• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43 
44 #include "qlge.h"
45 
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48 
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53 
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |	*/
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61 /*  NETIF_MSG_TX_QUEUED | */
62 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65 
66 static int debug = -1;	/* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69 
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76 
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80 		"Option to enable MPI firmware dump. "
81 		"Default is OFF - Do Not allocate memory. ");
82 
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86 		"Option to allow force of firmware core dump. "
87 		"Default is OFF - Do not allow.");
88 
89 static const struct pci_device_id qlge_pci_tbl[] = {
90 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92 	/* required last entry */
93 	{0,}
94 };
95 
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97 
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102 
103 /* This hardware semaphore causes exclusive access to
104  * resources shared between the NIC driver, MPI firmware,
105  * FCOE firmware and the FC driver.
106  */
ql_sem_trylock(struct ql_adapter * qdev,u32 sem_mask)107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109 	u32 sem_bits = 0;
110 
111 	switch (sem_mask) {
112 	case SEM_XGMAC0_MASK:
113 		sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114 		break;
115 	case SEM_XGMAC1_MASK:
116 		sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117 		break;
118 	case SEM_ICB_MASK:
119 		sem_bits = SEM_SET << SEM_ICB_SHIFT;
120 		break;
121 	case SEM_MAC_ADDR_MASK:
122 		sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123 		break;
124 	case SEM_FLASH_MASK:
125 		sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126 		break;
127 	case SEM_PROBE_MASK:
128 		sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129 		break;
130 	case SEM_RT_IDX_MASK:
131 		sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132 		break;
133 	case SEM_PROC_REG_MASK:
134 		sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135 		break;
136 	default:
137 		netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138 		return -EINVAL;
139 	}
140 
141 	ql_write32(qdev, SEM, sem_bits | sem_mask);
142 	return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144 
ql_sem_spinlock(struct ql_adapter * qdev,u32 sem_mask)145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147 	unsigned int wait_count = 30;
148 	do {
149 		if (!ql_sem_trylock(qdev, sem_mask))
150 			return 0;
151 		udelay(100);
152 	} while (--wait_count);
153 	return -ETIMEDOUT;
154 }
155 
ql_sem_unlock(struct ql_adapter * qdev,u32 sem_mask)156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158 	ql_write32(qdev, SEM, sem_mask);
159 	ql_read32(qdev, SEM);	/* flush */
160 }
161 
162 /* This function waits for a specific bit to come ready
163  * in a given register.  It is used mostly by the initialize
164  * process, but is also used in kernel thread API such as
165  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166  */
ql_wait_reg_rdy(struct ql_adapter * qdev,u32 reg,u32 bit,u32 err_bit)167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169 	u32 temp;
170 	int count = UDELAY_COUNT;
171 
172 	while (count) {
173 		temp = ql_read32(qdev, reg);
174 
175 		/* check for errors */
176 		if (temp & err_bit) {
177 			netif_alert(qdev, probe, qdev->ndev,
178 				    "register 0x%.08x access error, value = 0x%.08x!.\n",
179 				    reg, temp);
180 			return -EIO;
181 		} else if (temp & bit)
182 			return 0;
183 		udelay(UDELAY_DELAY);
184 		count--;
185 	}
186 	netif_alert(qdev, probe, qdev->ndev,
187 		    "Timed out waiting for reg %x to come ready.\n", reg);
188 	return -ETIMEDOUT;
189 }
190 
191 /* The CFG register is used to download TX and RX control blocks
192  * to the chip. This function waits for an operation to complete.
193  */
ql_wait_cfg(struct ql_adapter * qdev,u32 bit)194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196 	int count = UDELAY_COUNT;
197 	u32 temp;
198 
199 	while (count) {
200 		temp = ql_read32(qdev, CFG);
201 		if (temp & CFG_LE)
202 			return -EIO;
203 		if (!(temp & bit))
204 			return 0;
205 		udelay(UDELAY_DELAY);
206 		count--;
207 	}
208 	return -ETIMEDOUT;
209 }
210 
211 
212 /* Used to issue init control blocks to hw. Maps control block,
213  * sets address, triggers download, waits for completion.
214  */
ql_write_cfg(struct ql_adapter * qdev,void * ptr,int size,u32 bit,u16 q_id)215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216 		 u16 q_id)
217 {
218 	u64 map;
219 	int status = 0;
220 	int direction;
221 	u32 mask;
222 	u32 value;
223 
224 	direction =
225 	    (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226 	    PCI_DMA_FROMDEVICE;
227 
228 	map = pci_map_single(qdev->pdev, ptr, size, direction);
229 	if (pci_dma_mapping_error(qdev->pdev, map)) {
230 		netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231 		return -ENOMEM;
232 	}
233 
234 	status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235 	if (status)
236 		return status;
237 
238 	status = ql_wait_cfg(qdev, bit);
239 	if (status) {
240 		netif_err(qdev, ifup, qdev->ndev,
241 			  "Timed out waiting for CFG to come ready.\n");
242 		goto exit;
243 	}
244 
245 	ql_write32(qdev, ICB_L, (u32) map);
246 	ql_write32(qdev, ICB_H, (u32) (map >> 32));
247 
248 	mask = CFG_Q_MASK | (bit << 16);
249 	value = bit | (q_id << CFG_Q_SHIFT);
250 	ql_write32(qdev, CFG, (mask | value));
251 
252 	/*
253 	 * Wait for the bit to clear after signaling hw.
254 	 */
255 	status = ql_wait_cfg(qdev, bit);
256 exit:
257 	ql_sem_unlock(qdev, SEM_ICB_MASK);	/* does flush too */
258 	pci_unmap_single(qdev->pdev, map, size, direction);
259 	return status;
260 }
261 
262 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
ql_get_mac_addr_reg(struct ql_adapter * qdev,u32 type,u16 index,u32 * value)263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264 			u32 *value)
265 {
266 	u32 offset = 0;
267 	int status;
268 
269 	switch (type) {
270 	case MAC_ADDR_TYPE_MULTI_MAC:
271 	case MAC_ADDR_TYPE_CAM_MAC:
272 		{
273 			status =
274 			    ql_wait_reg_rdy(qdev,
275 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276 			if (status)
277 				goto exit;
278 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
280 				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281 			status =
282 			    ql_wait_reg_rdy(qdev,
283 				MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284 			if (status)
285 				goto exit;
286 			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
287 			status =
288 			    ql_wait_reg_rdy(qdev,
289 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290 			if (status)
291 				goto exit;
292 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 				   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 			status =
296 			    ql_wait_reg_rdy(qdev,
297 				MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298 			if (status)
299 				goto exit;
300 			*value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 			if (type == MAC_ADDR_TYPE_CAM_MAC) {
302 				status =
303 				    ql_wait_reg_rdy(qdev,
304 					MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305 				if (status)
306 					goto exit;
307 				ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308 					   (index << MAC_ADDR_IDX_SHIFT) | /* index */
309 					   MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310 				status =
311 				    ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312 						    MAC_ADDR_MR, 0);
313 				if (status)
314 					goto exit;
315 				*value++ = ql_read32(qdev, MAC_ADDR_DATA);
316 			}
317 			break;
318 		}
319 	case MAC_ADDR_TYPE_VLAN:
320 	case MAC_ADDR_TYPE_MULTI_FLTR:
321 	default:
322 		netif_crit(qdev, ifup, qdev->ndev,
323 			   "Address type %d not yet supported.\n", type);
324 		status = -EPERM;
325 	}
326 exit:
327 	return status;
328 }
329 
330 /* Set up a MAC, multicast or VLAN address for the
331  * inbound frame matching.
332  */
ql_set_mac_addr_reg(struct ql_adapter * qdev,u8 * addr,u32 type,u16 index)333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334 			       u16 index)
335 {
336 	u32 offset = 0;
337 	int status = 0;
338 
339 	switch (type) {
340 	case MAC_ADDR_TYPE_MULTI_MAC:
341 		{
342 			u32 upper = (addr[0] << 8) | addr[1];
343 			u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344 					(addr[4] << 8) | (addr[5]);
345 
346 			status =
347 				ql_wait_reg_rdy(qdev,
348 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349 			if (status)
350 				goto exit;
351 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352 				(index << MAC_ADDR_IDX_SHIFT) |
353 				type | MAC_ADDR_E);
354 			ql_write32(qdev, MAC_ADDR_DATA, lower);
355 			status =
356 				ql_wait_reg_rdy(qdev,
357 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358 			if (status)
359 				goto exit;
360 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361 				(index << MAC_ADDR_IDX_SHIFT) |
362 				type | MAC_ADDR_E);
363 
364 			ql_write32(qdev, MAC_ADDR_DATA, upper);
365 			status =
366 				ql_wait_reg_rdy(qdev,
367 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368 			if (status)
369 				goto exit;
370 			break;
371 		}
372 	case MAC_ADDR_TYPE_CAM_MAC:
373 		{
374 			u32 cam_output;
375 			u32 upper = (addr[0] << 8) | addr[1];
376 			u32 lower =
377 			    (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378 			    (addr[5]);
379 			status =
380 			    ql_wait_reg_rdy(qdev,
381 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382 			if (status)
383 				goto exit;
384 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
386 				   type);	/* type */
387 			ql_write32(qdev, MAC_ADDR_DATA, lower);
388 			status =
389 			    ql_wait_reg_rdy(qdev,
390 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391 			if (status)
392 				goto exit;
393 			ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394 				   (index << MAC_ADDR_IDX_SHIFT) | /* index */
395 				   type);	/* type */
396 			ql_write32(qdev, MAC_ADDR_DATA, upper);
397 			status =
398 			    ql_wait_reg_rdy(qdev,
399 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400 			if (status)
401 				goto exit;
402 			ql_write32(qdev, MAC_ADDR_IDX, (offset) |	/* offset */
403 				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
404 				   type);	/* type */
405 			/* This field should also include the queue id
406 			   and possibly the function id.  Right now we hardcode
407 			   the route field to NIC core.
408 			 */
409 			cam_output = (CAM_OUT_ROUTE_NIC |
410 				      (qdev->
411 				       func << CAM_OUT_FUNC_SHIFT) |
412 					(0 << CAM_OUT_CQ_ID_SHIFT));
413 			if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 				cam_output |= CAM_OUT_RV;
415 			/* route to NIC core */
416 			ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417 			break;
418 		}
419 	case MAC_ADDR_TYPE_VLAN:
420 		{
421 			u32 enable_bit = *((u32 *) &addr[0]);
422 			/* For VLAN, the addr actually holds a bit that
423 			 * either enables or disables the vlan id we are
424 			 * addressing. It's either MAC_ADDR_E on or off.
425 			 * That's bit-27 we're talking about.
426 			 */
427 			status =
428 			    ql_wait_reg_rdy(qdev,
429 				MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430 			if (status)
431 				goto exit;
432 			ql_write32(qdev, MAC_ADDR_IDX, offset |	/* offset */
433 				   (index << MAC_ADDR_IDX_SHIFT) |	/* index */
434 				   type |	/* type */
435 				   enable_bit);	/* enable/disable */
436 			break;
437 		}
438 	case MAC_ADDR_TYPE_MULTI_FLTR:
439 	default:
440 		netif_crit(qdev, ifup, qdev->ndev,
441 			   "Address type %d not yet supported.\n", type);
442 		status = -EPERM;
443 	}
444 exit:
445 	return status;
446 }
447 
448 /* Set or clear MAC address in hardware. We sometimes
449  * have to clear it to prevent wrong frame routing
450  * especially in a bonding environment.
451  */
ql_set_mac_addr(struct ql_adapter * qdev,int set)452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454 	int status;
455 	char zero_mac_addr[ETH_ALEN];
456 	char *addr;
457 
458 	if (set) {
459 		addr = &qdev->current_mac_addr[0];
460 		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461 			     "Set Mac addr %pM\n", addr);
462 	} else {
463 		eth_zero_addr(zero_mac_addr);
464 		addr = &zero_mac_addr[0];
465 		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466 			     "Clearing MAC address\n");
467 	}
468 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469 	if (status)
470 		return status;
471 	status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472 			MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474 	if (status)
475 		netif_err(qdev, ifup, qdev->ndev,
476 			  "Failed to init mac address.\n");
477 	return status;
478 }
479 
ql_link_on(struct ql_adapter * qdev)480 void ql_link_on(struct ql_adapter *qdev)
481 {
482 	netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483 	netif_carrier_on(qdev->ndev);
484 	ql_set_mac_addr(qdev, 1);
485 }
486 
ql_link_off(struct ql_adapter * qdev)487 void ql_link_off(struct ql_adapter *qdev)
488 {
489 	netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490 	netif_carrier_off(qdev->ndev);
491 	ql_set_mac_addr(qdev, 0);
492 }
493 
494 /* Get a specific frame routing value from the CAM.
495  * Used for debug and reg dump.
496  */
ql_get_routing_reg(struct ql_adapter * qdev,u32 index,u32 * value)497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499 	int status = 0;
500 
501 	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502 	if (status)
503 		goto exit;
504 
505 	ql_write32(qdev, RT_IDX,
506 		   RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507 	status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508 	if (status)
509 		goto exit;
510 	*value = ql_read32(qdev, RT_DATA);
511 exit:
512 	return status;
513 }
514 
515 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
516  * to route different frame types to various inbound queues.  We send broadcast/
517  * multicast/error frames to the default queue for slow handling,
518  * and CAM hit/RSS frames to the fast handling queues.
519  */
ql_set_routing_reg(struct ql_adapter * qdev,u32 index,u32 mask,int enable)520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521 			      int enable)
522 {
523 	int status = -EINVAL; /* Return error if no mask match. */
524 	u32 value = 0;
525 
526 	switch (mask) {
527 	case RT_IDX_CAM_HIT:
528 		{
529 			value = RT_IDX_DST_CAM_Q |	/* dest */
530 			    RT_IDX_TYPE_NICQ |	/* type */
531 			    (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 			break;
533 		}
534 	case RT_IDX_VALID:	/* Promiscuous Mode frames. */
535 		{
536 			value = RT_IDX_DST_DFLT_Q |	/* dest */
537 			    RT_IDX_TYPE_NICQ |	/* type */
538 			    (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 			break;
540 		}
541 	case RT_IDX_ERR:	/* Pass up MAC,IP,TCP/UDP error frames. */
542 		{
543 			value = RT_IDX_DST_DFLT_Q |	/* dest */
544 			    RT_IDX_TYPE_NICQ |	/* type */
545 			    (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 			break;
547 		}
548 	case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549 		{
550 			value = RT_IDX_DST_DFLT_Q | /* dest */
551 				RT_IDX_TYPE_NICQ | /* type */
552 				(RT_IDX_IP_CSUM_ERR_SLOT <<
553 				RT_IDX_IDX_SHIFT); /* index */
554 			break;
555 		}
556 	case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557 		{
558 			value = RT_IDX_DST_DFLT_Q | /* dest */
559 				RT_IDX_TYPE_NICQ | /* type */
560 				(RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561 				RT_IDX_IDX_SHIFT); /* index */
562 			break;
563 		}
564 	case RT_IDX_BCAST:	/* Pass up Broadcast frames to default Q. */
565 		{
566 			value = RT_IDX_DST_DFLT_Q |	/* dest */
567 			    RT_IDX_TYPE_NICQ |	/* type */
568 			    (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569 			break;
570 		}
571 	case RT_IDX_MCAST:	/* Pass up All Multicast frames. */
572 		{
573 			value = RT_IDX_DST_DFLT_Q |	/* dest */
574 			    RT_IDX_TYPE_NICQ |	/* type */
575 			    (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576 			break;
577 		}
578 	case RT_IDX_MCAST_MATCH:	/* Pass up matched Multicast frames. */
579 		{
580 			value = RT_IDX_DST_DFLT_Q |	/* dest */
581 			    RT_IDX_TYPE_NICQ |	/* type */
582 			    (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583 			break;
584 		}
585 	case RT_IDX_RSS_MATCH:	/* Pass up matched RSS frames. */
586 		{
587 			value = RT_IDX_DST_RSS |	/* dest */
588 			    RT_IDX_TYPE_NICQ |	/* type */
589 			    (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590 			break;
591 		}
592 	case 0:		/* Clear the E-bit on an entry. */
593 		{
594 			value = RT_IDX_DST_DFLT_Q |	/* dest */
595 			    RT_IDX_TYPE_NICQ |	/* type */
596 			    (index << RT_IDX_IDX_SHIFT);/* index */
597 			break;
598 		}
599 	default:
600 		netif_err(qdev, ifup, qdev->ndev,
601 			  "Mask type %d not yet supported.\n", mask);
602 		status = -EPERM;
603 		goto exit;
604 	}
605 
606 	if (value) {
607 		status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608 		if (status)
609 			goto exit;
610 		value |= (enable ? RT_IDX_E : 0);
611 		ql_write32(qdev, RT_IDX, value);
612 		ql_write32(qdev, RT_DATA, enable ? mask : 0);
613 	}
614 exit:
615 	return status;
616 }
617 
ql_enable_interrupts(struct ql_adapter * qdev)618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620 	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622 
ql_disable_interrupts(struct ql_adapter * qdev)623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625 	ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627 
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629  * Otherwise, we may have multiple outstanding workers and don't want to
630  * enable until the last one finishes. In this case, the irq_cnt gets
631  * incremented every time we queue a worker and decremented every time
632  * a worker finishes.  Once it hits zero we enable the interrupt.
633  */
ql_enable_completion_interrupt(struct ql_adapter * qdev,u32 intr)634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636 	u32 var = 0;
637 	unsigned long hw_flags = 0;
638 	struct intr_context *ctx = qdev->intr_context + intr;
639 
640 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641 		/* Always enable if we're MSIX multi interrupts and
642 		 * it's not the default (zeroeth) interrupt.
643 		 */
644 		ql_write32(qdev, INTR_EN,
645 			   ctx->intr_en_mask);
646 		var = ql_read32(qdev, STS);
647 		return var;
648 	}
649 
650 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651 	if (atomic_dec_and_test(&ctx->irq_cnt)) {
652 		ql_write32(qdev, INTR_EN,
653 			   ctx->intr_en_mask);
654 		var = ql_read32(qdev, STS);
655 	}
656 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657 	return var;
658 }
659 
ql_disable_completion_interrupt(struct ql_adapter * qdev,u32 intr)660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662 	u32 var = 0;
663 	struct intr_context *ctx;
664 
665 	/* HW disables for us if we're MSIX multi interrupts and
666 	 * it's not the default (zeroeth) interrupt.
667 	 */
668 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669 		return 0;
670 
671 	ctx = qdev->intr_context + intr;
672 	spin_lock(&qdev->hw_lock);
673 	if (!atomic_read(&ctx->irq_cnt)) {
674 		ql_write32(qdev, INTR_EN,
675 		ctx->intr_dis_mask);
676 		var = ql_read32(qdev, STS);
677 	}
678 	atomic_inc(&ctx->irq_cnt);
679 	spin_unlock(&qdev->hw_lock);
680 	return var;
681 }
682 
ql_enable_all_completion_interrupts(struct ql_adapter * qdev)683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685 	int i;
686 	for (i = 0; i < qdev->intr_count; i++) {
687 		/* The enable call does a atomic_dec_and_test
688 		 * and enables only if the result is zero.
689 		 * So we precharge it here.
690 		 */
691 		if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692 			i == 0))
693 			atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694 		ql_enable_completion_interrupt(qdev, i);
695 	}
696 
697 }
698 
ql_validate_flash(struct ql_adapter * qdev,u32 size,const char * str)699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701 	int status, i;
702 	u16 csum = 0;
703 	__le16 *flash = (__le16 *)&qdev->flash;
704 
705 	status = strncmp((char *)&qdev->flash, str, 4);
706 	if (status) {
707 		netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708 		return	status;
709 	}
710 
711 	for (i = 0; i < size; i++)
712 		csum += le16_to_cpu(*flash++);
713 
714 	if (csum)
715 		netif_err(qdev, ifup, qdev->ndev,
716 			  "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717 
718 	return csum;
719 }
720 
ql_read_flash_word(struct ql_adapter * qdev,int offset,__le32 * data)721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723 	int status = 0;
724 	/* wait for reg to come ready */
725 	status = ql_wait_reg_rdy(qdev,
726 			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727 	if (status)
728 		goto exit;
729 	/* set up for reg read */
730 	ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731 	/* wait for reg to come ready */
732 	status = ql_wait_reg_rdy(qdev,
733 			FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734 	if (status)
735 		goto exit;
736 	 /* This data is stored on flash as an array of
737 	 * __le32.  Since ql_read32() returns cpu endian
738 	 * we need to swap it back.
739 	 */
740 	*data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742 	return status;
743 }
744 
ql_get_8000_flash_params(struct ql_adapter * qdev)745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747 	u32 i, size;
748 	int status;
749 	__le32 *p = (__le32 *)&qdev->flash;
750 	u32 offset;
751 	u8 mac_addr[6];
752 
753 	/* Get flash offset for function and adjust
754 	 * for dword access.
755 	 */
756 	if (!qdev->port)
757 		offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758 	else
759 		offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760 
761 	if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762 		return -ETIMEDOUT;
763 
764 	size = sizeof(struct flash_params_8000) / sizeof(u32);
765 	for (i = 0; i < size; i++, p++) {
766 		status = ql_read_flash_word(qdev, i+offset, p);
767 		if (status) {
768 			netif_err(qdev, ifup, qdev->ndev,
769 				  "Error reading flash.\n");
770 			goto exit;
771 		}
772 	}
773 
774 	status = ql_validate_flash(qdev,
775 			sizeof(struct flash_params_8000) / sizeof(u16),
776 			"8000");
777 	if (status) {
778 		netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779 		status = -EINVAL;
780 		goto exit;
781 	}
782 
783 	/* Extract either manufacturer or BOFM modified
784 	 * MAC address.
785 	 */
786 	if (qdev->flash.flash_params_8000.data_type1 == 2)
787 		memcpy(mac_addr,
788 			qdev->flash.flash_params_8000.mac_addr1,
789 			qdev->ndev->addr_len);
790 	else
791 		memcpy(mac_addr,
792 			qdev->flash.flash_params_8000.mac_addr,
793 			qdev->ndev->addr_len);
794 
795 	if (!is_valid_ether_addr(mac_addr)) {
796 		netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797 		status = -EINVAL;
798 		goto exit;
799 	}
800 
801 	memcpy(qdev->ndev->dev_addr,
802 		mac_addr,
803 		qdev->ndev->addr_len);
804 
805 exit:
806 	ql_sem_unlock(qdev, SEM_FLASH_MASK);
807 	return status;
808 }
809 
ql_get_8012_flash_params(struct ql_adapter * qdev)810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812 	int i;
813 	int status;
814 	__le32 *p = (__le32 *)&qdev->flash;
815 	u32 offset = 0;
816 	u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817 
818 	/* Second function's parameters follow the first
819 	 * function's.
820 	 */
821 	if (qdev->port)
822 		offset = size;
823 
824 	if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825 		return -ETIMEDOUT;
826 
827 	for (i = 0; i < size; i++, p++) {
828 		status = ql_read_flash_word(qdev, i+offset, p);
829 		if (status) {
830 			netif_err(qdev, ifup, qdev->ndev,
831 				  "Error reading flash.\n");
832 			goto exit;
833 		}
834 
835 	}
836 
837 	status = ql_validate_flash(qdev,
838 			sizeof(struct flash_params_8012) / sizeof(u16),
839 			"8012");
840 	if (status) {
841 		netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842 		status = -EINVAL;
843 		goto exit;
844 	}
845 
846 	if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847 		status = -EINVAL;
848 		goto exit;
849 	}
850 
851 	memcpy(qdev->ndev->dev_addr,
852 		qdev->flash.flash_params_8012.mac_addr,
853 		qdev->ndev->addr_len);
854 
855 exit:
856 	ql_sem_unlock(qdev, SEM_FLASH_MASK);
857 	return status;
858 }
859 
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861  * register pair.  Each read/write requires us to wait for the ready
862  * bit before reading/writing the data.
863  */
ql_write_xgmac_reg(struct ql_adapter * qdev,u32 reg,u32 data)864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866 	int status;
867 	/* wait for reg to come ready */
868 	status = ql_wait_reg_rdy(qdev,
869 			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870 	if (status)
871 		return status;
872 	/* write the data to the data reg */
873 	ql_write32(qdev, XGMAC_DATA, data);
874 	/* trigger the write */
875 	ql_write32(qdev, XGMAC_ADDR, reg);
876 	return status;
877 }
878 
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880  * register pair.  Each read/write requires us to wait for the ready
881  * bit before reading/writing the data.
882  */
ql_read_xgmac_reg(struct ql_adapter * qdev,u32 reg,u32 * data)883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885 	int status = 0;
886 	/* wait for reg to come ready */
887 	status = ql_wait_reg_rdy(qdev,
888 			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889 	if (status)
890 		goto exit;
891 	/* set up for reg read */
892 	ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893 	/* wait for reg to come ready */
894 	status = ql_wait_reg_rdy(qdev,
895 			XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896 	if (status)
897 		goto exit;
898 	/* get the data */
899 	*data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901 	return status;
902 }
903 
904 /* This is used for reading the 64-bit statistics regs. */
ql_read_xgmac_reg64(struct ql_adapter * qdev,u32 reg,u64 * data)905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907 	int status = 0;
908 	u32 hi = 0;
909 	u32 lo = 0;
910 
911 	status = ql_read_xgmac_reg(qdev, reg, &lo);
912 	if (status)
913 		goto exit;
914 
915 	status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916 	if (status)
917 		goto exit;
918 
919 	*data = (u64) lo | ((u64) hi << 32);
920 
921 exit:
922 	return status;
923 }
924 
ql_8000_port_initialize(struct ql_adapter * qdev)925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927 	int status;
928 	/*
929 	 * Get MPI firmware version for driver banner
930 	 * and ethool info.
931 	 */
932 	status = ql_mb_about_fw(qdev);
933 	if (status)
934 		goto exit;
935 	status = ql_mb_get_fw_state(qdev);
936 	if (status)
937 		goto exit;
938 	/* Wake up a worker to get/set the TX/RX frame sizes. */
939 	queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941 	return status;
942 }
943 
944 /* Take the MAC Core out of reset.
945  * Enable statistics counting.
946  * Take the transmitter/receiver out of reset.
947  * This functionality may be done in the MPI firmware at a
948  * later date.
949  */
ql_8012_port_initialize(struct ql_adapter * qdev)950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952 	int status = 0;
953 	u32 data;
954 
955 	if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956 		/* Another function has the semaphore, so
957 		 * wait for the port init bit to come ready.
958 		 */
959 		netif_info(qdev, link, qdev->ndev,
960 			   "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961 		status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962 		if (status) {
963 			netif_crit(qdev, link, qdev->ndev,
964 				   "Port initialize timed out.\n");
965 		}
966 		return status;
967 	}
968 
969 	netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970 	/* Set the core reset. */
971 	status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972 	if (status)
973 		goto end;
974 	data |= GLOBAL_CFG_RESET;
975 	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976 	if (status)
977 		goto end;
978 
979 	/* Clear the core reset and turn on jumbo for receiver. */
980 	data &= ~GLOBAL_CFG_RESET;	/* Clear core reset. */
981 	data |= GLOBAL_CFG_JUMBO;	/* Turn on jumbo. */
982 	data |= GLOBAL_CFG_TX_STAT_EN;
983 	data |= GLOBAL_CFG_RX_STAT_EN;
984 	status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985 	if (status)
986 		goto end;
987 
988 	/* Enable transmitter, and clear it's reset. */
989 	status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990 	if (status)
991 		goto end;
992 	data &= ~TX_CFG_RESET;	/* Clear the TX MAC reset. */
993 	data |= TX_CFG_EN;	/* Enable the transmitter. */
994 	status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995 	if (status)
996 		goto end;
997 
998 	/* Enable receiver and clear it's reset. */
999 	status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000 	if (status)
1001 		goto end;
1002 	data &= ~RX_CFG_RESET;	/* Clear the RX MAC reset. */
1003 	data |= RX_CFG_EN;	/* Enable the receiver. */
1004 	status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005 	if (status)
1006 		goto end;
1007 
1008 	/* Turn on jumbo. */
1009 	status =
1010 	    ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011 	if (status)
1012 		goto end;
1013 	status =
1014 	    ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015 	if (status)
1016 		goto end;
1017 
1018 	/* Signal to the world that the port is enabled.        */
1019 	ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021 	ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022 	return status;
1023 }
1024 
ql_lbq_block_size(struct ql_adapter * qdev)1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027 	return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029 
1030 /* Get the next large buffer. */
ql_get_curr_lbuf(struct rx_ring * rx_ring)1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033 	struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034 	rx_ring->lbq_curr_idx++;
1035 	if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036 		rx_ring->lbq_curr_idx = 0;
1037 	rx_ring->lbq_free_cnt++;
1038 	return lbq_desc;
1039 }
1040 
ql_get_curr_lchunk(struct ql_adapter * qdev,struct rx_ring * rx_ring)1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042 		struct rx_ring *rx_ring)
1043 {
1044 	struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045 
1046 	pci_dma_sync_single_for_cpu(qdev->pdev,
1047 					dma_unmap_addr(lbq_desc, mapaddr),
1048 				    rx_ring->lbq_buf_size,
1049 					PCI_DMA_FROMDEVICE);
1050 
1051 	/* If it's the last chunk of our master page then
1052 	 * we unmap it.
1053 	 */
1054 	if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055 					== ql_lbq_block_size(qdev))
1056 		pci_unmap_page(qdev->pdev,
1057 				lbq_desc->p.pg_chunk.map,
1058 				ql_lbq_block_size(qdev),
1059 				PCI_DMA_FROMDEVICE);
1060 	return lbq_desc;
1061 }
1062 
1063 /* Get the next small buffer. */
ql_get_curr_sbuf(struct rx_ring * rx_ring)1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066 	struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067 	rx_ring->sbq_curr_idx++;
1068 	if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069 		rx_ring->sbq_curr_idx = 0;
1070 	rx_ring->sbq_free_cnt++;
1071 	return sbq_desc;
1072 }
1073 
1074 /* Update an rx ring index. */
ql_update_cq(struct rx_ring * rx_ring)1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077 	rx_ring->cnsmr_idx++;
1078 	rx_ring->curr_entry++;
1079 	if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080 		rx_ring->cnsmr_idx = 0;
1081 		rx_ring->curr_entry = rx_ring->cq_base;
1082 	}
1083 }
1084 
ql_write_cq_idx(struct rx_ring * rx_ring)1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087 	ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089 
ql_get_next_chunk(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct bq_desc * lbq_desc)1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091 						struct bq_desc *lbq_desc)
1092 {
1093 	if (!rx_ring->pg_chunk.page) {
1094 		u64 map;
1095 		rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
1096 						GFP_ATOMIC,
1097 						qdev->lbq_buf_order);
1098 		if (unlikely(!rx_ring->pg_chunk.page)) {
1099 			netif_err(qdev, drv, qdev->ndev,
1100 				  "page allocation failed.\n");
1101 			return -ENOMEM;
1102 		}
1103 		rx_ring->pg_chunk.offset = 0;
1104 		map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1105 					0, ql_lbq_block_size(qdev),
1106 					PCI_DMA_FROMDEVICE);
1107 		if (pci_dma_mapping_error(qdev->pdev, map)) {
1108 			__free_pages(rx_ring->pg_chunk.page,
1109 					qdev->lbq_buf_order);
1110 			rx_ring->pg_chunk.page = NULL;
1111 			netif_err(qdev, drv, qdev->ndev,
1112 				  "PCI mapping failed.\n");
1113 			return -ENOMEM;
1114 		}
1115 		rx_ring->pg_chunk.map = map;
1116 		rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1117 	}
1118 
1119 	/* Copy the current master pg_chunk info
1120 	 * to the current descriptor.
1121 	 */
1122 	lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1123 
1124 	/* Adjust the master page chunk for next
1125 	 * buffer get.
1126 	 */
1127 	rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1128 	if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1129 		rx_ring->pg_chunk.page = NULL;
1130 		lbq_desc->p.pg_chunk.last_flag = 1;
1131 	} else {
1132 		rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1133 		get_page(rx_ring->pg_chunk.page);
1134 		lbq_desc->p.pg_chunk.last_flag = 0;
1135 	}
1136 	return 0;
1137 }
1138 /* Process (refill) a large buffer queue. */
ql_update_lbq(struct ql_adapter * qdev,struct rx_ring * rx_ring)1139 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1140 {
1141 	u32 clean_idx = rx_ring->lbq_clean_idx;
1142 	u32 start_idx = clean_idx;
1143 	struct bq_desc *lbq_desc;
1144 	u64 map;
1145 	int i;
1146 
1147 	while (rx_ring->lbq_free_cnt > 32) {
1148 		for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1149 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1150 				     "lbq: try cleaning clean_idx = %d.\n",
1151 				     clean_idx);
1152 			lbq_desc = &rx_ring->lbq[clean_idx];
1153 			if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1154 				rx_ring->lbq_clean_idx = clean_idx;
1155 				netif_err(qdev, ifup, qdev->ndev,
1156 						"Could not get a page chunk, i=%d, clean_idx =%d .\n",
1157 						i, clean_idx);
1158 				return;
1159 			}
1160 
1161 			map = lbq_desc->p.pg_chunk.map +
1162 				lbq_desc->p.pg_chunk.offset;
1163 				dma_unmap_addr_set(lbq_desc, mapaddr, map);
1164 			dma_unmap_len_set(lbq_desc, maplen,
1165 					rx_ring->lbq_buf_size);
1166 				*lbq_desc->addr = cpu_to_le64(map);
1167 
1168 			pci_dma_sync_single_for_device(qdev->pdev, map,
1169 						rx_ring->lbq_buf_size,
1170 						PCI_DMA_FROMDEVICE);
1171 			clean_idx++;
1172 			if (clean_idx == rx_ring->lbq_len)
1173 				clean_idx = 0;
1174 		}
1175 
1176 		rx_ring->lbq_clean_idx = clean_idx;
1177 		rx_ring->lbq_prod_idx += 16;
1178 		if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1179 			rx_ring->lbq_prod_idx = 0;
1180 		rx_ring->lbq_free_cnt -= 16;
1181 	}
1182 
1183 	if (start_idx != clean_idx) {
1184 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1185 			     "lbq: updating prod idx = %d.\n",
1186 			     rx_ring->lbq_prod_idx);
1187 		ql_write_db_reg(rx_ring->lbq_prod_idx,
1188 				rx_ring->lbq_prod_idx_db_reg);
1189 	}
1190 }
1191 
1192 /* Process (refill) a small buffer queue. */
ql_update_sbq(struct ql_adapter * qdev,struct rx_ring * rx_ring)1193 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1194 {
1195 	u32 clean_idx = rx_ring->sbq_clean_idx;
1196 	u32 start_idx = clean_idx;
1197 	struct bq_desc *sbq_desc;
1198 	u64 map;
1199 	int i;
1200 
1201 	while (rx_ring->sbq_free_cnt > 16) {
1202 		for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1203 			sbq_desc = &rx_ring->sbq[clean_idx];
1204 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1205 				     "sbq: try cleaning clean_idx = %d.\n",
1206 				     clean_idx);
1207 			if (sbq_desc->p.skb == NULL) {
1208 				netif_printk(qdev, rx_status, KERN_DEBUG,
1209 					     qdev->ndev,
1210 					     "sbq: getting new skb for index %d.\n",
1211 					     sbq_desc->index);
1212 				sbq_desc->p.skb =
1213 				    netdev_alloc_skb(qdev->ndev,
1214 						     SMALL_BUFFER_SIZE);
1215 				if (sbq_desc->p.skb == NULL) {
1216 					rx_ring->sbq_clean_idx = clean_idx;
1217 					return;
1218 				}
1219 				skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1220 				map = pci_map_single(qdev->pdev,
1221 						     sbq_desc->p.skb->data,
1222 						     rx_ring->sbq_buf_size,
1223 						     PCI_DMA_FROMDEVICE);
1224 				if (pci_dma_mapping_error(qdev->pdev, map)) {
1225 					netif_err(qdev, ifup, qdev->ndev,
1226 						  "PCI mapping failed.\n");
1227 					rx_ring->sbq_clean_idx = clean_idx;
1228 					dev_kfree_skb_any(sbq_desc->p.skb);
1229 					sbq_desc->p.skb = NULL;
1230 					return;
1231 				}
1232 				dma_unmap_addr_set(sbq_desc, mapaddr, map);
1233 				dma_unmap_len_set(sbq_desc, maplen,
1234 						  rx_ring->sbq_buf_size);
1235 				*sbq_desc->addr = cpu_to_le64(map);
1236 			}
1237 
1238 			clean_idx++;
1239 			if (clean_idx == rx_ring->sbq_len)
1240 				clean_idx = 0;
1241 		}
1242 		rx_ring->sbq_clean_idx = clean_idx;
1243 		rx_ring->sbq_prod_idx += 16;
1244 		if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1245 			rx_ring->sbq_prod_idx = 0;
1246 		rx_ring->sbq_free_cnt -= 16;
1247 	}
1248 
1249 	if (start_idx != clean_idx) {
1250 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1251 			     "sbq: updating prod idx = %d.\n",
1252 			     rx_ring->sbq_prod_idx);
1253 		ql_write_db_reg(rx_ring->sbq_prod_idx,
1254 				rx_ring->sbq_prod_idx_db_reg);
1255 	}
1256 }
1257 
ql_update_buffer_queues(struct ql_adapter * qdev,struct rx_ring * rx_ring)1258 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1259 				    struct rx_ring *rx_ring)
1260 {
1261 	ql_update_sbq(qdev, rx_ring);
1262 	ql_update_lbq(qdev, rx_ring);
1263 }
1264 
1265 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1266  * fails at some stage, or from the interrupt when a tx completes.
1267  */
ql_unmap_send(struct ql_adapter * qdev,struct tx_ring_desc * tx_ring_desc,int mapped)1268 static void ql_unmap_send(struct ql_adapter *qdev,
1269 			  struct tx_ring_desc *tx_ring_desc, int mapped)
1270 {
1271 	int i;
1272 	for (i = 0; i < mapped; i++) {
1273 		if (i == 0 || (i == 7 && mapped > 7)) {
1274 			/*
1275 			 * Unmap the skb->data area, or the
1276 			 * external sglist (AKA the Outbound
1277 			 * Address List (OAL)).
1278 			 * If its the zeroeth element, then it's
1279 			 * the skb->data area.  If it's the 7th
1280 			 * element and there is more than 6 frags,
1281 			 * then its an OAL.
1282 			 */
1283 			if (i == 7) {
1284 				netif_printk(qdev, tx_done, KERN_DEBUG,
1285 					     qdev->ndev,
1286 					     "unmapping OAL area.\n");
1287 			}
1288 			pci_unmap_single(qdev->pdev,
1289 					 dma_unmap_addr(&tx_ring_desc->map[i],
1290 							mapaddr),
1291 					 dma_unmap_len(&tx_ring_desc->map[i],
1292 						       maplen),
1293 					 PCI_DMA_TODEVICE);
1294 		} else {
1295 			netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1296 				     "unmapping frag %d.\n", i);
1297 			pci_unmap_page(qdev->pdev,
1298 				       dma_unmap_addr(&tx_ring_desc->map[i],
1299 						      mapaddr),
1300 				       dma_unmap_len(&tx_ring_desc->map[i],
1301 						     maplen), PCI_DMA_TODEVICE);
1302 		}
1303 	}
1304 
1305 }
1306 
1307 /* Map the buffers for this transmit.  This will return
1308  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1309  */
ql_map_send(struct ql_adapter * qdev,struct ob_mac_iocb_req * mac_iocb_ptr,struct sk_buff * skb,struct tx_ring_desc * tx_ring_desc)1310 static int ql_map_send(struct ql_adapter *qdev,
1311 		       struct ob_mac_iocb_req *mac_iocb_ptr,
1312 		       struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1313 {
1314 	int len = skb_headlen(skb);
1315 	dma_addr_t map;
1316 	int frag_idx, err, map_idx = 0;
1317 	struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1318 	int frag_cnt = skb_shinfo(skb)->nr_frags;
1319 
1320 	if (frag_cnt) {
1321 		netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1322 			     "frag_cnt = %d.\n", frag_cnt);
1323 	}
1324 	/*
1325 	 * Map the skb buffer first.
1326 	 */
1327 	map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1328 
1329 	err = pci_dma_mapping_error(qdev->pdev, map);
1330 	if (err) {
1331 		netif_err(qdev, tx_queued, qdev->ndev,
1332 			  "PCI mapping failed with error: %d\n", err);
1333 
1334 		return NETDEV_TX_BUSY;
1335 	}
1336 
1337 	tbd->len = cpu_to_le32(len);
1338 	tbd->addr = cpu_to_le64(map);
1339 	dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1340 	dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1341 	map_idx++;
1342 
1343 	/*
1344 	 * This loop fills the remainder of the 8 address descriptors
1345 	 * in the IOCB.  If there are more than 7 fragments, then the
1346 	 * eighth address desc will point to an external list (OAL).
1347 	 * When this happens, the remainder of the frags will be stored
1348 	 * in this list.
1349 	 */
1350 	for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1351 		skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1352 		tbd++;
1353 		if (frag_idx == 6 && frag_cnt > 7) {
1354 			/* Let's tack on an sglist.
1355 			 * Our control block will now
1356 			 * look like this:
1357 			 * iocb->seg[0] = skb->data
1358 			 * iocb->seg[1] = frag[0]
1359 			 * iocb->seg[2] = frag[1]
1360 			 * iocb->seg[3] = frag[2]
1361 			 * iocb->seg[4] = frag[3]
1362 			 * iocb->seg[5] = frag[4]
1363 			 * iocb->seg[6] = frag[5]
1364 			 * iocb->seg[7] = ptr to OAL (external sglist)
1365 			 * oal->seg[0] = frag[6]
1366 			 * oal->seg[1] = frag[7]
1367 			 * oal->seg[2] = frag[8]
1368 			 * oal->seg[3] = frag[9]
1369 			 * oal->seg[4] = frag[10]
1370 			 *      etc...
1371 			 */
1372 			/* Tack on the OAL in the eighth segment of IOCB. */
1373 			map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1374 					     sizeof(struct oal),
1375 					     PCI_DMA_TODEVICE);
1376 			err = pci_dma_mapping_error(qdev->pdev, map);
1377 			if (err) {
1378 				netif_err(qdev, tx_queued, qdev->ndev,
1379 					  "PCI mapping outbound address list with error: %d\n",
1380 					  err);
1381 				goto map_error;
1382 			}
1383 
1384 			tbd->addr = cpu_to_le64(map);
1385 			/*
1386 			 * The length is the number of fragments
1387 			 * that remain to be mapped times the length
1388 			 * of our sglist (OAL).
1389 			 */
1390 			tbd->len =
1391 			    cpu_to_le32((sizeof(struct tx_buf_desc) *
1392 					 (frag_cnt - frag_idx)) | TX_DESC_C);
1393 			dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1394 					   map);
1395 			dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1396 					  sizeof(struct oal));
1397 			tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1398 			map_idx++;
1399 		}
1400 
1401 		map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1402 				       DMA_TO_DEVICE);
1403 
1404 		err = dma_mapping_error(&qdev->pdev->dev, map);
1405 		if (err) {
1406 			netif_err(qdev, tx_queued, qdev->ndev,
1407 				  "PCI mapping frags failed with error: %d.\n",
1408 				  err);
1409 			goto map_error;
1410 		}
1411 
1412 		tbd->addr = cpu_to_le64(map);
1413 		tbd->len = cpu_to_le32(skb_frag_size(frag));
1414 		dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1415 		dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1416 				  skb_frag_size(frag));
1417 
1418 	}
1419 	/* Save the number of segments we've mapped. */
1420 	tx_ring_desc->map_cnt = map_idx;
1421 	/* Terminate the last segment. */
1422 	tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1423 	return NETDEV_TX_OK;
1424 
1425 map_error:
1426 	/*
1427 	 * If the first frag mapping failed, then i will be zero.
1428 	 * This causes the unmap of the skb->data area.  Otherwise
1429 	 * we pass in the number of frags that mapped successfully
1430 	 * so they can be umapped.
1431 	 */
1432 	ql_unmap_send(qdev, tx_ring_desc, map_idx);
1433 	return NETDEV_TX_BUSY;
1434 }
1435 
1436 /* Categorizing receive firmware frame errors */
ql_categorize_rx_err(struct ql_adapter * qdev,u8 rx_err,struct rx_ring * rx_ring)1437 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1438 				 struct rx_ring *rx_ring)
1439 {
1440 	struct nic_stats *stats = &qdev->nic_stats;
1441 
1442 	stats->rx_err_count++;
1443 	rx_ring->rx_errors++;
1444 
1445 	switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1446 	case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1447 		stats->rx_code_err++;
1448 		break;
1449 	case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1450 		stats->rx_oversize_err++;
1451 		break;
1452 	case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1453 		stats->rx_undersize_err++;
1454 		break;
1455 	case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1456 		stats->rx_preamble_err++;
1457 		break;
1458 	case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1459 		stats->rx_frame_len_err++;
1460 		break;
1461 	case IB_MAC_IOCB_RSP_ERR_CRC:
1462 		stats->rx_crc_err++;
1463 	default:
1464 		break;
1465 	}
1466 }
1467 
1468 /**
1469  * ql_update_mac_hdr_len - helper routine to update the mac header length
1470  * based on vlan tags if present
1471  */
ql_update_mac_hdr_len(struct ql_adapter * qdev,struct ib_mac_iocb_rsp * ib_mac_rsp,void * page,size_t * len)1472 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1473 				  struct ib_mac_iocb_rsp *ib_mac_rsp,
1474 				  void *page, size_t *len)
1475 {
1476 	u16 *tags;
1477 
1478 	if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1479 		return;
1480 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1481 		tags = (u16 *)page;
1482 		/* Look for stacked vlan tags in ethertype field */
1483 		if (tags[6] == ETH_P_8021Q &&
1484 		    tags[8] == ETH_P_8021Q)
1485 			*len += 2 * VLAN_HLEN;
1486 		else
1487 			*len += VLAN_HLEN;
1488 	}
1489 }
1490 
1491 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_gro_page(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u32 length,u16 vlan_id)1492 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1493 					struct rx_ring *rx_ring,
1494 					struct ib_mac_iocb_rsp *ib_mac_rsp,
1495 					u32 length,
1496 					u16 vlan_id)
1497 {
1498 	struct sk_buff *skb;
1499 	struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1500 	struct napi_struct *napi = &rx_ring->napi;
1501 
1502 	/* Frame error, so drop the packet. */
1503 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1504 		ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1505 		put_page(lbq_desc->p.pg_chunk.page);
1506 		return;
1507 	}
1508 	napi->dev = qdev->ndev;
1509 
1510 	skb = napi_get_frags(napi);
1511 	if (!skb) {
1512 		netif_err(qdev, drv, qdev->ndev,
1513 			  "Couldn't get an skb, exiting.\n");
1514 		rx_ring->rx_dropped++;
1515 		put_page(lbq_desc->p.pg_chunk.page);
1516 		return;
1517 	}
1518 	prefetch(lbq_desc->p.pg_chunk.va);
1519 	__skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1520 			     lbq_desc->p.pg_chunk.page,
1521 			     lbq_desc->p.pg_chunk.offset,
1522 			     length);
1523 
1524 	skb->len += length;
1525 	skb->data_len += length;
1526 	skb->truesize += length;
1527 	skb_shinfo(skb)->nr_frags++;
1528 
1529 	rx_ring->rx_packets++;
1530 	rx_ring->rx_bytes += length;
1531 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1532 	skb_record_rx_queue(skb, rx_ring->cq_id);
1533 	if (vlan_id != 0xffff)
1534 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1535 	napi_gro_frags(napi);
1536 }
1537 
1538 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_page(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u32 length,u16 vlan_id)1539 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1540 					struct rx_ring *rx_ring,
1541 					struct ib_mac_iocb_rsp *ib_mac_rsp,
1542 					u32 length,
1543 					u16 vlan_id)
1544 {
1545 	struct net_device *ndev = qdev->ndev;
1546 	struct sk_buff *skb = NULL;
1547 	void *addr;
1548 	struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1549 	struct napi_struct *napi = &rx_ring->napi;
1550 	size_t hlen = ETH_HLEN;
1551 
1552 	skb = netdev_alloc_skb(ndev, length);
1553 	if (!skb) {
1554 		rx_ring->rx_dropped++;
1555 		put_page(lbq_desc->p.pg_chunk.page);
1556 		return;
1557 	}
1558 
1559 	addr = lbq_desc->p.pg_chunk.va;
1560 	prefetch(addr);
1561 
1562 	/* Frame error, so drop the packet. */
1563 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1564 		ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1565 		goto err_out;
1566 	}
1567 
1568 	/* Update the MAC header length*/
1569 	ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1570 
1571 	/* The max framesize filter on this chip is set higher than
1572 	 * MTU since FCoE uses 2k frames.
1573 	 */
1574 	if (skb->len > ndev->mtu + hlen) {
1575 		netif_err(qdev, drv, qdev->ndev,
1576 			  "Segment too small, dropping.\n");
1577 		rx_ring->rx_dropped++;
1578 		goto err_out;
1579 	}
1580 	memcpy(skb_put(skb, hlen), addr, hlen);
1581 	netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1582 		     "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1583 		     length);
1584 	skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1585 				lbq_desc->p.pg_chunk.offset + hlen,
1586 				length - hlen);
1587 	skb->len += length - hlen;
1588 	skb->data_len += length - hlen;
1589 	skb->truesize += length - hlen;
1590 
1591 	rx_ring->rx_packets++;
1592 	rx_ring->rx_bytes += skb->len;
1593 	skb->protocol = eth_type_trans(skb, ndev);
1594 	skb_checksum_none_assert(skb);
1595 
1596 	if ((ndev->features & NETIF_F_RXCSUM) &&
1597 		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1598 		/* TCP frame. */
1599 		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1600 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1601 				     "TCP checksum done!\n");
1602 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1603 		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1604 				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1605 			/* Unfragmented ipv4 UDP frame. */
1606 			struct iphdr *iph =
1607 				(struct iphdr *)((u8 *)addr + hlen);
1608 			if (!(iph->frag_off &
1609 				htons(IP_MF|IP_OFFSET))) {
1610 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1611 				netif_printk(qdev, rx_status, KERN_DEBUG,
1612 					     qdev->ndev,
1613 					     "UDP checksum done!\n");
1614 			}
1615 		}
1616 	}
1617 
1618 	skb_record_rx_queue(skb, rx_ring->cq_id);
1619 	if (vlan_id != 0xffff)
1620 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1621 	if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1622 		napi_gro_receive(napi, skb);
1623 	else
1624 		netif_receive_skb(skb);
1625 	return;
1626 err_out:
1627 	dev_kfree_skb_any(skb);
1628 	put_page(lbq_desc->p.pg_chunk.page);
1629 }
1630 
1631 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_skb(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u32 length,u16 vlan_id)1632 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1633 					struct rx_ring *rx_ring,
1634 					struct ib_mac_iocb_rsp *ib_mac_rsp,
1635 					u32 length,
1636 					u16 vlan_id)
1637 {
1638 	struct net_device *ndev = qdev->ndev;
1639 	struct sk_buff *skb = NULL;
1640 	struct sk_buff *new_skb = NULL;
1641 	struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1642 
1643 	skb = sbq_desc->p.skb;
1644 	/* Allocate new_skb and copy */
1645 	new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1646 	if (new_skb == NULL) {
1647 		rx_ring->rx_dropped++;
1648 		return;
1649 	}
1650 	skb_reserve(new_skb, NET_IP_ALIGN);
1651 
1652 	pci_dma_sync_single_for_cpu(qdev->pdev,
1653 				    dma_unmap_addr(sbq_desc, mapaddr),
1654 				    dma_unmap_len(sbq_desc, maplen),
1655 				    PCI_DMA_FROMDEVICE);
1656 
1657 	memcpy(skb_put(new_skb, length), skb->data, length);
1658 
1659 	pci_dma_sync_single_for_device(qdev->pdev,
1660 				       dma_unmap_addr(sbq_desc, mapaddr),
1661 				       dma_unmap_len(sbq_desc, maplen),
1662 				       PCI_DMA_FROMDEVICE);
1663 	skb = new_skb;
1664 
1665 	/* Frame error, so drop the packet. */
1666 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1667 		ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1668 		dev_kfree_skb_any(skb);
1669 		return;
1670 	}
1671 
1672 	/* loopback self test for ethtool */
1673 	if (test_bit(QL_SELFTEST, &qdev->flags)) {
1674 		ql_check_lb_frame(qdev, skb);
1675 		dev_kfree_skb_any(skb);
1676 		return;
1677 	}
1678 
1679 	/* The max framesize filter on this chip is set higher than
1680 	 * MTU since FCoE uses 2k frames.
1681 	 */
1682 	if (skb->len > ndev->mtu + ETH_HLEN) {
1683 		dev_kfree_skb_any(skb);
1684 		rx_ring->rx_dropped++;
1685 		return;
1686 	}
1687 
1688 	prefetch(skb->data);
1689 	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1690 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1691 			     "%s Multicast.\n",
1692 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1693 			     IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1694 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1695 			     IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1696 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1697 			     IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1698 	}
1699 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1700 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1701 			     "Promiscuous Packet.\n");
1702 
1703 	rx_ring->rx_packets++;
1704 	rx_ring->rx_bytes += skb->len;
1705 	skb->protocol = eth_type_trans(skb, ndev);
1706 	skb_checksum_none_assert(skb);
1707 
1708 	/* If rx checksum is on, and there are no
1709 	 * csum or frame errors.
1710 	 */
1711 	if ((ndev->features & NETIF_F_RXCSUM) &&
1712 		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1713 		/* TCP frame. */
1714 		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1715 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1716 				     "TCP checksum done!\n");
1717 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1718 		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1719 				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1720 			/* Unfragmented ipv4 UDP frame. */
1721 			struct iphdr *iph = (struct iphdr *) skb->data;
1722 			if (!(iph->frag_off &
1723 				htons(IP_MF|IP_OFFSET))) {
1724 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1725 				netif_printk(qdev, rx_status, KERN_DEBUG,
1726 					     qdev->ndev,
1727 					     "UDP checksum done!\n");
1728 			}
1729 		}
1730 	}
1731 
1732 	skb_record_rx_queue(skb, rx_ring->cq_id);
1733 	if (vlan_id != 0xffff)
1734 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1735 	if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1736 		napi_gro_receive(&rx_ring->napi, skb);
1737 	else
1738 		netif_receive_skb(skb);
1739 }
1740 
ql_realign_skb(struct sk_buff * skb,int len)1741 static void ql_realign_skb(struct sk_buff *skb, int len)
1742 {
1743 	void *temp_addr = skb->data;
1744 
1745 	/* Undo the skb_reserve(skb,32) we did before
1746 	 * giving to hardware, and realign data on
1747 	 * a 2-byte boundary.
1748 	 */
1749 	skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1750 	skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1751 	skb_copy_to_linear_data(skb, temp_addr,
1752 		(unsigned int)len);
1753 }
1754 
1755 /*
1756  * This function builds an skb for the given inbound
1757  * completion.  It will be rewritten for readability in the near
1758  * future, but for not it works well.
1759  */
ql_build_rx_skb(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp)1760 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1761 				       struct rx_ring *rx_ring,
1762 				       struct ib_mac_iocb_rsp *ib_mac_rsp)
1763 {
1764 	struct bq_desc *lbq_desc;
1765 	struct bq_desc *sbq_desc;
1766 	struct sk_buff *skb = NULL;
1767 	u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1768 	u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1769 	size_t hlen = ETH_HLEN;
1770 
1771 	/*
1772 	 * Handle the header buffer if present.
1773 	 */
1774 	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1775 	    ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1776 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1777 			     "Header of %d bytes in small buffer.\n", hdr_len);
1778 		/*
1779 		 * Headers fit nicely into a small buffer.
1780 		 */
1781 		sbq_desc = ql_get_curr_sbuf(rx_ring);
1782 		pci_unmap_single(qdev->pdev,
1783 				dma_unmap_addr(sbq_desc, mapaddr),
1784 				dma_unmap_len(sbq_desc, maplen),
1785 				PCI_DMA_FROMDEVICE);
1786 		skb = sbq_desc->p.skb;
1787 		ql_realign_skb(skb, hdr_len);
1788 		skb_put(skb, hdr_len);
1789 		sbq_desc->p.skb = NULL;
1790 	}
1791 
1792 	/*
1793 	 * Handle the data buffer(s).
1794 	 */
1795 	if (unlikely(!length)) {	/* Is there data too? */
1796 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1797 			     "No Data buffer in this packet.\n");
1798 		return skb;
1799 	}
1800 
1801 	if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1802 		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1803 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1804 				     "Headers in small, data of %d bytes in small, combine them.\n",
1805 				     length);
1806 			/*
1807 			 * Data is less than small buffer size so it's
1808 			 * stuffed in a small buffer.
1809 			 * For this case we append the data
1810 			 * from the "data" small buffer to the "header" small
1811 			 * buffer.
1812 			 */
1813 			sbq_desc = ql_get_curr_sbuf(rx_ring);
1814 			pci_dma_sync_single_for_cpu(qdev->pdev,
1815 						    dma_unmap_addr
1816 						    (sbq_desc, mapaddr),
1817 						    dma_unmap_len
1818 						    (sbq_desc, maplen),
1819 						    PCI_DMA_FROMDEVICE);
1820 			memcpy(skb_put(skb, length),
1821 			       sbq_desc->p.skb->data, length);
1822 			pci_dma_sync_single_for_device(qdev->pdev,
1823 						       dma_unmap_addr
1824 						       (sbq_desc,
1825 							mapaddr),
1826 						       dma_unmap_len
1827 						       (sbq_desc,
1828 							maplen),
1829 						       PCI_DMA_FROMDEVICE);
1830 		} else {
1831 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1832 				     "%d bytes in a single small buffer.\n",
1833 				     length);
1834 			sbq_desc = ql_get_curr_sbuf(rx_ring);
1835 			skb = sbq_desc->p.skb;
1836 			ql_realign_skb(skb, length);
1837 			skb_put(skb, length);
1838 			pci_unmap_single(qdev->pdev,
1839 					 dma_unmap_addr(sbq_desc,
1840 							mapaddr),
1841 					 dma_unmap_len(sbq_desc,
1842 						       maplen),
1843 					 PCI_DMA_FROMDEVICE);
1844 			sbq_desc->p.skb = NULL;
1845 		}
1846 	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1847 		if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1848 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1849 				     "Header in small, %d bytes in large. Chain large to small!\n",
1850 				     length);
1851 			/*
1852 			 * The data is in a single large buffer.  We
1853 			 * chain it to the header buffer's skb and let
1854 			 * it rip.
1855 			 */
1856 			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1857 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1858 				     "Chaining page at offset = %d, for %d bytes  to skb.\n",
1859 				     lbq_desc->p.pg_chunk.offset, length);
1860 			skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1861 						lbq_desc->p.pg_chunk.offset,
1862 						length);
1863 			skb->len += length;
1864 			skb->data_len += length;
1865 			skb->truesize += length;
1866 		} else {
1867 			/*
1868 			 * The headers and data are in a single large buffer. We
1869 			 * copy it to a new skb and let it go. This can happen with
1870 			 * jumbo mtu on a non-TCP/UDP frame.
1871 			 */
1872 			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1873 			skb = netdev_alloc_skb(qdev->ndev, length);
1874 			if (skb == NULL) {
1875 				netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1876 					     "No skb available, drop the packet.\n");
1877 				return NULL;
1878 			}
1879 			pci_unmap_page(qdev->pdev,
1880 				       dma_unmap_addr(lbq_desc,
1881 						      mapaddr),
1882 				       dma_unmap_len(lbq_desc, maplen),
1883 				       PCI_DMA_FROMDEVICE);
1884 			skb_reserve(skb, NET_IP_ALIGN);
1885 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1886 				     "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1887 				     length);
1888 			skb_fill_page_desc(skb, 0,
1889 						lbq_desc->p.pg_chunk.page,
1890 						lbq_desc->p.pg_chunk.offset,
1891 						length);
1892 			skb->len += length;
1893 			skb->data_len += length;
1894 			skb->truesize += length;
1895 			length -= length;
1896 			ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1897 					      lbq_desc->p.pg_chunk.va,
1898 					      &hlen);
1899 			__pskb_pull_tail(skb, hlen);
1900 		}
1901 	} else {
1902 		/*
1903 		 * The data is in a chain of large buffers
1904 		 * pointed to by a small buffer.  We loop
1905 		 * thru and chain them to the our small header
1906 		 * buffer's skb.
1907 		 * frags:  There are 18 max frags and our small
1908 		 *         buffer will hold 32 of them. The thing is,
1909 		 *         we'll use 3 max for our 9000 byte jumbo
1910 		 *         frames.  If the MTU goes up we could
1911 		 *          eventually be in trouble.
1912 		 */
1913 		int size, i = 0;
1914 		sbq_desc = ql_get_curr_sbuf(rx_ring);
1915 		pci_unmap_single(qdev->pdev,
1916 				 dma_unmap_addr(sbq_desc, mapaddr),
1917 				 dma_unmap_len(sbq_desc, maplen),
1918 				 PCI_DMA_FROMDEVICE);
1919 		if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1920 			/*
1921 			 * This is an non TCP/UDP IP frame, so
1922 			 * the headers aren't split into a small
1923 			 * buffer.  We have to use the small buffer
1924 			 * that contains our sg list as our skb to
1925 			 * send upstairs. Copy the sg list here to
1926 			 * a local buffer and use it to find the
1927 			 * pages to chain.
1928 			 */
1929 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1930 				     "%d bytes of headers & data in chain of large.\n",
1931 				     length);
1932 			skb = sbq_desc->p.skb;
1933 			sbq_desc->p.skb = NULL;
1934 			skb_reserve(skb, NET_IP_ALIGN);
1935 		}
1936 		do {
1937 			lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1938 			size = (length < rx_ring->lbq_buf_size) ? length :
1939 				rx_ring->lbq_buf_size;
1940 
1941 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1942 				     "Adding page %d to skb for %d bytes.\n",
1943 				     i, size);
1944 			skb_fill_page_desc(skb, i,
1945 						lbq_desc->p.pg_chunk.page,
1946 						lbq_desc->p.pg_chunk.offset,
1947 						size);
1948 			skb->len += size;
1949 			skb->data_len += size;
1950 			skb->truesize += size;
1951 			length -= size;
1952 			i++;
1953 		} while (length > 0);
1954 		ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1955 				      &hlen);
1956 		__pskb_pull_tail(skb, hlen);
1957 	}
1958 	return skb;
1959 }
1960 
1961 /* Process an inbound completion from an rx ring. */
ql_process_mac_split_rx_intr(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp,u16 vlan_id)1962 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1963 				   struct rx_ring *rx_ring,
1964 				   struct ib_mac_iocb_rsp *ib_mac_rsp,
1965 				   u16 vlan_id)
1966 {
1967 	struct net_device *ndev = qdev->ndev;
1968 	struct sk_buff *skb = NULL;
1969 
1970 	QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1971 
1972 	skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1973 	if (unlikely(!skb)) {
1974 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1975 			     "No skb available, drop packet.\n");
1976 		rx_ring->rx_dropped++;
1977 		return;
1978 	}
1979 
1980 	/* Frame error, so drop the packet. */
1981 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1982 		ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1983 		dev_kfree_skb_any(skb);
1984 		return;
1985 	}
1986 
1987 	/* The max framesize filter on this chip is set higher than
1988 	 * MTU since FCoE uses 2k frames.
1989 	 */
1990 	if (skb->len > ndev->mtu + ETH_HLEN) {
1991 		dev_kfree_skb_any(skb);
1992 		rx_ring->rx_dropped++;
1993 		return;
1994 	}
1995 
1996 	/* loopback self test for ethtool */
1997 	if (test_bit(QL_SELFTEST, &qdev->flags)) {
1998 		ql_check_lb_frame(qdev, skb);
1999 		dev_kfree_skb_any(skb);
2000 		return;
2001 	}
2002 
2003 	prefetch(skb->data);
2004 	if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
2005 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
2006 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2007 			     IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
2008 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2009 			     IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2010 			     (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2011 			     IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2012 		rx_ring->rx_multicast++;
2013 	}
2014 	if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2015 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2016 			     "Promiscuous Packet.\n");
2017 	}
2018 
2019 	skb->protocol = eth_type_trans(skb, ndev);
2020 	skb_checksum_none_assert(skb);
2021 
2022 	/* If rx checksum is on, and there are no
2023 	 * csum or frame errors.
2024 	 */
2025 	if ((ndev->features & NETIF_F_RXCSUM) &&
2026 		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2027 		/* TCP frame. */
2028 		if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2029 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2030 				     "TCP checksum done!\n");
2031 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2032 		} else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2033 				(ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2034 		/* Unfragmented ipv4 UDP frame. */
2035 			struct iphdr *iph = (struct iphdr *) skb->data;
2036 			if (!(iph->frag_off &
2037 				htons(IP_MF|IP_OFFSET))) {
2038 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2039 				netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2040 					     "TCP checksum done!\n");
2041 			}
2042 		}
2043 	}
2044 
2045 	rx_ring->rx_packets++;
2046 	rx_ring->rx_bytes += skb->len;
2047 	skb_record_rx_queue(skb, rx_ring->cq_id);
2048 	if (vlan_id != 0xffff)
2049 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2050 	if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2051 		napi_gro_receive(&rx_ring->napi, skb);
2052 	else
2053 		netif_receive_skb(skb);
2054 }
2055 
2056 /* Process an inbound completion from an rx ring. */
ql_process_mac_rx_intr(struct ql_adapter * qdev,struct rx_ring * rx_ring,struct ib_mac_iocb_rsp * ib_mac_rsp)2057 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2058 					struct rx_ring *rx_ring,
2059 					struct ib_mac_iocb_rsp *ib_mac_rsp)
2060 {
2061 	u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2062 	u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2063 			(qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2064 			((le16_to_cpu(ib_mac_rsp->vlan_id) &
2065 			IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2066 
2067 	QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2068 
2069 	if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2070 		/* The data and headers are split into
2071 		 * separate buffers.
2072 		 */
2073 		ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2074 						vlan_id);
2075 	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2076 		/* The data fit in a single small buffer.
2077 		 * Allocate a new skb, copy the data and
2078 		 * return the buffer to the free pool.
2079 		 */
2080 		ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2081 						length, vlan_id);
2082 	} else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2083 		!(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2084 		(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2085 		/* TCP packet in a page chunk that's been checksummed.
2086 		 * Tack it on to our GRO skb and let it go.
2087 		 */
2088 		ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2089 						length, vlan_id);
2090 	} else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2091 		/* Non-TCP packet in a page chunk. Allocate an
2092 		 * skb, tack it on frags, and send it up.
2093 		 */
2094 		ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2095 						length, vlan_id);
2096 	} else {
2097 		/* Non-TCP/UDP large frames that span multiple buffers
2098 		 * can be processed corrrectly by the split frame logic.
2099 		 */
2100 		ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2101 						vlan_id);
2102 	}
2103 
2104 	return (unsigned long)length;
2105 }
2106 
2107 /* Process an outbound completion from an rx ring. */
ql_process_mac_tx_intr(struct ql_adapter * qdev,struct ob_mac_iocb_rsp * mac_rsp)2108 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2109 				   struct ob_mac_iocb_rsp *mac_rsp)
2110 {
2111 	struct tx_ring *tx_ring;
2112 	struct tx_ring_desc *tx_ring_desc;
2113 
2114 	QL_DUMP_OB_MAC_RSP(mac_rsp);
2115 	tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2116 	tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2117 	ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2118 	tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2119 	tx_ring->tx_packets++;
2120 	dev_kfree_skb(tx_ring_desc->skb);
2121 	tx_ring_desc->skb = NULL;
2122 
2123 	if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2124 					OB_MAC_IOCB_RSP_S |
2125 					OB_MAC_IOCB_RSP_L |
2126 					OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2127 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2128 			netif_warn(qdev, tx_done, qdev->ndev,
2129 				   "Total descriptor length did not match transfer length.\n");
2130 		}
2131 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2132 			netif_warn(qdev, tx_done, qdev->ndev,
2133 				   "Frame too short to be valid, not sent.\n");
2134 		}
2135 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2136 			netif_warn(qdev, tx_done, qdev->ndev,
2137 				   "Frame too long, but sent anyway.\n");
2138 		}
2139 		if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2140 			netif_warn(qdev, tx_done, qdev->ndev,
2141 				   "PCI backplane error. Frame not sent.\n");
2142 		}
2143 	}
2144 	atomic_inc(&tx_ring->tx_count);
2145 }
2146 
2147 /* Fire up a handler to reset the MPI processor. */
ql_queue_fw_error(struct ql_adapter * qdev)2148 void ql_queue_fw_error(struct ql_adapter *qdev)
2149 {
2150 	ql_link_off(qdev);
2151 	queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2152 }
2153 
ql_queue_asic_error(struct ql_adapter * qdev)2154 void ql_queue_asic_error(struct ql_adapter *qdev)
2155 {
2156 	ql_link_off(qdev);
2157 	ql_disable_interrupts(qdev);
2158 	/* Clear adapter up bit to signal the recovery
2159 	 * process that it shouldn't kill the reset worker
2160 	 * thread
2161 	 */
2162 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
2163 	/* Set asic recovery bit to indicate reset process that we are
2164 	 * in fatal error recovery process rather than normal close
2165 	 */
2166 	set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2167 	queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2168 }
2169 
ql_process_chip_ae_intr(struct ql_adapter * qdev,struct ib_ae_iocb_rsp * ib_ae_rsp)2170 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2171 				    struct ib_ae_iocb_rsp *ib_ae_rsp)
2172 {
2173 	switch (ib_ae_rsp->event) {
2174 	case MGMT_ERR_EVENT:
2175 		netif_err(qdev, rx_err, qdev->ndev,
2176 			  "Management Processor Fatal Error.\n");
2177 		ql_queue_fw_error(qdev);
2178 		return;
2179 
2180 	case CAM_LOOKUP_ERR_EVENT:
2181 		netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2182 		netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2183 		ql_queue_asic_error(qdev);
2184 		return;
2185 
2186 	case SOFT_ECC_ERROR_EVENT:
2187 		netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2188 		ql_queue_asic_error(qdev);
2189 		break;
2190 
2191 	case PCI_ERR_ANON_BUF_RD:
2192 		netdev_err(qdev->ndev, "PCI error occurred when reading "
2193 					"anonymous buffers from rx_ring %d.\n",
2194 					ib_ae_rsp->q_id);
2195 		ql_queue_asic_error(qdev);
2196 		break;
2197 
2198 	default:
2199 		netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2200 			  ib_ae_rsp->event);
2201 		ql_queue_asic_error(qdev);
2202 		break;
2203 	}
2204 }
2205 
ql_clean_outbound_rx_ring(struct rx_ring * rx_ring)2206 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2207 {
2208 	struct ql_adapter *qdev = rx_ring->qdev;
2209 	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2210 	struct ob_mac_iocb_rsp *net_rsp = NULL;
2211 	int count = 0;
2212 
2213 	struct tx_ring *tx_ring;
2214 	/* While there are entries in the completion queue. */
2215 	while (prod != rx_ring->cnsmr_idx) {
2216 
2217 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2218 			     "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2219 			     rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2220 
2221 		net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2222 		rmb();
2223 		switch (net_rsp->opcode) {
2224 
2225 		case OPCODE_OB_MAC_TSO_IOCB:
2226 		case OPCODE_OB_MAC_IOCB:
2227 			ql_process_mac_tx_intr(qdev, net_rsp);
2228 			break;
2229 		default:
2230 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2231 				     "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2232 				     net_rsp->opcode);
2233 		}
2234 		count++;
2235 		ql_update_cq(rx_ring);
2236 		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2237 	}
2238 	if (!net_rsp)
2239 		return 0;
2240 	ql_write_cq_idx(rx_ring);
2241 	tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2242 	if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2243 		if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2244 			/*
2245 			 * The queue got stopped because the tx_ring was full.
2246 			 * Wake it up, because it's now at least 25% empty.
2247 			 */
2248 			netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2249 	}
2250 
2251 	return count;
2252 }
2253 
ql_clean_inbound_rx_ring(struct rx_ring * rx_ring,int budget)2254 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2255 {
2256 	struct ql_adapter *qdev = rx_ring->qdev;
2257 	u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2258 	struct ql_net_rsp_iocb *net_rsp;
2259 	int count = 0;
2260 
2261 	/* While there are entries in the completion queue. */
2262 	while (prod != rx_ring->cnsmr_idx) {
2263 
2264 		netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2265 			     "cq_id = %d, prod = %d, cnsmr = %d.\n.",
2266 			     rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2267 
2268 		net_rsp = rx_ring->curr_entry;
2269 		rmb();
2270 		switch (net_rsp->opcode) {
2271 		case OPCODE_IB_MAC_IOCB:
2272 			ql_process_mac_rx_intr(qdev, rx_ring,
2273 					       (struct ib_mac_iocb_rsp *)
2274 					       net_rsp);
2275 			break;
2276 
2277 		case OPCODE_IB_AE_IOCB:
2278 			ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2279 						net_rsp);
2280 			break;
2281 		default:
2282 			netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2283 				     "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2284 				     net_rsp->opcode);
2285 			break;
2286 		}
2287 		count++;
2288 		ql_update_cq(rx_ring);
2289 		prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2290 		if (count == budget)
2291 			break;
2292 	}
2293 	ql_update_buffer_queues(qdev, rx_ring);
2294 	ql_write_cq_idx(rx_ring);
2295 	return count;
2296 }
2297 
ql_napi_poll_msix(struct napi_struct * napi,int budget)2298 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2299 {
2300 	struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2301 	struct ql_adapter *qdev = rx_ring->qdev;
2302 	struct rx_ring *trx_ring;
2303 	int i, work_done = 0;
2304 	struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2305 
2306 	netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2307 		     "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2308 
2309 	/* Service the TX rings first.  They start
2310 	 * right after the RSS rings. */
2311 	for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2312 		trx_ring = &qdev->rx_ring[i];
2313 		/* If this TX completion ring belongs to this vector and
2314 		 * it's not empty then service it.
2315 		 */
2316 		if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2317 			(ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2318 					trx_ring->cnsmr_idx)) {
2319 			netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2320 				     "%s: Servicing TX completion ring %d.\n",
2321 				     __func__, trx_ring->cq_id);
2322 			ql_clean_outbound_rx_ring(trx_ring);
2323 		}
2324 	}
2325 
2326 	/*
2327 	 * Now service the RSS ring if it's active.
2328 	 */
2329 	if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2330 					rx_ring->cnsmr_idx) {
2331 		netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2332 			     "%s: Servicing RX completion ring %d.\n",
2333 			     __func__, rx_ring->cq_id);
2334 		work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2335 	}
2336 
2337 	if (work_done < budget) {
2338 		napi_complete(napi);
2339 		ql_enable_completion_interrupt(qdev, rx_ring->irq);
2340 	}
2341 	return work_done;
2342 }
2343 
qlge_vlan_mode(struct net_device * ndev,netdev_features_t features)2344 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2345 {
2346 	struct ql_adapter *qdev = netdev_priv(ndev);
2347 
2348 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2349 		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2350 				 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2351 	} else {
2352 		ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2353 	}
2354 }
2355 
2356 /**
2357  * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2358  * based on the features to enable/disable hardware vlan accel
2359  */
qlge_update_hw_vlan_features(struct net_device * ndev,netdev_features_t features)2360 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2361 					netdev_features_t features)
2362 {
2363 	struct ql_adapter *qdev = netdev_priv(ndev);
2364 	int status = 0;
2365 	bool need_restart = netif_running(ndev);
2366 
2367 	if (need_restart) {
2368 		status = ql_adapter_down(qdev);
2369 		if (status) {
2370 			netif_err(qdev, link, qdev->ndev,
2371 				  "Failed to bring down the adapter\n");
2372 			return status;
2373 		}
2374 	}
2375 
2376 	/* update the features with resent change */
2377 	ndev->features = features;
2378 
2379 	if (need_restart) {
2380 		status = ql_adapter_up(qdev);
2381 		if (status) {
2382 			netif_err(qdev, link, qdev->ndev,
2383 				  "Failed to bring up the adapter\n");
2384 			return status;
2385 		}
2386 	}
2387 
2388 	return status;
2389 }
2390 
qlge_set_features(struct net_device * ndev,netdev_features_t features)2391 static int qlge_set_features(struct net_device *ndev,
2392 	netdev_features_t features)
2393 {
2394 	netdev_features_t changed = ndev->features ^ features;
2395 	int err;
2396 
2397 	if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
2398 		/* Update the behavior of vlan accel in the adapter */
2399 		err = qlge_update_hw_vlan_features(ndev, features);
2400 		if (err)
2401 			return err;
2402 
2403 		qlge_vlan_mode(ndev, features);
2404 	}
2405 
2406 	return 0;
2407 }
2408 
__qlge_vlan_rx_add_vid(struct ql_adapter * qdev,u16 vid)2409 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2410 {
2411 	u32 enable_bit = MAC_ADDR_E;
2412 	int err;
2413 
2414 	err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2415 				  MAC_ADDR_TYPE_VLAN, vid);
2416 	if (err)
2417 		netif_err(qdev, ifup, qdev->ndev,
2418 			  "Failed to init vlan address.\n");
2419 	return err;
2420 }
2421 
qlge_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)2422 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2423 {
2424 	struct ql_adapter *qdev = netdev_priv(ndev);
2425 	int status;
2426 	int err;
2427 
2428 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2429 	if (status)
2430 		return status;
2431 
2432 	err = __qlge_vlan_rx_add_vid(qdev, vid);
2433 	set_bit(vid, qdev->active_vlans);
2434 
2435 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2436 
2437 	return err;
2438 }
2439 
__qlge_vlan_rx_kill_vid(struct ql_adapter * qdev,u16 vid)2440 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2441 {
2442 	u32 enable_bit = 0;
2443 	int err;
2444 
2445 	err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2446 				  MAC_ADDR_TYPE_VLAN, vid);
2447 	if (err)
2448 		netif_err(qdev, ifup, qdev->ndev,
2449 			  "Failed to clear vlan address.\n");
2450 	return err;
2451 }
2452 
qlge_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)2453 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2454 {
2455 	struct ql_adapter *qdev = netdev_priv(ndev);
2456 	int status;
2457 	int err;
2458 
2459 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2460 	if (status)
2461 		return status;
2462 
2463 	err = __qlge_vlan_rx_kill_vid(qdev, vid);
2464 	clear_bit(vid, qdev->active_vlans);
2465 
2466 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2467 
2468 	return err;
2469 }
2470 
qlge_restore_vlan(struct ql_adapter * qdev)2471 static void qlge_restore_vlan(struct ql_adapter *qdev)
2472 {
2473 	int status;
2474 	u16 vid;
2475 
2476 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2477 	if (status)
2478 		return;
2479 
2480 	for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2481 		__qlge_vlan_rx_add_vid(qdev, vid);
2482 
2483 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2484 }
2485 
2486 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
qlge_msix_rx_isr(int irq,void * dev_id)2487 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2488 {
2489 	struct rx_ring *rx_ring = dev_id;
2490 	napi_schedule(&rx_ring->napi);
2491 	return IRQ_HANDLED;
2492 }
2493 
2494 /* This handles a fatal error, MPI activity, and the default
2495  * rx_ring in an MSI-X multiple vector environment.
2496  * In MSI/Legacy environment it also process the rest of
2497  * the rx_rings.
2498  */
qlge_isr(int irq,void * dev_id)2499 static irqreturn_t qlge_isr(int irq, void *dev_id)
2500 {
2501 	struct rx_ring *rx_ring = dev_id;
2502 	struct ql_adapter *qdev = rx_ring->qdev;
2503 	struct intr_context *intr_context = &qdev->intr_context[0];
2504 	u32 var;
2505 	int work_done = 0;
2506 
2507 	spin_lock(&qdev->hw_lock);
2508 	if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2509 		netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2510 			     "Shared Interrupt, Not ours!\n");
2511 		spin_unlock(&qdev->hw_lock);
2512 		return IRQ_NONE;
2513 	}
2514 	spin_unlock(&qdev->hw_lock);
2515 
2516 	var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2517 
2518 	/*
2519 	 * Check for fatal error.
2520 	 */
2521 	if (var & STS_FE) {
2522 		ql_queue_asic_error(qdev);
2523 		netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2524 		var = ql_read32(qdev, ERR_STS);
2525 		netdev_err(qdev->ndev, "Resetting chip. "
2526 					"Error Status Register = 0x%x\n", var);
2527 		return IRQ_HANDLED;
2528 	}
2529 
2530 	/*
2531 	 * Check MPI processor activity.
2532 	 */
2533 	if ((var & STS_PI) &&
2534 		(ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2535 		/*
2536 		 * We've got an async event or mailbox completion.
2537 		 * Handle it and clear the source of the interrupt.
2538 		 */
2539 		netif_err(qdev, intr, qdev->ndev,
2540 			  "Got MPI processor interrupt.\n");
2541 		ql_disable_completion_interrupt(qdev, intr_context->intr);
2542 		ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2543 		queue_delayed_work_on(smp_processor_id(),
2544 				qdev->workqueue, &qdev->mpi_work, 0);
2545 		work_done++;
2546 	}
2547 
2548 	/*
2549 	 * Get the bit-mask that shows the active queues for this
2550 	 * pass.  Compare it to the queues that this irq services
2551 	 * and call napi if there's a match.
2552 	 */
2553 	var = ql_read32(qdev, ISR1);
2554 	if (var & intr_context->irq_mask) {
2555 		netif_info(qdev, intr, qdev->ndev,
2556 			   "Waking handler for rx_ring[0].\n");
2557 		ql_disable_completion_interrupt(qdev, intr_context->intr);
2558 		napi_schedule(&rx_ring->napi);
2559 		work_done++;
2560 	}
2561 	ql_enable_completion_interrupt(qdev, intr_context->intr);
2562 	return work_done ? IRQ_HANDLED : IRQ_NONE;
2563 }
2564 
ql_tso(struct sk_buff * skb,struct ob_mac_tso_iocb_req * mac_iocb_ptr)2565 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2566 {
2567 
2568 	if (skb_is_gso(skb)) {
2569 		int err;
2570 		__be16 l3_proto = vlan_get_protocol(skb);
2571 
2572 		err = skb_cow_head(skb, 0);
2573 		if (err < 0)
2574 			return err;
2575 
2576 		mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2577 		mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2578 		mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2579 		mac_iocb_ptr->total_hdrs_len =
2580 		    cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2581 		mac_iocb_ptr->net_trans_offset =
2582 		    cpu_to_le16(skb_network_offset(skb) |
2583 				skb_transport_offset(skb)
2584 				<< OB_MAC_TRANSPORT_HDR_SHIFT);
2585 		mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2586 		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2587 		if (likely(l3_proto == htons(ETH_P_IP))) {
2588 			struct iphdr *iph = ip_hdr(skb);
2589 			iph->check = 0;
2590 			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2591 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2592 								 iph->daddr, 0,
2593 								 IPPROTO_TCP,
2594 								 0);
2595 		} else if (l3_proto == htons(ETH_P_IPV6)) {
2596 			mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2597 			tcp_hdr(skb)->check =
2598 			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2599 					     &ipv6_hdr(skb)->daddr,
2600 					     0, IPPROTO_TCP, 0);
2601 		}
2602 		return 1;
2603 	}
2604 	return 0;
2605 }
2606 
ql_hw_csum_setup(struct sk_buff * skb,struct ob_mac_tso_iocb_req * mac_iocb_ptr)2607 static void ql_hw_csum_setup(struct sk_buff *skb,
2608 			     struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2609 {
2610 	int len;
2611 	struct iphdr *iph = ip_hdr(skb);
2612 	__sum16 *check;
2613 	mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2614 	mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2615 	mac_iocb_ptr->net_trans_offset =
2616 		cpu_to_le16(skb_network_offset(skb) |
2617 		skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2618 
2619 	mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2620 	len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2621 	if (likely(iph->protocol == IPPROTO_TCP)) {
2622 		check = &(tcp_hdr(skb)->check);
2623 		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2624 		mac_iocb_ptr->total_hdrs_len =
2625 		    cpu_to_le16(skb_transport_offset(skb) +
2626 				(tcp_hdr(skb)->doff << 2));
2627 	} else {
2628 		check = &(udp_hdr(skb)->check);
2629 		mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2630 		mac_iocb_ptr->total_hdrs_len =
2631 		    cpu_to_le16(skb_transport_offset(skb) +
2632 				sizeof(struct udphdr));
2633 	}
2634 	*check = ~csum_tcpudp_magic(iph->saddr,
2635 				    iph->daddr, len, iph->protocol, 0);
2636 }
2637 
qlge_send(struct sk_buff * skb,struct net_device * ndev)2638 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2639 {
2640 	struct tx_ring_desc *tx_ring_desc;
2641 	struct ob_mac_iocb_req *mac_iocb_ptr;
2642 	struct ql_adapter *qdev = netdev_priv(ndev);
2643 	int tso;
2644 	struct tx_ring *tx_ring;
2645 	u32 tx_ring_idx = (u32) skb->queue_mapping;
2646 
2647 	tx_ring = &qdev->tx_ring[tx_ring_idx];
2648 
2649 	if (skb_padto(skb, ETH_ZLEN))
2650 		return NETDEV_TX_OK;
2651 
2652 	if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2653 		netif_info(qdev, tx_queued, qdev->ndev,
2654 			   "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2655 			   __func__, tx_ring_idx);
2656 		netif_stop_subqueue(ndev, tx_ring->wq_id);
2657 		tx_ring->tx_errors++;
2658 		return NETDEV_TX_BUSY;
2659 	}
2660 	tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2661 	mac_iocb_ptr = tx_ring_desc->queue_entry;
2662 	memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2663 
2664 	mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2665 	mac_iocb_ptr->tid = tx_ring_desc->index;
2666 	/* We use the upper 32-bits to store the tx queue for this IO.
2667 	 * When we get the completion we can use it to establish the context.
2668 	 */
2669 	mac_iocb_ptr->txq_idx = tx_ring_idx;
2670 	tx_ring_desc->skb = skb;
2671 
2672 	mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2673 
2674 	if (skb_vlan_tag_present(skb)) {
2675 		netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2676 			     "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
2677 		mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2678 		mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
2679 	}
2680 	tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2681 	if (tso < 0) {
2682 		dev_kfree_skb_any(skb);
2683 		return NETDEV_TX_OK;
2684 	} else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2685 		ql_hw_csum_setup(skb,
2686 				 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2687 	}
2688 	if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2689 			NETDEV_TX_OK) {
2690 		netif_err(qdev, tx_queued, qdev->ndev,
2691 			  "Could not map the segments.\n");
2692 		tx_ring->tx_errors++;
2693 		return NETDEV_TX_BUSY;
2694 	}
2695 	QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2696 	tx_ring->prod_idx++;
2697 	if (tx_ring->prod_idx == tx_ring->wq_len)
2698 		tx_ring->prod_idx = 0;
2699 	wmb();
2700 
2701 	ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2702 	netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2703 		     "tx queued, slot %d, len %d\n",
2704 		     tx_ring->prod_idx, skb->len);
2705 
2706 	atomic_dec(&tx_ring->tx_count);
2707 
2708 	if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2709 		netif_stop_subqueue(ndev, tx_ring->wq_id);
2710 		if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2711 			/*
2712 			 * The queue got stopped because the tx_ring was full.
2713 			 * Wake it up, because it's now at least 25% empty.
2714 			 */
2715 			netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2716 	}
2717 	return NETDEV_TX_OK;
2718 }
2719 
2720 
ql_free_shadow_space(struct ql_adapter * qdev)2721 static void ql_free_shadow_space(struct ql_adapter *qdev)
2722 {
2723 	if (qdev->rx_ring_shadow_reg_area) {
2724 		pci_free_consistent(qdev->pdev,
2725 				    PAGE_SIZE,
2726 				    qdev->rx_ring_shadow_reg_area,
2727 				    qdev->rx_ring_shadow_reg_dma);
2728 		qdev->rx_ring_shadow_reg_area = NULL;
2729 	}
2730 	if (qdev->tx_ring_shadow_reg_area) {
2731 		pci_free_consistent(qdev->pdev,
2732 				    PAGE_SIZE,
2733 				    qdev->tx_ring_shadow_reg_area,
2734 				    qdev->tx_ring_shadow_reg_dma);
2735 		qdev->tx_ring_shadow_reg_area = NULL;
2736 	}
2737 }
2738 
ql_alloc_shadow_space(struct ql_adapter * qdev)2739 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2740 {
2741 	qdev->rx_ring_shadow_reg_area =
2742 		pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2743 				      &qdev->rx_ring_shadow_reg_dma);
2744 	if (qdev->rx_ring_shadow_reg_area == NULL) {
2745 		netif_err(qdev, ifup, qdev->ndev,
2746 			  "Allocation of RX shadow space failed.\n");
2747 		return -ENOMEM;
2748 	}
2749 
2750 	qdev->tx_ring_shadow_reg_area =
2751 		pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2752 				      &qdev->tx_ring_shadow_reg_dma);
2753 	if (qdev->tx_ring_shadow_reg_area == NULL) {
2754 		netif_err(qdev, ifup, qdev->ndev,
2755 			  "Allocation of TX shadow space failed.\n");
2756 		goto err_wqp_sh_area;
2757 	}
2758 	return 0;
2759 
2760 err_wqp_sh_area:
2761 	pci_free_consistent(qdev->pdev,
2762 			    PAGE_SIZE,
2763 			    qdev->rx_ring_shadow_reg_area,
2764 			    qdev->rx_ring_shadow_reg_dma);
2765 	return -ENOMEM;
2766 }
2767 
ql_init_tx_ring(struct ql_adapter * qdev,struct tx_ring * tx_ring)2768 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2769 {
2770 	struct tx_ring_desc *tx_ring_desc;
2771 	int i;
2772 	struct ob_mac_iocb_req *mac_iocb_ptr;
2773 
2774 	mac_iocb_ptr = tx_ring->wq_base;
2775 	tx_ring_desc = tx_ring->q;
2776 	for (i = 0; i < tx_ring->wq_len; i++) {
2777 		tx_ring_desc->index = i;
2778 		tx_ring_desc->skb = NULL;
2779 		tx_ring_desc->queue_entry = mac_iocb_ptr;
2780 		mac_iocb_ptr++;
2781 		tx_ring_desc++;
2782 	}
2783 	atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2784 }
2785 
ql_free_tx_resources(struct ql_adapter * qdev,struct tx_ring * tx_ring)2786 static void ql_free_tx_resources(struct ql_adapter *qdev,
2787 				 struct tx_ring *tx_ring)
2788 {
2789 	if (tx_ring->wq_base) {
2790 		pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2791 				    tx_ring->wq_base, tx_ring->wq_base_dma);
2792 		tx_ring->wq_base = NULL;
2793 	}
2794 	kfree(tx_ring->q);
2795 	tx_ring->q = NULL;
2796 }
2797 
ql_alloc_tx_resources(struct ql_adapter * qdev,struct tx_ring * tx_ring)2798 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2799 				 struct tx_ring *tx_ring)
2800 {
2801 	tx_ring->wq_base =
2802 	    pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2803 				 &tx_ring->wq_base_dma);
2804 
2805 	if ((tx_ring->wq_base == NULL) ||
2806 	    tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2807 		goto pci_alloc_err;
2808 
2809 	tx_ring->q =
2810 	    kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2811 	if (tx_ring->q == NULL)
2812 		goto err;
2813 
2814 	return 0;
2815 err:
2816 	pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2817 			    tx_ring->wq_base, tx_ring->wq_base_dma);
2818 	tx_ring->wq_base = NULL;
2819 pci_alloc_err:
2820 	netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2821 	return -ENOMEM;
2822 }
2823 
ql_free_lbq_buffers(struct ql_adapter * qdev,struct rx_ring * rx_ring)2824 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2825 {
2826 	struct bq_desc *lbq_desc;
2827 
2828 	uint32_t  curr_idx, clean_idx;
2829 
2830 	curr_idx = rx_ring->lbq_curr_idx;
2831 	clean_idx = rx_ring->lbq_clean_idx;
2832 	while (curr_idx != clean_idx) {
2833 		lbq_desc = &rx_ring->lbq[curr_idx];
2834 
2835 		if (lbq_desc->p.pg_chunk.last_flag) {
2836 			pci_unmap_page(qdev->pdev,
2837 				lbq_desc->p.pg_chunk.map,
2838 				ql_lbq_block_size(qdev),
2839 				       PCI_DMA_FROMDEVICE);
2840 			lbq_desc->p.pg_chunk.last_flag = 0;
2841 		}
2842 
2843 		put_page(lbq_desc->p.pg_chunk.page);
2844 		lbq_desc->p.pg_chunk.page = NULL;
2845 
2846 		if (++curr_idx == rx_ring->lbq_len)
2847 			curr_idx = 0;
2848 
2849 	}
2850 	if (rx_ring->pg_chunk.page) {
2851 		pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2852 			ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2853 		put_page(rx_ring->pg_chunk.page);
2854 		rx_ring->pg_chunk.page = NULL;
2855 	}
2856 }
2857 
ql_free_sbq_buffers(struct ql_adapter * qdev,struct rx_ring * rx_ring)2858 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2859 {
2860 	int i;
2861 	struct bq_desc *sbq_desc;
2862 
2863 	for (i = 0; i < rx_ring->sbq_len; i++) {
2864 		sbq_desc = &rx_ring->sbq[i];
2865 		if (sbq_desc == NULL) {
2866 			netif_err(qdev, ifup, qdev->ndev,
2867 				  "sbq_desc %d is NULL.\n", i);
2868 			return;
2869 		}
2870 		if (sbq_desc->p.skb) {
2871 			pci_unmap_single(qdev->pdev,
2872 					 dma_unmap_addr(sbq_desc, mapaddr),
2873 					 dma_unmap_len(sbq_desc, maplen),
2874 					 PCI_DMA_FROMDEVICE);
2875 			dev_kfree_skb(sbq_desc->p.skb);
2876 			sbq_desc->p.skb = NULL;
2877 		}
2878 	}
2879 }
2880 
2881 /* Free all large and small rx buffers associated
2882  * with the completion queues for this device.
2883  */
ql_free_rx_buffers(struct ql_adapter * qdev)2884 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2885 {
2886 	int i;
2887 	struct rx_ring *rx_ring;
2888 
2889 	for (i = 0; i < qdev->rx_ring_count; i++) {
2890 		rx_ring = &qdev->rx_ring[i];
2891 		if (rx_ring->lbq)
2892 			ql_free_lbq_buffers(qdev, rx_ring);
2893 		if (rx_ring->sbq)
2894 			ql_free_sbq_buffers(qdev, rx_ring);
2895 	}
2896 }
2897 
ql_alloc_rx_buffers(struct ql_adapter * qdev)2898 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2899 {
2900 	struct rx_ring *rx_ring;
2901 	int i;
2902 
2903 	for (i = 0; i < qdev->rx_ring_count; i++) {
2904 		rx_ring = &qdev->rx_ring[i];
2905 		if (rx_ring->type != TX_Q)
2906 			ql_update_buffer_queues(qdev, rx_ring);
2907 	}
2908 }
2909 
ql_init_lbq_ring(struct ql_adapter * qdev,struct rx_ring * rx_ring)2910 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2911 				struct rx_ring *rx_ring)
2912 {
2913 	int i;
2914 	struct bq_desc *lbq_desc;
2915 	__le64 *bq = rx_ring->lbq_base;
2916 
2917 	memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2918 	for (i = 0; i < rx_ring->lbq_len; i++) {
2919 		lbq_desc = &rx_ring->lbq[i];
2920 		memset(lbq_desc, 0, sizeof(*lbq_desc));
2921 		lbq_desc->index = i;
2922 		lbq_desc->addr = bq;
2923 		bq++;
2924 	}
2925 }
2926 
ql_init_sbq_ring(struct ql_adapter * qdev,struct rx_ring * rx_ring)2927 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2928 				struct rx_ring *rx_ring)
2929 {
2930 	int i;
2931 	struct bq_desc *sbq_desc;
2932 	__le64 *bq = rx_ring->sbq_base;
2933 
2934 	memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2935 	for (i = 0; i < rx_ring->sbq_len; i++) {
2936 		sbq_desc = &rx_ring->sbq[i];
2937 		memset(sbq_desc, 0, sizeof(*sbq_desc));
2938 		sbq_desc->index = i;
2939 		sbq_desc->addr = bq;
2940 		bq++;
2941 	}
2942 }
2943 
ql_free_rx_resources(struct ql_adapter * qdev,struct rx_ring * rx_ring)2944 static void ql_free_rx_resources(struct ql_adapter *qdev,
2945 				 struct rx_ring *rx_ring)
2946 {
2947 	/* Free the small buffer queue. */
2948 	if (rx_ring->sbq_base) {
2949 		pci_free_consistent(qdev->pdev,
2950 				    rx_ring->sbq_size,
2951 				    rx_ring->sbq_base, rx_ring->sbq_base_dma);
2952 		rx_ring->sbq_base = NULL;
2953 	}
2954 
2955 	/* Free the small buffer queue control blocks. */
2956 	kfree(rx_ring->sbq);
2957 	rx_ring->sbq = NULL;
2958 
2959 	/* Free the large buffer queue. */
2960 	if (rx_ring->lbq_base) {
2961 		pci_free_consistent(qdev->pdev,
2962 				    rx_ring->lbq_size,
2963 				    rx_ring->lbq_base, rx_ring->lbq_base_dma);
2964 		rx_ring->lbq_base = NULL;
2965 	}
2966 
2967 	/* Free the large buffer queue control blocks. */
2968 	kfree(rx_ring->lbq);
2969 	rx_ring->lbq = NULL;
2970 
2971 	/* Free the rx queue. */
2972 	if (rx_ring->cq_base) {
2973 		pci_free_consistent(qdev->pdev,
2974 				    rx_ring->cq_size,
2975 				    rx_ring->cq_base, rx_ring->cq_base_dma);
2976 		rx_ring->cq_base = NULL;
2977 	}
2978 }
2979 
2980 /* Allocate queues and buffers for this completions queue based
2981  * on the values in the parameter structure. */
ql_alloc_rx_resources(struct ql_adapter * qdev,struct rx_ring * rx_ring)2982 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2983 				 struct rx_ring *rx_ring)
2984 {
2985 
2986 	/*
2987 	 * Allocate the completion queue for this rx_ring.
2988 	 */
2989 	rx_ring->cq_base =
2990 	    pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2991 				 &rx_ring->cq_base_dma);
2992 
2993 	if (rx_ring->cq_base == NULL) {
2994 		netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2995 		return -ENOMEM;
2996 	}
2997 
2998 	if (rx_ring->sbq_len) {
2999 		/*
3000 		 * Allocate small buffer queue.
3001 		 */
3002 		rx_ring->sbq_base =
3003 		    pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
3004 					 &rx_ring->sbq_base_dma);
3005 
3006 		if (rx_ring->sbq_base == NULL) {
3007 			netif_err(qdev, ifup, qdev->ndev,
3008 				  "Small buffer queue allocation failed.\n");
3009 			goto err_mem;
3010 		}
3011 
3012 		/*
3013 		 * Allocate small buffer queue control blocks.
3014 		 */
3015 		rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3016 					     sizeof(struct bq_desc),
3017 					     GFP_KERNEL);
3018 		if (rx_ring->sbq == NULL)
3019 			goto err_mem;
3020 
3021 		ql_init_sbq_ring(qdev, rx_ring);
3022 	}
3023 
3024 	if (rx_ring->lbq_len) {
3025 		/*
3026 		 * Allocate large buffer queue.
3027 		 */
3028 		rx_ring->lbq_base =
3029 		    pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3030 					 &rx_ring->lbq_base_dma);
3031 
3032 		if (rx_ring->lbq_base == NULL) {
3033 			netif_err(qdev, ifup, qdev->ndev,
3034 				  "Large buffer queue allocation failed.\n");
3035 			goto err_mem;
3036 		}
3037 		/*
3038 		 * Allocate large buffer queue control blocks.
3039 		 */
3040 		rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3041 					     sizeof(struct bq_desc),
3042 					     GFP_KERNEL);
3043 		if (rx_ring->lbq == NULL)
3044 			goto err_mem;
3045 
3046 		ql_init_lbq_ring(qdev, rx_ring);
3047 	}
3048 
3049 	return 0;
3050 
3051 err_mem:
3052 	ql_free_rx_resources(qdev, rx_ring);
3053 	return -ENOMEM;
3054 }
3055 
ql_tx_ring_clean(struct ql_adapter * qdev)3056 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3057 {
3058 	struct tx_ring *tx_ring;
3059 	struct tx_ring_desc *tx_ring_desc;
3060 	int i, j;
3061 
3062 	/*
3063 	 * Loop through all queues and free
3064 	 * any resources.
3065 	 */
3066 	for (j = 0; j < qdev->tx_ring_count; j++) {
3067 		tx_ring = &qdev->tx_ring[j];
3068 		for (i = 0; i < tx_ring->wq_len; i++) {
3069 			tx_ring_desc = &tx_ring->q[i];
3070 			if (tx_ring_desc && tx_ring_desc->skb) {
3071 				netif_err(qdev, ifdown, qdev->ndev,
3072 					  "Freeing lost SKB %p, from queue %d, index %d.\n",
3073 					  tx_ring_desc->skb, j,
3074 					  tx_ring_desc->index);
3075 				ql_unmap_send(qdev, tx_ring_desc,
3076 					      tx_ring_desc->map_cnt);
3077 				dev_kfree_skb(tx_ring_desc->skb);
3078 				tx_ring_desc->skb = NULL;
3079 			}
3080 		}
3081 	}
3082 }
3083 
ql_free_mem_resources(struct ql_adapter * qdev)3084 static void ql_free_mem_resources(struct ql_adapter *qdev)
3085 {
3086 	int i;
3087 
3088 	for (i = 0; i < qdev->tx_ring_count; i++)
3089 		ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3090 	for (i = 0; i < qdev->rx_ring_count; i++)
3091 		ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3092 	ql_free_shadow_space(qdev);
3093 }
3094 
ql_alloc_mem_resources(struct ql_adapter * qdev)3095 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3096 {
3097 	int i;
3098 
3099 	/* Allocate space for our shadow registers and such. */
3100 	if (ql_alloc_shadow_space(qdev))
3101 		return -ENOMEM;
3102 
3103 	for (i = 0; i < qdev->rx_ring_count; i++) {
3104 		if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3105 			netif_err(qdev, ifup, qdev->ndev,
3106 				  "RX resource allocation failed.\n");
3107 			goto err_mem;
3108 		}
3109 	}
3110 	/* Allocate tx queue resources */
3111 	for (i = 0; i < qdev->tx_ring_count; i++) {
3112 		if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3113 			netif_err(qdev, ifup, qdev->ndev,
3114 				  "TX resource allocation failed.\n");
3115 			goto err_mem;
3116 		}
3117 	}
3118 	return 0;
3119 
3120 err_mem:
3121 	ql_free_mem_resources(qdev);
3122 	return -ENOMEM;
3123 }
3124 
3125 /* Set up the rx ring control block and pass it to the chip.
3126  * The control block is defined as
3127  * "Completion Queue Initialization Control Block", or cqicb.
3128  */
ql_start_rx_ring(struct ql_adapter * qdev,struct rx_ring * rx_ring)3129 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3130 {
3131 	struct cqicb *cqicb = &rx_ring->cqicb;
3132 	void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3133 		(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3134 	u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3135 		(rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3136 	void __iomem *doorbell_area =
3137 	    qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3138 	int err = 0;
3139 	u16 bq_len;
3140 	u64 tmp;
3141 	__le64 *base_indirect_ptr;
3142 	int page_entries;
3143 
3144 	/* Set up the shadow registers for this ring. */
3145 	rx_ring->prod_idx_sh_reg = shadow_reg;
3146 	rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3147 	*rx_ring->prod_idx_sh_reg = 0;
3148 	shadow_reg += sizeof(u64);
3149 	shadow_reg_dma += sizeof(u64);
3150 	rx_ring->lbq_base_indirect = shadow_reg;
3151 	rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3152 	shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3153 	shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3154 	rx_ring->sbq_base_indirect = shadow_reg;
3155 	rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3156 
3157 	/* PCI doorbell mem area + 0x00 for consumer index register */
3158 	rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3159 	rx_ring->cnsmr_idx = 0;
3160 	rx_ring->curr_entry = rx_ring->cq_base;
3161 
3162 	/* PCI doorbell mem area + 0x04 for valid register */
3163 	rx_ring->valid_db_reg = doorbell_area + 0x04;
3164 
3165 	/* PCI doorbell mem area + 0x18 for large buffer consumer */
3166 	rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3167 
3168 	/* PCI doorbell mem area + 0x1c */
3169 	rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3170 
3171 	memset((void *)cqicb, 0, sizeof(struct cqicb));
3172 	cqicb->msix_vect = rx_ring->irq;
3173 
3174 	bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3175 	cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3176 
3177 	cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3178 
3179 	cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3180 
3181 	/*
3182 	 * Set up the control block load flags.
3183 	 */
3184 	cqicb->flags = FLAGS_LC |	/* Load queue base address */
3185 	    FLAGS_LV |		/* Load MSI-X vector */
3186 	    FLAGS_LI;		/* Load irq delay values */
3187 	if (rx_ring->lbq_len) {
3188 		cqicb->flags |= FLAGS_LL;	/* Load lbq values */
3189 		tmp = (u64)rx_ring->lbq_base_dma;
3190 		base_indirect_ptr = rx_ring->lbq_base_indirect;
3191 		page_entries = 0;
3192 		do {
3193 			*base_indirect_ptr = cpu_to_le64(tmp);
3194 			tmp += DB_PAGE_SIZE;
3195 			base_indirect_ptr++;
3196 			page_entries++;
3197 		} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3198 		cqicb->lbq_addr =
3199 		    cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3200 		bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3201 			(u16) rx_ring->lbq_buf_size;
3202 		cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3203 		bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3204 			(u16) rx_ring->lbq_len;
3205 		cqicb->lbq_len = cpu_to_le16(bq_len);
3206 		rx_ring->lbq_prod_idx = 0;
3207 		rx_ring->lbq_curr_idx = 0;
3208 		rx_ring->lbq_clean_idx = 0;
3209 		rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3210 	}
3211 	if (rx_ring->sbq_len) {
3212 		cqicb->flags |= FLAGS_LS;	/* Load sbq values */
3213 		tmp = (u64)rx_ring->sbq_base_dma;
3214 		base_indirect_ptr = rx_ring->sbq_base_indirect;
3215 		page_entries = 0;
3216 		do {
3217 			*base_indirect_ptr = cpu_to_le64(tmp);
3218 			tmp += DB_PAGE_SIZE;
3219 			base_indirect_ptr++;
3220 			page_entries++;
3221 		} while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3222 		cqicb->sbq_addr =
3223 		    cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3224 		cqicb->sbq_buf_size =
3225 		    cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3226 		bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3227 			(u16) rx_ring->sbq_len;
3228 		cqicb->sbq_len = cpu_to_le16(bq_len);
3229 		rx_ring->sbq_prod_idx = 0;
3230 		rx_ring->sbq_curr_idx = 0;
3231 		rx_ring->sbq_clean_idx = 0;
3232 		rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3233 	}
3234 	switch (rx_ring->type) {
3235 	case TX_Q:
3236 		cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3237 		cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3238 		break;
3239 	case RX_Q:
3240 		/* Inbound completion handling rx_rings run in
3241 		 * separate NAPI contexts.
3242 		 */
3243 		netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3244 			       64);
3245 		cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3246 		cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3247 		break;
3248 	default:
3249 		netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3250 			     "Invalid rx_ring->type = %d.\n", rx_ring->type);
3251 	}
3252 	err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3253 			   CFG_LCQ, rx_ring->cq_id);
3254 	if (err) {
3255 		netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3256 		return err;
3257 	}
3258 	return err;
3259 }
3260 
ql_start_tx_ring(struct ql_adapter * qdev,struct tx_ring * tx_ring)3261 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3262 {
3263 	struct wqicb *wqicb = (struct wqicb *)tx_ring;
3264 	void __iomem *doorbell_area =
3265 	    qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3266 	void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3267 	    (tx_ring->wq_id * sizeof(u64));
3268 	u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3269 	    (tx_ring->wq_id * sizeof(u64));
3270 	int err = 0;
3271 
3272 	/*
3273 	 * Assign doorbell registers for this tx_ring.
3274 	 */
3275 	/* TX PCI doorbell mem area for tx producer index */
3276 	tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3277 	tx_ring->prod_idx = 0;
3278 	/* TX PCI doorbell mem area + 0x04 */
3279 	tx_ring->valid_db_reg = doorbell_area + 0x04;
3280 
3281 	/*
3282 	 * Assign shadow registers for this tx_ring.
3283 	 */
3284 	tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3285 	tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3286 
3287 	wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3288 	wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3289 				   Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3290 	wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3291 	wqicb->rid = 0;
3292 	wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3293 
3294 	wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3295 
3296 	ql_init_tx_ring(qdev, tx_ring);
3297 
3298 	err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3299 			   (u16) tx_ring->wq_id);
3300 	if (err) {
3301 		netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3302 		return err;
3303 	}
3304 	return err;
3305 }
3306 
ql_disable_msix(struct ql_adapter * qdev)3307 static void ql_disable_msix(struct ql_adapter *qdev)
3308 {
3309 	if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3310 		pci_disable_msix(qdev->pdev);
3311 		clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3312 		kfree(qdev->msi_x_entry);
3313 		qdev->msi_x_entry = NULL;
3314 	} else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3315 		pci_disable_msi(qdev->pdev);
3316 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3317 	}
3318 }
3319 
3320 /* We start by trying to get the number of vectors
3321  * stored in qdev->intr_count. If we don't get that
3322  * many then we reduce the count and try again.
3323  */
ql_enable_msix(struct ql_adapter * qdev)3324 static void ql_enable_msix(struct ql_adapter *qdev)
3325 {
3326 	int i, err;
3327 
3328 	/* Get the MSIX vectors. */
3329 	if (qlge_irq_type == MSIX_IRQ) {
3330 		/* Try to alloc space for the msix struct,
3331 		 * if it fails then go to MSI/legacy.
3332 		 */
3333 		qdev->msi_x_entry = kcalloc(qdev->intr_count,
3334 					    sizeof(struct msix_entry),
3335 					    GFP_KERNEL);
3336 		if (!qdev->msi_x_entry) {
3337 			qlge_irq_type = MSI_IRQ;
3338 			goto msi;
3339 		}
3340 
3341 		for (i = 0; i < qdev->intr_count; i++)
3342 			qdev->msi_x_entry[i].entry = i;
3343 
3344 		err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3345 					    1, qdev->intr_count);
3346 		if (err < 0) {
3347 			kfree(qdev->msi_x_entry);
3348 			qdev->msi_x_entry = NULL;
3349 			netif_warn(qdev, ifup, qdev->ndev,
3350 				   "MSI-X Enable failed, trying MSI.\n");
3351 			qlge_irq_type = MSI_IRQ;
3352 		} else {
3353 			qdev->intr_count = err;
3354 			set_bit(QL_MSIX_ENABLED, &qdev->flags);
3355 			netif_info(qdev, ifup, qdev->ndev,
3356 				   "MSI-X Enabled, got %d vectors.\n",
3357 				   qdev->intr_count);
3358 			return;
3359 		}
3360 	}
3361 msi:
3362 	qdev->intr_count = 1;
3363 	if (qlge_irq_type == MSI_IRQ) {
3364 		if (!pci_enable_msi(qdev->pdev)) {
3365 			set_bit(QL_MSI_ENABLED, &qdev->flags);
3366 			netif_info(qdev, ifup, qdev->ndev,
3367 				   "Running with MSI interrupts.\n");
3368 			return;
3369 		}
3370 	}
3371 	qlge_irq_type = LEG_IRQ;
3372 	netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3373 		     "Running with legacy interrupts.\n");
3374 }
3375 
3376 /* Each vector services 1 RSS ring and and 1 or more
3377  * TX completion rings.  This function loops through
3378  * the TX completion rings and assigns the vector that
3379  * will service it.  An example would be if there are
3380  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3381  * This would mean that vector 0 would service RSS ring 0
3382  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3383  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3384  */
ql_set_tx_vect(struct ql_adapter * qdev)3385 static void ql_set_tx_vect(struct ql_adapter *qdev)
3386 {
3387 	int i, j, vect;
3388 	u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3389 
3390 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3391 		/* Assign irq vectors to TX rx_rings.*/
3392 		for (vect = 0, j = 0, i = qdev->rss_ring_count;
3393 					 i < qdev->rx_ring_count; i++) {
3394 			if (j == tx_rings_per_vector) {
3395 				vect++;
3396 				j = 0;
3397 			}
3398 			qdev->rx_ring[i].irq = vect;
3399 			j++;
3400 		}
3401 	} else {
3402 		/* For single vector all rings have an irq
3403 		 * of zero.
3404 		 */
3405 		for (i = 0; i < qdev->rx_ring_count; i++)
3406 			qdev->rx_ring[i].irq = 0;
3407 	}
3408 }
3409 
3410 /* Set the interrupt mask for this vector.  Each vector
3411  * will service 1 RSS ring and 1 or more TX completion
3412  * rings.  This function sets up a bit mask per vector
3413  * that indicates which rings it services.
3414  */
ql_set_irq_mask(struct ql_adapter * qdev,struct intr_context * ctx)3415 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3416 {
3417 	int j, vect = ctx->intr;
3418 	u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3419 
3420 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3421 		/* Add the RSS ring serviced by this vector
3422 		 * to the mask.
3423 		 */
3424 		ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3425 		/* Add the TX ring(s) serviced by this vector
3426 		 * to the mask. */
3427 		for (j = 0; j < tx_rings_per_vector; j++) {
3428 			ctx->irq_mask |=
3429 			(1 << qdev->rx_ring[qdev->rss_ring_count +
3430 			(vect * tx_rings_per_vector) + j].cq_id);
3431 		}
3432 	} else {
3433 		/* For single vector we just shift each queue's
3434 		 * ID into the mask.
3435 		 */
3436 		for (j = 0; j < qdev->rx_ring_count; j++)
3437 			ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3438 	}
3439 }
3440 
3441 /*
3442  * Here we build the intr_context structures based on
3443  * our rx_ring count and intr vector count.
3444  * The intr_context structure is used to hook each vector
3445  * to possibly different handlers.
3446  */
ql_resolve_queues_to_irqs(struct ql_adapter * qdev)3447 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3448 {
3449 	int i = 0;
3450 	struct intr_context *intr_context = &qdev->intr_context[0];
3451 
3452 	if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3453 		/* Each rx_ring has it's
3454 		 * own intr_context since we have separate
3455 		 * vectors for each queue.
3456 		 */
3457 		for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3458 			qdev->rx_ring[i].irq = i;
3459 			intr_context->intr = i;
3460 			intr_context->qdev = qdev;
3461 			/* Set up this vector's bit-mask that indicates
3462 			 * which queues it services.
3463 			 */
3464 			ql_set_irq_mask(qdev, intr_context);
3465 			/*
3466 			 * We set up each vectors enable/disable/read bits so
3467 			 * there's no bit/mask calculations in the critical path.
3468 			 */
3469 			intr_context->intr_en_mask =
3470 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3471 			    INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3472 			    | i;
3473 			intr_context->intr_dis_mask =
3474 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3475 			    INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3476 			    INTR_EN_IHD | i;
3477 			intr_context->intr_read_mask =
3478 			    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3479 			    INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3480 			    i;
3481 			if (i == 0) {
3482 				/* The first vector/queue handles
3483 				 * broadcast/multicast, fatal errors,
3484 				 * and firmware events.  This in addition
3485 				 * to normal inbound NAPI processing.
3486 				 */
3487 				intr_context->handler = qlge_isr;
3488 				sprintf(intr_context->name, "%s-rx-%d",
3489 					qdev->ndev->name, i);
3490 			} else {
3491 				/*
3492 				 * Inbound queues handle unicast frames only.
3493 				 */
3494 				intr_context->handler = qlge_msix_rx_isr;
3495 				sprintf(intr_context->name, "%s-rx-%d",
3496 					qdev->ndev->name, i);
3497 			}
3498 		}
3499 	} else {
3500 		/*
3501 		 * All rx_rings use the same intr_context since
3502 		 * there is only one vector.
3503 		 */
3504 		intr_context->intr = 0;
3505 		intr_context->qdev = qdev;
3506 		/*
3507 		 * We set up each vectors enable/disable/read bits so
3508 		 * there's no bit/mask calculations in the critical path.
3509 		 */
3510 		intr_context->intr_en_mask =
3511 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3512 		intr_context->intr_dis_mask =
3513 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3514 		    INTR_EN_TYPE_DISABLE;
3515 		intr_context->intr_read_mask =
3516 		    INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3517 		/*
3518 		 * Single interrupt means one handler for all rings.
3519 		 */
3520 		intr_context->handler = qlge_isr;
3521 		sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3522 		/* Set up this vector's bit-mask that indicates
3523 		 * which queues it services. In this case there is
3524 		 * a single vector so it will service all RSS and
3525 		 * TX completion rings.
3526 		 */
3527 		ql_set_irq_mask(qdev, intr_context);
3528 	}
3529 	/* Tell the TX completion rings which MSIx vector
3530 	 * they will be using.
3531 	 */
3532 	ql_set_tx_vect(qdev);
3533 }
3534 
ql_free_irq(struct ql_adapter * qdev)3535 static void ql_free_irq(struct ql_adapter *qdev)
3536 {
3537 	int i;
3538 	struct intr_context *intr_context = &qdev->intr_context[0];
3539 
3540 	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3541 		if (intr_context->hooked) {
3542 			if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3543 				free_irq(qdev->msi_x_entry[i].vector,
3544 					 &qdev->rx_ring[i]);
3545 			} else {
3546 				free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3547 			}
3548 		}
3549 	}
3550 	ql_disable_msix(qdev);
3551 }
3552 
ql_request_irq(struct ql_adapter * qdev)3553 static int ql_request_irq(struct ql_adapter *qdev)
3554 {
3555 	int i;
3556 	int status = 0;
3557 	struct pci_dev *pdev = qdev->pdev;
3558 	struct intr_context *intr_context = &qdev->intr_context[0];
3559 
3560 	ql_resolve_queues_to_irqs(qdev);
3561 
3562 	for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3563 		atomic_set(&intr_context->irq_cnt, 0);
3564 		if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3565 			status = request_irq(qdev->msi_x_entry[i].vector,
3566 					     intr_context->handler,
3567 					     0,
3568 					     intr_context->name,
3569 					     &qdev->rx_ring[i]);
3570 			if (status) {
3571 				netif_err(qdev, ifup, qdev->ndev,
3572 					  "Failed request for MSIX interrupt %d.\n",
3573 					  i);
3574 				goto err_irq;
3575 			}
3576 		} else {
3577 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3578 				     "trying msi or legacy interrupts.\n");
3579 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3580 				     "%s: irq = %d.\n", __func__, pdev->irq);
3581 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3582 				     "%s: context->name = %s.\n", __func__,
3583 				     intr_context->name);
3584 			netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3585 				     "%s: dev_id = 0x%p.\n", __func__,
3586 				     &qdev->rx_ring[0]);
3587 			status =
3588 			    request_irq(pdev->irq, qlge_isr,
3589 					test_bit(QL_MSI_ENABLED,
3590 						 &qdev->
3591 						 flags) ? 0 : IRQF_SHARED,
3592 					intr_context->name, &qdev->rx_ring[0]);
3593 			if (status)
3594 				goto err_irq;
3595 
3596 			netif_err(qdev, ifup, qdev->ndev,
3597 				  "Hooked intr %d, queue type %s, with name %s.\n",
3598 				  i,
3599 				  qdev->rx_ring[0].type == DEFAULT_Q ?
3600 				  "DEFAULT_Q" :
3601 				  qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3602 				  qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3603 				  intr_context->name);
3604 		}
3605 		intr_context->hooked = 1;
3606 	}
3607 	return status;
3608 err_irq:
3609 	netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3610 	ql_free_irq(qdev);
3611 	return status;
3612 }
3613 
ql_start_rss(struct ql_adapter * qdev)3614 static int ql_start_rss(struct ql_adapter *qdev)
3615 {
3616 	static const u8 init_hash_seed[] = {
3617 		0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3618 		0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3619 		0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3620 		0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3621 		0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3622 	};
3623 	struct ricb *ricb = &qdev->ricb;
3624 	int status = 0;
3625 	int i;
3626 	u8 *hash_id = (u8 *) ricb->hash_cq_id;
3627 
3628 	memset((void *)ricb, 0, sizeof(*ricb));
3629 
3630 	ricb->base_cq = RSS_L4K;
3631 	ricb->flags =
3632 		(RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3633 	ricb->mask = cpu_to_le16((u16)(0x3ff));
3634 
3635 	/*
3636 	 * Fill out the Indirection Table.
3637 	 */
3638 	for (i = 0; i < 1024; i++)
3639 		hash_id[i] = (i & (qdev->rss_ring_count - 1));
3640 
3641 	memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3642 	memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3643 
3644 	status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3645 	if (status) {
3646 		netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3647 		return status;
3648 	}
3649 	return status;
3650 }
3651 
ql_clear_routing_entries(struct ql_adapter * qdev)3652 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3653 {
3654 	int i, status = 0;
3655 
3656 	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3657 	if (status)
3658 		return status;
3659 	/* Clear all the entries in the routing table. */
3660 	for (i = 0; i < 16; i++) {
3661 		status = ql_set_routing_reg(qdev, i, 0, 0);
3662 		if (status) {
3663 			netif_err(qdev, ifup, qdev->ndev,
3664 				  "Failed to init routing register for CAM packets.\n");
3665 			break;
3666 		}
3667 	}
3668 	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3669 	return status;
3670 }
3671 
3672 /* Initialize the frame-to-queue routing. */
ql_route_initialize(struct ql_adapter * qdev)3673 static int ql_route_initialize(struct ql_adapter *qdev)
3674 {
3675 	int status = 0;
3676 
3677 	/* Clear all the entries in the routing table. */
3678 	status = ql_clear_routing_entries(qdev);
3679 	if (status)
3680 		return status;
3681 
3682 	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3683 	if (status)
3684 		return status;
3685 
3686 	status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3687 						RT_IDX_IP_CSUM_ERR, 1);
3688 	if (status) {
3689 		netif_err(qdev, ifup, qdev->ndev,
3690 			"Failed to init routing register "
3691 			"for IP CSUM error packets.\n");
3692 		goto exit;
3693 	}
3694 	status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3695 						RT_IDX_TU_CSUM_ERR, 1);
3696 	if (status) {
3697 		netif_err(qdev, ifup, qdev->ndev,
3698 			"Failed to init routing register "
3699 			"for TCP/UDP CSUM error packets.\n");
3700 		goto exit;
3701 	}
3702 	status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3703 	if (status) {
3704 		netif_err(qdev, ifup, qdev->ndev,
3705 			  "Failed to init routing register for broadcast packets.\n");
3706 		goto exit;
3707 	}
3708 	/* If we have more than one inbound queue, then turn on RSS in the
3709 	 * routing block.
3710 	 */
3711 	if (qdev->rss_ring_count > 1) {
3712 		status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3713 					RT_IDX_RSS_MATCH, 1);
3714 		if (status) {
3715 			netif_err(qdev, ifup, qdev->ndev,
3716 				  "Failed to init routing register for MATCH RSS packets.\n");
3717 			goto exit;
3718 		}
3719 	}
3720 
3721 	status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3722 				    RT_IDX_CAM_HIT, 1);
3723 	if (status)
3724 		netif_err(qdev, ifup, qdev->ndev,
3725 			  "Failed to init routing register for CAM packets.\n");
3726 exit:
3727 	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3728 	return status;
3729 }
3730 
ql_cam_route_initialize(struct ql_adapter * qdev)3731 int ql_cam_route_initialize(struct ql_adapter *qdev)
3732 {
3733 	int status, set;
3734 
3735 	/* If check if the link is up and use to
3736 	 * determine if we are setting or clearing
3737 	 * the MAC address in the CAM.
3738 	 */
3739 	set = ql_read32(qdev, STS);
3740 	set &= qdev->port_link_up;
3741 	status = ql_set_mac_addr(qdev, set);
3742 	if (status) {
3743 		netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3744 		return status;
3745 	}
3746 
3747 	status = ql_route_initialize(qdev);
3748 	if (status)
3749 		netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3750 
3751 	return status;
3752 }
3753 
ql_adapter_initialize(struct ql_adapter * qdev)3754 static int ql_adapter_initialize(struct ql_adapter *qdev)
3755 {
3756 	u32 value, mask;
3757 	int i;
3758 	int status = 0;
3759 
3760 	/*
3761 	 * Set up the System register to halt on errors.
3762 	 */
3763 	value = SYS_EFE | SYS_FAE;
3764 	mask = value << 16;
3765 	ql_write32(qdev, SYS, mask | value);
3766 
3767 	/* Set the default queue, and VLAN behavior. */
3768 	value = NIC_RCV_CFG_DFQ;
3769 	mask = NIC_RCV_CFG_DFQ_MASK;
3770 	if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3771 		value |= NIC_RCV_CFG_RV;
3772 		mask |= (NIC_RCV_CFG_RV << 16);
3773 	}
3774 	ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3775 
3776 	/* Set the MPI interrupt to enabled. */
3777 	ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3778 
3779 	/* Enable the function, set pagesize, enable error checking. */
3780 	value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3781 	    FSC_EC | FSC_VM_PAGE_4K;
3782 	value |= SPLT_SETTING;
3783 
3784 	/* Set/clear header splitting. */
3785 	mask = FSC_VM_PAGESIZE_MASK |
3786 	    FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3787 	ql_write32(qdev, FSC, mask | value);
3788 
3789 	ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3790 
3791 	/* Set RX packet routing to use port/pci function on which the
3792 	 * packet arrived on in addition to usual frame routing.
3793 	 * This is helpful on bonding where both interfaces can have
3794 	 * the same MAC address.
3795 	 */
3796 	ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3797 	/* Reroute all packets to our Interface.
3798 	 * They may have been routed to MPI firmware
3799 	 * due to WOL.
3800 	 */
3801 	value = ql_read32(qdev, MGMT_RCV_CFG);
3802 	value &= ~MGMT_RCV_CFG_RM;
3803 	mask = 0xffff0000;
3804 
3805 	/* Sticky reg needs clearing due to WOL. */
3806 	ql_write32(qdev, MGMT_RCV_CFG, mask);
3807 	ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3808 
3809 	/* Default WOL is enable on Mezz cards */
3810 	if (qdev->pdev->subsystem_device == 0x0068 ||
3811 			qdev->pdev->subsystem_device == 0x0180)
3812 		qdev->wol = WAKE_MAGIC;
3813 
3814 	/* Start up the rx queues. */
3815 	for (i = 0; i < qdev->rx_ring_count; i++) {
3816 		status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3817 		if (status) {
3818 			netif_err(qdev, ifup, qdev->ndev,
3819 				  "Failed to start rx ring[%d].\n", i);
3820 			return status;
3821 		}
3822 	}
3823 
3824 	/* If there is more than one inbound completion queue
3825 	 * then download a RICB to configure RSS.
3826 	 */
3827 	if (qdev->rss_ring_count > 1) {
3828 		status = ql_start_rss(qdev);
3829 		if (status) {
3830 			netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3831 			return status;
3832 		}
3833 	}
3834 
3835 	/* Start up the tx queues. */
3836 	for (i = 0; i < qdev->tx_ring_count; i++) {
3837 		status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3838 		if (status) {
3839 			netif_err(qdev, ifup, qdev->ndev,
3840 				  "Failed to start tx ring[%d].\n", i);
3841 			return status;
3842 		}
3843 	}
3844 
3845 	/* Initialize the port and set the max framesize. */
3846 	status = qdev->nic_ops->port_initialize(qdev);
3847 	if (status)
3848 		netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3849 
3850 	/* Set up the MAC address and frame routing filter. */
3851 	status = ql_cam_route_initialize(qdev);
3852 	if (status) {
3853 		netif_err(qdev, ifup, qdev->ndev,
3854 			  "Failed to init CAM/Routing tables.\n");
3855 		return status;
3856 	}
3857 
3858 	/* Start NAPI for the RSS queues. */
3859 	for (i = 0; i < qdev->rss_ring_count; i++)
3860 		napi_enable(&qdev->rx_ring[i].napi);
3861 
3862 	return status;
3863 }
3864 
3865 /* Issue soft reset to chip. */
ql_adapter_reset(struct ql_adapter * qdev)3866 static int ql_adapter_reset(struct ql_adapter *qdev)
3867 {
3868 	u32 value;
3869 	int status = 0;
3870 	unsigned long end_jiffies;
3871 
3872 	/* Clear all the entries in the routing table. */
3873 	status = ql_clear_routing_entries(qdev);
3874 	if (status) {
3875 		netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3876 		return status;
3877 	}
3878 
3879 	/* Check if bit is set then skip the mailbox command and
3880 	 * clear the bit, else we are in normal reset process.
3881 	 */
3882 	if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3883 		/* Stop management traffic. */
3884 		ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3885 
3886 		/* Wait for the NIC and MGMNT FIFOs to empty. */
3887 		ql_wait_fifo_empty(qdev);
3888 	} else
3889 		clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3890 
3891 	ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3892 
3893 	end_jiffies = jiffies + usecs_to_jiffies(30);
3894 	do {
3895 		value = ql_read32(qdev, RST_FO);
3896 		if ((value & RST_FO_FR) == 0)
3897 			break;
3898 		cpu_relax();
3899 	} while (time_before(jiffies, end_jiffies));
3900 
3901 	if (value & RST_FO_FR) {
3902 		netif_err(qdev, ifdown, qdev->ndev,
3903 			  "ETIMEDOUT!!! errored out of resetting the chip!\n");
3904 		status = -ETIMEDOUT;
3905 	}
3906 
3907 	/* Resume management traffic. */
3908 	ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3909 	return status;
3910 }
3911 
ql_display_dev_info(struct net_device * ndev)3912 static void ql_display_dev_info(struct net_device *ndev)
3913 {
3914 	struct ql_adapter *qdev = netdev_priv(ndev);
3915 
3916 	netif_info(qdev, probe, qdev->ndev,
3917 		   "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3918 		   "XG Roll = %d, XG Rev = %d.\n",
3919 		   qdev->func,
3920 		   qdev->port,
3921 		   qdev->chip_rev_id & 0x0000000f,
3922 		   qdev->chip_rev_id >> 4 & 0x0000000f,
3923 		   qdev->chip_rev_id >> 8 & 0x0000000f,
3924 		   qdev->chip_rev_id >> 12 & 0x0000000f);
3925 	netif_info(qdev, probe, qdev->ndev,
3926 		   "MAC address %pM\n", ndev->dev_addr);
3927 }
3928 
ql_wol(struct ql_adapter * qdev)3929 static int ql_wol(struct ql_adapter *qdev)
3930 {
3931 	int status = 0;
3932 	u32 wol = MB_WOL_DISABLE;
3933 
3934 	/* The CAM is still intact after a reset, but if we
3935 	 * are doing WOL, then we may need to program the
3936 	 * routing regs. We would also need to issue the mailbox
3937 	 * commands to instruct the MPI what to do per the ethtool
3938 	 * settings.
3939 	 */
3940 
3941 	if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3942 			WAKE_MCAST | WAKE_BCAST)) {
3943 		netif_err(qdev, ifdown, qdev->ndev,
3944 			  "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3945 			  qdev->wol);
3946 		return -EINVAL;
3947 	}
3948 
3949 	if (qdev->wol & WAKE_MAGIC) {
3950 		status = ql_mb_wol_set_magic(qdev, 1);
3951 		if (status) {
3952 			netif_err(qdev, ifdown, qdev->ndev,
3953 				  "Failed to set magic packet on %s.\n",
3954 				  qdev->ndev->name);
3955 			return status;
3956 		} else
3957 			netif_info(qdev, drv, qdev->ndev,
3958 				   "Enabled magic packet successfully on %s.\n",
3959 				   qdev->ndev->name);
3960 
3961 		wol |= MB_WOL_MAGIC_PKT;
3962 	}
3963 
3964 	if (qdev->wol) {
3965 		wol |= MB_WOL_MODE_ON;
3966 		status = ql_mb_wol_mode(qdev, wol);
3967 		netif_err(qdev, drv, qdev->ndev,
3968 			  "WOL %s (wol code 0x%x) on %s\n",
3969 			  (status == 0) ? "Successfully set" : "Failed",
3970 			  wol, qdev->ndev->name);
3971 	}
3972 
3973 	return status;
3974 }
3975 
ql_cancel_all_work_sync(struct ql_adapter * qdev)3976 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3977 {
3978 
3979 	/* Don't kill the reset worker thread if we
3980 	 * are in the process of recovery.
3981 	 */
3982 	if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3983 		cancel_delayed_work_sync(&qdev->asic_reset_work);
3984 	cancel_delayed_work_sync(&qdev->mpi_reset_work);
3985 	cancel_delayed_work_sync(&qdev->mpi_work);
3986 	cancel_delayed_work_sync(&qdev->mpi_idc_work);
3987 	cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3988 	cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3989 }
3990 
ql_adapter_down(struct ql_adapter * qdev)3991 static int ql_adapter_down(struct ql_adapter *qdev)
3992 {
3993 	int i, status = 0;
3994 
3995 	ql_link_off(qdev);
3996 
3997 	ql_cancel_all_work_sync(qdev);
3998 
3999 	for (i = 0; i < qdev->rss_ring_count; i++)
4000 		napi_disable(&qdev->rx_ring[i].napi);
4001 
4002 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
4003 
4004 	ql_disable_interrupts(qdev);
4005 
4006 	ql_tx_ring_clean(qdev);
4007 
4008 	/* Call netif_napi_del() from common point.
4009 	 */
4010 	for (i = 0; i < qdev->rss_ring_count; i++)
4011 		netif_napi_del(&qdev->rx_ring[i].napi);
4012 
4013 	status = ql_adapter_reset(qdev);
4014 	if (status)
4015 		netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4016 			  qdev->func);
4017 	ql_free_rx_buffers(qdev);
4018 
4019 	return status;
4020 }
4021 
ql_adapter_up(struct ql_adapter * qdev)4022 static int ql_adapter_up(struct ql_adapter *qdev)
4023 {
4024 	int err = 0;
4025 
4026 	err = ql_adapter_initialize(qdev);
4027 	if (err) {
4028 		netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4029 		goto err_init;
4030 	}
4031 	set_bit(QL_ADAPTER_UP, &qdev->flags);
4032 	ql_alloc_rx_buffers(qdev);
4033 	/* If the port is initialized and the
4034 	 * link is up the turn on the carrier.
4035 	 */
4036 	if ((ql_read32(qdev, STS) & qdev->port_init) &&
4037 			(ql_read32(qdev, STS) & qdev->port_link_up))
4038 		ql_link_on(qdev);
4039 	/* Restore rx mode. */
4040 	clear_bit(QL_ALLMULTI, &qdev->flags);
4041 	clear_bit(QL_PROMISCUOUS, &qdev->flags);
4042 	qlge_set_multicast_list(qdev->ndev);
4043 
4044 	/* Restore vlan setting. */
4045 	qlge_restore_vlan(qdev);
4046 
4047 	ql_enable_interrupts(qdev);
4048 	ql_enable_all_completion_interrupts(qdev);
4049 	netif_tx_start_all_queues(qdev->ndev);
4050 
4051 	return 0;
4052 err_init:
4053 	ql_adapter_reset(qdev);
4054 	return err;
4055 }
4056 
ql_release_adapter_resources(struct ql_adapter * qdev)4057 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4058 {
4059 	ql_free_mem_resources(qdev);
4060 	ql_free_irq(qdev);
4061 }
4062 
ql_get_adapter_resources(struct ql_adapter * qdev)4063 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4064 {
4065 	int status = 0;
4066 
4067 	if (ql_alloc_mem_resources(qdev)) {
4068 		netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
4069 		return -ENOMEM;
4070 	}
4071 	status = ql_request_irq(qdev);
4072 	return status;
4073 }
4074 
qlge_close(struct net_device * ndev)4075 static int qlge_close(struct net_device *ndev)
4076 {
4077 	struct ql_adapter *qdev = netdev_priv(ndev);
4078 
4079 	/* If we hit pci_channel_io_perm_failure
4080 	 * failure condition, then we already
4081 	 * brought the adapter down.
4082 	 */
4083 	if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4084 		netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4085 		clear_bit(QL_EEH_FATAL, &qdev->flags);
4086 		return 0;
4087 	}
4088 
4089 	/*
4090 	 * Wait for device to recover from a reset.
4091 	 * (Rarely happens, but possible.)
4092 	 */
4093 	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4094 		msleep(1);
4095 	ql_adapter_down(qdev);
4096 	ql_release_adapter_resources(qdev);
4097 	return 0;
4098 }
4099 
ql_configure_rings(struct ql_adapter * qdev)4100 static int ql_configure_rings(struct ql_adapter *qdev)
4101 {
4102 	int i;
4103 	struct rx_ring *rx_ring;
4104 	struct tx_ring *tx_ring;
4105 	int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4106 	unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4107 		LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4108 
4109 	qdev->lbq_buf_order = get_order(lbq_buf_len);
4110 
4111 	/* In a perfect world we have one RSS ring for each CPU
4112 	 * and each has it's own vector.  To do that we ask for
4113 	 * cpu_cnt vectors.  ql_enable_msix() will adjust the
4114 	 * vector count to what we actually get.  We then
4115 	 * allocate an RSS ring for each.
4116 	 * Essentially, we are doing min(cpu_count, msix_vector_count).
4117 	 */
4118 	qdev->intr_count = cpu_cnt;
4119 	ql_enable_msix(qdev);
4120 	/* Adjust the RSS ring count to the actual vector count. */
4121 	qdev->rss_ring_count = qdev->intr_count;
4122 	qdev->tx_ring_count = cpu_cnt;
4123 	qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4124 
4125 	for (i = 0; i < qdev->tx_ring_count; i++) {
4126 		tx_ring = &qdev->tx_ring[i];
4127 		memset((void *)tx_ring, 0, sizeof(*tx_ring));
4128 		tx_ring->qdev = qdev;
4129 		tx_ring->wq_id = i;
4130 		tx_ring->wq_len = qdev->tx_ring_size;
4131 		tx_ring->wq_size =
4132 		    tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4133 
4134 		/*
4135 		 * The completion queue ID for the tx rings start
4136 		 * immediately after the rss rings.
4137 		 */
4138 		tx_ring->cq_id = qdev->rss_ring_count + i;
4139 	}
4140 
4141 	for (i = 0; i < qdev->rx_ring_count; i++) {
4142 		rx_ring = &qdev->rx_ring[i];
4143 		memset((void *)rx_ring, 0, sizeof(*rx_ring));
4144 		rx_ring->qdev = qdev;
4145 		rx_ring->cq_id = i;
4146 		rx_ring->cpu = i % cpu_cnt;	/* CPU to run handler on. */
4147 		if (i < qdev->rss_ring_count) {
4148 			/*
4149 			 * Inbound (RSS) queues.
4150 			 */
4151 			rx_ring->cq_len = qdev->rx_ring_size;
4152 			rx_ring->cq_size =
4153 			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4154 			rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4155 			rx_ring->lbq_size =
4156 			    rx_ring->lbq_len * sizeof(__le64);
4157 			rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4158 			rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4159 			rx_ring->sbq_size =
4160 			    rx_ring->sbq_len * sizeof(__le64);
4161 			rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4162 			rx_ring->type = RX_Q;
4163 		} else {
4164 			/*
4165 			 * Outbound queue handles outbound completions only.
4166 			 */
4167 			/* outbound cq is same size as tx_ring it services. */
4168 			rx_ring->cq_len = qdev->tx_ring_size;
4169 			rx_ring->cq_size =
4170 			    rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4171 			rx_ring->lbq_len = 0;
4172 			rx_ring->lbq_size = 0;
4173 			rx_ring->lbq_buf_size = 0;
4174 			rx_ring->sbq_len = 0;
4175 			rx_ring->sbq_size = 0;
4176 			rx_ring->sbq_buf_size = 0;
4177 			rx_ring->type = TX_Q;
4178 		}
4179 	}
4180 	return 0;
4181 }
4182 
qlge_open(struct net_device * ndev)4183 static int qlge_open(struct net_device *ndev)
4184 {
4185 	int err = 0;
4186 	struct ql_adapter *qdev = netdev_priv(ndev);
4187 
4188 	err = ql_adapter_reset(qdev);
4189 	if (err)
4190 		return err;
4191 
4192 	err = ql_configure_rings(qdev);
4193 	if (err)
4194 		return err;
4195 
4196 	err = ql_get_adapter_resources(qdev);
4197 	if (err)
4198 		goto error_up;
4199 
4200 	err = ql_adapter_up(qdev);
4201 	if (err)
4202 		goto error_up;
4203 
4204 	return err;
4205 
4206 error_up:
4207 	ql_release_adapter_resources(qdev);
4208 	return err;
4209 }
4210 
ql_change_rx_buffers(struct ql_adapter * qdev)4211 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4212 {
4213 	struct rx_ring *rx_ring;
4214 	int i, status;
4215 	u32 lbq_buf_len;
4216 
4217 	/* Wait for an outstanding reset to complete. */
4218 	if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4219 		int i = 4;
4220 
4221 		while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4222 			netif_err(qdev, ifup, qdev->ndev,
4223 				  "Waiting for adapter UP...\n");
4224 			ssleep(1);
4225 		}
4226 
4227 		if (!i) {
4228 			netif_err(qdev, ifup, qdev->ndev,
4229 				  "Timed out waiting for adapter UP\n");
4230 			return -ETIMEDOUT;
4231 		}
4232 	}
4233 
4234 	status = ql_adapter_down(qdev);
4235 	if (status)
4236 		goto error;
4237 
4238 	/* Get the new rx buffer size. */
4239 	lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4240 		LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4241 	qdev->lbq_buf_order = get_order(lbq_buf_len);
4242 
4243 	for (i = 0; i < qdev->rss_ring_count; i++) {
4244 		rx_ring = &qdev->rx_ring[i];
4245 		/* Set the new size. */
4246 		rx_ring->lbq_buf_size = lbq_buf_len;
4247 	}
4248 
4249 	status = ql_adapter_up(qdev);
4250 	if (status)
4251 		goto error;
4252 
4253 	return status;
4254 error:
4255 	netif_alert(qdev, ifup, qdev->ndev,
4256 		    "Driver up/down cycle failed, closing device.\n");
4257 	set_bit(QL_ADAPTER_UP, &qdev->flags);
4258 	dev_close(qdev->ndev);
4259 	return status;
4260 }
4261 
qlge_change_mtu(struct net_device * ndev,int new_mtu)4262 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4263 {
4264 	struct ql_adapter *qdev = netdev_priv(ndev);
4265 	int status;
4266 
4267 	if (ndev->mtu == 1500 && new_mtu == 9000) {
4268 		netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4269 	} else if (ndev->mtu == 9000 && new_mtu == 1500) {
4270 		netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4271 	} else
4272 		return -EINVAL;
4273 
4274 	queue_delayed_work(qdev->workqueue,
4275 			&qdev->mpi_port_cfg_work, 3*HZ);
4276 
4277 	ndev->mtu = new_mtu;
4278 
4279 	if (!netif_running(qdev->ndev)) {
4280 		return 0;
4281 	}
4282 
4283 	status = ql_change_rx_buffers(qdev);
4284 	if (status) {
4285 		netif_err(qdev, ifup, qdev->ndev,
4286 			  "Changing MTU failed.\n");
4287 	}
4288 
4289 	return status;
4290 }
4291 
qlge_get_stats(struct net_device * ndev)4292 static struct net_device_stats *qlge_get_stats(struct net_device
4293 					       *ndev)
4294 {
4295 	struct ql_adapter *qdev = netdev_priv(ndev);
4296 	struct rx_ring *rx_ring = &qdev->rx_ring[0];
4297 	struct tx_ring *tx_ring = &qdev->tx_ring[0];
4298 	unsigned long pkts, mcast, dropped, errors, bytes;
4299 	int i;
4300 
4301 	/* Get RX stats. */
4302 	pkts = mcast = dropped = errors = bytes = 0;
4303 	for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4304 			pkts += rx_ring->rx_packets;
4305 			bytes += rx_ring->rx_bytes;
4306 			dropped += rx_ring->rx_dropped;
4307 			errors += rx_ring->rx_errors;
4308 			mcast += rx_ring->rx_multicast;
4309 	}
4310 	ndev->stats.rx_packets = pkts;
4311 	ndev->stats.rx_bytes = bytes;
4312 	ndev->stats.rx_dropped = dropped;
4313 	ndev->stats.rx_errors = errors;
4314 	ndev->stats.multicast = mcast;
4315 
4316 	/* Get TX stats. */
4317 	pkts = errors = bytes = 0;
4318 	for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4319 			pkts += tx_ring->tx_packets;
4320 			bytes += tx_ring->tx_bytes;
4321 			errors += tx_ring->tx_errors;
4322 	}
4323 	ndev->stats.tx_packets = pkts;
4324 	ndev->stats.tx_bytes = bytes;
4325 	ndev->stats.tx_errors = errors;
4326 	return &ndev->stats;
4327 }
4328 
qlge_set_multicast_list(struct net_device * ndev)4329 static void qlge_set_multicast_list(struct net_device *ndev)
4330 {
4331 	struct ql_adapter *qdev = netdev_priv(ndev);
4332 	struct netdev_hw_addr *ha;
4333 	int i, status;
4334 
4335 	status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4336 	if (status)
4337 		return;
4338 	/*
4339 	 * Set or clear promiscuous mode if a
4340 	 * transition is taking place.
4341 	 */
4342 	if (ndev->flags & IFF_PROMISC) {
4343 		if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4344 			if (ql_set_routing_reg
4345 			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4346 				netif_err(qdev, hw, qdev->ndev,
4347 					  "Failed to set promiscuous mode.\n");
4348 			} else {
4349 				set_bit(QL_PROMISCUOUS, &qdev->flags);
4350 			}
4351 		}
4352 	} else {
4353 		if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4354 			if (ql_set_routing_reg
4355 			    (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4356 				netif_err(qdev, hw, qdev->ndev,
4357 					  "Failed to clear promiscuous mode.\n");
4358 			} else {
4359 				clear_bit(QL_PROMISCUOUS, &qdev->flags);
4360 			}
4361 		}
4362 	}
4363 
4364 	/*
4365 	 * Set or clear all multicast mode if a
4366 	 * transition is taking place.
4367 	 */
4368 	if ((ndev->flags & IFF_ALLMULTI) ||
4369 	    (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4370 		if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4371 			if (ql_set_routing_reg
4372 			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4373 				netif_err(qdev, hw, qdev->ndev,
4374 					  "Failed to set all-multi mode.\n");
4375 			} else {
4376 				set_bit(QL_ALLMULTI, &qdev->flags);
4377 			}
4378 		}
4379 	} else {
4380 		if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4381 			if (ql_set_routing_reg
4382 			    (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4383 				netif_err(qdev, hw, qdev->ndev,
4384 					  "Failed to clear all-multi mode.\n");
4385 			} else {
4386 				clear_bit(QL_ALLMULTI, &qdev->flags);
4387 			}
4388 		}
4389 	}
4390 
4391 	if (!netdev_mc_empty(ndev)) {
4392 		status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4393 		if (status)
4394 			goto exit;
4395 		i = 0;
4396 		netdev_for_each_mc_addr(ha, ndev) {
4397 			if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4398 						MAC_ADDR_TYPE_MULTI_MAC, i)) {
4399 				netif_err(qdev, hw, qdev->ndev,
4400 					  "Failed to loadmulticast address.\n");
4401 				ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4402 				goto exit;
4403 			}
4404 			i++;
4405 		}
4406 		ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4407 		if (ql_set_routing_reg
4408 		    (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4409 			netif_err(qdev, hw, qdev->ndev,
4410 				  "Failed to set multicast match mode.\n");
4411 		} else {
4412 			set_bit(QL_ALLMULTI, &qdev->flags);
4413 		}
4414 	}
4415 exit:
4416 	ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4417 }
4418 
qlge_set_mac_address(struct net_device * ndev,void * p)4419 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4420 {
4421 	struct ql_adapter *qdev = netdev_priv(ndev);
4422 	struct sockaddr *addr = p;
4423 	int status;
4424 
4425 	if (!is_valid_ether_addr(addr->sa_data))
4426 		return -EADDRNOTAVAIL;
4427 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4428 	/* Update local copy of current mac address. */
4429 	memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4430 
4431 	status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4432 	if (status)
4433 		return status;
4434 	status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4435 			MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4436 	if (status)
4437 		netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4438 	ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4439 	return status;
4440 }
4441 
qlge_tx_timeout(struct net_device * ndev)4442 static void qlge_tx_timeout(struct net_device *ndev)
4443 {
4444 	struct ql_adapter *qdev = netdev_priv(ndev);
4445 	ql_queue_asic_error(qdev);
4446 }
4447 
ql_asic_reset_work(struct work_struct * work)4448 static void ql_asic_reset_work(struct work_struct *work)
4449 {
4450 	struct ql_adapter *qdev =
4451 	    container_of(work, struct ql_adapter, asic_reset_work.work);
4452 	int status;
4453 	rtnl_lock();
4454 	status = ql_adapter_down(qdev);
4455 	if (status)
4456 		goto error;
4457 
4458 	status = ql_adapter_up(qdev);
4459 	if (status)
4460 		goto error;
4461 
4462 	/* Restore rx mode. */
4463 	clear_bit(QL_ALLMULTI, &qdev->flags);
4464 	clear_bit(QL_PROMISCUOUS, &qdev->flags);
4465 	qlge_set_multicast_list(qdev->ndev);
4466 
4467 	rtnl_unlock();
4468 	return;
4469 error:
4470 	netif_alert(qdev, ifup, qdev->ndev,
4471 		    "Driver up/down cycle failed, closing device\n");
4472 
4473 	set_bit(QL_ADAPTER_UP, &qdev->flags);
4474 	dev_close(qdev->ndev);
4475 	rtnl_unlock();
4476 }
4477 
4478 static const struct nic_operations qla8012_nic_ops = {
4479 	.get_flash		= ql_get_8012_flash_params,
4480 	.port_initialize	= ql_8012_port_initialize,
4481 };
4482 
4483 static const struct nic_operations qla8000_nic_ops = {
4484 	.get_flash		= ql_get_8000_flash_params,
4485 	.port_initialize	= ql_8000_port_initialize,
4486 };
4487 
4488 /* Find the pcie function number for the other NIC
4489  * on this chip.  Since both NIC functions share a
4490  * common firmware we have the lowest enabled function
4491  * do any common work.  Examples would be resetting
4492  * after a fatal firmware error, or doing a firmware
4493  * coredump.
4494  */
ql_get_alt_pcie_func(struct ql_adapter * qdev)4495 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4496 {
4497 	int status = 0;
4498 	u32 temp;
4499 	u32 nic_func1, nic_func2;
4500 
4501 	status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4502 			&temp);
4503 	if (status)
4504 		return status;
4505 
4506 	nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4507 			MPI_TEST_NIC_FUNC_MASK);
4508 	nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4509 			MPI_TEST_NIC_FUNC_MASK);
4510 
4511 	if (qdev->func == nic_func1)
4512 		qdev->alt_func = nic_func2;
4513 	else if (qdev->func == nic_func2)
4514 		qdev->alt_func = nic_func1;
4515 	else
4516 		status = -EIO;
4517 
4518 	return status;
4519 }
4520 
ql_get_board_info(struct ql_adapter * qdev)4521 static int ql_get_board_info(struct ql_adapter *qdev)
4522 {
4523 	int status;
4524 	qdev->func =
4525 	    (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4526 	if (qdev->func > 3)
4527 		return -EIO;
4528 
4529 	status = ql_get_alt_pcie_func(qdev);
4530 	if (status)
4531 		return status;
4532 
4533 	qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4534 	if (qdev->port) {
4535 		qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4536 		qdev->port_link_up = STS_PL1;
4537 		qdev->port_init = STS_PI1;
4538 		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4539 		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4540 	} else {
4541 		qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4542 		qdev->port_link_up = STS_PL0;
4543 		qdev->port_init = STS_PI0;
4544 		qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4545 		qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4546 	}
4547 	qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4548 	qdev->device_id = qdev->pdev->device;
4549 	if (qdev->device_id == QLGE_DEVICE_ID_8012)
4550 		qdev->nic_ops = &qla8012_nic_ops;
4551 	else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4552 		qdev->nic_ops = &qla8000_nic_ops;
4553 	return status;
4554 }
4555 
ql_release_all(struct pci_dev * pdev)4556 static void ql_release_all(struct pci_dev *pdev)
4557 {
4558 	struct net_device *ndev = pci_get_drvdata(pdev);
4559 	struct ql_adapter *qdev = netdev_priv(ndev);
4560 
4561 	if (qdev->workqueue) {
4562 		destroy_workqueue(qdev->workqueue);
4563 		qdev->workqueue = NULL;
4564 	}
4565 
4566 	if (qdev->reg_base)
4567 		iounmap(qdev->reg_base);
4568 	if (qdev->doorbell_area)
4569 		iounmap(qdev->doorbell_area);
4570 	vfree(qdev->mpi_coredump);
4571 	pci_release_regions(pdev);
4572 }
4573 
ql_init_device(struct pci_dev * pdev,struct net_device * ndev,int cards_found)4574 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4575 			  int cards_found)
4576 {
4577 	struct ql_adapter *qdev = netdev_priv(ndev);
4578 	int err = 0;
4579 
4580 	memset((void *)qdev, 0, sizeof(*qdev));
4581 	err = pci_enable_device(pdev);
4582 	if (err) {
4583 		dev_err(&pdev->dev, "PCI device enable failed.\n");
4584 		return err;
4585 	}
4586 
4587 	qdev->ndev = ndev;
4588 	qdev->pdev = pdev;
4589 	pci_set_drvdata(pdev, ndev);
4590 
4591 	/* Set PCIe read request size */
4592 	err = pcie_set_readrq(pdev, 4096);
4593 	if (err) {
4594 		dev_err(&pdev->dev, "Set readrq failed.\n");
4595 		goto err_out1;
4596 	}
4597 
4598 	err = pci_request_regions(pdev, DRV_NAME);
4599 	if (err) {
4600 		dev_err(&pdev->dev, "PCI region request failed.\n");
4601 		return err;
4602 	}
4603 
4604 	pci_set_master(pdev);
4605 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4606 		set_bit(QL_DMA64, &qdev->flags);
4607 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4608 	} else {
4609 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4610 		if (!err)
4611 		       err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4612 	}
4613 
4614 	if (err) {
4615 		dev_err(&pdev->dev, "No usable DMA configuration.\n");
4616 		goto err_out2;
4617 	}
4618 
4619 	/* Set PCIe reset type for EEH to fundamental. */
4620 	pdev->needs_freset = 1;
4621 	pci_save_state(pdev);
4622 	qdev->reg_base =
4623 	    ioremap_nocache(pci_resource_start(pdev, 1),
4624 			    pci_resource_len(pdev, 1));
4625 	if (!qdev->reg_base) {
4626 		dev_err(&pdev->dev, "Register mapping failed.\n");
4627 		err = -ENOMEM;
4628 		goto err_out2;
4629 	}
4630 
4631 	qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4632 	qdev->doorbell_area =
4633 	    ioremap_nocache(pci_resource_start(pdev, 3),
4634 			    pci_resource_len(pdev, 3));
4635 	if (!qdev->doorbell_area) {
4636 		dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4637 		err = -ENOMEM;
4638 		goto err_out2;
4639 	}
4640 
4641 	err = ql_get_board_info(qdev);
4642 	if (err) {
4643 		dev_err(&pdev->dev, "Register access failed.\n");
4644 		err = -EIO;
4645 		goto err_out2;
4646 	}
4647 	qdev->msg_enable = netif_msg_init(debug, default_msg);
4648 	spin_lock_init(&qdev->hw_lock);
4649 	spin_lock_init(&qdev->stats_lock);
4650 
4651 	if (qlge_mpi_coredump) {
4652 		qdev->mpi_coredump =
4653 			vmalloc(sizeof(struct ql_mpi_coredump));
4654 		if (qdev->mpi_coredump == NULL) {
4655 			err = -ENOMEM;
4656 			goto err_out2;
4657 		}
4658 		if (qlge_force_coredump)
4659 			set_bit(QL_FRC_COREDUMP, &qdev->flags);
4660 	}
4661 	/* make sure the EEPROM is good */
4662 	err = qdev->nic_ops->get_flash(qdev);
4663 	if (err) {
4664 		dev_err(&pdev->dev, "Invalid FLASH.\n");
4665 		goto err_out2;
4666 	}
4667 
4668 	/* Keep local copy of current mac address. */
4669 	memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4670 
4671 	/* Set up the default ring sizes. */
4672 	qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4673 	qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4674 
4675 	/* Set up the coalescing parameters. */
4676 	qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4677 	qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4678 	qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4679 	qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4680 
4681 	/*
4682 	 * Set up the operating parameters.
4683 	 */
4684 	qdev->workqueue = create_singlethread_workqueue(ndev->name);
4685 	INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4686 	INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4687 	INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4688 	INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4689 	INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4690 	INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4691 	init_completion(&qdev->ide_completion);
4692 	mutex_init(&qdev->mpi_mutex);
4693 
4694 	if (!cards_found) {
4695 		dev_info(&pdev->dev, "%s\n", DRV_STRING);
4696 		dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4697 			 DRV_NAME, DRV_VERSION);
4698 	}
4699 	return 0;
4700 err_out2:
4701 	ql_release_all(pdev);
4702 err_out1:
4703 	pci_disable_device(pdev);
4704 	return err;
4705 }
4706 
4707 static const struct net_device_ops qlge_netdev_ops = {
4708 	.ndo_open		= qlge_open,
4709 	.ndo_stop		= qlge_close,
4710 	.ndo_start_xmit		= qlge_send,
4711 	.ndo_change_mtu		= qlge_change_mtu,
4712 	.ndo_get_stats		= qlge_get_stats,
4713 	.ndo_set_rx_mode	= qlge_set_multicast_list,
4714 	.ndo_set_mac_address	= qlge_set_mac_address,
4715 	.ndo_validate_addr	= eth_validate_addr,
4716 	.ndo_tx_timeout		= qlge_tx_timeout,
4717 	.ndo_set_features	= qlge_set_features,
4718 	.ndo_vlan_rx_add_vid	= qlge_vlan_rx_add_vid,
4719 	.ndo_vlan_rx_kill_vid	= qlge_vlan_rx_kill_vid,
4720 };
4721 
ql_timer(unsigned long data)4722 static void ql_timer(unsigned long data)
4723 {
4724 	struct ql_adapter *qdev = (struct ql_adapter *)data;
4725 	u32 var = 0;
4726 
4727 	var = ql_read32(qdev, STS);
4728 	if (pci_channel_offline(qdev->pdev)) {
4729 		netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4730 		return;
4731 	}
4732 
4733 	mod_timer(&qdev->timer, jiffies + (5*HZ));
4734 }
4735 
qlge_probe(struct pci_dev * pdev,const struct pci_device_id * pci_entry)4736 static int qlge_probe(struct pci_dev *pdev,
4737 		      const struct pci_device_id *pci_entry)
4738 {
4739 	struct net_device *ndev = NULL;
4740 	struct ql_adapter *qdev = NULL;
4741 	static int cards_found = 0;
4742 	int err = 0;
4743 
4744 	ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4745 			min(MAX_CPUS, netif_get_num_default_rss_queues()));
4746 	if (!ndev)
4747 		return -ENOMEM;
4748 
4749 	err = ql_init_device(pdev, ndev, cards_found);
4750 	if (err < 0) {
4751 		free_netdev(ndev);
4752 		return err;
4753 	}
4754 
4755 	qdev = netdev_priv(ndev);
4756 	SET_NETDEV_DEV(ndev, &pdev->dev);
4757 	ndev->hw_features = NETIF_F_SG |
4758 			    NETIF_F_IP_CSUM |
4759 			    NETIF_F_TSO |
4760 			    NETIF_F_TSO_ECN |
4761 			    NETIF_F_HW_VLAN_CTAG_TX |
4762 			    NETIF_F_HW_VLAN_CTAG_RX |
4763 			    NETIF_F_HW_VLAN_CTAG_FILTER |
4764 			    NETIF_F_RXCSUM;
4765 	ndev->features = ndev->hw_features;
4766 	ndev->vlan_features = ndev->hw_features;
4767 	/* vlan gets same features (except vlan filter) */
4768 	ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4769 				 NETIF_F_HW_VLAN_CTAG_TX |
4770 				 NETIF_F_HW_VLAN_CTAG_RX);
4771 
4772 	if (test_bit(QL_DMA64, &qdev->flags))
4773 		ndev->features |= NETIF_F_HIGHDMA;
4774 
4775 	/*
4776 	 * Set up net_device structure.
4777 	 */
4778 	ndev->tx_queue_len = qdev->tx_ring_size;
4779 	ndev->irq = pdev->irq;
4780 
4781 	ndev->netdev_ops = &qlge_netdev_ops;
4782 	ndev->ethtool_ops = &qlge_ethtool_ops;
4783 	ndev->watchdog_timeo = 10 * HZ;
4784 
4785 	err = register_netdev(ndev);
4786 	if (err) {
4787 		dev_err(&pdev->dev, "net device registration failed.\n");
4788 		ql_release_all(pdev);
4789 		pci_disable_device(pdev);
4790 		free_netdev(ndev);
4791 		return err;
4792 	}
4793 	/* Start up the timer to trigger EEH if
4794 	 * the bus goes dead
4795 	 */
4796 	init_timer_deferrable(&qdev->timer);
4797 	qdev->timer.data = (unsigned long)qdev;
4798 	qdev->timer.function = ql_timer;
4799 	qdev->timer.expires = jiffies + (5*HZ);
4800 	add_timer(&qdev->timer);
4801 	ql_link_off(qdev);
4802 	ql_display_dev_info(ndev);
4803 	atomic_set(&qdev->lb_count, 0);
4804 	cards_found++;
4805 	return 0;
4806 }
4807 
ql_lb_send(struct sk_buff * skb,struct net_device * ndev)4808 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4809 {
4810 	return qlge_send(skb, ndev);
4811 }
4812 
ql_clean_lb_rx_ring(struct rx_ring * rx_ring,int budget)4813 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4814 {
4815 	return ql_clean_inbound_rx_ring(rx_ring, budget);
4816 }
4817 
qlge_remove(struct pci_dev * pdev)4818 static void qlge_remove(struct pci_dev *pdev)
4819 {
4820 	struct net_device *ndev = pci_get_drvdata(pdev);
4821 	struct ql_adapter *qdev = netdev_priv(ndev);
4822 	del_timer_sync(&qdev->timer);
4823 	ql_cancel_all_work_sync(qdev);
4824 	unregister_netdev(ndev);
4825 	ql_release_all(pdev);
4826 	pci_disable_device(pdev);
4827 	free_netdev(ndev);
4828 }
4829 
4830 /* Clean up resources without touching hardware. */
ql_eeh_close(struct net_device * ndev)4831 static void ql_eeh_close(struct net_device *ndev)
4832 {
4833 	int i;
4834 	struct ql_adapter *qdev = netdev_priv(ndev);
4835 
4836 	if (netif_carrier_ok(ndev)) {
4837 		netif_carrier_off(ndev);
4838 		netif_stop_queue(ndev);
4839 	}
4840 
4841 	/* Disabling the timer */
4842 	del_timer_sync(&qdev->timer);
4843 	ql_cancel_all_work_sync(qdev);
4844 
4845 	for (i = 0; i < qdev->rss_ring_count; i++)
4846 		netif_napi_del(&qdev->rx_ring[i].napi);
4847 
4848 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
4849 	ql_tx_ring_clean(qdev);
4850 	ql_free_rx_buffers(qdev);
4851 	ql_release_adapter_resources(qdev);
4852 }
4853 
4854 /*
4855  * This callback is called by the PCI subsystem whenever
4856  * a PCI bus error is detected.
4857  */
qlge_io_error_detected(struct pci_dev * pdev,enum pci_channel_state state)4858 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4859 					       enum pci_channel_state state)
4860 {
4861 	struct net_device *ndev = pci_get_drvdata(pdev);
4862 	struct ql_adapter *qdev = netdev_priv(ndev);
4863 
4864 	switch (state) {
4865 	case pci_channel_io_normal:
4866 		return PCI_ERS_RESULT_CAN_RECOVER;
4867 	case pci_channel_io_frozen:
4868 		netif_device_detach(ndev);
4869 		if (netif_running(ndev))
4870 			ql_eeh_close(ndev);
4871 		pci_disable_device(pdev);
4872 		return PCI_ERS_RESULT_NEED_RESET;
4873 	case pci_channel_io_perm_failure:
4874 		dev_err(&pdev->dev,
4875 			"%s: pci_channel_io_perm_failure.\n", __func__);
4876 		ql_eeh_close(ndev);
4877 		set_bit(QL_EEH_FATAL, &qdev->flags);
4878 		return PCI_ERS_RESULT_DISCONNECT;
4879 	}
4880 
4881 	/* Request a slot reset. */
4882 	return PCI_ERS_RESULT_NEED_RESET;
4883 }
4884 
4885 /*
4886  * This callback is called after the PCI buss has been reset.
4887  * Basically, this tries to restart the card from scratch.
4888  * This is a shortened version of the device probe/discovery code,
4889  * it resembles the first-half of the () routine.
4890  */
qlge_io_slot_reset(struct pci_dev * pdev)4891 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4892 {
4893 	struct net_device *ndev = pci_get_drvdata(pdev);
4894 	struct ql_adapter *qdev = netdev_priv(ndev);
4895 
4896 	pdev->error_state = pci_channel_io_normal;
4897 
4898 	pci_restore_state(pdev);
4899 	if (pci_enable_device(pdev)) {
4900 		netif_err(qdev, ifup, qdev->ndev,
4901 			  "Cannot re-enable PCI device after reset.\n");
4902 		return PCI_ERS_RESULT_DISCONNECT;
4903 	}
4904 	pci_set_master(pdev);
4905 
4906 	if (ql_adapter_reset(qdev)) {
4907 		netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4908 		set_bit(QL_EEH_FATAL, &qdev->flags);
4909 		return PCI_ERS_RESULT_DISCONNECT;
4910 	}
4911 
4912 	return PCI_ERS_RESULT_RECOVERED;
4913 }
4914 
qlge_io_resume(struct pci_dev * pdev)4915 static void qlge_io_resume(struct pci_dev *pdev)
4916 {
4917 	struct net_device *ndev = pci_get_drvdata(pdev);
4918 	struct ql_adapter *qdev = netdev_priv(ndev);
4919 	int err = 0;
4920 
4921 	if (netif_running(ndev)) {
4922 		err = qlge_open(ndev);
4923 		if (err) {
4924 			netif_err(qdev, ifup, qdev->ndev,
4925 				  "Device initialization failed after reset.\n");
4926 			return;
4927 		}
4928 	} else {
4929 		netif_err(qdev, ifup, qdev->ndev,
4930 			  "Device was not running prior to EEH.\n");
4931 	}
4932 	mod_timer(&qdev->timer, jiffies + (5*HZ));
4933 	netif_device_attach(ndev);
4934 }
4935 
4936 static const struct pci_error_handlers qlge_err_handler = {
4937 	.error_detected = qlge_io_error_detected,
4938 	.slot_reset = qlge_io_slot_reset,
4939 	.resume = qlge_io_resume,
4940 };
4941 
qlge_suspend(struct pci_dev * pdev,pm_message_t state)4942 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4943 {
4944 	struct net_device *ndev = pci_get_drvdata(pdev);
4945 	struct ql_adapter *qdev = netdev_priv(ndev);
4946 	int err;
4947 
4948 	netif_device_detach(ndev);
4949 	del_timer_sync(&qdev->timer);
4950 
4951 	if (netif_running(ndev)) {
4952 		err = ql_adapter_down(qdev);
4953 		if (!err)
4954 			return err;
4955 	}
4956 
4957 	ql_wol(qdev);
4958 	err = pci_save_state(pdev);
4959 	if (err)
4960 		return err;
4961 
4962 	pci_disable_device(pdev);
4963 
4964 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
4965 
4966 	return 0;
4967 }
4968 
4969 #ifdef CONFIG_PM
qlge_resume(struct pci_dev * pdev)4970 static int qlge_resume(struct pci_dev *pdev)
4971 {
4972 	struct net_device *ndev = pci_get_drvdata(pdev);
4973 	struct ql_adapter *qdev = netdev_priv(ndev);
4974 	int err;
4975 
4976 	pci_set_power_state(pdev, PCI_D0);
4977 	pci_restore_state(pdev);
4978 	err = pci_enable_device(pdev);
4979 	if (err) {
4980 		netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4981 		return err;
4982 	}
4983 	pci_set_master(pdev);
4984 
4985 	pci_enable_wake(pdev, PCI_D3hot, 0);
4986 	pci_enable_wake(pdev, PCI_D3cold, 0);
4987 
4988 	if (netif_running(ndev)) {
4989 		err = ql_adapter_up(qdev);
4990 		if (err)
4991 			return err;
4992 	}
4993 
4994 	mod_timer(&qdev->timer, jiffies + (5*HZ));
4995 	netif_device_attach(ndev);
4996 
4997 	return 0;
4998 }
4999 #endif /* CONFIG_PM */
5000 
qlge_shutdown(struct pci_dev * pdev)5001 static void qlge_shutdown(struct pci_dev *pdev)
5002 {
5003 	qlge_suspend(pdev, PMSG_SUSPEND);
5004 }
5005 
5006 static struct pci_driver qlge_driver = {
5007 	.name = DRV_NAME,
5008 	.id_table = qlge_pci_tbl,
5009 	.probe = qlge_probe,
5010 	.remove = qlge_remove,
5011 #ifdef CONFIG_PM
5012 	.suspend = qlge_suspend,
5013 	.resume = qlge_resume,
5014 #endif
5015 	.shutdown = qlge_shutdown,
5016 	.err_handler = &qlge_err_handler
5017 };
5018 
5019 module_pci_driver(qlge_driver);
5020