1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 *
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
31 *
32 */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/module.h>
50 #include <linux/kthread.h>
51 #include <linux/tick.h>
52
53 #define CREATE_TRACE_POINTS
54
55 #include "rcu.h"
56
57 MODULE_ALIAS("rcupdate");
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "rcupdate."
62
63 module_param(rcu_expedited, int, 0);
64
65 #if defined(CONFIG_DEBUG_LOCK_ALLOC) && defined(CONFIG_PREEMPT_COUNT)
66 /**
67 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
68 *
69 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
70 * RCU-sched read-side critical section. In absence of
71 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
72 * critical section unless it can prove otherwise. Note that disabling
73 * of preemption (including disabling irqs) counts as an RCU-sched
74 * read-side critical section. This is useful for debug checks in functions
75 * that required that they be called within an RCU-sched read-side
76 * critical section.
77 *
78 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
79 * and while lockdep is disabled.
80 *
81 * Note that if the CPU is in the idle loop from an RCU point of
82 * view (ie: that we are in the section between rcu_idle_enter() and
83 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
84 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
85 * that are in such a section, considering these as in extended quiescent
86 * state, so such a CPU is effectively never in an RCU read-side critical
87 * section regardless of what RCU primitives it invokes. This state of
88 * affairs is required --- we need to keep an RCU-free window in idle
89 * where the CPU may possibly enter into low power mode. This way we can
90 * notice an extended quiescent state to other CPUs that started a grace
91 * period. Otherwise we would delay any grace period as long as we run in
92 * the idle task.
93 *
94 * Similarly, we avoid claiming an SRCU read lock held if the current
95 * CPU is offline.
96 */
rcu_read_lock_sched_held(void)97 int rcu_read_lock_sched_held(void)
98 {
99 int lockdep_opinion = 0;
100
101 if (!debug_lockdep_rcu_enabled())
102 return 1;
103 if (!rcu_is_watching())
104 return 0;
105 if (!rcu_lockdep_current_cpu_online())
106 return 0;
107 if (debug_locks)
108 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
109 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
110 }
111 EXPORT_SYMBOL(rcu_read_lock_sched_held);
112 #endif
113
114 #ifndef CONFIG_TINY_RCU
115
116 static atomic_t rcu_expedited_nesting =
117 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
118
119 /*
120 * Should normal grace-period primitives be expedited? Intended for
121 * use within RCU. Note that this function takes the rcu_expedited
122 * sysfs/boot variable into account as well as the rcu_expedite_gp()
123 * nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
124 * returns false is a -really- bad idea.
125 */
rcu_gp_is_expedited(void)126 bool rcu_gp_is_expedited(void)
127 {
128 return rcu_expedited || atomic_read(&rcu_expedited_nesting);
129 }
130 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
131
132 /**
133 * rcu_expedite_gp - Expedite future RCU grace periods
134 *
135 * After a call to this function, future calls to synchronize_rcu() and
136 * friends act as the corresponding synchronize_rcu_expedited() function
137 * had instead been called.
138 */
rcu_expedite_gp(void)139 void rcu_expedite_gp(void)
140 {
141 atomic_inc(&rcu_expedited_nesting);
142 }
143 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
144
145 /**
146 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
147 *
148 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
149 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
150 * and if the rcu_expedited sysfs/boot parameter is not set, then all
151 * subsequent calls to synchronize_rcu() and friends will return to
152 * their normal non-expedited behavior.
153 */
rcu_unexpedite_gp(void)154 void rcu_unexpedite_gp(void)
155 {
156 atomic_dec(&rcu_expedited_nesting);
157 }
158 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
159
160 #endif /* #ifndef CONFIG_TINY_RCU */
161
162 /*
163 * Inform RCU of the end of the in-kernel boot sequence.
164 */
rcu_end_inkernel_boot(void)165 void rcu_end_inkernel_boot(void)
166 {
167 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
168 rcu_unexpedite_gp();
169 }
170
171 #ifdef CONFIG_PREEMPT_RCU
172
173 /*
174 * Preemptible RCU implementation for rcu_read_lock().
175 * Just increment ->rcu_read_lock_nesting, shared state will be updated
176 * if we block.
177 */
__rcu_read_lock(void)178 void __rcu_read_lock(void)
179 {
180 current->rcu_read_lock_nesting++;
181 barrier(); /* critical section after entry code. */
182 }
183 EXPORT_SYMBOL_GPL(__rcu_read_lock);
184
185 /*
186 * Preemptible RCU implementation for rcu_read_unlock().
187 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
188 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
189 * invoke rcu_read_unlock_special() to clean up after a context switch
190 * in an RCU read-side critical section and other special cases.
191 */
__rcu_read_unlock(void)192 void __rcu_read_unlock(void)
193 {
194 struct task_struct *t = current;
195
196 if (t->rcu_read_lock_nesting != 1) {
197 --t->rcu_read_lock_nesting;
198 } else {
199 barrier(); /* critical section before exit code. */
200 t->rcu_read_lock_nesting = INT_MIN;
201 barrier(); /* assign before ->rcu_read_unlock_special load */
202 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
203 rcu_read_unlock_special(t);
204 barrier(); /* ->rcu_read_unlock_special load before assign */
205 t->rcu_read_lock_nesting = 0;
206 }
207 #ifdef CONFIG_PROVE_LOCKING
208 {
209 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
210
211 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
212 }
213 #endif /* #ifdef CONFIG_PROVE_LOCKING */
214 }
215 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
216
217 #endif /* #ifdef CONFIG_PREEMPT_RCU */
218
219 #ifdef CONFIG_DEBUG_LOCK_ALLOC
220 static struct lock_class_key rcu_lock_key;
221 struct lockdep_map rcu_lock_map =
222 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
223 EXPORT_SYMBOL_GPL(rcu_lock_map);
224
225 static struct lock_class_key rcu_bh_lock_key;
226 struct lockdep_map rcu_bh_lock_map =
227 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
228 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
229
230 static struct lock_class_key rcu_sched_lock_key;
231 struct lockdep_map rcu_sched_lock_map =
232 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
233 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
234
235 static struct lock_class_key rcu_callback_key;
236 struct lockdep_map rcu_callback_map =
237 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
238 EXPORT_SYMBOL_GPL(rcu_callback_map);
239
debug_lockdep_rcu_enabled(void)240 int notrace debug_lockdep_rcu_enabled(void)
241 {
242 return rcu_scheduler_active && debug_locks &&
243 current->lockdep_recursion == 0;
244 }
245 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
246
247 /**
248 * rcu_read_lock_held() - might we be in RCU read-side critical section?
249 *
250 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
251 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
252 * this assumes we are in an RCU read-side critical section unless it can
253 * prove otherwise. This is useful for debug checks in functions that
254 * require that they be called within an RCU read-side critical section.
255 *
256 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
257 * and while lockdep is disabled.
258 *
259 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
260 * occur in the same context, for example, it is illegal to invoke
261 * rcu_read_unlock() in process context if the matching rcu_read_lock()
262 * was invoked from within an irq handler.
263 *
264 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
265 * offline from an RCU perspective, so check for those as well.
266 */
rcu_read_lock_held(void)267 int rcu_read_lock_held(void)
268 {
269 if (!debug_lockdep_rcu_enabled())
270 return 1;
271 if (!rcu_is_watching())
272 return 0;
273 if (!rcu_lockdep_current_cpu_online())
274 return 0;
275 return lock_is_held(&rcu_lock_map);
276 }
277 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
278
279 /**
280 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
281 *
282 * Check for bottom half being disabled, which covers both the
283 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
284 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
285 * will show the situation. This is useful for debug checks in functions
286 * that require that they be called within an RCU read-side critical
287 * section.
288 *
289 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
290 *
291 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
292 * offline from an RCU perspective, so check for those as well.
293 */
rcu_read_lock_bh_held(void)294 int rcu_read_lock_bh_held(void)
295 {
296 if (!debug_lockdep_rcu_enabled())
297 return 1;
298 if (!rcu_is_watching())
299 return 0;
300 if (!rcu_lockdep_current_cpu_online())
301 return 0;
302 return in_softirq() || irqs_disabled();
303 }
304 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
305
306 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
307
308 /**
309 * wakeme_after_rcu() - Callback function to awaken a task after grace period
310 * @head: Pointer to rcu_head member within rcu_synchronize structure
311 *
312 * Awaken the corresponding task now that a grace period has elapsed.
313 */
wakeme_after_rcu(struct rcu_head * head)314 void wakeme_after_rcu(struct rcu_head *head)
315 {
316 struct rcu_synchronize *rcu;
317
318 rcu = container_of(head, struct rcu_synchronize, head);
319 complete(&rcu->completion);
320 }
321 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
322
__wait_rcu_gp(bool checktiny,int n,call_rcu_func_t * crcu_array,struct rcu_synchronize * rs_array)323 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
324 struct rcu_synchronize *rs_array)
325 {
326 int i;
327
328 /* Initialize and register callbacks for each flavor specified. */
329 for (i = 0; i < n; i++) {
330 if (checktiny &&
331 (crcu_array[i] == call_rcu ||
332 crcu_array[i] == call_rcu_bh)) {
333 might_sleep();
334 continue;
335 }
336 init_rcu_head_on_stack(&rs_array[i].head);
337 init_completion(&rs_array[i].completion);
338 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
339 }
340
341 /* Wait for all callbacks to be invoked. */
342 for (i = 0; i < n; i++) {
343 if (checktiny &&
344 (crcu_array[i] == call_rcu ||
345 crcu_array[i] == call_rcu_bh))
346 continue;
347 wait_for_completion(&rs_array[i].completion);
348 destroy_rcu_head_on_stack(&rs_array[i].head);
349 }
350 }
351 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
352
353 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
init_rcu_head(struct rcu_head * head)354 void init_rcu_head(struct rcu_head *head)
355 {
356 debug_object_init(head, &rcuhead_debug_descr);
357 }
358
destroy_rcu_head(struct rcu_head * head)359 void destroy_rcu_head(struct rcu_head *head)
360 {
361 debug_object_free(head, &rcuhead_debug_descr);
362 }
363
364 /*
365 * fixup_activate is called when:
366 * - an active object is activated
367 * - an unknown object is activated (might be a statically initialized object)
368 * Activation is performed internally by call_rcu().
369 */
rcuhead_fixup_activate(void * addr,enum debug_obj_state state)370 static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state)
371 {
372 struct rcu_head *head = addr;
373
374 switch (state) {
375
376 case ODEBUG_STATE_NOTAVAILABLE:
377 /*
378 * This is not really a fixup. We just make sure that it is
379 * tracked in the object tracker.
380 */
381 debug_object_init(head, &rcuhead_debug_descr);
382 debug_object_activate(head, &rcuhead_debug_descr);
383 return 0;
384 default:
385 return 1;
386 }
387 }
388
389 /**
390 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
391 * @head: pointer to rcu_head structure to be initialized
392 *
393 * This function informs debugobjects of a new rcu_head structure that
394 * has been allocated as an auto variable on the stack. This function
395 * is not required for rcu_head structures that are statically defined or
396 * that are dynamically allocated on the heap. This function has no
397 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
398 */
init_rcu_head_on_stack(struct rcu_head * head)399 void init_rcu_head_on_stack(struct rcu_head *head)
400 {
401 debug_object_init_on_stack(head, &rcuhead_debug_descr);
402 }
403 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
404
405 /**
406 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
407 * @head: pointer to rcu_head structure to be initialized
408 *
409 * This function informs debugobjects that an on-stack rcu_head structure
410 * is about to go out of scope. As with init_rcu_head_on_stack(), this
411 * function is not required for rcu_head structures that are statically
412 * defined or that are dynamically allocated on the heap. Also as with
413 * init_rcu_head_on_stack(), this function has no effect for
414 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
415 */
destroy_rcu_head_on_stack(struct rcu_head * head)416 void destroy_rcu_head_on_stack(struct rcu_head *head)
417 {
418 debug_object_free(head, &rcuhead_debug_descr);
419 }
420 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
421
422 struct debug_obj_descr rcuhead_debug_descr = {
423 .name = "rcu_head",
424 .fixup_activate = rcuhead_fixup_activate,
425 };
426 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
427 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
428
429 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
do_trace_rcu_torture_read(const char * rcutorturename,struct rcu_head * rhp,unsigned long secs,unsigned long c_old,unsigned long c)430 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
431 unsigned long secs,
432 unsigned long c_old, unsigned long c)
433 {
434 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
435 }
436 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
437 #else
438 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
439 do { } while (0)
440 #endif
441
442 #ifdef CONFIG_RCU_STALL_COMMON
443
444 #ifdef CONFIG_PROVE_RCU
445 #define RCU_STALL_DELAY_DELTA (5 * HZ)
446 #else
447 #define RCU_STALL_DELAY_DELTA 0
448 #endif
449
450 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
451 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
452
453 module_param(rcu_cpu_stall_suppress, int, 0644);
454 module_param(rcu_cpu_stall_timeout, int, 0644);
455
rcu_jiffies_till_stall_check(void)456 int rcu_jiffies_till_stall_check(void)
457 {
458 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
459
460 /*
461 * Limit check must be consistent with the Kconfig limits
462 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
463 */
464 if (till_stall_check < 3) {
465 WRITE_ONCE(rcu_cpu_stall_timeout, 3);
466 till_stall_check = 3;
467 } else if (till_stall_check > 300) {
468 WRITE_ONCE(rcu_cpu_stall_timeout, 300);
469 till_stall_check = 300;
470 }
471 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
472 }
473
rcu_sysrq_start(void)474 void rcu_sysrq_start(void)
475 {
476 if (!rcu_cpu_stall_suppress)
477 rcu_cpu_stall_suppress = 2;
478 }
479
rcu_sysrq_end(void)480 void rcu_sysrq_end(void)
481 {
482 if (rcu_cpu_stall_suppress == 2)
483 rcu_cpu_stall_suppress = 0;
484 }
485
rcu_panic(struct notifier_block * this,unsigned long ev,void * ptr)486 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
487 {
488 rcu_cpu_stall_suppress = 1;
489 return NOTIFY_DONE;
490 }
491
492 static struct notifier_block rcu_panic_block = {
493 .notifier_call = rcu_panic,
494 };
495
check_cpu_stall_init(void)496 static int __init check_cpu_stall_init(void)
497 {
498 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
499 return 0;
500 }
501 early_initcall(check_cpu_stall_init);
502
503 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
504
505 #ifdef CONFIG_TASKS_RCU
506
507 /*
508 * Simple variant of RCU whose quiescent states are voluntary context switch,
509 * user-space execution, and idle. As such, grace periods can take one good
510 * long time. There are no read-side primitives similar to rcu_read_lock()
511 * and rcu_read_unlock() because this implementation is intended to get
512 * the system into a safe state for some of the manipulations involved in
513 * tracing and the like. Finally, this implementation does not support
514 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
515 * per-CPU callback lists will be needed.
516 */
517
518 /* Global list of callbacks and associated lock. */
519 static struct rcu_head *rcu_tasks_cbs_head;
520 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
521 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
522 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
523
524 /* Track exiting tasks in order to allow them to be waited for. */
525 DEFINE_SRCU(tasks_rcu_exit_srcu);
526
527 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
528 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
529 module_param(rcu_task_stall_timeout, int, 0644);
530
531 static void rcu_spawn_tasks_kthread(void);
532
533 /*
534 * Post an RCU-tasks callback. First call must be from process context
535 * after the scheduler if fully operational.
536 */
call_rcu_tasks(struct rcu_head * rhp,rcu_callback_t func)537 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
538 {
539 unsigned long flags;
540 bool needwake;
541
542 rhp->next = NULL;
543 rhp->func = func;
544 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
545 needwake = !rcu_tasks_cbs_head;
546 *rcu_tasks_cbs_tail = rhp;
547 rcu_tasks_cbs_tail = &rhp->next;
548 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
549 if (needwake) {
550 rcu_spawn_tasks_kthread();
551 wake_up(&rcu_tasks_cbs_wq);
552 }
553 }
554 EXPORT_SYMBOL_GPL(call_rcu_tasks);
555
556 /**
557 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
558 *
559 * Control will return to the caller some time after a full rcu-tasks
560 * grace period has elapsed, in other words after all currently
561 * executing rcu-tasks read-side critical sections have elapsed. These
562 * read-side critical sections are delimited by calls to schedule(),
563 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
564 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
565 *
566 * This is a very specialized primitive, intended only for a few uses in
567 * tracing and other situations requiring manipulation of function
568 * preambles and profiling hooks. The synchronize_rcu_tasks() function
569 * is not (yet) intended for heavy use from multiple CPUs.
570 *
571 * Note that this guarantee implies further memory-ordering guarantees.
572 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
573 * each CPU is guaranteed to have executed a full memory barrier since the
574 * end of its last RCU-tasks read-side critical section whose beginning
575 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
576 * having an RCU-tasks read-side critical section that extends beyond
577 * the return from synchronize_rcu_tasks() is guaranteed to have executed
578 * a full memory barrier after the beginning of synchronize_rcu_tasks()
579 * and before the beginning of that RCU-tasks read-side critical section.
580 * Note that these guarantees include CPUs that are offline, idle, or
581 * executing in user mode, as well as CPUs that are executing in the kernel.
582 *
583 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
584 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
585 * to have executed a full memory barrier during the execution of
586 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
587 * (but again only if the system has more than one CPU).
588 */
synchronize_rcu_tasks(void)589 void synchronize_rcu_tasks(void)
590 {
591 /* Complain if the scheduler has not started. */
592 RCU_LOCKDEP_WARN(!rcu_scheduler_active,
593 "synchronize_rcu_tasks called too soon");
594
595 /* Wait for the grace period. */
596 wait_rcu_gp(call_rcu_tasks);
597 }
598 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
599
600 /**
601 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
602 *
603 * Although the current implementation is guaranteed to wait, it is not
604 * obligated to, for example, if there are no pending callbacks.
605 */
rcu_barrier_tasks(void)606 void rcu_barrier_tasks(void)
607 {
608 /* There is only one callback queue, so this is easy. ;-) */
609 synchronize_rcu_tasks();
610 }
611 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
612
613 /* See if tasks are still holding out, complain if so. */
check_holdout_task(struct task_struct * t,bool needreport,bool * firstreport)614 static void check_holdout_task(struct task_struct *t,
615 bool needreport, bool *firstreport)
616 {
617 int cpu;
618
619 if (!READ_ONCE(t->rcu_tasks_holdout) ||
620 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
621 !READ_ONCE(t->on_rq) ||
622 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
623 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
624 WRITE_ONCE(t->rcu_tasks_holdout, false);
625 list_del_init(&t->rcu_tasks_holdout_list);
626 put_task_struct(t);
627 return;
628 }
629 if (!needreport)
630 return;
631 if (*firstreport) {
632 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
633 *firstreport = false;
634 }
635 cpu = task_cpu(t);
636 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
637 t, ".I"[is_idle_task(t)],
638 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
639 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
640 t->rcu_tasks_idle_cpu, cpu);
641 sched_show_task(t);
642 }
643
644 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
rcu_tasks_kthread(void * arg)645 static int __noreturn rcu_tasks_kthread(void *arg)
646 {
647 unsigned long flags;
648 struct task_struct *g, *t;
649 unsigned long lastreport;
650 struct rcu_head *list;
651 struct rcu_head *next;
652 LIST_HEAD(rcu_tasks_holdouts);
653
654 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
655 housekeeping_affine(current);
656
657 /*
658 * Each pass through the following loop makes one check for
659 * newly arrived callbacks, and, if there are some, waits for
660 * one RCU-tasks grace period and then invokes the callbacks.
661 * This loop is terminated by the system going down. ;-)
662 */
663 for (;;) {
664
665 /* Pick up any new callbacks. */
666 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
667 list = rcu_tasks_cbs_head;
668 rcu_tasks_cbs_head = NULL;
669 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
670 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
671
672 /* If there were none, wait a bit and start over. */
673 if (!list) {
674 wait_event_interruptible(rcu_tasks_cbs_wq,
675 rcu_tasks_cbs_head);
676 if (!rcu_tasks_cbs_head) {
677 WARN_ON(signal_pending(current));
678 schedule_timeout_interruptible(HZ/10);
679 }
680 continue;
681 }
682
683 /*
684 * Wait for all pre-existing t->on_rq and t->nvcsw
685 * transitions to complete. Invoking synchronize_sched()
686 * suffices because all these transitions occur with
687 * interrupts disabled. Without this synchronize_sched(),
688 * a read-side critical section that started before the
689 * grace period might be incorrectly seen as having started
690 * after the grace period.
691 *
692 * This synchronize_sched() also dispenses with the
693 * need for a memory barrier on the first store to
694 * ->rcu_tasks_holdout, as it forces the store to happen
695 * after the beginning of the grace period.
696 */
697 synchronize_sched();
698
699 /*
700 * There were callbacks, so we need to wait for an
701 * RCU-tasks grace period. Start off by scanning
702 * the task list for tasks that are not already
703 * voluntarily blocked. Mark these tasks and make
704 * a list of them in rcu_tasks_holdouts.
705 */
706 rcu_read_lock();
707 for_each_process_thread(g, t) {
708 if (t != current && READ_ONCE(t->on_rq) &&
709 !is_idle_task(t)) {
710 get_task_struct(t);
711 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
712 WRITE_ONCE(t->rcu_tasks_holdout, true);
713 list_add(&t->rcu_tasks_holdout_list,
714 &rcu_tasks_holdouts);
715 }
716 }
717 rcu_read_unlock();
718
719 /*
720 * Wait for tasks that are in the process of exiting.
721 * This does only part of the job, ensuring that all
722 * tasks that were previously exiting reach the point
723 * where they have disabled preemption, allowing the
724 * later synchronize_sched() to finish the job.
725 */
726 synchronize_srcu(&tasks_rcu_exit_srcu);
727
728 /*
729 * Each pass through the following loop scans the list
730 * of holdout tasks, removing any that are no longer
731 * holdouts. When the list is empty, we are done.
732 */
733 lastreport = jiffies;
734 while (!list_empty(&rcu_tasks_holdouts)) {
735 bool firstreport;
736 bool needreport;
737 int rtst;
738 struct task_struct *t1;
739
740 schedule_timeout_interruptible(HZ);
741 rtst = READ_ONCE(rcu_task_stall_timeout);
742 needreport = rtst > 0 &&
743 time_after(jiffies, lastreport + rtst);
744 if (needreport)
745 lastreport = jiffies;
746 firstreport = true;
747 WARN_ON(signal_pending(current));
748 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
749 rcu_tasks_holdout_list) {
750 check_holdout_task(t, needreport, &firstreport);
751 cond_resched();
752 }
753 }
754
755 /*
756 * Because ->on_rq and ->nvcsw are not guaranteed
757 * to have a full memory barriers prior to them in the
758 * schedule() path, memory reordering on other CPUs could
759 * cause their RCU-tasks read-side critical sections to
760 * extend past the end of the grace period. However,
761 * because these ->nvcsw updates are carried out with
762 * interrupts disabled, we can use synchronize_sched()
763 * to force the needed ordering on all such CPUs.
764 *
765 * This synchronize_sched() also confines all
766 * ->rcu_tasks_holdout accesses to be within the grace
767 * period, avoiding the need for memory barriers for
768 * ->rcu_tasks_holdout accesses.
769 *
770 * In addition, this synchronize_sched() waits for exiting
771 * tasks to complete their final preempt_disable() region
772 * of execution, cleaning up after the synchronize_srcu()
773 * above.
774 */
775 synchronize_sched();
776
777 /* Invoke the callbacks. */
778 while (list) {
779 next = list->next;
780 local_bh_disable();
781 list->func(list);
782 local_bh_enable();
783 list = next;
784 cond_resched();
785 }
786 schedule_timeout_uninterruptible(HZ/10);
787 }
788 }
789
790 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
rcu_spawn_tasks_kthread(void)791 static void rcu_spawn_tasks_kthread(void)
792 {
793 static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
794 static struct task_struct *rcu_tasks_kthread_ptr;
795 struct task_struct *t;
796
797 if (READ_ONCE(rcu_tasks_kthread_ptr)) {
798 smp_mb(); /* Ensure caller sees full kthread. */
799 return;
800 }
801 mutex_lock(&rcu_tasks_kthread_mutex);
802 if (rcu_tasks_kthread_ptr) {
803 mutex_unlock(&rcu_tasks_kthread_mutex);
804 return;
805 }
806 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
807 BUG_ON(IS_ERR(t));
808 smp_mb(); /* Ensure others see full kthread. */
809 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
810 mutex_unlock(&rcu_tasks_kthread_mutex);
811 }
812
813 #endif /* #ifdef CONFIG_TASKS_RCU */
814
815 #ifdef CONFIG_PROVE_RCU
816
817 /*
818 * Early boot self test parameters, one for each flavor
819 */
820 static bool rcu_self_test;
821 static bool rcu_self_test_bh;
822 static bool rcu_self_test_sched;
823
824 module_param(rcu_self_test, bool, 0444);
825 module_param(rcu_self_test_bh, bool, 0444);
826 module_param(rcu_self_test_sched, bool, 0444);
827
828 static int rcu_self_test_counter;
829
test_callback(struct rcu_head * r)830 static void test_callback(struct rcu_head *r)
831 {
832 rcu_self_test_counter++;
833 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
834 }
835
early_boot_test_call_rcu(void)836 static void early_boot_test_call_rcu(void)
837 {
838 static struct rcu_head head;
839
840 call_rcu(&head, test_callback);
841 }
842
early_boot_test_call_rcu_bh(void)843 static void early_boot_test_call_rcu_bh(void)
844 {
845 static struct rcu_head head;
846
847 call_rcu_bh(&head, test_callback);
848 }
849
early_boot_test_call_rcu_sched(void)850 static void early_boot_test_call_rcu_sched(void)
851 {
852 static struct rcu_head head;
853
854 call_rcu_sched(&head, test_callback);
855 }
856
rcu_early_boot_tests(void)857 void rcu_early_boot_tests(void)
858 {
859 pr_info("Running RCU self tests\n");
860
861 if (rcu_self_test)
862 early_boot_test_call_rcu();
863 if (rcu_self_test_bh)
864 early_boot_test_call_rcu_bh();
865 if (rcu_self_test_sched)
866 early_boot_test_call_rcu_sched();
867 }
868
rcu_verify_early_boot_tests(void)869 static int rcu_verify_early_boot_tests(void)
870 {
871 int ret = 0;
872 int early_boot_test_counter = 0;
873
874 if (rcu_self_test) {
875 early_boot_test_counter++;
876 rcu_barrier();
877 }
878 if (rcu_self_test_bh) {
879 early_boot_test_counter++;
880 rcu_barrier_bh();
881 }
882 if (rcu_self_test_sched) {
883 early_boot_test_counter++;
884 rcu_barrier_sched();
885 }
886
887 if (rcu_self_test_counter != early_boot_test_counter) {
888 WARN_ON(1);
889 ret = -1;
890 }
891
892 return ret;
893 }
894 late_initcall(rcu_verify_early_boot_tests);
895 #else
rcu_early_boot_tests(void)896 void rcu_early_boot_tests(void) {}
897 #endif /* CONFIG_PROVE_RCU */
898