1 /*
2 * rcar_du_crtc.c -- R-Car Display Unit CRTCs
3 *
4 * Copyright (C) 2013-2014 Renesas Electronics Corporation
5 *
6 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/mutex.h>
16
17 #include <drm/drmP.h>
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_crtc.h>
21 #include <drm/drm_crtc_helper.h>
22 #include <drm/drm_fb_cma_helper.h>
23 #include <drm/drm_gem_cma_helper.h>
24 #include <drm/drm_plane_helper.h>
25
26 #include "rcar_du_crtc.h"
27 #include "rcar_du_drv.h"
28 #include "rcar_du_kms.h"
29 #include "rcar_du_plane.h"
30 #include "rcar_du_regs.h"
31
rcar_du_crtc_read(struct rcar_du_crtc * rcrtc,u32 reg)32 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
33 {
34 struct rcar_du_device *rcdu = rcrtc->group->dev;
35
36 return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
37 }
38
rcar_du_crtc_write(struct rcar_du_crtc * rcrtc,u32 reg,u32 data)39 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
40 {
41 struct rcar_du_device *rcdu = rcrtc->group->dev;
42
43 rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
44 }
45
rcar_du_crtc_clr(struct rcar_du_crtc * rcrtc,u32 reg,u32 clr)46 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
47 {
48 struct rcar_du_device *rcdu = rcrtc->group->dev;
49
50 rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
51 rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
52 }
53
rcar_du_crtc_set(struct rcar_du_crtc * rcrtc,u32 reg,u32 set)54 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
55 {
56 struct rcar_du_device *rcdu = rcrtc->group->dev;
57
58 rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
59 rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
60 }
61
rcar_du_crtc_clr_set(struct rcar_du_crtc * rcrtc,u32 reg,u32 clr,u32 set)62 static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
63 u32 clr, u32 set)
64 {
65 struct rcar_du_device *rcdu = rcrtc->group->dev;
66 u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
67
68 rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
69 }
70
rcar_du_crtc_get(struct rcar_du_crtc * rcrtc)71 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
72 {
73 int ret;
74
75 ret = clk_prepare_enable(rcrtc->clock);
76 if (ret < 0)
77 return ret;
78
79 ret = clk_prepare_enable(rcrtc->extclock);
80 if (ret < 0)
81 goto error_clock;
82
83 ret = rcar_du_group_get(rcrtc->group);
84 if (ret < 0)
85 goto error_group;
86
87 return 0;
88
89 error_group:
90 clk_disable_unprepare(rcrtc->extclock);
91 error_clock:
92 clk_disable_unprepare(rcrtc->clock);
93 return ret;
94 }
95
rcar_du_crtc_put(struct rcar_du_crtc * rcrtc)96 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
97 {
98 rcar_du_group_put(rcrtc->group);
99
100 clk_disable_unprepare(rcrtc->extclock);
101 clk_disable_unprepare(rcrtc->clock);
102 }
103
104 /* -----------------------------------------------------------------------------
105 * Hardware Setup
106 */
107
rcar_du_crtc_set_display_timing(struct rcar_du_crtc * rcrtc)108 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
109 {
110 const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
111 unsigned long mode_clock = mode->clock * 1000;
112 unsigned long clk;
113 u32 value;
114 u32 escr;
115 u32 div;
116
117 /* Compute the clock divisor and select the internal or external dot
118 * clock based on the requested frequency.
119 */
120 clk = clk_get_rate(rcrtc->clock);
121 div = DIV_ROUND_CLOSEST(clk, mode_clock);
122 div = clamp(div, 1U, 64U) - 1;
123 escr = div | ESCR_DCLKSEL_CLKS;
124
125 if (rcrtc->extclock) {
126 unsigned long extclk;
127 unsigned long extrate;
128 unsigned long rate;
129 u32 extdiv;
130
131 extclk = clk_get_rate(rcrtc->extclock);
132 extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
133 extdiv = clamp(extdiv, 1U, 64U) - 1;
134
135 rate = clk / (div + 1);
136 extrate = extclk / (extdiv + 1);
137
138 if (abs((long)extrate - (long)mode_clock) <
139 abs((long)rate - (long)mode_clock)) {
140 dev_dbg(rcrtc->group->dev->dev,
141 "crtc%u: using external clock\n", rcrtc->index);
142 escr = extdiv | ESCR_DCLKSEL_DCLKIN;
143 }
144 }
145
146 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
147 escr);
148 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
149
150 /* Signal polarities */
151 value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
152 | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
153 | DSMR_DIPM_DE | DSMR_CSPM;
154 rcar_du_crtc_write(rcrtc, DSMR, value);
155
156 /* Display timings */
157 rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
158 rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
159 mode->hdisplay - 19);
160 rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
161 mode->hsync_start - 1);
162 rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1);
163
164 rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
165 mode->crtc_vsync_end - 2);
166 rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
167 mode->crtc_vsync_end +
168 mode->crtc_vdisplay - 2);
169 rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
170 mode->crtc_vsync_end +
171 mode->crtc_vsync_start - 1);
172 rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1);
173
174 rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start - 1);
175 rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay);
176 }
177
rcar_du_crtc_route_output(struct drm_crtc * crtc,enum rcar_du_output output)178 void rcar_du_crtc_route_output(struct drm_crtc *crtc,
179 enum rcar_du_output output)
180 {
181 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
182 struct rcar_du_device *rcdu = rcrtc->group->dev;
183
184 /* Store the route from the CRTC output to the DU output. The DU will be
185 * configured when starting the CRTC.
186 */
187 rcrtc->outputs |= BIT(output);
188
189 /* Store RGB routing to DPAD0, the hardware will be configured when
190 * starting the CRTC.
191 */
192 if (output == RCAR_DU_OUTPUT_DPAD0)
193 rcdu->dpad0_source = rcrtc->index;
194 }
195
plane_zpos(struct rcar_du_plane * plane)196 static unsigned int plane_zpos(struct rcar_du_plane *plane)
197 {
198 return to_rcar_plane_state(plane->plane.state)->zpos;
199 }
200
201 static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane * plane)202 plane_format(struct rcar_du_plane *plane)
203 {
204 return to_rcar_plane_state(plane->plane.state)->format;
205 }
206
rcar_du_crtc_update_planes(struct rcar_du_crtc * rcrtc)207 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
208 {
209 struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
210 unsigned int num_planes = 0;
211 unsigned int dptsr_planes;
212 unsigned int hwplanes = 0;
213 unsigned int prio = 0;
214 unsigned int i;
215 u32 dspr = 0;
216
217 for (i = 0; i < rcrtc->group->num_planes; ++i) {
218 struct rcar_du_plane *plane = &rcrtc->group->planes[i];
219 unsigned int j;
220
221 if (plane->plane.state->crtc != &rcrtc->crtc)
222 continue;
223
224 /* Insert the plane in the sorted planes array. */
225 for (j = num_planes++; j > 0; --j) {
226 if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
227 break;
228 planes[j] = planes[j-1];
229 }
230
231 planes[j] = plane;
232 prio += plane_format(plane)->planes * 4;
233 }
234
235 for (i = 0; i < num_planes; ++i) {
236 struct rcar_du_plane *plane = planes[i];
237 struct drm_plane_state *state = plane->plane.state;
238 unsigned int index = to_rcar_plane_state(state)->hwindex;
239
240 prio -= 4;
241 dspr |= (index + 1) << prio;
242 hwplanes |= 1 << index;
243
244 if (plane_format(plane)->planes == 2) {
245 index = (index + 1) % 8;
246
247 prio -= 4;
248 dspr |= (index + 1) << prio;
249 hwplanes |= 1 << index;
250 }
251 }
252
253 /* Update the planes to display timing and dot clock generator
254 * associations.
255 *
256 * Updating the DPTSR register requires restarting the CRTC group,
257 * resulting in visible flicker. To mitigate the issue only update the
258 * association if needed by enabled planes. Planes being disabled will
259 * keep their current association.
260 */
261 mutex_lock(&rcrtc->group->lock);
262
263 dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
264 : rcrtc->group->dptsr_planes & ~hwplanes;
265
266 if (dptsr_planes != rcrtc->group->dptsr_planes) {
267 rcar_du_group_write(rcrtc->group, DPTSR,
268 (dptsr_planes << 16) | dptsr_planes);
269 rcrtc->group->dptsr_planes = dptsr_planes;
270
271 if (rcrtc->group->used_crtcs)
272 rcar_du_group_restart(rcrtc->group);
273 }
274
275 mutex_unlock(&rcrtc->group->lock);
276
277 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
278 dspr);
279 }
280
281 /* -----------------------------------------------------------------------------
282 * Page Flip
283 */
284
rcar_du_crtc_finish_page_flip(struct rcar_du_crtc * rcrtc)285 static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
286 {
287 struct drm_pending_vblank_event *event;
288 struct drm_device *dev = rcrtc->crtc.dev;
289 unsigned long flags;
290
291 spin_lock_irqsave(&dev->event_lock, flags);
292 event = rcrtc->event;
293 rcrtc->event = NULL;
294 spin_unlock_irqrestore(&dev->event_lock, flags);
295
296 if (event == NULL)
297 return;
298
299 spin_lock_irqsave(&dev->event_lock, flags);
300 drm_send_vblank_event(dev, rcrtc->index, event);
301 wake_up(&rcrtc->flip_wait);
302 spin_unlock_irqrestore(&dev->event_lock, flags);
303
304 drm_crtc_vblank_put(&rcrtc->crtc);
305 }
306
rcar_du_crtc_page_flip_pending(struct rcar_du_crtc * rcrtc)307 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
308 {
309 struct drm_device *dev = rcrtc->crtc.dev;
310 unsigned long flags;
311 bool pending;
312
313 spin_lock_irqsave(&dev->event_lock, flags);
314 pending = rcrtc->event != NULL;
315 spin_unlock_irqrestore(&dev->event_lock, flags);
316
317 return pending;
318 }
319
rcar_du_crtc_wait_page_flip(struct rcar_du_crtc * rcrtc)320 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
321 {
322 struct rcar_du_device *rcdu = rcrtc->group->dev;
323
324 if (wait_event_timeout(rcrtc->flip_wait,
325 !rcar_du_crtc_page_flip_pending(rcrtc),
326 msecs_to_jiffies(50)))
327 return;
328
329 dev_warn(rcdu->dev, "page flip timeout\n");
330
331 rcar_du_crtc_finish_page_flip(rcrtc);
332 }
333
334 /* -----------------------------------------------------------------------------
335 * Start/Stop and Suspend/Resume
336 */
337
rcar_du_crtc_start(struct rcar_du_crtc * rcrtc)338 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
339 {
340 struct drm_crtc *crtc = &rcrtc->crtc;
341 bool interlaced;
342
343 if (rcrtc->started)
344 return;
345
346 /* Set display off and background to black */
347 rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
348 rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
349
350 /* Configure display timings and output routing */
351 rcar_du_crtc_set_display_timing(rcrtc);
352 rcar_du_group_set_routing(rcrtc->group);
353
354 /* Start with all planes disabled. */
355 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
356
357 /* Select master sync mode. This enables display operation in master
358 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
359 * actively driven).
360 */
361 interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
362 rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
363 (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
364 DSYSR_TVM_MASTER);
365
366 rcar_du_group_start_stop(rcrtc->group, true);
367
368 /* Turn vertical blanking interrupt reporting back on. */
369 drm_crtc_vblank_on(crtc);
370
371 rcrtc->started = true;
372 }
373
rcar_du_crtc_disable_planes(struct rcar_du_crtc * rcrtc)374 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
375 {
376 struct rcar_du_device *rcdu = rcrtc->group->dev;
377 struct drm_crtc *crtc = &rcrtc->crtc;
378 u32 status;
379 /* Make sure vblank interrupts are enabled. */
380 drm_crtc_vblank_get(crtc);
381 /*
382 * Disable planes and calculate how many vertical blanking interrupts we
383 * have to wait for. If a vertical blanking interrupt has been triggered
384 * but not processed yet, we don't know whether it occurred before or
385 * after the planes got disabled. We thus have to wait for two vblank
386 * interrupts in that case.
387 */
388 spin_lock_irq(&rcrtc->vblank_lock);
389 rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
390 status = rcar_du_crtc_read(rcrtc, DSSR);
391 rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
392 spin_unlock_irq(&rcrtc->vblank_lock);
393 if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
394 msecs_to_jiffies(100)))
395 dev_warn(rcdu->dev, "vertical blanking timeout\n");
396 drm_crtc_vblank_put(crtc);
397 }
398
rcar_du_crtc_stop(struct rcar_du_crtc * rcrtc)399 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
400 {
401 struct drm_crtc *crtc = &rcrtc->crtc;
402
403 if (!rcrtc->started)
404 return;
405
406 /* Disable all planes and wait for the change to take effect. This is
407 * required as the plane enable registers are updated on vblank, and no
408 * vblank will occur once the CRTC is stopped. Disabling planes when
409 * starting the CRTC thus wouldn't be enough as it would start scanning
410 * out immediately from old frame buffers until the next vblank.
411 *
412 * This increases the CRTC stop delay, especially when multiple CRTCs
413 * are stopped in one operation as we now wait for one vblank per CRTC.
414 * Whether this can be improved needs to be researched.
415 */
416 rcar_du_crtc_disable_planes(rcrtc);
417
418 /* Disable vertical blanking interrupt reporting. We first need to wait
419 * for page flip completion before stopping the CRTC as userspace
420 * expects page flips to eventually complete.
421 */
422 rcar_du_crtc_wait_page_flip(rcrtc);
423 drm_crtc_vblank_off(crtc);
424
425 /* Select switch sync mode. This stops display operation and configures
426 * the HSYNC and VSYNC signals as inputs.
427 */
428 rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);
429
430 rcar_du_group_start_stop(rcrtc->group, false);
431
432 rcrtc->started = false;
433 }
434
rcar_du_crtc_suspend(struct rcar_du_crtc * rcrtc)435 void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
436 {
437 rcar_du_crtc_stop(rcrtc);
438 rcar_du_crtc_put(rcrtc);
439 }
440
rcar_du_crtc_resume(struct rcar_du_crtc * rcrtc)441 void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
442 {
443 unsigned int i;
444
445 if (!rcrtc->enabled)
446 return;
447
448 rcar_du_crtc_get(rcrtc);
449 rcar_du_crtc_start(rcrtc);
450
451 /* Commit the planes state. */
452 for (i = 0; i < rcrtc->group->num_planes; ++i) {
453 struct rcar_du_plane *plane = &rcrtc->group->planes[i];
454
455 if (plane->plane.state->crtc != &rcrtc->crtc)
456 continue;
457
458 rcar_du_plane_setup(plane);
459 }
460
461 rcar_du_crtc_update_planes(rcrtc);
462 }
463
464 /* -----------------------------------------------------------------------------
465 * CRTC Functions
466 */
467
rcar_du_crtc_enable(struct drm_crtc * crtc)468 static void rcar_du_crtc_enable(struct drm_crtc *crtc)
469 {
470 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
471
472 if (rcrtc->enabled)
473 return;
474
475 rcar_du_crtc_get(rcrtc);
476 rcar_du_crtc_start(rcrtc);
477
478 rcrtc->enabled = true;
479 }
480
rcar_du_crtc_disable(struct drm_crtc * crtc)481 static void rcar_du_crtc_disable(struct drm_crtc *crtc)
482 {
483 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
484
485 if (!rcrtc->enabled)
486 return;
487
488 rcar_du_crtc_stop(rcrtc);
489 rcar_du_crtc_put(rcrtc);
490
491 rcrtc->enabled = false;
492 rcrtc->outputs = 0;
493 }
494
rcar_du_crtc_mode_fixup(struct drm_crtc * crtc,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)495 static bool rcar_du_crtc_mode_fixup(struct drm_crtc *crtc,
496 const struct drm_display_mode *mode,
497 struct drm_display_mode *adjusted_mode)
498 {
499 /* TODO Fixup modes */
500 return true;
501 }
502
rcar_du_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)503 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
504 struct drm_crtc_state *old_crtc_state)
505 {
506 struct drm_pending_vblank_event *event = crtc->state->event;
507 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
508 struct drm_device *dev = rcrtc->crtc.dev;
509 unsigned long flags;
510
511 if (event) {
512 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
513
514 spin_lock_irqsave(&dev->event_lock, flags);
515 rcrtc->event = event;
516 spin_unlock_irqrestore(&dev->event_lock, flags);
517 }
518 }
519
rcar_du_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)520 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
521 struct drm_crtc_state *old_crtc_state)
522 {
523 struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
524
525 rcar_du_crtc_update_planes(rcrtc);
526 }
527
528 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
529 .mode_fixup = rcar_du_crtc_mode_fixup,
530 .disable = rcar_du_crtc_disable,
531 .enable = rcar_du_crtc_enable,
532 .atomic_begin = rcar_du_crtc_atomic_begin,
533 .atomic_flush = rcar_du_crtc_atomic_flush,
534 };
535
536 static const struct drm_crtc_funcs crtc_funcs = {
537 .reset = drm_atomic_helper_crtc_reset,
538 .destroy = drm_crtc_cleanup,
539 .set_config = drm_atomic_helper_set_config,
540 .page_flip = drm_atomic_helper_page_flip,
541 .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
542 .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
543 };
544
545 /* -----------------------------------------------------------------------------
546 * Interrupt Handling
547 */
548
rcar_du_crtc_irq(int irq,void * arg)549 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
550 {
551 struct rcar_du_crtc *rcrtc = arg;
552 irqreturn_t ret = IRQ_NONE;
553 u32 status;
554
555 spin_lock(&rcrtc->vblank_lock);
556
557 status = rcar_du_crtc_read(rcrtc, DSSR);
558 rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
559
560 if (status & DSSR_VBK) {
561 /*
562 * Wake up the vblank wait if the counter reaches 0. This must
563 * be protected by the vblank_lock to avoid races in
564 * rcar_du_crtc_disable_planes().
565 */
566 if (rcrtc->vblank_count) {
567 if (--rcrtc->vblank_count == 0)
568 wake_up(&rcrtc->vblank_wait);
569 }
570 }
571
572 spin_unlock(&rcrtc->vblank_lock);
573
574 if (status & DSSR_VBK) {
575 drm_handle_vblank(rcrtc->crtc.dev, rcrtc->index);
576 rcar_du_crtc_finish_page_flip(rcrtc);
577 ret = IRQ_HANDLED;
578 }
579
580 return ret;
581 }
582
583 /* -----------------------------------------------------------------------------
584 * Initialization
585 */
586
rcar_du_crtc_create(struct rcar_du_group * rgrp,unsigned int index)587 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
588 {
589 static const unsigned int mmio_offsets[] = {
590 DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET
591 };
592
593 struct rcar_du_device *rcdu = rgrp->dev;
594 struct platform_device *pdev = to_platform_device(rcdu->dev);
595 struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
596 struct drm_crtc *crtc = &rcrtc->crtc;
597 unsigned int irqflags;
598 struct clk *clk;
599 char clk_name[9];
600 char *name;
601 int irq;
602 int ret;
603
604 /* Get the CRTC clock and the optional external clock. */
605 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
606 sprintf(clk_name, "du.%u", index);
607 name = clk_name;
608 } else {
609 name = NULL;
610 }
611
612 rcrtc->clock = devm_clk_get(rcdu->dev, name);
613 if (IS_ERR(rcrtc->clock)) {
614 dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
615 return PTR_ERR(rcrtc->clock);
616 }
617
618 sprintf(clk_name, "dclkin.%u", index);
619 clk = devm_clk_get(rcdu->dev, clk_name);
620 if (!IS_ERR(clk)) {
621 rcrtc->extclock = clk;
622 } else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
623 dev_info(rcdu->dev, "can't get external clock %u\n", index);
624 return -EPROBE_DEFER;
625 }
626
627 init_waitqueue_head(&rcrtc->flip_wait);
628 init_waitqueue_head(&rcrtc->vblank_wait);
629 spin_lock_init(&rcrtc->vblank_lock);
630
631 rcrtc->group = rgrp;
632 rcrtc->mmio_offset = mmio_offsets[index];
633 rcrtc->index = index;
634 rcrtc->enabled = false;
635
636 ret = drm_crtc_init_with_planes(rcdu->ddev, crtc,
637 &rgrp->planes[index % 2].plane,
638 NULL, &crtc_funcs);
639 if (ret < 0)
640 return ret;
641
642 drm_crtc_helper_add(crtc, &crtc_helper_funcs);
643
644 /* Start with vertical blanking interrupt reporting disabled. */
645 drm_crtc_vblank_off(crtc);
646
647 /* Register the interrupt handler. */
648 if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
649 irq = platform_get_irq(pdev, index);
650 irqflags = 0;
651 } else {
652 irq = platform_get_irq(pdev, 0);
653 irqflags = IRQF_SHARED;
654 }
655
656 if (irq < 0) {
657 dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
658 return irq;
659 }
660
661 ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
662 dev_name(rcdu->dev), rcrtc);
663 if (ret < 0) {
664 dev_err(rcdu->dev,
665 "failed to register IRQ for CRTC %u\n", index);
666 return ret;
667 }
668
669 return 0;
670 }
671
rcar_du_crtc_enable_vblank(struct rcar_du_crtc * rcrtc,bool enable)672 void rcar_du_crtc_enable_vblank(struct rcar_du_crtc *rcrtc, bool enable)
673 {
674 if (enable) {
675 rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
676 rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
677 } else {
678 rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
679 }
680 }
681