1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include <linux/module.h>
24 #include <linux/fdtable.h>
25 #include <linux/uaccess.h>
26 #include <drm/drmP.h>
27 #include "radeon.h"
28 #include "cikd.h"
29 #include "cik_reg.h"
30 #include "radeon_kfd.h"
31 #include "radeon_ucode.h"
32 #include <linux/firmware.h>
33 #include "cik_structs.h"
34
35 #define CIK_PIPE_PER_MEC (4)
36
37 static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
38 TCP_WATCH0_ADDR_H, TCP_WATCH0_ADDR_L, TCP_WATCH0_CNTL,
39 TCP_WATCH1_ADDR_H, TCP_WATCH1_ADDR_L, TCP_WATCH1_CNTL,
40 TCP_WATCH2_ADDR_H, TCP_WATCH2_ADDR_L, TCP_WATCH2_CNTL,
41 TCP_WATCH3_ADDR_H, TCP_WATCH3_ADDR_L, TCP_WATCH3_CNTL
42 };
43
44 struct kgd_mem {
45 struct radeon_bo *bo;
46 uint64_t gpu_addr;
47 void *cpu_ptr;
48 };
49
50
51 static int alloc_gtt_mem(struct kgd_dev *kgd, size_t size,
52 void **mem_obj, uint64_t *gpu_addr,
53 void **cpu_ptr);
54
55 static void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj);
56
57 static uint64_t get_vmem_size(struct kgd_dev *kgd);
58 static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd);
59
60 static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd);
61 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
62
63 /*
64 * Register access functions
65 */
66
67 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
68 uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
69 uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
70
71 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
72 unsigned int vmid);
73
74 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
75 uint32_t hpd_size, uint64_t hpd_gpu_addr);
76 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
77 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
78 uint32_t queue_id, uint32_t __user *wptr);
79 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
80 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
81 uint32_t pipe_id, uint32_t queue_id);
82
83 static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
84 unsigned int timeout, uint32_t pipe_id,
85 uint32_t queue_id);
86 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
87 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
88 unsigned int timeout);
89 static int kgd_address_watch_disable(struct kgd_dev *kgd);
90 static int kgd_address_watch_execute(struct kgd_dev *kgd,
91 unsigned int watch_point_id,
92 uint32_t cntl_val,
93 uint32_t addr_hi,
94 uint32_t addr_lo);
95 static int kgd_wave_control_execute(struct kgd_dev *kgd,
96 uint32_t gfx_index_val,
97 uint32_t sq_cmd);
98 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
99 unsigned int watch_point_id,
100 unsigned int reg_offset);
101
102 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
103 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
104 uint8_t vmid);
105 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
106
107 static const struct kfd2kgd_calls kfd2kgd = {
108 .init_gtt_mem_allocation = alloc_gtt_mem,
109 .free_gtt_mem = free_gtt_mem,
110 .get_vmem_size = get_vmem_size,
111 .get_gpu_clock_counter = get_gpu_clock_counter,
112 .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
113 .program_sh_mem_settings = kgd_program_sh_mem_settings,
114 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
115 .init_pipeline = kgd_init_pipeline,
116 .init_interrupts = kgd_init_interrupts,
117 .hqd_load = kgd_hqd_load,
118 .hqd_sdma_load = kgd_hqd_sdma_load,
119 .hqd_is_occupied = kgd_hqd_is_occupied,
120 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
121 .hqd_destroy = kgd_hqd_destroy,
122 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
123 .address_watch_disable = kgd_address_watch_disable,
124 .address_watch_execute = kgd_address_watch_execute,
125 .wave_control_execute = kgd_wave_control_execute,
126 .address_watch_get_offset = kgd_address_watch_get_offset,
127 .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
128 .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
129 .write_vmid_invalidate_request = write_vmid_invalidate_request,
130 .get_fw_version = get_fw_version
131 };
132
133 static const struct kgd2kfd_calls *kgd2kfd;
134
radeon_kfd_init(void)135 bool radeon_kfd_init(void)
136 {
137 #if defined(CONFIG_HSA_AMD_MODULE)
138 bool (*kgd2kfd_init_p)(unsigned, const struct kgd2kfd_calls**);
139
140 kgd2kfd_init_p = symbol_request(kgd2kfd_init);
141
142 if (kgd2kfd_init_p == NULL)
143 return false;
144
145 if (!kgd2kfd_init_p(KFD_INTERFACE_VERSION, &kgd2kfd)) {
146 symbol_put(kgd2kfd_init);
147 kgd2kfd = NULL;
148
149 return false;
150 }
151
152 return true;
153 #elif defined(CONFIG_HSA_AMD)
154 if (!kgd2kfd_init(KFD_INTERFACE_VERSION, &kgd2kfd)) {
155 kgd2kfd = NULL;
156
157 return false;
158 }
159
160 return true;
161 #else
162 return false;
163 #endif
164 }
165
radeon_kfd_fini(void)166 void radeon_kfd_fini(void)
167 {
168 if (kgd2kfd) {
169 kgd2kfd->exit();
170 symbol_put(kgd2kfd_init);
171 }
172 }
173
radeon_kfd_device_probe(struct radeon_device * rdev)174 void radeon_kfd_device_probe(struct radeon_device *rdev)
175 {
176 if (kgd2kfd)
177 rdev->kfd = kgd2kfd->probe((struct kgd_dev *)rdev,
178 rdev->pdev, &kfd2kgd);
179 }
180
radeon_kfd_device_init(struct radeon_device * rdev)181 void radeon_kfd_device_init(struct radeon_device *rdev)
182 {
183 if (rdev->kfd) {
184 struct kgd2kfd_shared_resources gpu_resources = {
185 .compute_vmid_bitmap = 0xFF00,
186
187 .first_compute_pipe = 1,
188 .compute_pipe_count = 4 - 1,
189 };
190
191 radeon_doorbell_get_kfd_info(rdev,
192 &gpu_resources.doorbell_physical_address,
193 &gpu_resources.doorbell_aperture_size,
194 &gpu_resources.doorbell_start_offset);
195
196 kgd2kfd->device_init(rdev->kfd, &gpu_resources);
197 }
198 }
199
radeon_kfd_device_fini(struct radeon_device * rdev)200 void radeon_kfd_device_fini(struct radeon_device *rdev)
201 {
202 if (rdev->kfd) {
203 kgd2kfd->device_exit(rdev->kfd);
204 rdev->kfd = NULL;
205 }
206 }
207
radeon_kfd_interrupt(struct radeon_device * rdev,const void * ih_ring_entry)208 void radeon_kfd_interrupt(struct radeon_device *rdev, const void *ih_ring_entry)
209 {
210 if (rdev->kfd)
211 kgd2kfd->interrupt(rdev->kfd, ih_ring_entry);
212 }
213
radeon_kfd_suspend(struct radeon_device * rdev)214 void radeon_kfd_suspend(struct radeon_device *rdev)
215 {
216 if (rdev->kfd)
217 kgd2kfd->suspend(rdev->kfd);
218 }
219
radeon_kfd_resume(struct radeon_device * rdev)220 int radeon_kfd_resume(struct radeon_device *rdev)
221 {
222 int r = 0;
223
224 if (rdev->kfd)
225 r = kgd2kfd->resume(rdev->kfd);
226
227 return r;
228 }
229
alloc_gtt_mem(struct kgd_dev * kgd,size_t size,void ** mem_obj,uint64_t * gpu_addr,void ** cpu_ptr)230 static int alloc_gtt_mem(struct kgd_dev *kgd, size_t size,
231 void **mem_obj, uint64_t *gpu_addr,
232 void **cpu_ptr)
233 {
234 struct radeon_device *rdev = (struct radeon_device *)kgd;
235 struct kgd_mem **mem = (struct kgd_mem **) mem_obj;
236 int r;
237
238 BUG_ON(kgd == NULL);
239 BUG_ON(gpu_addr == NULL);
240 BUG_ON(cpu_ptr == NULL);
241
242 *mem = kmalloc(sizeof(struct kgd_mem), GFP_KERNEL);
243 if ((*mem) == NULL)
244 return -ENOMEM;
245
246 r = radeon_bo_create(rdev, size, PAGE_SIZE, true, RADEON_GEM_DOMAIN_GTT,
247 RADEON_GEM_GTT_WC, NULL, NULL, &(*mem)->bo);
248 if (r) {
249 dev_err(rdev->dev,
250 "failed to allocate BO for amdkfd (%d)\n", r);
251 return r;
252 }
253
254 /* map the buffer */
255 r = radeon_bo_reserve((*mem)->bo, true);
256 if (r) {
257 dev_err(rdev->dev, "(%d) failed to reserve bo for amdkfd\n", r);
258 goto allocate_mem_reserve_bo_failed;
259 }
260
261 r = radeon_bo_pin((*mem)->bo, RADEON_GEM_DOMAIN_GTT,
262 &(*mem)->gpu_addr);
263 if (r) {
264 dev_err(rdev->dev, "(%d) failed to pin bo for amdkfd\n", r);
265 goto allocate_mem_pin_bo_failed;
266 }
267 *gpu_addr = (*mem)->gpu_addr;
268
269 r = radeon_bo_kmap((*mem)->bo, &(*mem)->cpu_ptr);
270 if (r) {
271 dev_err(rdev->dev,
272 "(%d) failed to map bo to kernel for amdkfd\n", r);
273 goto allocate_mem_kmap_bo_failed;
274 }
275 *cpu_ptr = (*mem)->cpu_ptr;
276
277 radeon_bo_unreserve((*mem)->bo);
278
279 return 0;
280
281 allocate_mem_kmap_bo_failed:
282 radeon_bo_unpin((*mem)->bo);
283 allocate_mem_pin_bo_failed:
284 radeon_bo_unreserve((*mem)->bo);
285 allocate_mem_reserve_bo_failed:
286 radeon_bo_unref(&(*mem)->bo);
287
288 return r;
289 }
290
free_gtt_mem(struct kgd_dev * kgd,void * mem_obj)291 static void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj)
292 {
293 struct kgd_mem *mem = (struct kgd_mem *) mem_obj;
294
295 BUG_ON(mem == NULL);
296
297 radeon_bo_reserve(mem->bo, true);
298 radeon_bo_kunmap(mem->bo);
299 radeon_bo_unpin(mem->bo);
300 radeon_bo_unreserve(mem->bo);
301 radeon_bo_unref(&(mem->bo));
302 kfree(mem);
303 }
304
get_vmem_size(struct kgd_dev * kgd)305 static uint64_t get_vmem_size(struct kgd_dev *kgd)
306 {
307 struct radeon_device *rdev = (struct radeon_device *)kgd;
308
309 BUG_ON(kgd == NULL);
310
311 return rdev->mc.real_vram_size;
312 }
313
get_gpu_clock_counter(struct kgd_dev * kgd)314 static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd)
315 {
316 struct radeon_device *rdev = (struct radeon_device *)kgd;
317
318 return rdev->asic->get_gpu_clock_counter(rdev);
319 }
320
get_max_engine_clock_in_mhz(struct kgd_dev * kgd)321 static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd)
322 {
323 struct radeon_device *rdev = (struct radeon_device *)kgd;
324
325 /* The sclk is in quantas of 10kHz */
326 return rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk / 100;
327 }
328
get_radeon_device(struct kgd_dev * kgd)329 static inline struct radeon_device *get_radeon_device(struct kgd_dev *kgd)
330 {
331 return (struct radeon_device *)kgd;
332 }
333
write_register(struct kgd_dev * kgd,uint32_t offset,uint32_t value)334 static void write_register(struct kgd_dev *kgd, uint32_t offset, uint32_t value)
335 {
336 struct radeon_device *rdev = get_radeon_device(kgd);
337
338 writel(value, (void __iomem *)(rdev->rmmio + offset));
339 }
340
read_register(struct kgd_dev * kgd,uint32_t offset)341 static uint32_t read_register(struct kgd_dev *kgd, uint32_t offset)
342 {
343 struct radeon_device *rdev = get_radeon_device(kgd);
344
345 return readl((void __iomem *)(rdev->rmmio + offset));
346 }
347
lock_srbm(struct kgd_dev * kgd,uint32_t mec,uint32_t pipe,uint32_t queue,uint32_t vmid)348 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
349 uint32_t queue, uint32_t vmid)
350 {
351 struct radeon_device *rdev = get_radeon_device(kgd);
352 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
353
354 mutex_lock(&rdev->srbm_mutex);
355 write_register(kgd, SRBM_GFX_CNTL, value);
356 }
357
unlock_srbm(struct kgd_dev * kgd)358 static void unlock_srbm(struct kgd_dev *kgd)
359 {
360 struct radeon_device *rdev = get_radeon_device(kgd);
361
362 write_register(kgd, SRBM_GFX_CNTL, 0);
363 mutex_unlock(&rdev->srbm_mutex);
364 }
365
acquire_queue(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id)366 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
367 uint32_t queue_id)
368 {
369 uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
370 uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
371
372 lock_srbm(kgd, mec, pipe, queue_id, 0);
373 }
374
release_queue(struct kgd_dev * kgd)375 static void release_queue(struct kgd_dev *kgd)
376 {
377 unlock_srbm(kgd);
378 }
379
kgd_program_sh_mem_settings(struct kgd_dev * kgd,uint32_t vmid,uint32_t sh_mem_config,uint32_t sh_mem_ape1_base,uint32_t sh_mem_ape1_limit,uint32_t sh_mem_bases)380 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
381 uint32_t sh_mem_config,
382 uint32_t sh_mem_ape1_base,
383 uint32_t sh_mem_ape1_limit,
384 uint32_t sh_mem_bases)
385 {
386 lock_srbm(kgd, 0, 0, 0, vmid);
387
388 write_register(kgd, SH_MEM_CONFIG, sh_mem_config);
389 write_register(kgd, SH_MEM_APE1_BASE, sh_mem_ape1_base);
390 write_register(kgd, SH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
391 write_register(kgd, SH_MEM_BASES, sh_mem_bases);
392
393 unlock_srbm(kgd);
394 }
395
kgd_set_pasid_vmid_mapping(struct kgd_dev * kgd,unsigned int pasid,unsigned int vmid)396 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
397 unsigned int vmid)
398 {
399 /*
400 * We have to assume that there is no outstanding mapping.
401 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0
402 * because a mapping is in progress or because a mapping finished and
403 * the SW cleared it.
404 * So the protocol is to always wait & clear.
405 */
406 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
407 ATC_VMID_PASID_MAPPING_VALID_MASK;
408
409 write_register(kgd, ATC_VMID0_PASID_MAPPING + vmid*sizeof(uint32_t),
410 pasid_mapping);
411
412 while (!(read_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS) &
413 (1U << vmid)))
414 cpu_relax();
415 write_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
416
417 /* Mapping vmid to pasid also for IH block */
418 write_register(kgd, IH_VMID_0_LUT + vmid * sizeof(uint32_t),
419 pasid_mapping);
420
421 return 0;
422 }
423
kgd_init_pipeline(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t hpd_size,uint64_t hpd_gpu_addr)424 static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
425 uint32_t hpd_size, uint64_t hpd_gpu_addr)
426 {
427 uint32_t mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
428 uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
429
430 lock_srbm(kgd, mec, pipe, 0, 0);
431 write_register(kgd, CP_HPD_EOP_BASE_ADDR,
432 lower_32_bits(hpd_gpu_addr >> 8));
433 write_register(kgd, CP_HPD_EOP_BASE_ADDR_HI,
434 upper_32_bits(hpd_gpu_addr >> 8));
435 write_register(kgd, CP_HPD_EOP_VMID, 0);
436 write_register(kgd, CP_HPD_EOP_CONTROL, hpd_size);
437 unlock_srbm(kgd);
438
439 return 0;
440 }
441
kgd_init_interrupts(struct kgd_dev * kgd,uint32_t pipe_id)442 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
443 {
444 uint32_t mec;
445 uint32_t pipe;
446
447 mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
448 pipe = (pipe_id % CIK_PIPE_PER_MEC);
449
450 lock_srbm(kgd, mec, pipe, 0, 0);
451
452 write_register(kgd, CPC_INT_CNTL,
453 TIME_STAMP_INT_ENABLE | OPCODE_ERROR_INT_ENABLE);
454
455 unlock_srbm(kgd);
456
457 return 0;
458 }
459
get_sdma_base_addr(struct cik_sdma_rlc_registers * m)460 static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
461 {
462 uint32_t retval;
463
464 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
465 m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
466
467 pr_debug("kfd: sdma base address: 0x%x\n", retval);
468
469 return retval;
470 }
471
get_mqd(void * mqd)472 static inline struct cik_mqd *get_mqd(void *mqd)
473 {
474 return (struct cik_mqd *)mqd;
475 }
476
get_sdma_mqd(void * mqd)477 static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
478 {
479 return (struct cik_sdma_rlc_registers *)mqd;
480 }
481
kgd_hqd_load(struct kgd_dev * kgd,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr)482 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
483 uint32_t queue_id, uint32_t __user *wptr)
484 {
485 uint32_t wptr_shadow, is_wptr_shadow_valid;
486 struct cik_mqd *m;
487
488 m = get_mqd(mqd);
489
490 is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);
491
492 acquire_queue(kgd, pipe_id, queue_id);
493 write_register(kgd, CP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
494 write_register(kgd, CP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
495 write_register(kgd, CP_MQD_CONTROL, m->cp_mqd_control);
496
497 write_register(kgd, CP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
498 write_register(kgd, CP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
499 write_register(kgd, CP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);
500
501 write_register(kgd, CP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
502 write_register(kgd, CP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo);
503 write_register(kgd, CP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi);
504
505 write_register(kgd, CP_HQD_IB_RPTR, m->cp_hqd_ib_rptr);
506
507 write_register(kgd, CP_HQD_PERSISTENT_STATE,
508 m->cp_hqd_persistent_state);
509 write_register(kgd, CP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd);
510 write_register(kgd, CP_HQD_MSG_TYPE, m->cp_hqd_msg_type);
511
512 write_register(kgd, CP_HQD_ATOMIC0_PREOP_LO,
513 m->cp_hqd_atomic0_preop_lo);
514
515 write_register(kgd, CP_HQD_ATOMIC0_PREOP_HI,
516 m->cp_hqd_atomic0_preop_hi);
517
518 write_register(kgd, CP_HQD_ATOMIC1_PREOP_LO,
519 m->cp_hqd_atomic1_preop_lo);
520
521 write_register(kgd, CP_HQD_ATOMIC1_PREOP_HI,
522 m->cp_hqd_atomic1_preop_hi);
523
524 write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR,
525 m->cp_hqd_pq_rptr_report_addr_lo);
526
527 write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR_HI,
528 m->cp_hqd_pq_rptr_report_addr_hi);
529
530 write_register(kgd, CP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr);
531
532 write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR,
533 m->cp_hqd_pq_wptr_poll_addr_lo);
534
535 write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR_HI,
536 m->cp_hqd_pq_wptr_poll_addr_hi);
537
538 write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL,
539 m->cp_hqd_pq_doorbell_control);
540
541 write_register(kgd, CP_HQD_VMID, m->cp_hqd_vmid);
542
543 write_register(kgd, CP_HQD_QUANTUM, m->cp_hqd_quantum);
544
545 write_register(kgd, CP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
546 write_register(kgd, CP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);
547
548 write_register(kgd, CP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr);
549
550 if (is_wptr_shadow_valid)
551 write_register(kgd, CP_HQD_PQ_WPTR, wptr_shadow);
552
553 write_register(kgd, CP_HQD_ACTIVE, m->cp_hqd_active);
554 release_queue(kgd);
555
556 return 0;
557 }
558
kgd_hqd_sdma_load(struct kgd_dev * kgd,void * mqd)559 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
560 {
561 struct cik_sdma_rlc_registers *m;
562 uint32_t sdma_base_addr;
563
564 m = get_sdma_mqd(mqd);
565 sdma_base_addr = get_sdma_base_addr(m);
566
567 write_register(kgd,
568 sdma_base_addr + SDMA0_RLC0_VIRTUAL_ADDR,
569 m->sdma_rlc_virtual_addr);
570
571 write_register(kgd,
572 sdma_base_addr + SDMA0_RLC0_RB_BASE,
573 m->sdma_rlc_rb_base);
574
575 write_register(kgd,
576 sdma_base_addr + SDMA0_RLC0_RB_BASE_HI,
577 m->sdma_rlc_rb_base_hi);
578
579 write_register(kgd,
580 sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_LO,
581 m->sdma_rlc_rb_rptr_addr_lo);
582
583 write_register(kgd,
584 sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_HI,
585 m->sdma_rlc_rb_rptr_addr_hi);
586
587 write_register(kgd,
588 sdma_base_addr + SDMA0_RLC0_DOORBELL,
589 m->sdma_rlc_doorbell);
590
591 write_register(kgd,
592 sdma_base_addr + SDMA0_RLC0_RB_CNTL,
593 m->sdma_rlc_rb_cntl);
594
595 return 0;
596 }
597
kgd_hqd_is_occupied(struct kgd_dev * kgd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)598 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
599 uint32_t pipe_id, uint32_t queue_id)
600 {
601 uint32_t act;
602 bool retval = false;
603 uint32_t low, high;
604
605 acquire_queue(kgd, pipe_id, queue_id);
606 act = read_register(kgd, CP_HQD_ACTIVE);
607 if (act) {
608 low = lower_32_bits(queue_address >> 8);
609 high = upper_32_bits(queue_address >> 8);
610
611 if (low == read_register(kgd, CP_HQD_PQ_BASE) &&
612 high == read_register(kgd, CP_HQD_PQ_BASE_HI))
613 retval = true;
614 }
615 release_queue(kgd);
616 return retval;
617 }
618
kgd_hqd_sdma_is_occupied(struct kgd_dev * kgd,void * mqd)619 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
620 {
621 struct cik_sdma_rlc_registers *m;
622 uint32_t sdma_base_addr;
623 uint32_t sdma_rlc_rb_cntl;
624
625 m = get_sdma_mqd(mqd);
626 sdma_base_addr = get_sdma_base_addr(m);
627
628 sdma_rlc_rb_cntl = read_register(kgd,
629 sdma_base_addr + SDMA0_RLC0_RB_CNTL);
630
631 if (sdma_rlc_rb_cntl & SDMA_RB_ENABLE)
632 return true;
633
634 return false;
635 }
636
kgd_hqd_destroy(struct kgd_dev * kgd,uint32_t reset_type,unsigned int timeout,uint32_t pipe_id,uint32_t queue_id)637 static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
638 unsigned int timeout, uint32_t pipe_id,
639 uint32_t queue_id)
640 {
641 uint32_t temp;
642
643 acquire_queue(kgd, pipe_id, queue_id);
644 write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL, 0);
645
646 write_register(kgd, CP_HQD_DEQUEUE_REQUEST, reset_type);
647
648 while (true) {
649 temp = read_register(kgd, CP_HQD_ACTIVE);
650 if (temp & 0x1)
651 break;
652 if (timeout == 0) {
653 pr_err("kfd: cp queue preemption time out (%dms)\n",
654 temp);
655 release_queue(kgd);
656 return -ETIME;
657 }
658 msleep(20);
659 timeout -= 20;
660 }
661
662 release_queue(kgd);
663 return 0;
664 }
665
kgd_hqd_sdma_destroy(struct kgd_dev * kgd,void * mqd,unsigned int timeout)666 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
667 unsigned int timeout)
668 {
669 struct cik_sdma_rlc_registers *m;
670 uint32_t sdma_base_addr;
671 uint32_t temp;
672
673 m = get_sdma_mqd(mqd);
674 sdma_base_addr = get_sdma_base_addr(m);
675
676 temp = read_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL);
677 temp = temp & ~SDMA_RB_ENABLE;
678 write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL, temp);
679
680 while (true) {
681 temp = read_register(kgd, sdma_base_addr +
682 SDMA0_RLC0_CONTEXT_STATUS);
683 if (temp & SDMA_RLC_IDLE)
684 break;
685 if (timeout == 0)
686 return -ETIME;
687 msleep(20);
688 timeout -= 20;
689 }
690
691 write_register(kgd, sdma_base_addr + SDMA0_RLC0_DOORBELL, 0);
692 write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_RPTR, 0);
693 write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_WPTR, 0);
694 write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_BASE, 0);
695
696 return 0;
697 }
698
kgd_address_watch_disable(struct kgd_dev * kgd)699 static int kgd_address_watch_disable(struct kgd_dev *kgd)
700 {
701 union TCP_WATCH_CNTL_BITS cntl;
702 unsigned int i;
703
704 cntl.u32All = 0;
705
706 cntl.bitfields.valid = 0;
707 cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
708 cntl.bitfields.atc = 1;
709
710 /* Turning off this address until we set all the registers */
711 for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
712 write_register(kgd,
713 watchRegs[i * ADDRESS_WATCH_REG_MAX +
714 ADDRESS_WATCH_REG_CNTL],
715 cntl.u32All);
716
717 return 0;
718 }
719
kgd_address_watch_execute(struct kgd_dev * kgd,unsigned int watch_point_id,uint32_t cntl_val,uint32_t addr_hi,uint32_t addr_lo)720 static int kgd_address_watch_execute(struct kgd_dev *kgd,
721 unsigned int watch_point_id,
722 uint32_t cntl_val,
723 uint32_t addr_hi,
724 uint32_t addr_lo)
725 {
726 union TCP_WATCH_CNTL_BITS cntl;
727
728 cntl.u32All = cntl_val;
729
730 /* Turning off this watch point until we set all the registers */
731 cntl.bitfields.valid = 0;
732 write_register(kgd,
733 watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
734 ADDRESS_WATCH_REG_CNTL],
735 cntl.u32All);
736
737 write_register(kgd,
738 watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
739 ADDRESS_WATCH_REG_ADDR_HI],
740 addr_hi);
741
742 write_register(kgd,
743 watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
744 ADDRESS_WATCH_REG_ADDR_LO],
745 addr_lo);
746
747 /* Enable the watch point */
748 cntl.bitfields.valid = 1;
749
750 write_register(kgd,
751 watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
752 ADDRESS_WATCH_REG_CNTL],
753 cntl.u32All);
754
755 return 0;
756 }
757
kgd_wave_control_execute(struct kgd_dev * kgd,uint32_t gfx_index_val,uint32_t sq_cmd)758 static int kgd_wave_control_execute(struct kgd_dev *kgd,
759 uint32_t gfx_index_val,
760 uint32_t sq_cmd)
761 {
762 struct radeon_device *rdev = get_radeon_device(kgd);
763 uint32_t data;
764
765 mutex_lock(&rdev->grbm_idx_mutex);
766
767 write_register(kgd, GRBM_GFX_INDEX, gfx_index_val);
768 write_register(kgd, SQ_CMD, sq_cmd);
769
770 /* Restore the GRBM_GFX_INDEX register */
771
772 data = INSTANCE_BROADCAST_WRITES | SH_BROADCAST_WRITES |
773 SE_BROADCAST_WRITES;
774
775 write_register(kgd, GRBM_GFX_INDEX, data);
776
777 mutex_unlock(&rdev->grbm_idx_mutex);
778
779 return 0;
780 }
781
kgd_address_watch_get_offset(struct kgd_dev * kgd,unsigned int watch_point_id,unsigned int reg_offset)782 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
783 unsigned int watch_point_id,
784 unsigned int reg_offset)
785 {
786 return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
787 }
788
get_atc_vmid_pasid_mapping_valid(struct kgd_dev * kgd,uint8_t vmid)789 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid)
790 {
791 uint32_t reg;
792 struct radeon_device *rdev = (struct radeon_device *) kgd;
793
794 reg = RREG32(ATC_VMID0_PASID_MAPPING + vmid*4);
795 return reg & ATC_VMID_PASID_MAPPING_VALID_MASK;
796 }
797
get_atc_vmid_pasid_mapping_pasid(struct kgd_dev * kgd,uint8_t vmid)798 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
799 uint8_t vmid)
800 {
801 uint32_t reg;
802 struct radeon_device *rdev = (struct radeon_device *) kgd;
803
804 reg = RREG32(ATC_VMID0_PASID_MAPPING + vmid*4);
805 return reg & ATC_VMID_PASID_MAPPING_PASID_MASK;
806 }
807
write_vmid_invalidate_request(struct kgd_dev * kgd,uint8_t vmid)808 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
809 {
810 struct radeon_device *rdev = (struct radeon_device *) kgd;
811
812 return WREG32(VM_INVALIDATE_REQUEST, 1 << vmid);
813 }
814
get_fw_version(struct kgd_dev * kgd,enum kgd_engine_type type)815 static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
816 {
817 struct radeon_device *rdev = (struct radeon_device *) kgd;
818 const union radeon_firmware_header *hdr;
819
820 BUG_ON(kgd == NULL || rdev->mec_fw == NULL);
821
822 switch (type) {
823 case KGD_ENGINE_PFP:
824 hdr = (const union radeon_firmware_header *) rdev->pfp_fw->data;
825 break;
826
827 case KGD_ENGINE_ME:
828 hdr = (const union radeon_firmware_header *) rdev->me_fw->data;
829 break;
830
831 case KGD_ENGINE_CE:
832 hdr = (const union radeon_firmware_header *) rdev->ce_fw->data;
833 break;
834
835 case KGD_ENGINE_MEC1:
836 hdr = (const union radeon_firmware_header *) rdev->mec_fw->data;
837 break;
838
839 case KGD_ENGINE_MEC2:
840 hdr = (const union radeon_firmware_header *)
841 rdev->mec2_fw->data;
842 break;
843
844 case KGD_ENGINE_RLC:
845 hdr = (const union radeon_firmware_header *) rdev->rlc_fw->data;
846 break;
847
848 case KGD_ENGINE_SDMA1:
849 case KGD_ENGINE_SDMA2:
850 hdr = (const union radeon_firmware_header *)
851 rdev->sdma_fw->data;
852 break;
853
854 default:
855 return 0;
856 }
857
858 if (hdr == NULL)
859 return 0;
860
861 /* Only 12 bit in use*/
862 return hdr->common.ucode_version;
863 }
864