1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/nmi.h>
25 #include <linux/percpu.h>
26 #include <linux/clockchips.h>
27 #include <linux/completion.h>
28 #include <linux/cpufreq.h>
29 #include <linux/irq_work.h>
30 #include <linux/slab.h>
31
32 #include <linux/atomic.h>
33 #include <asm/bugs.h>
34 #include <asm/smp.h>
35 #include <asm/cacheflush.h>
36 #include <asm/cpu.h>
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 #include <asm/idmap.h>
40 #include <asm/topology.h>
41 #include <asm/mmu_context.h>
42 #include <asm/pgtable.h>
43 #include <asm/pgalloc.h>
44 #include <asm/procinfo.h>
45 #include <asm/processor.h>
46 #include <asm/sections.h>
47 #include <asm/tlbflush.h>
48 #include <asm/ptrace.h>
49 #include <asm/smp_plat.h>
50 #include <asm/virt.h>
51 #include <asm/mach/arch.h>
52 #include <asm/mpu.h>
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56
57 /*
58 * as from 2.5, kernels no longer have an init_tasks structure
59 * so we need some other way of telling a new secondary core
60 * where to place its SVC stack
61 */
62 struct secondary_data secondary_data;
63
64 /*
65 * control for which core is the next to come out of the secondary
66 * boot "holding pen"
67 */
68 volatile int pen_release = -1;
69
70 enum ipi_msg_type {
71 IPI_WAKEUP,
72 IPI_TIMER,
73 IPI_RESCHEDULE,
74 IPI_CALL_FUNC,
75 IPI_CALL_FUNC_SINGLE,
76 IPI_CPU_STOP,
77 IPI_IRQ_WORK,
78 IPI_COMPLETION,
79 IPI_CPU_BACKTRACE = 15,
80 };
81
82 static DECLARE_COMPLETION(cpu_running);
83
84 static struct smp_operations smp_ops;
85
smp_set_ops(const struct smp_operations * ops)86 void __init smp_set_ops(const struct smp_operations *ops)
87 {
88 if (ops)
89 smp_ops = *ops;
90 };
91
get_arch_pgd(pgd_t * pgd)92 static unsigned long get_arch_pgd(pgd_t *pgd)
93 {
94 #ifdef CONFIG_ARM_LPAE
95 return __phys_to_pfn(virt_to_phys(pgd));
96 #else
97 return virt_to_phys(pgd);
98 #endif
99 }
100
101 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
secondary_biglittle_prepare(unsigned int cpu)102 static int secondary_biglittle_prepare(unsigned int cpu)
103 {
104 if (!cpu_vtable[cpu])
105 cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
106
107 return cpu_vtable[cpu] ? 0 : -ENOMEM;
108 }
109
secondary_biglittle_init(void)110 static void secondary_biglittle_init(void)
111 {
112 init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
113 }
114 #else
secondary_biglittle_prepare(unsigned int cpu)115 static int secondary_biglittle_prepare(unsigned int cpu)
116 {
117 return 0;
118 }
119
secondary_biglittle_init(void)120 static void secondary_biglittle_init(void)
121 {
122 }
123 #endif
124
__cpu_up(unsigned int cpu,struct task_struct * idle)125 int __cpu_up(unsigned int cpu, struct task_struct *idle)
126 {
127 int ret;
128
129 if (!smp_ops.smp_boot_secondary)
130 return -ENOSYS;
131
132 ret = secondary_biglittle_prepare(cpu);
133 if (ret)
134 return ret;
135
136 /*
137 * We need to tell the secondary core where to find
138 * its stack and the page tables.
139 */
140 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
141 #ifdef CONFIG_ARM_MPU
142 secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
143 #endif
144
145 #ifdef CONFIG_MMU
146 secondary_data.pgdir = virt_to_phys(idmap_pgd);
147 secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
148 #endif
149 sync_cache_w(&secondary_data);
150
151 /*
152 * Now bring the CPU into our world.
153 */
154 ret = smp_ops.smp_boot_secondary(cpu, idle);
155 if (ret == 0) {
156 /*
157 * CPU was successfully started, wait for it
158 * to come online or time out.
159 */
160 wait_for_completion_timeout(&cpu_running,
161 msecs_to_jiffies(1000));
162
163 if (!cpu_online(cpu)) {
164 pr_crit("CPU%u: failed to come online\n", cpu);
165 ret = -EIO;
166 }
167 } else {
168 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
169 }
170
171
172 memset(&secondary_data, 0, sizeof(secondary_data));
173 return ret;
174 }
175
176 /* platform specific SMP operations */
smp_init_cpus(void)177 void __init smp_init_cpus(void)
178 {
179 if (smp_ops.smp_init_cpus)
180 smp_ops.smp_init_cpus();
181 }
182
platform_can_secondary_boot(void)183 int platform_can_secondary_boot(void)
184 {
185 return !!smp_ops.smp_boot_secondary;
186 }
187
platform_can_cpu_hotplug(void)188 int platform_can_cpu_hotplug(void)
189 {
190 #ifdef CONFIG_HOTPLUG_CPU
191 if (smp_ops.cpu_kill)
192 return 1;
193 #endif
194
195 return 0;
196 }
197
198 #ifdef CONFIG_HOTPLUG_CPU
platform_cpu_kill(unsigned int cpu)199 static int platform_cpu_kill(unsigned int cpu)
200 {
201 if (smp_ops.cpu_kill)
202 return smp_ops.cpu_kill(cpu);
203 return 1;
204 }
205
platform_cpu_disable(unsigned int cpu)206 static int platform_cpu_disable(unsigned int cpu)
207 {
208 if (smp_ops.cpu_disable)
209 return smp_ops.cpu_disable(cpu);
210
211 return 0;
212 }
213
platform_can_hotplug_cpu(unsigned int cpu)214 int platform_can_hotplug_cpu(unsigned int cpu)
215 {
216 /* cpu_die must be specified to support hotplug */
217 if (!smp_ops.cpu_die)
218 return 0;
219
220 if (smp_ops.cpu_can_disable)
221 return smp_ops.cpu_can_disable(cpu);
222
223 /*
224 * By default, allow disabling all CPUs except the first one,
225 * since this is special on a lot of platforms, e.g. because
226 * of clock tick interrupts.
227 */
228 return cpu != 0;
229 }
230
231 /*
232 * __cpu_disable runs on the processor to be shutdown.
233 */
__cpu_disable(void)234 int __cpu_disable(void)
235 {
236 unsigned int cpu = smp_processor_id();
237 int ret;
238
239 ret = platform_cpu_disable(cpu);
240 if (ret)
241 return ret;
242
243 /*
244 * Take this CPU offline. Once we clear this, we can't return,
245 * and we must not schedule until we're ready to give up the cpu.
246 */
247 set_cpu_online(cpu, false);
248
249 /*
250 * OK - migrate IRQs away from this CPU
251 */
252 irq_migrate_all_off_this_cpu();
253
254 /*
255 * Flush user cache and TLB mappings, and then remove this CPU
256 * from the vm mask set of all processes.
257 *
258 * Caches are flushed to the Level of Unification Inner Shareable
259 * to write-back dirty lines to unified caches shared by all CPUs.
260 */
261 flush_cache_louis();
262 local_flush_tlb_all();
263
264 clear_tasks_mm_cpumask(cpu);
265
266 return 0;
267 }
268
269 static DECLARE_COMPLETION(cpu_died);
270
271 /*
272 * called on the thread which is asking for a CPU to be shutdown -
273 * waits until shutdown has completed, or it is timed out.
274 */
__cpu_die(unsigned int cpu)275 void __cpu_die(unsigned int cpu)
276 {
277 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
278 pr_err("CPU%u: cpu didn't die\n", cpu);
279 return;
280 }
281 pr_notice("CPU%u: shutdown\n", cpu);
282
283 /*
284 * platform_cpu_kill() is generally expected to do the powering off
285 * and/or cutting of clocks to the dying CPU. Optionally, this may
286 * be done by the CPU which is dying in preference to supporting
287 * this call, but that means there is _no_ synchronisation between
288 * the requesting CPU and the dying CPU actually losing power.
289 */
290 if (!platform_cpu_kill(cpu))
291 pr_err("CPU%u: unable to kill\n", cpu);
292 }
293
294 /*
295 * Called from the idle thread for the CPU which has been shutdown.
296 *
297 * Note that we disable IRQs here, but do not re-enable them
298 * before returning to the caller. This is also the behaviour
299 * of the other hotplug-cpu capable cores, so presumably coming
300 * out of idle fixes this.
301 */
arch_cpu_idle_dead(void)302 void arch_cpu_idle_dead(void)
303 {
304 unsigned int cpu = smp_processor_id();
305
306 idle_task_exit();
307
308 local_irq_disable();
309
310 /*
311 * Flush the data out of the L1 cache for this CPU. This must be
312 * before the completion to ensure that data is safely written out
313 * before platform_cpu_kill() gets called - which may disable
314 * *this* CPU and power down its cache.
315 */
316 flush_cache_louis();
317
318 /*
319 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
320 * this returns, power and/or clocks can be removed at any point
321 * from this CPU and its cache by platform_cpu_kill().
322 */
323 complete(&cpu_died);
324
325 /*
326 * Ensure that the cache lines associated with that completion are
327 * written out. This covers the case where _this_ CPU is doing the
328 * powering down, to ensure that the completion is visible to the
329 * CPU waiting for this one.
330 */
331 flush_cache_louis();
332
333 /*
334 * The actual CPU shutdown procedure is at least platform (if not
335 * CPU) specific. This may remove power, or it may simply spin.
336 *
337 * Platforms are generally expected *NOT* to return from this call,
338 * although there are some which do because they have no way to
339 * power down the CPU. These platforms are the _only_ reason we
340 * have a return path which uses the fragment of assembly below.
341 *
342 * The return path should not be used for platforms which can
343 * power off the CPU.
344 */
345 if (smp_ops.cpu_die)
346 smp_ops.cpu_die(cpu);
347
348 pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
349 cpu);
350
351 /*
352 * Do not return to the idle loop - jump back to the secondary
353 * cpu initialisation. There's some initialisation which needs
354 * to be repeated to undo the effects of taking the CPU offline.
355 */
356 __asm__("mov sp, %0\n"
357 " mov fp, #0\n"
358 " b secondary_start_kernel"
359 :
360 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
361 }
362 #endif /* CONFIG_HOTPLUG_CPU */
363
364 /*
365 * Called by both boot and secondaries to move global data into
366 * per-processor storage.
367 */
smp_store_cpu_info(unsigned int cpuid)368 static void smp_store_cpu_info(unsigned int cpuid)
369 {
370 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
371
372 cpu_info->loops_per_jiffy = loops_per_jiffy;
373 cpu_info->cpuid = read_cpuid_id();
374
375 store_cpu_topology(cpuid);
376 }
377
378 /*
379 * This is the secondary CPU boot entry. We're using this CPUs
380 * idle thread stack, but a set of temporary page tables.
381 */
secondary_start_kernel(void)382 asmlinkage void secondary_start_kernel(void)
383 {
384 struct mm_struct *mm = &init_mm;
385 unsigned int cpu;
386
387 secondary_biglittle_init();
388
389 /*
390 * The identity mapping is uncached (strongly ordered), so
391 * switch away from it before attempting any exclusive accesses.
392 */
393 cpu_switch_mm(mm->pgd, mm);
394 local_flush_bp_all();
395 enter_lazy_tlb(mm, current);
396 local_flush_tlb_all();
397
398 /*
399 * All kernel threads share the same mm context; grab a
400 * reference and switch to it.
401 */
402 cpu = smp_processor_id();
403 atomic_inc(&mm->mm_count);
404 current->active_mm = mm;
405 cpumask_set_cpu(cpu, mm_cpumask(mm));
406
407 cpu_init();
408
409 pr_debug("CPU%u: Booted secondary processor\n", cpu);
410
411 preempt_disable();
412 trace_hardirqs_off();
413
414 /*
415 * Give the platform a chance to do its own initialisation.
416 */
417 if (smp_ops.smp_secondary_init)
418 smp_ops.smp_secondary_init(cpu);
419
420 notify_cpu_starting(cpu);
421
422 calibrate_delay();
423
424 smp_store_cpu_info(cpu);
425
426 /*
427 * OK, now it's safe to let the boot CPU continue. Wait for
428 * the CPU migration code to notice that the CPU is online
429 * before we continue - which happens after __cpu_up returns.
430 */
431 set_cpu_online(cpu, true);
432
433 check_other_bugs();
434
435 complete(&cpu_running);
436
437 local_irq_enable();
438 local_fiq_enable();
439 local_abt_enable();
440
441 /*
442 * OK, it's off to the idle thread for us
443 */
444 cpu_startup_entry(CPUHP_ONLINE);
445 }
446
smp_cpus_done(unsigned int max_cpus)447 void __init smp_cpus_done(unsigned int max_cpus)
448 {
449 int cpu;
450 unsigned long bogosum = 0;
451
452 for_each_online_cpu(cpu)
453 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
454
455 printk(KERN_INFO "SMP: Total of %d processors activated "
456 "(%lu.%02lu BogoMIPS).\n",
457 num_online_cpus(),
458 bogosum / (500000/HZ),
459 (bogosum / (5000/HZ)) % 100);
460
461 hyp_mode_check();
462 }
463
smp_prepare_boot_cpu(void)464 void __init smp_prepare_boot_cpu(void)
465 {
466 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
467 }
468
smp_prepare_cpus(unsigned int max_cpus)469 void __init smp_prepare_cpus(unsigned int max_cpus)
470 {
471 unsigned int ncores = num_possible_cpus();
472
473 init_cpu_topology();
474
475 smp_store_cpu_info(smp_processor_id());
476
477 /*
478 * are we trying to boot more cores than exist?
479 */
480 if (max_cpus > ncores)
481 max_cpus = ncores;
482 if (ncores > 1 && max_cpus) {
483 /*
484 * Initialise the present map, which describes the set of CPUs
485 * actually populated at the present time. A platform should
486 * re-initialize the map in the platforms smp_prepare_cpus()
487 * if present != possible (e.g. physical hotplug).
488 */
489 init_cpu_present(cpu_possible_mask);
490
491 /*
492 * Initialise the SCU if there are more than one CPU
493 * and let them know where to start.
494 */
495 if (smp_ops.smp_prepare_cpus)
496 smp_ops.smp_prepare_cpus(max_cpus);
497 }
498 }
499
500 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
501
set_smp_cross_call(void (* fn)(const struct cpumask *,unsigned int))502 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
503 {
504 if (!__smp_cross_call)
505 __smp_cross_call = fn;
506 }
507
508 static const char *ipi_types[NR_IPI] __tracepoint_string = {
509 #define S(x,s) [x] = s
510 S(IPI_WAKEUP, "CPU wakeup interrupts"),
511 S(IPI_TIMER, "Timer broadcast interrupts"),
512 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
513 S(IPI_CALL_FUNC, "Function call interrupts"),
514 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
515 S(IPI_CPU_STOP, "CPU stop interrupts"),
516 S(IPI_IRQ_WORK, "IRQ work interrupts"),
517 S(IPI_COMPLETION, "completion interrupts"),
518 };
519
smp_cross_call(const struct cpumask * target,unsigned int ipinr)520 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
521 {
522 trace_ipi_raise(target, ipi_types[ipinr]);
523 __smp_cross_call(target, ipinr);
524 }
525
show_ipi_list(struct seq_file * p,int prec)526 void show_ipi_list(struct seq_file *p, int prec)
527 {
528 unsigned int cpu, i;
529
530 for (i = 0; i < NR_IPI; i++) {
531 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
532
533 for_each_online_cpu(cpu)
534 seq_printf(p, "%10u ",
535 __get_irq_stat(cpu, ipi_irqs[i]));
536
537 seq_printf(p, " %s\n", ipi_types[i]);
538 }
539 }
540
smp_irq_stat_cpu(unsigned int cpu)541 u64 smp_irq_stat_cpu(unsigned int cpu)
542 {
543 u64 sum = 0;
544 int i;
545
546 for (i = 0; i < NR_IPI; i++)
547 sum += __get_irq_stat(cpu, ipi_irqs[i]);
548
549 return sum;
550 }
551
arch_send_call_function_ipi_mask(const struct cpumask * mask)552 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
553 {
554 smp_cross_call(mask, IPI_CALL_FUNC);
555 }
556
arch_send_wakeup_ipi_mask(const struct cpumask * mask)557 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
558 {
559 smp_cross_call(mask, IPI_WAKEUP);
560 }
561
arch_send_call_function_single_ipi(int cpu)562 void arch_send_call_function_single_ipi(int cpu)
563 {
564 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
565 }
566
567 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)568 void arch_irq_work_raise(void)
569 {
570 if (arch_irq_work_has_interrupt())
571 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
572 }
573 #endif
574
575 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)576 void tick_broadcast(const struct cpumask *mask)
577 {
578 smp_cross_call(mask, IPI_TIMER);
579 }
580 #endif
581
582 static DEFINE_RAW_SPINLOCK(stop_lock);
583
584 /*
585 * ipi_cpu_stop - handle IPI from smp_send_stop()
586 */
ipi_cpu_stop(unsigned int cpu)587 static void ipi_cpu_stop(unsigned int cpu)
588 {
589 if (system_state == SYSTEM_BOOTING ||
590 system_state == SYSTEM_RUNNING) {
591 raw_spin_lock(&stop_lock);
592 pr_crit("CPU%u: stopping\n", cpu);
593 dump_stack();
594 raw_spin_unlock(&stop_lock);
595 }
596
597 set_cpu_online(cpu, false);
598
599 local_fiq_disable();
600 local_irq_disable();
601
602 while (1) {
603 cpu_relax();
604 wfe();
605 }
606 }
607
608 static DEFINE_PER_CPU(struct completion *, cpu_completion);
609
register_ipi_completion(struct completion * completion,int cpu)610 int register_ipi_completion(struct completion *completion, int cpu)
611 {
612 per_cpu(cpu_completion, cpu) = completion;
613 return IPI_COMPLETION;
614 }
615
ipi_complete(unsigned int cpu)616 static void ipi_complete(unsigned int cpu)
617 {
618 complete(per_cpu(cpu_completion, cpu));
619 }
620
621 /*
622 * Main handler for inter-processor interrupts
623 */
do_IPI(int ipinr,struct pt_regs * regs)624 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
625 {
626 handle_IPI(ipinr, regs);
627 }
628
handle_IPI(int ipinr,struct pt_regs * regs)629 void handle_IPI(int ipinr, struct pt_regs *regs)
630 {
631 unsigned int cpu = smp_processor_id();
632 struct pt_regs *old_regs = set_irq_regs(regs);
633
634 if ((unsigned)ipinr < NR_IPI) {
635 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
636 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
637 }
638
639 switch (ipinr) {
640 case IPI_WAKEUP:
641 break;
642
643 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
644 case IPI_TIMER:
645 irq_enter();
646 tick_receive_broadcast();
647 irq_exit();
648 break;
649 #endif
650
651 case IPI_RESCHEDULE:
652 scheduler_ipi();
653 break;
654
655 case IPI_CALL_FUNC:
656 irq_enter();
657 generic_smp_call_function_interrupt();
658 irq_exit();
659 break;
660
661 case IPI_CALL_FUNC_SINGLE:
662 irq_enter();
663 generic_smp_call_function_single_interrupt();
664 irq_exit();
665 break;
666
667 case IPI_CPU_STOP:
668 irq_enter();
669 ipi_cpu_stop(cpu);
670 irq_exit();
671 break;
672
673 #ifdef CONFIG_IRQ_WORK
674 case IPI_IRQ_WORK:
675 irq_enter();
676 irq_work_run();
677 irq_exit();
678 break;
679 #endif
680
681 case IPI_COMPLETION:
682 irq_enter();
683 ipi_complete(cpu);
684 irq_exit();
685 break;
686
687 case IPI_CPU_BACKTRACE:
688 irq_enter();
689 nmi_cpu_backtrace(regs);
690 irq_exit();
691 break;
692
693 default:
694 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
695 cpu, ipinr);
696 break;
697 }
698
699 if ((unsigned)ipinr < NR_IPI)
700 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
701 set_irq_regs(old_regs);
702 }
703
smp_send_reschedule(int cpu)704 void smp_send_reschedule(int cpu)
705 {
706 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
707 }
708
smp_send_stop(void)709 void smp_send_stop(void)
710 {
711 unsigned long timeout;
712 struct cpumask mask;
713
714 cpumask_copy(&mask, cpu_online_mask);
715 cpumask_clear_cpu(smp_processor_id(), &mask);
716 if (!cpumask_empty(&mask))
717 smp_cross_call(&mask, IPI_CPU_STOP);
718
719 /* Wait up to one second for other CPUs to stop */
720 timeout = USEC_PER_SEC;
721 while (num_online_cpus() > 1 && timeout--)
722 udelay(1);
723
724 if (num_online_cpus() > 1)
725 pr_warn("SMP: failed to stop secondary CPUs\n");
726 }
727
728 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
729 * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
730 * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
731 * kdump fails. So split out the panic_smp_self_stop() and add
732 * set_cpu_online(smp_processor_id(), false).
733 */
panic_smp_self_stop(void)734 void panic_smp_self_stop(void)
735 {
736 pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
737 smp_processor_id());
738 set_cpu_online(smp_processor_id(), false);
739 while (1)
740 cpu_relax();
741 }
742
743 /*
744 * not supported here
745 */
setup_profiling_timer(unsigned int multiplier)746 int setup_profiling_timer(unsigned int multiplier)
747 {
748 return -EINVAL;
749 }
750
751 #ifdef CONFIG_CPU_FREQ
752
753 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
754 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
755 static unsigned long global_l_p_j_ref;
756 static unsigned long global_l_p_j_ref_freq;
757
cpufreq_callback(struct notifier_block * nb,unsigned long val,void * data)758 static int cpufreq_callback(struct notifier_block *nb,
759 unsigned long val, void *data)
760 {
761 struct cpufreq_freqs *freq = data;
762 int cpu = freq->cpu;
763
764 if (freq->flags & CPUFREQ_CONST_LOOPS)
765 return NOTIFY_OK;
766
767 if (!per_cpu(l_p_j_ref, cpu)) {
768 per_cpu(l_p_j_ref, cpu) =
769 per_cpu(cpu_data, cpu).loops_per_jiffy;
770 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
771 if (!global_l_p_j_ref) {
772 global_l_p_j_ref = loops_per_jiffy;
773 global_l_p_j_ref_freq = freq->old;
774 }
775 }
776
777 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
778 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
779 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
780 global_l_p_j_ref_freq,
781 freq->new);
782 per_cpu(cpu_data, cpu).loops_per_jiffy =
783 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
784 per_cpu(l_p_j_ref_freq, cpu),
785 freq->new);
786 }
787 return NOTIFY_OK;
788 }
789
790 static struct notifier_block cpufreq_notifier = {
791 .notifier_call = cpufreq_callback,
792 };
793
register_cpufreq_notifier(void)794 static int __init register_cpufreq_notifier(void)
795 {
796 return cpufreq_register_notifier(&cpufreq_notifier,
797 CPUFREQ_TRANSITION_NOTIFIER);
798 }
799 core_initcall(register_cpufreq_notifier);
800
801 #endif
802
raise_nmi(cpumask_t * mask)803 static void raise_nmi(cpumask_t *mask)
804 {
805 /*
806 * Generate the backtrace directly if we are running in a calling
807 * context that is not preemptible by the backtrace IPI. Note
808 * that nmi_cpu_backtrace() automatically removes the current cpu
809 * from mask.
810 */
811 if (cpumask_test_cpu(smp_processor_id(), mask) && irqs_disabled())
812 nmi_cpu_backtrace(NULL);
813
814 smp_cross_call(mask, IPI_CPU_BACKTRACE);
815 }
816
arch_trigger_all_cpu_backtrace(bool include_self)817 void arch_trigger_all_cpu_backtrace(bool include_self)
818 {
819 nmi_trigger_all_cpu_backtrace(include_self, raise_nmi);
820 }
821