1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
6 */
7
8 #ifndef __UM_PGTABLE_H
9 #define __UM_PGTABLE_H
10
11 #include <asm/fixmap.h>
12
13 #define _PAGE_PRESENT 0x001
14 #define _PAGE_NEWPAGE 0x002
15 #define _PAGE_NEWPROT 0x004
16 #define _PAGE_RW 0x020
17 #define _PAGE_USER 0x040
18 #define _PAGE_ACCESSED 0x080
19 #define _PAGE_DIRTY 0x100
20 /* If _PAGE_PRESENT is clear, we use these: */
21 #define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
22 pte_present gives true */
23
24 #ifdef CONFIG_3_LEVEL_PGTABLES
25 #include <asm/pgtable-3level.h>
26 #else
27 #include <asm/pgtable-2level.h>
28 #endif
29
30 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
31
32 /* zero page used for uninitialized stuff */
33 extern unsigned long *empty_zero_page;
34
35 #define pgtable_cache_init() do ; while (0)
36
37 /* Just any arbitrary offset to the start of the vmalloc VM area: the
38 * current 8MB value just means that there will be a 8MB "hole" after the
39 * physical memory until the kernel virtual memory starts. That means that
40 * any out-of-bounds memory accesses will hopefully be caught.
41 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
42 * area for the same reason. ;)
43 */
44
45 extern unsigned long end_iomem;
46
47 #define VMALLOC_OFFSET (__va_space)
48 #define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
49 #define PKMAP_BASE ((FIXADDR_START - LAST_PKMAP * PAGE_SIZE) & PMD_MASK)
50 #define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
51 #define MODULES_VADDR VMALLOC_START
52 #define MODULES_END VMALLOC_END
53 #define MODULES_LEN (MODULES_VADDR - MODULES_END)
54
55 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
56 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
57 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
58 #define __PAGE_KERNEL_EXEC \
59 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
60 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
61 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
62 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
63 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
64 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
65 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
66
67 /*
68 * The i386 can't do page protection for execute, and considers that the same
69 * are read.
70 * Also, write permissions imply read permissions. This is the closest we can
71 * get..
72 */
73 #define __P000 PAGE_NONE
74 #define __P001 PAGE_READONLY
75 #define __P010 PAGE_COPY
76 #define __P011 PAGE_COPY
77 #define __P100 PAGE_READONLY
78 #define __P101 PAGE_READONLY
79 #define __P110 PAGE_COPY
80 #define __P111 PAGE_COPY
81
82 #define __S000 PAGE_NONE
83 #define __S001 PAGE_READONLY
84 #define __S010 PAGE_SHARED
85 #define __S011 PAGE_SHARED
86 #define __S100 PAGE_READONLY
87 #define __S101 PAGE_READONLY
88 #define __S110 PAGE_SHARED
89 #define __S111 PAGE_SHARED
90
91 /*
92 * ZERO_PAGE is a global shared page that is always zero: used
93 * for zero-mapped memory areas etc..
94 */
95 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
96
97 #define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
98
99 #define pmd_none(x) (!((unsigned long)pmd_val(x) & ~_PAGE_NEWPAGE))
100 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
101
102 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
103 #define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
104
105 #define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
106 #define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
107
108 #define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
109 #define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
110
111 #define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
112
113 #define pte_page(x) pfn_to_page(pte_pfn(x))
114
115 #define pte_present(x) pte_get_bits(x, (_PAGE_PRESENT | _PAGE_PROTNONE))
116
117 /*
118 * =================================
119 * Flags checking section.
120 * =================================
121 */
122
pte_none(pte_t pte)123 static inline int pte_none(pte_t pte)
124 {
125 return pte_is_zero(pte);
126 }
127
128 /*
129 * The following only work if pte_present() is true.
130 * Undefined behaviour if not..
131 */
pte_read(pte_t pte)132 static inline int pte_read(pte_t pte)
133 {
134 return((pte_get_bits(pte, _PAGE_USER)) &&
135 !(pte_get_bits(pte, _PAGE_PROTNONE)));
136 }
137
pte_exec(pte_t pte)138 static inline int pte_exec(pte_t pte){
139 return((pte_get_bits(pte, _PAGE_USER)) &&
140 !(pte_get_bits(pte, _PAGE_PROTNONE)));
141 }
142
pte_write(pte_t pte)143 static inline int pte_write(pte_t pte)
144 {
145 return((pte_get_bits(pte, _PAGE_RW)) &&
146 !(pte_get_bits(pte, _PAGE_PROTNONE)));
147 }
148
pte_dirty(pte_t pte)149 static inline int pte_dirty(pte_t pte)
150 {
151 return pte_get_bits(pte, _PAGE_DIRTY);
152 }
153
pte_young(pte_t pte)154 static inline int pte_young(pte_t pte)
155 {
156 return pte_get_bits(pte, _PAGE_ACCESSED);
157 }
158
pte_newpage(pte_t pte)159 static inline int pte_newpage(pte_t pte)
160 {
161 return pte_get_bits(pte, _PAGE_NEWPAGE);
162 }
163
pte_newprot(pte_t pte)164 static inline int pte_newprot(pte_t pte)
165 {
166 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
167 }
168
pte_special(pte_t pte)169 static inline int pte_special(pte_t pte)
170 {
171 return 0;
172 }
173
174 /*
175 * =================================
176 * Flags setting section.
177 * =================================
178 */
179
pte_mknewprot(pte_t pte)180 static inline pte_t pte_mknewprot(pte_t pte)
181 {
182 pte_set_bits(pte, _PAGE_NEWPROT);
183 return(pte);
184 }
185
pte_mkclean(pte_t pte)186 static inline pte_t pte_mkclean(pte_t pte)
187 {
188 pte_clear_bits(pte, _PAGE_DIRTY);
189 return(pte);
190 }
191
pte_mkold(pte_t pte)192 static inline pte_t pte_mkold(pte_t pte)
193 {
194 pte_clear_bits(pte, _PAGE_ACCESSED);
195 return(pte);
196 }
197
pte_wrprotect(pte_t pte)198 static inline pte_t pte_wrprotect(pte_t pte)
199 {
200 if (likely(pte_get_bits(pte, _PAGE_RW)))
201 pte_clear_bits(pte, _PAGE_RW);
202 else
203 return pte;
204 return(pte_mknewprot(pte));
205 }
206
pte_mkread(pte_t pte)207 static inline pte_t pte_mkread(pte_t pte)
208 {
209 if (unlikely(pte_get_bits(pte, _PAGE_USER)))
210 return pte;
211 pte_set_bits(pte, _PAGE_USER);
212 return(pte_mknewprot(pte));
213 }
214
pte_mkdirty(pte_t pte)215 static inline pte_t pte_mkdirty(pte_t pte)
216 {
217 pte_set_bits(pte, _PAGE_DIRTY);
218 return(pte);
219 }
220
pte_mkyoung(pte_t pte)221 static inline pte_t pte_mkyoung(pte_t pte)
222 {
223 pte_set_bits(pte, _PAGE_ACCESSED);
224 return(pte);
225 }
226
pte_mkwrite(pte_t pte)227 static inline pte_t pte_mkwrite(pte_t pte)
228 {
229 if (unlikely(pte_get_bits(pte, _PAGE_RW)))
230 return pte;
231 pte_set_bits(pte, _PAGE_RW);
232 return(pte_mknewprot(pte));
233 }
234
pte_mkuptodate(pte_t pte)235 static inline pte_t pte_mkuptodate(pte_t pte)
236 {
237 pte_clear_bits(pte, _PAGE_NEWPAGE);
238 if(pte_present(pte))
239 pte_clear_bits(pte, _PAGE_NEWPROT);
240 return(pte);
241 }
242
pte_mknewpage(pte_t pte)243 static inline pte_t pte_mknewpage(pte_t pte)
244 {
245 pte_set_bits(pte, _PAGE_NEWPAGE);
246 return(pte);
247 }
248
pte_mkspecial(pte_t pte)249 static inline pte_t pte_mkspecial(pte_t pte)
250 {
251 return(pte);
252 }
253
set_pte(pte_t * pteptr,pte_t pteval)254 static inline void set_pte(pte_t *pteptr, pte_t pteval)
255 {
256 pte_copy(*pteptr, pteval);
257
258 /* If it's a swap entry, it needs to be marked _PAGE_NEWPAGE so
259 * fix_range knows to unmap it. _PAGE_NEWPROT is specific to
260 * mapped pages.
261 */
262
263 *pteptr = pte_mknewpage(*pteptr);
264 if(pte_present(*pteptr)) *pteptr = pte_mknewprot(*pteptr);
265 }
266 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
267
268 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)269 static inline int pte_same(pte_t pte_a, pte_t pte_b)
270 {
271 return !((pte_val(pte_a) ^ pte_val(pte_b)) & ~_PAGE_NEWPAGE);
272 }
273
274 /*
275 * Conversion functions: convert a page and protection to a page entry,
276 * and a page entry and page directory to the page they refer to.
277 */
278
279 #define phys_to_page(phys) pfn_to_page(phys_to_pfn(phys))
280 #define __virt_to_page(virt) phys_to_page(__pa(virt))
281 #define page_to_phys(page) pfn_to_phys((pfn_t) page_to_pfn(page))
282 #define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
283
284 #define mk_pte(page, pgprot) \
285 ({ pte_t pte; \
286 \
287 pte_set_val(pte, page_to_phys(page), (pgprot)); \
288 if (pte_present(pte)) \
289 pte_mknewprot(pte_mknewpage(pte)); \
290 pte;})
291
pte_modify(pte_t pte,pgprot_t newprot)292 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
293 {
294 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
295 return pte;
296 }
297
298 /*
299 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
300 *
301 * this macro returns the index of the entry in the pgd page which would
302 * control the given virtual address
303 */
304 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
305
306 /*
307 * pgd_offset() returns a (pgd_t *)
308 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
309 */
310 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
311
312 /*
313 * a shortcut which implies the use of the kernel's pgd, instead
314 * of a process's
315 */
316 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
317
318 /*
319 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
320 *
321 * this macro returns the index of the entry in the pmd page which would
322 * control the given virtual address
323 */
324 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
325 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
326
327 #define pmd_page_vaddr(pmd) \
328 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
329
330 /*
331 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
332 *
333 * this macro returns the index of the entry in the pte page which would
334 * control the given virtual address
335 */
336 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
337 #define pte_offset_kernel(dir, address) \
338 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
339 #define pte_offset_map(dir, address) \
340 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
341 #define pte_unmap(pte) do { } while (0)
342
343 struct mm_struct;
344 extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
345
346 #define update_mmu_cache(vma,address,ptep) do ; while (0)
347
348 /* Encode and de-code a swap entry */
349 #define __swp_type(x) (((x).val >> 5) & 0x1f)
350 #define __swp_offset(x) ((x).val >> 11)
351
352 #define __swp_entry(type, offset) \
353 ((swp_entry_t) { ((type) << 5) | ((offset) << 11) })
354 #define __pte_to_swp_entry(pte) \
355 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
356 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
357
358 #define kern_addr_valid(addr) (1)
359
360 #include <asm-generic/pgtable.h>
361
362 /* Clear a kernel PTE and flush it from the TLB */
363 #define kpte_clear_flush(ptep, vaddr) \
364 do { \
365 pte_clear(&init_mm, (vaddr), (ptep)); \
366 __flush_tlb_one((vaddr)); \
367 } while (0)
368
369 #endif
370