• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97 
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101 
102 #include "internal.h"
103 
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
107 
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110 
111 /* Highest zone. An specific allocation for a zone below that is not
112    policied. */
113 enum zone_type policy_zone = 0;
114 
115 /*
116  * run-time system-wide default policy => local allocation
117  */
118 static struct mempolicy default_policy = {
119 	.refcnt = ATOMIC_INIT(1), /* never free it */
120 	.mode = MPOL_PREFERRED,
121 	.flags = MPOL_F_LOCAL,
122 };
123 
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125 
get_task_policy(struct task_struct * p)126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 	struct mempolicy *pol = p->mempolicy;
129 	int node;
130 
131 	if (pol)
132 		return pol;
133 
134 	node = numa_node_id();
135 	if (node != NUMA_NO_NODE) {
136 		pol = &preferred_node_policy[node];
137 		/* preferred_node_policy is not initialised early in boot */
138 		if (pol->mode)
139 			return pol;
140 	}
141 
142 	return &default_policy;
143 }
144 
145 static const struct mempolicy_operations {
146 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 	/*
148 	 * If read-side task has no lock to protect task->mempolicy, write-side
149 	 * task will rebind the task->mempolicy by two step. The first step is
150 	 * setting all the newly nodes, and the second step is cleaning all the
151 	 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 	 * page.
153 	 * If we have a lock to protect task->mempolicy in read-side, we do
154 	 * rebind directly.
155 	 *
156 	 * step:
157 	 * 	MPOL_REBIND_ONCE - do rebind work at once
158 	 * 	MPOL_REBIND_STEP1 - set all the newly nodes
159 	 * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 	 */
161 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 			enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164 
mpol_store_user_nodemask(const struct mempolicy * pol)165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
166 {
167 	return pol->flags & MPOL_MODE_FLAGS;
168 }
169 
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 				   const nodemask_t *rel)
172 {
173 	nodemask_t tmp;
174 	nodes_fold(tmp, *orig, nodes_weight(*rel));
175 	nodes_onto(*ret, tmp, *rel);
176 }
177 
mpol_new_interleave(struct mempolicy * pol,const nodemask_t * nodes)178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
179 {
180 	if (nodes_empty(*nodes))
181 		return -EINVAL;
182 	pol->v.nodes = *nodes;
183 	return 0;
184 }
185 
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (!nodes)
189 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
190 	else if (nodes_empty(*nodes))
191 		return -EINVAL;			/*  no allowed nodes */
192 	else
193 		pol->v.preferred_node = first_node(*nodes);
194 	return 0;
195 }
196 
mpol_new_bind(struct mempolicy * pol,const nodemask_t * nodes)197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
198 {
199 	if (nodes_empty(*nodes))
200 		return -EINVAL;
201 	pol->v.nodes = *nodes;
202 	return 0;
203 }
204 
205 /*
206  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207  * any, for the new policy.  mpol_new() has already validated the nodes
208  * parameter with respect to the policy mode and flags.  But, we need to
209  * handle an empty nodemask with MPOL_PREFERRED here.
210  *
211  * Must be called holding task's alloc_lock to protect task's mems_allowed
212  * and mempolicy.  May also be called holding the mmap_semaphore for write.
213  */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)214 static int mpol_set_nodemask(struct mempolicy *pol,
215 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
216 {
217 	int ret;
218 
219 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
220 	if (pol == NULL)
221 		return 0;
222 	/* Check N_MEMORY */
223 	nodes_and(nsc->mask1,
224 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
225 
226 	VM_BUG_ON(!nodes);
227 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 		nodes = NULL;	/* explicit local allocation */
229 	else {
230 		if (pol->flags & MPOL_F_RELATIVE_NODES)
231 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
232 		else
233 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
234 
235 		if (mpol_store_user_nodemask(pol))
236 			pol->w.user_nodemask = *nodes;
237 		else
238 			pol->w.cpuset_mems_allowed =
239 						cpuset_current_mems_allowed;
240 	}
241 
242 	if (nodes)
243 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
244 	else
245 		ret = mpol_ops[pol->mode].create(pol, NULL);
246 	return ret;
247 }
248 
249 /*
250  * This function just creates a new policy, does some check and simple
251  * initialization. You must invoke mpol_set_nodemask() to set nodes.
252  */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
254 				  nodemask_t *nodes)
255 {
256 	struct mempolicy *policy;
257 
258 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
260 
261 	if (mode == MPOL_DEFAULT) {
262 		if (nodes && !nodes_empty(*nodes))
263 			return ERR_PTR(-EINVAL);
264 		return NULL;
265 	}
266 	VM_BUG_ON(!nodes);
267 
268 	/*
269 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 	 * All other modes require a valid pointer to a non-empty nodemask.
272 	 */
273 	if (mode == MPOL_PREFERRED) {
274 		if (nodes_empty(*nodes)) {
275 			if (((flags & MPOL_F_STATIC_NODES) ||
276 			     (flags & MPOL_F_RELATIVE_NODES)))
277 				return ERR_PTR(-EINVAL);
278 		}
279 	} else if (mode == MPOL_LOCAL) {
280 		if (!nodes_empty(*nodes))
281 			return ERR_PTR(-EINVAL);
282 		mode = MPOL_PREFERRED;
283 	} else if (nodes_empty(*nodes))
284 		return ERR_PTR(-EINVAL);
285 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
286 	if (!policy)
287 		return ERR_PTR(-ENOMEM);
288 	atomic_set(&policy->refcnt, 1);
289 	policy->mode = mode;
290 	policy->flags = flags;
291 
292 	return policy;
293 }
294 
295 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)296 void __mpol_put(struct mempolicy *p)
297 {
298 	if (!atomic_dec_and_test(&p->refcnt))
299 		return;
300 	kmem_cache_free(policy_cache, p);
301 }
302 
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes,enum mpol_rebind_step step)303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 				enum mpol_rebind_step step)
305 {
306 }
307 
308 /*
309  * step:
310  * 	MPOL_REBIND_ONCE  - do rebind work at once
311  * 	MPOL_REBIND_STEP1 - set all the newly nodes
312  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
313  */
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes,enum mpol_rebind_step step)314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 				 enum mpol_rebind_step step)
316 {
317 	nodemask_t tmp;
318 
319 	if (pol->flags & MPOL_F_STATIC_NODES)
320 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 	else {
324 		/*
325 		 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
326 		 * result
327 		 */
328 		if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 			nodes_remap(tmp, pol->v.nodes,
330 					pol->w.cpuset_mems_allowed, *nodes);
331 			pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 		} else if (step == MPOL_REBIND_STEP2) {
333 			tmp = pol->w.cpuset_mems_allowed;
334 			pol->w.cpuset_mems_allowed = *nodes;
335 		} else
336 			BUG();
337 	}
338 
339 	if (nodes_empty(tmp))
340 		tmp = *nodes;
341 
342 	if (step == MPOL_REBIND_STEP1)
343 		nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 	else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
345 		pol->v.nodes = tmp;
346 	else
347 		BUG();
348 
349 	if (!node_isset(current->il_next, tmp)) {
350 		current->il_next = next_node(current->il_next, tmp);
351 		if (current->il_next >= MAX_NUMNODES)
352 			current->il_next = first_node(tmp);
353 		if (current->il_next >= MAX_NUMNODES)
354 			current->il_next = numa_node_id();
355 	}
356 }
357 
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes,enum mpol_rebind_step step)358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 				  const nodemask_t *nodes,
360 				  enum mpol_rebind_step step)
361 {
362 	nodemask_t tmp;
363 
364 	if (pol->flags & MPOL_F_STATIC_NODES) {
365 		int node = first_node(pol->w.user_nodemask);
366 
367 		if (node_isset(node, *nodes)) {
368 			pol->v.preferred_node = node;
369 			pol->flags &= ~MPOL_F_LOCAL;
370 		} else
371 			pol->flags |= MPOL_F_LOCAL;
372 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 		pol->v.preferred_node = first_node(tmp);
375 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
376 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 						   pol->w.cpuset_mems_allowed,
378 						   *nodes);
379 		pol->w.cpuset_mems_allowed = *nodes;
380 	}
381 }
382 
383 /*
384  * mpol_rebind_policy - Migrate a policy to a different set of nodes
385  *
386  * If read-side task has no lock to protect task->mempolicy, write-side
387  * task will rebind the task->mempolicy by two step. The first step is
388  * setting all the newly nodes, and the second step is cleaning all the
389  * disallowed nodes. In this way, we can avoid finding no node to alloc
390  * page.
391  * If we have a lock to protect task->mempolicy in read-side, we do
392  * rebind directly.
393  *
394  * step:
395  * 	MPOL_REBIND_ONCE  - do rebind work at once
396  * 	MPOL_REBIND_STEP1 - set all the newly nodes
397  * 	MPOL_REBIND_STEP2 - clean all the disallowed nodes
398  */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask,enum mpol_rebind_step step)399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 				enum mpol_rebind_step step)
401 {
402 	if (!pol)
403 		return;
404 	if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
406 		return;
407 
408 	if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
409 		return;
410 
411 	if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
412 		BUG();
413 
414 	if (step == MPOL_REBIND_STEP1)
415 		pol->flags |= MPOL_F_REBINDING;
416 	else if (step == MPOL_REBIND_STEP2)
417 		pol->flags &= ~MPOL_F_REBINDING;
418 	else if (step >= MPOL_REBIND_NSTEP)
419 		BUG();
420 
421 	mpol_ops[pol->mode].rebind(pol, newmask, step);
422 }
423 
424 /*
425  * Wrapper for mpol_rebind_policy() that just requires task
426  * pointer, and updates task mempolicy.
427  *
428  * Called with task's alloc_lock held.
429  */
430 
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new,enum mpol_rebind_step step)431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 			enum mpol_rebind_step step)
433 {
434 	mpol_rebind_policy(tsk->mempolicy, new, step);
435 }
436 
437 /*
438  * Rebind each vma in mm to new nodemask.
439  *
440  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
441  */
442 
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
444 {
445 	struct vm_area_struct *vma;
446 
447 	down_write(&mm->mmap_sem);
448 	for (vma = mm->mmap; vma; vma = vma->vm_next)
449 		mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 	up_write(&mm->mmap_sem);
451 }
452 
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
454 	[MPOL_DEFAULT] = {
455 		.rebind = mpol_rebind_default,
456 	},
457 	[MPOL_INTERLEAVE] = {
458 		.create = mpol_new_interleave,
459 		.rebind = mpol_rebind_nodemask,
460 	},
461 	[MPOL_PREFERRED] = {
462 		.create = mpol_new_preferred,
463 		.rebind = mpol_rebind_preferred,
464 	},
465 	[MPOL_BIND] = {
466 		.create = mpol_new_bind,
467 		.rebind = mpol_rebind_nodemask,
468 	},
469 };
470 
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 				unsigned long flags);
473 
474 struct queue_pages {
475 	struct list_head *pagelist;
476 	unsigned long flags;
477 	nodemask_t *nmask;
478 	struct vm_area_struct *prev;
479 };
480 
481 /*
482  * Scan through pages checking if pages follow certain conditions,
483  * and move them to the pagelist if they do.
484  */
queue_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
486 			unsigned long end, struct mm_walk *walk)
487 {
488 	struct vm_area_struct *vma = walk->vma;
489 	struct page *page;
490 	struct queue_pages *qp = walk->private;
491 	unsigned long flags = qp->flags;
492 	int nid;
493 	pte_t *pte, *mapped_pte;
494 	spinlock_t *ptl;
495 
496 	split_huge_page_pmd(vma, addr, pmd);
497 	if (pmd_trans_unstable(pmd))
498 		return 0;
499 
500 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
501 	for (; addr != end; pte++, addr += PAGE_SIZE) {
502 		if (!pte_present(*pte))
503 			continue;
504 		page = vm_normal_page(vma, addr, *pte);
505 		if (!page)
506 			continue;
507 		/*
508 		 * vm_normal_page() filters out zero pages, but there might
509 		 * still be PageReserved pages to skip, perhaps in a VDSO.
510 		 */
511 		if (PageReserved(page))
512 			continue;
513 		nid = page_to_nid(page);
514 		if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
515 			continue;
516 
517 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
518 			if (!vma_migratable(vma))
519 				break;
520 			migrate_page_add(page, qp->pagelist, flags);
521 		} else
522 			break;
523 	}
524 	pte_unmap_unlock(mapped_pte, ptl);
525 	cond_resched();
526 	return addr != end ? -EIO : 0;
527 }
528 
queue_pages_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)529 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
530 			       unsigned long addr, unsigned long end,
531 			       struct mm_walk *walk)
532 {
533 #ifdef CONFIG_HUGETLB_PAGE
534 	struct queue_pages *qp = walk->private;
535 	unsigned long flags = qp->flags;
536 	int nid;
537 	struct page *page;
538 	spinlock_t *ptl;
539 	pte_t entry;
540 
541 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
542 	entry = huge_ptep_get(pte);
543 	if (!pte_present(entry))
544 		goto unlock;
545 	page = pte_page(entry);
546 	nid = page_to_nid(page);
547 	if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
548 		goto unlock;
549 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
550 	if (flags & (MPOL_MF_MOVE_ALL) ||
551 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
552 		isolate_huge_page(page, qp->pagelist);
553 unlock:
554 	spin_unlock(ptl);
555 #else
556 	BUG();
557 #endif
558 	return 0;
559 }
560 
561 #ifdef CONFIG_NUMA_BALANCING
562 /*
563  * This is used to mark a range of virtual addresses to be inaccessible.
564  * These are later cleared by a NUMA hinting fault. Depending on these
565  * faults, pages may be migrated for better NUMA placement.
566  *
567  * This is assuming that NUMA faults are handled using PROT_NONE. If
568  * an architecture makes a different choice, it will need further
569  * changes to the core.
570  */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)571 unsigned long change_prot_numa(struct vm_area_struct *vma,
572 			unsigned long addr, unsigned long end)
573 {
574 	int nr_updated;
575 
576 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
577 	if (nr_updated)
578 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
579 
580 	return nr_updated;
581 }
582 #else
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)583 static unsigned long change_prot_numa(struct vm_area_struct *vma,
584 			unsigned long addr, unsigned long end)
585 {
586 	return 0;
587 }
588 #endif /* CONFIG_NUMA_BALANCING */
589 
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)590 static int queue_pages_test_walk(unsigned long start, unsigned long end,
591 				struct mm_walk *walk)
592 {
593 	struct vm_area_struct *vma = walk->vma;
594 	struct queue_pages *qp = walk->private;
595 	unsigned long endvma = vma->vm_end;
596 	unsigned long flags = qp->flags;
597 
598 	if (vma->vm_flags & VM_PFNMAP)
599 		return 1;
600 
601 	if (endvma > end)
602 		endvma = end;
603 	if (vma->vm_start > start)
604 		start = vma->vm_start;
605 
606 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
607 		if (!vma->vm_next && vma->vm_end < end)
608 			return -EFAULT;
609 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
610 			return -EFAULT;
611 	}
612 
613 	qp->prev = vma;
614 
615 	if (flags & MPOL_MF_LAZY) {
616 		/* Similar to task_numa_work, skip inaccessible VMAs */
617 		if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
618 			change_prot_numa(vma, start, endvma);
619 		return 1;
620 	}
621 
622 	if ((flags & MPOL_MF_STRICT) ||
623 	    ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
624 	     vma_migratable(vma)))
625 		/* queue pages from current vma */
626 		return 0;
627 	return 1;
628 }
629 
630 /*
631  * Walk through page tables and collect pages to be migrated.
632  *
633  * If pages found in a given range are on a set of nodes (determined by
634  * @nodes and @flags,) it's isolated and queued to the pagelist which is
635  * passed via @private.)
636  */
637 static int
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)638 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
639 		nodemask_t *nodes, unsigned long flags,
640 		struct list_head *pagelist)
641 {
642 	struct queue_pages qp = {
643 		.pagelist = pagelist,
644 		.flags = flags,
645 		.nmask = nodes,
646 		.prev = NULL,
647 	};
648 	struct mm_walk queue_pages_walk = {
649 		.hugetlb_entry = queue_pages_hugetlb,
650 		.pmd_entry = queue_pages_pte_range,
651 		.test_walk = queue_pages_test_walk,
652 		.mm = mm,
653 		.private = &qp,
654 	};
655 
656 	return walk_page_range(start, end, &queue_pages_walk);
657 }
658 
659 /*
660  * Apply policy to a single VMA
661  * This must be called with the mmap_sem held for writing.
662  */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)663 static int vma_replace_policy(struct vm_area_struct *vma,
664 						struct mempolicy *pol)
665 {
666 	int err;
667 	struct mempolicy *old;
668 	struct mempolicy *new;
669 
670 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
671 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
672 		 vma->vm_ops, vma->vm_file,
673 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
674 
675 	new = mpol_dup(pol);
676 	if (IS_ERR(new))
677 		return PTR_ERR(new);
678 
679 	if (vma->vm_ops && vma->vm_ops->set_policy) {
680 		err = vma->vm_ops->set_policy(vma, new);
681 		if (err)
682 			goto err_out;
683 	}
684 
685 	old = vma->vm_policy;
686 	vma->vm_policy = new; /* protected by mmap_sem */
687 	mpol_put(old);
688 
689 	return 0;
690  err_out:
691 	mpol_put(new);
692 	return err;
693 }
694 
695 /* Step 2: apply policy to a range and do splits. */
mbind_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct mempolicy * new_pol)696 static int mbind_range(struct mm_struct *mm, unsigned long start,
697 		       unsigned long end, struct mempolicy *new_pol)
698 {
699 	struct vm_area_struct *next;
700 	struct vm_area_struct *prev;
701 	struct vm_area_struct *vma;
702 	int err = 0;
703 	pgoff_t pgoff;
704 	unsigned long vmstart;
705 	unsigned long vmend;
706 
707 	vma = find_vma(mm, start);
708 	if (!vma || vma->vm_start > start)
709 		return -EFAULT;
710 
711 	prev = vma->vm_prev;
712 	if (start > vma->vm_start)
713 		prev = vma;
714 
715 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
716 		next = vma->vm_next;
717 		vmstart = max(start, vma->vm_start);
718 		vmend   = min(end, vma->vm_end);
719 
720 		if (mpol_equal(vma_policy(vma), new_pol))
721 			continue;
722 
723 		pgoff = vma->vm_pgoff +
724 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
725 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
726 				 vma->anon_vma, vma->vm_file, pgoff,
727 				 new_pol, vma->vm_userfaultfd_ctx,
728 				 vma_get_anon_name(vma));
729 		if (prev) {
730 			vma = prev;
731 			next = vma->vm_next;
732 			if (mpol_equal(vma_policy(vma), new_pol))
733 				continue;
734 			/* vma_merge() joined vma && vma->next, case 8 */
735 			goto replace;
736 		}
737 		if (vma->vm_start != vmstart) {
738 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
739 			if (err)
740 				goto out;
741 		}
742 		if (vma->vm_end != vmend) {
743 			err = split_vma(vma->vm_mm, vma, vmend, 0);
744 			if (err)
745 				goto out;
746 		}
747  replace:
748 		err = vma_replace_policy(vma, new_pol);
749 		if (err)
750 			goto out;
751 	}
752 
753  out:
754 	return err;
755 }
756 
757 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)758 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
759 			     nodemask_t *nodes)
760 {
761 	struct mempolicy *new, *old;
762 	NODEMASK_SCRATCH(scratch);
763 	int ret;
764 
765 	if (!scratch)
766 		return -ENOMEM;
767 
768 	new = mpol_new(mode, flags, nodes);
769 	if (IS_ERR(new)) {
770 		ret = PTR_ERR(new);
771 		goto out;
772 	}
773 
774 	task_lock(current);
775 	ret = mpol_set_nodemask(new, nodes, scratch);
776 	if (ret) {
777 		task_unlock(current);
778 		mpol_put(new);
779 		goto out;
780 	}
781 	old = current->mempolicy;
782 	current->mempolicy = new;
783 	if (new && new->mode == MPOL_INTERLEAVE &&
784 	    nodes_weight(new->v.nodes))
785 		current->il_next = first_node(new->v.nodes);
786 	task_unlock(current);
787 	mpol_put(old);
788 	ret = 0;
789 out:
790 	NODEMASK_SCRATCH_FREE(scratch);
791 	return ret;
792 }
793 
794 /*
795  * Return nodemask for policy for get_mempolicy() query
796  *
797  * Called with task's alloc_lock held
798  */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)799 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
800 {
801 	nodes_clear(*nodes);
802 	if (p == &default_policy)
803 		return;
804 
805 	switch (p->mode) {
806 	case MPOL_BIND:
807 		/* Fall through */
808 	case MPOL_INTERLEAVE:
809 		*nodes = p->v.nodes;
810 		break;
811 	case MPOL_PREFERRED:
812 		if (!(p->flags & MPOL_F_LOCAL))
813 			node_set(p->v.preferred_node, *nodes);
814 		/* else return empty node mask for local allocation */
815 		break;
816 	default:
817 		BUG();
818 	}
819 }
820 
lookup_node(struct mm_struct * mm,unsigned long addr)821 static int lookup_node(struct mm_struct *mm, unsigned long addr)
822 {
823 	struct page *p;
824 	int err;
825 
826 	err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, &p, NULL);
827 	if (err >= 0) {
828 		err = page_to_nid(p);
829 		put_page(p);
830 	}
831 	return err;
832 }
833 
834 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)835 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
836 			     unsigned long addr, unsigned long flags)
837 {
838 	int err;
839 	struct mm_struct *mm = current->mm;
840 	struct vm_area_struct *vma = NULL;
841 	struct mempolicy *pol = current->mempolicy;
842 
843 	if (flags &
844 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
845 		return -EINVAL;
846 
847 	if (flags & MPOL_F_MEMS_ALLOWED) {
848 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
849 			return -EINVAL;
850 		*policy = 0;	/* just so it's initialized */
851 		task_lock(current);
852 		*nmask  = cpuset_current_mems_allowed;
853 		task_unlock(current);
854 		return 0;
855 	}
856 
857 	if (flags & MPOL_F_ADDR) {
858 		/*
859 		 * Do NOT fall back to task policy if the
860 		 * vma/shared policy at addr is NULL.  We
861 		 * want to return MPOL_DEFAULT in this case.
862 		 */
863 		down_read(&mm->mmap_sem);
864 		vma = find_vma_intersection(mm, addr, addr+1);
865 		if (!vma) {
866 			up_read(&mm->mmap_sem);
867 			return -EFAULT;
868 		}
869 		if (vma->vm_ops && vma->vm_ops->get_policy)
870 			pol = vma->vm_ops->get_policy(vma, addr);
871 		else
872 			pol = vma->vm_policy;
873 	} else if (addr)
874 		return -EINVAL;
875 
876 	if (!pol)
877 		pol = &default_policy;	/* indicates default behavior */
878 
879 	if (flags & MPOL_F_NODE) {
880 		if (flags & MPOL_F_ADDR) {
881 			err = lookup_node(mm, addr);
882 			if (err < 0)
883 				goto out;
884 			*policy = err;
885 		} else if (pol == current->mempolicy &&
886 				pol->mode == MPOL_INTERLEAVE) {
887 			*policy = current->il_next;
888 		} else {
889 			err = -EINVAL;
890 			goto out;
891 		}
892 	} else {
893 		*policy = pol == &default_policy ? MPOL_DEFAULT :
894 						pol->mode;
895 		/*
896 		 * Internal mempolicy flags must be masked off before exposing
897 		 * the policy to userspace.
898 		 */
899 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
900 	}
901 
902 	err = 0;
903 	if (nmask) {
904 		if (mpol_store_user_nodemask(pol)) {
905 			*nmask = pol->w.user_nodemask;
906 		} else {
907 			task_lock(current);
908 			get_policy_nodemask(pol, nmask);
909 			task_unlock(current);
910 		}
911 	}
912 
913  out:
914 	mpol_cond_put(pol);
915 	if (vma)
916 		up_read(&current->mm->mmap_sem);
917 	return err;
918 }
919 
920 #ifdef CONFIG_MIGRATION
921 /*
922  * page migration
923  */
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)924 static void migrate_page_add(struct page *page, struct list_head *pagelist,
925 				unsigned long flags)
926 {
927 	/*
928 	 * Avoid migrating a page that is shared with others.
929 	 */
930 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
931 		if (!isolate_lru_page(page)) {
932 			list_add_tail(&page->lru, pagelist);
933 			inc_zone_page_state(page, NR_ISOLATED_ANON +
934 					    page_is_file_cache(page));
935 		}
936 	}
937 }
938 
new_node_page(struct page * page,unsigned long node,int ** x)939 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
940 {
941 	if (PageHuge(page))
942 		return alloc_huge_page_node(page_hstate(compound_head(page)),
943 					node);
944 	else
945 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
946 						    __GFP_THISNODE, 0);
947 }
948 
949 /*
950  * Migrate pages from one node to a target node.
951  * Returns error or the number of pages not migrated.
952  */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)953 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
954 			   int flags)
955 {
956 	nodemask_t nmask;
957 	LIST_HEAD(pagelist);
958 	int err = 0;
959 
960 	nodes_clear(nmask);
961 	node_set(source, nmask);
962 
963 	/*
964 	 * This does not "check" the range but isolates all pages that
965 	 * need migration.  Between passing in the full user address
966 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
967 	 */
968 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
969 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
970 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
971 
972 	if (!list_empty(&pagelist)) {
973 		err = migrate_pages(&pagelist, new_node_page, NULL, dest,
974 					MIGRATE_SYNC, MR_SYSCALL);
975 		if (err)
976 			putback_movable_pages(&pagelist);
977 	}
978 
979 	return err;
980 }
981 
982 /*
983  * Move pages between the two nodesets so as to preserve the physical
984  * layout as much as possible.
985  *
986  * Returns the number of page that could not be moved.
987  */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)988 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
989 		     const nodemask_t *to, int flags)
990 {
991 	int busy = 0;
992 	int err;
993 	nodemask_t tmp;
994 
995 	err = migrate_prep();
996 	if (err)
997 		return err;
998 
999 	down_read(&mm->mmap_sem);
1000 
1001 	/*
1002 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1003 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1004 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1005 	 * The pair of nodemasks 'to' and 'from' define the map.
1006 	 *
1007 	 * If no pair of bits is found that way, fallback to picking some
1008 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1009 	 * 'source' and 'dest' bits are the same, this represents a node
1010 	 * that will be migrating to itself, so no pages need move.
1011 	 *
1012 	 * If no bits are left in 'tmp', or if all remaining bits left
1013 	 * in 'tmp' correspond to the same bit in 'to', return false
1014 	 * (nothing left to migrate).
1015 	 *
1016 	 * This lets us pick a pair of nodes to migrate between, such that
1017 	 * if possible the dest node is not already occupied by some other
1018 	 * source node, minimizing the risk of overloading the memory on a
1019 	 * node that would happen if we migrated incoming memory to a node
1020 	 * before migrating outgoing memory source that same node.
1021 	 *
1022 	 * A single scan of tmp is sufficient.  As we go, we remember the
1023 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1024 	 * that not only moved, but what's better, moved to an empty slot
1025 	 * (d is not set in tmp), then we break out then, with that pair.
1026 	 * Otherwise when we finish scanning from_tmp, we at least have the
1027 	 * most recent <s, d> pair that moved.  If we get all the way through
1028 	 * the scan of tmp without finding any node that moved, much less
1029 	 * moved to an empty node, then there is nothing left worth migrating.
1030 	 */
1031 
1032 	tmp = *from;
1033 	while (!nodes_empty(tmp)) {
1034 		int s,d;
1035 		int source = NUMA_NO_NODE;
1036 		int dest = 0;
1037 
1038 		for_each_node_mask(s, tmp) {
1039 
1040 			/*
1041 			 * do_migrate_pages() tries to maintain the relative
1042 			 * node relationship of the pages established between
1043 			 * threads and memory areas.
1044                          *
1045 			 * However if the number of source nodes is not equal to
1046 			 * the number of destination nodes we can not preserve
1047 			 * this node relative relationship.  In that case, skip
1048 			 * copying memory from a node that is in the destination
1049 			 * mask.
1050 			 *
1051 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1052 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1053 			 */
1054 
1055 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1056 						(node_isset(s, *to)))
1057 				continue;
1058 
1059 			d = node_remap(s, *from, *to);
1060 			if (s == d)
1061 				continue;
1062 
1063 			source = s;	/* Node moved. Memorize */
1064 			dest = d;
1065 
1066 			/* dest not in remaining from nodes? */
1067 			if (!node_isset(dest, tmp))
1068 				break;
1069 		}
1070 		if (source == NUMA_NO_NODE)
1071 			break;
1072 
1073 		node_clear(source, tmp);
1074 		err = migrate_to_node(mm, source, dest, flags);
1075 		if (err > 0)
1076 			busy += err;
1077 		if (err < 0)
1078 			break;
1079 	}
1080 	up_read(&mm->mmap_sem);
1081 	if (err < 0)
1082 		return err;
1083 	return busy;
1084 
1085 }
1086 
1087 /*
1088  * Allocate a new page for page migration based on vma policy.
1089  * Start by assuming the page is mapped by the same vma as contains @start.
1090  * Search forward from there, if not.  N.B., this assumes that the
1091  * list of pages handed to migrate_pages()--which is how we get here--
1092  * is in virtual address order.
1093  */
new_page(struct page * page,unsigned long start,int ** x)1094 static struct page *new_page(struct page *page, unsigned long start, int **x)
1095 {
1096 	struct vm_area_struct *vma;
1097 	unsigned long uninitialized_var(address);
1098 
1099 	vma = find_vma(current->mm, start);
1100 	while (vma) {
1101 		address = page_address_in_vma(page, vma);
1102 		if (address != -EFAULT)
1103 			break;
1104 		vma = vma->vm_next;
1105 	}
1106 
1107 	if (PageHuge(page)) {
1108 		BUG_ON(!vma);
1109 		return alloc_huge_page_noerr(vma, address, 1);
1110 	}
1111 	/*
1112 	 * if !vma, alloc_page_vma() will use task or system default policy
1113 	 */
1114 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1115 }
1116 #else
1117 
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1118 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1119 				unsigned long flags)
1120 {
1121 }
1122 
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1123 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1124 		     const nodemask_t *to, int flags)
1125 {
1126 	return -ENOSYS;
1127 }
1128 
new_page(struct page * page,unsigned long start,int ** x)1129 static struct page *new_page(struct page *page, unsigned long start, int **x)
1130 {
1131 	return NULL;
1132 }
1133 #endif
1134 
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1135 static long do_mbind(unsigned long start, unsigned long len,
1136 		     unsigned short mode, unsigned short mode_flags,
1137 		     nodemask_t *nmask, unsigned long flags)
1138 {
1139 	struct mm_struct *mm = current->mm;
1140 	struct mempolicy *new;
1141 	unsigned long end;
1142 	int err;
1143 	LIST_HEAD(pagelist);
1144 
1145 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1146 		return -EINVAL;
1147 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1148 		return -EPERM;
1149 
1150 	if (start & ~PAGE_MASK)
1151 		return -EINVAL;
1152 
1153 	if (mode == MPOL_DEFAULT)
1154 		flags &= ~MPOL_MF_STRICT;
1155 
1156 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1157 	end = start + len;
1158 
1159 	if (end < start)
1160 		return -EINVAL;
1161 	if (end == start)
1162 		return 0;
1163 
1164 	new = mpol_new(mode, mode_flags, nmask);
1165 	if (IS_ERR(new))
1166 		return PTR_ERR(new);
1167 
1168 	if (flags & MPOL_MF_LAZY)
1169 		new->flags |= MPOL_F_MOF;
1170 
1171 	/*
1172 	 * If we are using the default policy then operation
1173 	 * on discontinuous address spaces is okay after all
1174 	 */
1175 	if (!new)
1176 		flags |= MPOL_MF_DISCONTIG_OK;
1177 
1178 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1179 		 start, start + len, mode, mode_flags,
1180 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1181 
1182 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1183 
1184 		err = migrate_prep();
1185 		if (err)
1186 			goto mpol_out;
1187 	}
1188 	{
1189 		NODEMASK_SCRATCH(scratch);
1190 		if (scratch) {
1191 			down_write(&mm->mmap_sem);
1192 			task_lock(current);
1193 			err = mpol_set_nodemask(new, nmask, scratch);
1194 			task_unlock(current);
1195 			if (err)
1196 				up_write(&mm->mmap_sem);
1197 		} else
1198 			err = -ENOMEM;
1199 		NODEMASK_SCRATCH_FREE(scratch);
1200 	}
1201 	if (err)
1202 		goto mpol_out;
1203 
1204 	err = queue_pages_range(mm, start, end, nmask,
1205 			  flags | MPOL_MF_INVERT, &pagelist);
1206 	if (!err)
1207 		err = mbind_range(mm, start, end, new);
1208 
1209 	if (!err) {
1210 		int nr_failed = 0;
1211 
1212 		if (!list_empty(&pagelist)) {
1213 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1214 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1215 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1216 			if (nr_failed)
1217 				putback_movable_pages(&pagelist);
1218 		}
1219 
1220 		if (nr_failed && (flags & MPOL_MF_STRICT))
1221 			err = -EIO;
1222 	} else
1223 		putback_movable_pages(&pagelist);
1224 
1225 	up_write(&mm->mmap_sem);
1226  mpol_out:
1227 	mpol_put(new);
1228 	return err;
1229 }
1230 
1231 /*
1232  * User space interface with variable sized bitmaps for nodelists.
1233  */
1234 
1235 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1236 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1237 		     unsigned long maxnode)
1238 {
1239 	unsigned long k;
1240 	unsigned long t;
1241 	unsigned long nlongs;
1242 	unsigned long endmask;
1243 
1244 	--maxnode;
1245 	nodes_clear(*nodes);
1246 	if (maxnode == 0 || !nmask)
1247 		return 0;
1248 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1249 		return -EINVAL;
1250 
1251 	nlongs = BITS_TO_LONGS(maxnode);
1252 	if ((maxnode % BITS_PER_LONG) == 0)
1253 		endmask = ~0UL;
1254 	else
1255 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1256 
1257 	/*
1258 	 * When the user specified more nodes than supported just check
1259 	 * if the non supported part is all zero.
1260 	 *
1261 	 * If maxnode have more longs than MAX_NUMNODES, check
1262 	 * the bits in that area first. And then go through to
1263 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1264 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1265 	 */
1266 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1267 		if (nlongs > PAGE_SIZE/sizeof(long))
1268 			return -EINVAL;
1269 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1270 			if (get_user(t, nmask + k))
1271 				return -EFAULT;
1272 			if (k == nlongs - 1) {
1273 				if (t & endmask)
1274 					return -EINVAL;
1275 			} else if (t)
1276 				return -EINVAL;
1277 		}
1278 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1279 		endmask = ~0UL;
1280 	}
1281 
1282 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1283 		unsigned long valid_mask = endmask;
1284 
1285 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1286 		if (get_user(t, nmask + nlongs - 1))
1287 			return -EFAULT;
1288 		if (t & valid_mask)
1289 			return -EINVAL;
1290 	}
1291 
1292 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1293 		return -EFAULT;
1294 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1295 	return 0;
1296 }
1297 
1298 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1299 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1300 			      nodemask_t *nodes)
1301 {
1302 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1303 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1304 
1305 	if (copy > nbytes) {
1306 		if (copy > PAGE_SIZE)
1307 			return -EINVAL;
1308 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1309 			return -EFAULT;
1310 		copy = nbytes;
1311 	}
1312 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1313 }
1314 
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned,flags)1315 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1316 		unsigned long, mode, const unsigned long __user *, nmask,
1317 		unsigned long, maxnode, unsigned, flags)
1318 {
1319 	nodemask_t nodes;
1320 	int err;
1321 	unsigned short mode_flags;
1322 
1323 	mode_flags = mode & MPOL_MODE_FLAGS;
1324 	mode &= ~MPOL_MODE_FLAGS;
1325 	if (mode >= MPOL_MAX)
1326 		return -EINVAL;
1327 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1328 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1329 		return -EINVAL;
1330 	err = get_nodes(&nodes, nmask, maxnode);
1331 	if (err)
1332 		return err;
1333 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1334 }
1335 
1336 /* Set the process memory policy */
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1337 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1338 		unsigned long, maxnode)
1339 {
1340 	int err;
1341 	nodemask_t nodes;
1342 	unsigned short flags;
1343 
1344 	flags = mode & MPOL_MODE_FLAGS;
1345 	mode &= ~MPOL_MODE_FLAGS;
1346 	if ((unsigned int)mode >= MPOL_MAX)
1347 		return -EINVAL;
1348 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1349 		return -EINVAL;
1350 	err = get_nodes(&nodes, nmask, maxnode);
1351 	if (err)
1352 		return err;
1353 	return do_set_mempolicy(mode, flags, &nodes);
1354 }
1355 
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1356 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1357 		const unsigned long __user *, old_nodes,
1358 		const unsigned long __user *, new_nodes)
1359 {
1360 	const struct cred *cred = current_cred(), *tcred;
1361 	struct mm_struct *mm = NULL;
1362 	struct task_struct *task;
1363 	nodemask_t task_nodes;
1364 	int err;
1365 	nodemask_t *old;
1366 	nodemask_t *new;
1367 	NODEMASK_SCRATCH(scratch);
1368 
1369 	if (!scratch)
1370 		return -ENOMEM;
1371 
1372 	old = &scratch->mask1;
1373 	new = &scratch->mask2;
1374 
1375 	err = get_nodes(old, old_nodes, maxnode);
1376 	if (err)
1377 		goto out;
1378 
1379 	err = get_nodes(new, new_nodes, maxnode);
1380 	if (err)
1381 		goto out;
1382 
1383 	/* Find the mm_struct */
1384 	rcu_read_lock();
1385 	task = pid ? find_task_by_vpid(pid) : current;
1386 	if (!task) {
1387 		rcu_read_unlock();
1388 		err = -ESRCH;
1389 		goto out;
1390 	}
1391 	get_task_struct(task);
1392 
1393 	err = -EINVAL;
1394 
1395 	/*
1396 	 * Check if this process has the right to modify the specified
1397 	 * process. The right exists if the process has administrative
1398 	 * capabilities, superuser privileges or the same
1399 	 * userid as the target process.
1400 	 */
1401 	tcred = __task_cred(task);
1402 	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1403 	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1404 	    !capable(CAP_SYS_NICE)) {
1405 		rcu_read_unlock();
1406 		err = -EPERM;
1407 		goto out_put;
1408 	}
1409 	rcu_read_unlock();
1410 
1411 	task_nodes = cpuset_mems_allowed(task);
1412 	/* Is the user allowed to access the target nodes? */
1413 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1414 		err = -EPERM;
1415 		goto out_put;
1416 	}
1417 
1418 	task_nodes = cpuset_mems_allowed(current);
1419 	nodes_and(*new, *new, task_nodes);
1420 	if (nodes_empty(*new))
1421 		goto out_put;
1422 
1423 	nodes_and(*new, *new, node_states[N_MEMORY]);
1424 	if (nodes_empty(*new))
1425 		goto out_put;
1426 
1427 	err = security_task_movememory(task);
1428 	if (err)
1429 		goto out_put;
1430 
1431 	mm = get_task_mm(task);
1432 	put_task_struct(task);
1433 
1434 	if (!mm) {
1435 		err = -EINVAL;
1436 		goto out;
1437 	}
1438 
1439 	err = do_migrate_pages(mm, old, new,
1440 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1441 
1442 	mmput(mm);
1443 out:
1444 	NODEMASK_SCRATCH_FREE(scratch);
1445 
1446 	return err;
1447 
1448 out_put:
1449 	put_task_struct(task);
1450 	goto out;
1451 
1452 }
1453 
1454 
1455 /* Retrieve NUMA policy */
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1456 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1457 		unsigned long __user *, nmask, unsigned long, maxnode,
1458 		unsigned long, addr, unsigned long, flags)
1459 {
1460 	int err;
1461 	int uninitialized_var(pval);
1462 	nodemask_t nodes;
1463 
1464 	if (nmask != NULL && maxnode < nr_node_ids)
1465 		return -EINVAL;
1466 
1467 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1468 
1469 	if (err)
1470 		return err;
1471 
1472 	if (policy && put_user(pval, policy))
1473 		return -EFAULT;
1474 
1475 	if (nmask)
1476 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1477 
1478 	return err;
1479 }
1480 
1481 #ifdef CONFIG_COMPAT
1482 
COMPAT_SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,addr,compat_ulong_t,flags)1483 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1484 		       compat_ulong_t __user *, nmask,
1485 		       compat_ulong_t, maxnode,
1486 		       compat_ulong_t, addr, compat_ulong_t, flags)
1487 {
1488 	long err;
1489 	unsigned long __user *nm = NULL;
1490 	unsigned long nr_bits, alloc_size;
1491 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1492 
1493 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1494 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1495 
1496 	if (nmask)
1497 		nm = compat_alloc_user_space(alloc_size);
1498 
1499 	err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1500 
1501 	if (!err && nmask) {
1502 		unsigned long copy_size;
1503 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1504 		err = copy_from_user(bm, nm, copy_size);
1505 		/* ensure entire bitmap is zeroed */
1506 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1507 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1508 	}
1509 
1510 	return err;
1511 }
1512 
COMPAT_SYSCALL_DEFINE3(set_mempolicy,int,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode)1513 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1514 		       compat_ulong_t, maxnode)
1515 {
1516 	unsigned long __user *nm = NULL;
1517 	unsigned long nr_bits, alloc_size;
1518 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1519 
1520 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1521 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1522 
1523 	if (nmask) {
1524 		if (compat_get_bitmap(bm, nmask, nr_bits))
1525 			return -EFAULT;
1526 		nm = compat_alloc_user_space(alloc_size);
1527 		if (copy_to_user(nm, bm, alloc_size))
1528 			return -EFAULT;
1529 	}
1530 
1531 	return sys_set_mempolicy(mode, nm, nr_bits+1);
1532 }
1533 
COMPAT_SYSCALL_DEFINE6(mbind,compat_ulong_t,start,compat_ulong_t,len,compat_ulong_t,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,flags)1534 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1535 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1536 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1537 {
1538 	unsigned long __user *nm = NULL;
1539 	unsigned long nr_bits, alloc_size;
1540 	nodemask_t bm;
1541 
1542 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1543 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1544 
1545 	if (nmask) {
1546 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1547 			return -EFAULT;
1548 		nm = compat_alloc_user_space(alloc_size);
1549 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1550 			return -EFAULT;
1551 	}
1552 
1553 	return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1554 }
1555 
1556 #endif
1557 
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1558 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1559 						unsigned long addr)
1560 {
1561 	struct mempolicy *pol = NULL;
1562 
1563 	if (vma) {
1564 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1565 			pol = vma->vm_ops->get_policy(vma, addr);
1566 		} else if (vma->vm_policy) {
1567 			pol = vma->vm_policy;
1568 
1569 			/*
1570 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1571 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1572 			 * count on these policies which will be dropped by
1573 			 * mpol_cond_put() later
1574 			 */
1575 			if (mpol_needs_cond_ref(pol))
1576 				mpol_get(pol);
1577 		}
1578 	}
1579 
1580 	return pol;
1581 }
1582 
1583 /*
1584  * get_vma_policy(@vma, @addr)
1585  * @vma: virtual memory area whose policy is sought
1586  * @addr: address in @vma for shared policy lookup
1587  *
1588  * Returns effective policy for a VMA at specified address.
1589  * Falls back to current->mempolicy or system default policy, as necessary.
1590  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1591  * count--added by the get_policy() vm_op, as appropriate--to protect against
1592  * freeing by another task.  It is the caller's responsibility to free the
1593  * extra reference for shared policies.
1594  */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1595 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1596 						unsigned long addr)
1597 {
1598 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1599 
1600 	if (!pol)
1601 		pol = get_task_policy(current);
1602 
1603 	return pol;
1604 }
1605 
vma_policy_mof(struct vm_area_struct * vma)1606 bool vma_policy_mof(struct vm_area_struct *vma)
1607 {
1608 	struct mempolicy *pol;
1609 
1610 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1611 		bool ret = false;
1612 
1613 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1614 		if (pol && (pol->flags & MPOL_F_MOF))
1615 			ret = true;
1616 		mpol_cond_put(pol);
1617 
1618 		return ret;
1619 	}
1620 
1621 	pol = vma->vm_policy;
1622 	if (!pol)
1623 		pol = get_task_policy(current);
1624 
1625 	return pol->flags & MPOL_F_MOF;
1626 }
1627 
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1628 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1629 {
1630 	enum zone_type dynamic_policy_zone = policy_zone;
1631 
1632 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1633 
1634 	/*
1635 	 * if policy->v.nodes has movable memory only,
1636 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1637 	 *
1638 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1639 	 * so if the following test faile, it implies
1640 	 * policy->v.nodes has movable memory only.
1641 	 */
1642 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1643 		dynamic_policy_zone = ZONE_MOVABLE;
1644 
1645 	return zone >= dynamic_policy_zone;
1646 }
1647 
1648 /*
1649  * Return a nodemask representing a mempolicy for filtering nodes for
1650  * page allocation
1651  */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1652 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1653 {
1654 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1655 	if (unlikely(policy->mode == MPOL_BIND) &&
1656 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1657 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1658 		return &policy->v.nodes;
1659 
1660 	return NULL;
1661 }
1662 
1663 /* Return a zonelist indicated by gfp for node representing a mempolicy */
policy_zonelist(gfp_t gfp,struct mempolicy * policy,int nd)1664 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1665 	int nd)
1666 {
1667 	switch (policy->mode) {
1668 	case MPOL_PREFERRED:
1669 		if (!(policy->flags & MPOL_F_LOCAL))
1670 			nd = policy->v.preferred_node;
1671 		break;
1672 	case MPOL_BIND:
1673 		/*
1674 		 * Normally, MPOL_BIND allocations are node-local within the
1675 		 * allowed nodemask.  However, if __GFP_THISNODE is set and the
1676 		 * current node isn't part of the mask, we use the zonelist for
1677 		 * the first node in the mask instead.
1678 		 */
1679 		if (unlikely(gfp & __GFP_THISNODE) &&
1680 				unlikely(!node_isset(nd, policy->v.nodes)))
1681 			nd = first_node(policy->v.nodes);
1682 		break;
1683 	default:
1684 		BUG();
1685 	}
1686 	return node_zonelist(nd, gfp);
1687 }
1688 
1689 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1690 static unsigned interleave_nodes(struct mempolicy *policy)
1691 {
1692 	unsigned nid, next;
1693 	struct task_struct *me = current;
1694 
1695 	nid = me->il_next;
1696 	next = next_node(nid, policy->v.nodes);
1697 	if (next >= MAX_NUMNODES)
1698 		next = first_node(policy->v.nodes);
1699 	if (next < MAX_NUMNODES)
1700 		me->il_next = next;
1701 	return nid;
1702 }
1703 
1704 /*
1705  * Depending on the memory policy provide a node from which to allocate the
1706  * next slab entry.
1707  */
mempolicy_slab_node(void)1708 unsigned int mempolicy_slab_node(void)
1709 {
1710 	struct mempolicy *policy;
1711 	int node = numa_mem_id();
1712 
1713 	if (in_interrupt())
1714 		return node;
1715 
1716 	policy = current->mempolicy;
1717 	if (!policy || policy->flags & MPOL_F_LOCAL)
1718 		return node;
1719 
1720 	switch (policy->mode) {
1721 	case MPOL_PREFERRED:
1722 		/*
1723 		 * handled MPOL_F_LOCAL above
1724 		 */
1725 		return policy->v.preferred_node;
1726 
1727 	case MPOL_INTERLEAVE:
1728 		return interleave_nodes(policy);
1729 
1730 	case MPOL_BIND: {
1731 		/*
1732 		 * Follow bind policy behavior and start allocation at the
1733 		 * first node.
1734 		 */
1735 		struct zonelist *zonelist;
1736 		struct zone *zone;
1737 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1738 		zonelist = &NODE_DATA(node)->node_zonelists[0];
1739 		(void)first_zones_zonelist(zonelist, highest_zoneidx,
1740 							&policy->v.nodes,
1741 							&zone);
1742 		return zone ? zone->node : node;
1743 	}
1744 
1745 	default:
1746 		BUG();
1747 	}
1748 }
1749 
1750 /* Do static interleaving for a VMA with known offset. */
offset_il_node(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long off)1751 static unsigned offset_il_node(struct mempolicy *pol,
1752 		struct vm_area_struct *vma, unsigned long off)
1753 {
1754 	unsigned nnodes = nodes_weight(pol->v.nodes);
1755 	unsigned target;
1756 	int c;
1757 	int nid = NUMA_NO_NODE;
1758 
1759 	if (!nnodes)
1760 		return numa_node_id();
1761 	target = (unsigned int)off % nnodes;
1762 	c = 0;
1763 	do {
1764 		nid = next_node(nid, pol->v.nodes);
1765 		c++;
1766 	} while (c <= target);
1767 	return nid;
1768 }
1769 
1770 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1771 static inline unsigned interleave_nid(struct mempolicy *pol,
1772 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1773 {
1774 	if (vma) {
1775 		unsigned long off;
1776 
1777 		/*
1778 		 * for small pages, there is no difference between
1779 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1780 		 * for huge pages, since vm_pgoff is in units of small
1781 		 * pages, we need to shift off the always 0 bits to get
1782 		 * a useful offset.
1783 		 */
1784 		BUG_ON(shift < PAGE_SHIFT);
1785 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1786 		off += (addr - vma->vm_start) >> shift;
1787 		return offset_il_node(pol, vma, off);
1788 	} else
1789 		return interleave_nodes(pol);
1790 }
1791 
1792 /*
1793  * Return the bit number of a random bit set in the nodemask.
1794  * (returns NUMA_NO_NODE if nodemask is empty)
1795  */
node_random(const nodemask_t * maskp)1796 int node_random(const nodemask_t *maskp)
1797 {
1798 	int w, bit = NUMA_NO_NODE;
1799 
1800 	w = nodes_weight(*maskp);
1801 	if (w)
1802 		bit = bitmap_ord_to_pos(maskp->bits,
1803 			get_random_int() % w, MAX_NUMNODES);
1804 	return bit;
1805 }
1806 
1807 #ifdef CONFIG_HUGETLBFS
1808 /*
1809  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1810  * @vma: virtual memory area whose policy is sought
1811  * @addr: address in @vma for shared policy lookup and interleave policy
1812  * @gfp_flags: for requested zone
1813  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1814  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1815  *
1816  * Returns a zonelist suitable for a huge page allocation and a pointer
1817  * to the struct mempolicy for conditional unref after allocation.
1818  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1819  * @nodemask for filtering the zonelist.
1820  *
1821  * Must be protected by read_mems_allowed_begin()
1822  */
huge_zonelist(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)1823 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1824 				gfp_t gfp_flags, struct mempolicy **mpol,
1825 				nodemask_t **nodemask)
1826 {
1827 	struct zonelist *zl;
1828 
1829 	*mpol = get_vma_policy(vma, addr);
1830 	*nodemask = NULL;	/* assume !MPOL_BIND */
1831 
1832 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1833 		zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1834 				huge_page_shift(hstate_vma(vma))), gfp_flags);
1835 	} else {
1836 		zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1837 		if ((*mpol)->mode == MPOL_BIND)
1838 			*nodemask = &(*mpol)->v.nodes;
1839 	}
1840 	return zl;
1841 }
1842 
1843 /*
1844  * init_nodemask_of_mempolicy
1845  *
1846  * If the current task's mempolicy is "default" [NULL], return 'false'
1847  * to indicate default policy.  Otherwise, extract the policy nodemask
1848  * for 'bind' or 'interleave' policy into the argument nodemask, or
1849  * initialize the argument nodemask to contain the single node for
1850  * 'preferred' or 'local' policy and return 'true' to indicate presence
1851  * of non-default mempolicy.
1852  *
1853  * We don't bother with reference counting the mempolicy [mpol_get/put]
1854  * because the current task is examining it's own mempolicy and a task's
1855  * mempolicy is only ever changed by the task itself.
1856  *
1857  * N.B., it is the caller's responsibility to free a returned nodemask.
1858  */
init_nodemask_of_mempolicy(nodemask_t * mask)1859 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1860 {
1861 	struct mempolicy *mempolicy;
1862 	int nid;
1863 
1864 	if (!(mask && current->mempolicy))
1865 		return false;
1866 
1867 	task_lock(current);
1868 	mempolicy = current->mempolicy;
1869 	switch (mempolicy->mode) {
1870 	case MPOL_PREFERRED:
1871 		if (mempolicy->flags & MPOL_F_LOCAL)
1872 			nid = numa_node_id();
1873 		else
1874 			nid = mempolicy->v.preferred_node;
1875 		init_nodemask_of_node(mask, nid);
1876 		break;
1877 
1878 	case MPOL_BIND:
1879 		/* Fall through */
1880 	case MPOL_INTERLEAVE:
1881 		*mask =  mempolicy->v.nodes;
1882 		break;
1883 
1884 	default:
1885 		BUG();
1886 	}
1887 	task_unlock(current);
1888 
1889 	return true;
1890 }
1891 #endif
1892 
1893 /*
1894  * mempolicy_nodemask_intersects
1895  *
1896  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1897  * policy.  Otherwise, check for intersection between mask and the policy
1898  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1899  * policy, always return true since it may allocate elsewhere on fallback.
1900  *
1901  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1902  */
mempolicy_nodemask_intersects(struct task_struct * tsk,const nodemask_t * mask)1903 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1904 					const nodemask_t *mask)
1905 {
1906 	struct mempolicy *mempolicy;
1907 	bool ret = true;
1908 
1909 	if (!mask)
1910 		return ret;
1911 	task_lock(tsk);
1912 	mempolicy = tsk->mempolicy;
1913 	if (!mempolicy)
1914 		goto out;
1915 
1916 	switch (mempolicy->mode) {
1917 	case MPOL_PREFERRED:
1918 		/*
1919 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1920 		 * allocate from, they may fallback to other nodes when oom.
1921 		 * Thus, it's possible for tsk to have allocated memory from
1922 		 * nodes in mask.
1923 		 */
1924 		break;
1925 	case MPOL_BIND:
1926 	case MPOL_INTERLEAVE:
1927 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1928 		break;
1929 	default:
1930 		BUG();
1931 	}
1932 out:
1933 	task_unlock(tsk);
1934 	return ret;
1935 }
1936 
1937 /* Allocate a page in interleaved policy.
1938    Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)1939 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1940 					unsigned nid)
1941 {
1942 	struct zonelist *zl;
1943 	struct page *page;
1944 
1945 	zl = node_zonelist(nid, gfp);
1946 	page = __alloc_pages(gfp, order, zl);
1947 	if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1948 		inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1949 	return page;
1950 }
1951 
1952 /**
1953  * 	alloc_pages_vma	- Allocate a page for a VMA.
1954  *
1955  * 	@gfp:
1956  *      %GFP_USER    user allocation.
1957  *      %GFP_KERNEL  kernel allocations,
1958  *      %GFP_HIGHMEM highmem/user allocations,
1959  *      %GFP_FS      allocation should not call back into a file system.
1960  *      %GFP_ATOMIC  don't sleep.
1961  *
1962  *	@order:Order of the GFP allocation.
1963  * 	@vma:  Pointer to VMA or NULL if not available.
1964  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1965  *	@node: Which node to prefer for allocation (modulo policy).
1966  *	@hugepage: for hugepages try only the preferred node if possible
1967  *
1968  * 	This function allocates a page from the kernel page pool and applies
1969  *	a NUMA policy associated with the VMA or the current process.
1970  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
1971  *	mm_struct of the VMA to prevent it from going away. Should be used for
1972  *	all allocations for pages that will be mapped into user space. Returns
1973  *	NULL when no page can be allocated.
1974  */
1975 struct page *
alloc_pages_vma(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,int node,bool hugepage)1976 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1977 		unsigned long addr, int node, bool hugepage)
1978 {
1979 	struct mempolicy *pol;
1980 	struct page *page;
1981 	unsigned int cpuset_mems_cookie;
1982 	struct zonelist *zl;
1983 	nodemask_t *nmask;
1984 
1985 retry_cpuset:
1986 	pol = get_vma_policy(vma, addr);
1987 	cpuset_mems_cookie = read_mems_allowed_begin();
1988 
1989 	if (pol->mode == MPOL_INTERLEAVE) {
1990 		unsigned nid;
1991 
1992 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1993 		mpol_cond_put(pol);
1994 		page = alloc_page_interleave(gfp, order, nid);
1995 		goto out;
1996 	}
1997 
1998 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1999 		int hpage_node = node;
2000 
2001 		/*
2002 		 * For hugepage allocation and non-interleave policy which
2003 		 * allows the current node (or other explicitly preferred
2004 		 * node) we only try to allocate from the current/preferred
2005 		 * node and don't fall back to other nodes, as the cost of
2006 		 * remote accesses would likely offset THP benefits.
2007 		 *
2008 		 * If the policy is interleave, or does not allow the current
2009 		 * node in its nodemask, we allocate the standard way.
2010 		 */
2011 		if (pol->mode == MPOL_PREFERRED &&
2012 						!(pol->flags & MPOL_F_LOCAL))
2013 			hpage_node = pol->v.preferred_node;
2014 
2015 		nmask = policy_nodemask(gfp, pol);
2016 		if (!nmask || node_isset(hpage_node, *nmask)) {
2017 			mpol_cond_put(pol);
2018 			/*
2019 			 * We cannot invoke reclaim if __GFP_THISNODE
2020 			 * is set. Invoking reclaim with
2021 			 * __GFP_THISNODE set, would cause THP
2022 			 * allocations to trigger heavy swapping
2023 			 * despite there may be tons of free memory
2024 			 * (including potentially plenty of THP
2025 			 * already available in the buddy) on all the
2026 			 * other NUMA nodes.
2027 			 *
2028 			 * At most we could invoke compaction when
2029 			 * __GFP_THISNODE is set (but we would need to
2030 			 * refrain from invoking reclaim even if
2031 			 * compaction returned COMPACT_SKIPPED because
2032 			 * there wasn't not enough memory to succeed
2033 			 * compaction). For now just avoid
2034 			 * __GFP_THISNODE instead of limiting the
2035 			 * allocation path to a strict and single
2036 			 * compaction invocation.
2037 			 *
2038 			 * Supposedly if direct reclaim was enabled by
2039 			 * the caller, the app prefers THP regardless
2040 			 * of the node it comes from so this would be
2041 			 * more desiderable behavior than only
2042 			 * providing THP originated from the local
2043 			 * node in such case.
2044 			 */
2045 			if (!(gfp & __GFP_DIRECT_RECLAIM))
2046 				gfp |= __GFP_THISNODE;
2047 			page = __alloc_pages_node(hpage_node, gfp, order);
2048 			goto out;
2049 		}
2050 	}
2051 
2052 	nmask = policy_nodemask(gfp, pol);
2053 	zl = policy_zonelist(gfp, pol, node);
2054 	page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2055 	mpol_cond_put(pol);
2056 out:
2057 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2058 		goto retry_cpuset;
2059 	return page;
2060 }
2061 
2062 /**
2063  * 	alloc_pages_current - Allocate pages.
2064  *
2065  *	@gfp:
2066  *		%GFP_USER   user allocation,
2067  *      	%GFP_KERNEL kernel allocation,
2068  *      	%GFP_HIGHMEM highmem allocation,
2069  *      	%GFP_FS     don't call back into a file system.
2070  *      	%GFP_ATOMIC don't sleep.
2071  *	@order: Power of two of allocation size in pages. 0 is a single page.
2072  *
2073  *	Allocate a page from the kernel page pool.  When not in
2074  *	interrupt context and apply the current process NUMA policy.
2075  *	Returns NULL when no page can be allocated.
2076  *
2077  *	Don't call cpuset_update_task_memory_state() unless
2078  *	1) it's ok to take cpuset_sem (can WAIT), and
2079  *	2) allocating for current task (not interrupt).
2080  */
alloc_pages_current(gfp_t gfp,unsigned order)2081 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2082 {
2083 	struct mempolicy *pol = &default_policy;
2084 	struct page *page;
2085 	unsigned int cpuset_mems_cookie;
2086 
2087 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2088 		pol = get_task_policy(current);
2089 
2090 retry_cpuset:
2091 	cpuset_mems_cookie = read_mems_allowed_begin();
2092 
2093 	/*
2094 	 * No reference counting needed for current->mempolicy
2095 	 * nor system default_policy
2096 	 */
2097 	if (pol->mode == MPOL_INTERLEAVE)
2098 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2099 	else
2100 		page = __alloc_pages_nodemask(gfp, order,
2101 				policy_zonelist(gfp, pol, numa_node_id()),
2102 				policy_nodemask(gfp, pol));
2103 
2104 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2105 		goto retry_cpuset;
2106 
2107 	return page;
2108 }
2109 EXPORT_SYMBOL(alloc_pages_current);
2110 
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2111 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2112 {
2113 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2114 
2115 	if (IS_ERR(pol))
2116 		return PTR_ERR(pol);
2117 	dst->vm_policy = pol;
2118 	return 0;
2119 }
2120 
2121 /*
2122  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2123  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2124  * with the mems_allowed returned by cpuset_mems_allowed().  This
2125  * keeps mempolicies cpuset relative after its cpuset moves.  See
2126  * further kernel/cpuset.c update_nodemask().
2127  *
2128  * current's mempolicy may be rebinded by the other task(the task that changes
2129  * cpuset's mems), so we needn't do rebind work for current task.
2130  */
2131 
2132 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2133 struct mempolicy *__mpol_dup(struct mempolicy *old)
2134 {
2135 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2136 
2137 	if (!new)
2138 		return ERR_PTR(-ENOMEM);
2139 
2140 	/* task's mempolicy is protected by alloc_lock */
2141 	if (old == current->mempolicy) {
2142 		task_lock(current);
2143 		*new = *old;
2144 		task_unlock(current);
2145 	} else
2146 		*new = *old;
2147 
2148 	if (current_cpuset_is_being_rebound()) {
2149 		nodemask_t mems = cpuset_mems_allowed(current);
2150 		if (new->flags & MPOL_F_REBINDING)
2151 			mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2152 		else
2153 			mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2154 	}
2155 	atomic_set(&new->refcnt, 1);
2156 	return new;
2157 }
2158 
2159 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2160 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2161 {
2162 	if (!a || !b)
2163 		return false;
2164 	if (a->mode != b->mode)
2165 		return false;
2166 	if (a->flags != b->flags)
2167 		return false;
2168 	if (mpol_store_user_nodemask(a))
2169 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2170 			return false;
2171 
2172 	switch (a->mode) {
2173 	case MPOL_BIND:
2174 		/* Fall through */
2175 	case MPOL_INTERLEAVE:
2176 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2177 	case MPOL_PREFERRED:
2178 		/* a's ->flags is the same as b's */
2179 		if (a->flags & MPOL_F_LOCAL)
2180 			return true;
2181 		return a->v.preferred_node == b->v.preferred_node;
2182 	default:
2183 		BUG();
2184 		return false;
2185 	}
2186 }
2187 
2188 /*
2189  * Shared memory backing store policy support.
2190  *
2191  * Remember policies even when nobody has shared memory mapped.
2192  * The policies are kept in Red-Black tree linked from the inode.
2193  * They are protected by the sp->lock spinlock, which should be held
2194  * for any accesses to the tree.
2195  */
2196 
2197 /* lookup first element intersecting start-end */
2198 /* Caller holds sp->lock */
2199 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)2200 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2201 {
2202 	struct rb_node *n = sp->root.rb_node;
2203 
2204 	while (n) {
2205 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2206 
2207 		if (start >= p->end)
2208 			n = n->rb_right;
2209 		else if (end <= p->start)
2210 			n = n->rb_left;
2211 		else
2212 			break;
2213 	}
2214 	if (!n)
2215 		return NULL;
2216 	for (;;) {
2217 		struct sp_node *w = NULL;
2218 		struct rb_node *prev = rb_prev(n);
2219 		if (!prev)
2220 			break;
2221 		w = rb_entry(prev, struct sp_node, nd);
2222 		if (w->end <= start)
2223 			break;
2224 		n = prev;
2225 	}
2226 	return rb_entry(n, struct sp_node, nd);
2227 }
2228 
2229 /* Insert a new shared policy into the list. */
2230 /* Caller holds sp->lock */
sp_insert(struct shared_policy * sp,struct sp_node * new)2231 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2232 {
2233 	struct rb_node **p = &sp->root.rb_node;
2234 	struct rb_node *parent = NULL;
2235 	struct sp_node *nd;
2236 
2237 	while (*p) {
2238 		parent = *p;
2239 		nd = rb_entry(parent, struct sp_node, nd);
2240 		if (new->start < nd->start)
2241 			p = &(*p)->rb_left;
2242 		else if (new->end > nd->end)
2243 			p = &(*p)->rb_right;
2244 		else
2245 			BUG();
2246 	}
2247 	rb_link_node(&new->nd, parent, p);
2248 	rb_insert_color(&new->nd, &sp->root);
2249 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2250 		 new->policy ? new->policy->mode : 0);
2251 }
2252 
2253 /* Find shared policy intersecting idx */
2254 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)2255 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2256 {
2257 	struct mempolicy *pol = NULL;
2258 	struct sp_node *sn;
2259 
2260 	if (!sp->root.rb_node)
2261 		return NULL;
2262 	spin_lock(&sp->lock);
2263 	sn = sp_lookup(sp, idx, idx+1);
2264 	if (sn) {
2265 		mpol_get(sn->policy);
2266 		pol = sn->policy;
2267 	}
2268 	spin_unlock(&sp->lock);
2269 	return pol;
2270 }
2271 
sp_free(struct sp_node * n)2272 static void sp_free(struct sp_node *n)
2273 {
2274 	mpol_put(n->policy);
2275 	kmem_cache_free(sn_cache, n);
2276 }
2277 
2278 /**
2279  * mpol_misplaced - check whether current page node is valid in policy
2280  *
2281  * @page: page to be checked
2282  * @vma: vm area where page mapped
2283  * @addr: virtual address where page mapped
2284  *
2285  * Lookup current policy node id for vma,addr and "compare to" page's
2286  * node id.
2287  *
2288  * Returns:
2289  *	-1	- not misplaced, page is in the right node
2290  *	node	- node id where the page should be
2291  *
2292  * Policy determination "mimics" alloc_page_vma().
2293  * Called from fault path where we know the vma and faulting address.
2294  */
mpol_misplaced(struct page * page,struct vm_area_struct * vma,unsigned long addr)2295 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2296 {
2297 	struct mempolicy *pol;
2298 	struct zone *zone;
2299 	int curnid = page_to_nid(page);
2300 	unsigned long pgoff;
2301 	int thiscpu = raw_smp_processor_id();
2302 	int thisnid = cpu_to_node(thiscpu);
2303 	int polnid = -1;
2304 	int ret = -1;
2305 
2306 	BUG_ON(!vma);
2307 
2308 	pol = get_vma_policy(vma, addr);
2309 	if (!(pol->flags & MPOL_F_MOF))
2310 		goto out;
2311 
2312 	switch (pol->mode) {
2313 	case MPOL_INTERLEAVE:
2314 		BUG_ON(addr >= vma->vm_end);
2315 		BUG_ON(addr < vma->vm_start);
2316 
2317 		pgoff = vma->vm_pgoff;
2318 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2319 		polnid = offset_il_node(pol, vma, pgoff);
2320 		break;
2321 
2322 	case MPOL_PREFERRED:
2323 		if (pol->flags & MPOL_F_LOCAL)
2324 			polnid = numa_node_id();
2325 		else
2326 			polnid = pol->v.preferred_node;
2327 		break;
2328 
2329 	case MPOL_BIND:
2330 		/*
2331 		 * allows binding to multiple nodes.
2332 		 * use current page if in policy nodemask,
2333 		 * else select nearest allowed node, if any.
2334 		 * If no allowed nodes, use current [!misplaced].
2335 		 */
2336 		if (node_isset(curnid, pol->v.nodes))
2337 			goto out;
2338 		(void)first_zones_zonelist(
2339 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2340 				gfp_zone(GFP_HIGHUSER),
2341 				&pol->v.nodes, &zone);
2342 		polnid = zone->node;
2343 		break;
2344 
2345 	default:
2346 		BUG();
2347 	}
2348 
2349 	/* Migrate the page towards the node whose CPU is referencing it */
2350 	if (pol->flags & MPOL_F_MORON) {
2351 		polnid = thisnid;
2352 
2353 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2354 			goto out;
2355 	}
2356 
2357 	if (curnid != polnid)
2358 		ret = polnid;
2359 out:
2360 	mpol_cond_put(pol);
2361 
2362 	return ret;
2363 }
2364 
sp_delete(struct shared_policy * sp,struct sp_node * n)2365 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2366 {
2367 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2368 	rb_erase(&n->nd, &sp->root);
2369 	sp_free(n);
2370 }
2371 
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2372 static void sp_node_init(struct sp_node *node, unsigned long start,
2373 			unsigned long end, struct mempolicy *pol)
2374 {
2375 	node->start = start;
2376 	node->end = end;
2377 	node->policy = pol;
2378 }
2379 
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2380 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2381 				struct mempolicy *pol)
2382 {
2383 	struct sp_node *n;
2384 	struct mempolicy *newpol;
2385 
2386 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2387 	if (!n)
2388 		return NULL;
2389 
2390 	newpol = mpol_dup(pol);
2391 	if (IS_ERR(newpol)) {
2392 		kmem_cache_free(sn_cache, n);
2393 		return NULL;
2394 	}
2395 	newpol->flags |= MPOL_F_SHARED;
2396 	sp_node_init(n, start, end, newpol);
2397 
2398 	return n;
2399 }
2400 
2401 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)2402 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2403 				 unsigned long end, struct sp_node *new)
2404 {
2405 	struct sp_node *n;
2406 	struct sp_node *n_new = NULL;
2407 	struct mempolicy *mpol_new = NULL;
2408 	int ret = 0;
2409 
2410 restart:
2411 	spin_lock(&sp->lock);
2412 	n = sp_lookup(sp, start, end);
2413 	/* Take care of old policies in the same range. */
2414 	while (n && n->start < end) {
2415 		struct rb_node *next = rb_next(&n->nd);
2416 		if (n->start >= start) {
2417 			if (n->end <= end)
2418 				sp_delete(sp, n);
2419 			else
2420 				n->start = end;
2421 		} else {
2422 			/* Old policy spanning whole new range. */
2423 			if (n->end > end) {
2424 				if (!n_new)
2425 					goto alloc_new;
2426 
2427 				*mpol_new = *n->policy;
2428 				atomic_set(&mpol_new->refcnt, 1);
2429 				sp_node_init(n_new, end, n->end, mpol_new);
2430 				n->end = start;
2431 				sp_insert(sp, n_new);
2432 				n_new = NULL;
2433 				mpol_new = NULL;
2434 				break;
2435 			} else
2436 				n->end = start;
2437 		}
2438 		if (!next)
2439 			break;
2440 		n = rb_entry(next, struct sp_node, nd);
2441 	}
2442 	if (new)
2443 		sp_insert(sp, new);
2444 	spin_unlock(&sp->lock);
2445 	ret = 0;
2446 
2447 err_out:
2448 	if (mpol_new)
2449 		mpol_put(mpol_new);
2450 	if (n_new)
2451 		kmem_cache_free(sn_cache, n_new);
2452 
2453 	return ret;
2454 
2455 alloc_new:
2456 	spin_unlock(&sp->lock);
2457 	ret = -ENOMEM;
2458 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2459 	if (!n_new)
2460 		goto err_out;
2461 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2462 	if (!mpol_new)
2463 		goto err_out;
2464 	goto restart;
2465 }
2466 
2467 /**
2468  * mpol_shared_policy_init - initialize shared policy for inode
2469  * @sp: pointer to inode shared policy
2470  * @mpol:  struct mempolicy to install
2471  *
2472  * Install non-NULL @mpol in inode's shared policy rb-tree.
2473  * On entry, the current task has a reference on a non-NULL @mpol.
2474  * This must be released on exit.
2475  * This is called at get_inode() calls and we can use GFP_KERNEL.
2476  */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2477 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2478 {
2479 	int ret;
2480 
2481 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2482 	spin_lock_init(&sp->lock);
2483 
2484 	if (mpol) {
2485 		struct vm_area_struct pvma;
2486 		struct mempolicy *new;
2487 		NODEMASK_SCRATCH(scratch);
2488 
2489 		if (!scratch)
2490 			goto put_mpol;
2491 		/* contextualize the tmpfs mount point mempolicy */
2492 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2493 		if (IS_ERR(new))
2494 			goto free_scratch; /* no valid nodemask intersection */
2495 
2496 		task_lock(current);
2497 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2498 		task_unlock(current);
2499 		if (ret)
2500 			goto put_new;
2501 
2502 		/* Create pseudo-vma that contains just the policy */
2503 		memset(&pvma, 0, sizeof(struct vm_area_struct));
2504 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2505 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2506 
2507 put_new:
2508 		mpol_put(new);			/* drop initial ref */
2509 free_scratch:
2510 		NODEMASK_SCRATCH_FREE(scratch);
2511 put_mpol:
2512 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2513 	}
2514 }
2515 
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)2516 int mpol_set_shared_policy(struct shared_policy *info,
2517 			struct vm_area_struct *vma, struct mempolicy *npol)
2518 {
2519 	int err;
2520 	struct sp_node *new = NULL;
2521 	unsigned long sz = vma_pages(vma);
2522 
2523 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2524 		 vma->vm_pgoff,
2525 		 sz, npol ? npol->mode : -1,
2526 		 npol ? npol->flags : -1,
2527 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2528 
2529 	if (npol) {
2530 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2531 		if (!new)
2532 			return -ENOMEM;
2533 	}
2534 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2535 	if (err && new)
2536 		sp_free(new);
2537 	return err;
2538 }
2539 
2540 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)2541 void mpol_free_shared_policy(struct shared_policy *p)
2542 {
2543 	struct sp_node *n;
2544 	struct rb_node *next;
2545 
2546 	if (!p->root.rb_node)
2547 		return;
2548 	spin_lock(&p->lock);
2549 	next = rb_first(&p->root);
2550 	while (next) {
2551 		n = rb_entry(next, struct sp_node, nd);
2552 		next = rb_next(&n->nd);
2553 		sp_delete(p, n);
2554 	}
2555 	spin_unlock(&p->lock);
2556 }
2557 
2558 #ifdef CONFIG_NUMA_BALANCING
2559 static int __initdata numabalancing_override;
2560 
check_numabalancing_enable(void)2561 static void __init check_numabalancing_enable(void)
2562 {
2563 	bool numabalancing_default = false;
2564 
2565 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2566 		numabalancing_default = true;
2567 
2568 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2569 	if (numabalancing_override)
2570 		set_numabalancing_state(numabalancing_override == 1);
2571 
2572 	if (num_online_nodes() > 1 && !numabalancing_override) {
2573 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2574 			numabalancing_default ? "Enabling" : "Disabling");
2575 		set_numabalancing_state(numabalancing_default);
2576 	}
2577 }
2578 
setup_numabalancing(char * str)2579 static int __init setup_numabalancing(char *str)
2580 {
2581 	int ret = 0;
2582 	if (!str)
2583 		goto out;
2584 
2585 	if (!strcmp(str, "enable")) {
2586 		numabalancing_override = 1;
2587 		ret = 1;
2588 	} else if (!strcmp(str, "disable")) {
2589 		numabalancing_override = -1;
2590 		ret = 1;
2591 	}
2592 out:
2593 	if (!ret)
2594 		pr_warn("Unable to parse numa_balancing=\n");
2595 
2596 	return ret;
2597 }
2598 __setup("numa_balancing=", setup_numabalancing);
2599 #else
check_numabalancing_enable(void)2600 static inline void __init check_numabalancing_enable(void)
2601 {
2602 }
2603 #endif /* CONFIG_NUMA_BALANCING */
2604 
2605 /* assumes fs == KERNEL_DS */
numa_policy_init(void)2606 void __init numa_policy_init(void)
2607 {
2608 	nodemask_t interleave_nodes;
2609 	unsigned long largest = 0;
2610 	int nid, prefer = 0;
2611 
2612 	policy_cache = kmem_cache_create("numa_policy",
2613 					 sizeof(struct mempolicy),
2614 					 0, SLAB_PANIC, NULL);
2615 
2616 	sn_cache = kmem_cache_create("shared_policy_node",
2617 				     sizeof(struct sp_node),
2618 				     0, SLAB_PANIC, NULL);
2619 
2620 	for_each_node(nid) {
2621 		preferred_node_policy[nid] = (struct mempolicy) {
2622 			.refcnt = ATOMIC_INIT(1),
2623 			.mode = MPOL_PREFERRED,
2624 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2625 			.v = { .preferred_node = nid, },
2626 		};
2627 	}
2628 
2629 	/*
2630 	 * Set interleaving policy for system init. Interleaving is only
2631 	 * enabled across suitably sized nodes (default is >= 16MB), or
2632 	 * fall back to the largest node if they're all smaller.
2633 	 */
2634 	nodes_clear(interleave_nodes);
2635 	for_each_node_state(nid, N_MEMORY) {
2636 		unsigned long total_pages = node_present_pages(nid);
2637 
2638 		/* Preserve the largest node */
2639 		if (largest < total_pages) {
2640 			largest = total_pages;
2641 			prefer = nid;
2642 		}
2643 
2644 		/* Interleave this node? */
2645 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2646 			node_set(nid, interleave_nodes);
2647 	}
2648 
2649 	/* All too small, use the largest */
2650 	if (unlikely(nodes_empty(interleave_nodes)))
2651 		node_set(prefer, interleave_nodes);
2652 
2653 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2654 		pr_err("%s: interleaving failed\n", __func__);
2655 
2656 	check_numabalancing_enable();
2657 }
2658 
2659 /* Reset policy of current process to default */
numa_default_policy(void)2660 void numa_default_policy(void)
2661 {
2662 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2663 }
2664 
2665 /*
2666  * Parse and format mempolicy from/to strings
2667  */
2668 
2669 /*
2670  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2671  */
2672 static const char * const policy_modes[] =
2673 {
2674 	[MPOL_DEFAULT]    = "default",
2675 	[MPOL_PREFERRED]  = "prefer",
2676 	[MPOL_BIND]       = "bind",
2677 	[MPOL_INTERLEAVE] = "interleave",
2678 	[MPOL_LOCAL]      = "local",
2679 };
2680 
2681 
2682 #ifdef CONFIG_TMPFS
2683 /**
2684  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2685  * @str:  string containing mempolicy to parse
2686  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2687  *
2688  * Format of input:
2689  *	<mode>[=<flags>][:<nodelist>]
2690  *
2691  * On success, returns 0, else 1
2692  */
mpol_parse_str(char * str,struct mempolicy ** mpol)2693 int mpol_parse_str(char *str, struct mempolicy **mpol)
2694 {
2695 	struct mempolicy *new = NULL;
2696 	unsigned short mode;
2697 	unsigned short mode_flags;
2698 	nodemask_t nodes;
2699 	char *nodelist = strchr(str, ':');
2700 	char *flags = strchr(str, '=');
2701 	int err = 1;
2702 
2703 	if (flags)
2704 		*flags++ = '\0';	/* terminate mode string */
2705 
2706 	if (nodelist) {
2707 		/* NUL-terminate mode or flags string */
2708 		*nodelist++ = '\0';
2709 		if (nodelist_parse(nodelist, nodes))
2710 			goto out;
2711 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2712 			goto out;
2713 	} else
2714 		nodes_clear(nodes);
2715 
2716 	for (mode = 0; mode < MPOL_MAX; mode++) {
2717 		if (!strcmp(str, policy_modes[mode])) {
2718 			break;
2719 		}
2720 	}
2721 	if (mode >= MPOL_MAX)
2722 		goto out;
2723 
2724 	switch (mode) {
2725 	case MPOL_PREFERRED:
2726 		/*
2727 		 * Insist on a nodelist of one node only, although later
2728 		 * we use first_node(nodes) to grab a single node, so here
2729 		 * nodelist (or nodes) cannot be empty.
2730 		 */
2731 		if (nodelist) {
2732 			char *rest = nodelist;
2733 			while (isdigit(*rest))
2734 				rest++;
2735 			if (*rest)
2736 				goto out;
2737 			if (nodes_empty(nodes))
2738 				goto out;
2739 		}
2740 		break;
2741 	case MPOL_INTERLEAVE:
2742 		/*
2743 		 * Default to online nodes with memory if no nodelist
2744 		 */
2745 		if (!nodelist)
2746 			nodes = node_states[N_MEMORY];
2747 		break;
2748 	case MPOL_LOCAL:
2749 		/*
2750 		 * Don't allow a nodelist;  mpol_new() checks flags
2751 		 */
2752 		if (nodelist)
2753 			goto out;
2754 		mode = MPOL_PREFERRED;
2755 		break;
2756 	case MPOL_DEFAULT:
2757 		/*
2758 		 * Insist on a empty nodelist
2759 		 */
2760 		if (!nodelist)
2761 			err = 0;
2762 		goto out;
2763 	case MPOL_BIND:
2764 		/*
2765 		 * Insist on a nodelist
2766 		 */
2767 		if (!nodelist)
2768 			goto out;
2769 	}
2770 
2771 	mode_flags = 0;
2772 	if (flags) {
2773 		/*
2774 		 * Currently, we only support two mutually exclusive
2775 		 * mode flags.
2776 		 */
2777 		if (!strcmp(flags, "static"))
2778 			mode_flags |= MPOL_F_STATIC_NODES;
2779 		else if (!strcmp(flags, "relative"))
2780 			mode_flags |= MPOL_F_RELATIVE_NODES;
2781 		else
2782 			goto out;
2783 	}
2784 
2785 	new = mpol_new(mode, mode_flags, &nodes);
2786 	if (IS_ERR(new))
2787 		goto out;
2788 
2789 	/*
2790 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2791 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2792 	 */
2793 	if (mode != MPOL_PREFERRED)
2794 		new->v.nodes = nodes;
2795 	else if (nodelist)
2796 		new->v.preferred_node = first_node(nodes);
2797 	else
2798 		new->flags |= MPOL_F_LOCAL;
2799 
2800 	/*
2801 	 * Save nodes for contextualization: this will be used to "clone"
2802 	 * the mempolicy in a specific context [cpuset] at a later time.
2803 	 */
2804 	new->w.user_nodemask = nodes;
2805 
2806 	err = 0;
2807 
2808 out:
2809 	/* Restore string for error message */
2810 	if (nodelist)
2811 		*--nodelist = ':';
2812 	if (flags)
2813 		*--flags = '=';
2814 	if (!err)
2815 		*mpol = new;
2816 	return err;
2817 }
2818 #endif /* CONFIG_TMPFS */
2819 
2820 /**
2821  * mpol_to_str - format a mempolicy structure for printing
2822  * @buffer:  to contain formatted mempolicy string
2823  * @maxlen:  length of @buffer
2824  * @pol:  pointer to mempolicy to be formatted
2825  *
2826  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2827  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2828  * longest flag, "relative", and to display at least a few node ids.
2829  */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)2830 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2831 {
2832 	char *p = buffer;
2833 	nodemask_t nodes = NODE_MASK_NONE;
2834 	unsigned short mode = MPOL_DEFAULT;
2835 	unsigned short flags = 0;
2836 
2837 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2838 		mode = pol->mode;
2839 		flags = pol->flags;
2840 	}
2841 
2842 	switch (mode) {
2843 	case MPOL_DEFAULT:
2844 		break;
2845 	case MPOL_PREFERRED:
2846 		if (flags & MPOL_F_LOCAL)
2847 			mode = MPOL_LOCAL;
2848 		else
2849 			node_set(pol->v.preferred_node, nodes);
2850 		break;
2851 	case MPOL_BIND:
2852 	case MPOL_INTERLEAVE:
2853 		nodes = pol->v.nodes;
2854 		break;
2855 	default:
2856 		WARN_ON_ONCE(1);
2857 		snprintf(p, maxlen, "unknown");
2858 		return;
2859 	}
2860 
2861 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2862 
2863 	if (flags & MPOL_MODE_FLAGS) {
2864 		p += snprintf(p, buffer + maxlen - p, "=");
2865 
2866 		/*
2867 		 * Currently, the only defined flags are mutually exclusive
2868 		 */
2869 		if (flags & MPOL_F_STATIC_NODES)
2870 			p += snprintf(p, buffer + maxlen - p, "static");
2871 		else if (flags & MPOL_F_RELATIVE_NODES)
2872 			p += snprintf(p, buffer + maxlen - p, "relative");
2873 	}
2874 
2875 	if (!nodes_empty(nodes))
2876 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2877 			       nodemask_pr_args(&nodes));
2878 }
2879