1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64 * struct regulator_map
65 *
66 * Used to provide symbolic supply names to devices.
67 */
68 struct regulator_map {
69 struct list_head list;
70 const char *dev_name; /* The dev_name() for the consumer */
71 const char *supply;
72 struct regulator_dev *regulator;
73 };
74
75 /*
76 * struct regulator_enable_gpio
77 *
78 * Management for shared enable GPIO pin
79 */
80 struct regulator_enable_gpio {
81 struct list_head list;
82 struct gpio_desc *gpiod;
83 u32 enable_count; /* a number of enabled shared GPIO */
84 u32 request_count; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89 * struct regulator_supply_alias
90 *
91 * Used to map lookups for a supply onto an alternative device.
92 */
93 struct regulator_supply_alias {
94 struct list_head list;
95 struct device *src_dev;
96 const char *src_supply;
97 struct device *alias_dev;
98 const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 struct device *dev,
112 const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
dev_to_rdev(struct device * dev)115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 return container_of(dev, struct regulator_dev, dev);
118 }
119
rdev_get_name(struct regulator_dev * rdev)120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 if (rdev->constraints && rdev->constraints->name)
123 return rdev->constraints->name;
124 else if (rdev->desc->name)
125 return rdev->desc->name;
126 else
127 return "";
128 }
129
have_full_constraints(void)130 static bool have_full_constraints(void)
131 {
132 return has_full_constraints || of_have_populated_dt();
133 }
134
rdev_get_supply(struct regulator_dev * rdev)135 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
136 {
137 if (rdev && rdev->supply)
138 return rdev->supply->rdev;
139
140 return NULL;
141 }
142
143 /**
144 * regulator_lock_supply - lock a regulator and its supplies
145 * @rdev: regulator source
146 */
regulator_lock_supply(struct regulator_dev * rdev)147 static void regulator_lock_supply(struct regulator_dev *rdev)
148 {
149 int i;
150
151 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152 mutex_lock_nested(&rdev->mutex, i);
153 }
154
155 /**
156 * regulator_unlock_supply - unlock a regulator and its supplies
157 * @rdev: regulator source
158 */
regulator_unlock_supply(struct regulator_dev * rdev)159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161 struct regulator *supply;
162
163 while (1) {
164 mutex_unlock(&rdev->mutex);
165 supply = rdev->supply;
166
167 if (!rdev->supply)
168 return;
169
170 rdev = supply->rdev;
171 }
172 }
173
174 /**
175 * of_get_regulator - get a regulator device node based on supply name
176 * @dev: Device pointer for the consumer (of regulator) device
177 * @supply: regulator supply name
178 *
179 * Extract the regulator device node corresponding to the supply name.
180 * returns the device node corresponding to the regulator if found, else
181 * returns NULL.
182 */
of_get_regulator(struct device * dev,const char * supply)183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185 struct device_node *regnode = NULL;
186 char prop_name[32]; /* 32 is max size of property name */
187
188 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189
190 snprintf(prop_name, 32, "%s-supply", supply);
191 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192
193 if (!regnode) {
194 dev_dbg(dev, "Looking up %s property in node %s failed",
195 prop_name, dev->of_node->full_name);
196 return NULL;
197 }
198 return regnode;
199 }
200
_regulator_can_change_status(struct regulator_dev * rdev)201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203 if (!rdev->constraints)
204 return 0;
205
206 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207 return 1;
208 else
209 return 0;
210 }
211
212 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)213 static int regulator_check_voltage(struct regulator_dev *rdev,
214 int *min_uV, int *max_uV)
215 {
216 BUG_ON(*min_uV > *max_uV);
217
218 if (!rdev->constraints) {
219 rdev_err(rdev, "no constraints\n");
220 return -ENODEV;
221 }
222 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223 rdev_err(rdev, "voltage operation not allowed\n");
224 return -EPERM;
225 }
226
227 if (*max_uV > rdev->constraints->max_uV)
228 *max_uV = rdev->constraints->max_uV;
229 if (*min_uV < rdev->constraints->min_uV)
230 *min_uV = rdev->constraints->min_uV;
231
232 if (*min_uV > *max_uV) {
233 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234 *min_uV, *max_uV);
235 return -EINVAL;
236 }
237
238 return 0;
239 }
240
241 /* Make sure we select a voltage that suits the needs of all
242 * regulator consumers
243 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV)244 static int regulator_check_consumers(struct regulator_dev *rdev,
245 int *min_uV, int *max_uV)
246 {
247 struct regulator *regulator;
248
249 list_for_each_entry(regulator, &rdev->consumer_list, list) {
250 /*
251 * Assume consumers that didn't say anything are OK
252 * with anything in the constraint range.
253 */
254 if (!regulator->min_uV && !regulator->max_uV)
255 continue;
256
257 if (*max_uV > regulator->max_uV)
258 *max_uV = regulator->max_uV;
259 if (*min_uV < regulator->min_uV)
260 *min_uV = regulator->min_uV;
261 }
262
263 if (*min_uV > *max_uV) {
264 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265 *min_uV, *max_uV);
266 return -EINVAL;
267 }
268
269 return 0;
270 }
271
272 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274 int *min_uA, int *max_uA)
275 {
276 BUG_ON(*min_uA > *max_uA);
277
278 if (!rdev->constraints) {
279 rdev_err(rdev, "no constraints\n");
280 return -ENODEV;
281 }
282 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283 rdev_err(rdev, "current operation not allowed\n");
284 return -EPERM;
285 }
286
287 if (*max_uA > rdev->constraints->max_uA)
288 *max_uA = rdev->constraints->max_uA;
289 if (*min_uA < rdev->constraints->min_uA)
290 *min_uA = rdev->constraints->min_uA;
291
292 if (*min_uA > *max_uA) {
293 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294 *min_uA, *max_uA);
295 return -EINVAL;
296 }
297
298 return 0;
299 }
300
301 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,int * mode)302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304 switch (*mode) {
305 case REGULATOR_MODE_FAST:
306 case REGULATOR_MODE_NORMAL:
307 case REGULATOR_MODE_IDLE:
308 case REGULATOR_MODE_STANDBY:
309 break;
310 default:
311 rdev_err(rdev, "invalid mode %x specified\n", *mode);
312 return -EINVAL;
313 }
314
315 if (!rdev->constraints) {
316 rdev_err(rdev, "no constraints\n");
317 return -ENODEV;
318 }
319 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320 rdev_err(rdev, "mode operation not allowed\n");
321 return -EPERM;
322 }
323
324 /* The modes are bitmasks, the most power hungry modes having
325 * the lowest values. If the requested mode isn't supported
326 * try higher modes. */
327 while (*mode) {
328 if (rdev->constraints->valid_modes_mask & *mode)
329 return 0;
330 *mode /= 2;
331 }
332
333 return -EINVAL;
334 }
335
336 /* dynamic regulator mode switching constraint check */
regulator_check_drms(struct regulator_dev * rdev)337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339 if (!rdev->constraints) {
340 rdev_err(rdev, "no constraints\n");
341 return -ENODEV;
342 }
343 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344 rdev_dbg(rdev, "drms operation not allowed\n");
345 return -EPERM;
346 }
347 return 0;
348 }
349
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)350 static ssize_t regulator_uV_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
352 {
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354 ssize_t ret;
355
356 mutex_lock(&rdev->mutex);
357 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358 mutex_unlock(&rdev->mutex);
359
360 return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)364 static ssize_t regulator_uA_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
366 {
367 struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372
name_show(struct device * dev,struct device_attribute * attr,char * buf)373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374 char *buf)
375 {
376 struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378 return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381
regulator_print_opmode(char * buf,int mode)382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384 switch (mode) {
385 case REGULATOR_MODE_FAST:
386 return sprintf(buf, "fast\n");
387 case REGULATOR_MODE_NORMAL:
388 return sprintf(buf, "normal\n");
389 case REGULATOR_MODE_IDLE:
390 return sprintf(buf, "idle\n");
391 case REGULATOR_MODE_STANDBY:
392 return sprintf(buf, "standby\n");
393 }
394 return sprintf(buf, "unknown\n");
395 }
396
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)397 static ssize_t regulator_opmode_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
399 {
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405
regulator_print_state(char * buf,int state)406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408 if (state > 0)
409 return sprintf(buf, "enabled\n");
410 else if (state == 0)
411 return sprintf(buf, "disabled\n");
412 else
413 return sprintf(buf, "unknown\n");
414 }
415
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)416 static ssize_t regulator_state_show(struct device *dev,
417 struct device_attribute *attr, char *buf)
418 {
419 struct regulator_dev *rdev = dev_get_drvdata(dev);
420 ssize_t ret;
421
422 mutex_lock(&rdev->mutex);
423 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424 mutex_unlock(&rdev->mutex);
425
426 return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)430 static ssize_t regulator_status_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
432 {
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
434 int status;
435 char *label;
436
437 status = rdev->desc->ops->get_status(rdev);
438 if (status < 0)
439 return status;
440
441 switch (status) {
442 case REGULATOR_STATUS_OFF:
443 label = "off";
444 break;
445 case REGULATOR_STATUS_ON:
446 label = "on";
447 break;
448 case REGULATOR_STATUS_ERROR:
449 label = "error";
450 break;
451 case REGULATOR_STATUS_FAST:
452 label = "fast";
453 break;
454 case REGULATOR_STATUS_NORMAL:
455 label = "normal";
456 break;
457 case REGULATOR_STATUS_IDLE:
458 label = "idle";
459 break;
460 case REGULATOR_STATUS_STANDBY:
461 label = "standby";
462 break;
463 case REGULATOR_STATUS_BYPASS:
464 label = "bypass";
465 break;
466 case REGULATOR_STATUS_UNDEFINED:
467 label = "undefined";
468 break;
469 default:
470 return -ERANGE;
471 }
472
473 return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)477 static ssize_t regulator_min_uA_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
479 {
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482 if (!rdev->constraints)
483 return sprintf(buf, "constraint not defined\n");
484
485 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)489 static ssize_t regulator_max_uA_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
491 {
492 struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494 if (!rdev->constraints)
495 return sprintf(buf, "constraint not defined\n");
496
497 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)501 static ssize_t regulator_min_uV_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
503 {
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506 if (!rdev->constraints)
507 return sprintf(buf, "constraint not defined\n");
508
509 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)513 static ssize_t regulator_max_uV_show(struct device *dev,
514 struct device_attribute *attr, char *buf)
515 {
516 struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518 if (!rdev->constraints)
519 return sprintf(buf, "constraint not defined\n");
520
521 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)525 static ssize_t regulator_total_uA_show(struct device *dev,
526 struct device_attribute *attr, char *buf)
527 {
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
529 struct regulator *regulator;
530 int uA = 0;
531
532 mutex_lock(&rdev->mutex);
533 list_for_each_entry(regulator, &rdev->consumer_list, list)
534 uA += regulator->uA_load;
535 mutex_unlock(&rdev->mutex);
536 return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541 char *buf)
542 {
543 struct regulator_dev *rdev = dev_get_drvdata(dev);
544 return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547
type_show(struct device * dev,struct device_attribute * attr,char * buf)548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549 char *buf)
550 {
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553 switch (rdev->desc->type) {
554 case REGULATOR_VOLTAGE:
555 return sprintf(buf, "voltage\n");
556 case REGULATOR_CURRENT:
557 return sprintf(buf, "current\n");
558 }
559 return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
565 {
566 struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571 regulator_suspend_mem_uV_show, NULL);
572
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574 struct device_attribute *attr, char *buf)
575 {
576 struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581 regulator_suspend_disk_uV_show, NULL);
582
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584 struct device_attribute *attr, char *buf)
585 {
586 struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591 regulator_suspend_standby_uV_show, NULL);
592
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594 struct device_attribute *attr, char *buf)
595 {
596 struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598 return regulator_print_opmode(buf,
599 rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602 regulator_suspend_mem_mode_show, NULL);
603
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605 struct device_attribute *attr, char *buf)
606 {
607 struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609 return regulator_print_opmode(buf,
610 rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613 regulator_suspend_disk_mode_show, NULL);
614
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616 struct device_attribute *attr, char *buf)
617 {
618 struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620 return regulator_print_opmode(buf,
621 rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624 regulator_suspend_standby_mode_show, NULL);
625
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627 struct device_attribute *attr, char *buf)
628 {
629 struct regulator_dev *rdev = dev_get_drvdata(dev);
630
631 return regulator_print_state(buf,
632 rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635 regulator_suspend_mem_state_show, NULL);
636
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638 struct device_attribute *attr, char *buf)
639 {
640 struct regulator_dev *rdev = dev_get_drvdata(dev);
641
642 return regulator_print_state(buf,
643 rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646 regulator_suspend_disk_state_show, NULL);
647
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649 struct device_attribute *attr, char *buf)
650 {
651 struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653 return regulator_print_state(buf,
654 rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657 regulator_suspend_standby_state_show, NULL);
658
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)659 static ssize_t regulator_bypass_show(struct device *dev,
660 struct device_attribute *attr, char *buf)
661 {
662 struct regulator_dev *rdev = dev_get_drvdata(dev);
663 const char *report;
664 bool bypass;
665 int ret;
666
667 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668
669 if (ret != 0)
670 report = "unknown";
671 else if (bypass)
672 report = "enabled";
673 else
674 report = "disabled";
675
676 return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679 regulator_bypass_show, NULL);
680
681 /* Calculate the new optimum regulator operating mode based on the new total
682 * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685 struct regulator *sibling;
686 int current_uA = 0, output_uV, input_uV, err;
687 unsigned int mode;
688
689 lockdep_assert_held_once(&rdev->mutex);
690
691 /*
692 * first check to see if we can set modes at all, otherwise just
693 * tell the consumer everything is OK.
694 */
695 err = regulator_check_drms(rdev);
696 if (err < 0)
697 return 0;
698
699 if (!rdev->desc->ops->get_optimum_mode &&
700 !rdev->desc->ops->set_load)
701 return 0;
702
703 if (!rdev->desc->ops->set_mode &&
704 !rdev->desc->ops->set_load)
705 return -EINVAL;
706
707 /* get output voltage */
708 output_uV = _regulator_get_voltage(rdev);
709 if (output_uV <= 0) {
710 rdev_err(rdev, "invalid output voltage found\n");
711 return -EINVAL;
712 }
713
714 /* get input voltage */
715 input_uV = 0;
716 if (rdev->supply)
717 input_uV = regulator_get_voltage(rdev->supply);
718 if (input_uV <= 0)
719 input_uV = rdev->constraints->input_uV;
720 if (input_uV <= 0) {
721 rdev_err(rdev, "invalid input voltage found\n");
722 return -EINVAL;
723 }
724
725 /* calc total requested load */
726 list_for_each_entry(sibling, &rdev->consumer_list, list)
727 current_uA += sibling->uA_load;
728
729 current_uA += rdev->constraints->system_load;
730
731 if (rdev->desc->ops->set_load) {
732 /* set the optimum mode for our new total regulator load */
733 err = rdev->desc->ops->set_load(rdev, current_uA);
734 if (err < 0)
735 rdev_err(rdev, "failed to set load %d\n", current_uA);
736 } else {
737 /* now get the optimum mode for our new total regulator load */
738 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739 output_uV, current_uA);
740
741 /* check the new mode is allowed */
742 err = regulator_mode_constrain(rdev, &mode);
743 if (err < 0) {
744 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745 current_uA, input_uV, output_uV);
746 return err;
747 }
748
749 err = rdev->desc->ops->set_mode(rdev, mode);
750 if (err < 0)
751 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752 }
753
754 return err;
755 }
756
suspend_set_state(struct regulator_dev * rdev,struct regulator_state * rstate)757 static int suspend_set_state(struct regulator_dev *rdev,
758 struct regulator_state *rstate)
759 {
760 int ret = 0;
761
762 /* If we have no suspend mode configration don't set anything;
763 * only warn if the driver implements set_suspend_voltage or
764 * set_suspend_mode callback.
765 */
766 if (!rstate->enabled && !rstate->disabled) {
767 if (rdev->desc->ops->set_suspend_voltage ||
768 rdev->desc->ops->set_suspend_mode)
769 rdev_warn(rdev, "No configuration\n");
770 return 0;
771 }
772
773 if (rstate->enabled && rstate->disabled) {
774 rdev_err(rdev, "invalid configuration\n");
775 return -EINVAL;
776 }
777
778 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779 ret = rdev->desc->ops->set_suspend_enable(rdev);
780 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781 ret = rdev->desc->ops->set_suspend_disable(rdev);
782 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783 ret = 0;
784
785 if (ret < 0) {
786 rdev_err(rdev, "failed to enabled/disable\n");
787 return ret;
788 }
789
790 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792 if (ret < 0) {
793 rdev_err(rdev, "failed to set voltage\n");
794 return ret;
795 }
796 }
797
798 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800 if (ret < 0) {
801 rdev_err(rdev, "failed to set mode\n");
802 return ret;
803 }
804 }
805 return ret;
806 }
807
808 /* locks held by caller */
suspend_prepare(struct regulator_dev * rdev,suspend_state_t state)809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811 lockdep_assert_held_once(&rdev->mutex);
812
813 if (!rdev->constraints)
814 return -EINVAL;
815
816 switch (state) {
817 case PM_SUSPEND_STANDBY:
818 return suspend_set_state(rdev,
819 &rdev->constraints->state_standby);
820 case PM_SUSPEND_MEM:
821 return suspend_set_state(rdev,
822 &rdev->constraints->state_mem);
823 case PM_SUSPEND_MAX:
824 return suspend_set_state(rdev,
825 &rdev->constraints->state_disk);
826 default:
827 return -EINVAL;
828 }
829 }
830
print_constraints(struct regulator_dev * rdev)831 static void print_constraints(struct regulator_dev *rdev)
832 {
833 struct regulation_constraints *constraints = rdev->constraints;
834 char buf[160] = "";
835 size_t len = sizeof(buf) - 1;
836 int count = 0;
837 int ret;
838
839 if (constraints->min_uV && constraints->max_uV) {
840 if (constraints->min_uV == constraints->max_uV)
841 count += scnprintf(buf + count, len - count, "%d mV ",
842 constraints->min_uV / 1000);
843 else
844 count += scnprintf(buf + count, len - count,
845 "%d <--> %d mV ",
846 constraints->min_uV / 1000,
847 constraints->max_uV / 1000);
848 }
849
850 if (!constraints->min_uV ||
851 constraints->min_uV != constraints->max_uV) {
852 ret = _regulator_get_voltage(rdev);
853 if (ret > 0)
854 count += scnprintf(buf + count, len - count,
855 "at %d mV ", ret / 1000);
856 }
857
858 if (constraints->uV_offset)
859 count += scnprintf(buf + count, len - count, "%dmV offset ",
860 constraints->uV_offset / 1000);
861
862 if (constraints->min_uA && constraints->max_uA) {
863 if (constraints->min_uA == constraints->max_uA)
864 count += scnprintf(buf + count, len - count, "%d mA ",
865 constraints->min_uA / 1000);
866 else
867 count += scnprintf(buf + count, len - count,
868 "%d <--> %d mA ",
869 constraints->min_uA / 1000,
870 constraints->max_uA / 1000);
871 }
872
873 if (!constraints->min_uA ||
874 constraints->min_uA != constraints->max_uA) {
875 ret = _regulator_get_current_limit(rdev);
876 if (ret > 0)
877 count += scnprintf(buf + count, len - count,
878 "at %d mA ", ret / 1000);
879 }
880
881 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882 count += scnprintf(buf + count, len - count, "fast ");
883 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884 count += scnprintf(buf + count, len - count, "normal ");
885 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886 count += scnprintf(buf + count, len - count, "idle ");
887 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888 count += scnprintf(buf + count, len - count, "standby");
889
890 if (!count)
891 scnprintf(buf, len, "no parameters");
892
893 rdev_dbg(rdev, "%s\n", buf);
894
895 if ((constraints->min_uV != constraints->max_uV) &&
896 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897 rdev_warn(rdev,
898 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 }
900
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902 struct regulation_constraints *constraints)
903 {
904 const struct regulator_ops *ops = rdev->desc->ops;
905 int ret;
906
907 /* do we need to apply the constraint voltage */
908 if (rdev->constraints->apply_uV &&
909 rdev->constraints->min_uV == rdev->constraints->max_uV) {
910 int current_uV = _regulator_get_voltage(rdev);
911 if (current_uV < 0) {
912 rdev_err(rdev,
913 "failed to get the current voltage(%d)\n",
914 current_uV);
915 return current_uV;
916 }
917 if (current_uV < rdev->constraints->min_uV ||
918 current_uV > rdev->constraints->max_uV) {
919 ret = _regulator_do_set_voltage(
920 rdev, rdev->constraints->min_uV,
921 rdev->constraints->max_uV);
922 if (ret < 0) {
923 rdev_err(rdev,
924 "failed to apply %duV constraint(%d)\n",
925 rdev->constraints->min_uV, ret);
926 return ret;
927 }
928 }
929 }
930
931 /* constrain machine-level voltage specs to fit
932 * the actual range supported by this regulator.
933 */
934 if (ops->list_voltage && rdev->desc->n_voltages) {
935 int count = rdev->desc->n_voltages;
936 int i;
937 int min_uV = INT_MAX;
938 int max_uV = INT_MIN;
939 int cmin = constraints->min_uV;
940 int cmax = constraints->max_uV;
941
942 /* it's safe to autoconfigure fixed-voltage supplies
943 and the constraints are used by list_voltage. */
944 if (count == 1 && !cmin) {
945 cmin = 1;
946 cmax = INT_MAX;
947 constraints->min_uV = cmin;
948 constraints->max_uV = cmax;
949 }
950
951 /* voltage constraints are optional */
952 if ((cmin == 0) && (cmax == 0))
953 return 0;
954
955 /* else require explicit machine-level constraints */
956 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957 rdev_err(rdev, "invalid voltage constraints\n");
958 return -EINVAL;
959 }
960
961 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962 for (i = 0; i < count; i++) {
963 int value;
964
965 value = ops->list_voltage(rdev, i);
966 if (value <= 0)
967 continue;
968
969 /* maybe adjust [min_uV..max_uV] */
970 if (value >= cmin && value < min_uV)
971 min_uV = value;
972 if (value <= cmax && value > max_uV)
973 max_uV = value;
974 }
975
976 /* final: [min_uV..max_uV] valid iff constraints valid */
977 if (max_uV < min_uV) {
978 rdev_err(rdev,
979 "unsupportable voltage constraints %u-%uuV\n",
980 min_uV, max_uV);
981 return -EINVAL;
982 }
983
984 /* use regulator's subset of machine constraints */
985 if (constraints->min_uV < min_uV) {
986 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987 constraints->min_uV, min_uV);
988 constraints->min_uV = min_uV;
989 }
990 if (constraints->max_uV > max_uV) {
991 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992 constraints->max_uV, max_uV);
993 constraints->max_uV = max_uV;
994 }
995 }
996
997 return 0;
998 }
999
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1000 static int machine_constraints_current(struct regulator_dev *rdev,
1001 struct regulation_constraints *constraints)
1002 {
1003 const struct regulator_ops *ops = rdev->desc->ops;
1004 int ret;
1005
1006 if (!constraints->min_uA && !constraints->max_uA)
1007 return 0;
1008
1009 if (constraints->min_uA > constraints->max_uA) {
1010 rdev_err(rdev, "Invalid current constraints\n");
1011 return -EINVAL;
1012 }
1013
1014 if (!ops->set_current_limit || !ops->get_current_limit) {
1015 rdev_warn(rdev, "Operation of current configuration missing\n");
1016 return 0;
1017 }
1018
1019 /* Set regulator current in constraints range */
1020 ret = ops->set_current_limit(rdev, constraints->min_uA,
1021 constraints->max_uA);
1022 if (ret < 0) {
1023 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024 return ret;
1025 }
1026
1027 return 0;
1028 }
1029
1030 static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032 /**
1033 * set_machine_constraints - sets regulator constraints
1034 * @rdev: regulator source
1035 * @constraints: constraints to apply
1036 *
1037 * Allows platform initialisation code to define and constrain
1038 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1039 * Constraints *must* be set by platform code in order for some
1040 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041 * set_mode.
1042 */
set_machine_constraints(struct regulator_dev * rdev,const struct regulation_constraints * constraints)1043 static int set_machine_constraints(struct regulator_dev *rdev,
1044 const struct regulation_constraints *constraints)
1045 {
1046 int ret = 0;
1047 const struct regulator_ops *ops = rdev->desc->ops;
1048
1049 if (constraints)
1050 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051 GFP_KERNEL);
1052 else
1053 rdev->constraints = kzalloc(sizeof(*constraints),
1054 GFP_KERNEL);
1055 if (!rdev->constraints)
1056 return -ENOMEM;
1057
1058 ret = machine_constraints_voltage(rdev, rdev->constraints);
1059 if (ret != 0)
1060 return ret;
1061
1062 ret = machine_constraints_current(rdev, rdev->constraints);
1063 if (ret != 0)
1064 return ret;
1065
1066 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067 ret = ops->set_input_current_limit(rdev,
1068 rdev->constraints->ilim_uA);
1069 if (ret < 0) {
1070 rdev_err(rdev, "failed to set input limit\n");
1071 return ret;
1072 }
1073 }
1074
1075 /* do we need to setup our suspend state */
1076 if (rdev->constraints->initial_state) {
1077 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078 if (ret < 0) {
1079 rdev_err(rdev, "failed to set suspend state\n");
1080 return ret;
1081 }
1082 }
1083
1084 if (rdev->constraints->initial_mode) {
1085 if (!ops->set_mode) {
1086 rdev_err(rdev, "no set_mode operation\n");
1087 return -EINVAL;
1088 }
1089
1090 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091 if (ret < 0) {
1092 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093 return ret;
1094 }
1095 }
1096
1097 /* If the constraints say the regulator should be on at this point
1098 * and we have control then make sure it is enabled.
1099 */
1100 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101 ret = _regulator_do_enable(rdev);
1102 if (ret < 0 && ret != -EINVAL) {
1103 rdev_err(rdev, "failed to enable\n");
1104 return ret;
1105 }
1106 }
1107
1108 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109 && ops->set_ramp_delay) {
1110 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111 if (ret < 0) {
1112 rdev_err(rdev, "failed to set ramp_delay\n");
1113 return ret;
1114 }
1115 }
1116
1117 if (rdev->constraints->pull_down && ops->set_pull_down) {
1118 ret = ops->set_pull_down(rdev);
1119 if (ret < 0) {
1120 rdev_err(rdev, "failed to set pull down\n");
1121 return ret;
1122 }
1123 }
1124
1125 if (rdev->constraints->soft_start && ops->set_soft_start) {
1126 ret = ops->set_soft_start(rdev);
1127 if (ret < 0) {
1128 rdev_err(rdev, "failed to set soft start\n");
1129 return ret;
1130 }
1131 }
1132
1133 if (rdev->constraints->over_current_protection
1134 && ops->set_over_current_protection) {
1135 ret = ops->set_over_current_protection(rdev);
1136 if (ret < 0) {
1137 rdev_err(rdev, "failed to set over current protection\n");
1138 return ret;
1139 }
1140 }
1141
1142 print_constraints(rdev);
1143 return 0;
1144 }
1145
1146 /**
1147 * set_supply - set regulator supply regulator
1148 * @rdev: regulator name
1149 * @supply_rdev: supply regulator name
1150 *
1151 * Called by platform initialisation code to set the supply regulator for this
1152 * regulator. This ensures that a regulators supply will also be enabled by the
1153 * core if it's child is enabled.
1154 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1155 static int set_supply(struct regulator_dev *rdev,
1156 struct regulator_dev *supply_rdev)
1157 {
1158 int err;
1159
1160 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1161
1162 if (!try_module_get(supply_rdev->owner))
1163 return -ENODEV;
1164
1165 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1166 if (rdev->supply == NULL) {
1167 err = -ENOMEM;
1168 return err;
1169 }
1170 supply_rdev->open_count++;
1171
1172 return 0;
1173 }
1174
1175 /**
1176 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1177 * @rdev: regulator source
1178 * @consumer_dev_name: dev_name() string for device supply applies to
1179 * @supply: symbolic name for supply
1180 *
1181 * Allows platform initialisation code to map physical regulator
1182 * sources to symbolic names for supplies for use by devices. Devices
1183 * should use these symbolic names to request regulators, avoiding the
1184 * need to provide board-specific regulator names as platform data.
1185 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1186 static int set_consumer_device_supply(struct regulator_dev *rdev,
1187 const char *consumer_dev_name,
1188 const char *supply)
1189 {
1190 struct regulator_map *node;
1191 int has_dev;
1192
1193 if (supply == NULL)
1194 return -EINVAL;
1195
1196 if (consumer_dev_name != NULL)
1197 has_dev = 1;
1198 else
1199 has_dev = 0;
1200
1201 list_for_each_entry(node, ®ulator_map_list, list) {
1202 if (node->dev_name && consumer_dev_name) {
1203 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1204 continue;
1205 } else if (node->dev_name || consumer_dev_name) {
1206 continue;
1207 }
1208
1209 if (strcmp(node->supply, supply) != 0)
1210 continue;
1211
1212 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1213 consumer_dev_name,
1214 dev_name(&node->regulator->dev),
1215 node->regulator->desc->name,
1216 supply,
1217 dev_name(&rdev->dev), rdev_get_name(rdev));
1218 return -EBUSY;
1219 }
1220
1221 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1222 if (node == NULL)
1223 return -ENOMEM;
1224
1225 node->regulator = rdev;
1226 node->supply = supply;
1227
1228 if (has_dev) {
1229 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1230 if (node->dev_name == NULL) {
1231 kfree(node);
1232 return -ENOMEM;
1233 }
1234 }
1235
1236 list_add(&node->list, ®ulator_map_list);
1237 return 0;
1238 }
1239
unset_regulator_supplies(struct regulator_dev * rdev)1240 static void unset_regulator_supplies(struct regulator_dev *rdev)
1241 {
1242 struct regulator_map *node, *n;
1243
1244 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1245 if (rdev == node->regulator) {
1246 list_del(&node->list);
1247 kfree(node->dev_name);
1248 kfree(node);
1249 }
1250 }
1251 }
1252
1253 #define REG_STR_SIZE 64
1254
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1255 static struct regulator *create_regulator(struct regulator_dev *rdev,
1256 struct device *dev,
1257 const char *supply_name)
1258 {
1259 struct regulator *regulator;
1260 char buf[REG_STR_SIZE];
1261 int err, size;
1262
1263 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1264 if (regulator == NULL)
1265 return NULL;
1266
1267 mutex_lock(&rdev->mutex);
1268 regulator->rdev = rdev;
1269 list_add(®ulator->list, &rdev->consumer_list);
1270
1271 if (dev) {
1272 regulator->dev = dev;
1273
1274 /* Add a link to the device sysfs entry */
1275 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1276 dev->kobj.name, supply_name);
1277 if (size >= REG_STR_SIZE)
1278 goto overflow_err;
1279
1280 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1281 if (regulator->supply_name == NULL)
1282 goto overflow_err;
1283
1284 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1285 buf);
1286 if (err) {
1287 rdev_dbg(rdev, "could not add device link %s err %d\n",
1288 dev->kobj.name, err);
1289 /* non-fatal */
1290 }
1291 } else {
1292 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1293 if (regulator->supply_name == NULL)
1294 goto overflow_err;
1295 }
1296
1297 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1298 rdev->debugfs);
1299 if (!regulator->debugfs) {
1300 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1301 } else {
1302 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1303 ®ulator->uA_load);
1304 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1305 ®ulator->min_uV);
1306 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1307 ®ulator->max_uV);
1308 }
1309
1310 /*
1311 * Check now if the regulator is an always on regulator - if
1312 * it is then we don't need to do nearly so much work for
1313 * enable/disable calls.
1314 */
1315 if (!_regulator_can_change_status(rdev) &&
1316 _regulator_is_enabled(rdev))
1317 regulator->always_on = true;
1318
1319 mutex_unlock(&rdev->mutex);
1320 return regulator;
1321 overflow_err:
1322 list_del(®ulator->list);
1323 kfree(regulator);
1324 mutex_unlock(&rdev->mutex);
1325 return NULL;
1326 }
1327
_regulator_get_enable_time(struct regulator_dev * rdev)1328 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1329 {
1330 if (rdev->constraints && rdev->constraints->enable_time)
1331 return rdev->constraints->enable_time;
1332 if (!rdev->desc->ops->enable_time)
1333 return rdev->desc->enable_time;
1334 return rdev->desc->ops->enable_time(rdev);
1335 }
1336
regulator_find_supply_alias(struct device * dev,const char * supply)1337 static struct regulator_supply_alias *regulator_find_supply_alias(
1338 struct device *dev, const char *supply)
1339 {
1340 struct regulator_supply_alias *map;
1341
1342 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1343 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1344 return map;
1345
1346 return NULL;
1347 }
1348
regulator_supply_alias(struct device ** dev,const char ** supply)1349 static void regulator_supply_alias(struct device **dev, const char **supply)
1350 {
1351 struct regulator_supply_alias *map;
1352
1353 map = regulator_find_supply_alias(*dev, *supply);
1354 if (map) {
1355 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1356 *supply, map->alias_supply,
1357 dev_name(map->alias_dev));
1358 *dev = map->alias_dev;
1359 *supply = map->alias_supply;
1360 }
1361 }
1362
of_node_match(struct device * dev,const void * data)1363 static int of_node_match(struct device *dev, const void *data)
1364 {
1365 return dev->of_node == data;
1366 }
1367
of_find_regulator_by_node(struct device_node * np)1368 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1369 {
1370 struct device *dev;
1371
1372 dev = class_find_device(®ulator_class, NULL, np, of_node_match);
1373
1374 return dev ? dev_to_rdev(dev) : NULL;
1375 }
1376
regulator_match(struct device * dev,const void * data)1377 static int regulator_match(struct device *dev, const void *data)
1378 {
1379 struct regulator_dev *r = dev_to_rdev(dev);
1380
1381 return strcmp(rdev_get_name(r), data) == 0;
1382 }
1383
regulator_lookup_by_name(const char * name)1384 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1385 {
1386 struct device *dev;
1387
1388 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1389
1390 return dev ? dev_to_rdev(dev) : NULL;
1391 }
1392
1393 /**
1394 * regulator_dev_lookup - lookup a regulator device.
1395 * @dev: device for regulator "consumer".
1396 * @supply: Supply name or regulator ID.
1397 * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1398 * lookup could succeed in the future.
1399 *
1400 * If successful, returns a struct regulator_dev that corresponds to the name
1401 * @supply and with the embedded struct device refcount incremented by one,
1402 * or NULL on failure. The refcount must be dropped by calling put_device().
1403 */
regulator_dev_lookup(struct device * dev,const char * supply,int * ret)1404 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1405 const char *supply,
1406 int *ret)
1407 {
1408 struct regulator_dev *r;
1409 struct device_node *node;
1410 struct regulator_map *map;
1411 const char *devname = NULL;
1412
1413 regulator_supply_alias(&dev, &supply);
1414
1415 /* first do a dt based lookup */
1416 if (dev && dev->of_node) {
1417 node = of_get_regulator(dev, supply);
1418 if (node) {
1419 r = of_find_regulator_by_node(node);
1420 if (r)
1421 return r;
1422 *ret = -EPROBE_DEFER;
1423 return NULL;
1424 } else {
1425 /*
1426 * If we couldn't even get the node then it's
1427 * not just that the device didn't register
1428 * yet, there's no node and we'll never
1429 * succeed.
1430 */
1431 *ret = -ENODEV;
1432 }
1433 }
1434
1435 /* if not found, try doing it non-dt way */
1436 if (dev)
1437 devname = dev_name(dev);
1438
1439 r = regulator_lookup_by_name(supply);
1440 if (r)
1441 return r;
1442
1443 mutex_lock(®ulator_list_mutex);
1444 list_for_each_entry(map, ®ulator_map_list, list) {
1445 /* If the mapping has a device set up it must match */
1446 if (map->dev_name &&
1447 (!devname || strcmp(map->dev_name, devname)))
1448 continue;
1449
1450 if (strcmp(map->supply, supply) == 0 &&
1451 get_device(&map->regulator->dev)) {
1452 mutex_unlock(®ulator_list_mutex);
1453 return map->regulator;
1454 }
1455 }
1456 mutex_unlock(®ulator_list_mutex);
1457
1458 return NULL;
1459 }
1460
regulator_resolve_supply(struct regulator_dev * rdev)1461 static int regulator_resolve_supply(struct regulator_dev *rdev)
1462 {
1463 struct regulator_dev *r;
1464 struct device *dev = rdev->dev.parent;
1465 int ret;
1466
1467 /* No supply to resovle? */
1468 if (!rdev->supply_name)
1469 return 0;
1470
1471 /* Supply already resolved? */
1472 if (rdev->supply)
1473 return 0;
1474
1475 r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1476 if (!r) {
1477 if (ret == -ENODEV) {
1478 /*
1479 * No supply was specified for this regulator and
1480 * there will never be one.
1481 */
1482 return 0;
1483 }
1484
1485 /* Did the lookup explicitly defer for us? */
1486 if (ret == -EPROBE_DEFER)
1487 return ret;
1488
1489 if (have_full_constraints()) {
1490 r = dummy_regulator_rdev;
1491 get_device(&r->dev);
1492 } else {
1493 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1494 rdev->supply_name, rdev->desc->name);
1495 return -EPROBE_DEFER;
1496 }
1497 }
1498
1499 /* Recursively resolve the supply of the supply */
1500 ret = regulator_resolve_supply(r);
1501 if (ret < 0) {
1502 put_device(&r->dev);
1503 return ret;
1504 }
1505
1506 ret = set_supply(rdev, r);
1507 if (ret < 0) {
1508 put_device(&r->dev);
1509 return ret;
1510 }
1511
1512 /* Cascade always-on state to supply */
1513 if (_regulator_is_enabled(rdev) && rdev->supply) {
1514 ret = regulator_enable(rdev->supply);
1515 if (ret < 0) {
1516 _regulator_put(rdev->supply);
1517 rdev->supply = NULL;
1518 return ret;
1519 }
1520 }
1521
1522 return 0;
1523 }
1524
1525 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,bool exclusive,bool allow_dummy)1526 static struct regulator *_regulator_get(struct device *dev, const char *id,
1527 bool exclusive, bool allow_dummy)
1528 {
1529 struct regulator_dev *rdev;
1530 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1531 const char *devname = NULL;
1532 int ret;
1533
1534 if (id == NULL) {
1535 pr_err("get() with no identifier\n");
1536 return ERR_PTR(-EINVAL);
1537 }
1538
1539 if (dev)
1540 devname = dev_name(dev);
1541
1542 if (have_full_constraints())
1543 ret = -ENODEV;
1544 else
1545 ret = -EPROBE_DEFER;
1546
1547 rdev = regulator_dev_lookup(dev, id, &ret);
1548 if (rdev)
1549 goto found;
1550
1551 regulator = ERR_PTR(ret);
1552
1553 /*
1554 * If we have return value from dev_lookup fail, we do not expect to
1555 * succeed, so, quit with appropriate error value
1556 */
1557 if (ret && ret != -ENODEV)
1558 return regulator;
1559
1560 if (!devname)
1561 devname = "deviceless";
1562
1563 /*
1564 * Assume that a regulator is physically present and enabled
1565 * even if it isn't hooked up and just provide a dummy.
1566 */
1567 if (have_full_constraints() && allow_dummy) {
1568 pr_warn("%s supply %s not found, using dummy regulator\n",
1569 devname, id);
1570
1571 rdev = dummy_regulator_rdev;
1572 get_device(&rdev->dev);
1573 goto found;
1574 /* Don't log an error when called from regulator_get_optional() */
1575 } else if (!have_full_constraints() || exclusive) {
1576 dev_warn(dev, "dummy supplies not allowed\n");
1577 }
1578
1579 return regulator;
1580
1581 found:
1582 if (rdev->exclusive) {
1583 regulator = ERR_PTR(-EPERM);
1584 put_device(&rdev->dev);
1585 return regulator;
1586 }
1587
1588 if (exclusive && rdev->open_count) {
1589 regulator = ERR_PTR(-EBUSY);
1590 put_device(&rdev->dev);
1591 return regulator;
1592 }
1593
1594 ret = regulator_resolve_supply(rdev);
1595 if (ret < 0) {
1596 regulator = ERR_PTR(ret);
1597 put_device(&rdev->dev);
1598 return regulator;
1599 }
1600
1601 if (!try_module_get(rdev->owner)) {
1602 put_device(&rdev->dev);
1603 return regulator;
1604 }
1605
1606 regulator = create_regulator(rdev, dev, id);
1607 if (regulator == NULL) {
1608 regulator = ERR_PTR(-ENOMEM);
1609 put_device(&rdev->dev);
1610 module_put(rdev->owner);
1611 return regulator;
1612 }
1613
1614 rdev->open_count++;
1615 if (exclusive) {
1616 rdev->exclusive = 1;
1617
1618 ret = _regulator_is_enabled(rdev);
1619 if (ret > 0)
1620 rdev->use_count = 1;
1621 else
1622 rdev->use_count = 0;
1623 }
1624
1625 return regulator;
1626 }
1627
1628 /**
1629 * regulator_get - lookup and obtain a reference to a regulator.
1630 * @dev: device for regulator "consumer"
1631 * @id: Supply name or regulator ID.
1632 *
1633 * Returns a struct regulator corresponding to the regulator producer,
1634 * or IS_ERR() condition containing errno.
1635 *
1636 * Use of supply names configured via regulator_set_device_supply() is
1637 * strongly encouraged. It is recommended that the supply name used
1638 * should match the name used for the supply and/or the relevant
1639 * device pins in the datasheet.
1640 */
regulator_get(struct device * dev,const char * id)1641 struct regulator *regulator_get(struct device *dev, const char *id)
1642 {
1643 return _regulator_get(dev, id, false, true);
1644 }
1645 EXPORT_SYMBOL_GPL(regulator_get);
1646
1647 /**
1648 * regulator_get_exclusive - obtain exclusive access to a regulator.
1649 * @dev: device for regulator "consumer"
1650 * @id: Supply name or regulator ID.
1651 *
1652 * Returns a struct regulator corresponding to the regulator producer,
1653 * or IS_ERR() condition containing errno. Other consumers will be
1654 * unable to obtain this regulator while this reference is held and the
1655 * use count for the regulator will be initialised to reflect the current
1656 * state of the regulator.
1657 *
1658 * This is intended for use by consumers which cannot tolerate shared
1659 * use of the regulator such as those which need to force the
1660 * regulator off for correct operation of the hardware they are
1661 * controlling.
1662 *
1663 * Use of supply names configured via regulator_set_device_supply() is
1664 * strongly encouraged. It is recommended that the supply name used
1665 * should match the name used for the supply and/or the relevant
1666 * device pins in the datasheet.
1667 */
regulator_get_exclusive(struct device * dev,const char * id)1668 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1669 {
1670 return _regulator_get(dev, id, true, false);
1671 }
1672 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1673
1674 /**
1675 * regulator_get_optional - obtain optional access to a regulator.
1676 * @dev: device for regulator "consumer"
1677 * @id: Supply name or regulator ID.
1678 *
1679 * Returns a struct regulator corresponding to the regulator producer,
1680 * or IS_ERR() condition containing errno.
1681 *
1682 * This is intended for use by consumers for devices which can have
1683 * some supplies unconnected in normal use, such as some MMC devices.
1684 * It can allow the regulator core to provide stub supplies for other
1685 * supplies requested using normal regulator_get() calls without
1686 * disrupting the operation of drivers that can handle absent
1687 * supplies.
1688 *
1689 * Use of supply names configured via regulator_set_device_supply() is
1690 * strongly encouraged. It is recommended that the supply name used
1691 * should match the name used for the supply and/or the relevant
1692 * device pins in the datasheet.
1693 */
regulator_get_optional(struct device * dev,const char * id)1694 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1695 {
1696 return _regulator_get(dev, id, false, false);
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_get_optional);
1699
1700 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)1701 static void _regulator_put(struct regulator *regulator)
1702 {
1703 struct regulator_dev *rdev;
1704
1705 if (IS_ERR_OR_NULL(regulator))
1706 return;
1707
1708 lockdep_assert_held_once(®ulator_list_mutex);
1709
1710 rdev = regulator->rdev;
1711
1712 debugfs_remove_recursive(regulator->debugfs);
1713
1714 /* remove any sysfs entries */
1715 if (regulator->dev)
1716 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1717 mutex_lock(&rdev->mutex);
1718 list_del(®ulator->list);
1719
1720 rdev->open_count--;
1721 rdev->exclusive = 0;
1722 put_device(&rdev->dev);
1723 mutex_unlock(&rdev->mutex);
1724
1725 kfree(regulator->supply_name);
1726 kfree(regulator);
1727
1728 module_put(rdev->owner);
1729 }
1730
1731 /**
1732 * regulator_put - "free" the regulator source
1733 * @regulator: regulator source
1734 *
1735 * Note: drivers must ensure that all regulator_enable calls made on this
1736 * regulator source are balanced by regulator_disable calls prior to calling
1737 * this function.
1738 */
regulator_put(struct regulator * regulator)1739 void regulator_put(struct regulator *regulator)
1740 {
1741 mutex_lock(®ulator_list_mutex);
1742 _regulator_put(regulator);
1743 mutex_unlock(®ulator_list_mutex);
1744 }
1745 EXPORT_SYMBOL_GPL(regulator_put);
1746
1747 /**
1748 * regulator_register_supply_alias - Provide device alias for supply lookup
1749 *
1750 * @dev: device that will be given as the regulator "consumer"
1751 * @id: Supply name or regulator ID
1752 * @alias_dev: device that should be used to lookup the supply
1753 * @alias_id: Supply name or regulator ID that should be used to lookup the
1754 * supply
1755 *
1756 * All lookups for id on dev will instead be conducted for alias_id on
1757 * alias_dev.
1758 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)1759 int regulator_register_supply_alias(struct device *dev, const char *id,
1760 struct device *alias_dev,
1761 const char *alias_id)
1762 {
1763 struct regulator_supply_alias *map;
1764
1765 map = regulator_find_supply_alias(dev, id);
1766 if (map)
1767 return -EEXIST;
1768
1769 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1770 if (!map)
1771 return -ENOMEM;
1772
1773 map->src_dev = dev;
1774 map->src_supply = id;
1775 map->alias_dev = alias_dev;
1776 map->alias_supply = alias_id;
1777
1778 list_add(&map->list, ®ulator_supply_alias_list);
1779
1780 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1781 id, dev_name(dev), alias_id, dev_name(alias_dev));
1782
1783 return 0;
1784 }
1785 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1786
1787 /**
1788 * regulator_unregister_supply_alias - Remove device alias
1789 *
1790 * @dev: device that will be given as the regulator "consumer"
1791 * @id: Supply name or regulator ID
1792 *
1793 * Remove a lookup alias if one exists for id on dev.
1794 */
regulator_unregister_supply_alias(struct device * dev,const char * id)1795 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1796 {
1797 struct regulator_supply_alias *map;
1798
1799 map = regulator_find_supply_alias(dev, id);
1800 if (map) {
1801 list_del(&map->list);
1802 kfree(map);
1803 }
1804 }
1805 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1806
1807 /**
1808 * regulator_bulk_register_supply_alias - register multiple aliases
1809 *
1810 * @dev: device that will be given as the regulator "consumer"
1811 * @id: List of supply names or regulator IDs
1812 * @alias_dev: device that should be used to lookup the supply
1813 * @alias_id: List of supply names or regulator IDs that should be used to
1814 * lookup the supply
1815 * @num_id: Number of aliases to register
1816 *
1817 * @return 0 on success, an errno on failure.
1818 *
1819 * This helper function allows drivers to register several supply
1820 * aliases in one operation. If any of the aliases cannot be
1821 * registered any aliases that were registered will be removed
1822 * before returning to the caller.
1823 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)1824 int regulator_bulk_register_supply_alias(struct device *dev,
1825 const char *const *id,
1826 struct device *alias_dev,
1827 const char *const *alias_id,
1828 int num_id)
1829 {
1830 int i;
1831 int ret;
1832
1833 for (i = 0; i < num_id; ++i) {
1834 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1835 alias_id[i]);
1836 if (ret < 0)
1837 goto err;
1838 }
1839
1840 return 0;
1841
1842 err:
1843 dev_err(dev,
1844 "Failed to create supply alias %s,%s -> %s,%s\n",
1845 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1846
1847 while (--i >= 0)
1848 regulator_unregister_supply_alias(dev, id[i]);
1849
1850 return ret;
1851 }
1852 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1853
1854 /**
1855 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1856 *
1857 * @dev: device that will be given as the regulator "consumer"
1858 * @id: List of supply names or regulator IDs
1859 * @num_id: Number of aliases to unregister
1860 *
1861 * This helper function allows drivers to unregister several supply
1862 * aliases in one operation.
1863 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)1864 void regulator_bulk_unregister_supply_alias(struct device *dev,
1865 const char *const *id,
1866 int num_id)
1867 {
1868 int i;
1869
1870 for (i = 0; i < num_id; ++i)
1871 regulator_unregister_supply_alias(dev, id[i]);
1872 }
1873 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1874
1875
1876 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)1877 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1878 const struct regulator_config *config)
1879 {
1880 struct regulator_enable_gpio *pin;
1881 struct gpio_desc *gpiod;
1882 int ret;
1883
1884 gpiod = gpio_to_desc(config->ena_gpio);
1885
1886 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
1887 if (pin->gpiod == gpiod) {
1888 rdev_dbg(rdev, "GPIO %d is already used\n",
1889 config->ena_gpio);
1890 goto update_ena_gpio_to_rdev;
1891 }
1892 }
1893
1894 ret = gpio_request_one(config->ena_gpio,
1895 GPIOF_DIR_OUT | config->ena_gpio_flags,
1896 rdev_get_name(rdev));
1897 if (ret)
1898 return ret;
1899
1900 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1901 if (pin == NULL) {
1902 gpio_free(config->ena_gpio);
1903 return -ENOMEM;
1904 }
1905
1906 pin->gpiod = gpiod;
1907 pin->ena_gpio_invert = config->ena_gpio_invert;
1908 list_add(&pin->list, ®ulator_ena_gpio_list);
1909
1910 update_ena_gpio_to_rdev:
1911 pin->request_count++;
1912 rdev->ena_pin = pin;
1913 return 0;
1914 }
1915
regulator_ena_gpio_free(struct regulator_dev * rdev)1916 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1917 {
1918 struct regulator_enable_gpio *pin, *n;
1919
1920 if (!rdev->ena_pin)
1921 return;
1922
1923 /* Free the GPIO only in case of no use */
1924 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
1925 if (pin->gpiod == rdev->ena_pin->gpiod) {
1926 if (pin->request_count <= 1) {
1927 pin->request_count = 0;
1928 gpiod_put(pin->gpiod);
1929 list_del(&pin->list);
1930 kfree(pin);
1931 rdev->ena_pin = NULL;
1932 return;
1933 } else {
1934 pin->request_count--;
1935 }
1936 }
1937 }
1938 }
1939
1940 /**
1941 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1942 * @rdev: regulator_dev structure
1943 * @enable: enable GPIO at initial use?
1944 *
1945 * GPIO is enabled in case of initial use. (enable_count is 0)
1946 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1947 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)1948 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1949 {
1950 struct regulator_enable_gpio *pin = rdev->ena_pin;
1951
1952 if (!pin)
1953 return -EINVAL;
1954
1955 if (enable) {
1956 /* Enable GPIO at initial use */
1957 if (pin->enable_count == 0)
1958 gpiod_set_value_cansleep(pin->gpiod,
1959 !pin->ena_gpio_invert);
1960
1961 pin->enable_count++;
1962 } else {
1963 if (pin->enable_count > 1) {
1964 pin->enable_count--;
1965 return 0;
1966 }
1967
1968 /* Disable GPIO if not used */
1969 if (pin->enable_count <= 1) {
1970 gpiod_set_value_cansleep(pin->gpiod,
1971 pin->ena_gpio_invert);
1972 pin->enable_count = 0;
1973 }
1974 }
1975
1976 return 0;
1977 }
1978
1979 /**
1980 * _regulator_enable_delay - a delay helper function
1981 * @delay: time to delay in microseconds
1982 *
1983 * Delay for the requested amount of time as per the guidelines in:
1984 *
1985 * Documentation/timers/timers-howto.txt
1986 *
1987 * The assumption here is that regulators will never be enabled in
1988 * atomic context and therefore sleeping functions can be used.
1989 */
_regulator_enable_delay(unsigned int delay)1990 static void _regulator_enable_delay(unsigned int delay)
1991 {
1992 unsigned int ms = delay / 1000;
1993 unsigned int us = delay % 1000;
1994
1995 if (ms > 0) {
1996 /*
1997 * For small enough values, handle super-millisecond
1998 * delays in the usleep_range() call below.
1999 */
2000 if (ms < 20)
2001 us += ms * 1000;
2002 else
2003 msleep(ms);
2004 }
2005
2006 /*
2007 * Give the scheduler some room to coalesce with any other
2008 * wakeup sources. For delays shorter than 10 us, don't even
2009 * bother setting up high-resolution timers and just busy-
2010 * loop.
2011 */
2012 if (us >= 10)
2013 usleep_range(us, us + 100);
2014 else
2015 udelay(us);
2016 }
2017
_regulator_do_enable(struct regulator_dev * rdev)2018 static int _regulator_do_enable(struct regulator_dev *rdev)
2019 {
2020 int ret, delay;
2021
2022 /* Query before enabling in case configuration dependent. */
2023 ret = _regulator_get_enable_time(rdev);
2024 if (ret >= 0) {
2025 delay = ret;
2026 } else {
2027 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2028 delay = 0;
2029 }
2030
2031 trace_regulator_enable(rdev_get_name(rdev));
2032
2033 if (rdev->desc->off_on_delay) {
2034 /* if needed, keep a distance of off_on_delay from last time
2035 * this regulator was disabled.
2036 */
2037 unsigned long start_jiffy = jiffies;
2038 unsigned long intended, max_delay, remaining;
2039
2040 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2041 intended = rdev->last_off_jiffy + max_delay;
2042
2043 if (time_before(start_jiffy, intended)) {
2044 /* calc remaining jiffies to deal with one-time
2045 * timer wrapping.
2046 * in case of multiple timer wrapping, either it can be
2047 * detected by out-of-range remaining, or it cannot be
2048 * detected and we gets a panelty of
2049 * _regulator_enable_delay().
2050 */
2051 remaining = intended - start_jiffy;
2052 if (remaining <= max_delay)
2053 _regulator_enable_delay(
2054 jiffies_to_usecs(remaining));
2055 }
2056 }
2057
2058 if (rdev->ena_pin) {
2059 if (!rdev->ena_gpio_state) {
2060 ret = regulator_ena_gpio_ctrl(rdev, true);
2061 if (ret < 0)
2062 return ret;
2063 rdev->ena_gpio_state = 1;
2064 }
2065 } else if (rdev->desc->ops->enable) {
2066 ret = rdev->desc->ops->enable(rdev);
2067 if (ret < 0)
2068 return ret;
2069 } else {
2070 return -EINVAL;
2071 }
2072
2073 /* Allow the regulator to ramp; it would be useful to extend
2074 * this for bulk operations so that the regulators can ramp
2075 * together. */
2076 trace_regulator_enable_delay(rdev_get_name(rdev));
2077
2078 _regulator_enable_delay(delay);
2079
2080 trace_regulator_enable_complete(rdev_get_name(rdev));
2081
2082 return 0;
2083 }
2084
2085 /* locks held by regulator_enable() */
_regulator_enable(struct regulator_dev * rdev)2086 static int _regulator_enable(struct regulator_dev *rdev)
2087 {
2088 int ret;
2089
2090 lockdep_assert_held_once(&rdev->mutex);
2091
2092 /* check voltage and requested load before enabling */
2093 if (rdev->constraints &&
2094 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2095 drms_uA_update(rdev);
2096
2097 if (rdev->use_count == 0) {
2098 /* The regulator may on if it's not switchable or left on */
2099 ret = _regulator_is_enabled(rdev);
2100 if (ret == -EINVAL || ret == 0) {
2101 if (!_regulator_can_change_status(rdev))
2102 return -EPERM;
2103
2104 ret = _regulator_do_enable(rdev);
2105 if (ret < 0)
2106 return ret;
2107
2108 } else if (ret < 0) {
2109 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2110 return ret;
2111 }
2112 /* Fallthrough on positive return values - already enabled */
2113 }
2114
2115 rdev->use_count++;
2116
2117 return 0;
2118 }
2119
2120 /**
2121 * regulator_enable - enable regulator output
2122 * @regulator: regulator source
2123 *
2124 * Request that the regulator be enabled with the regulator output at
2125 * the predefined voltage or current value. Calls to regulator_enable()
2126 * must be balanced with calls to regulator_disable().
2127 *
2128 * NOTE: the output value can be set by other drivers, boot loader or may be
2129 * hardwired in the regulator.
2130 */
regulator_enable(struct regulator * regulator)2131 int regulator_enable(struct regulator *regulator)
2132 {
2133 struct regulator_dev *rdev = regulator->rdev;
2134 int ret = 0;
2135
2136 if (regulator->always_on)
2137 return 0;
2138
2139 if (rdev->supply) {
2140 ret = regulator_enable(rdev->supply);
2141 if (ret != 0)
2142 return ret;
2143 }
2144
2145 mutex_lock(&rdev->mutex);
2146 ret = _regulator_enable(rdev);
2147 mutex_unlock(&rdev->mutex);
2148
2149 if (ret != 0 && rdev->supply)
2150 regulator_disable(rdev->supply);
2151
2152 return ret;
2153 }
2154 EXPORT_SYMBOL_GPL(regulator_enable);
2155
_regulator_do_disable(struct regulator_dev * rdev)2156 static int _regulator_do_disable(struct regulator_dev *rdev)
2157 {
2158 int ret;
2159
2160 trace_regulator_disable(rdev_get_name(rdev));
2161
2162 if (rdev->ena_pin) {
2163 if (rdev->ena_gpio_state) {
2164 ret = regulator_ena_gpio_ctrl(rdev, false);
2165 if (ret < 0)
2166 return ret;
2167 rdev->ena_gpio_state = 0;
2168 }
2169
2170 } else if (rdev->desc->ops->disable) {
2171 ret = rdev->desc->ops->disable(rdev);
2172 if (ret != 0)
2173 return ret;
2174 }
2175
2176 /* cares about last_off_jiffy only if off_on_delay is required by
2177 * device.
2178 */
2179 if (rdev->desc->off_on_delay)
2180 rdev->last_off_jiffy = jiffies;
2181
2182 trace_regulator_disable_complete(rdev_get_name(rdev));
2183
2184 return 0;
2185 }
2186
2187 /* locks held by regulator_disable() */
_regulator_disable(struct regulator_dev * rdev)2188 static int _regulator_disable(struct regulator_dev *rdev)
2189 {
2190 int ret = 0;
2191
2192 lockdep_assert_held_once(&rdev->mutex);
2193
2194 if (WARN(rdev->use_count <= 0,
2195 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2196 return -EIO;
2197
2198 /* are we the last user and permitted to disable ? */
2199 if (rdev->use_count == 1 &&
2200 (rdev->constraints && !rdev->constraints->always_on)) {
2201
2202 /* we are last user */
2203 if (_regulator_can_change_status(rdev)) {
2204 ret = _notifier_call_chain(rdev,
2205 REGULATOR_EVENT_PRE_DISABLE,
2206 NULL);
2207 if (ret & NOTIFY_STOP_MASK)
2208 return -EINVAL;
2209
2210 ret = _regulator_do_disable(rdev);
2211 if (ret < 0) {
2212 rdev_err(rdev, "failed to disable\n");
2213 _notifier_call_chain(rdev,
2214 REGULATOR_EVENT_ABORT_DISABLE,
2215 NULL);
2216 return ret;
2217 }
2218 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2219 NULL);
2220 }
2221
2222 rdev->use_count = 0;
2223 } else if (rdev->use_count > 1) {
2224
2225 if (rdev->constraints &&
2226 (rdev->constraints->valid_ops_mask &
2227 REGULATOR_CHANGE_DRMS))
2228 drms_uA_update(rdev);
2229
2230 rdev->use_count--;
2231 }
2232
2233 return ret;
2234 }
2235
2236 /**
2237 * regulator_disable - disable regulator output
2238 * @regulator: regulator source
2239 *
2240 * Disable the regulator output voltage or current. Calls to
2241 * regulator_enable() must be balanced with calls to
2242 * regulator_disable().
2243 *
2244 * NOTE: this will only disable the regulator output if no other consumer
2245 * devices have it enabled, the regulator device supports disabling and
2246 * machine constraints permit this operation.
2247 */
regulator_disable(struct regulator * regulator)2248 int regulator_disable(struct regulator *regulator)
2249 {
2250 struct regulator_dev *rdev = regulator->rdev;
2251 int ret = 0;
2252
2253 if (regulator->always_on)
2254 return 0;
2255
2256 mutex_lock(&rdev->mutex);
2257 ret = _regulator_disable(rdev);
2258 mutex_unlock(&rdev->mutex);
2259
2260 if (ret == 0 && rdev->supply)
2261 regulator_disable(rdev->supply);
2262
2263 return ret;
2264 }
2265 EXPORT_SYMBOL_GPL(regulator_disable);
2266
2267 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2268 static int _regulator_force_disable(struct regulator_dev *rdev)
2269 {
2270 int ret = 0;
2271
2272 lockdep_assert_held_once(&rdev->mutex);
2273
2274 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2275 REGULATOR_EVENT_PRE_DISABLE, NULL);
2276 if (ret & NOTIFY_STOP_MASK)
2277 return -EINVAL;
2278
2279 ret = _regulator_do_disable(rdev);
2280 if (ret < 0) {
2281 rdev_err(rdev, "failed to force disable\n");
2282 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2283 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2284 return ret;
2285 }
2286
2287 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2288 REGULATOR_EVENT_DISABLE, NULL);
2289
2290 return 0;
2291 }
2292
2293 /**
2294 * regulator_force_disable - force disable regulator output
2295 * @regulator: regulator source
2296 *
2297 * Forcibly disable the regulator output voltage or current.
2298 * NOTE: this *will* disable the regulator output even if other consumer
2299 * devices have it enabled. This should be used for situations when device
2300 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2301 */
regulator_force_disable(struct regulator * regulator)2302 int regulator_force_disable(struct regulator *regulator)
2303 {
2304 struct regulator_dev *rdev = regulator->rdev;
2305 int ret;
2306
2307 mutex_lock(&rdev->mutex);
2308 regulator->uA_load = 0;
2309 ret = _regulator_force_disable(regulator->rdev);
2310 mutex_unlock(&rdev->mutex);
2311
2312 if (rdev->supply)
2313 while (rdev->open_count--)
2314 regulator_disable(rdev->supply);
2315
2316 return ret;
2317 }
2318 EXPORT_SYMBOL_GPL(regulator_force_disable);
2319
regulator_disable_work(struct work_struct * work)2320 static void regulator_disable_work(struct work_struct *work)
2321 {
2322 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2323 disable_work.work);
2324 int count, i, ret;
2325
2326 mutex_lock(&rdev->mutex);
2327
2328 BUG_ON(!rdev->deferred_disables);
2329
2330 count = rdev->deferred_disables;
2331 rdev->deferred_disables = 0;
2332
2333 for (i = 0; i < count; i++) {
2334 ret = _regulator_disable(rdev);
2335 if (ret != 0)
2336 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2337 }
2338
2339 mutex_unlock(&rdev->mutex);
2340
2341 if (rdev->supply) {
2342 for (i = 0; i < count; i++) {
2343 ret = regulator_disable(rdev->supply);
2344 if (ret != 0) {
2345 rdev_err(rdev,
2346 "Supply disable failed: %d\n", ret);
2347 }
2348 }
2349 }
2350 }
2351
2352 /**
2353 * regulator_disable_deferred - disable regulator output with delay
2354 * @regulator: regulator source
2355 * @ms: miliseconds until the regulator is disabled
2356 *
2357 * Execute regulator_disable() on the regulator after a delay. This
2358 * is intended for use with devices that require some time to quiesce.
2359 *
2360 * NOTE: this will only disable the regulator output if no other consumer
2361 * devices have it enabled, the regulator device supports disabling and
2362 * machine constraints permit this operation.
2363 */
regulator_disable_deferred(struct regulator * regulator,int ms)2364 int regulator_disable_deferred(struct regulator *regulator, int ms)
2365 {
2366 struct regulator_dev *rdev = regulator->rdev;
2367 int ret;
2368
2369 if (regulator->always_on)
2370 return 0;
2371
2372 if (!ms)
2373 return regulator_disable(regulator);
2374
2375 mutex_lock(&rdev->mutex);
2376 rdev->deferred_disables++;
2377 mutex_unlock(&rdev->mutex);
2378
2379 ret = queue_delayed_work(system_power_efficient_wq,
2380 &rdev->disable_work,
2381 msecs_to_jiffies(ms));
2382 if (ret < 0)
2383 return ret;
2384 else
2385 return 0;
2386 }
2387 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2388
_regulator_is_enabled(struct regulator_dev * rdev)2389 static int _regulator_is_enabled(struct regulator_dev *rdev)
2390 {
2391 /* A GPIO control always takes precedence */
2392 if (rdev->ena_pin)
2393 return rdev->ena_gpio_state;
2394
2395 /* If we don't know then assume that the regulator is always on */
2396 if (!rdev->desc->ops->is_enabled)
2397 return 1;
2398
2399 return rdev->desc->ops->is_enabled(rdev);
2400 }
2401
_regulator_list_voltage(struct regulator * regulator,unsigned selector,int lock)2402 static int _regulator_list_voltage(struct regulator *regulator,
2403 unsigned selector, int lock)
2404 {
2405 struct regulator_dev *rdev = regulator->rdev;
2406 const struct regulator_ops *ops = rdev->desc->ops;
2407 int ret;
2408
2409 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2410 return rdev->desc->fixed_uV;
2411
2412 if (ops->list_voltage) {
2413 if (selector >= rdev->desc->n_voltages)
2414 return -EINVAL;
2415 if (lock)
2416 mutex_lock(&rdev->mutex);
2417 ret = ops->list_voltage(rdev, selector);
2418 if (lock)
2419 mutex_unlock(&rdev->mutex);
2420 } else if (rdev->supply) {
2421 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2422 } else {
2423 return -EINVAL;
2424 }
2425
2426 if (ret > 0) {
2427 if (ret < rdev->constraints->min_uV)
2428 ret = 0;
2429 else if (ret > rdev->constraints->max_uV)
2430 ret = 0;
2431 }
2432
2433 return ret;
2434 }
2435
2436 /**
2437 * regulator_is_enabled - is the regulator output enabled
2438 * @regulator: regulator source
2439 *
2440 * Returns positive if the regulator driver backing the source/client
2441 * has requested that the device be enabled, zero if it hasn't, else a
2442 * negative errno code.
2443 *
2444 * Note that the device backing this regulator handle can have multiple
2445 * users, so it might be enabled even if regulator_enable() was never
2446 * called for this particular source.
2447 */
regulator_is_enabled(struct regulator * regulator)2448 int regulator_is_enabled(struct regulator *regulator)
2449 {
2450 int ret;
2451
2452 if (regulator->always_on)
2453 return 1;
2454
2455 mutex_lock(®ulator->rdev->mutex);
2456 ret = _regulator_is_enabled(regulator->rdev);
2457 mutex_unlock(®ulator->rdev->mutex);
2458
2459 return ret;
2460 }
2461 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2462
2463 /**
2464 * regulator_can_change_voltage - check if regulator can change voltage
2465 * @regulator: regulator source
2466 *
2467 * Returns positive if the regulator driver backing the source/client
2468 * can change its voltage, false otherwise. Useful for detecting fixed
2469 * or dummy regulators and disabling voltage change logic in the client
2470 * driver.
2471 */
regulator_can_change_voltage(struct regulator * regulator)2472 int regulator_can_change_voltage(struct regulator *regulator)
2473 {
2474 struct regulator_dev *rdev = regulator->rdev;
2475
2476 if (rdev->constraints &&
2477 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2478 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2479 return 1;
2480
2481 if (rdev->desc->continuous_voltage_range &&
2482 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2483 rdev->constraints->min_uV != rdev->constraints->max_uV)
2484 return 1;
2485 }
2486
2487 return 0;
2488 }
2489 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2490
2491 /**
2492 * regulator_count_voltages - count regulator_list_voltage() selectors
2493 * @regulator: regulator source
2494 *
2495 * Returns number of selectors, or negative errno. Selectors are
2496 * numbered starting at zero, and typically correspond to bitfields
2497 * in hardware registers.
2498 */
regulator_count_voltages(struct regulator * regulator)2499 int regulator_count_voltages(struct regulator *regulator)
2500 {
2501 struct regulator_dev *rdev = regulator->rdev;
2502
2503 if (rdev->desc->n_voltages)
2504 return rdev->desc->n_voltages;
2505
2506 if (!rdev->supply)
2507 return -EINVAL;
2508
2509 return regulator_count_voltages(rdev->supply);
2510 }
2511 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2512
2513 /**
2514 * regulator_list_voltage - enumerate supported voltages
2515 * @regulator: regulator source
2516 * @selector: identify voltage to list
2517 * Context: can sleep
2518 *
2519 * Returns a voltage that can be passed to @regulator_set_voltage(),
2520 * zero if this selector code can't be used on this system, or a
2521 * negative errno.
2522 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)2523 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2524 {
2525 return _regulator_list_voltage(regulator, selector, 1);
2526 }
2527 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2528
2529 /**
2530 * regulator_get_regmap - get the regulator's register map
2531 * @regulator: regulator source
2532 *
2533 * Returns the register map for the given regulator, or an ERR_PTR value
2534 * if the regulator doesn't use regmap.
2535 */
regulator_get_regmap(struct regulator * regulator)2536 struct regmap *regulator_get_regmap(struct regulator *regulator)
2537 {
2538 struct regmap *map = regulator->rdev->regmap;
2539
2540 return map ? map : ERR_PTR(-EOPNOTSUPP);
2541 }
2542
2543 /**
2544 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2545 * @regulator: regulator source
2546 * @vsel_reg: voltage selector register, output parameter
2547 * @vsel_mask: mask for voltage selector bitfield, output parameter
2548 *
2549 * Returns the hardware register offset and bitmask used for setting the
2550 * regulator voltage. This might be useful when configuring voltage-scaling
2551 * hardware or firmware that can make I2C requests behind the kernel's back,
2552 * for example.
2553 *
2554 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2555 * and 0 is returned, otherwise a negative errno is returned.
2556 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)2557 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2558 unsigned *vsel_reg,
2559 unsigned *vsel_mask)
2560 {
2561 struct regulator_dev *rdev = regulator->rdev;
2562 const struct regulator_ops *ops = rdev->desc->ops;
2563
2564 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2565 return -EOPNOTSUPP;
2566
2567 *vsel_reg = rdev->desc->vsel_reg;
2568 *vsel_mask = rdev->desc->vsel_mask;
2569
2570 return 0;
2571 }
2572 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2573
2574 /**
2575 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2576 * @regulator: regulator source
2577 * @selector: identify voltage to list
2578 *
2579 * Converts the selector to a hardware-specific voltage selector that can be
2580 * directly written to the regulator registers. The address of the voltage
2581 * register can be determined by calling @regulator_get_hardware_vsel_register.
2582 *
2583 * On error a negative errno is returned.
2584 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)2585 int regulator_list_hardware_vsel(struct regulator *regulator,
2586 unsigned selector)
2587 {
2588 struct regulator_dev *rdev = regulator->rdev;
2589 const struct regulator_ops *ops = rdev->desc->ops;
2590
2591 if (selector >= rdev->desc->n_voltages)
2592 return -EINVAL;
2593 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2594 return -EOPNOTSUPP;
2595
2596 return selector;
2597 }
2598 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2599
2600 /**
2601 * regulator_get_linear_step - return the voltage step size between VSEL values
2602 * @regulator: regulator source
2603 *
2604 * Returns the voltage step size between VSEL values for linear
2605 * regulators, or return 0 if the regulator isn't a linear regulator.
2606 */
regulator_get_linear_step(struct regulator * regulator)2607 unsigned int regulator_get_linear_step(struct regulator *regulator)
2608 {
2609 struct regulator_dev *rdev = regulator->rdev;
2610
2611 return rdev->desc->uV_step;
2612 }
2613 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2614
2615 /**
2616 * regulator_is_supported_voltage - check if a voltage range can be supported
2617 *
2618 * @regulator: Regulator to check.
2619 * @min_uV: Minimum required voltage in uV.
2620 * @max_uV: Maximum required voltage in uV.
2621 *
2622 * Returns a boolean or a negative error code.
2623 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)2624 int regulator_is_supported_voltage(struct regulator *regulator,
2625 int min_uV, int max_uV)
2626 {
2627 struct regulator_dev *rdev = regulator->rdev;
2628 int i, voltages, ret;
2629
2630 /* If we can't change voltage check the current voltage */
2631 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2632 ret = regulator_get_voltage(regulator);
2633 if (ret >= 0)
2634 return min_uV <= ret && ret <= max_uV;
2635 else
2636 return ret;
2637 }
2638
2639 /* Any voltage within constrains range is fine? */
2640 if (rdev->desc->continuous_voltage_range)
2641 return min_uV >= rdev->constraints->min_uV &&
2642 max_uV <= rdev->constraints->max_uV;
2643
2644 ret = regulator_count_voltages(regulator);
2645 if (ret < 0)
2646 return ret;
2647 voltages = ret;
2648
2649 for (i = 0; i < voltages; i++) {
2650 ret = regulator_list_voltage(regulator, i);
2651
2652 if (ret >= min_uV && ret <= max_uV)
2653 return 1;
2654 }
2655
2656 return 0;
2657 }
2658 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2659
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)2660 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2661 int max_uV)
2662 {
2663 const struct regulator_desc *desc = rdev->desc;
2664
2665 if (desc->ops->map_voltage)
2666 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2667
2668 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2669 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2670
2671 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2672 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2673
2674 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2675 }
2676
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)2677 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2678 int min_uV, int max_uV,
2679 unsigned *selector)
2680 {
2681 struct pre_voltage_change_data data;
2682 int ret;
2683
2684 data.old_uV = _regulator_get_voltage(rdev);
2685 data.min_uV = min_uV;
2686 data.max_uV = max_uV;
2687 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2688 &data);
2689 if (ret & NOTIFY_STOP_MASK)
2690 return -EINVAL;
2691
2692 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2693 if (ret >= 0)
2694 return ret;
2695
2696 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2697 (void *)data.old_uV);
2698
2699 return ret;
2700 }
2701
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)2702 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2703 int uV, unsigned selector)
2704 {
2705 struct pre_voltage_change_data data;
2706 int ret;
2707
2708 data.old_uV = _regulator_get_voltage(rdev);
2709 data.min_uV = uV;
2710 data.max_uV = uV;
2711 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2712 &data);
2713 if (ret & NOTIFY_STOP_MASK)
2714 return -EINVAL;
2715
2716 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2717 if (ret >= 0)
2718 return ret;
2719
2720 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2721 (void *)data.old_uV);
2722
2723 return ret;
2724 }
2725
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)2726 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2727 int min_uV, int max_uV)
2728 {
2729 int ret;
2730 int delay = 0;
2731 int best_val = 0;
2732 unsigned int selector;
2733 int old_selector = -1;
2734
2735 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2736
2737 min_uV += rdev->constraints->uV_offset;
2738 max_uV += rdev->constraints->uV_offset;
2739
2740 /*
2741 * If we can't obtain the old selector there is not enough
2742 * info to call set_voltage_time_sel().
2743 */
2744 if (_regulator_is_enabled(rdev) &&
2745 rdev->desc->ops->set_voltage_time_sel &&
2746 rdev->desc->ops->get_voltage_sel) {
2747 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2748 if (old_selector < 0)
2749 return old_selector;
2750 }
2751
2752 if (rdev->desc->ops->set_voltage) {
2753 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2754 &selector);
2755
2756 if (ret >= 0) {
2757 if (rdev->desc->ops->list_voltage)
2758 best_val = rdev->desc->ops->list_voltage(rdev,
2759 selector);
2760 else
2761 best_val = _regulator_get_voltage(rdev);
2762 }
2763
2764 } else if (rdev->desc->ops->set_voltage_sel) {
2765 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2766 if (ret >= 0) {
2767 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2768 if (min_uV <= best_val && max_uV >= best_val) {
2769 selector = ret;
2770 if (old_selector == selector)
2771 ret = 0;
2772 else
2773 ret = _regulator_call_set_voltage_sel(
2774 rdev, best_val, selector);
2775 } else {
2776 ret = -EINVAL;
2777 }
2778 }
2779 } else {
2780 ret = -EINVAL;
2781 }
2782
2783 /* Call set_voltage_time_sel if successfully obtained old_selector */
2784 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2785 && old_selector != selector) {
2786
2787 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2788 old_selector, selector);
2789 if (delay < 0) {
2790 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2791 delay);
2792 delay = 0;
2793 }
2794
2795 /* Insert any necessary delays */
2796 if (delay >= 1000) {
2797 mdelay(delay / 1000);
2798 udelay(delay % 1000);
2799 } else if (delay) {
2800 udelay(delay);
2801 }
2802 }
2803
2804 if (ret == 0 && best_val >= 0) {
2805 unsigned long data = best_val;
2806
2807 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2808 (void *)data);
2809 }
2810
2811 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2812
2813 return ret;
2814 }
2815
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV)2816 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2817 int min_uV, int max_uV)
2818 {
2819 struct regulator_dev *rdev = regulator->rdev;
2820 int ret = 0;
2821 int old_min_uV, old_max_uV;
2822 int current_uV;
2823 int best_supply_uV = 0;
2824 int supply_change_uV = 0;
2825
2826 /* If we're setting the same range as last time the change
2827 * should be a noop (some cpufreq implementations use the same
2828 * voltage for multiple frequencies, for example).
2829 */
2830 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2831 goto out;
2832
2833 /* If we're trying to set a range that overlaps the current voltage,
2834 * return successfully even though the regulator does not support
2835 * changing the voltage.
2836 */
2837 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2838 current_uV = _regulator_get_voltage(rdev);
2839 if (min_uV <= current_uV && current_uV <= max_uV) {
2840 regulator->min_uV = min_uV;
2841 regulator->max_uV = max_uV;
2842 goto out;
2843 }
2844 }
2845
2846 /* sanity check */
2847 if (!rdev->desc->ops->set_voltage &&
2848 !rdev->desc->ops->set_voltage_sel) {
2849 ret = -EINVAL;
2850 goto out;
2851 }
2852
2853 /* constraints check */
2854 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2855 if (ret < 0)
2856 goto out;
2857
2858 /* restore original values in case of error */
2859 old_min_uV = regulator->min_uV;
2860 old_max_uV = regulator->max_uV;
2861 regulator->min_uV = min_uV;
2862 regulator->max_uV = max_uV;
2863
2864 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2865 if (ret < 0)
2866 goto out2;
2867
2868 if (rdev->supply && (rdev->desc->min_dropout_uV ||
2869 !rdev->desc->ops->get_voltage)) {
2870 int current_supply_uV;
2871 int selector;
2872
2873 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2874 if (selector < 0) {
2875 ret = selector;
2876 goto out2;
2877 }
2878
2879 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2880 if (best_supply_uV < 0) {
2881 ret = best_supply_uV;
2882 goto out2;
2883 }
2884
2885 best_supply_uV += rdev->desc->min_dropout_uV;
2886
2887 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2888 if (current_supply_uV < 0) {
2889 ret = current_supply_uV;
2890 goto out2;
2891 }
2892
2893 supply_change_uV = best_supply_uV - current_supply_uV;
2894 }
2895
2896 if (supply_change_uV > 0) {
2897 ret = regulator_set_voltage_unlocked(rdev->supply,
2898 best_supply_uV, INT_MAX);
2899 if (ret) {
2900 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2901 ret);
2902 goto out2;
2903 }
2904 }
2905
2906 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2907 if (ret < 0)
2908 goto out2;
2909
2910 if (supply_change_uV < 0) {
2911 ret = regulator_set_voltage_unlocked(rdev->supply,
2912 best_supply_uV, INT_MAX);
2913 if (ret)
2914 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2915 ret);
2916 /* No need to fail here */
2917 ret = 0;
2918 }
2919
2920 out:
2921 return ret;
2922 out2:
2923 regulator->min_uV = old_min_uV;
2924 regulator->max_uV = old_max_uV;
2925
2926 return ret;
2927 }
2928
2929 /**
2930 * regulator_set_voltage - set regulator output voltage
2931 * @regulator: regulator source
2932 * @min_uV: Minimum required voltage in uV
2933 * @max_uV: Maximum acceptable voltage in uV
2934 *
2935 * Sets a voltage regulator to the desired output voltage. This can be set
2936 * during any regulator state. IOW, regulator can be disabled or enabled.
2937 *
2938 * If the regulator is enabled then the voltage will change to the new value
2939 * immediately otherwise if the regulator is disabled the regulator will
2940 * output at the new voltage when enabled.
2941 *
2942 * NOTE: If the regulator is shared between several devices then the lowest
2943 * request voltage that meets the system constraints will be used.
2944 * Regulator system constraints must be set for this regulator before
2945 * calling this function otherwise this call will fail.
2946 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)2947 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2948 {
2949 int ret = 0;
2950
2951 regulator_lock_supply(regulator->rdev);
2952
2953 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2954
2955 regulator_unlock_supply(regulator->rdev);
2956
2957 return ret;
2958 }
2959 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2960
2961 /**
2962 * regulator_set_voltage_time - get raise/fall time
2963 * @regulator: regulator source
2964 * @old_uV: starting voltage in microvolts
2965 * @new_uV: target voltage in microvolts
2966 *
2967 * Provided with the starting and ending voltage, this function attempts to
2968 * calculate the time in microseconds required to rise or fall to this new
2969 * voltage.
2970 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)2971 int regulator_set_voltage_time(struct regulator *regulator,
2972 int old_uV, int new_uV)
2973 {
2974 struct regulator_dev *rdev = regulator->rdev;
2975 const struct regulator_ops *ops = rdev->desc->ops;
2976 int old_sel = -1;
2977 int new_sel = -1;
2978 int voltage;
2979 int i;
2980
2981 /* Currently requires operations to do this */
2982 if (!ops->list_voltage || !ops->set_voltage_time_sel
2983 || !rdev->desc->n_voltages)
2984 return -EINVAL;
2985
2986 for (i = 0; i < rdev->desc->n_voltages; i++) {
2987 /* We only look for exact voltage matches here */
2988 voltage = regulator_list_voltage(regulator, i);
2989 if (voltage < 0)
2990 return -EINVAL;
2991 if (voltage == 0)
2992 continue;
2993 if (voltage == old_uV)
2994 old_sel = i;
2995 if (voltage == new_uV)
2996 new_sel = i;
2997 }
2998
2999 if (old_sel < 0 || new_sel < 0)
3000 return -EINVAL;
3001
3002 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3003 }
3004 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3005
3006 /**
3007 * regulator_set_voltage_time_sel - get raise/fall time
3008 * @rdev: regulator source device
3009 * @old_selector: selector for starting voltage
3010 * @new_selector: selector for target voltage
3011 *
3012 * Provided with the starting and target voltage selectors, this function
3013 * returns time in microseconds required to rise or fall to this new voltage
3014 *
3015 * Drivers providing ramp_delay in regulation_constraints can use this as their
3016 * set_voltage_time_sel() operation.
3017 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)3018 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3019 unsigned int old_selector,
3020 unsigned int new_selector)
3021 {
3022 unsigned int ramp_delay = 0;
3023 int old_volt, new_volt;
3024
3025 if (rdev->constraints->ramp_delay)
3026 ramp_delay = rdev->constraints->ramp_delay;
3027 else if (rdev->desc->ramp_delay)
3028 ramp_delay = rdev->desc->ramp_delay;
3029
3030 if (ramp_delay == 0) {
3031 rdev_warn(rdev, "ramp_delay not set\n");
3032 return 0;
3033 }
3034
3035 /* sanity check */
3036 if (!rdev->desc->ops->list_voltage)
3037 return -EINVAL;
3038
3039 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3040 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3041
3042 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3043 }
3044 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3045
3046 /**
3047 * regulator_sync_voltage - re-apply last regulator output voltage
3048 * @regulator: regulator source
3049 *
3050 * Re-apply the last configured voltage. This is intended to be used
3051 * where some external control source the consumer is cooperating with
3052 * has caused the configured voltage to change.
3053 */
regulator_sync_voltage(struct regulator * regulator)3054 int regulator_sync_voltage(struct regulator *regulator)
3055 {
3056 struct regulator_dev *rdev = regulator->rdev;
3057 int ret, min_uV, max_uV;
3058
3059 mutex_lock(&rdev->mutex);
3060
3061 if (!rdev->desc->ops->set_voltage &&
3062 !rdev->desc->ops->set_voltage_sel) {
3063 ret = -EINVAL;
3064 goto out;
3065 }
3066
3067 /* This is only going to work if we've had a voltage configured. */
3068 if (!regulator->min_uV && !regulator->max_uV) {
3069 ret = -EINVAL;
3070 goto out;
3071 }
3072
3073 min_uV = regulator->min_uV;
3074 max_uV = regulator->max_uV;
3075
3076 /* This should be a paranoia check... */
3077 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3078 if (ret < 0)
3079 goto out;
3080
3081 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3082 if (ret < 0)
3083 goto out;
3084
3085 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3086
3087 out:
3088 mutex_unlock(&rdev->mutex);
3089 return ret;
3090 }
3091 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3092
_regulator_get_voltage(struct regulator_dev * rdev)3093 static int _regulator_get_voltage(struct regulator_dev *rdev)
3094 {
3095 int sel, ret;
3096
3097 if (rdev->desc->ops->get_voltage_sel) {
3098 sel = rdev->desc->ops->get_voltage_sel(rdev);
3099 if (sel < 0)
3100 return sel;
3101 ret = rdev->desc->ops->list_voltage(rdev, sel);
3102 } else if (rdev->desc->ops->get_voltage) {
3103 ret = rdev->desc->ops->get_voltage(rdev);
3104 } else if (rdev->desc->ops->list_voltage) {
3105 ret = rdev->desc->ops->list_voltage(rdev, 0);
3106 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3107 ret = rdev->desc->fixed_uV;
3108 } else if (rdev->supply) {
3109 ret = _regulator_get_voltage(rdev->supply->rdev);
3110 } else {
3111 return -EINVAL;
3112 }
3113
3114 if (ret < 0)
3115 return ret;
3116 return ret - rdev->constraints->uV_offset;
3117 }
3118
3119 /**
3120 * regulator_get_voltage - get regulator output voltage
3121 * @regulator: regulator source
3122 *
3123 * This returns the current regulator voltage in uV.
3124 *
3125 * NOTE: If the regulator is disabled it will return the voltage value. This
3126 * function should not be used to determine regulator state.
3127 */
regulator_get_voltage(struct regulator * regulator)3128 int regulator_get_voltage(struct regulator *regulator)
3129 {
3130 int ret;
3131
3132 regulator_lock_supply(regulator->rdev);
3133
3134 ret = _regulator_get_voltage(regulator->rdev);
3135
3136 regulator_unlock_supply(regulator->rdev);
3137
3138 return ret;
3139 }
3140 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3141
3142 /**
3143 * regulator_set_current_limit - set regulator output current limit
3144 * @regulator: regulator source
3145 * @min_uA: Minimum supported current in uA
3146 * @max_uA: Maximum supported current in uA
3147 *
3148 * Sets current sink to the desired output current. This can be set during
3149 * any regulator state. IOW, regulator can be disabled or enabled.
3150 *
3151 * If the regulator is enabled then the current will change to the new value
3152 * immediately otherwise if the regulator is disabled the regulator will
3153 * output at the new current when enabled.
3154 *
3155 * NOTE: Regulator system constraints must be set for this regulator before
3156 * calling this function otherwise this call will fail.
3157 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)3158 int regulator_set_current_limit(struct regulator *regulator,
3159 int min_uA, int max_uA)
3160 {
3161 struct regulator_dev *rdev = regulator->rdev;
3162 int ret;
3163
3164 mutex_lock(&rdev->mutex);
3165
3166 /* sanity check */
3167 if (!rdev->desc->ops->set_current_limit) {
3168 ret = -EINVAL;
3169 goto out;
3170 }
3171
3172 /* constraints check */
3173 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3174 if (ret < 0)
3175 goto out;
3176
3177 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3178 out:
3179 mutex_unlock(&rdev->mutex);
3180 return ret;
3181 }
3182 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3183
_regulator_get_current_limit(struct regulator_dev * rdev)3184 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3185 {
3186 int ret;
3187
3188 mutex_lock(&rdev->mutex);
3189
3190 /* sanity check */
3191 if (!rdev->desc->ops->get_current_limit) {
3192 ret = -EINVAL;
3193 goto out;
3194 }
3195
3196 ret = rdev->desc->ops->get_current_limit(rdev);
3197 out:
3198 mutex_unlock(&rdev->mutex);
3199 return ret;
3200 }
3201
3202 /**
3203 * regulator_get_current_limit - get regulator output current
3204 * @regulator: regulator source
3205 *
3206 * This returns the current supplied by the specified current sink in uA.
3207 *
3208 * NOTE: If the regulator is disabled it will return the current value. This
3209 * function should not be used to determine regulator state.
3210 */
regulator_get_current_limit(struct regulator * regulator)3211 int regulator_get_current_limit(struct regulator *regulator)
3212 {
3213 return _regulator_get_current_limit(regulator->rdev);
3214 }
3215 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3216
3217 /**
3218 * regulator_set_mode - set regulator operating mode
3219 * @regulator: regulator source
3220 * @mode: operating mode - one of the REGULATOR_MODE constants
3221 *
3222 * Set regulator operating mode to increase regulator efficiency or improve
3223 * regulation performance.
3224 *
3225 * NOTE: Regulator system constraints must be set for this regulator before
3226 * calling this function otherwise this call will fail.
3227 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)3228 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3229 {
3230 struct regulator_dev *rdev = regulator->rdev;
3231 int ret;
3232 int regulator_curr_mode;
3233
3234 mutex_lock(&rdev->mutex);
3235
3236 /* sanity check */
3237 if (!rdev->desc->ops->set_mode) {
3238 ret = -EINVAL;
3239 goto out;
3240 }
3241
3242 /* return if the same mode is requested */
3243 if (rdev->desc->ops->get_mode) {
3244 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3245 if (regulator_curr_mode == mode) {
3246 ret = 0;
3247 goto out;
3248 }
3249 }
3250
3251 /* constraints check */
3252 ret = regulator_mode_constrain(rdev, &mode);
3253 if (ret < 0)
3254 goto out;
3255
3256 ret = rdev->desc->ops->set_mode(rdev, mode);
3257 out:
3258 mutex_unlock(&rdev->mutex);
3259 return ret;
3260 }
3261 EXPORT_SYMBOL_GPL(regulator_set_mode);
3262
_regulator_get_mode(struct regulator_dev * rdev)3263 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3264 {
3265 int ret;
3266
3267 mutex_lock(&rdev->mutex);
3268
3269 /* sanity check */
3270 if (!rdev->desc->ops->get_mode) {
3271 ret = -EINVAL;
3272 goto out;
3273 }
3274
3275 ret = rdev->desc->ops->get_mode(rdev);
3276 out:
3277 mutex_unlock(&rdev->mutex);
3278 return ret;
3279 }
3280
3281 /**
3282 * regulator_get_mode - get regulator operating mode
3283 * @regulator: regulator source
3284 *
3285 * Get the current regulator operating mode.
3286 */
regulator_get_mode(struct regulator * regulator)3287 unsigned int regulator_get_mode(struct regulator *regulator)
3288 {
3289 return _regulator_get_mode(regulator->rdev);
3290 }
3291 EXPORT_SYMBOL_GPL(regulator_get_mode);
3292
3293 /**
3294 * regulator_set_load - set regulator load
3295 * @regulator: regulator source
3296 * @uA_load: load current
3297 *
3298 * Notifies the regulator core of a new device load. This is then used by
3299 * DRMS (if enabled by constraints) to set the most efficient regulator
3300 * operating mode for the new regulator loading.
3301 *
3302 * Consumer devices notify their supply regulator of the maximum power
3303 * they will require (can be taken from device datasheet in the power
3304 * consumption tables) when they change operational status and hence power
3305 * state. Examples of operational state changes that can affect power
3306 * consumption are :-
3307 *
3308 * o Device is opened / closed.
3309 * o Device I/O is about to begin or has just finished.
3310 * o Device is idling in between work.
3311 *
3312 * This information is also exported via sysfs to userspace.
3313 *
3314 * DRMS will sum the total requested load on the regulator and change
3315 * to the most efficient operating mode if platform constraints allow.
3316 *
3317 * On error a negative errno is returned.
3318 */
regulator_set_load(struct regulator * regulator,int uA_load)3319 int regulator_set_load(struct regulator *regulator, int uA_load)
3320 {
3321 struct regulator_dev *rdev = regulator->rdev;
3322 int ret;
3323
3324 mutex_lock(&rdev->mutex);
3325 regulator->uA_load = uA_load;
3326 ret = drms_uA_update(rdev);
3327 mutex_unlock(&rdev->mutex);
3328
3329 return ret;
3330 }
3331 EXPORT_SYMBOL_GPL(regulator_set_load);
3332
3333 /**
3334 * regulator_allow_bypass - allow the regulator to go into bypass mode
3335 *
3336 * @regulator: Regulator to configure
3337 * @enable: enable or disable bypass mode
3338 *
3339 * Allow the regulator to go into bypass mode if all other consumers
3340 * for the regulator also enable bypass mode and the machine
3341 * constraints allow this. Bypass mode means that the regulator is
3342 * simply passing the input directly to the output with no regulation.
3343 */
regulator_allow_bypass(struct regulator * regulator,bool enable)3344 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3345 {
3346 struct regulator_dev *rdev = regulator->rdev;
3347 int ret = 0;
3348
3349 if (!rdev->desc->ops->set_bypass)
3350 return 0;
3351
3352 if (rdev->constraints &&
3353 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3354 return 0;
3355
3356 mutex_lock(&rdev->mutex);
3357
3358 if (enable && !regulator->bypass) {
3359 rdev->bypass_count++;
3360
3361 if (rdev->bypass_count == rdev->open_count) {
3362 ret = rdev->desc->ops->set_bypass(rdev, enable);
3363 if (ret != 0)
3364 rdev->bypass_count--;
3365 }
3366
3367 } else if (!enable && regulator->bypass) {
3368 rdev->bypass_count--;
3369
3370 if (rdev->bypass_count != rdev->open_count) {
3371 ret = rdev->desc->ops->set_bypass(rdev, enable);
3372 if (ret != 0)
3373 rdev->bypass_count++;
3374 }
3375 }
3376
3377 if (ret == 0)
3378 regulator->bypass = enable;
3379
3380 mutex_unlock(&rdev->mutex);
3381
3382 return ret;
3383 }
3384 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3385
3386 /**
3387 * regulator_register_notifier - register regulator event notifier
3388 * @regulator: regulator source
3389 * @nb: notifier block
3390 *
3391 * Register notifier block to receive regulator events.
3392 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)3393 int regulator_register_notifier(struct regulator *regulator,
3394 struct notifier_block *nb)
3395 {
3396 return blocking_notifier_chain_register(®ulator->rdev->notifier,
3397 nb);
3398 }
3399 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3400
3401 /**
3402 * regulator_unregister_notifier - unregister regulator event notifier
3403 * @regulator: regulator source
3404 * @nb: notifier block
3405 *
3406 * Unregister regulator event notifier block.
3407 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)3408 int regulator_unregister_notifier(struct regulator *regulator,
3409 struct notifier_block *nb)
3410 {
3411 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
3412 nb);
3413 }
3414 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3415
3416 /* notify regulator consumers and downstream regulator consumers.
3417 * Note mutex must be held by caller.
3418 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3419 static int _notifier_call_chain(struct regulator_dev *rdev,
3420 unsigned long event, void *data)
3421 {
3422 /* call rdev chain first */
3423 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3424 }
3425
3426 /**
3427 * regulator_bulk_get - get multiple regulator consumers
3428 *
3429 * @dev: Device to supply
3430 * @num_consumers: Number of consumers to register
3431 * @consumers: Configuration of consumers; clients are stored here.
3432 *
3433 * @return 0 on success, an errno on failure.
3434 *
3435 * This helper function allows drivers to get several regulator
3436 * consumers in one operation. If any of the regulators cannot be
3437 * acquired then any regulators that were allocated will be freed
3438 * before returning to the caller.
3439 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)3440 int regulator_bulk_get(struct device *dev, int num_consumers,
3441 struct regulator_bulk_data *consumers)
3442 {
3443 int i;
3444 int ret;
3445
3446 for (i = 0; i < num_consumers; i++)
3447 consumers[i].consumer = NULL;
3448
3449 for (i = 0; i < num_consumers; i++) {
3450 consumers[i].consumer = regulator_get(dev,
3451 consumers[i].supply);
3452 if (IS_ERR(consumers[i].consumer)) {
3453 ret = PTR_ERR(consumers[i].consumer);
3454 dev_err(dev, "Failed to get supply '%s': %d\n",
3455 consumers[i].supply, ret);
3456 consumers[i].consumer = NULL;
3457 goto err;
3458 }
3459 }
3460
3461 return 0;
3462
3463 err:
3464 while (--i >= 0)
3465 regulator_put(consumers[i].consumer);
3466
3467 return ret;
3468 }
3469 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3470
regulator_bulk_enable_async(void * data,async_cookie_t cookie)3471 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3472 {
3473 struct regulator_bulk_data *bulk = data;
3474
3475 bulk->ret = regulator_enable(bulk->consumer);
3476 }
3477
3478 /**
3479 * regulator_bulk_enable - enable multiple regulator consumers
3480 *
3481 * @num_consumers: Number of consumers
3482 * @consumers: Consumer data; clients are stored here.
3483 * @return 0 on success, an errno on failure
3484 *
3485 * This convenience API allows consumers to enable multiple regulator
3486 * clients in a single API call. If any consumers cannot be enabled
3487 * then any others that were enabled will be disabled again prior to
3488 * return.
3489 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)3490 int regulator_bulk_enable(int num_consumers,
3491 struct regulator_bulk_data *consumers)
3492 {
3493 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3494 int i;
3495 int ret = 0;
3496
3497 for (i = 0; i < num_consumers; i++) {
3498 if (consumers[i].consumer->always_on)
3499 consumers[i].ret = 0;
3500 else
3501 async_schedule_domain(regulator_bulk_enable_async,
3502 &consumers[i], &async_domain);
3503 }
3504
3505 async_synchronize_full_domain(&async_domain);
3506
3507 /* If any consumer failed we need to unwind any that succeeded */
3508 for (i = 0; i < num_consumers; i++) {
3509 if (consumers[i].ret != 0) {
3510 ret = consumers[i].ret;
3511 goto err;
3512 }
3513 }
3514
3515 return 0;
3516
3517 err:
3518 for (i = 0; i < num_consumers; i++) {
3519 if (consumers[i].ret < 0)
3520 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3521 consumers[i].ret);
3522 else
3523 regulator_disable(consumers[i].consumer);
3524 }
3525
3526 return ret;
3527 }
3528 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3529
3530 /**
3531 * regulator_bulk_disable - disable multiple regulator consumers
3532 *
3533 * @num_consumers: Number of consumers
3534 * @consumers: Consumer data; clients are stored here.
3535 * @return 0 on success, an errno on failure
3536 *
3537 * This convenience API allows consumers to disable multiple regulator
3538 * clients in a single API call. If any consumers cannot be disabled
3539 * then any others that were disabled will be enabled again prior to
3540 * return.
3541 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)3542 int regulator_bulk_disable(int num_consumers,
3543 struct regulator_bulk_data *consumers)
3544 {
3545 int i;
3546 int ret, r;
3547
3548 for (i = num_consumers - 1; i >= 0; --i) {
3549 ret = regulator_disable(consumers[i].consumer);
3550 if (ret != 0)
3551 goto err;
3552 }
3553
3554 return 0;
3555
3556 err:
3557 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3558 for (++i; i < num_consumers; ++i) {
3559 r = regulator_enable(consumers[i].consumer);
3560 if (r != 0)
3561 pr_err("Failed to reename %s: %d\n",
3562 consumers[i].supply, r);
3563 }
3564
3565 return ret;
3566 }
3567 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3568
3569 /**
3570 * regulator_bulk_force_disable - force disable multiple regulator consumers
3571 *
3572 * @num_consumers: Number of consumers
3573 * @consumers: Consumer data; clients are stored here.
3574 * @return 0 on success, an errno on failure
3575 *
3576 * This convenience API allows consumers to forcibly disable multiple regulator
3577 * clients in a single API call.
3578 * NOTE: This should be used for situations when device damage will
3579 * likely occur if the regulators are not disabled (e.g. over temp).
3580 * Although regulator_force_disable function call for some consumers can
3581 * return error numbers, the function is called for all consumers.
3582 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)3583 int regulator_bulk_force_disable(int num_consumers,
3584 struct regulator_bulk_data *consumers)
3585 {
3586 int i;
3587 int ret;
3588
3589 for (i = 0; i < num_consumers; i++)
3590 consumers[i].ret =
3591 regulator_force_disable(consumers[i].consumer);
3592
3593 for (i = 0; i < num_consumers; i++) {
3594 if (consumers[i].ret != 0) {
3595 ret = consumers[i].ret;
3596 goto out;
3597 }
3598 }
3599
3600 return 0;
3601 out:
3602 return ret;
3603 }
3604 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3605
3606 /**
3607 * regulator_bulk_free - free multiple regulator consumers
3608 *
3609 * @num_consumers: Number of consumers
3610 * @consumers: Consumer data; clients are stored here.
3611 *
3612 * This convenience API allows consumers to free multiple regulator
3613 * clients in a single API call.
3614 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)3615 void regulator_bulk_free(int num_consumers,
3616 struct regulator_bulk_data *consumers)
3617 {
3618 int i;
3619
3620 for (i = 0; i < num_consumers; i++) {
3621 regulator_put(consumers[i].consumer);
3622 consumers[i].consumer = NULL;
3623 }
3624 }
3625 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3626
3627 /**
3628 * regulator_notifier_call_chain - call regulator event notifier
3629 * @rdev: regulator source
3630 * @event: notifier block
3631 * @data: callback-specific data.
3632 *
3633 * Called by regulator drivers to notify clients a regulator event has
3634 * occurred. We also notify regulator clients downstream.
3635 * Note lock must be held by caller.
3636 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3637 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3638 unsigned long event, void *data)
3639 {
3640 lockdep_assert_held_once(&rdev->mutex);
3641
3642 _notifier_call_chain(rdev, event, data);
3643 return NOTIFY_DONE;
3644
3645 }
3646 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3647
3648 /**
3649 * regulator_mode_to_status - convert a regulator mode into a status
3650 *
3651 * @mode: Mode to convert
3652 *
3653 * Convert a regulator mode into a status.
3654 */
regulator_mode_to_status(unsigned int mode)3655 int regulator_mode_to_status(unsigned int mode)
3656 {
3657 switch (mode) {
3658 case REGULATOR_MODE_FAST:
3659 return REGULATOR_STATUS_FAST;
3660 case REGULATOR_MODE_NORMAL:
3661 return REGULATOR_STATUS_NORMAL;
3662 case REGULATOR_MODE_IDLE:
3663 return REGULATOR_STATUS_IDLE;
3664 case REGULATOR_MODE_STANDBY:
3665 return REGULATOR_STATUS_STANDBY;
3666 default:
3667 return REGULATOR_STATUS_UNDEFINED;
3668 }
3669 }
3670 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3671
3672 static struct attribute *regulator_dev_attrs[] = {
3673 &dev_attr_name.attr,
3674 &dev_attr_num_users.attr,
3675 &dev_attr_type.attr,
3676 &dev_attr_microvolts.attr,
3677 &dev_attr_microamps.attr,
3678 &dev_attr_opmode.attr,
3679 &dev_attr_state.attr,
3680 &dev_attr_status.attr,
3681 &dev_attr_bypass.attr,
3682 &dev_attr_requested_microamps.attr,
3683 &dev_attr_min_microvolts.attr,
3684 &dev_attr_max_microvolts.attr,
3685 &dev_attr_min_microamps.attr,
3686 &dev_attr_max_microamps.attr,
3687 &dev_attr_suspend_standby_state.attr,
3688 &dev_attr_suspend_mem_state.attr,
3689 &dev_attr_suspend_disk_state.attr,
3690 &dev_attr_suspend_standby_microvolts.attr,
3691 &dev_attr_suspend_mem_microvolts.attr,
3692 &dev_attr_suspend_disk_microvolts.attr,
3693 &dev_attr_suspend_standby_mode.attr,
3694 &dev_attr_suspend_mem_mode.attr,
3695 &dev_attr_suspend_disk_mode.attr,
3696 NULL
3697 };
3698
3699 /*
3700 * To avoid cluttering sysfs (and memory) with useless state, only
3701 * create attributes that can be meaningfully displayed.
3702 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)3703 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3704 struct attribute *attr, int idx)
3705 {
3706 struct device *dev = kobj_to_dev(kobj);
3707 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3708 const struct regulator_ops *ops = rdev->desc->ops;
3709 umode_t mode = attr->mode;
3710
3711 /* these three are always present */
3712 if (attr == &dev_attr_name.attr ||
3713 attr == &dev_attr_num_users.attr ||
3714 attr == &dev_attr_type.attr)
3715 return mode;
3716
3717 /* some attributes need specific methods to be displayed */
3718 if (attr == &dev_attr_microvolts.attr) {
3719 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3720 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3721 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3722 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3723 return mode;
3724 return 0;
3725 }
3726
3727 if (attr == &dev_attr_microamps.attr)
3728 return ops->get_current_limit ? mode : 0;
3729
3730 if (attr == &dev_attr_opmode.attr)
3731 return ops->get_mode ? mode : 0;
3732
3733 if (attr == &dev_attr_state.attr)
3734 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3735
3736 if (attr == &dev_attr_status.attr)
3737 return ops->get_status ? mode : 0;
3738
3739 if (attr == &dev_attr_bypass.attr)
3740 return ops->get_bypass ? mode : 0;
3741
3742 /* some attributes are type-specific */
3743 if (attr == &dev_attr_requested_microamps.attr)
3744 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3745
3746 /* constraints need specific supporting methods */
3747 if (attr == &dev_attr_min_microvolts.attr ||
3748 attr == &dev_attr_max_microvolts.attr)
3749 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3750
3751 if (attr == &dev_attr_min_microamps.attr ||
3752 attr == &dev_attr_max_microamps.attr)
3753 return ops->set_current_limit ? mode : 0;
3754
3755 if (attr == &dev_attr_suspend_standby_state.attr ||
3756 attr == &dev_attr_suspend_mem_state.attr ||
3757 attr == &dev_attr_suspend_disk_state.attr)
3758 return mode;
3759
3760 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3761 attr == &dev_attr_suspend_mem_microvolts.attr ||
3762 attr == &dev_attr_suspend_disk_microvolts.attr)
3763 return ops->set_suspend_voltage ? mode : 0;
3764
3765 if (attr == &dev_attr_suspend_standby_mode.attr ||
3766 attr == &dev_attr_suspend_mem_mode.attr ||
3767 attr == &dev_attr_suspend_disk_mode.attr)
3768 return ops->set_suspend_mode ? mode : 0;
3769
3770 return mode;
3771 }
3772
3773 static const struct attribute_group regulator_dev_group = {
3774 .attrs = regulator_dev_attrs,
3775 .is_visible = regulator_attr_is_visible,
3776 };
3777
3778 static const struct attribute_group *regulator_dev_groups[] = {
3779 ®ulator_dev_group,
3780 NULL
3781 };
3782
regulator_dev_release(struct device * dev)3783 static void regulator_dev_release(struct device *dev)
3784 {
3785 struct regulator_dev *rdev = dev_get_drvdata(dev);
3786
3787 kfree(rdev->constraints);
3788 of_node_put(rdev->dev.of_node);
3789 kfree(rdev);
3790 }
3791
3792 static struct class regulator_class = {
3793 .name = "regulator",
3794 .dev_release = regulator_dev_release,
3795 .dev_groups = regulator_dev_groups,
3796 };
3797
rdev_init_debugfs(struct regulator_dev * rdev)3798 static void rdev_init_debugfs(struct regulator_dev *rdev)
3799 {
3800 struct device *parent = rdev->dev.parent;
3801 const char *rname = rdev_get_name(rdev);
3802 char name[NAME_MAX];
3803
3804 /* Avoid duplicate debugfs directory names */
3805 if (parent && rname == rdev->desc->name) {
3806 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3807 rname);
3808 rname = name;
3809 }
3810
3811 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3812 if (!rdev->debugfs) {
3813 rdev_warn(rdev, "Failed to create debugfs directory\n");
3814 return;
3815 }
3816
3817 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3818 &rdev->use_count);
3819 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3820 &rdev->open_count);
3821 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3822 &rdev->bypass_count);
3823 }
3824
3825 /**
3826 * regulator_register - register regulator
3827 * @regulator_desc: regulator to register
3828 * @cfg: runtime configuration for regulator
3829 *
3830 * Called by regulator drivers to register a regulator.
3831 * Returns a valid pointer to struct regulator_dev on success
3832 * or an ERR_PTR() on error.
3833 */
3834 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)3835 regulator_register(const struct regulator_desc *regulator_desc,
3836 const struct regulator_config *cfg)
3837 {
3838 const struct regulation_constraints *constraints = NULL;
3839 const struct regulator_init_data *init_data;
3840 struct regulator_config *config = NULL;
3841 static atomic_t regulator_no = ATOMIC_INIT(-1);
3842 struct regulator_dev *rdev;
3843 struct device *dev;
3844 int ret, i;
3845
3846 if (regulator_desc == NULL || cfg == NULL)
3847 return ERR_PTR(-EINVAL);
3848
3849 dev = cfg->dev;
3850 WARN_ON(!dev);
3851
3852 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3853 return ERR_PTR(-EINVAL);
3854
3855 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3856 regulator_desc->type != REGULATOR_CURRENT)
3857 return ERR_PTR(-EINVAL);
3858
3859 /* Only one of each should be implemented */
3860 WARN_ON(regulator_desc->ops->get_voltage &&
3861 regulator_desc->ops->get_voltage_sel);
3862 WARN_ON(regulator_desc->ops->set_voltage &&
3863 regulator_desc->ops->set_voltage_sel);
3864
3865 /* If we're using selectors we must implement list_voltage. */
3866 if (regulator_desc->ops->get_voltage_sel &&
3867 !regulator_desc->ops->list_voltage) {
3868 return ERR_PTR(-EINVAL);
3869 }
3870 if (regulator_desc->ops->set_voltage_sel &&
3871 !regulator_desc->ops->list_voltage) {
3872 return ERR_PTR(-EINVAL);
3873 }
3874
3875 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3876 if (rdev == NULL)
3877 return ERR_PTR(-ENOMEM);
3878
3879 /*
3880 * Duplicate the config so the driver could override it after
3881 * parsing init data.
3882 */
3883 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3884 if (config == NULL) {
3885 kfree(rdev);
3886 return ERR_PTR(-ENOMEM);
3887 }
3888
3889 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3890 &rdev->dev.of_node);
3891 if (!init_data) {
3892 init_data = config->init_data;
3893 rdev->dev.of_node = of_node_get(config->of_node);
3894 }
3895
3896 mutex_lock(®ulator_list_mutex);
3897
3898 mutex_init(&rdev->mutex);
3899 rdev->reg_data = config->driver_data;
3900 rdev->owner = regulator_desc->owner;
3901 rdev->desc = regulator_desc;
3902 if (config->regmap)
3903 rdev->regmap = config->regmap;
3904 else if (dev_get_regmap(dev, NULL))
3905 rdev->regmap = dev_get_regmap(dev, NULL);
3906 else if (dev->parent)
3907 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3908 INIT_LIST_HEAD(&rdev->consumer_list);
3909 INIT_LIST_HEAD(&rdev->list);
3910 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3911 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3912
3913 /* preform any regulator specific init */
3914 if (init_data && init_data->regulator_init) {
3915 ret = init_data->regulator_init(rdev->reg_data);
3916 if (ret < 0)
3917 goto clean;
3918 }
3919
3920 /* register with sysfs */
3921 rdev->dev.class = ®ulator_class;
3922 rdev->dev.parent = dev;
3923 dev_set_name(&rdev->dev, "regulator.%lu",
3924 (unsigned long) atomic_inc_return(®ulator_no));
3925 ret = device_register(&rdev->dev);
3926 if (ret != 0) {
3927 put_device(&rdev->dev);
3928 goto clean;
3929 }
3930
3931 dev_set_drvdata(&rdev->dev, rdev);
3932
3933 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3934 gpio_is_valid(config->ena_gpio)) {
3935 ret = regulator_ena_gpio_request(rdev, config);
3936 if (ret != 0) {
3937 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3938 config->ena_gpio, ret);
3939 goto wash;
3940 }
3941 }
3942
3943 /* set regulator constraints */
3944 if (init_data)
3945 constraints = &init_data->constraints;
3946
3947 ret = set_machine_constraints(rdev, constraints);
3948 if (ret < 0)
3949 goto scrub;
3950
3951 if (init_data && init_data->supply_regulator)
3952 rdev->supply_name = init_data->supply_regulator;
3953 else if (regulator_desc->supply_name)
3954 rdev->supply_name = regulator_desc->supply_name;
3955
3956 /* add consumers devices */
3957 if (init_data) {
3958 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3959 ret = set_consumer_device_supply(rdev,
3960 init_data->consumer_supplies[i].dev_name,
3961 init_data->consumer_supplies[i].supply);
3962 if (ret < 0) {
3963 dev_err(dev, "Failed to set supply %s\n",
3964 init_data->consumer_supplies[i].supply);
3965 goto unset_supplies;
3966 }
3967 }
3968 }
3969
3970 rdev_init_debugfs(rdev);
3971 out:
3972 mutex_unlock(®ulator_list_mutex);
3973 kfree(config);
3974 return rdev;
3975
3976 unset_supplies:
3977 unset_regulator_supplies(rdev);
3978
3979 scrub:
3980 regulator_ena_gpio_free(rdev);
3981
3982 wash:
3983 device_unregister(&rdev->dev);
3984 /* device core frees rdev */
3985 rdev = ERR_PTR(ret);
3986 goto out;
3987
3988 clean:
3989 kfree(rdev);
3990 rdev = ERR_PTR(ret);
3991 goto out;
3992 }
3993 EXPORT_SYMBOL_GPL(regulator_register);
3994
3995 /**
3996 * regulator_unregister - unregister regulator
3997 * @rdev: regulator to unregister
3998 *
3999 * Called by regulator drivers to unregister a regulator.
4000 */
regulator_unregister(struct regulator_dev * rdev)4001 void regulator_unregister(struct regulator_dev *rdev)
4002 {
4003 if (rdev == NULL)
4004 return;
4005
4006 if (rdev->supply) {
4007 while (rdev->use_count--)
4008 regulator_disable(rdev->supply);
4009 regulator_put(rdev->supply);
4010 }
4011 mutex_lock(®ulator_list_mutex);
4012 debugfs_remove_recursive(rdev->debugfs);
4013 flush_work(&rdev->disable_work.work);
4014 WARN_ON(rdev->open_count);
4015 unset_regulator_supplies(rdev);
4016 list_del(&rdev->list);
4017 mutex_unlock(®ulator_list_mutex);
4018 regulator_ena_gpio_free(rdev);
4019 device_unregister(&rdev->dev);
4020 }
4021 EXPORT_SYMBOL_GPL(regulator_unregister);
4022
_regulator_suspend_prepare(struct device * dev,void * data)4023 static int _regulator_suspend_prepare(struct device *dev, void *data)
4024 {
4025 struct regulator_dev *rdev = dev_to_rdev(dev);
4026 const suspend_state_t *state = data;
4027 int ret;
4028
4029 mutex_lock(&rdev->mutex);
4030 ret = suspend_prepare(rdev, *state);
4031 mutex_unlock(&rdev->mutex);
4032
4033 return ret;
4034 }
4035
4036 /**
4037 * regulator_suspend_prepare - prepare regulators for system wide suspend
4038 * @state: system suspend state
4039 *
4040 * Configure each regulator with it's suspend operating parameters for state.
4041 * This will usually be called by machine suspend code prior to supending.
4042 */
regulator_suspend_prepare(suspend_state_t state)4043 int regulator_suspend_prepare(suspend_state_t state)
4044 {
4045 /* ON is handled by regulator active state */
4046 if (state == PM_SUSPEND_ON)
4047 return -EINVAL;
4048
4049 return class_for_each_device(®ulator_class, NULL, &state,
4050 _regulator_suspend_prepare);
4051 }
4052 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4053
_regulator_suspend_finish(struct device * dev,void * data)4054 static int _regulator_suspend_finish(struct device *dev, void *data)
4055 {
4056 struct regulator_dev *rdev = dev_to_rdev(dev);
4057 int ret;
4058
4059 mutex_lock(&rdev->mutex);
4060 if (rdev->use_count > 0 || rdev->constraints->always_on) {
4061 if (!_regulator_is_enabled(rdev)) {
4062 ret = _regulator_do_enable(rdev);
4063 if (ret)
4064 dev_err(dev,
4065 "Failed to resume regulator %d\n",
4066 ret);
4067 }
4068 } else {
4069 if (!have_full_constraints())
4070 goto unlock;
4071 if (!_regulator_is_enabled(rdev))
4072 goto unlock;
4073
4074 ret = _regulator_do_disable(rdev);
4075 if (ret)
4076 dev_err(dev, "Failed to suspend regulator %d\n", ret);
4077 }
4078 unlock:
4079 mutex_unlock(&rdev->mutex);
4080
4081 /* Keep processing regulators in spite of any errors */
4082 return 0;
4083 }
4084
4085 /**
4086 * regulator_suspend_finish - resume regulators from system wide suspend
4087 *
4088 * Turn on regulators that might be turned off by regulator_suspend_prepare
4089 * and that should be turned on according to the regulators properties.
4090 */
regulator_suspend_finish(void)4091 int regulator_suspend_finish(void)
4092 {
4093 return class_for_each_device(®ulator_class, NULL, NULL,
4094 _regulator_suspend_finish);
4095 }
4096 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4097
4098 /**
4099 * regulator_has_full_constraints - the system has fully specified constraints
4100 *
4101 * Calling this function will cause the regulator API to disable all
4102 * regulators which have a zero use count and don't have an always_on
4103 * constraint in a late_initcall.
4104 *
4105 * The intention is that this will become the default behaviour in a
4106 * future kernel release so users are encouraged to use this facility
4107 * now.
4108 */
regulator_has_full_constraints(void)4109 void regulator_has_full_constraints(void)
4110 {
4111 has_full_constraints = 1;
4112 }
4113 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4114
4115 /**
4116 * rdev_get_drvdata - get rdev regulator driver data
4117 * @rdev: regulator
4118 *
4119 * Get rdev regulator driver private data. This call can be used in the
4120 * regulator driver context.
4121 */
rdev_get_drvdata(struct regulator_dev * rdev)4122 void *rdev_get_drvdata(struct regulator_dev *rdev)
4123 {
4124 return rdev->reg_data;
4125 }
4126 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4127
4128 /**
4129 * regulator_get_drvdata - get regulator driver data
4130 * @regulator: regulator
4131 *
4132 * Get regulator driver private data. This call can be used in the consumer
4133 * driver context when non API regulator specific functions need to be called.
4134 */
regulator_get_drvdata(struct regulator * regulator)4135 void *regulator_get_drvdata(struct regulator *regulator)
4136 {
4137 return regulator->rdev->reg_data;
4138 }
4139 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4140
4141 /**
4142 * regulator_set_drvdata - set regulator driver data
4143 * @regulator: regulator
4144 * @data: data
4145 */
regulator_set_drvdata(struct regulator * regulator,void * data)4146 void regulator_set_drvdata(struct regulator *regulator, void *data)
4147 {
4148 regulator->rdev->reg_data = data;
4149 }
4150 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4151
4152 /**
4153 * regulator_get_id - get regulator ID
4154 * @rdev: regulator
4155 */
rdev_get_id(struct regulator_dev * rdev)4156 int rdev_get_id(struct regulator_dev *rdev)
4157 {
4158 return rdev->desc->id;
4159 }
4160 EXPORT_SYMBOL_GPL(rdev_get_id);
4161
rdev_get_dev(struct regulator_dev * rdev)4162 struct device *rdev_get_dev(struct regulator_dev *rdev)
4163 {
4164 return &rdev->dev;
4165 }
4166 EXPORT_SYMBOL_GPL(rdev_get_dev);
4167
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)4168 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4169 {
4170 return reg_init_data->driver_data;
4171 }
4172 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4173
4174 #ifdef CONFIG_DEBUG_FS
supply_map_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)4175 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4176 size_t count, loff_t *ppos)
4177 {
4178 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4179 ssize_t len, ret = 0;
4180 struct regulator_map *map;
4181
4182 if (!buf)
4183 return -ENOMEM;
4184
4185 list_for_each_entry(map, ®ulator_map_list, list) {
4186 len = snprintf(buf + ret, PAGE_SIZE - ret,
4187 "%s -> %s.%s\n",
4188 rdev_get_name(map->regulator), map->dev_name,
4189 map->supply);
4190 if (len >= 0)
4191 ret += len;
4192 if (ret > PAGE_SIZE) {
4193 ret = PAGE_SIZE;
4194 break;
4195 }
4196 }
4197
4198 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4199
4200 kfree(buf);
4201
4202 return ret;
4203 }
4204 #endif
4205
4206 static const struct file_operations supply_map_fops = {
4207 #ifdef CONFIG_DEBUG_FS
4208 .read = supply_map_read_file,
4209 .llseek = default_llseek,
4210 #endif
4211 };
4212
4213 #ifdef CONFIG_DEBUG_FS
4214 struct summary_data {
4215 struct seq_file *s;
4216 struct regulator_dev *parent;
4217 int level;
4218 };
4219
4220 static void regulator_summary_show_subtree(struct seq_file *s,
4221 struct regulator_dev *rdev,
4222 int level);
4223
regulator_summary_show_children(struct device * dev,void * data)4224 static int regulator_summary_show_children(struct device *dev, void *data)
4225 {
4226 struct regulator_dev *rdev = dev_to_rdev(dev);
4227 struct summary_data *summary_data = data;
4228
4229 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4230 regulator_summary_show_subtree(summary_data->s, rdev,
4231 summary_data->level + 1);
4232
4233 return 0;
4234 }
4235
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)4236 static void regulator_summary_show_subtree(struct seq_file *s,
4237 struct regulator_dev *rdev,
4238 int level)
4239 {
4240 struct regulation_constraints *c;
4241 struct regulator *consumer;
4242 struct summary_data summary_data;
4243
4244 if (!rdev)
4245 return;
4246
4247 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4248 level * 3 + 1, "",
4249 30 - level * 3, rdev_get_name(rdev),
4250 rdev->use_count, rdev->open_count, rdev->bypass_count);
4251
4252 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4253 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4254
4255 c = rdev->constraints;
4256 if (c) {
4257 switch (rdev->desc->type) {
4258 case REGULATOR_VOLTAGE:
4259 seq_printf(s, "%5dmV %5dmV ",
4260 c->min_uV / 1000, c->max_uV / 1000);
4261 break;
4262 case REGULATOR_CURRENT:
4263 seq_printf(s, "%5dmA %5dmA ",
4264 c->min_uA / 1000, c->max_uA / 1000);
4265 break;
4266 }
4267 }
4268
4269 seq_puts(s, "\n");
4270
4271 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4272 if (consumer->dev && consumer->dev->class == ®ulator_class)
4273 continue;
4274
4275 seq_printf(s, "%*s%-*s ",
4276 (level + 1) * 3 + 1, "",
4277 30 - (level + 1) * 3,
4278 consumer->dev ? dev_name(consumer->dev) : "deviceless");
4279
4280 switch (rdev->desc->type) {
4281 case REGULATOR_VOLTAGE:
4282 seq_printf(s, "%37dmV %5dmV",
4283 consumer->min_uV / 1000,
4284 consumer->max_uV / 1000);
4285 break;
4286 case REGULATOR_CURRENT:
4287 break;
4288 }
4289
4290 seq_puts(s, "\n");
4291 }
4292
4293 summary_data.s = s;
4294 summary_data.level = level;
4295 summary_data.parent = rdev;
4296
4297 class_for_each_device(®ulator_class, NULL, &summary_data,
4298 regulator_summary_show_children);
4299 }
4300
regulator_summary_show_roots(struct device * dev,void * data)4301 static int regulator_summary_show_roots(struct device *dev, void *data)
4302 {
4303 struct regulator_dev *rdev = dev_to_rdev(dev);
4304 struct seq_file *s = data;
4305
4306 if (!rdev->supply)
4307 regulator_summary_show_subtree(s, rdev, 0);
4308
4309 return 0;
4310 }
4311
regulator_summary_show(struct seq_file * s,void * data)4312 static int regulator_summary_show(struct seq_file *s, void *data)
4313 {
4314 seq_puts(s, " regulator use open bypass voltage current min max\n");
4315 seq_puts(s, "-------------------------------------------------------------------------------\n");
4316
4317 class_for_each_device(®ulator_class, NULL, s,
4318 regulator_summary_show_roots);
4319
4320 return 0;
4321 }
4322
regulator_summary_open(struct inode * inode,struct file * file)4323 static int regulator_summary_open(struct inode *inode, struct file *file)
4324 {
4325 return single_open(file, regulator_summary_show, inode->i_private);
4326 }
4327 #endif
4328
4329 static const struct file_operations regulator_summary_fops = {
4330 #ifdef CONFIG_DEBUG_FS
4331 .open = regulator_summary_open,
4332 .read = seq_read,
4333 .llseek = seq_lseek,
4334 .release = single_release,
4335 #endif
4336 };
4337
regulator_init(void)4338 static int __init regulator_init(void)
4339 {
4340 int ret;
4341
4342 ret = class_register(®ulator_class);
4343
4344 debugfs_root = debugfs_create_dir("regulator", NULL);
4345 if (!debugfs_root)
4346 pr_warn("regulator: Failed to create debugfs directory\n");
4347
4348 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4349 &supply_map_fops);
4350
4351 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4352 NULL, ®ulator_summary_fops);
4353
4354 regulator_dummy_init();
4355
4356 return ret;
4357 }
4358
4359 /* init early to allow our consumers to complete system booting */
4360 core_initcall(regulator_init);
4361
regulator_late_cleanup(struct device * dev,void * data)4362 static int __init regulator_late_cleanup(struct device *dev, void *data)
4363 {
4364 struct regulator_dev *rdev = dev_to_rdev(dev);
4365 const struct regulator_ops *ops = rdev->desc->ops;
4366 struct regulation_constraints *c = rdev->constraints;
4367 int enabled, ret;
4368
4369 if (c && c->always_on)
4370 return 0;
4371
4372 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4373 return 0;
4374
4375 mutex_lock(&rdev->mutex);
4376
4377 if (rdev->use_count)
4378 goto unlock;
4379
4380 /* If we can't read the status assume it's on. */
4381 if (ops->is_enabled)
4382 enabled = ops->is_enabled(rdev);
4383 else
4384 enabled = 1;
4385
4386 if (!enabled)
4387 goto unlock;
4388
4389 if (have_full_constraints()) {
4390 /* We log since this may kill the system if it goes
4391 * wrong. */
4392 rdev_info(rdev, "disabling\n");
4393 ret = _regulator_do_disable(rdev);
4394 if (ret != 0)
4395 rdev_err(rdev, "couldn't disable: %d\n", ret);
4396 } else {
4397 /* The intention is that in future we will
4398 * assume that full constraints are provided
4399 * so warn even if we aren't going to do
4400 * anything here.
4401 */
4402 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4403 }
4404
4405 unlock:
4406 mutex_unlock(&rdev->mutex);
4407
4408 return 0;
4409 }
4410
regulator_init_complete(void)4411 static int __init regulator_init_complete(void)
4412 {
4413 /*
4414 * Since DT doesn't provide an idiomatic mechanism for
4415 * enabling full constraints and since it's much more natural
4416 * with DT to provide them just assume that a DT enabled
4417 * system has full constraints.
4418 */
4419 if (of_have_populated_dt())
4420 has_full_constraints = true;
4421
4422 /* If we have a full configuration then disable any regulators
4423 * we have permission to change the status for and which are
4424 * not in use or always_on. This is effectively the default
4425 * for DT and ACPI as they have full constraints.
4426 */
4427 class_for_each_device(®ulator_class, NULL, NULL,
4428 regulator_late_cleanup);
4429
4430 return 0;
4431 }
4432 late_initcall_sync(regulator_init_complete);
4433