags)
857 {
858 	pfm_context_t *ctx;
859 
860 	/*
861 	 * allocate context descriptor
862 	 * must be able to free with interrupts disabled
863 	 */
864 	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
865 	if (ctx) {
866 		DPRINT(("alloc ctx @%p\n", ctx));
867 
868 		/*
869 		 * init context protection lock
870 		 */
871 		spin_lock_init(&ctx->ctx_lock);
872 
873 		/*
874 		 * context is unloaded
875 		 */
876 		ctx->ctx_state = PFM_CTX_UNLOADED;
877 
878 		/*
879 		 * initialization of context's flags
880 		 */
881 		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
882 		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
883 		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
884 		/*
885 		 * will move to set properties
886 		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
887 		 */
888 
889 		/*
890 		 * init restart semaphore to locked
891 		 */
892 		init_completion(&ctx->ctx_restart_done);
893 
894 		/*
895 		 * activation is used in SMP only
896 		 */
897 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
898 		SET_LAST_CPU(ctx, -1);
899 
900 		/*
901 		 * initialize notification message queue
902 		 */
903 		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
904 		init_waitqueue_head(&ctx->ctx_msgq_wait);
905 		init_waitqueue_head(&ctx->ctx_zombieq);
906 
907 	}
908 	return ctx;
909 }
910 
911 static void
pfm_context_free(pfm_context_t * ctx)912 pfm_context_free(pfm_context_t *ctx)
913 {
914 	if (ctx) {
915 		DPRINT(("free ctx @%p\n", ctx));
916 		kfree(ctx);
917 	}
918 }
919 
920 static void
pfm_mask_monitoring(struct task_struct * task)921 pfm_mask_monitoring(struct task_struct *task)
922 {
923 	pfm_context_t *ctx = PFM_GET_CTX(task);
924 	unsigned long mask, val, ovfl_mask;
925 	int i;
926 
927 	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
928 
929 	ovfl_mask = pmu_conf->ovfl_val;
930 	/*
931 	 * monitoring can only be masked as a result of a valid
932 	 * counter overflow. In UP, it means that the PMU still
933 	 * has an owner. Note that the owner can be different
934 	 * from the current task. However the PMU state belongs
935 	 * to the owner.
936 	 * In SMP, a valid overflow only happens when task is
937 	 * current. Therefore if we come here, we know that
938 	 * the PMU state belongs to the current task, therefore
939 	 * we can access the live registers.
940 	 *
941 	 * So in both cases, the live register contains the owner's
942 	 * state. We can ONLY touch the PMU registers and NOT the PSR.
943 	 *
944 	 * As a consequence to this call, the ctx->th_pmds[] array
945 	 * contains stale information which must be ignored
946 	 * when context is reloaded AND monitoring is active (see
947 	 * pfm_restart).
948 	 */
949 	mask = ctx->ctx_used_pmds[0];
950 	for (i = 0; mask; i++, mask>>=1) {
951 		/* skip non used pmds */
952 		if ((mask & 0x1) == 0) continue;
953 		val = ia64_get_pmd(i);
954 
955 		if (PMD_IS_COUNTING(i)) {
956 			/*
957 		 	 * we rebuild the full 64 bit value of the counter
958 		 	 */
959 			ctx->ctx_pmds[i].val += (val & ovfl_mask);
960 		} else {
961 			ctx->ctx_pmds[i].val = val;
962 		}
963 		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
964 			i,
965 			ctx->ctx_pmds[i].val,
966 			val & ovfl_mask));
967 	}
968 	/*
969 	 * mask monitoring by setting the privilege level to 0
970 	 * we cannot use psr.pp/psr.up for this, it is controlled by
971 	 * the user
972 	 *
973 	 * if task is current, modify actual registers, otherwise modify
974 	 * thread save state, i.e., what will be restored in pfm_load_regs()
975 	 */
976 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
977 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
978 		if ((mask & 0x1) == 0UL) continue;
979 		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
980 		ctx->th_pmcs[i] &= ~0xfUL;
981 		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
982 	}
983 	/*
984 	 * make all of this visible
985 	 */
986 	ia64_srlz_d();
987 }
988 
989 /*
990  * must always be done with task == current
991  *
992  * context must be in MASKED state when calling
993  */
994 static void
pfm_restore_monitoring(struct task_struct * task)995 pfm_restore_monitoring(struct task_struct *task)
996 {
997 	pfm_context_t *ctx = PFM_GET_CTX(task);
998 	unsigned long mask, ovfl_mask;
999 	unsigned long psr, val;
1000 	int i, is_system;
1001 
1002 	is_system = ctx->ctx_fl_system;
1003 	ovfl_mask = pmu_conf->ovfl_val;
1004 
1005 	if (task != current) {
1006 		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007 		return;
1008 	}
1009 	if (ctx->ctx_state != PFM_CTX_MASKED) {
1010 		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011 			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012 		return;
1013 	}
1014 	psr = pfm_get_psr();
1015 	/*
1016 	 * monitoring is masked via the PMC.
1017 	 * As we restore their value, we do not want each counter to
1018 	 * restart right away. We stop monitoring using the PSR,
1019 	 * restore the PMC (and PMD) and then re-establish the psr
1020 	 * as it was. Note that there can be no pending overflow at
1021 	 * this point, because monitoring was MASKED.
1022 	 *
1023 	 * system-wide session are pinned and self-monitoring
1024 	 */
1025 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026 		/* disable dcr pp */
1027 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028 		pfm_clear_psr_pp();
1029 	} else {
1030 		pfm_clear_psr_up();
1031 	}
1032 	/*
1033 	 * first, we restore the PMD
1034 	 */
1035 	mask = ctx->ctx_used_pmds[0];
1036 	for (i = 0; mask; i++, mask>>=1) {
1037 		/* skip non used pmds */
1038 		if ((mask & 0x1) == 0) continue;
1039 
1040 		if (PMD_IS_COUNTING(i)) {
1041 			/*
1042 			 * we split the 64bit value according to
1043 			 * counter width
1044 			 */
1045 			val = ctx->ctx_pmds[i].val & ovfl_mask;
1046 			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047 		} else {
1048 			val = ctx->ctx_pmds[i].val;
1049 		}
1050 		ia64_set_pmd(i, val);
1051 
1052 		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1053 			i,
1054 			ctx->ctx_pmds[i].val,
1055 			val));
1056 	}
1057 	/*
1058 	 * restore the PMCs
1059 	 */
1060 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062 		if ((mask & 0x1) == 0UL) continue;
1063 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064 		ia64_set_pmc(i, ctx->th_pmcs[i]);
1065 		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066 					task_pid_nr(task), i, ctx->th_pmcs[i]));
1067 	}
1068 	ia64_srlz_d();
1069 
1070 	/*
1071 	 * must restore DBR/IBR because could be modified while masked
1072 	 * XXX: need to optimize
1073 	 */
1074 	if (ctx->ctx_fl_using_dbreg) {
1075 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1077 	}
1078 
1079 	/*
1080 	 * now restore PSR
1081 	 */
1082 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083 		/* enable dcr pp */
1084 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085 		ia64_srlz_i();
1086 	}
1087 	pfm_set_psr_l(psr);
1088 }
1089 
1090 static inline void
pfm_save_pmds(unsigned long * pmds,unsigned long mask)1091 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1092 {
1093 	int i;
1094 
1095 	ia64_srlz_d();
1096 
1097 	for (i=0; mask; i++, mask>>=1) {
1098 		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1099 	}
1100 }
1101 
1102 /*
1103  * reload from thread state (used for ctxw only)
1104  */
1105 static inline void
pfm_restore_pmds(unsigned long * pmds,unsigned long mask)1106 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1107 {
1108 	int i;
1109 	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1110 
1111 	for (i=0; mask; i++, mask>>=1) {
1112 		if ((mask & 0x1) == 0) continue;
1113 		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114 		ia64_set_pmd(i, val);
1115 	}
1116 	ia64_srlz_d();
1117 }
1118 
1119 /*
1120  * propagate PMD from context to thread-state
1121  */
1122 static inline void
pfm_copy_pmds(struct task_struct * task,pfm_context_t * ctx)1123 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1124 {
1125 	unsigned long ovfl_val = pmu_conf->ovfl_val;
1126 	unsigned long mask = ctx->ctx_all_pmds[0];
1127 	unsigned long val;
1128 	int i;
1129 
1130 	DPRINT(("mask=0x%lx\n", mask));
1131 
1132 	for (i=0; mask; i++, mask>>=1) {
1133 
1134 		val = ctx->ctx_pmds[i].val;
1135 
1136 		/*
1137 		 * We break up the 64 bit value into 2 pieces
1138 		 * the lower bits go to the machine state in the
1139 		 * thread (will be reloaded on ctxsw in).
1140 		 * The upper part stays in the soft-counter.
1141 		 */
1142 		if (PMD_IS_COUNTING(i)) {
1143 			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144 			 val &= ovfl_val;
1145 		}
1146 		ctx->th_pmds[i] = val;
1147 
1148 		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1149 			i,
1150 			ctx->th_pmds[i],
1151 			ctx->ctx_pmds[i].val));
1152 	}
1153 }
1154 
1155 /*
1156  * propagate PMC from context to thread-state
1157  */
1158 static inline void
pfm_copy_pmcs(struct task_struct * task,pfm_context_t * ctx)1159 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1160 {
1161 	unsigned long mask = ctx->ctx_all_pmcs[0];
1162 	int i;
1163 
1164 	DPRINT(("mask=0x%lx\n", mask));
1165 
1166 	for (i=0; mask; i++, mask>>=1) {
1167 		/* masking 0 with ovfl_val yields 0 */
1168 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1170 	}
1171 }
1172 
1173 
1174 
1175 static inline void
pfm_restore_pmcs(unsigned long * pmcs,unsigned long mask)1176 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1177 {
1178 	int i;
1179 
1180 	for (i=0; mask; i++, mask>>=1) {
1181 		if ((mask & 0x1) == 0) continue;
1182 		ia64_set_pmc(i, pmcs[i]);
1183 	}
1184 	ia64_srlz_d();
1185 }
1186 
1187 static inline int
pfm_uuid_cmp(pfm_uuid_t a,pfm_uuid_t b)1188 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1189 {
1190 	return memcmp(a, b, sizeof(pfm_uuid_t));
1191 }
1192 
1193 static inline int
pfm_buf_fmt_exit(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,struct pt_regs * regs)1194 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1195 {
1196 	int ret = 0;
1197 	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198 	return ret;
1199 }
1200 
1201 static inline int
pfm_buf_fmt_getsize(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg,unsigned long * size)1202 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1203 {
1204 	int ret = 0;
1205 	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206 	return ret;
1207 }
1208 
1209 
1210 static inline int
pfm_buf_fmt_validate(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg)1211 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212 		     int cpu, void *arg)
1213 {
1214 	int ret = 0;
1215 	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216 	return ret;
1217 }
1218 
1219 static inline int
pfm_buf_fmt_init(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,unsigned int flags,int cpu,void * arg)1220 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221 		     int cpu, void *arg)
1222 {
1223 	int ret = 0;
1224 	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225 	return ret;
1226 }
1227 
1228 static inline int
pfm_buf_fmt_restart(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1229 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1230 {
1231 	int ret = 0;
1232 	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233 	return ret;
1234 }
1235 
1236 static inline int
pfm_buf_fmt_restart_active(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1237 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1238 {
1239 	int ret = 0;
1240 	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241 	return ret;
1242 }
1243 
1244 static pfm_buffer_fmt_t *
__pfm_find_buffer_fmt(pfm_uuid_t uuid)1245 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1246 {
1247 	struct list_head * pos;
1248 	pfm_buffer_fmt_t * entry;
1249 
1250 	list_for_each(pos, &pfm_buffer_fmt_list) {
1251 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252 		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253 			return entry;
1254 	}
1255 	return NULL;
1256 }
1257 
1258 /*
1259  * find a buffer format based on its uuid
1260  */
1261 static pfm_buffer_fmt_t *
pfm_find_buffer_fmt(pfm_uuid_t uuid)1262 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1263 {
1264 	pfm_buffer_fmt_t * fmt;
1265 	spin_lock(&pfm_buffer_fmt_lock);
1266 	fmt = __pfm_find_buffer_fmt(uuid);
1267 	spin_unlock(&pfm_buffer_fmt_lock);
1268 	return fmt;
1269 }
1270 
1271 int
pfm_register_buffer_fmt(pfm_buffer_fmt_t * fmt)1272 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1273 {
1274 	int ret = 0;
1275 
1276 	/* some sanity checks */
1277 	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1278 
1279 	/* we need at least a handler */
1280 	if (fmt->fmt_handler == NULL) return -EINVAL;
1281 
1282 	/*
1283 	 * XXX: need check validity of fmt_arg_size
1284 	 */
1285 
1286 	spin_lock(&pfm_buffer_fmt_lock);
1287 
1288 	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289 		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290 		ret = -EBUSY;
1291 		goto out;
1292 	}
1293 	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294 	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1295 
1296 out:
1297 	spin_unlock(&pfm_buffer_fmt_lock);
1298  	return ret;
1299 }
1300 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301 
1302 int
pfm_unregister_buffer_fmt(pfm_uuid_t uuid)1303 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1304 {
1305 	pfm_buffer_fmt_t *fmt;
1306 	int ret = 0;
1307 
1308 	spin_lock(&pfm_buffer_fmt_lock);
1309 
1310 	fmt = __pfm_find_buffer_fmt(uuid);
1311 	if (!fmt) {
1312 		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313 		ret = -EINVAL;
1314 		goto out;
1315 	}
1316 	list_del_init(&fmt->fmt_list);
1317 	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1318 
1319 out:
1320 	spin_unlock(&pfm_buffer_fmt_lock);
1321 	return ret;
1322 
1323 }
1324 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1325 
1326 static int
pfm_reserve_session(struct task_struct * task,int is_syswide,unsigned int cpu)1327 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328 {
1329 	unsigned long flags;
1330 	/*
1331 	 * validity checks on cpu_mask have been done upstream
1332 	 */
1333 	LOCK_PFS(flags);
1334 
1335 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336 		pfm_sessions.pfs_sys_sessions,
1337 		pfm_sessions.pfs_task_sessions,
1338 		pfm_sessions.pfs_sys_use_dbregs,
1339 		is_syswide,
1340 		cpu));
1341 
1342 	if (is_syswide) {
1343 		/*
1344 		 * cannot mix system wide and per-task sessions
1345 		 */
1346 		if (pfm_sessions.pfs_task_sessions > 0UL) {
1347 			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348 			  	pfm_sessions.pfs_task_sessions));
1349 			goto abort;
1350 		}
1351 
1352 		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353 
1354 		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355 
1356 		pfm_sessions.pfs_sys_session[cpu] = task;
1357 
1358 		pfm_sessions.pfs_sys_sessions++ ;
1359 
1360 	} else {
1361 		if (pfm_sessions.pfs_sys_sessions) goto abort;
1362 		pfm_sessions.pfs_task_sessions++;
1363 	}
1364 
1365 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366 		pfm_sessions.pfs_sys_sessions,
1367 		pfm_sessions.pfs_task_sessions,
1368 		pfm_sessions.pfs_sys_use_dbregs,
1369 		is_syswide,
1370 		cpu));
1371 
1372 	/*
1373 	 * Force idle() into poll mode
1374 	 */
1375 	cpu_idle_poll_ctrl(true);
1376 
1377 	UNLOCK_PFS(flags);
1378 
1379 	return 0;
1380 
1381 error_conflict:
1382 	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383   		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384 		cpu));
1385 abort:
1386 	UNLOCK_PFS(flags);
1387 
1388 	return -EBUSY;
1389 
1390 }
1391 
1392 static int
pfm_unreserve_session(pfm_context_t * ctx,int is_syswide,unsigned int cpu)1393 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394 {
1395 	unsigned long flags;
1396 	/*
1397 	 * validity checks on cpu_mask have been done upstream
1398 	 */
1399 	LOCK_PFS(flags);
1400 
1401 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 		pfm_sessions.pfs_sys_sessions,
1403 		pfm_sessions.pfs_task_sessions,
1404 		pfm_sessions.pfs_sys_use_dbregs,
1405 		is_syswide,
1406 		cpu));
1407 
1408 
1409 	if (is_syswide) {
1410 		pfm_sessions.pfs_sys_session[cpu] = NULL;
1411 		/*
1412 		 * would not work with perfmon+more than one bit in cpu_mask
1413 		 */
1414 		if (ctx && ctx->ctx_fl_using_dbreg) {
1415 			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416 				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417 			} else {
1418 				pfm_sessions.pfs_sys_use_dbregs--;
1419 			}
1420 		}
1421 		pfm_sessions.pfs_sys_sessions--;
1422 	} else {
1423 		pfm_sessions.pfs_task_sessions--;
1424 	}
1425 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426 		pfm_sessions.pfs_sys_sessions,
1427 		pfm_sessions.pfs_task_sessions,
1428 		pfm_sessions.pfs_sys_use_dbregs,
1429 		is_syswide,
1430 		cpu));
1431 
1432 	/* Undo forced polling. Last session reenables pal_halt */
1433 	cpu_idle_poll_ctrl(false);
1434 
1435 	UNLOCK_PFS(flags);
1436 
1437 	return 0;
1438 }
1439 
1440 /*
1441  * removes virtual mapping of the sampling buffer.
1442  * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443  * a PROTECT_CTX() section.
1444  */
1445 static int
pfm_remove_smpl_mapping(void * vaddr,unsigned long size)1446 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1447 {
1448 	struct task_struct *task = current;
1449 	int r;
1450 
1451 	/* sanity checks */
1452 	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453 		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454 		return -EINVAL;
1455 	}
1456 
1457 	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1458 
1459 	/*
1460 	 * does the actual unmapping
1461 	 */
1462 	r = vm_munmap((unsigned long)vaddr, size);
1463 
1464 	if (r !=0) {
1465 		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1466 	}
1467 
1468 	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1469 
1470 	return 0;
1471 }
1472 
1473 /*
1474  * free actual physical storage used by sampling buffer
1475  */
1476 #if 0
1477 static int
1478 pfm_free_smpl_buffer(pfm_context_t *ctx)
1479 {
1480 	pfm_buffer_fmt_t *fmt;
1481 
1482 	if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483 
1484 	/*
1485 	 * we won't use the buffer format anymore
1486 	 */
1487 	fmt = ctx->ctx_buf_fmt;
1488 
1489 	DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490 		ctx->ctx_smpl_hdr,
1491 		ctx->ctx_smpl_size,
1492 		ctx->ctx_smpl_vaddr));
1493 
1494 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1495 
1496 	/*
1497 	 * free the buffer
1498 	 */
1499 	pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1500 
1501 	ctx->ctx_smpl_hdr  = NULL;
1502 	ctx->ctx_smpl_size = 0UL;
1503 
1504 	return 0;
1505 
1506 invalid_free:
1507 	printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508 	return -EINVAL;
1509 }
1510 #endif
1511 
1512 static inline void
pfm_exit_smpl_buffer(pfm_buffer_fmt_t * fmt)1513 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1514 {
1515 	if (fmt == NULL) return;
1516 
1517 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1518 
1519 }
1520 
1521 /*
1522  * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523  * no real gain from having the whole whorehouse mounted. So we don't need
1524  * any operations on the root directory. However, we need a non-trivial
1525  * d_name - pfm: will go nicely and kill the special-casing in procfs.
1526  */
1527 static struct vfsmount *pfmfs_mnt __read_mostly;
1528 
1529 static int __init
init_pfm_fs(void)1530 init_pfm_fs(void)
1531 {
1532 	int err = register_filesystem(&pfm_fs_type);
1533 	if (!err) {
1534 		pfmfs_mnt = kern_mount(&pfm_fs_type);
1535 		err = PTR_ERR(pfmfs_mnt);
1536 		if (IS_ERR(pfmfs_mnt))
1537 			unregister_filesystem(&pfm_fs_type);
1538 		else
1539 			err = 0;
1540 	}
1541 	return err;
1542 }
1543 
1544 static ssize_t
pfm_read(struct file * filp,char __user * buf,size_t size,loff_t * ppos)1545 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1546 {
1547 	pfm_context_t *ctx;
1548 	pfm_msg_t *msg;
1549 	ssize_t ret;
1550 	unsigned long flags;
1551   	DECLARE_WAITQUEUE(wait, current);
1552 	if (PFM_IS_FILE(filp) == 0) {
1553 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554 		return -EINVAL;
1555 	}
1556 
1557 	ctx = filp->private_data;
1558 	if (ctx == NULL) {
1559 		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560 		return -EINVAL;
1561 	}
1562 
1563 	/*
1564 	 * check even when there is no message
1565 	 */
1566 	if (size < sizeof(pfm_msg_t)) {
1567 		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568 		return -EINVAL;
1569 	}
1570 
1571 	PROTECT_CTX(ctx, flags);
1572 
1573   	/*
1574 	 * put ourselves on the wait queue
1575 	 */
1576   	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577 
1578 
1579   	for(;;) {
1580 		/*
1581 		 * check wait queue
1582 		 */
1583 
1584   		set_current_state(TASK_INTERRUPTIBLE);
1585 
1586 		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1587 
1588 		ret = 0;
1589 		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1590 
1591 		UNPROTECT_CTX(ctx, flags);
1592 
1593 		/*
1594 		 * check non-blocking read
1595 		 */
1596       		ret = -EAGAIN;
1597 		if(filp->f_flags & O_NONBLOCK) break;
1598 
1599 		/*
1600 		 * check pending signals
1601 		 */
1602 		if(signal_pending(current)) {
1603 			ret = -EINTR;
1604 			break;
1605 		}
1606       		/*
1607 		 * no message, so wait
1608 		 */
1609       		schedule();
1610 
1611 		PROTECT_CTX(ctx, flags);
1612 	}
1613 	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614   	set_current_state(TASK_RUNNING);
1615 	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1616 
1617 	if (ret < 0) goto abort;
1618 
1619 	ret = -EINVAL;
1620 	msg = pfm_get_next_msg(ctx);
1621 	if (msg == NULL) {
1622 		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623 		goto abort_locked;
1624 	}
1625 
1626 	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1627 
1628 	ret = -EFAULT;
1629   	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1630 
1631 abort_locked:
1632 	UNPROTECT_CTX(ctx, flags);
1633 abort:
1634 	return ret;
1635 }
1636 
1637 static ssize_t
pfm_write(struct file * file,const char __user * ubuf,size_t size,loff_t * ppos)1638 pfm_write(struct file *file, const char __user *ubuf,
1639 			  size_t size, loff_t *ppos)
1640 {
1641 	DPRINT(("pfm_write called\n"));
1642 	return -EINVAL;
1643 }
1644 
1645 static unsigned int
pfm_poll(struct file * filp,poll_table * wait)1646 pfm_poll(struct file *filp, poll_table * wait)
1647 {
1648 	pfm_context_t *ctx;
1649 	unsigned long flags;
1650 	unsigned int mask = 0;
1651 
1652 	if (PFM_IS_FILE(filp) == 0) {
1653 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654 		return 0;
1655 	}
1656 
1657 	ctx = filp->private_data;
1658 	if (ctx == NULL) {
1659 		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660 		return 0;
1661 	}
1662 
1663 
1664 	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1665 
1666 	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1667 
1668 	PROTECT_CTX(ctx, flags);
1669 
1670 	if (PFM_CTXQ_EMPTY(ctx) == 0)
1671 		mask =  POLLIN | POLLRDNORM;
1672 
1673 	UNPROTECT_CTX(ctx, flags);
1674 
1675 	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1676 
1677 	return mask;
1678 }
1679 
1680 static long
pfm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1681 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682 {
1683 	DPRINT(("pfm_ioctl called\n"));
1684 	return -EINVAL;
1685 }
1686 
1687 /*
1688  * interrupt cannot be masked when coming here
1689  */
1690 static inline int
pfm_do_fasync(int fd,struct file * filp,pfm_context_t * ctx,int on)1691 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692 {
1693 	int ret;
1694 
1695 	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1696 
1697 	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698 		task_pid_nr(current),
1699 		fd,
1700 		on,
1701 		ctx->ctx_async_queue, ret));
1702 
1703 	return ret;
1704 }
1705 
1706 static int
pfm_fasync(int fd,struct file * filp,int on)1707 pfm_fasync(int fd, struct file *filp, int on)
1708 {
1709 	pfm_context_t *ctx;
1710 	int ret;
1711 
1712 	if (PFM_IS_FILE(filp) == 0) {
1713 		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714 		return -EBADF;
1715 	}
1716 
1717 	ctx = filp->private_data;
1718 	if (ctx == NULL) {
1719 		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720 		return -EBADF;
1721 	}
1722 	/*
1723 	 * we cannot mask interrupts during this call because this may
1724 	 * may go to sleep if memory is not readily avalaible.
1725 	 *
1726 	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727 	 * done in caller. Serialization of this function is ensured by caller.
1728 	 */
1729 	ret = pfm_do_fasync(fd, filp, ctx, on);
1730 
1731 
1732 	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733 		fd,
1734 		on,
1735 		ctx->ctx_async_queue, ret));
1736 
1737 	return ret;
1738 }
1739 
1740 #ifdef CONFIG_SMP
1741 /*
1742  * this function is exclusively called from pfm_close().
1743  * The context is not protected at that time, nor are interrupts
1744  * on the remote CPU. That's necessary to avoid deadlocks.
1745  */
1746 static void
pfm_syswide_force_stop(void * info)1747 pfm_syswide_force_stop(void *info)
1748 {
1749 	pfm_context_t   *ctx = (pfm_context_t *)info;
1750 	struct pt_regs *regs = task_pt_regs(current);
1751 	struct task_struct *owner;
1752 	unsigned long flags;
1753 	int ret;
1754 
1755 	if (ctx->ctx_cpu != smp_processor_id()) {
1756 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1757 			ctx->ctx_cpu,
1758 			smp_processor_id());
1759 		return;
1760 	}
1761 	owner = GET_PMU_OWNER();
1762 	if (owner != ctx->ctx_task) {
1763 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764 			smp_processor_id(),
1765 			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766 		return;
1767 	}
1768 	if (GET_PMU_CTX() != ctx) {
1769 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770 			smp_processor_id(),
1771 			GET_PMU_CTX(), ctx);
1772 		return;
1773 	}
1774 
1775 	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1776 	/*
1777 	 * the context is already protected in pfm_close(), we simply
1778 	 * need to mask interrupts to avoid a PMU interrupt race on
1779 	 * this CPU
1780 	 */
1781 	local_irq_save(flags);
1782 
1783 	ret = pfm_context_unload(ctx, NULL, 0, regs);
1784 	if (ret) {
1785 		DPRINT(("context_unload returned %d\n", ret));
1786 	}
1787 
1788 	/*
1789 	 * unmask interrupts, PMU interrupts are now spurious here
1790 	 */
1791 	local_irq_restore(flags);
1792 }
1793 
1794 static void
pfm_syswide_cleanup_other_cpu(pfm_context_t * ctx)1795 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796 {
1797 	int ret;
1798 
1799 	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800 	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801 	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1802 }
1803 #endif /* CONFIG_SMP */
1804 
1805 /*
1806  * called for each close(). Partially free resources.
1807  * When caller is self-monitoring, the context is unloaded.
1808  */
1809 static int
pfm_flush(struct file * filp,fl_owner_t id)1810 pfm_flush(struct file *filp, fl_owner_t id)
1811 {
1812 	pfm_context_t *ctx;
1813 	struct task_struct *task;
1814 	struct pt_regs *regs;
1815 	unsigned long flags;
1816 	unsigned long smpl_buf_size = 0UL;
1817 	void *smpl_buf_vaddr = NULL;
1818 	int state, is_system;
1819 
1820 	if (PFM_IS_FILE(filp) == 0) {
1821 		DPRINT(("bad magic for\n"));
1822 		return -EBADF;
1823 	}
1824 
1825 	ctx = filp->private_data;
1826 	if (ctx == NULL) {
1827 		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828 		return -EBADF;
1829 	}
1830 
1831 	/*
1832 	 * remove our file from the async queue, if we use this mode.
1833 	 * This can be done without the context being protected. We come
1834 	 * here when the context has become unreachable by other tasks.
1835 	 *
1836 	 * We may still have active monitoring at this point and we may
1837 	 * end up in pfm_overflow_handler(). However, fasync_helper()
1838 	 * operates with interrupts disabled and it cleans up the
1839 	 * queue. If the PMU handler is called prior to entering
1840 	 * fasync_helper() then it will send a signal. If it is
1841 	 * invoked after, it will find an empty queue and no
1842 	 * signal will be sent. In both case, we are safe
1843 	 */
1844 	PROTECT_CTX(ctx, flags);
1845 
1846 	state     = ctx->ctx_state;
1847 	is_system = ctx->ctx_fl_system;
1848 
1849 	task = PFM_CTX_TASK(ctx);
1850 	regs = task_pt_regs(task);
1851 
1852 	DPRINT(("ctx_state=%d is_current=%d\n",
1853 		state,
1854 		task == current ? 1 : 0));
1855 
1856 	/*
1857 	 * if state == UNLOADED, then task is NULL
1858 	 */
1859 
1860 	/*
1861 	 * we must stop and unload because we are losing access to the context.
1862 	 */
1863 	if (task == current) {
1864 #ifdef CONFIG_SMP
1865 		/*
1866 		 * the task IS the owner but it migrated to another CPU: that's bad
1867 		 * but we must handle this cleanly. Unfortunately, the kernel does
1868 		 * not provide a mechanism to block migration (while the context is loaded).
1869 		 *
1870 		 * We need to release the resource on the ORIGINAL cpu.
1871 		 */
1872 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1873 
1874 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1875 			/*
1876 			 * keep context protected but unmask interrupt for IPI
1877 			 */
1878 			local_irq_restore(flags);
1879 
1880 			pfm_syswide_cleanup_other_cpu(ctx);
1881 
1882 			/*
1883 			 * restore interrupt masking
1884 			 */
1885 			local_irq_save(flags);
1886 
1887 			/*
1888 			 * context is unloaded at this point
1889 			 */
1890 		} else
1891 #endif /* CONFIG_SMP */
1892 		{
1893 
1894 			DPRINT(("forcing unload\n"));
1895 			/*
1896 		 	* stop and unload, returning with state UNLOADED
1897 		 	* and session unreserved.
1898 		 	*/
1899 			pfm_context_unload(ctx, NULL, 0, regs);
1900 
1901 			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1902 		}
1903 	}
1904 
1905 	/*
1906 	 * remove virtual mapping, if any, for the calling task.
1907 	 * cannot reset ctx field until last user is calling close().
1908 	 *
1909 	 * ctx_smpl_vaddr must never be cleared because it is needed
1910 	 * by every task with access to the context
1911 	 *
1912 	 * When called from do_exit(), the mm context is gone already, therefore
1913 	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1914 	 * do anything here
1915 	 */
1916 	if (ctx->ctx_smpl_vaddr && current->mm) {
1917 		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918 		smpl_buf_size  = ctx->ctx_smpl_size;
1919 	}
1920 
1921 	UNPROTECT_CTX(ctx, flags);
1922 
1923 	/*
1924 	 * if there was a mapping, then we systematically remove it
1925 	 * at this point. Cannot be done inside critical section
1926 	 * because some VM function reenables interrupts.
1927 	 *
1928 	 */
1929 	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1930 
1931 	return 0;
1932 }
1933 /*
1934  * called either on explicit close() or from exit_files().
1935  * Only the LAST user of the file gets to this point, i.e., it is
1936  * called only ONCE.
1937  *
1938  * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1939  * (fput()),i.e, last task to access the file. Nobody else can access the
1940  * file at this point.
1941  *
1942  * When called from exit_files(), the VMA has been freed because exit_mm()
1943  * is executed before exit_files().
1944  *
1945  * When called from exit_files(), the current task is not yet ZOMBIE but we
1946  * flush the PMU state to the context.
1947  */
1948 static int
pfm_close(struct inode * inode,struct file * filp)1949 pfm_close(struct inode *inode, struct file *filp)
1950 {
1951 	pfm_context_t *ctx;
1952 	struct task_struct *task;
1953 	struct pt_regs *regs;
1954   	DECLARE_WAITQUEUE(wait, current);
1955 	unsigned long flags;
1956 	unsigned long smpl_buf_size = 0UL;
1957 	void *smpl_buf_addr = NULL;
1958 	int free_possible = 1;
1959 	int state, is_system;
1960 
1961 	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1962 
1963 	if (PFM_IS_FILE(filp) == 0) {
1964 		DPRINT(("bad magic\n"));
1965 		return -EBADF;
1966 	}
1967 
1968 	ctx = filp->private_data;
1969 	if (ctx == NULL) {
1970 		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971 		return -EBADF;
1972 	}
1973 
1974 	PROTECT_CTX(ctx, flags);
1975 
1976 	state     = ctx->ctx_state;
1977 	is_system = ctx->ctx_fl_system;
1978 
1979 	task = PFM_CTX_TASK(ctx);
1980 	regs = task_pt_regs(task);
1981 
1982 	DPRINT(("ctx_state=%d is_current=%d\n",
1983 		state,
1984 		task == current ? 1 : 0));
1985 
1986 	/*
1987 	 * if task == current, then pfm_flush() unloaded the context
1988 	 */
1989 	if (state == PFM_CTX_UNLOADED) goto doit;
1990 
1991 	/*
1992 	 * context is loaded/masked and task != current, we need to
1993 	 * either force an unload or go zombie
1994 	 */
1995 
1996 	/*
1997 	 * The task is currently blocked or will block after an overflow.
1998 	 * we must force it to wakeup to get out of the
1999 	 * MASKED state and transition to the unloaded state by itself.
2000 	 *
2001 	 * This situation is only possible for per-task mode
2002 	 */
2003 	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2004 
2005 		/*
2006 		 * set a "partial" zombie state to be checked
2007 		 * upon return from down() in pfm_handle_work().
2008 		 *
2009 		 * We cannot use the ZOMBIE state, because it is checked
2010 		 * by pfm_load_regs() which is called upon wakeup from down().
2011 		 * In such case, it would free the context and then we would
2012 		 * return to pfm_handle_work() which would access the
2013 		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014 		 * but visible to pfm_handle_work().
2015 		 *
2016 		 * For some window of time, we have a zombie context with
2017 		 * ctx_state = MASKED  and not ZOMBIE
2018 		 */
2019 		ctx->ctx_fl_going_zombie = 1;
2020 
2021 		/*
2022 		 * force task to wake up from MASKED state
2023 		 */
2024 		complete(&ctx->ctx_restart_done);
2025 
2026 		DPRINT(("waking up ctx_state=%d\n", state));
2027 
2028 		/*
2029 		 * put ourself to sleep waiting for the other
2030 		 * task to report completion
2031 		 *
2032 		 * the context is protected by mutex, therefore there
2033 		 * is no risk of being notified of completion before
2034 		 * begin actually on the waitq.
2035 		 */
2036   		set_current_state(TASK_INTERRUPTIBLE);
2037   		add_wait_queue(&ctx->ctx_zombieq, &wait);
2038 
2039 		UNPROTECT_CTX(ctx, flags);
2040 
2041 		/*
2042 		 * XXX: check for signals :
2043 		 * 	- ok for explicit close
2044 		 * 	- not ok when coming from exit_files()
2045 		 */
2046       		schedule();
2047 
2048 
2049 		PROTECT_CTX(ctx, flags);
2050 
2051 
2052 		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053   		set_current_state(TASK_RUNNING);
2054 
2055 		/*
2056 		 * context is unloaded at this point
2057 		 */
2058 		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2059 	}
2060 	else if (task != current) {
2061 #ifdef CONFIG_SMP
2062 		/*
2063 	 	 * switch context to zombie state
2064 	 	 */
2065 		ctx->ctx_state = PFM_CTX_ZOMBIE;
2066 
2067 		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2068 		/*
2069 		 * cannot free the context on the spot. deferred until
2070 		 * the task notices the ZOMBIE state
2071 		 */
2072 		free_possible = 0;
2073 #else
2074 		pfm_context_unload(ctx, NULL, 0, regs);
2075 #endif
2076 	}
2077 
2078 doit:
2079 	/* reload state, may have changed during  opening of critical section */
2080 	state = ctx->ctx_state;
2081 
2082 	/*
2083 	 * the context is still attached to a task (possibly current)
2084 	 * we cannot destroy it right now
2085 	 */
2086 
2087 	/*
2088 	 * we must free the sampling buffer right here because
2089 	 * we cannot rely on it being cleaned up later by the
2090 	 * monitored task. It is not possible to free vmalloc'ed
2091 	 * memory in pfm_load_regs(). Instead, we remove the buffer
2092 	 * now. should there be subsequent PMU overflow originally
2093 	 * meant for sampling, the will be converted to spurious
2094 	 * and that's fine because the monitoring tools is gone anyway.
2095 	 */
2096 	if (ctx->ctx_smpl_hdr) {
2097 		smpl_buf_addr = ctx->ctx_smpl_hdr;
2098 		smpl_buf_size = ctx->ctx_smpl_size;
2099 		/* no more sampling */
2100 		ctx->ctx_smpl_hdr = NULL;
2101 		ctx->ctx_fl_is_sampling = 0;
2102 	}
2103 
2104 	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105 		state,
2106 		free_possible,
2107 		smpl_buf_addr,
2108 		smpl_buf_size));
2109 
2110 	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2111 
2112 	/*
2113 	 * UNLOADED that the session has already been unreserved.
2114 	 */
2115 	if (state == PFM_CTX_ZOMBIE) {
2116 		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2117 	}
2118 
2119 	/*
2120 	 * disconnect file descriptor from context must be done
2121 	 * before we unlock.
2122 	 */
2123 	filp->private_data = NULL;
2124 
2125 	/*
2126 	 * if we free on the spot, the context is now completely unreachable
2127 	 * from the callers side. The monitored task side is also cut, so we
2128 	 * can freely cut.
2129 	 *
2130 	 * If we have a deferred free, only the caller side is disconnected.
2131 	 */
2132 	UNPROTECT_CTX(ctx, flags);
2133 
2134 	/*
2135 	 * All memory free operations (especially for vmalloc'ed memory)
2136 	 * MUST be done with interrupts ENABLED.
2137 	 */
2138 	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2139 
2140 	/*
2141 	 * return the memory used by the context
2142 	 */
2143 	if (free_possible) pfm_context_free(ctx);
2144 
2145 	return 0;
2146 }
2147 
2148 static const struct file_operations pfm_file_ops = {
2149 	.llseek		= no_llseek,
2150 	.read		= pfm_read,
2151 	.write		= pfm_write,
2152 	.poll		= pfm_poll,
2153 	.unlocked_ioctl = pfm_ioctl,
2154 	.fasync		= pfm_fasync,
2155 	.release	= pfm_close,
2156 	.flush		= pfm_flush
2157 };
2158 
pfmfs_dname(struct dentry * dentry,char * buffer,int buflen)2159 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2160 {
2161 	return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2162 			     d_inode(dentry)->i_ino);
2163 }
2164 
2165 static const struct dentry_operations pfmfs_dentry_operations = {
2166 	.d_delete = always_delete_dentry,
2167 	.d_dname = pfmfs_dname,
2168 };
2169 
2170 
2171 static struct file *
pfm_alloc_file(pfm_context_t * ctx)2172 pfm_alloc_file(pfm_context_t *ctx)
2173 {
2174 	struct file *file;
2175 	struct inode *inode;
2176 	struct path path;
2177 	struct qstr this = { .name = "" };
2178 
2179 	/*
2180 	 * allocate a new inode
2181 	 */
2182 	inode = new_inode(pfmfs_mnt->mnt_sb);
2183 	if (!inode)
2184 		return ERR_PTR(-ENOMEM);
2185 
2186 	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2187 
2188 	inode->i_mode = S_IFCHR|S_IRUGO;
2189 	inode->i_uid  = current_fsuid();
2190 	inode->i_gid  = current_fsgid();
2191 
2192 	/*
2193 	 * allocate a new dcache entry
2194 	 */
2195 	path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2196 	if (!path.dentry) {
2197 		iput(inode);
2198 		return ERR_PTR(-ENOMEM);
2199 	}
2200 	path.mnt = mntget(pfmfs_mnt);
2201 
2202 	d_add(path.dentry, inode);
2203 
2204 	file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2205 	if (IS_ERR(file)) {
2206 		path_put(&path);
2207 		return file;
2208 	}
2209 
2210 	file->f_flags = O_RDONLY;
2211 	file->private_data = ctx;
2212 
2213 	return file;
2214 }
2215 
2216 static int
pfm_remap_buffer(struct vm_area_struct * vma,unsigned long buf,unsigned long addr,unsigned long size)2217 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2218 {
2219 	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2220 
2221 	while (size > 0) {
2222 		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2223 
2224 
2225 		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2226 			return -ENOMEM;
2227 
2228 		addr  += PAGE_SIZE;
2229 		buf   += PAGE_SIZE;
2230 		size  -= PAGE_SIZE;
2231 	}
2232 	return 0;
2233 }
2234 
2235 /*
2236  * allocate a sampling buffer and remaps it into the user address space of the task
2237  */
2238 static int
pfm_smpl_buffer_alloc(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned long rsize,void ** user_vaddr)2239 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2240 {
2241 	struct mm_struct *mm = task->mm;
2242 	struct vm_area_struct *vma = NULL;
2243 	unsigned long size;
2244 	void *smpl_buf;
2245 
2246 
2247 	/*
2248 	 * the fixed header + requested size and align to page boundary
2249 	 */
2250 	size = PAGE_ALIGN(rsize);
2251 
2252 	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2253 
2254 	/*
2255 	 * check requested size to avoid Denial-of-service attacks
2256 	 * XXX: may have to refine this test
2257 	 * Check against address space limit.
2258 	 *
2259 	 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2260 	 * 	return -ENOMEM;
2261 	 */
2262 	if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2263 		return -ENOMEM;
2264 
2265 	/*
2266 	 * We do the easy to undo allocations first.
2267  	 *
2268 	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2269 	 */
2270 	smpl_buf = pfm_rvmalloc(size);
2271 	if (smpl_buf == NULL) {
2272 		DPRINT(("Can't allocate sampling buffer\n"));
2273 		return -ENOMEM;
2274 	}
2275 
2276 	DPRINT(("smpl_buf @%p\n", smpl_buf));
2277 
2278 	/* allocate vma */
2279 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2280 	if (!vma) {
2281 		DPRINT(("Cannot allocate vma\n"));
2282 		goto error_kmem;
2283 	}
2284 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2285 
2286 	/*
2287 	 * partially initialize the vma for the sampling buffer
2288 	 */
2289 	vma->vm_mm	     = mm;
2290 	vma->vm_file	     = get_file(filp);
2291 	vma->vm_flags	     = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2292 	vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2293 
2294 	/*
2295 	 * Now we have everything we need and we can initialize
2296 	 * and connect all the data structures
2297 	 */
2298 
2299 	ctx->ctx_smpl_hdr   = smpl_buf;
2300 	ctx->ctx_smpl_size  = size; /* aligned size */
2301 
2302 	/*
2303 	 * Let's do the difficult operations next.
2304 	 *
2305 	 * now we atomically find some area in the address space and
2306 	 * remap the buffer in it.
2307 	 */
2308 	down_write(&task->mm->mmap_sem);
2309 
2310 	/* find some free area in address space, must have mmap sem held */
2311 	vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2312 	if (IS_ERR_VALUE(vma->vm_start)) {
2313 		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2314 		up_write(&task->mm->mmap_sem);
2315 		goto error;
2316 	}
2317 	vma->vm_end = vma->vm_start + size;
2318 	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2319 
2320 	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2321 
2322 	/* can only be applied to current task, need to have the mm semaphore held when called */
2323 	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2324 		DPRINT(("Can't remap buffer\n"));
2325 		up_write(&task->mm->mmap_sem);
2326 		goto error;
2327 	}
2328 
2329 	/*
2330 	 * now insert the vma in the vm list for the process, must be
2331 	 * done with mmap lock held
2332 	 */
2333 	insert_vm_struct(mm, vma);
2334 
2335 	vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2336 							vma_pages(vma));
2337 	up_write(&task->mm->mmap_sem);
2338 
2339 	/*
2340 	 * keep track of user level virtual address
2341 	 */
2342 	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2343 	*(unsigned long *)user_vaddr = vma->vm_start;
2344 
2345 	return 0;
2346 
2347 error:
2348 	kmem_cache_free(vm_area_cachep, vma);
2349 error_kmem:
2350 	pfm_rvfree(smpl_buf, size);
2351 
2352 	return -ENOMEM;
2353 }
2354 
2355 /*
2356  * XXX: do something better here
2357  */
2358 static int
pfm_bad_permissions(struct task_struct * task)2359 pfm_bad_permissions(struct task_struct *task)
2360 {
2361 	const struct cred *tcred;
2362 	kuid_t uid = current_uid();
2363 	kgid_t gid = current_gid();
2364 	int ret;
2365 
2366 	rcu_read_lock();
2367 	tcred = __task_cred(task);
2368 
2369 	/* inspired by ptrace_attach() */
2370 	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2371 		from_kuid(&init_user_ns, uid),
2372 		from_kgid(&init_user_ns, gid),
2373 		from_kuid(&init_user_ns, tcred->euid),
2374 		from_kuid(&init_user_ns, tcred->suid),
2375 		from_kuid(&init_user_ns, tcred->uid),
2376 		from_kgid(&init_user_ns, tcred->egid),
2377 		from_kgid(&init_user_ns, tcred->sgid)));
2378 
2379 	ret = ((!uid_eq(uid, tcred->euid))
2380 	       || (!uid_eq(uid, tcred->suid))
2381 	       || (!uid_eq(uid, tcred->uid))
2382 	       || (!gid_eq(gid, tcred->egid))
2383 	       || (!gid_eq(gid, tcred->sgid))
2384 	       || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2385 
2386 	rcu_read_unlock();
2387 	return ret;
2388 }
2389 
2390 static int
pfarg_is_sane(struct task_struct * task,pfarg_context_t * pfx)2391 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2392 {
2393 	int ctx_flags;
2394 
2395 	/* valid signal */
2396 
2397 	ctx_flags = pfx->ctx_flags;
2398 
2399 	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2400 
2401 		/*
2402 		 * cannot block in this mode
2403 		 */
2404 		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2405 			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2406 			return -EINVAL;
2407 		}
2408 	} else {
2409 	}
2410 	/* probably more to add here */
2411 
2412 	return 0;
2413 }
2414 
2415 static int
pfm_setup_buffer_fmt(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned int ctx_flags,unsigned int cpu,pfarg_context_t * arg)2416 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2417 		     unsigned int cpu, pfarg_context_t *arg)
2418 {
2419 	pfm_buffer_fmt_t *fmt = NULL;
2420 	unsigned long size = 0UL;
2421 	void *uaddr = NULL;
2422 	void *fmt_arg = NULL;
2423 	int ret = 0;
2424 #define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2425 
2426 	/* invoke and lock buffer format, if found */
2427 	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2428 	if (fmt == NULL) {
2429 		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2430 		return -EINVAL;
2431 	}
2432 
2433 	/*
2434 	 * buffer argument MUST be contiguous to pfarg_context_t
2435 	 */
2436 	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2437 
2438 	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2439 
2440 	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2441 
2442 	if (ret) goto error;
2443 
2444 	/* link buffer format and context */
2445 	ctx->ctx_buf_fmt = fmt;
2446 	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2447 
2448 	/*
2449 	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2450 	 */
2451 	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2452 	if (ret) goto error;
2453 
2454 	if (size) {
2455 		/*
2456 		 * buffer is always remapped into the caller's address space
2457 		 */
2458 		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2459 		if (ret) goto error;
2460 
2461 		/* keep track of user address of buffer */
2462 		arg->ctx_smpl_vaddr = uaddr;
2463 	}
2464 	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2465 
2466 error:
2467 	return ret;
2468 }
2469 
2470 static void
pfm_reset_pmu_state(pfm_context_t * ctx)2471 pfm_reset_pmu_state(pfm_context_t *ctx)
2472 {
2473 	int i;
2474 
2475 	/*
2476 	 * install reset values for PMC.
2477 	 */
2478 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2479 		if (PMC_IS_IMPL(i) == 0) continue;
2480 		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2481 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2482 	}
2483 	/*
2484 	 * PMD registers are set to 0UL when the context in memset()
2485 	 */
2486 
2487 	/*
2488 	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2489 	 * when they are not actively used by the task. In UP, the incoming process
2490 	 * may otherwise pick up left over PMC, PMD state from the previous process.
2491 	 * As opposed to PMD, stale PMC can cause harm to the incoming
2492 	 * process because they may change what is being measured.
2493 	 * Therefore, we must systematically reinstall the entire
2494 	 * PMC state. In SMP, the same thing is possible on the
2495 	 * same CPU but also on between 2 CPUs.
2496 	 *
2497 	 * The problem with PMD is information leaking especially
2498 	 * to user level when psr.sp=0
2499 	 *
2500 	 * There is unfortunately no easy way to avoid this problem
2501 	 * on either UP or SMP. This definitively slows down the
2502 	 * pfm_load_regs() function.
2503 	 */
2504 
2505 	 /*
2506 	  * bitmask of all PMCs accessible to this context
2507 	  *
2508 	  * PMC0 is treated differently.
2509 	  */
2510 	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2511 
2512 	/*
2513 	 * bitmask of all PMDs that are accessible to this context
2514 	 */
2515 	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2516 
2517 	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2518 
2519 	/*
2520 	 * useful in case of re-enable after disable
2521 	 */
2522 	ctx->ctx_used_ibrs[0] = 0UL;
2523 	ctx->ctx_used_dbrs[0] = 0UL;
2524 }
2525 
2526 static int
pfm_ctx_getsize(void * arg,size_t * sz)2527 pfm_ctx_getsize(void *arg, size_t *sz)
2528 {
2529 	pfarg_context_t *req = (pfarg_context_t *)arg;
2530 	pfm_buffer_fmt_t *fmt;
2531 
2532 	*sz = 0;
2533 
2534 	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2535 
2536 	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2537 	if (fmt == NULL) {
2538 		DPRINT(("cannot find buffer format\n"));
2539 		return -EINVAL;
2540 	}
2541 	/* get just enough to copy in user parameters */
2542 	*sz = fmt->fmt_arg_size;
2543 	DPRINT(("arg_size=%lu\n", *sz));
2544 
2545 	return 0;
2546 }
2547 
2548 
2549 
2550 /*
2551  * cannot attach if :
2552  * 	- kernel task
2553  * 	- task not owned by caller
2554  * 	- task incompatible with context mode
2555  */
2556 static int
pfm_task_incompatible(pfm_context_t * ctx,struct task_struct * task)2557 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2558 {
2559 	/*
2560 	 * no kernel task or task not owner by caller
2561 	 */
2562 	if (task->mm == NULL) {
2563 		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2564 		return -EPERM;
2565 	}
2566 	if (pfm_bad_permissions(task)) {
2567 		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2568 		return -EPERM;
2569 	}
2570 	/*
2571 	 * cannot block in self-monitoring mode
2572 	 */
2573 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2574 		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2575 		return -EINVAL;
2576 	}
2577 
2578 	if (task->exit_state == EXIT_ZOMBIE) {
2579 		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2580 		return -EBUSY;
2581 	}
2582 
2583 	/*
2584 	 * always ok for self
2585 	 */
2586 	if (task == current) return 0;
2587 
2588 	if (!task_is_stopped_or_traced(task)) {
2589 		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2590 		return -EBUSY;
2591 	}
2592 	/*
2593 	 * make sure the task is off any CPU
2594 	 */
2595 	wait_task_inactive(task, 0);
2596 
2597 	/* more to come... */
2598 
2599 	return 0;
2600 }
2601 
2602 static int
pfm_get_task(pfm_context_t * ctx,pid_t pid,struct task_struct ** task)2603 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2604 {
2605 	struct task_struct *p = current;
2606 	int ret;
2607 
2608 	/* XXX: need to add more checks here */
2609 	if (pid < 2) return -EPERM;
2610 
2611 	if (pid != task_pid_vnr(current)) {
2612 
2613 		read_lock(&tasklist_lock);
2614 
2615 		p = find_task_by_vpid(pid);
2616 
2617 		/* make sure task cannot go away while we operate on it */
2618 		if (p) get_task_struct(p);
2619 
2620 		read_unlock(&tasklist_lock);
2621 
2622 		if (p == NULL) return -ESRCH;
2623 	}
2624 
2625 	ret = pfm_task_incompatible(ctx, p);
2626 	if (ret == 0) {
2627 		*task = p;
2628 	} else if (p != current) {
2629 		pfm_put_task(p);
2630 	}
2631 	return ret;
2632 }
2633 
2634 
2635 
2636 static int
pfm_context_create(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2637 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2638 {
2639 	pfarg_context_t *req = (pfarg_context_t *)arg;
2640 	struct file *filp;
2641 	struct path path;
2642 	int ctx_flags;
2643 	int fd;
2644 	int ret;
2645 
2646 	/* let's check the arguments first */
2647 	ret = pfarg_is_sane(current, req);
2648 	if (ret < 0)
2649 		return ret;
2650 
2651 	ctx_flags = req->ctx_flags;
2652 
2653 	ret = -ENOMEM;
2654 
2655 	fd = get_unused_fd_flags(0);
2656 	if (fd < 0)
2657 		return fd;
2658 
2659 	ctx = pfm_context_alloc(ctx_flags);
2660 	if (!ctx)
2661 		goto error;
2662 
2663 	filp = pfm_alloc_file(ctx);
2664 	if (IS_ERR(filp)) {
2665 		ret = PTR_ERR(filp);
2666 		goto error_file;
2667 	}
2668 
2669 	req->ctx_fd = ctx->ctx_fd = fd;
2670 
2671 	/*
2672 	 * does the user want to sample?
2673 	 */
2674 	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2675 		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2676 		if (ret)
2677 			goto buffer_error;
2678 	}
2679 
2680 	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2681 		ctx,
2682 		ctx_flags,
2683 		ctx->ctx_fl_system,
2684 		ctx->ctx_fl_block,
2685 		ctx->ctx_fl_excl_idle,
2686 		ctx->ctx_fl_no_msg,
2687 		ctx->ctx_fd));
2688 
2689 	/*
2690 	 * initialize soft PMU state
2691 	 */
2692 	pfm_reset_pmu_state(ctx);
2693 
2694 	fd_install(fd, filp);
2695 
2696 	return 0;
2697 
2698 buffer_error:
2699 	path = filp->f_path;
2700 	put_filp(filp);
2701 	path_put(&path);
2702 
2703 	if (ctx->ctx_buf_fmt) {
2704 		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2705 	}
2706 error_file:
2707 	pfm_context_free(ctx);
2708 
2709 error:
2710 	put_unused_fd(fd);
2711 	return ret;
2712 }
2713 
2714 static inline unsigned long
pfm_new_counter_value(pfm_counter_t * reg,int is_long_reset)2715 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2716 {
2717 	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2718 	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2719 	extern unsigned long carta_random32 (unsigned long seed);
2720 
2721 	if (reg->flags & PFM_REGFL_RANDOM) {
2722 		new_seed = carta_random32(old_seed);
2723 		val -= (old_seed & mask);	/* counter values are negative numbers! */
2724 		if ((mask >> 32) != 0)
2725 			/* construct a full 64-bit random value: */
2726 			new_seed |= carta_random32(old_seed >> 32) << 32;
2727 		reg->seed = new_seed;
2728 	}
2729 	reg->lval = val;
2730 	return val;
2731 }
2732 
2733 static void
pfm_reset_regs_masked(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2734 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2735 {
2736 	unsigned long mask = ovfl_regs[0];
2737 	unsigned long reset_others = 0UL;
2738 	unsigned long val;
2739 	int i;
2740 
2741 	/*
2742 	 * now restore reset value on sampling overflowed counters
2743 	 */
2744 	mask >>= PMU_FIRST_COUNTER;
2745 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2746 
2747 		if ((mask & 0x1UL) == 0UL) continue;
2748 
2749 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2750 		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2751 
2752 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2753 	}
2754 
2755 	/*
2756 	 * Now take care of resetting the other registers
2757 	 */
2758 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2759 
2760 		if ((reset_others & 0x1) == 0) continue;
2761 
2762 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2763 
2764 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2765 			  is_long_reset ? "long" : "short", i, val));
2766 	}
2767 }
2768 
2769 static void
pfm_reset_regs(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2770 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2771 {
2772 	unsigned long mask = ovfl_regs[0];
2773 	unsigned long reset_others = 0UL;
2774 	unsigned long val;
2775 	int i;
2776 
2777 	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2778 
2779 	if (ctx->ctx_state == PFM_CTX_MASKED) {
2780 		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2781 		return;
2782 	}
2783 
2784 	/*
2785 	 * now restore reset value on sampling overflowed counters
2786 	 */
2787 	mask >>= PMU_FIRST_COUNTER;
2788 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2789 
2790 		if ((mask & 0x1UL) == 0UL) continue;
2791 
2792 		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2793 		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2794 
2795 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2796 
2797 		pfm_write_soft_counter(ctx, i, val);
2798 	}
2799 
2800 	/*
2801 	 * Now take care of resetting the other registers
2802 	 */
2803 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2804 
2805 		if ((reset_others & 0x1) == 0) continue;
2806 
2807 		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2808 
2809 		if (PMD_IS_COUNTING(i)) {
2810 			pfm_write_soft_counter(ctx, i, val);
2811 		} else {
2812 			ia64_set_pmd(i, val);
2813 		}
2814 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2815 			  is_long_reset ? "long" : "short", i, val));
2816 	}
2817 	ia64_srlz_d();
2818 }
2819 
2820 static int
pfm_write_pmcs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2821 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2822 {
2823 	struct task_struct *task;
2824 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2825 	unsigned long value, pmc_pm;
2826 	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2827 	unsigned int cnum, reg_flags, flags, pmc_type;
2828 	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2829 	int is_monitor, is_counting, state;
2830 	int ret = -EINVAL;
2831 	pfm_reg_check_t	wr_func;
2832 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2833 
2834 	state     = ctx->ctx_state;
2835 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2836 	is_system = ctx->ctx_fl_system;
2837 	task      = ctx->ctx_task;
2838 	impl_pmds = pmu_conf->impl_pmds[0];
2839 
2840 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2841 
2842 	if (is_loaded) {
2843 		/*
2844 		 * In system wide and when the context is loaded, access can only happen
2845 		 * when the caller is running on the CPU being monitored by the session.
2846 		 * It does not have to be the owner (ctx_task) of the context per se.
2847 		 */
2848 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2849 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2850 			return -EBUSY;
2851 		}
2852 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2853 	}
2854 	expert_mode = pfm_sysctl.expert_mode;
2855 
2856 	for (i = 0; i < count; i++, req++) {
2857 
2858 		cnum       = req->reg_num;
2859 		reg_flags  = req->reg_flags;
2860 		value      = req->reg_value;
2861 		smpl_pmds  = req->reg_smpl_pmds[0];
2862 		reset_pmds = req->reg_reset_pmds[0];
2863 		flags      = 0;
2864 
2865 
2866 		if (cnum >= PMU_MAX_PMCS) {
2867 			DPRINT(("pmc%u is invalid\n", cnum));
2868 			goto error;
2869 		}
2870 
2871 		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2872 		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2873 		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2874 		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2875 
2876 		/*
2877 		 * we reject all non implemented PMC as well
2878 		 * as attempts to modify PMC[0-3] which are used
2879 		 * as status registers by the PMU
2880 		 */
2881 		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2882 			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2883 			goto error;
2884 		}
2885 		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2886 		/*
2887 		 * If the PMC is a monitor, then if the value is not the default:
2888 		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2889 		 * 	- per-task           : PMCx.pm=0 (user monitor)
2890 		 */
2891 		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2892 			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2893 				cnum,
2894 				pmc_pm,
2895 				is_system));
2896 			goto error;
2897 		}
2898 
2899 		if (is_counting) {
2900 			/*
2901 		 	 * enforce generation of overflow interrupt. Necessary on all
2902 		 	 * CPUs.
2903 		 	 */
2904 			value |= 1 << PMU_PMC_OI;
2905 
2906 			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2907 				flags |= PFM_REGFL_OVFL_NOTIFY;
2908 			}
2909 
2910 			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2911 
2912 			/* verify validity of smpl_pmds */
2913 			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2914 				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2915 				goto error;
2916 			}
2917 
2918 			/* verify validity of reset_pmds */
2919 			if ((reset_pmds & impl_pmds) != reset_pmds) {
2920 				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2921 				goto error;
2922 			}
2923 		} else {
2924 			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2925 				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2926 				goto error;
2927 			}
2928 			/* eventid on non-counting monitors are ignored */
2929 		}
2930 
2931 		/*
2932 		 * execute write checker, if any
2933 		 */
2934 		if (likely(expert_mode == 0 && wr_func)) {
2935 			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2936 			if (ret) goto error;
2937 			ret = -EINVAL;
2938 		}
2939 
2940 		/*
2941 		 * no error on this register
2942 		 */
2943 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2944 
2945 		/*
2946 		 * Now we commit the changes to the software state
2947 		 */
2948 
2949 		/*
2950 		 * update overflow information
2951 		 */
2952 		if (is_counting) {
2953 			/*
2954 		 	 * full flag update each time a register is programmed
2955 		 	 */
2956 			ctx->ctx_pmds[cnum].flags = flags;
2957 
2958 			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2959 			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2960 			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2961 
2962 			/*
2963 			 * Mark all PMDS to be accessed as used.
2964 			 *
2965 			 * We do not keep track of PMC because we have to
2966 			 * systematically restore ALL of them.
2967 			 *
2968 			 * We do not update the used_monitors mask, because
2969 			 * if we have not programmed them, then will be in
2970 			 * a quiescent state, therefore we will not need to
2971 			 * mask/restore then when context is MASKED.
2972 			 */
2973 			CTX_USED_PMD(ctx, reset_pmds);
2974 			CTX_USED_PMD(ctx, smpl_pmds);
2975 			/*
2976 		 	 * make sure we do not try to reset on
2977 		 	 * restart because we have established new values
2978 		 	 */
2979 			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2980 		}
2981 		/*
2982 		 * Needed in case the user does not initialize the equivalent
2983 		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2984 		 * possible leak here.
2985 		 */
2986 		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2987 
2988 		/*
2989 		 * keep track of the monitor PMC that we are using.
2990 		 * we save the value of the pmc in ctx_pmcs[] and if
2991 		 * the monitoring is not stopped for the context we also
2992 		 * place it in the saved state area so that it will be
2993 		 * picked up later by the context switch code.
2994 		 *
2995 		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2996 		 *
2997 		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
2998 		 * monitoring needs to be stopped.
2999 		 */
3000 		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3001 
3002 		/*
3003 		 * update context state
3004 		 */
3005 		ctx->ctx_pmcs[cnum] = value;
3006 
3007 		if (is_loaded) {
3008 			/*
3009 			 * write thread state
3010 			 */
3011 			if (is_system == 0) ctx->th_pmcs[cnum] = value;
3012 
3013 			/*
3014 			 * write hardware register if we can
3015 			 */
3016 			if (can_access_pmu) {
3017 				ia64_set_pmc(cnum, value);
3018 			}
3019 #ifdef CONFIG_SMP
3020 			else {
3021 				/*
3022 				 * per-task SMP only here
3023 				 *
3024 			 	 * we are guaranteed that the task is not running on the other CPU,
3025 			 	 * we indicate that this PMD will need to be reloaded if the task
3026 			 	 * is rescheduled on the CPU it ran last on.
3027 			 	 */
3028 				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3029 			}
3030 #endif
3031 		}
3032 
3033 		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3034 			  cnum,
3035 			  value,
3036 			  is_loaded,
3037 			  can_access_pmu,
3038 			  flags,
3039 			  ctx->ctx_all_pmcs[0],
3040 			  ctx->ctx_used_pmds[0],
3041 			  ctx->ctx_pmds[cnum].eventid,
3042 			  smpl_pmds,
3043 			  reset_pmds,
3044 			  ctx->ctx_reload_pmcs[0],
3045 			  ctx->ctx_used_monitors[0],
3046 			  ctx->ctx_ovfl_regs[0]));
3047 	}
3048 
3049 	/*
3050 	 * make sure the changes are visible
3051 	 */
3052 	if (can_access_pmu) ia64_srlz_d();
3053 
3054 	return 0;
3055 error:
3056 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3057 	return ret;
3058 }
3059 
3060 static int
pfm_write_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3061 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3062 {
3063 	struct task_struct *task;
3064 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3065 	unsigned long value, hw_value, ovfl_mask;
3066 	unsigned int cnum;
3067 	int i, can_access_pmu = 0, state;
3068 	int is_counting, is_loaded, is_system, expert_mode;
3069 	int ret = -EINVAL;
3070 	pfm_reg_check_t wr_func;
3071 
3072 
3073 	state     = ctx->ctx_state;
3074 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3075 	is_system = ctx->ctx_fl_system;
3076 	ovfl_mask = pmu_conf->ovfl_val;
3077 	task      = ctx->ctx_task;
3078 
3079 	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3080 
3081 	/*
3082 	 * on both UP and SMP, we can only write to the PMC when the task is
3083 	 * the owner of the local PMU.
3084 	 */
3085 	if (likely(is_loaded)) {
3086 		/*
3087 		 * In system wide and when the context is loaded, access can only happen
3088 		 * when the caller is running on the CPU being monitored by the session.
3089 		 * It does not have to be the owner (ctx_task) of the context per se.
3090 		 */
3091 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3092 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3093 			return -EBUSY;
3094 		}
3095 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3096 	}
3097 	expert_mode = pfm_sysctl.expert_mode;
3098 
3099 	for (i = 0; i < count; i++, req++) {
3100 
3101 		cnum  = req->reg_num;
3102 		value = req->reg_value;
3103 
3104 		if (!PMD_IS_IMPL(cnum)) {
3105 			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3106 			goto abort_mission;
3107 		}
3108 		is_counting = PMD_IS_COUNTING(cnum);
3109 		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3110 
3111 		/*
3112 		 * execute write checker, if any
3113 		 */
3114 		if (unlikely(expert_mode == 0 && wr_func)) {
3115 			unsigned long v = value;
3116 
3117 			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3118 			if (ret) goto abort_mission;
3119 
3120 			value = v;
3121 			ret   = -EINVAL;
3122 		}
3123 
3124 		/*
3125 		 * no error on this register
3126 		 */
3127 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3128 
3129 		/*
3130 		 * now commit changes to software state
3131 		 */
3132 		hw_value = value;
3133 
3134 		/*
3135 		 * update virtualized (64bits) counter
3136 		 */
3137 		if (is_counting) {
3138 			/*
3139 			 * write context state
3140 			 */
3141 			ctx->ctx_pmds[cnum].lval = value;
3142 
3143 			/*
3144 			 * when context is load we use the split value
3145 			 */
3146 			if (is_loaded) {
3147 				hw_value = value &  ovfl_mask;
3148 				value    = value & ~ovfl_mask;
3149 			}
3150 		}
3151 		/*
3152 		 * update reset values (not just for counters)
3153 		 */
3154 		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3155 		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3156 
3157 		/*
3158 		 * update randomization parameters (not just for counters)
3159 		 */
3160 		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3161 		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3162 
3163 		/*
3164 		 * update context value
3165 		 */
3166 		ctx->ctx_pmds[cnum].val  = value;
3167 
3168 		/*
3169 		 * Keep track of what we use
3170 		 *
3171 		 * We do not keep track of PMC because we have to
3172 		 * systematically restore ALL of them.
3173 		 */
3174 		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3175 
3176 		/*
3177 		 * mark this PMD register used as well
3178 		 */
3179 		CTX_USED_PMD(ctx, RDEP(cnum));
3180 
3181 		/*
3182 		 * make sure we do not try to reset on
3183 		 * restart because we have established new values
3184 		 */
3185 		if (is_counting && state == PFM_CTX_MASKED) {
3186 			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3187 		}
3188 
3189 		if (is_loaded) {
3190 			/*
3191 		 	 * write thread state
3192 		 	 */
3193 			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3194 
3195 			/*
3196 			 * write hardware register if we can
3197 			 */
3198 			if (can_access_pmu) {
3199 				ia64_set_pmd(cnum, hw_value);
3200 			} else {
3201 #ifdef CONFIG_SMP
3202 				/*
3203 			 	 * we are guaranteed that the task is not running on the other CPU,
3204 			 	 * we indicate that this PMD will need to be reloaded if the task
3205 			 	 * is rescheduled on the CPU it ran last on.
3206 			 	 */
3207 				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3208 #endif
3209 			}
3210 		}
3211 
3212 		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3213 			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3214 			cnum,
3215 			value,
3216 			is_loaded,
3217 			can_access_pmu,
3218 			hw_value,
3219 			ctx->ctx_pmds[cnum].val,
3220 			ctx->ctx_pmds[cnum].short_reset,
3221 			ctx->ctx_pmds[cnum].long_reset,
3222 			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3223 			ctx->ctx_pmds[cnum].seed,
3224 			ctx->ctx_pmds[cnum].mask,
3225 			ctx->ctx_used_pmds[0],
3226 			ctx->ctx_pmds[cnum].reset_pmds[0],
3227 			ctx->ctx_reload_pmds[0],
3228 			ctx->ctx_all_pmds[0],
3229 			ctx->ctx_ovfl_regs[0]));
3230 	}
3231 
3232 	/*
3233 	 * make changes visible
3234 	 */
3235 	if (can_access_pmu) ia64_srlz_d();
3236 
3237 	return 0;
3238 
3239 abort_mission:
3240 	/*
3241 	 * for now, we have only one possibility for error
3242 	 */
3243 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3244 	return ret;
3245 }
3246 
3247 /*
3248  * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3249  * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3250  * interrupt is delivered during the call, it will be kept pending until we leave, making
3251  * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3252  * guaranteed to return consistent data to the user, it may simply be old. It is not
3253  * trivial to treat the overflow while inside the call because you may end up in
3254  * some module sampling buffer code causing deadlocks.
3255  */
3256 static int
pfm_read_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3257 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3258 {
3259 	struct task_struct *task;
3260 	unsigned long val = 0UL, lval, ovfl_mask, sval;
3261 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3262 	unsigned int cnum, reg_flags = 0;
3263 	int i, can_access_pmu = 0, state;
3264 	int is_loaded, is_system, is_counting, expert_mode;
3265 	int ret = -EINVAL;
3266 	pfm_reg_check_t rd_func;
3267 
3268 	/*
3269 	 * access is possible when loaded only for
3270 	 * self-monitoring tasks or in UP mode
3271 	 */
3272 
3273 	state     = ctx->ctx_state;
3274 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3275 	is_system = ctx->ctx_fl_system;
3276 	ovfl_mask = pmu_conf->ovfl_val;
3277 	task      = ctx->ctx_task;
3278 
3279 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3280 
3281 	if (likely(is_loaded)) {
3282 		/*
3283 		 * In system wide and when the context is loaded, access can only happen
3284 		 * when the caller is running on the CPU being monitored by the session.
3285 		 * It does not have to be the owner (ctx_task) of the context per se.
3286 		 */
3287 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3288 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3289 			return -EBUSY;
3290 		}
3291 		/*
3292 		 * this can be true when not self-monitoring only in UP
3293 		 */
3294 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3295 
3296 		if (can_access_pmu) ia64_srlz_d();
3297 	}
3298 	expert_mode = pfm_sysctl.expert_mode;
3299 
3300 	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3301 		is_loaded,
3302 		can_access_pmu,
3303 		state));
3304 
3305 	/*
3306 	 * on both UP and SMP, we can only read the PMD from the hardware register when
3307 	 * the task is the owner of the local PMU.
3308 	 */
3309 
3310 	for (i = 0; i < count; i++, req++) {
3311 
3312 		cnum        = req->reg_num;
3313 		reg_flags   = req->reg_flags;
3314 
3315 		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3316 		/*
3317 		 * we can only read the register that we use. That includes
3318 		 * the one we explicitly initialize AND the one we want included
3319 		 * in the sampling buffer (smpl_regs).
3320 		 *
3321 		 * Having this restriction allows optimization in the ctxsw routine
3322 		 * without compromising security (leaks)
3323 		 */
3324 		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3325 
3326 		sval        = ctx->ctx_pmds[cnum].val;
3327 		lval        = ctx->ctx_pmds[cnum].lval;
3328 		is_counting = PMD_IS_COUNTING(cnum);
3329 
3330 		/*
3331 		 * If the task is not the current one, then we check if the
3332 		 * PMU state is still in the local live register due to lazy ctxsw.
3333 		 * If true, then we read directly from the registers.
3334 		 */
3335 		if (can_access_pmu){
3336 			val = ia64_get_pmd(cnum);
3337 		} else {
3338 			/*
3339 			 * context has been saved
3340 			 * if context is zombie, then task does not exist anymore.
3341 			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3342 			 */
3343 			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3344 		}
3345 		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3346 
3347 		if (is_counting) {
3348 			/*
3349 			 * XXX: need to check for overflow when loaded
3350 			 */
3351 			val &= ovfl_mask;
3352 			val += sval;
3353 		}
3354 
3355 		/*
3356 		 * execute read checker, if any
3357 		 */
3358 		if (unlikely(expert_mode == 0 && rd_func)) {
3359 			unsigned long v = val;
3360 			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3361 			if (ret) goto error;
3362 			val = v;
3363 			ret = -EINVAL;
3364 		}
3365 
3366 		PFM_REG_RETFLAG_SET(reg_flags, 0);
3367 
3368 		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3369 
3370 		/*
3371 		 * update register return value, abort all if problem during copy.
3372 		 * we only modify the reg_flags field. no check mode is fine because
3373 		 * access has been verified upfront in sys_perfmonctl().
3374 		 */
3375 		req->reg_value            = val;
3376 		req->reg_flags            = reg_flags;
3377 		req->reg_last_reset_val   = lval;
3378 	}
3379 
3380 	return 0;
3381 
3382 error:
3383 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3384 	return ret;
3385 }
3386 
3387 int
pfm_mod_write_pmcs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3388 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3389 {
3390 	pfm_context_t *ctx;
3391 
3392 	if (req == NULL) return -EINVAL;
3393 
3394  	ctx = GET_PMU_CTX();
3395 
3396 	if (ctx == NULL) return -EINVAL;
3397 
3398 	/*
3399 	 * for now limit to current task, which is enough when calling
3400 	 * from overflow handler
3401 	 */
3402 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3403 
3404 	return pfm_write_pmcs(ctx, req, nreq, regs);
3405 }
3406 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3407 
3408 int
pfm_mod_read_pmds(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3409 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3410 {
3411 	pfm_context_t *ctx;
3412 
3413 	if (req == NULL) return -EINVAL;
3414 
3415  	ctx = GET_PMU_CTX();
3416 
3417 	if (ctx == NULL) return -EINVAL;
3418 
3419 	/*
3420 	 * for now limit to current task, which is enough when calling
3421 	 * from overflow handler
3422 	 */
3423 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3424 
3425 	return pfm_read_pmds(ctx, req, nreq, regs);
3426 }
3427 EXPORT_SYMBOL(pfm_mod_read_pmds);
3428 
3429 /*
3430  * Only call this function when a process it trying to
3431  * write the debug registers (reading is always allowed)
3432  */
3433 int
pfm_use_debug_registers(struct task_struct * task)3434 pfm_use_debug_registers(struct task_struct *task)
3435 {
3436 	pfm_context_t *ctx = task->thread.pfm_context;
3437 	unsigned long flags;
3438 	int ret = 0;
3439 
3440 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3441 
3442 	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3443 
3444 	/*
3445 	 * do it only once
3446 	 */
3447 	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3448 
3449 	/*
3450 	 * Even on SMP, we do not need to use an atomic here because
3451 	 * the only way in is via ptrace() and this is possible only when the
3452 	 * process is stopped. Even in the case where the ctxsw out is not totally
3453 	 * completed by the time we come here, there is no way the 'stopped' process
3454 	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3455 	 * So this is always safe.
3456 	 */
3457 	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3458 
3459 	LOCK_PFS(flags);
3460 
3461 	/*
3462 	 * We cannot allow setting breakpoints when system wide monitoring
3463 	 * sessions are using the debug registers.
3464 	 */
3465 	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3466 		ret = -1;
3467 	else
3468 		pfm_sessions.pfs_ptrace_use_dbregs++;
3469 
3470 	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3471 		  pfm_sessions.pfs_ptrace_use_dbregs,
3472 		  pfm_sessions.pfs_sys_use_dbregs,
3473 		  task_pid_nr(task), ret));
3474 
3475 	UNLOCK_PFS(flags);
3476 
3477 	return ret;
3478 }
3479 
3480 /*
3481  * This function is called for every task that exits with the
3482  * IA64_THREAD_DBG_VALID set. This indicates a task which was
3483  * able to use the debug registers for debugging purposes via
3484  * ptrace(). Therefore we know it was not using them for
3485  * performance monitoring, so we only decrement the number
3486  * of "ptraced" debug register users to keep the count up to date
3487  */
3488 int
pfm_release_debug_registers(struct task_struct * task)3489 pfm_release_debug_registers(struct task_struct *task)
3490 {
3491 	unsigned long flags;
3492 	int ret;
3493 
3494 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3495 
3496 	LOCK_PFS(flags);
3497 	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3498 		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3499 		ret = -1;
3500 	}  else {
3501 		pfm_sessions.pfs_ptrace_use_dbregs--;
3502 		ret = 0;
3503 	}
3504 	UNLOCK_PFS(flags);
3505 
3506 	return ret;
3507 }
3508 
3509 static int
pfm_restart(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3510 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3511 {
3512 	struct task_struct *task;
3513 	pfm_buffer_fmt_t *fmt;
3514 	pfm_ovfl_ctrl_t rst_ctrl;
3515 	int state, is_system;
3516 	int ret = 0;
3517 
3518 	state     = ctx->ctx_state;
3519 	fmt       = ctx->ctx_buf_fmt;
3520 	is_system = ctx->ctx_fl_system;
3521 	task      = PFM_CTX_TASK(ctx);
3522 
3523 	switch(state) {
3524 		case PFM_CTX_MASKED:
3525 			break;
3526 		case PFM_CTX_LOADED:
3527 			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3528 			/* fall through */
3529 		case PFM_CTX_UNLOADED:
3530 		case PFM_CTX_ZOMBIE:
3531 			DPRINT(("invalid state=%d\n", state));
3532 			return -EBUSY;
3533 		default:
3534 			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3535 			return -EINVAL;
3536 	}
3537 
3538 	/*
3539  	 * In system wide and when the context is loaded, access can only happen
3540  	 * when the caller is running on the CPU being monitored by the session.
3541  	 * It does not have to be the owner (ctx_task) of the context per se.
3542  	 */
3543 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3544 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3545 		return -EBUSY;
3546 	}
3547 
3548 	/* sanity check */
3549 	if (unlikely(task == NULL)) {
3550 		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3551 		return -EINVAL;
3552 	}
3553 
3554 	if (task == current || is_system) {
3555 
3556 		fmt = ctx->ctx_buf_fmt;
3557 
3558 		DPRINT(("restarting self %d ovfl=0x%lx\n",
3559 			task_pid_nr(task),
3560 			ctx->ctx_ovfl_regs[0]));
3561 
3562 		if (CTX_HAS_SMPL(ctx)) {
3563 
3564 			prefetch(ctx->ctx_smpl_hdr);
3565 
3566 			rst_ctrl.bits.mask_monitoring = 0;
3567 			rst_ctrl.bits.reset_ovfl_pmds = 0;
3568 
3569 			if (state == PFM_CTX_LOADED)
3570 				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3571 			else
3572 				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3573 		} else {
3574 			rst_ctrl.bits.mask_monitoring = 0;
3575 			rst_ctrl.bits.reset_ovfl_pmds = 1;
3576 		}
3577 
3578 		if (ret == 0) {
3579 			if (rst_ctrl.bits.reset_ovfl_pmds)
3580 				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3581 
3582 			if (rst_ctrl.bits.mask_monitoring == 0) {
3583 				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3584 
3585 				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3586 			} else {
3587 				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3588 
3589 				// cannot use pfm_stop_monitoring(task, regs);
3590 			}
3591 		}
3592 		/*
3593 		 * clear overflowed PMD mask to remove any stale information
3594 		 */
3595 		ctx->ctx_ovfl_regs[0] = 0UL;
3596 
3597 		/*
3598 		 * back to LOADED state
3599 		 */
3600 		ctx->ctx_state = PFM_CTX_LOADED;
3601 
3602 		/*
3603 		 * XXX: not really useful for self monitoring
3604 		 */
3605 		ctx->ctx_fl_can_restart = 0;
3606 
3607 		return 0;
3608 	}
3609 
3610 	/*
3611 	 * restart another task
3612 	 */
3613 
3614 	/*
3615 	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3616 	 * one is seen by the task.
3617 	 */
3618 	if (state == PFM_CTX_MASKED) {
3619 		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3620 		/*
3621 		 * will prevent subsequent restart before this one is
3622 		 * seen by other task
3623 		 */
3624 		ctx->ctx_fl_can_restart = 0;
3625 	}
3626 
3627 	/*
3628 	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3629 	 * the task is blocked or on its way to block. That's the normal
3630 	 * restart path. If the monitoring is not masked, then the task
3631 	 * can be actively monitoring and we cannot directly intervene.
3632 	 * Therefore we use the trap mechanism to catch the task and
3633 	 * force it to reset the buffer/reset PMDs.
3634 	 *
3635 	 * if non-blocking, then we ensure that the task will go into
3636 	 * pfm_handle_work() before returning to user mode.
3637 	 *
3638 	 * We cannot explicitly reset another task, it MUST always
3639 	 * be done by the task itself. This works for system wide because
3640 	 * the tool that is controlling the session is logically doing
3641 	 * "self-monitoring".
3642 	 */
3643 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3644 		DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3645 		complete(&ctx->ctx_restart_done);
3646 	} else {
3647 		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3648 
3649 		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3650 
3651 		PFM_SET_WORK_PENDING(task, 1);
3652 
3653 		set_notify_resume(task);
3654 
3655 		/*
3656 		 * XXX: send reschedule if task runs on another CPU
3657 		 */
3658 	}
3659 	return 0;
3660 }
3661 
3662 static int
pfm_debug(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3663 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3664 {
3665 	unsigned int m = *(unsigned int *)arg;
3666 
3667 	pfm_sysctl.debug = m == 0 ? 0 : 1;
3668 
3669 	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3670 
3671 	if (m == 0) {
3672 		memset(pfm_stats, 0, sizeof(pfm_stats));
3673 		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3674 	}
3675 	return 0;
3676 }
3677 
3678 /*
3679  * arg can be NULL and count can be zero for this function
3680  */
3681 static int
pfm_write_ibr_dbr(int mode,pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3682 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3683 {
3684 	struct thread_struct *thread = NULL;
3685 	struct task_struct *task;
3686 	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3687 	unsigned long flags;
3688 	dbreg_t dbreg;
3689 	unsigned int rnum;
3690 	int first_time;
3691 	int ret = 0, state;
3692 	int i, can_access_pmu = 0;
3693 	int is_system, is_loaded;
3694 
3695 	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3696 
3697 	state     = ctx->ctx_state;
3698 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3699 	is_system = ctx->ctx_fl_system;
3700 	task      = ctx->ctx_task;
3701 
3702 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3703 
3704 	/*
3705 	 * on both UP and SMP, we can only write to the PMC when the task is
3706 	 * the owner of the local PMU.
3707 	 */
3708 	if (is_loaded) {
3709 		thread = &task->thread;
3710 		/*
3711 		 * In system wide and when the context is loaded, access can only happen
3712 		 * when the caller is running on the CPU being monitored by the session.
3713 		 * It does not have to be the owner (ctx_task) of the context per se.
3714 		 */
3715 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3716 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3717 			return -EBUSY;
3718 		}
3719 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3720 	}
3721 
3722 	/*
3723 	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3724 	 * ensuring that no real breakpoint can be installed via this call.
3725 	 *
3726 	 * IMPORTANT: regs can be NULL in this function
3727 	 */
3728 
3729 	first_time = ctx->ctx_fl_using_dbreg == 0;
3730 
3731 	/*
3732 	 * don't bother if we are loaded and task is being debugged
3733 	 */
3734 	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3735 		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3736 		return -EBUSY;
3737 	}
3738 
3739 	/*
3740 	 * check for debug registers in system wide mode
3741 	 *
3742 	 * If though a check is done in pfm_context_load(),
3743 	 * we must repeat it here, in case the registers are
3744 	 * written after the context is loaded
3745 	 */
3746 	if (is_loaded) {
3747 		LOCK_PFS(flags);
3748 
3749 		if (first_time && is_system) {
3750 			if (pfm_sessions.pfs_ptrace_use_dbregs)
3751 				ret = -EBUSY;
3752 			else
3753 				pfm_sessions.pfs_sys_use_dbregs++;
3754 		}
3755 		UNLOCK_PFS(flags);
3756 	}
3757 
3758 	if (ret != 0) return ret;
3759 
3760 	/*
3761 	 * mark ourself as user of the debug registers for
3762 	 * perfmon purposes.
3763 	 */
3764 	ctx->ctx_fl_using_dbreg = 1;
3765 
3766 	/*
3767  	 * clear hardware registers to make sure we don't
3768  	 * pick up stale state.
3769 	 *
3770 	 * for a system wide session, we do not use
3771 	 * thread.dbr, thread.ibr because this process
3772 	 * never leaves the current CPU and the state
3773 	 * is shared by all processes running on it
3774  	 */
3775 	if (first_time && can_access_pmu) {
3776 		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3777 		for (i=0; i < pmu_conf->num_ibrs; i++) {
3778 			ia64_set_ibr(i, 0UL);
3779 			ia64_dv_serialize_instruction();
3780 		}
3781 		ia64_srlz_i();
3782 		for (i=0; i < pmu_conf->num_dbrs; i++) {
3783 			ia64_set_dbr(i, 0UL);
3784 			ia64_dv_serialize_data();
3785 		}
3786 		ia64_srlz_d();
3787 	}
3788 
3789 	/*
3790 	 * Now install the values into the registers
3791 	 */
3792 	for (i = 0; i < count; i++, req++) {
3793 
3794 		rnum      = req->dbreg_num;
3795 		dbreg.val = req->dbreg_value;
3796 
3797 		ret = -EINVAL;
3798 
3799 		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3800 			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3801 				  rnum, dbreg.val, mode, i, count));
3802 
3803 			goto abort_mission;
3804 		}
3805 
3806 		/*
3807 		 * make sure we do not install enabled breakpoint
3808 		 */
3809 		if (rnum & 0x1) {
3810 			if (mode == PFM_CODE_RR)
3811 				dbreg.ibr.ibr_x = 0;
3812 			else
3813 				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3814 		}
3815 
3816 		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3817 
3818 		/*
3819 		 * Debug registers, just like PMC, can only be modified
3820 		 * by a kernel call. Moreover, perfmon() access to those
3821 		 * registers are centralized in this routine. The hardware
3822 		 * does not modify the value of these registers, therefore,
3823 		 * if we save them as they are written, we can avoid having
3824 		 * to save them on context switch out. This is made possible
3825 		 * by the fact that when perfmon uses debug registers, ptrace()
3826 		 * won't be able to modify them concurrently.
3827 		 */
3828 		if (mode == PFM_CODE_RR) {
3829 			CTX_USED_IBR(ctx, rnum);
3830 
3831 			if (can_access_pmu) {
3832 				ia64_set_ibr(rnum, dbreg.val);
3833 				ia64_dv_serialize_instruction();
3834 			}
3835 
3836 			ctx->ctx_ibrs[rnum] = dbreg.val;
3837 
3838 			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3839 				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3840 		} else {
3841 			CTX_USED_DBR(ctx, rnum);
3842 
3843 			if (can_access_pmu) {
3844 				ia64_set_dbr(rnum, dbreg.val);
3845 				ia64_dv_serialize_data();
3846 			}
3847 			ctx->ctx_dbrs[rnum] = dbreg.val;
3848 
3849 			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3850 				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3851 		}
3852 	}
3853 
3854 	return 0;
3855 
3856 abort_mission:
3857 	/*
3858 	 * in case it was our first attempt, we undo the global modifications
3859 	 */
3860 	if (first_time) {
3861 		LOCK_PFS(flags);
3862 		if (ctx->ctx_fl_system) {
3863 			pfm_sessions.pfs_sys_use_dbregs--;
3864 		}
3865 		UNLOCK_PFS(flags);
3866 		ctx->ctx_fl_using_dbreg = 0;
3867 	}
3868 	/*
3869 	 * install error return flag
3870 	 */
3871 	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3872 
3873 	return ret;
3874 }
3875 
3876 static int
pfm_write_ibrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3877 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3878 {
3879 	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3880 }
3881 
3882 static int
pfm_write_dbrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3883 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3884 {
3885 	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3886 }
3887 
3888 int
pfm_mod_write_ibrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3889 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3890 {
3891 	pfm_context_t *ctx;
3892 
3893 	if (req == NULL) return -EINVAL;
3894 
3895  	ctx = GET_PMU_CTX();
3896 
3897 	if (ctx == NULL) return -EINVAL;
3898 
3899 	/*
3900 	 * for now limit to current task, which is enough when calling
3901 	 * from overflow handler
3902 	 */
3903 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3904 
3905 	return pfm_write_ibrs(ctx, req, nreq, regs);
3906 }
3907 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3908 
3909 int
pfm_mod_write_dbrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3910 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3911 {
3912 	pfm_context_t *ctx;
3913 
3914 	if (req == NULL) return -EINVAL;
3915 
3916  	ctx = GET_PMU_CTX();
3917 
3918 	if (ctx == NULL) return -EINVAL;
3919 
3920 	/*
3921 	 * for now limit to current task, which is enough when calling
3922 	 * from overflow handler
3923 	 */
3924 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3925 
3926 	return pfm_write_dbrs(ctx, req, nreq, regs);
3927 }
3928 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3929 
3930 
3931 static int
pfm_get_features(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3932 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3933 {
3934 	pfarg_features_t *req = (pfarg_features_t *)arg;
3935 
3936 	req->ft_version = PFM_VERSION;
3937 	return 0;
3938 }
3939 
3940 static int
pfm_stop(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3941 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3942 {
3943 	struct pt_regs *tregs;
3944 	struct task_struct *task = PFM_CTX_TASK(ctx);
3945 	int state, is_system;
3946 
3947 	state     = ctx->ctx_state;
3948 	is_system = ctx->ctx_fl_system;
3949 
3950 	/*
3951 	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3952 	 */
3953 	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3954 
3955 	/*
3956  	 * In system wide and when the context is loaded, access can only happen
3957  	 * when the caller is running on the CPU being monitored by the session.
3958  	 * It does not have to be the owner (ctx_task) of the context per se.
3959  	 */
3960 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3961 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3962 		return -EBUSY;
3963 	}
3964 	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3965 		task_pid_nr(PFM_CTX_TASK(ctx)),
3966 		state,
3967 		is_system));
3968 	/*
3969 	 * in system mode, we need to update the PMU directly
3970 	 * and the user level state of the caller, which may not
3971 	 * necessarily be the creator of the context.
3972 	 */
3973 	if (is_system) {
3974 		/*
3975 		 * Update local PMU first
3976 		 *
3977 		 * disable dcr pp
3978 		 */
3979 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3980 		ia64_srlz_i();
3981 
3982 		/*
3983 		 * update local cpuinfo
3984 		 */
3985 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3986 
3987 		/*
3988 		 * stop monitoring, does srlz.i
3989 		 */
3990 		pfm_clear_psr_pp();
3991 
3992 		/*
3993 		 * stop monitoring in the caller
3994 		 */
3995 		ia64_psr(regs)->pp = 0;
3996 
3997 		return 0;
3998 	}
3999 	/*
4000 	 * per-task mode
4001 	 */
4002 
4003 	if (task == current) {
4004 		/* stop monitoring  at kernel level */
4005 		pfm_clear_psr_up();
4006 
4007 		/*
4008 	 	 * stop monitoring at the user level
4009 	 	 */
4010 		ia64_psr(regs)->up = 0;
4011 	} else {
4012 		tregs = task_pt_regs(task);
4013 
4014 		/*
4015 	 	 * stop monitoring at the user level
4016 	 	 */
4017 		ia64_psr(tregs)->up = 0;
4018 
4019 		/*
4020 		 * monitoring disabled in kernel at next reschedule
4021 		 */
4022 		ctx->ctx_saved_psr_up = 0;
4023 		DPRINT(("task=[%d]\n", task_pid_nr(task)));
4024 	}
4025 	return 0;
4026 }
4027 
4028 
4029 static int
pfm_start(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4030 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4031 {
4032 	struct pt_regs *tregs;
4033 	int state, is_system;
4034 
4035 	state     = ctx->ctx_state;
4036 	is_system = ctx->ctx_fl_system;
4037 
4038 	if (state != PFM_CTX_LOADED) return -EINVAL;
4039 
4040 	/*
4041  	 * In system wide and when the context is loaded, access can only happen
4042  	 * when the caller is running on the CPU being monitored by the session.
4043  	 * It does not have to be the owner (ctx_task) of the context per se.
4044  	 */
4045 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4046 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4047 		return -EBUSY;
4048 	}
4049 
4050 	/*
4051 	 * in system mode, we need to update the PMU directly
4052 	 * and the user level state of the caller, which may not
4053 	 * necessarily be the creator of the context.
4054 	 */
4055 	if (is_system) {
4056 
4057 		/*
4058 		 * set user level psr.pp for the caller
4059 		 */
4060 		ia64_psr(regs)->pp = 1;
4061 
4062 		/*
4063 		 * now update the local PMU and cpuinfo
4064 		 */
4065 		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4066 
4067 		/*
4068 		 * start monitoring at kernel level
4069 		 */
4070 		pfm_set_psr_pp();
4071 
4072 		/* enable dcr pp */
4073 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4074 		ia64_srlz_i();
4075 
4076 		return 0;
4077 	}
4078 
4079 	/*
4080 	 * per-process mode
4081 	 */
4082 
4083 	if (ctx->ctx_task == current) {
4084 
4085 		/* start monitoring at kernel level */
4086 		pfm_set_psr_up();
4087 
4088 		/*
4089 		 * activate monitoring at user level
4090 		 */
4091 		ia64_psr(regs)->up = 1;
4092 
4093 	} else {
4094 		tregs = task_pt_regs(ctx->ctx_task);
4095 
4096 		/*
4097 		 * start monitoring at the kernel level the next
4098 		 * time the task is scheduled
4099 		 */
4100 		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4101 
4102 		/*
4103 		 * activate monitoring at user level
4104 		 */
4105 		ia64_psr(tregs)->up = 1;
4106 	}
4107 	return 0;
4108 }
4109 
4110 static int
pfm_get_pmc_reset(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4111 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4112 {
4113 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4114 	unsigned int cnum;
4115 	int i;
4116 	int ret = -EINVAL;
4117 
4118 	for (i = 0; i < count; i++, req++) {
4119 
4120 		cnum = req->reg_num;
4121 
4122 		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4123 
4124 		req->reg_value = PMC_DFL_VAL(cnum);
4125 
4126 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4127 
4128 		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4129 	}
4130 	return 0;
4131 
4132 abort_mission:
4133 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4134 	return ret;
4135 }
4136 
4137 static int
pfm_check_task_exist(pfm_context_t * ctx)4138 pfm_check_task_exist(pfm_context_t *ctx)
4139 {
4140 	struct task_struct *g, *t;
4141 	int ret = -ESRCH;
4142 
4143 	read_lock(&tasklist_lock);
4144 
4145 	do_each_thread (g, t) {
4146 		if (t->thread.pfm_context == ctx) {
4147 			ret = 0;
4148 			goto out;
4149 		}
4150 	} while_each_thread (g, t);
4151 out:
4152 	read_unlock(&tasklist_lock);
4153 
4154 	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4155 
4156 	return ret;
4157 }
4158 
4159 static int
pfm_context_load(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4160 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4161 {
4162 	struct task_struct *task;
4163 	struct thread_struct *thread;
4164 	struct pfm_context_t *old;
4165 	unsigned long flags;
4166 #ifndef CONFIG_SMP
4167 	struct task_struct *owner_task = NULL;
4168 #endif
4169 	pfarg_load_t *req = (pfarg_load_t *)arg;
4170 	unsigned long *pmcs_source, *pmds_source;
4171 	int the_cpu;
4172 	int ret = 0;
4173 	int state, is_system, set_dbregs = 0;
4174 
4175 	state     = ctx->ctx_state;
4176 	is_system = ctx->ctx_fl_system;
4177 	/*
4178 	 * can only load from unloaded or terminated state
4179 	 */
4180 	if (state != PFM_CTX_UNLOADED) {
4181 		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4182 			req->load_pid,
4183 			ctx->ctx_state));
4184 		return -EBUSY;
4185 	}
4186 
4187 	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4188 
4189 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4190 		DPRINT(("cannot use blocking mode on self\n"));
4191 		return -EINVAL;
4192 	}
4193 
4194 	ret = pfm_get_task(ctx, req->load_pid, &task);
4195 	if (ret) {
4196 		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4197 		return ret;
4198 	}
4199 
4200 	ret = -EINVAL;
4201 
4202 	/*
4203 	 * system wide is self monitoring only
4204 	 */
4205 	if (is_system && task != current) {
4206 		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4207 			req->load_pid));
4208 		goto error;
4209 	}
4210 
4211 	thread = &task->thread;
4212 
4213 	ret = 0;
4214 	/*
4215 	 * cannot load a context which is using range restrictions,
4216 	 * into a task that is being debugged.
4217 	 */
4218 	if (ctx->ctx_fl_using_dbreg) {
4219 		if (thread->flags & IA64_THREAD_DBG_VALID) {
4220 			ret = -EBUSY;
4221 			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4222 			goto error;
4223 		}
4224 		LOCK_PFS(flags);
4225 
4226 		if (is_system) {
4227 			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4228 				DPRINT(("cannot load [%d] dbregs in use\n",
4229 							task_pid_nr(task)));
4230 				ret = -EBUSY;
4231 			} else {
4232 				pfm_sessions.pfs_sys_use_dbregs++;
4233 				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4234 				set_dbregs = 1;
4235 			}
4236 		}
4237 
4238 		UNLOCK_PFS(flags);
4239 
4240 		if (ret) goto error;
4241 	}
4242 
4243 	/*
4244 	 * SMP system-wide monitoring implies self-monitoring.
4245 	 *
4246 	 * The programming model expects the task to
4247 	 * be pinned on a CPU throughout the session.
4248 	 * Here we take note of the current CPU at the
4249 	 * time the context is loaded. No call from
4250 	 * another CPU will be allowed.
4251 	 *
4252 	 * The pinning via shed_setaffinity()
4253 	 * must be done by the calling task prior
4254 	 * to this call.
4255 	 *
4256 	 * systemwide: keep track of CPU this session is supposed to run on
4257 	 */
4258 	the_cpu = ctx->ctx_cpu = smp_processor_id();
4259 
4260 	ret = -EBUSY;
4261 	/*
4262 	 * now reserve the session
4263 	 */
4264 	ret = pfm_reserve_session(current, is_system, the_cpu);
4265 	if (ret) goto error;
4266 
4267 	/*
4268 	 * task is necessarily stopped at this point.
4269 	 *
4270 	 * If the previous context was zombie, then it got removed in
4271 	 * pfm_save_regs(). Therefore we should not see it here.
4272 	 * If we see a context, then this is an active context
4273 	 *
4274 	 * XXX: needs to be atomic
4275 	 */
4276 	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4277 		thread->pfm_context, ctx));
4278 
4279 	ret = -EBUSY;
4280 	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4281 	if (old != NULL) {
4282 		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4283 		goto error_unres;
4284 	}
4285 
4286 	pfm_reset_msgq(ctx);
4287 
4288 	ctx->ctx_state = PFM_CTX_LOADED;
4289 
4290 	/*
4291 	 * link context to task
4292 	 */
4293 	ctx->ctx_task = task;
4294 
4295 	if (is_system) {
4296 		/*
4297 		 * we load as stopped
4298 		 */
4299 		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4300 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4301 
4302 		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4303 	} else {
4304 		thread->flags |= IA64_THREAD_PM_VALID;
4305 	}
4306 
4307 	/*
4308 	 * propagate into thread-state
4309 	 */
4310 	pfm_copy_pmds(task, ctx);
4311 	pfm_copy_pmcs(task, ctx);
4312 
4313 	pmcs_source = ctx->th_pmcs;
4314 	pmds_source = ctx->th_pmds;
4315 
4316 	/*
4317 	 * always the case for system-wide
4318 	 */
4319 	if (task == current) {
4320 
4321 		if (is_system == 0) {
4322 
4323 			/* allow user level control */
4324 			ia64_psr(regs)->sp = 0;
4325 			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4326 
4327 			SET_LAST_CPU(ctx, smp_processor_id());
4328 			INC_ACTIVATION();
4329 			SET_ACTIVATION(ctx);
4330 #ifndef CONFIG_SMP
4331 			/*
4332 			 * push the other task out, if any
4333 			 */
4334 			owner_task = GET_PMU_OWNER();
4335 			if (owner_task) pfm_lazy_save_regs(owner_task);
4336 #endif
4337 		}
4338 		/*
4339 		 * load all PMD from ctx to PMU (as opposed to thread state)
4340 		 * restore all PMC from ctx to PMU
4341 		 */
4342 		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4343 		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4344 
4345 		ctx->ctx_reload_pmcs[0] = 0UL;
4346 		ctx->ctx_reload_pmds[0] = 0UL;
4347 
4348 		/*
4349 		 * guaranteed safe by earlier check against DBG_VALID
4350 		 */
4351 		if (ctx->ctx_fl_using_dbreg) {
4352 			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4353 			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4354 		}
4355 		/*
4356 		 * set new ownership
4357 		 */
4358 		SET_PMU_OWNER(task, ctx);
4359 
4360 		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4361 	} else {
4362 		/*
4363 		 * when not current, task MUST be stopped, so this is safe
4364 		 */
4365 		regs = task_pt_regs(task);
4366 
4367 		/* force a full reload */
4368 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4369 		SET_LAST_CPU(ctx, -1);
4370 
4371 		/* initial saved psr (stopped) */
4372 		ctx->ctx_saved_psr_up = 0UL;
4373 		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4374 	}
4375 
4376 	ret = 0;
4377 
4378 error_unres:
4379 	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4380 error:
4381 	/*
4382 	 * we must undo the dbregs setting (for system-wide)
4383 	 */
4384 	if (ret && set_dbregs) {
4385 		LOCK_PFS(flags);
4386 		pfm_sessions.pfs_sys_use_dbregs--;
4387 		UNLOCK_PFS(flags);
4388 	}
4389 	/*
4390 	 * release task, there is now a link with the context
4391 	 */
4392 	if (is_system == 0 && task != current) {
4393 		pfm_put_task(task);
4394 
4395 		if (ret == 0) {
4396 			ret = pfm_check_task_exist(ctx);
4397 			if (ret) {
4398 				ctx->ctx_state = PFM_CTX_UNLOADED;
4399 				ctx->ctx_task  = NULL;
4400 			}
4401 		}
4402 	}
4403 	return ret;
4404 }
4405 
4406 /*
4407  * in this function, we do not need to increase the use count
4408  * for the task via get_task_struct(), because we hold the
4409  * context lock. If the task were to disappear while having
4410  * a context attached, it would go through pfm_exit_thread()
4411  * which also grabs the context lock  and would therefore be blocked
4412  * until we are here.
4413  */
4414 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4415 
4416 static int
pfm_context_unload(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4417 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4418 {
4419 	struct task_struct *task = PFM_CTX_TASK(ctx);
4420 	struct pt_regs *tregs;
4421 	int prev_state, is_system;
4422 	int ret;
4423 
4424 	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4425 
4426 	prev_state = ctx->ctx_state;
4427 	is_system  = ctx->ctx_fl_system;
4428 
4429 	/*
4430 	 * unload only when necessary
4431 	 */
4432 	if (prev_state == PFM_CTX_UNLOADED) {
4433 		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4434 		return 0;
4435 	}
4436 
4437 	/*
4438 	 * clear psr and dcr bits
4439 	 */
4440 	ret = pfm_stop(ctx, NULL, 0, regs);
4441 	if (ret) return ret;
4442 
4443 	ctx->ctx_state = PFM_CTX_UNLOADED;
4444 
4445 	/*
4446 	 * in system mode, we need to update the PMU directly
4447 	 * and the user level state of the caller, which may not
4448 	 * necessarily be the creator of the context.
4449 	 */
4450 	if (is_system) {
4451 
4452 		/*
4453 		 * Update cpuinfo
4454 		 *
4455 		 * local PMU is taken care of in pfm_stop()
4456 		 */
4457 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4458 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4459 
4460 		/*
4461 		 * save PMDs in context
4462 		 * release ownership
4463 		 */
4464 		pfm_flush_pmds(current, ctx);
4465 
4466 		/*
4467 		 * at this point we are done with the PMU
4468 		 * so we can unreserve the resource.
4469 		 */
4470 		if (prev_state != PFM_CTX_ZOMBIE)
4471 			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4472 
4473 		/*
4474 		 * disconnect context from task
4475 		 */
4476 		task->thread.pfm_context = NULL;
4477 		/*
4478 		 * disconnect task from context
4479 		 */
4480 		ctx->ctx_task = NULL;
4481 
4482 		/*
4483 		 * There is nothing more to cleanup here.
4484 		 */
4485 		return 0;
4486 	}
4487 
4488 	/*
4489 	 * per-task mode
4490 	 */
4491 	tregs = task == current ? regs : task_pt_regs(task);
4492 
4493 	if (task == current) {
4494 		/*
4495 		 * cancel user level control
4496 		 */
4497 		ia64_psr(regs)->sp = 1;
4498 
4499 		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4500 	}
4501 	/*
4502 	 * save PMDs to context
4503 	 * release ownership
4504 	 */
4505 	pfm_flush_pmds(task, ctx);
4506 
4507 	/*
4508 	 * at this point we are done with the PMU
4509 	 * so we can unreserve the resource.
4510 	 *
4511 	 * when state was ZOMBIE, we have already unreserved.
4512 	 */
4513 	if (prev_state != PFM_CTX_ZOMBIE)
4514 		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4515 
4516 	/*
4517 	 * reset activation counter and psr
4518 	 */
4519 	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4520 	SET_LAST_CPU(ctx, -1);
4521 
4522 	/*
4523 	 * PMU state will not be restored
4524 	 */
4525 	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4526 
4527 	/*
4528 	 * break links between context and task
4529 	 */
4530 	task->thread.pfm_context  = NULL;
4531 	ctx->ctx_task             = NULL;
4532 
4533 	PFM_SET_WORK_PENDING(task, 0);
4534 
4535 	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4536 	ctx->ctx_fl_can_restart  = 0;
4537 	ctx->ctx_fl_going_zombie = 0;
4538 
4539 	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4540 
4541 	return 0;
4542 }
4543 
4544 
4545 /*
4546  * called only from exit_thread()
4547  * we come here only if the task has a context attached (loaded or masked)
4548  */
4549 void
pfm_exit_thread(struct task_struct * task)4550 pfm_exit_thread(struct task_struct *task)
4551 {
4552 	pfm_context_t *ctx;
4553 	unsigned long flags;
4554 	struct pt_regs *regs = task_pt_regs(task);
4555 	int ret, state;
4556 	int free_ok = 0;
4557 
4558 	ctx = PFM_GET_CTX(task);
4559 
4560 	PROTECT_CTX(ctx, flags);
4561 
4562 	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4563 
4564 	state = ctx->ctx_state;
4565 	switch(state) {
4566 		case PFM_CTX_UNLOADED:
4567 			/*
4568 	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4569 			 * be in unloaded state
4570 	 		 */
4571 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4572 			break;
4573 		case PFM_CTX_LOADED:
4574 		case PFM_CTX_MASKED:
4575 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4576 			if (ret) {
4577 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4578 			}
4579 			DPRINT(("ctx unloaded for current state was %d\n", state));
4580 
4581 			pfm_end_notify_user(ctx);
4582 			break;
4583 		case PFM_CTX_ZOMBIE:
4584 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4585 			if (ret) {
4586 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4587 			}
4588 			free_ok = 1;
4589 			break;
4590 		default:
4591 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4592 			break;
4593 	}
4594 	UNPROTECT_CTX(ctx, flags);
4595 
4596 	{ u64 psr = pfm_get_psr();
4597 	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4598 	  BUG_ON(GET_PMU_OWNER());
4599 	  BUG_ON(ia64_psr(regs)->up);
4600 	  BUG_ON(ia64_psr(regs)->pp);
4601 	}
4602 
4603 	/*
4604 	 * All memory free operations (especially for vmalloc'ed memory)
4605 	 * MUST be done with interrupts ENABLED.
4606 	 */
4607 	if (free_ok) pfm_context_free(ctx);
4608 }
4609 
4610 /*
4611  * functions MUST be listed in the increasing order of their index (see permfon.h)
4612  */
4613 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4614 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4615 #define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4616 #define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4617 #define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4618 
4619 static pfm_cmd_desc_t pfm_cmd_tab[]={
4620 /* 0  */PFM_CMD_NONE,
4621 /* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4622 /* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4623 /* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4624 /* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4625 /* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4626 /* 6  */PFM_CMD_NONE,
4627 /* 7  */PFM_CMD_NONE,
4628 /* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4629 /* 9  */PFM_CMD_NONE,
4630 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4631 /* 11 */PFM_CMD_NONE,
4632 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4633 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4634 /* 14 */PFM_CMD_NONE,
4635 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4636 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4637 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4638 /* 18 */PFM_CMD_NONE,
4639 /* 19 */PFM_CMD_NONE,
4640 /* 20 */PFM_CMD_NONE,
4641 /* 21 */PFM_CMD_NONE,
4642 /* 22 */PFM_CMD_NONE,
4643 /* 23 */PFM_CMD_NONE,
4644 /* 24 */PFM_CMD_NONE,
4645 /* 25 */PFM_CMD_NONE,
4646 /* 26 */PFM_CMD_NONE,
4647 /* 27 */PFM_CMD_NONE,
4648 /* 28 */PFM_CMD_NONE,
4649 /* 29 */PFM_CMD_NONE,
4650 /* 30 */PFM_CMD_NONE,
4651 /* 31 */PFM_CMD_NONE,
4652 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4653 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4654 };
4655 #define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4656 
4657 static int
pfm_check_task_state(pfm_context_t * ctx,int cmd,unsigned long flags)4658 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4659 {
4660 	struct task_struct *task;
4661 	int state, old_state;
4662 
4663 recheck:
4664 	state = ctx->ctx_state;
4665 	task  = ctx->ctx_task;
4666 
4667 	if (task == NULL) {
4668 		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4669 		return 0;
4670 	}
4671 
4672 	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4673 		ctx->ctx_fd,
4674 		state,
4675 		task_pid_nr(task),
4676 		task->state, PFM_CMD_STOPPED(cmd)));
4677 
4678 	/*
4679 	 * self-monitoring always ok.
4680 	 *
4681 	 * for system-wide the caller can either be the creator of the
4682 	 * context (to one to which the context is attached to) OR
4683 	 * a task running on the same CPU as the session.
4684 	 */
4685 	if (task == current || ctx->ctx_fl_system) return 0;
4686 
4687 	/*
4688 	 * we are monitoring another thread
4689 	 */
4690 	switch(state) {
4691 		case PFM_CTX_UNLOADED:
4692 			/*
4693 			 * if context is UNLOADED we are safe to go
4694 			 */
4695 			return 0;
4696 		case PFM_CTX_ZOMBIE:
4697 			/*
4698 			 * no command can operate on a zombie context
4699 			 */
4700 			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4701 			return -EINVAL;
4702 		case PFM_CTX_MASKED:
4703 			/*
4704 			 * PMU state has been saved to software even though
4705 			 * the thread may still be running.
4706 			 */
4707 			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4708 	}
4709 
4710 	/*
4711 	 * context is LOADED or MASKED. Some commands may need to have
4712 	 * the task stopped.
4713 	 *
4714 	 * We could lift this restriction for UP but it would mean that
4715 	 * the user has no guarantee the task would not run between
4716 	 * two successive calls to perfmonctl(). That's probably OK.
4717 	 * If this user wants to ensure the task does not run, then
4718 	 * the task must be stopped.
4719 	 */
4720 	if (PFM_CMD_STOPPED(cmd)) {
4721 		if (!task_is_stopped_or_traced(task)) {
4722 			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4723 			return -EBUSY;
4724 		}
4725 		/*
4726 		 * task is now stopped, wait for ctxsw out
4727 		 *
4728 		 * This is an interesting point in the code.
4729 		 * We need to unprotect the context because
4730 		 * the pfm_save_regs() routines needs to grab
4731 		 * the same lock. There are danger in doing
4732 		 * this because it leaves a window open for
4733 		 * another task to get access to the context
4734 		 * and possibly change its state. The one thing
4735 		 * that is not possible is for the context to disappear
4736 		 * because we are protected by the VFS layer, i.e.,
4737 		 * get_fd()/put_fd().
4738 		 */
4739 		old_state = state;
4740 
4741 		UNPROTECT_CTX(ctx, flags);
4742 
4743 		wait_task_inactive(task, 0);
4744 
4745 		PROTECT_CTX(ctx, flags);
4746 
4747 		/*
4748 		 * we must recheck to verify if state has changed
4749 		 */
4750 		if (ctx->ctx_state != old_state) {
4751 			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4752 			goto recheck;
4753 		}
4754 	}
4755 	return 0;
4756 }
4757 
4758 /*
4759  * system-call entry point (must return long)
4760  */
4761 asmlinkage long
sys_perfmonctl(int fd,int cmd,void __user * arg,int count)4762 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4763 {
4764 	struct fd f = {NULL, 0};
4765 	pfm_context_t *ctx = NULL;
4766 	unsigned long flags = 0UL;
4767 	void *args_k = NULL;
4768 	long ret; /* will expand int return types */
4769 	size_t base_sz, sz, xtra_sz = 0;
4770 	int narg, completed_args = 0, call_made = 0, cmd_flags;
4771 	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4772 	int (*getsize)(void *arg, size_t *sz);
4773 #define PFM_MAX_ARGSIZE	4096
4774 
4775 	/*
4776 	 * reject any call if perfmon was disabled at initialization
4777 	 */
4778 	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4779 
4780 	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4781 		DPRINT(("invalid cmd=%d\n", cmd));
4782 		return -EINVAL;
4783 	}
4784 
4785 	func      = pfm_cmd_tab[cmd].cmd_func;
4786 	narg      = pfm_cmd_tab[cmd].cmd_narg;
4787 	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4788 	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4789 	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4790 
4791 	if (unlikely(func == NULL)) {
4792 		DPRINT(("invalid cmd=%d\n", cmd));
4793 		return -EINVAL;
4794 	}
4795 
4796 	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4797 		PFM_CMD_NAME(cmd),
4798 		cmd,
4799 		narg,
4800 		base_sz,
4801 		count));
4802 
4803 	/*
4804 	 * check if number of arguments matches what the command expects
4805 	 */
4806 	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4807 		return -EINVAL;
4808 
4809 restart_args:
4810 	sz = xtra_sz + base_sz*count;
4811 	/*
4812 	 * limit abuse to min page size
4813 	 */
4814 	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4815 		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4816 		return -E2BIG;
4817 	}
4818 
4819 	/*
4820 	 * allocate default-sized argument buffer
4821 	 */
4822 	if (likely(count && args_k == NULL)) {
4823 		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4824 		if (args_k == NULL) return -ENOMEM;
4825 	}
4826 
4827 	ret = -EFAULT;
4828 
4829 	/*
4830 	 * copy arguments
4831 	 *
4832 	 * assume sz = 0 for command without parameters
4833 	 */
4834 	if (sz && copy_from_user(args_k, arg, sz)) {
4835 		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4836 		goto error_args;
4837 	}
4838 
4839 	/*
4840 	 * check if command supports extra parameters
4841 	 */
4842 	if (completed_args == 0 && getsize) {
4843 		/*
4844 		 * get extra parameters size (based on main argument)
4845 		 */
4846 		ret = (*getsize)(args_k, &xtra_sz);
4847 		if (ret) goto error_args;
4848 
4849 		completed_args = 1;
4850 
4851 		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4852 
4853 		/* retry if necessary */
4854 		if (likely(xtra_sz)) goto restart_args;
4855 	}
4856 
4857 	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4858 
4859 	ret = -EBADF;
4860 
4861 	f = fdget(fd);
4862 	if (unlikely(f.file == NULL)) {
4863 		DPRINT(("invalid fd %d\n", fd));
4864 		goto error_args;
4865 	}
4866 	if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4867 		DPRINT(("fd %d not related to perfmon\n", fd));
4868 		goto error_args;
4869 	}
4870 
4871 	ctx = f.file->private_data;
4872 	if (unlikely(ctx == NULL)) {
4873 		DPRINT(("no context for fd %d\n", fd));
4874 		goto error_args;
4875 	}
4876 	prefetch(&ctx->ctx_state);
4877 
4878 	PROTECT_CTX(ctx, flags);
4879 
4880 	/*
4881 	 * check task is stopped
4882 	 */
4883 	ret = pfm_check_task_state(ctx, cmd, flags);
4884 	if (unlikely(ret)) goto abort_locked;
4885 
4886 skip_fd:
4887 	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4888 
4889 	call_made = 1;
4890 
4891 abort_locked:
4892 	if (likely(ctx)) {
4893 		DPRINT(("context unlocked\n"));
4894 		UNPROTECT_CTX(ctx, flags);
4895 	}
4896 
4897 	/* copy argument back to user, if needed */
4898 	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4899 
4900 error_args:
4901 	if (f.file)
4902 		fdput(f);
4903 
4904 	kfree(args_k);
4905 
4906 	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4907 
4908 	return ret;
4909 }
4910 
4911 static void
pfm_resume_after_ovfl(pfm_context_t * ctx,unsigned long ovfl_regs,struct pt_regs * regs)4912 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4913 {
4914 	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4915 	pfm_ovfl_ctrl_t rst_ctrl;
4916 	int state;
4917 	int ret = 0;
4918 
4919 	state = ctx->ctx_state;
4920 	/*
4921 	 * Unlock sampling buffer and reset index atomically
4922 	 * XXX: not really needed when blocking
4923 	 */
4924 	if (CTX_HAS_SMPL(ctx)) {
4925 
4926 		rst_ctrl.bits.mask_monitoring = 0;
4927 		rst_ctrl.bits.reset_ovfl_pmds = 0;
4928 
4929 		if (state == PFM_CTX_LOADED)
4930 			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4931 		else
4932 			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4933 	} else {
4934 		rst_ctrl.bits.mask_monitoring = 0;
4935 		rst_ctrl.bits.reset_ovfl_pmds = 1;
4936 	}
4937 
4938 	if (ret == 0) {
4939 		if (rst_ctrl.bits.reset_ovfl_pmds) {
4940 			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4941 		}
4942 		if (rst_ctrl.bits.mask_monitoring == 0) {
4943 			DPRINT(("resuming monitoring\n"));
4944 			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4945 		} else {
4946 			DPRINT(("stopping monitoring\n"));
4947 			//pfm_stop_monitoring(current, regs);
4948 		}
4949 		ctx->ctx_state = PFM_CTX_LOADED;
4950 	}
4951 }
4952 
4953 /*
4954  * context MUST BE LOCKED when calling
4955  * can only be called for current
4956  */
4957 static void
pfm_context_force_terminate(pfm_context_t * ctx,struct pt_regs * regs)4958 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4959 {
4960 	int ret;
4961 
4962 	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4963 
4964 	ret = pfm_context_unload(ctx, NULL, 0, regs);
4965 	if (ret) {
4966 		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4967 	}
4968 
4969 	/*
4970 	 * and wakeup controlling task, indicating we are now disconnected
4971 	 */
4972 	wake_up_interruptible(&ctx->ctx_zombieq);
4973 
4974 	/*
4975 	 * given that context is still locked, the controlling
4976 	 * task will only get access when we return from
4977 	 * pfm_handle_work().
4978 	 */
4979 }
4980 
4981 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4982 
4983  /*
4984   * pfm_handle_work() can be called with interrupts enabled
4985   * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4986   * call may sleep, therefore we must re-enable interrupts
4987   * to avoid deadlocks. It is safe to do so because this function
4988   * is called ONLY when returning to user level (pUStk=1), in which case
4989   * there is no risk of kernel stack overflow due to deep
4990   * interrupt nesting.
4991   */
4992 void
pfm_handle_work(void)4993 pfm_handle_work(void)
4994 {
4995 	pfm_context_t *ctx;
4996 	struct pt_regs *regs;
4997 	unsigned long flags, dummy_flags;
4998 	unsigned long ovfl_regs;
4999 	unsigned int reason;
5000 	int ret;
5001 
5002 	ctx = PFM_GET_CTX(current);
5003 	if (ctx == NULL) {
5004 		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5005 			task_pid_nr(current));
5006 		return;
5007 	}
5008 
5009 	PROTECT_CTX(ctx, flags);
5010 
5011 	PFM_SET_WORK_PENDING(current, 0);
5012 
5013 	regs = task_pt_regs(current);
5014 
5015 	/*
5016 	 * extract reason for being here and clear
5017 	 */
5018 	reason = ctx->ctx_fl_trap_reason;
5019 	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5020 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5021 
5022 	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5023 
5024 	/*
5025 	 * must be done before we check for simple-reset mode
5026 	 */
5027 	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5028 		goto do_zombie;
5029 
5030 	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5031 	if (reason == PFM_TRAP_REASON_RESET)
5032 		goto skip_blocking;
5033 
5034 	/*
5035 	 * restore interrupt mask to what it was on entry.
5036 	 * Could be enabled/diasbled.
5037 	 */
5038 	UNPROTECT_CTX(ctx, flags);
5039 
5040 	/*
5041 	 * force interrupt enable because of down_interruptible()
5042 	 */
5043 	local_irq_enable();
5044 
5045 	DPRINT(("before block sleeping\n"));
5046 
5047 	/*
5048 	 * may go through without blocking on SMP systems
5049 	 * if restart has been received already by the time we call down()
5050 	 */
5051 	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5052 
5053 	DPRINT(("after block sleeping ret=%d\n", ret));
5054 
5055 	/*
5056 	 * lock context and mask interrupts again
5057 	 * We save flags into a dummy because we may have
5058 	 * altered interrupts mask compared to entry in this
5059 	 * function.
5060 	 */
5061 	PROTECT_CTX(ctx, dummy_flags);
5062 
5063 	/*
5064 	 * we need to read the ovfl_regs only after wake-up
5065 	 * because we may have had pfm_write_pmds() in between
5066 	 * and that can changed PMD values and therefore
5067 	 * ovfl_regs is reset for these new PMD values.
5068 	 */
5069 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5070 
5071 	if (ctx->ctx_fl_going_zombie) {
5072 do_zombie:
5073 		DPRINT(("context is zombie, bailing out\n"));
5074 		pfm_context_force_terminate(ctx, regs);
5075 		goto nothing_to_do;
5076 	}
5077 	/*
5078 	 * in case of interruption of down() we don't restart anything
5079 	 */
5080 	if (ret < 0)
5081 		goto nothing_to_do;
5082 
5083 skip_blocking:
5084 	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5085 	ctx->ctx_ovfl_regs[0] = 0UL;
5086 
5087 nothing_to_do:
5088 	/*
5089 	 * restore flags as they were upon entry
5090 	 */
5091 	UNPROTECT_CTX(ctx, flags);
5092 }
5093 
5094 static int
pfm_notify_user(pfm_context_t * ctx,pfm_msg_t * msg)5095 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5096 {
5097 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5098 		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5099 		return 0;
5100 	}
5101 
5102 	DPRINT(("waking up somebody\n"));
5103 
5104 	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5105 
5106 	/*
5107 	 * safe, we are not in intr handler, nor in ctxsw when
5108 	 * we come here
5109 	 */
5110 	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5111 
5112 	return 0;
5113 }
5114 
5115 static int
pfm_ovfl_notify_user(pfm_context_t * ctx,unsigned long ovfl_pmds)5116 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5117 {
5118 	pfm_msg_t *msg = NULL;
5119 
5120 	if (ctx->ctx_fl_no_msg == 0) {
5121 		msg = pfm_get_new_msg(ctx);
5122 		if (msg == NULL) {
5123 			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5124 			return -1;
5125 		}
5126 
5127 		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5128 		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5129 		msg->pfm_ovfl_msg.msg_active_set   = 0;
5130 		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5131 		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5132 		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5133 		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5134 		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5135 	}
5136 
5137 	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5138 		msg,
5139 		ctx->ctx_fl_no_msg,
5140 		ctx->ctx_fd,
5141 		ovfl_pmds));
5142 
5143 	return pfm_notify_user(ctx, msg);
5144 }
5145 
5146 static int
pfm_end_notify_user(pfm_context_t * ctx)5147 pfm_end_notify_user(pfm_context_t *ctx)
5148 {
5149 	pfm_msg_t *msg;
5150 
5151 	msg = pfm_get_new_msg(ctx);
5152 	if (msg == NULL) {
5153 		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5154 		return -1;
5155 	}
5156 	/* no leak */
5157 	memset(msg, 0, sizeof(*msg));
5158 
5159 	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5160 	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5161 	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5162 
5163 	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5164 		msg,
5165 		ctx->ctx_fl_no_msg,
5166 		ctx->ctx_fd));
5167 
5168 	return pfm_notify_user(ctx, msg);
5169 }
5170 
5171 /*
5172  * main overflow processing routine.
5173  * it can be called from the interrupt path or explicitly during the context switch code
5174  */
pfm_overflow_handler(struct task_struct * task,pfm_context_t * ctx,unsigned long pmc0,struct pt_regs * regs)5175 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5176 				unsigned long pmc0, struct pt_regs *regs)
5177 {
5178 	pfm_ovfl_arg_t *ovfl_arg;
5179 	unsigned long mask;
5180 	unsigned long old_val, ovfl_val, new_val;
5181 	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5182 	unsigned long tstamp;
5183 	pfm_ovfl_ctrl_t	ovfl_ctrl;
5184 	unsigned int i, has_smpl;
5185 	int must_notify = 0;
5186 
5187 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5188 
5189 	/*
5190 	 * sanity test. Should never happen
5191 	 */
5192 	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5193 
5194 	tstamp   = ia64_get_itc();
5195 	mask     = pmc0 >> PMU_FIRST_COUNTER;
5196 	ovfl_val = pmu_conf->ovfl_val;
5197 	has_smpl = CTX_HAS_SMPL(ctx);
5198 
5199 	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5200 		     "used_pmds=0x%lx\n",
5201 			pmc0,
5202 			task ? task_pid_nr(task): -1,
5203 			(regs ? regs->cr_iip : 0),
5204 			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5205 			ctx->ctx_used_pmds[0]));
5206 
5207 
5208 	/*
5209 	 * first we update the virtual counters
5210 	 * assume there was a prior ia64_srlz_d() issued
5211 	 */
5212 	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5213 
5214 		/* skip pmd which did not overflow */
5215 		if ((mask & 0x1) == 0) continue;
5216 
5217 		/*
5218 		 * Note that the pmd is not necessarily 0 at this point as qualified events
5219 		 * may have happened before the PMU was frozen. The residual count is not
5220 		 * taken into consideration here but will be with any read of the pmd via
5221 		 * pfm_read_pmds().
5222 		 */
5223 		old_val              = new_val = ctx->ctx_pmds[i].val;
5224 		new_val             += 1 + ovfl_val;
5225 		ctx->ctx_pmds[i].val = new_val;
5226 
5227 		/*
5228 		 * check for overflow condition
5229 		 */
5230 		if (likely(old_val > new_val)) {
5231 			ovfl_pmds |= 1UL << i;
5232 			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5233 		}
5234 
5235 		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5236 			i,
5237 			new_val,
5238 			old_val,
5239 			ia64_get_pmd(i) & ovfl_val,
5240 			ovfl_pmds,
5241 			ovfl_notify));
5242 	}
5243 
5244 	/*
5245 	 * there was no 64-bit overflow, nothing else to do
5246 	 */
5247 	if (ovfl_pmds == 0UL) return;
5248 
5249 	/*
5250 	 * reset all control bits
5251 	 */
5252 	ovfl_ctrl.val = 0;
5253 	reset_pmds    = 0UL;
5254 
5255 	/*
5256 	 * if a sampling format module exists, then we "cache" the overflow by
5257 	 * calling the module's handler() routine.
5258 	 */
5259 	if (has_smpl) {
5260 		unsigned long start_cycles, end_cycles;
5261 		unsigned long pmd_mask;
5262 		int j, k, ret = 0;
5263 		int this_cpu = smp_processor_id();
5264 
5265 		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5266 		ovfl_arg = &ctx->ctx_ovfl_arg;
5267 
5268 		prefetch(ctx->ctx_smpl_hdr);
5269 
5270 		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5271 
5272 			mask = 1UL << i;
5273 
5274 			if ((pmd_mask & 0x1) == 0) continue;
5275 
5276 			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5277 			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5278 			ovfl_arg->active_set    = 0;
5279 			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5280 			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5281 
5282 			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5283 			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5284 			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5285 
5286 			/*
5287 		 	 * copy values of pmds of interest. Sampling format may copy them
5288 		 	 * into sampling buffer.
5289 		 	 */
5290 			if (smpl_pmds) {
5291 				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5292 					if ((smpl_pmds & 0x1) == 0) continue;
5293 					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5294 					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5295 				}
5296 			}
5297 
5298 			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5299 
5300 			start_cycles = ia64_get_itc();
5301 
5302 			/*
5303 		 	 * call custom buffer format record (handler) routine
5304 		 	 */
5305 			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5306 
5307 			end_cycles = ia64_get_itc();
5308 
5309 			/*
5310 			 * For those controls, we take the union because they have
5311 			 * an all or nothing behavior.
5312 			 */
5313 			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5314 			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5315 			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5316 			/*
5317 			 * build the bitmask of pmds to reset now
5318 			 */
5319 			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5320 
5321 			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5322 		}
5323 		/*
5324 		 * when the module cannot handle the rest of the overflows, we abort right here
5325 		 */
5326 		if (ret && pmd_mask) {
5327 			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5328 				pmd_mask<<PMU_FIRST_COUNTER));
5329 		}
5330 		/*
5331 		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5332 		 */
5333 		ovfl_pmds &= ~reset_pmds;
5334 	} else {
5335 		/*
5336 		 * when no sampling module is used, then the default
5337 		 * is to notify on overflow if requested by user
5338 		 */
5339 		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5340 		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5341 		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5342 		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5343 		/*
5344 		 * if needed, we reset all overflowed pmds
5345 		 */
5346 		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5347 	}
5348 
5349 	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5350 
5351 	/*
5352 	 * reset the requested PMD registers using the short reset values
5353 	 */
5354 	if (reset_pmds) {
5355 		unsigned long bm = reset_pmds;
5356 		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5357 	}
5358 
5359 	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5360 		/*
5361 		 * keep track of what to reset when unblocking
5362 		 */
5363 		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5364 
5365 		/*
5366 		 * check for blocking context
5367 		 */
5368 		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5369 
5370 			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5371 
5372 			/*
5373 			 * set the perfmon specific checking pending work for the task
5374 			 */
5375 			PFM_SET_WORK_PENDING(task, 1);
5376 
5377 			/*
5378 			 * when coming from ctxsw, current still points to the
5379 			 * previous task, therefore we must work with task and not current.
5380 			 */
5381 			set_notify_resume(task);
5382 		}
5383 		/*
5384 		 * defer until state is changed (shorten spin window). the context is locked
5385 		 * anyway, so the signal receiver would come spin for nothing.
5386 		 */
5387 		must_notify = 1;
5388 	}
5389 
5390 	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5391 			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5392 			PFM_GET_WORK_PENDING(task),
5393 			ctx->ctx_fl_trap_reason,
5394 			ovfl_pmds,
5395 			ovfl_notify,
5396 			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5397 	/*
5398 	 * in case monitoring must be stopped, we toggle the psr bits
5399 	 */
5400 	if (ovfl_ctrl.bits.mask_monitoring) {
5401 		pfm_mask_monitoring(task);
5402 		ctx->ctx_state = PFM_CTX_MASKED;
5403 		ctx->ctx_fl_can_restart = 1;
5404 	}
5405 
5406 	/*
5407 	 * send notification now
5408 	 */
5409 	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5410 
5411 	return;
5412 
5413 sanity_check:
5414 	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5415 			smp_processor_id(),
5416 			task ? task_pid_nr(task) : -1,
5417 			pmc0);
5418 	return;
5419 
5420 stop_monitoring:
5421 	/*
5422 	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5423 	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5424 	 * come here as zombie only if the task is the current task. In which case, we
5425 	 * can access the PMU  hardware directly.
5426 	 *
5427 	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5428 	 *
5429 	 * In case the context was zombified it could not be reclaimed at the time
5430 	 * the monitoring program exited. At this point, the PMU reservation has been
5431 	 * returned, the sampiing buffer has been freed. We must convert this call
5432 	 * into a spurious interrupt. However, we must also avoid infinite overflows
5433 	 * by stopping monitoring for this task. We can only come here for a per-task
5434 	 * context. All we need to do is to stop monitoring using the psr bits which
5435 	 * are always task private. By re-enabling secure montioring, we ensure that
5436 	 * the monitored task will not be able to re-activate monitoring.
5437 	 * The task will eventually be context switched out, at which point the context
5438 	 * will be reclaimed (that includes releasing ownership of the PMU).
5439 	 *
5440 	 * So there might be a window of time where the number of per-task session is zero
5441 	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5442 	 * context. This is safe because if a per-task session comes in, it will push this one
5443 	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5444 	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5445 	 * also push our zombie context out.
5446 	 *
5447 	 * Overall pretty hairy stuff....
5448 	 */
5449 	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5450 	pfm_clear_psr_up();
5451 	ia64_psr(regs)->up = 0;
5452 	ia64_psr(regs)->sp = 1;
5453 	return;
5454 }
5455 
5456 static int
pfm_do_interrupt_handler(void * arg,struct pt_regs * regs)5457 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5458 {
5459 	struct task_struct *task;
5460 	pfm_context_t *ctx;
5461 	unsigned long flags;
5462 	u64 pmc0;
5463 	int this_cpu = smp_processor_id();
5464 	int retval = 0;
5465 
5466 	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5467 
5468 	/*
5469 	 * srlz.d done before arriving here
5470 	 */
5471 	pmc0 = ia64_get_pmc(0);
5472 
5473 	task = GET_PMU_OWNER();
5474 	ctx  = GET_PMU_CTX();
5475 
5476 	/*
5477 	 * if we have some pending bits set
5478 	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5479 	 */
5480 	if (PMC0_HAS_OVFL(pmc0) && task) {
5481 		/*
5482 		 * we assume that pmc0.fr is always set here
5483 		 */
5484 
5485 		/* sanity check */
5486 		if (!ctx) goto report_spurious1;
5487 
5488 		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5489 			goto report_spurious2;
5490 
5491 		PROTECT_CTX_NOPRINT(ctx, flags);
5492 
5493 		pfm_overflow_handler(task, ctx, pmc0, regs);
5494 
5495 		UNPROTECT_CTX_NOPRINT(ctx, flags);
5496 
5497 	} else {
5498 		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5499 		retval = -1;
5500 	}
5501 	/*
5502 	 * keep it unfrozen at all times
5503 	 */
5504 	pfm_unfreeze_pmu();
5505 
5506 	return retval;
5507 
5508 report_spurious1:
5509 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5510 		this_cpu, task_pid_nr(task));
5511 	pfm_unfreeze_pmu();
5512 	return -1;
5513 report_spurious2:
5514 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5515 		this_cpu,
5516 		task_pid_nr(task));
5517 	pfm_unfreeze_pmu();
5518 	return -1;
5519 }
5520 
5521 static irqreturn_t
pfm_interrupt_handler(int irq,void * arg)5522 pfm_interrupt_handler(int irq, void *arg)
5523 {
5524 	unsigned long start_cycles, total_cycles;
5525 	unsigned long min, max;
5526 	int this_cpu;
5527 	int ret;
5528 	struct pt_regs *regs = get_irq_regs();
5529 
5530 	this_cpu = get_cpu();
5531 	if (likely(!pfm_alt_intr_handler)) {
5532 		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5533 		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5534 
5535 		start_cycles = ia64_get_itc();
5536 
5537 		ret = pfm_do_interrupt_handler(arg, regs);
5538 
5539 		total_cycles = ia64_get_itc();
5540 
5541 		/*
5542 		 * don't measure spurious interrupts
5543 		 */
5544 		if (likely(ret == 0)) {
5545 			total_cycles -= start_cycles;
5546 
5547 			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5548 			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5549 
5550 			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5551 		}
5552 	}
5553 	else {
5554 		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5555 	}
5556 
5557 	put_cpu();
5558 	return IRQ_HANDLED;
5559 }
5560 
5561 /*
5562  * /proc/perfmon interface, for debug only
5563  */
5564 
5565 #define PFM_PROC_SHOW_HEADER	((void *)(long)nr_cpu_ids+1)
5566 
5567 static void *
pfm_proc_start(struct seq_file * m,loff_t * pos)5568 pfm_proc_start(struct seq_file *m, loff_t *pos)
5569 {
5570 	if (*pos == 0) {
5571 		return PFM_PROC_SHOW_HEADER;
5572 	}
5573 
5574 	while (*pos <= nr_cpu_ids) {
5575 		if (cpu_online(*pos - 1)) {
5576 			return (void *)*pos;
5577 		}
5578 		++*pos;
5579 	}
5580 	return NULL;
5581 }
5582 
5583 static void *
pfm_proc_next(struct seq_file * m,void * v,loff_t * pos)5584 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5585 {
5586 	++*pos;
5587 	return pfm_proc_start(m, pos);
5588 }
5589 
5590 static void
pfm_proc_stop(struct seq_file * m,void * v)5591 pfm_proc_stop(struct seq_file *m, void *v)
5592 {
5593 }
5594 
5595 static void
pfm_proc_show_header(struct seq_file * m)5596 pfm_proc_show_header(struct seq_file *m)
5597 {
5598 	struct list_head * pos;
5599 	pfm_buffer_fmt_t * entry;
5600 	unsigned long flags;
5601 
5602  	seq_printf(m,
5603 		"perfmon version           : %u.%u\n"
5604 		"model                     : %s\n"
5605 		"fastctxsw                 : %s\n"
5606 		"expert mode               : %s\n"
5607 		"ovfl_mask                 : 0x%lx\n"
5608 		"PMU flags                 : 0x%x\n",
5609 		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5610 		pmu_conf->pmu_name,
5611 		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5612 		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5613 		pmu_conf->ovfl_val,
5614 		pmu_conf->flags);
5615 
5616   	LOCK_PFS(flags);
5617 
5618  	seq_printf(m,
5619  		"proc_sessions             : %u\n"
5620  		"sys_sessions              : %u\n"
5621  		"sys_use_dbregs            : %u\n"
5622  		"ptrace_use_dbregs         : %u\n",
5623  		pfm_sessions.pfs_task_sessions,
5624  		pfm_sessions.pfs_sys_sessions,
5625  		pfm_sessions.pfs_sys_use_dbregs,
5626  		pfm_sessions.pfs_ptrace_use_dbregs);
5627 
5628   	UNLOCK_PFS(flags);
5629 
5630 	spin_lock(&pfm_buffer_fmt_lock);
5631 
5632 	list_for_each(pos, &pfm_buffer_fmt_list) {
5633 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5634 		seq_printf(m, "format                    : %16phD %s\n",
5635 			   entry->fmt_uuid, entry->fmt_name);
5636 	}
5637 	spin_unlock(&pfm_buffer_fmt_lock);
5638 
5639 }
5640 
5641 static int
pfm_proc_show(struct seq_file * m,void * v)5642 pfm_proc_show(struct seq_file *m, void *v)
5643 {
5644 	unsigned long psr;
5645 	unsigned int i;
5646 	int cpu;
5647 
5648 	if (v == PFM_PROC_SHOW_HEADER) {
5649 		pfm_proc_show_header(m);
5650 		return 0;
5651 	}
5652 
5653 	/* show info for CPU (v - 1) */
5654 
5655 	cpu = (long)v - 1;
5656 	seq_printf(m,
5657 		"CPU%-2d overflow intrs      : %lu\n"
5658 		"CPU%-2d overflow cycles     : %lu\n"
5659 		"CPU%-2d overflow min        : %lu\n"
5660 		"CPU%-2d overflow max        : %lu\n"
5661 		"CPU%-2d smpl handler calls  : %lu\n"
5662 		"CPU%-2d smpl handler cycles : %lu\n"
5663 		"CPU%-2d spurious intrs      : %lu\n"
5664 		"CPU%-2d replay   intrs      : %lu\n"
5665 		"CPU%-2d syst_wide           : %d\n"
5666 		"CPU%-2d dcr_pp              : %d\n"
5667 		"CPU%-2d exclude idle        : %d\n"
5668 		"CPU%-2d owner               : %d\n"
5669 		"CPU%-2d context             : %p\n"
5670 		"CPU%-2d activations         : %lu\n",
5671 		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5672 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5673 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5674 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5675 		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5676 		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5677 		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5678 		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5679 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5680 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5681 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5682 		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5683 		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5684 		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5685 
5686 	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5687 
5688 		psr = pfm_get_psr();
5689 
5690 		ia64_srlz_d();
5691 
5692 		seq_printf(m,
5693 			"CPU%-2d psr                 : 0x%lx\n"
5694 			"CPU%-2d pmc0                : 0x%lx\n",
5695 			cpu, psr,
5696 			cpu, ia64_get_pmc(0));
5697 
5698 		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5699 			if (PMC_IS_COUNTING(i) == 0) continue;
5700    			seq_printf(m,
5701 				"CPU%-2d pmc%u                : 0x%lx\n"
5702    				"CPU%-2d pmd%u                : 0x%lx\n",
5703 				cpu, i, ia64_get_pmc(i),
5704 				cpu, i, ia64_get_pmd(i));
5705   		}
5706 	}
5707 	return 0;
5708 }
5709 
5710 const struct seq_operations pfm_seq_ops = {
5711 	.start =	pfm_proc_start,
5712  	.next =		pfm_proc_next,
5713  	.stop =		pfm_proc_stop,
5714  	.show =		pfm_proc_show
5715 };
5716 
5717 static int
pfm_proc_open(struct inode * inode,struct file * file)5718 pfm_proc_open(struct inode *inode, struct file *file)
5719 {
5720 	return seq_open(file, &pfm_seq_ops);
5721 }
5722 
5723 
5724 /*
5725  * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5726  * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5727  * is active or inactive based on mode. We must rely on the value in
5728  * local_cpu_data->pfm_syst_info
5729  */
5730 void
pfm_syst_wide_update_task(struct task_struct * task,unsigned long info,int is_ctxswin)5731 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5732 {
5733 	struct pt_regs *regs;
5734 	unsigned long dcr;
5735 	unsigned long dcr_pp;
5736 
5737 	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5738 
5739 	/*
5740 	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5741 	 * on every CPU, so we can rely on the pid to identify the idle task.
5742 	 */
5743 	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5744 		regs = task_pt_regs(task);
5745 		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5746 		return;
5747 	}
5748 	/*
5749 	 * if monitoring has started
5750 	 */
5751 	if (dcr_pp) {
5752 		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5753 		/*
5754 		 * context switching in?
5755 		 */
5756 		if (is_ctxswin) {
5757 			/* mask monitoring for the idle task */
5758 			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5759 			pfm_clear_psr_pp();
5760 			ia64_srlz_i();
5761 			return;
5762 		}
5763 		/*
5764 		 * context switching out
5765 		 * restore monitoring for next task
5766 		 *
5767 		 * Due to inlining this odd if-then-else construction generates
5768 		 * better code.
5769 		 */
5770 		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5771 		pfm_set_psr_pp();
5772 		ia64_srlz_i();
5773 	}
5774 }
5775 
5776 #ifdef CONFIG_SMP
5777 
5778 static void
pfm_force_cleanup(pfm_context_t * ctx,struct pt_regs * regs)5779 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5780 {
5781 	struct task_struct *task = ctx->ctx_task;
5782 
5783 	ia64_psr(regs)->up = 0;
5784 	ia64_psr(regs)->sp = 1;
5785 
5786 	if (GET_PMU_OWNER() == task) {
5787 		DPRINT(("cleared ownership for [%d]\n",
5788 					task_pid_nr(ctx->ctx_task)));
5789 		SET_PMU_OWNER(NULL, NULL);
5790 	}
5791 
5792 	/*
5793 	 * disconnect the task from the context and vice-versa
5794 	 */
5795 	PFM_SET_WORK_PENDING(task, 0);
5796 
5797 	task->thread.pfm_context  = NULL;
5798 	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5799 
5800 	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5801 }
5802 
5803 
5804 /*
5805  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5806  */
5807 void
pfm_save_regs(struct task_struct * task)5808 pfm_save_regs(struct task_struct *task)
5809 {
5810 	pfm_context_t *ctx;
5811 	unsigned long flags;
5812 	u64 psr;
5813 
5814 
5815 	ctx = PFM_GET_CTX(task);
5816 	if (ctx == NULL) return;
5817 
5818 	/*
5819  	 * we always come here with interrupts ALREADY disabled by
5820  	 * the scheduler. So we simply need to protect against concurrent
5821 	 * access, not CPU concurrency.
5822 	 */
5823 	flags = pfm_protect_ctx_ctxsw(ctx);
5824 
5825 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5826 		struct pt_regs *regs = task_pt_regs(task);
5827 
5828 		pfm_clear_psr_up();
5829 
5830 		pfm_force_cleanup(ctx, regs);
5831 
5832 		BUG_ON(ctx->ctx_smpl_hdr);
5833 
5834 		pfm_unprotect_ctx_ctxsw(ctx, flags);
5835 
5836 		pfm_context_free(ctx);
5837 		return;
5838 	}
5839 
5840 	/*
5841 	 * save current PSR: needed because we modify it
5842 	 */
5843 	ia64_srlz_d();
5844 	psr = pfm_get_psr();
5845 
5846 	BUG_ON(psr & (IA64_PSR_I));
5847 
5848 	/*
5849 	 * stop monitoring:
5850 	 * This is the last instruction which may generate an overflow
5851 	 *
5852 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5853 	 * It will be restored from ipsr when going back to user level
5854 	 */
5855 	pfm_clear_psr_up();
5856 
5857 	/*
5858 	 * keep a copy of psr.up (for reload)
5859 	 */
5860 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5861 
5862 	/*
5863 	 * release ownership of this PMU.
5864 	 * PM interrupts are masked, so nothing
5865 	 * can happen.
5866 	 */
5867 	SET_PMU_OWNER(NULL, NULL);
5868 
5869 	/*
5870 	 * we systematically save the PMD as we have no
5871 	 * guarantee we will be schedule at that same
5872 	 * CPU again.
5873 	 */
5874 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5875 
5876 	/*
5877 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5878 	 * we will need it on the restore path to check
5879 	 * for pending overflow.
5880 	 */
5881 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5882 
5883 	/*
5884 	 * unfreeze PMU if had pending overflows
5885 	 */
5886 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5887 
5888 	/*
5889 	 * finally, allow context access.
5890 	 * interrupts will still be masked after this call.
5891 	 */
5892 	pfm_unprotect_ctx_ctxsw(ctx, flags);
5893 }
5894 
5895 #else /* !CONFIG_SMP */
5896 void
pfm_save_regs(struct task_struct * task)5897 pfm_save_regs(struct task_struct *task)
5898 {
5899 	pfm_context_t *ctx;
5900 	u64 psr;
5901 
5902 	ctx = PFM_GET_CTX(task);
5903 	if (ctx == NULL) return;
5904 
5905 	/*
5906 	 * save current PSR: needed because we modify it
5907 	 */
5908 	psr = pfm_get_psr();
5909 
5910 	BUG_ON(psr & (IA64_PSR_I));
5911 
5912 	/*
5913 	 * stop monitoring:
5914 	 * This is the last instruction which may generate an overflow
5915 	 *
5916 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5917 	 * It will be restored from ipsr when going back to user level
5918 	 */
5919 	pfm_clear_psr_up();
5920 
5921 	/*
5922 	 * keep a copy of psr.up (for reload)
5923 	 */
5924 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5925 }
5926 
5927 static void
pfm_lazy_save_regs(struct task_struct * task)5928 pfm_lazy_save_regs (struct task_struct *task)
5929 {
5930 	pfm_context_t *ctx;
5931 	unsigned long flags;
5932 
5933 	{ u64 psr  = pfm_get_psr();
5934 	  BUG_ON(psr & IA64_PSR_UP);
5935 	}
5936 
5937 	ctx = PFM_GET_CTX(task);
5938 
5939 	/*
5940 	 * we need to mask PMU overflow here to
5941 	 * make sure that we maintain pmc0 until
5942 	 * we save it. overflow interrupts are
5943 	 * treated as spurious if there is no
5944 	 * owner.
5945 	 *
5946 	 * XXX: I don't think this is necessary
5947 	 */
5948 	PROTECT_CTX(ctx,flags);
5949 
5950 	/*
5951 	 * release ownership of this PMU.
5952 	 * must be done before we save the registers.
5953 	 *
5954 	 * after this call any PMU interrupt is treated
5955 	 * as spurious.
5956 	 */
5957 	SET_PMU_OWNER(NULL, NULL);
5958 
5959 	/*
5960 	 * save all the pmds we use
5961 	 */
5962 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5963 
5964 	/*
5965 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5966 	 * it is needed to check for pended overflow
5967 	 * on the restore path
5968 	 */
5969 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5970 
5971 	/*
5972 	 * unfreeze PMU if had pending overflows
5973 	 */
5974 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5975 
5976 	/*
5977 	 * now get can unmask PMU interrupts, they will
5978 	 * be treated as purely spurious and we will not
5979 	 * lose any information
5980 	 */
5981 	UNPROTECT_CTX(ctx,flags);
5982 }
5983 #endif /* CONFIG_SMP */
5984 
5985 #ifdef CONFIG_SMP
5986 /*
5987  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5988  */
5989 void
pfm_load_regs(struct task_struct * task)5990 pfm_load_regs (struct task_struct *task)
5991 {
5992 	pfm_context_t *ctx;
5993 	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5994 	unsigned long flags;
5995 	u64 psr, psr_up;
5996 	int need_irq_resend;
5997 
5998 	ctx = PFM_GET_CTX(task);
5999 	if (unlikely(ctx == NULL)) return;
6000 
6001 	BUG_ON(GET_PMU_OWNER());
6002 
6003 	/*
6004 	 * possible on unload
6005 	 */
6006 	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6007 
6008 	/*
6009  	 * we always come here with interrupts ALREADY disabled by
6010  	 * the scheduler. So we simply need to protect against concurrent
6011 	 * access, not CPU concurrency.
6012 	 */
6013 	flags = pfm_protect_ctx_ctxsw(ctx);
6014 	psr   = pfm_get_psr();
6015 
6016 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6017 
6018 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6019 	BUG_ON(psr & IA64_PSR_I);
6020 
6021 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6022 		struct pt_regs *regs = task_pt_regs(task);
6023 
6024 		BUG_ON(ctx->ctx_smpl_hdr);
6025 
6026 		pfm_force_cleanup(ctx, regs);
6027 
6028 		pfm_unprotect_ctx_ctxsw(ctx, flags);
6029 
6030 		/*
6031 		 * this one (kmalloc'ed) is fine with interrupts disabled
6032 		 */
6033 		pfm_context_free(ctx);
6034 
6035 		return;
6036 	}
6037 
6038 	/*
6039 	 * we restore ALL the debug registers to avoid picking up
6040 	 * stale state.
6041 	 */
6042 	if (ctx->ctx_fl_using_dbreg) {
6043 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6044 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6045 	}
6046 	/*
6047 	 * retrieve saved psr.up
6048 	 */
6049 	psr_up = ctx->ctx_saved_psr_up;
6050 
6051 	/*
6052 	 * if we were the last user of the PMU on that CPU,
6053 	 * then nothing to do except restore psr
6054 	 */
6055 	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6056 
6057 		/*
6058 		 * retrieve partial reload masks (due to user modifications)
6059 		 */
6060 		pmc_mask = ctx->ctx_reload_pmcs[0];
6061 		pmd_mask = ctx->ctx_reload_pmds[0];
6062 
6063 	} else {
6064 		/*
6065 	 	 * To avoid leaking information to the user level when psr.sp=0,
6066 	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6067 	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6068 	 	 * we initialized or requested (sampling) so there is no risk there.
6069 	 	 */
6070 		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6071 
6072 		/*
6073 	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6074 	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6075 	 	 * up stale configuration.
6076 	 	 *
6077 	 	 * PMC0 is never in the mask. It is always restored separately.
6078 	 	 */
6079 		pmc_mask = ctx->ctx_all_pmcs[0];
6080 	}
6081 	/*
6082 	 * when context is MASKED, we will restore PMC with plm=0
6083 	 * and PMD with stale information, but that's ok, nothing
6084 	 * will be captured.
6085 	 *
6086 	 * XXX: optimize here
6087 	 */
6088 	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6089 	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6090 
6091 	/*
6092 	 * check for pending overflow at the time the state
6093 	 * was saved.
6094 	 */
6095 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6096 		/*
6097 		 * reload pmc0 with the overflow information
6098 		 * On McKinley PMU, this will trigger a PMU interrupt
6099 		 */
6100 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6101 		ia64_srlz_d();
6102 		ctx->th_pmcs[0] = 0UL;
6103 
6104 		/*
6105 		 * will replay the PMU interrupt
6106 		 */
6107 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6108 
6109 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6110 	}
6111 
6112 	/*
6113 	 * we just did a reload, so we reset the partial reload fields
6114 	 */
6115 	ctx->ctx_reload_pmcs[0] = 0UL;
6116 	ctx->ctx_reload_pmds[0] = 0UL;
6117 
6118 	SET_LAST_CPU(ctx, smp_processor_id());
6119 
6120 	/*
6121 	 * dump activation value for this PMU
6122 	 */
6123 	INC_ACTIVATION();
6124 	/*
6125 	 * record current activation for this context
6126 	 */
6127 	SET_ACTIVATION(ctx);
6128 
6129 	/*
6130 	 * establish new ownership.
6131 	 */
6132 	SET_PMU_OWNER(task, ctx);
6133 
6134 	/*
6135 	 * restore the psr.up bit. measurement
6136 	 * is active again.
6137 	 * no PMU interrupt can happen at this point
6138 	 * because we still have interrupts disabled.
6139 	 */
6140 	if (likely(psr_up)) pfm_set_psr_up();
6141 
6142 	/*
6143 	 * allow concurrent access to context
6144 	 */
6145 	pfm_unprotect_ctx_ctxsw(ctx, flags);
6146 }
6147 #else /*  !CONFIG_SMP */
6148 /*
6149  * reload PMU state for UP kernels
6150  * in 2.5 we come here with interrupts disabled
6151  */
6152 void
pfm_load_regs(struct task_struct * task)6153 pfm_load_regs (struct task_struct *task)
6154 {
6155 	pfm_context_t *ctx;
6156 	struct task_struct *owner;
6157 	unsigned long pmd_mask, pmc_mask;
6158 	u64 psr, psr_up;
6159 	int need_irq_resend;
6160 
6161 	owner = GET_PMU_OWNER();
6162 	ctx   = PFM_GET_CTX(task);
6163 	psr   = pfm_get_psr();
6164 
6165 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6166 	BUG_ON(psr & IA64_PSR_I);
6167 
6168 	/*
6169 	 * we restore ALL the debug registers to avoid picking up
6170 	 * stale state.
6171 	 *
6172 	 * This must be done even when the task is still the owner
6173 	 * as the registers may have been modified via ptrace()
6174 	 * (not perfmon) by the previous task.
6175 	 */
6176 	if (ctx->ctx_fl_using_dbreg) {
6177 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6178 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6179 	}
6180 
6181 	/*
6182 	 * retrieved saved psr.up
6183 	 */
6184 	psr_up = ctx->ctx_saved_psr_up;
6185 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6186 
6187 	/*
6188 	 * short path, our state is still there, just
6189 	 * need to restore psr and we go
6190 	 *
6191 	 * we do not touch either PMC nor PMD. the psr is not touched
6192 	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6193 	 * concurrency even without interrupt masking.
6194 	 */
6195 	if (likely(owner == task)) {
6196 		if (likely(psr_up)) pfm_set_psr_up();
6197 		return;
6198 	}
6199 
6200 	/*
6201 	 * someone else is still using the PMU, first push it out and
6202 	 * then we'll be able to install our stuff !
6203 	 *
6204 	 * Upon return, there will be no owner for the current PMU
6205 	 */
6206 	if (owner) pfm_lazy_save_regs(owner);
6207 
6208 	/*
6209 	 * To avoid leaking information to the user level when psr.sp=0,
6210 	 * we must reload ALL implemented pmds (even the ones we don't use).
6211 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6212 	 * we initialized or requested (sampling) so there is no risk there.
6213 	 */
6214 	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6215 
6216 	/*
6217 	 * ALL accessible PMCs are systematically reloaded, unused registers
6218 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6219 	 * up stale configuration.
6220 	 *
6221 	 * PMC0 is never in the mask. It is always restored separately
6222 	 */
6223 	pmc_mask = ctx->ctx_all_pmcs[0];
6224 
6225 	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6226 	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6227 
6228 	/*
6229 	 * check for pending overflow at the time the state
6230 	 * was saved.
6231 	 */
6232 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6233 		/*
6234 		 * reload pmc0 with the overflow information
6235 		 * On McKinley PMU, this will trigger a PMU interrupt
6236 		 */
6237 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6238 		ia64_srlz_d();
6239 
6240 		ctx->th_pmcs[0] = 0UL;
6241 
6242 		/*
6243 		 * will replay the PMU interrupt
6244 		 */
6245 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6246 
6247 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6248 	}
6249 
6250 	/*
6251 	 * establish new ownership.
6252 	 */
6253 	SET_PMU_OWNER(task, ctx);
6254 
6255 	/*
6256 	 * restore the psr.up bit. measurement
6257 	 * is active again.
6258 	 * no PMU interrupt can happen at this point
6259 	 * because we still have interrupts disabled.
6260 	 */
6261 	if (likely(psr_up)) pfm_set_psr_up();
6262 }
6263 #endif /* CONFIG_SMP */
6264 
6265 /*
6266  * this function assumes monitoring is stopped
6267  */
6268 static void
pfm_flush_pmds(struct task_struct * task,pfm_context_t * ctx)6269 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6270 {
6271 	u64 pmc0;
6272 	unsigned long mask2, val, pmd_val, ovfl_val;
6273 	int i, can_access_pmu = 0;
6274 	int is_self;
6275 
6276 	/*
6277 	 * is the caller the task being monitored (or which initiated the
6278 	 * session for system wide measurements)
6279 	 */
6280 	is_self = ctx->ctx_task == task ? 1 : 0;
6281 
6282 	/*
6283 	 * can access PMU is task is the owner of the PMU state on the current CPU
6284 	 * or if we are running on the CPU bound to the context in system-wide mode
6285 	 * (that is not necessarily the task the context is attached to in this mode).
6286 	 * In system-wide we always have can_access_pmu true because a task running on an
6287 	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6288 	 */
6289 	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6290 	if (can_access_pmu) {
6291 		/*
6292 		 * Mark the PMU as not owned
6293 		 * This will cause the interrupt handler to do nothing in case an overflow
6294 		 * interrupt was in-flight
6295 		 * This also guarantees that pmc0 will contain the final state
6296 		 * It virtually gives us full control on overflow processing from that point
6297 		 * on.
6298 		 */
6299 		SET_PMU_OWNER(NULL, NULL);
6300 		DPRINT(("releasing ownership\n"));
6301 
6302 		/*
6303 		 * read current overflow status:
6304 		 *
6305 		 * we are guaranteed to read the final stable state
6306 		 */
6307 		ia64_srlz_d();
6308 		pmc0 = ia64_get_pmc(0); /* slow */
6309 
6310 		/*
6311 		 * reset freeze bit, overflow status information destroyed
6312 		 */
6313 		pfm_unfreeze_pmu();
6314 	} else {
6315 		pmc0 = ctx->th_pmcs[0];
6316 		/*
6317 		 * clear whatever overflow status bits there were
6318 		 */
6319 		ctx->th_pmcs[0] = 0;
6320 	}
6321 	ovfl_val = pmu_conf->ovfl_val;
6322 	/*
6323 	 * we save all the used pmds
6324 	 * we take care of overflows for counting PMDs
6325 	 *
6326 	 * XXX: sampling situation is not taken into account here
6327 	 */
6328 	mask2 = ctx->ctx_used_pmds[0];
6329 
6330 	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6331 
6332 	for (i = 0; mask2; i++, mask2>>=1) {
6333 
6334 		/* skip non used pmds */
6335 		if ((mask2 & 0x1) == 0) continue;
6336 
6337 		/*
6338 		 * can access PMU always true in system wide mode
6339 		 */
6340 		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6341 
6342 		if (PMD_IS_COUNTING(i)) {
6343 			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6344 				task_pid_nr(task),
6345 				i,
6346 				ctx->ctx_pmds[i].val,
6347 				val & ovfl_val));
6348 
6349 			/*
6350 			 * we rebuild the full 64 bit value of the counter
6351 			 */
6352 			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6353 
6354 			/*
6355 			 * now everything is in ctx_pmds[] and we need
6356 			 * to clear the saved context from save_regs() such that
6357 			 * pfm_read_pmds() gets the correct value
6358 			 */
6359 			pmd_val = 0UL;
6360 
6361 			/*
6362 			 * take care of overflow inline
6363 			 */
6364 			if (pmc0 & (1UL << i)) {
6365 				val += 1 + ovfl_val;
6366 				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6367 			}
6368 		}
6369 
6370 		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6371 
6372 		if (is_self) ctx->th_pmds[i] = pmd_val;
6373 
6374 		ctx->ctx_pmds[i].val = val;
6375 	}
6376 }
6377 
6378 static struct irqaction perfmon_irqaction = {
6379 	.handler = pfm_interrupt_handler,
6380 	.name    = "perfmon"
6381 };
6382 
6383 static void
pfm_alt_save_pmu_state(void * data)6384 pfm_alt_save_pmu_state(void *data)
6385 {
6386 	struct pt_regs *regs;
6387 
6388 	regs = task_pt_regs(current);
6389 
6390 	DPRINT(("called\n"));
6391 
6392 	/*
6393 	 * should not be necessary but
6394 	 * let's take not risk
6395 	 */
6396 	pfm_clear_psr_up();
6397 	pfm_clear_psr_pp();
6398 	ia64_psr(regs)->pp = 0;
6399 
6400 	/*
6401 	 * This call is required
6402 	 * May cause a spurious interrupt on some processors
6403 	 */
6404 	pfm_freeze_pmu();
6405 
6406 	ia64_srlz_d();
6407 }
6408 
6409 void
pfm_alt_restore_pmu_state(void * data)6410 pfm_alt_restore_pmu_state(void *data)
6411 {
6412 	struct pt_regs *regs;
6413 
6414 	regs = task_pt_regs(current);
6415 
6416 	DPRINT(("called\n"));
6417 
6418 	/*
6419 	 * put PMU back in state expected
6420 	 * by perfmon
6421 	 */
6422 	pfm_clear_psr_up();
6423 	pfm_clear_psr_pp();
6424 	ia64_psr(regs)->pp = 0;
6425 
6426 	/*
6427 	 * perfmon runs with PMU unfrozen at all times
6428 	 */
6429 	pfm_unfreeze_pmu();
6430 
6431 	ia64_srlz_d();
6432 }
6433 
6434 int
pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6435 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6436 {
6437 	int ret, i;
6438 	int reserve_cpu;
6439 
6440 	/* some sanity checks */
6441 	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6442 
6443 	/* do the easy test first */
6444 	if (pfm_alt_intr_handler) return -EBUSY;
6445 
6446 	/* one at a time in the install or remove, just fail the others */
6447 	if (!spin_trylock(&pfm_alt_install_check)) {
6448 		return -EBUSY;
6449 	}
6450 
6451 	/* reserve our session */
6452 	for_each_online_cpu(reserve_cpu) {
6453 		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6454 		if (ret) goto cleanup_reserve;
6455 	}
6456 
6457 	/* save the current system wide pmu states */
6458 	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6459 	if (ret) {
6460 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6461 		goto cleanup_reserve;
6462 	}
6463 
6464 	/* officially change to the alternate interrupt handler */
6465 	pfm_alt_intr_handler = hdl;
6466 
6467 	spin_unlock(&pfm_alt_install_check);
6468 
6469 	return 0;
6470 
6471 cleanup_reserve:
6472 	for_each_online_cpu(i) {
6473 		/* don't unreserve more than we reserved */
6474 		if (i >= reserve_cpu) break;
6475 
6476 		pfm_unreserve_session(NULL, 1, i);
6477 	}
6478 
6479 	spin_unlock(&pfm_alt_install_check);
6480 
6481 	return ret;
6482 }
6483 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6484 
6485 int
pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6486 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6487 {
6488 	int i;
6489 	int ret;
6490 
6491 	if (hdl == NULL) return -EINVAL;
6492 
6493 	/* cannot remove someone else's handler! */
6494 	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6495 
6496 	/* one at a time in the install or remove, just fail the others */
6497 	if (!spin_trylock(&pfm_alt_install_check)) {
6498 		return -EBUSY;
6499 	}
6500 
6501 	pfm_alt_intr_handler = NULL;
6502 
6503 	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6504 	if (ret) {
6505 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6506 	}
6507 
6508 	for_each_online_cpu(i) {
6509 		pfm_unreserve_session(NULL, 1, i);
6510 	}
6511 
6512 	spin_unlock(&pfm_alt_install_check);
6513 
6514 	return 0;
6515 }
6516 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6517 
6518 /*
6519  * perfmon initialization routine, called from the initcall() table
6520  */
6521 static int init_pfm_fs(void);
6522 
6523 static int __init
pfm_probe_pmu(void)6524 pfm_probe_pmu(void)
6525 {
6526 	pmu_config_t **p;
6527 	int family;
6528 
6529 	family = local_cpu_data->family;
6530 	p      = pmu_confs;
6531 
6532 	while(*p) {
6533 		if ((*p)->probe) {
6534 			if ((*p)->probe() == 0) goto found;
6535 		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6536 			goto found;
6537 		}
6538 		p++;
6539 	}
6540 	return -1;
6541 found:
6542 	pmu_conf = *p;
6543 	return 0;
6544 }
6545 
6546 static const struct file_operations pfm_proc_fops = {
6547 	.open		= pfm_proc_open,
6548 	.read		= seq_read,
6549 	.llseek		= seq_lseek,
6550 	.release	= seq_release,
6551 };
6552 
6553 int __init
pfm_init(void)6554 pfm_init(void)
6555 {
6556 	unsigned int n, n_counters, i;
6557 
6558 	printk("perfmon: version %u.%u IRQ %u\n",
6559 		PFM_VERSION_MAJ,
6560 		PFM_VERSION_MIN,
6561 		IA64_PERFMON_VECTOR);
6562 
6563 	if (pfm_probe_pmu()) {
6564 		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6565 				local_cpu_data->family);
6566 		return -ENODEV;
6567 	}
6568 
6569 	/*
6570 	 * compute the number of implemented PMD/PMC from the
6571 	 * description tables
6572 	 */
6573 	n = 0;
6574 	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6575 		if (PMC_IS_IMPL(i) == 0) continue;
6576 		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6577 		n++;
6578 	}
6579 	pmu_conf->num_pmcs = n;
6580 
6581 	n = 0; n_counters = 0;
6582 	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6583 		if (PMD_IS_IMPL(i) == 0) continue;
6584 		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6585 		n++;
6586 		if (PMD_IS_COUNTING(i)) n_counters++;
6587 	}
6588 	pmu_conf->num_pmds      = n;
6589 	pmu_conf->num_counters  = n_counters;
6590 
6591 	/*
6592 	 * sanity checks on the number of debug registers
6593 	 */
6594 	if (pmu_conf->use_rr_dbregs) {
6595 		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6596 			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6597 			pmu_conf = NULL;
6598 			return -1;
6599 		}
6600 		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6601 			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6602 			pmu_conf = NULL;
6603 			return -1;
6604 		}
6605 	}
6606 
6607 	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6608 	       pmu_conf->pmu_name,
6609 	       pmu_conf->num_pmcs,
6610 	       pmu_conf->num_pmds,
6611 	       pmu_conf->num_counters,
6612 	       ffz(pmu_conf->ovfl_val));
6613 
6614 	/* sanity check */
6615 	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6616 		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6617 		pmu_conf = NULL;
6618 		return -1;
6619 	}
6620 
6621 	/*
6622 	 * create /proc/perfmon (mostly for debugging purposes)
6623 	 */
6624 	perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6625 	if (perfmon_dir == NULL) {
6626 		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6627 		pmu_conf = NULL;
6628 		return -1;
6629 	}
6630 
6631 	/*
6632 	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6633 	 */
6634 	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6635 
6636 	/*
6637 	 * initialize all our spinlocks
6638 	 */
6639 	spin_lock_init(&pfm_sessions.pfs_lock);
6640 	spin_lock_init(&pfm_buffer_fmt_lock);
6641 
6642 	init_pfm_fs();
6643 
6644 	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6645 
6646 	return 0;
6647 }
6648 
6649 __initcall(pfm_init);
6650 
6651 /*
6652  * this function is called before pfm_init()
6653  */
6654 void
pfm_init_percpu(void)6655 pfm_init_percpu (void)
6656 {
6657 	static int first_time=1;
6658 	/*
6659 	 * make sure no measurement is active
6660 	 * (may inherit programmed PMCs from EFI).
6661 	 */
6662 	pfm_clear_psr_pp();
6663 	pfm_clear_psr_up();
6664 
6665 	/*
6666 	 * we run with the PMU not frozen at all times
6667 	 */
6668 	pfm_unfreeze_pmu();
6669 
6670 	if (first_time) {
6671 		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6672 		first_time=0;
6673 	}
6674 
6675 	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6676 	ia64_srlz_d();
6677 }
6678 
6679 /*
6680  * used for debug purposes only
6681  */
6682 void
dump_pmu_state(const char * from)6683 dump_pmu_state(const char *from)
6684 {
6685 	struct task_struct *task;
6686 	struct pt_regs *regs;
6687 	pfm_context_t *ctx;
6688 	unsigned long psr, dcr, info, flags;
6689 	int i, this_cpu;
6690 
6691 	local_irq_save(flags);
6692 
6693 	this_cpu = smp_processor_id();
6694 	regs     = task_pt_regs(current);
6695 	info     = PFM_CPUINFO_GET();
6696 	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6697 
6698 	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6699 		local_irq_restore(flags);
6700 		return;
6701 	}
6702 
6703 	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6704 		this_cpu,
6705 		from,
6706 		task_pid_nr(current),
6707 		regs->cr_iip,
6708 		current->comm);
6709 
6710 	task = GET_PMU_OWNER();
6711 	ctx  = GET_PMU_CTX();
6712 
6713 	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6714 
6715 	psr = pfm_get_psr();
6716 
6717 	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6718 		this_cpu,
6719 		ia64_get_pmc(0),
6720 		psr & IA64_PSR_PP ? 1 : 0,
6721 		psr & IA64_PSR_UP ? 1 : 0,
6722 		dcr & IA64_DCR_PP ? 1 : 0,
6723 		info,
6724 		ia64_psr(regs)->up,
6725 		ia64_psr(regs)->pp);
6726 
6727 	ia64_psr(regs)->up = 0;
6728 	ia64_psr(regs)->pp = 0;
6729 
6730 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6731 		if (PMC_IS_IMPL(i) == 0) continue;
6732 		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6733 	}
6734 
6735 	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6736 		if (PMD_IS_IMPL(i) == 0) continue;
6737 		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6738 	}
6739 
6740 	if (ctx) {
6741 		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6742 				this_cpu,
6743 				ctx->ctx_state,
6744 				ctx->ctx_smpl_vaddr,
6745 				ctx->ctx_smpl_hdr,
6746 				ctx->ctx_msgq_head,
6747 				ctx->ctx_msgq_tail,
6748 				ctx->ctx_saved_psr_up);
6749 	}
6750 	local_irq_restore(flags);
6751 }
6752 
6753 /*
6754  * called from process.c:copy_thread(). task is new child.
6755  */
6756 void
pfm_inherit(struct task_struct * task,struct pt_regs * regs)6757 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6758 {
6759 	struct thread_struct *thread;
6760 
6761 	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6762 
6763 	thread = &task->thread;
6764 
6765 	/*
6766 	 * cut links inherited from parent (current)
6767 	 */
6768 	thread->pfm_context = NULL;
6769 
6770 	PFM_SET_WORK_PENDING(task, 0);
6771 
6772 	/*
6773 	 * the psr bits are already set properly in copy_threads()
6774 	 */
6775 }
6776 #else  /* !CONFIG_PERFMON */
6777 asmlinkage long
sys_perfmonctl(int fd,int cmd,void * arg,int count)6778 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6779 {
6780 	return -ENOSYS;
6781 }
6782 #endif /* CONFIG_PERFMON */
6783