• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58 
59 static struct dentry *debugfs_root;
60 
61 static struct class regulator_class;
62 
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69 	struct list_head list;
70 	const char *dev_name;   /* The dev_name() for the consumer */
71 	const char *supply;
72 	struct regulator_dev *regulator;
73 };
74 
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81 	struct list_head list;
82 	struct gpio_desc *gpiod;
83 	u32 enable_count;	/* a number of enabled shared GPIO */
84 	u32 request_count;	/* a number of requested shared GPIO */
85 	unsigned int ena_gpio_invert:1;
86 };
87 
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94 	struct list_head list;
95 	struct device *src_dev;
96 	const char *src_supply;
97 	struct device *alias_dev;
98 	const char *alias_supply;
99 };
100 
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107 				  unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109 				     int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 					  struct device *dev,
112 					  const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114 
dev_to_rdev(struct device * dev)115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117 	return container_of(dev, struct regulator_dev, dev);
118 }
119 
rdev_get_name(struct regulator_dev * rdev)120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122 	if (rdev->constraints && rdev->constraints->name)
123 		return rdev->constraints->name;
124 	else if (rdev->desc->name)
125 		return rdev->desc->name;
126 	else
127 		return "";
128 }
129 
have_full_constraints(void)130 static bool have_full_constraints(void)
131 {
132 	return has_full_constraints || of_have_populated_dt();
133 }
134 
rdev_get_supply(struct regulator_dev * rdev)135 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
136 {
137 	if (rdev && rdev->supply)
138 		return rdev->supply->rdev;
139 
140 	return NULL;
141 }
142 
143 /**
144  * regulator_lock_supply - lock a regulator and its supplies
145  * @rdev:         regulator source
146  */
regulator_lock_supply(struct regulator_dev * rdev)147 static void regulator_lock_supply(struct regulator_dev *rdev)
148 {
149 	int i;
150 
151 	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152 		mutex_lock_nested(&rdev->mutex, i);
153 }
154 
155 /**
156  * regulator_unlock_supply - unlock a regulator and its supplies
157  * @rdev:         regulator source
158  */
regulator_unlock_supply(struct regulator_dev * rdev)159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161 	struct regulator *supply;
162 
163 	while (1) {
164 		mutex_unlock(&rdev->mutex);
165 		supply = rdev->supply;
166 
167 		if (!rdev->supply)
168 			return;
169 
170 		rdev = supply->rdev;
171 	}
172 }
173 
174 /**
175  * of_get_regulator - get a regulator device node based on supply name
176  * @dev: Device pointer for the consumer (of regulator) device
177  * @supply: regulator supply name
178  *
179  * Extract the regulator device node corresponding to the supply name.
180  * returns the device node corresponding to the regulator if found, else
181  * returns NULL.
182  */
of_get_regulator(struct device * dev,const char * supply)183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185 	struct device_node *regnode = NULL;
186 	char prop_name[32]; /* 32 is max size of property name */
187 
188 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189 
190 	snprintf(prop_name, 32, "%s-supply", supply);
191 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192 
193 	if (!regnode) {
194 		dev_dbg(dev, "Looking up %s property in node %s failed",
195 				prop_name, dev->of_node->full_name);
196 		return NULL;
197 	}
198 	return regnode;
199 }
200 
_regulator_can_change_status(struct regulator_dev * rdev)201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203 	if (!rdev->constraints)
204 		return 0;
205 
206 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207 		return 1;
208 	else
209 		return 0;
210 }
211 
212 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)213 static int regulator_check_voltage(struct regulator_dev *rdev,
214 				   int *min_uV, int *max_uV)
215 {
216 	BUG_ON(*min_uV > *max_uV);
217 
218 	if (!rdev->constraints) {
219 		rdev_err(rdev, "no constraints\n");
220 		return -ENODEV;
221 	}
222 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223 		rdev_err(rdev, "voltage operation not allowed\n");
224 		return -EPERM;
225 	}
226 
227 	if (*max_uV > rdev->constraints->max_uV)
228 		*max_uV = rdev->constraints->max_uV;
229 	if (*min_uV < rdev->constraints->min_uV)
230 		*min_uV = rdev->constraints->min_uV;
231 
232 	if (*min_uV > *max_uV) {
233 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234 			 *min_uV, *max_uV);
235 		return -EINVAL;
236 	}
237 
238 	return 0;
239 }
240 
241 /* Make sure we select a voltage that suits the needs of all
242  * regulator consumers
243  */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV)244 static int regulator_check_consumers(struct regulator_dev *rdev,
245 				     int *min_uV, int *max_uV)
246 {
247 	struct regulator *regulator;
248 
249 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
250 		/*
251 		 * Assume consumers that didn't say anything are OK
252 		 * with anything in the constraint range.
253 		 */
254 		if (!regulator->min_uV && !regulator->max_uV)
255 			continue;
256 
257 		if (*max_uV > regulator->max_uV)
258 			*max_uV = regulator->max_uV;
259 		if (*min_uV < regulator->min_uV)
260 			*min_uV = regulator->min_uV;
261 	}
262 
263 	if (*min_uV > *max_uV) {
264 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265 			*min_uV, *max_uV);
266 		return -EINVAL;
267 	}
268 
269 	return 0;
270 }
271 
272 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274 					int *min_uA, int *max_uA)
275 {
276 	BUG_ON(*min_uA > *max_uA);
277 
278 	if (!rdev->constraints) {
279 		rdev_err(rdev, "no constraints\n");
280 		return -ENODEV;
281 	}
282 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283 		rdev_err(rdev, "current operation not allowed\n");
284 		return -EPERM;
285 	}
286 
287 	if (*max_uA > rdev->constraints->max_uA)
288 		*max_uA = rdev->constraints->max_uA;
289 	if (*min_uA < rdev->constraints->min_uA)
290 		*min_uA = rdev->constraints->min_uA;
291 
292 	if (*min_uA > *max_uA) {
293 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294 			 *min_uA, *max_uA);
295 		return -EINVAL;
296 	}
297 
298 	return 0;
299 }
300 
301 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,int * mode)302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304 	switch (*mode) {
305 	case REGULATOR_MODE_FAST:
306 	case REGULATOR_MODE_NORMAL:
307 	case REGULATOR_MODE_IDLE:
308 	case REGULATOR_MODE_STANDBY:
309 		break;
310 	default:
311 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
312 		return -EINVAL;
313 	}
314 
315 	if (!rdev->constraints) {
316 		rdev_err(rdev, "no constraints\n");
317 		return -ENODEV;
318 	}
319 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320 		rdev_err(rdev, "mode operation not allowed\n");
321 		return -EPERM;
322 	}
323 
324 	/* The modes are bitmasks, the most power hungry modes having
325 	 * the lowest values. If the requested mode isn't supported
326 	 * try higher modes. */
327 	while (*mode) {
328 		if (rdev->constraints->valid_modes_mask & *mode)
329 			return 0;
330 		*mode /= 2;
331 	}
332 
333 	return -EINVAL;
334 }
335 
336 /* dynamic regulator mode switching constraint check */
regulator_check_drms(struct regulator_dev * rdev)337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339 	if (!rdev->constraints) {
340 		rdev_err(rdev, "no constraints\n");
341 		return -ENODEV;
342 	}
343 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344 		rdev_dbg(rdev, "drms operation not allowed\n");
345 		return -EPERM;
346 	}
347 	return 0;
348 }
349 
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)350 static ssize_t regulator_uV_show(struct device *dev,
351 				struct device_attribute *attr, char *buf)
352 {
353 	struct regulator_dev *rdev = dev_get_drvdata(dev);
354 	ssize_t ret;
355 
356 	mutex_lock(&rdev->mutex);
357 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358 	mutex_unlock(&rdev->mutex);
359 
360 	return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363 
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)364 static ssize_t regulator_uA_show(struct device *dev,
365 				struct device_attribute *attr, char *buf)
366 {
367 	struct regulator_dev *rdev = dev_get_drvdata(dev);
368 
369 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372 
name_show(struct device * dev,struct device_attribute * attr,char * buf)373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374 			 char *buf)
375 {
376 	struct regulator_dev *rdev = dev_get_drvdata(dev);
377 
378 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381 
regulator_print_opmode(char * buf,int mode)382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384 	switch (mode) {
385 	case REGULATOR_MODE_FAST:
386 		return sprintf(buf, "fast\n");
387 	case REGULATOR_MODE_NORMAL:
388 		return sprintf(buf, "normal\n");
389 	case REGULATOR_MODE_IDLE:
390 		return sprintf(buf, "idle\n");
391 	case REGULATOR_MODE_STANDBY:
392 		return sprintf(buf, "standby\n");
393 	}
394 	return sprintf(buf, "unknown\n");
395 }
396 
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)397 static ssize_t regulator_opmode_show(struct device *dev,
398 				    struct device_attribute *attr, char *buf)
399 {
400 	struct regulator_dev *rdev = dev_get_drvdata(dev);
401 
402 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405 
regulator_print_state(char * buf,int state)406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408 	if (state > 0)
409 		return sprintf(buf, "enabled\n");
410 	else if (state == 0)
411 		return sprintf(buf, "disabled\n");
412 	else
413 		return sprintf(buf, "unknown\n");
414 }
415 
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)416 static ssize_t regulator_state_show(struct device *dev,
417 				   struct device_attribute *attr, char *buf)
418 {
419 	struct regulator_dev *rdev = dev_get_drvdata(dev);
420 	ssize_t ret;
421 
422 	mutex_lock(&rdev->mutex);
423 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424 	mutex_unlock(&rdev->mutex);
425 
426 	return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429 
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)430 static ssize_t regulator_status_show(struct device *dev,
431 				   struct device_attribute *attr, char *buf)
432 {
433 	struct regulator_dev *rdev = dev_get_drvdata(dev);
434 	int status;
435 	char *label;
436 
437 	status = rdev->desc->ops->get_status(rdev);
438 	if (status < 0)
439 		return status;
440 
441 	switch (status) {
442 	case REGULATOR_STATUS_OFF:
443 		label = "off";
444 		break;
445 	case REGULATOR_STATUS_ON:
446 		label = "on";
447 		break;
448 	case REGULATOR_STATUS_ERROR:
449 		label = "error";
450 		break;
451 	case REGULATOR_STATUS_FAST:
452 		label = "fast";
453 		break;
454 	case REGULATOR_STATUS_NORMAL:
455 		label = "normal";
456 		break;
457 	case REGULATOR_STATUS_IDLE:
458 		label = "idle";
459 		break;
460 	case REGULATOR_STATUS_STANDBY:
461 		label = "standby";
462 		break;
463 	case REGULATOR_STATUS_BYPASS:
464 		label = "bypass";
465 		break;
466 	case REGULATOR_STATUS_UNDEFINED:
467 		label = "undefined";
468 		break;
469 	default:
470 		return -ERANGE;
471 	}
472 
473 	return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476 
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)477 static ssize_t regulator_min_uA_show(struct device *dev,
478 				    struct device_attribute *attr, char *buf)
479 {
480 	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 
482 	if (!rdev->constraints)
483 		return sprintf(buf, "constraint not defined\n");
484 
485 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488 
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)489 static ssize_t regulator_max_uA_show(struct device *dev,
490 				    struct device_attribute *attr, char *buf)
491 {
492 	struct regulator_dev *rdev = dev_get_drvdata(dev);
493 
494 	if (!rdev->constraints)
495 		return sprintf(buf, "constraint not defined\n");
496 
497 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500 
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)501 static ssize_t regulator_min_uV_show(struct device *dev,
502 				    struct device_attribute *attr, char *buf)
503 {
504 	struct regulator_dev *rdev = dev_get_drvdata(dev);
505 
506 	if (!rdev->constraints)
507 		return sprintf(buf, "constraint not defined\n");
508 
509 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512 
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)513 static ssize_t regulator_max_uV_show(struct device *dev,
514 				    struct device_attribute *attr, char *buf)
515 {
516 	struct regulator_dev *rdev = dev_get_drvdata(dev);
517 
518 	if (!rdev->constraints)
519 		return sprintf(buf, "constraint not defined\n");
520 
521 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524 
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)525 static ssize_t regulator_total_uA_show(struct device *dev,
526 				      struct device_attribute *attr, char *buf)
527 {
528 	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 	struct regulator *regulator;
530 	int uA = 0;
531 
532 	mutex_lock(&rdev->mutex);
533 	list_for_each_entry(regulator, &rdev->consumer_list, list)
534 		uA += regulator->uA_load;
535 	mutex_unlock(&rdev->mutex);
536 	return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539 
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541 			      char *buf)
542 {
543 	struct regulator_dev *rdev = dev_get_drvdata(dev);
544 	return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547 
type_show(struct device * dev,struct device_attribute * attr,char * buf)548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549 			 char *buf)
550 {
551 	struct regulator_dev *rdev = dev_get_drvdata(dev);
552 
553 	switch (rdev->desc->type) {
554 	case REGULATOR_VOLTAGE:
555 		return sprintf(buf, "voltage\n");
556 	case REGULATOR_CURRENT:
557 		return sprintf(buf, "current\n");
558 	}
559 	return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562 
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564 				struct device_attribute *attr, char *buf)
565 {
566 	struct regulator_dev *rdev = dev_get_drvdata(dev);
567 
568 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571 		regulator_suspend_mem_uV_show, NULL);
572 
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574 				struct device_attribute *attr, char *buf)
575 {
576 	struct regulator_dev *rdev = dev_get_drvdata(dev);
577 
578 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581 		regulator_suspend_disk_uV_show, NULL);
582 
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584 				struct device_attribute *attr, char *buf)
585 {
586 	struct regulator_dev *rdev = dev_get_drvdata(dev);
587 
588 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591 		regulator_suspend_standby_uV_show, NULL);
592 
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594 				struct device_attribute *attr, char *buf)
595 {
596 	struct regulator_dev *rdev = dev_get_drvdata(dev);
597 
598 	return regulator_print_opmode(buf,
599 		rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602 		regulator_suspend_mem_mode_show, NULL);
603 
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605 				struct device_attribute *attr, char *buf)
606 {
607 	struct regulator_dev *rdev = dev_get_drvdata(dev);
608 
609 	return regulator_print_opmode(buf,
610 		rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613 		regulator_suspend_disk_mode_show, NULL);
614 
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616 				struct device_attribute *attr, char *buf)
617 {
618 	struct regulator_dev *rdev = dev_get_drvdata(dev);
619 
620 	return regulator_print_opmode(buf,
621 		rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624 		regulator_suspend_standby_mode_show, NULL);
625 
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627 				   struct device_attribute *attr, char *buf)
628 {
629 	struct regulator_dev *rdev = dev_get_drvdata(dev);
630 
631 	return regulator_print_state(buf,
632 			rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635 		regulator_suspend_mem_state_show, NULL);
636 
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638 				   struct device_attribute *attr, char *buf)
639 {
640 	struct regulator_dev *rdev = dev_get_drvdata(dev);
641 
642 	return regulator_print_state(buf,
643 			rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646 		regulator_suspend_disk_state_show, NULL);
647 
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649 				   struct device_attribute *attr, char *buf)
650 {
651 	struct regulator_dev *rdev = dev_get_drvdata(dev);
652 
653 	return regulator_print_state(buf,
654 			rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657 		regulator_suspend_standby_state_show, NULL);
658 
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)659 static ssize_t regulator_bypass_show(struct device *dev,
660 				     struct device_attribute *attr, char *buf)
661 {
662 	struct regulator_dev *rdev = dev_get_drvdata(dev);
663 	const char *report;
664 	bool bypass;
665 	int ret;
666 
667 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668 
669 	if (ret != 0)
670 		report = "unknown";
671 	else if (bypass)
672 		report = "enabled";
673 	else
674 		report = "disabled";
675 
676 	return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679 		   regulator_bypass_show, NULL);
680 
681 /* Calculate the new optimum regulator operating mode based on the new total
682  * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685 	struct regulator *sibling;
686 	int current_uA = 0, output_uV, input_uV, err;
687 	unsigned int mode;
688 
689 	lockdep_assert_held_once(&rdev->mutex);
690 
691 	/*
692 	 * first check to see if we can set modes at all, otherwise just
693 	 * tell the consumer everything is OK.
694 	 */
695 	err = regulator_check_drms(rdev);
696 	if (err < 0)
697 		return 0;
698 
699 	if (!rdev->desc->ops->get_optimum_mode &&
700 	    !rdev->desc->ops->set_load)
701 		return 0;
702 
703 	if (!rdev->desc->ops->set_mode &&
704 	    !rdev->desc->ops->set_load)
705 		return -EINVAL;
706 
707 	/* get output voltage */
708 	output_uV = _regulator_get_voltage(rdev);
709 	if (output_uV <= 0) {
710 		rdev_err(rdev, "invalid output voltage found\n");
711 		return -EINVAL;
712 	}
713 
714 	/* get input voltage */
715 	input_uV = 0;
716 	if (rdev->supply)
717 		input_uV = regulator_get_voltage(rdev->supply);
718 	if (input_uV <= 0)
719 		input_uV = rdev->constraints->input_uV;
720 	if (input_uV <= 0) {
721 		rdev_err(rdev, "invalid input voltage found\n");
722 		return -EINVAL;
723 	}
724 
725 	/* calc total requested load */
726 	list_for_each_entry(sibling, &rdev->consumer_list, list)
727 		current_uA += sibling->uA_load;
728 
729 	current_uA += rdev->constraints->system_load;
730 
731 	if (rdev->desc->ops->set_load) {
732 		/* set the optimum mode for our new total regulator load */
733 		err = rdev->desc->ops->set_load(rdev, current_uA);
734 		if (err < 0)
735 			rdev_err(rdev, "failed to set load %d\n", current_uA);
736 	} else {
737 		/* now get the optimum mode for our new total regulator load */
738 		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739 							 output_uV, current_uA);
740 
741 		/* check the new mode is allowed */
742 		err = regulator_mode_constrain(rdev, &mode);
743 		if (err < 0) {
744 			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745 				 current_uA, input_uV, output_uV);
746 			return err;
747 		}
748 
749 		err = rdev->desc->ops->set_mode(rdev, mode);
750 		if (err < 0)
751 			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752 	}
753 
754 	return err;
755 }
756 
suspend_set_state(struct regulator_dev * rdev,struct regulator_state * rstate)757 static int suspend_set_state(struct regulator_dev *rdev,
758 	struct regulator_state *rstate)
759 {
760 	int ret = 0;
761 
762 	/* If we have no suspend mode configration don't set anything;
763 	 * only warn if the driver implements set_suspend_voltage or
764 	 * set_suspend_mode callback.
765 	 */
766 	if (!rstate->enabled && !rstate->disabled) {
767 		if (rdev->desc->ops->set_suspend_voltage ||
768 		    rdev->desc->ops->set_suspend_mode)
769 			rdev_warn(rdev, "No configuration\n");
770 		return 0;
771 	}
772 
773 	if (rstate->enabled && rstate->disabled) {
774 		rdev_err(rdev, "invalid configuration\n");
775 		return -EINVAL;
776 	}
777 
778 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779 		ret = rdev->desc->ops->set_suspend_enable(rdev);
780 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781 		ret = rdev->desc->ops->set_suspend_disable(rdev);
782 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783 		ret = 0;
784 
785 	if (ret < 0) {
786 		rdev_err(rdev, "failed to enabled/disable\n");
787 		return ret;
788 	}
789 
790 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792 		if (ret < 0) {
793 			rdev_err(rdev, "failed to set voltage\n");
794 			return ret;
795 		}
796 	}
797 
798 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800 		if (ret < 0) {
801 			rdev_err(rdev, "failed to set mode\n");
802 			return ret;
803 		}
804 	}
805 	return ret;
806 }
807 
808 /* locks held by caller */
suspend_prepare(struct regulator_dev * rdev,suspend_state_t state)809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811 	lockdep_assert_held_once(&rdev->mutex);
812 
813 	if (!rdev->constraints)
814 		return -EINVAL;
815 
816 	switch (state) {
817 	case PM_SUSPEND_STANDBY:
818 		return suspend_set_state(rdev,
819 			&rdev->constraints->state_standby);
820 	case PM_SUSPEND_MEM:
821 		return suspend_set_state(rdev,
822 			&rdev->constraints->state_mem);
823 	case PM_SUSPEND_MAX:
824 		return suspend_set_state(rdev,
825 			&rdev->constraints->state_disk);
826 	default:
827 		return -EINVAL;
828 	}
829 }
830 
print_constraints(struct regulator_dev * rdev)831 static void print_constraints(struct regulator_dev *rdev)
832 {
833 	struct regulation_constraints *constraints = rdev->constraints;
834 	char buf[160] = "";
835 	size_t len = sizeof(buf) - 1;
836 	int count = 0;
837 	int ret;
838 
839 	if (constraints->min_uV && constraints->max_uV) {
840 		if (constraints->min_uV == constraints->max_uV)
841 			count += scnprintf(buf + count, len - count, "%d mV ",
842 					   constraints->min_uV / 1000);
843 		else
844 			count += scnprintf(buf + count, len - count,
845 					   "%d <--> %d mV ",
846 					   constraints->min_uV / 1000,
847 					   constraints->max_uV / 1000);
848 	}
849 
850 	if (!constraints->min_uV ||
851 	    constraints->min_uV != constraints->max_uV) {
852 		ret = _regulator_get_voltage(rdev);
853 		if (ret > 0)
854 			count += scnprintf(buf + count, len - count,
855 					   "at %d mV ", ret / 1000);
856 	}
857 
858 	if (constraints->uV_offset)
859 		count += scnprintf(buf + count, len - count, "%dmV offset ",
860 				   constraints->uV_offset / 1000);
861 
862 	if (constraints->min_uA && constraints->max_uA) {
863 		if (constraints->min_uA == constraints->max_uA)
864 			count += scnprintf(buf + count, len - count, "%d mA ",
865 					   constraints->min_uA / 1000);
866 		else
867 			count += scnprintf(buf + count, len - count,
868 					   "%d <--> %d mA ",
869 					   constraints->min_uA / 1000,
870 					   constraints->max_uA / 1000);
871 	}
872 
873 	if (!constraints->min_uA ||
874 	    constraints->min_uA != constraints->max_uA) {
875 		ret = _regulator_get_current_limit(rdev);
876 		if (ret > 0)
877 			count += scnprintf(buf + count, len - count,
878 					   "at %d mA ", ret / 1000);
879 	}
880 
881 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882 		count += scnprintf(buf + count, len - count, "fast ");
883 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884 		count += scnprintf(buf + count, len - count, "normal ");
885 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886 		count += scnprintf(buf + count, len - count, "idle ");
887 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888 		count += scnprintf(buf + count, len - count, "standby");
889 
890 	if (!count)
891 		scnprintf(buf, len, "no parameters");
892 
893 	rdev_dbg(rdev, "%s\n", buf);
894 
895 	if ((constraints->min_uV != constraints->max_uV) &&
896 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897 		rdev_warn(rdev,
898 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 }
900 
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902 	struct regulation_constraints *constraints)
903 {
904 	const struct regulator_ops *ops = rdev->desc->ops;
905 	int ret;
906 
907 	/* do we need to apply the constraint voltage */
908 	if (rdev->constraints->apply_uV &&
909 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
910 		int current_uV = _regulator_get_voltage(rdev);
911 		if (current_uV < 0) {
912 			rdev_err(rdev,
913 				 "failed to get the current voltage(%d)\n",
914 				 current_uV);
915 			return current_uV;
916 		}
917 		if (current_uV < rdev->constraints->min_uV ||
918 		    current_uV > rdev->constraints->max_uV) {
919 			ret = _regulator_do_set_voltage(
920 				rdev, rdev->constraints->min_uV,
921 				rdev->constraints->max_uV);
922 			if (ret < 0) {
923 				rdev_err(rdev,
924 					"failed to apply %duV constraint(%d)\n",
925 					rdev->constraints->min_uV, ret);
926 				return ret;
927 			}
928 		}
929 	}
930 
931 	/* constrain machine-level voltage specs to fit
932 	 * the actual range supported by this regulator.
933 	 */
934 	if (ops->list_voltage && rdev->desc->n_voltages) {
935 		int	count = rdev->desc->n_voltages;
936 		int	i;
937 		int	min_uV = INT_MAX;
938 		int	max_uV = INT_MIN;
939 		int	cmin = constraints->min_uV;
940 		int	cmax = constraints->max_uV;
941 
942 		/* it's safe to autoconfigure fixed-voltage supplies
943 		   and the constraints are used by list_voltage. */
944 		if (count == 1 && !cmin) {
945 			cmin = 1;
946 			cmax = INT_MAX;
947 			constraints->min_uV = cmin;
948 			constraints->max_uV = cmax;
949 		}
950 
951 		/* voltage constraints are optional */
952 		if ((cmin == 0) && (cmax == 0))
953 			return 0;
954 
955 		/* else require explicit machine-level constraints */
956 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957 			rdev_err(rdev, "invalid voltage constraints\n");
958 			return -EINVAL;
959 		}
960 
961 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962 		for (i = 0; i < count; i++) {
963 			int	value;
964 
965 			value = ops->list_voltage(rdev, i);
966 			if (value <= 0)
967 				continue;
968 
969 			/* maybe adjust [min_uV..max_uV] */
970 			if (value >= cmin && value < min_uV)
971 				min_uV = value;
972 			if (value <= cmax && value > max_uV)
973 				max_uV = value;
974 		}
975 
976 		/* final: [min_uV..max_uV] valid iff constraints valid */
977 		if (max_uV < min_uV) {
978 			rdev_err(rdev,
979 				 "unsupportable voltage constraints %u-%uuV\n",
980 				 min_uV, max_uV);
981 			return -EINVAL;
982 		}
983 
984 		/* use regulator's subset of machine constraints */
985 		if (constraints->min_uV < min_uV) {
986 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987 				 constraints->min_uV, min_uV);
988 			constraints->min_uV = min_uV;
989 		}
990 		if (constraints->max_uV > max_uV) {
991 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992 				 constraints->max_uV, max_uV);
993 			constraints->max_uV = max_uV;
994 		}
995 	}
996 
997 	return 0;
998 }
999 
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1000 static int machine_constraints_current(struct regulator_dev *rdev,
1001 	struct regulation_constraints *constraints)
1002 {
1003 	const struct regulator_ops *ops = rdev->desc->ops;
1004 	int ret;
1005 
1006 	if (!constraints->min_uA && !constraints->max_uA)
1007 		return 0;
1008 
1009 	if (constraints->min_uA > constraints->max_uA) {
1010 		rdev_err(rdev, "Invalid current constraints\n");
1011 		return -EINVAL;
1012 	}
1013 
1014 	if (!ops->set_current_limit || !ops->get_current_limit) {
1015 		rdev_warn(rdev, "Operation of current configuration missing\n");
1016 		return 0;
1017 	}
1018 
1019 	/* Set regulator current in constraints range */
1020 	ret = ops->set_current_limit(rdev, constraints->min_uA,
1021 			constraints->max_uA);
1022 	if (ret < 0) {
1023 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024 		return ret;
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 static int _regulator_do_enable(struct regulator_dev *rdev);
1031 
1032 /**
1033  * set_machine_constraints - sets regulator constraints
1034  * @rdev: regulator source
1035  * @constraints: constraints to apply
1036  *
1037  * Allows platform initialisation code to define and constrain
1038  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039  * Constraints *must* be set by platform code in order for some
1040  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041  * set_mode.
1042  */
set_machine_constraints(struct regulator_dev * rdev,const struct regulation_constraints * constraints)1043 static int set_machine_constraints(struct regulator_dev *rdev,
1044 	const struct regulation_constraints *constraints)
1045 {
1046 	int ret = 0;
1047 	const struct regulator_ops *ops = rdev->desc->ops;
1048 
1049 	if (constraints)
1050 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051 					    GFP_KERNEL);
1052 	else
1053 		rdev->constraints = kzalloc(sizeof(*constraints),
1054 					    GFP_KERNEL);
1055 	if (!rdev->constraints)
1056 		return -ENOMEM;
1057 
1058 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1059 	if (ret != 0)
1060 		return ret;
1061 
1062 	ret = machine_constraints_current(rdev, rdev->constraints);
1063 	if (ret != 0)
1064 		return ret;
1065 
1066 	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067 		ret = ops->set_input_current_limit(rdev,
1068 						   rdev->constraints->ilim_uA);
1069 		if (ret < 0) {
1070 			rdev_err(rdev, "failed to set input limit\n");
1071 			return ret;
1072 		}
1073 	}
1074 
1075 	/* do we need to setup our suspend state */
1076 	if (rdev->constraints->initial_state) {
1077 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078 		if (ret < 0) {
1079 			rdev_err(rdev, "failed to set suspend state\n");
1080 			return ret;
1081 		}
1082 	}
1083 
1084 	if (rdev->constraints->initial_mode) {
1085 		if (!ops->set_mode) {
1086 			rdev_err(rdev, "no set_mode operation\n");
1087 			return -EINVAL;
1088 		}
1089 
1090 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091 		if (ret < 0) {
1092 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093 			return ret;
1094 		}
1095 	}
1096 
1097 	/* If the constraints say the regulator should be on at this point
1098 	 * and we have control then make sure it is enabled.
1099 	 */
1100 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101 		ret = _regulator_do_enable(rdev);
1102 		if (ret < 0 && ret != -EINVAL) {
1103 			rdev_err(rdev, "failed to enable\n");
1104 			return ret;
1105 		}
1106 	}
1107 
1108 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109 		&& ops->set_ramp_delay) {
1110 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111 		if (ret < 0) {
1112 			rdev_err(rdev, "failed to set ramp_delay\n");
1113 			return ret;
1114 		}
1115 	}
1116 
1117 	if (rdev->constraints->pull_down && ops->set_pull_down) {
1118 		ret = ops->set_pull_down(rdev);
1119 		if (ret < 0) {
1120 			rdev_err(rdev, "failed to set pull down\n");
1121 			return ret;
1122 		}
1123 	}
1124 
1125 	if (rdev->constraints->soft_start && ops->set_soft_start) {
1126 		ret = ops->set_soft_start(rdev);
1127 		if (ret < 0) {
1128 			rdev_err(rdev, "failed to set soft start\n");
1129 			return ret;
1130 		}
1131 	}
1132 
1133 	if (rdev->constraints->over_current_protection
1134 		&& ops->set_over_current_protection) {
1135 		ret = ops->set_over_current_protection(rdev);
1136 		if (ret < 0) {
1137 			rdev_err(rdev, "failed to set over current protection\n");
1138 			return ret;
1139 		}
1140 	}
1141 
1142 	print_constraints(rdev);
1143 	return 0;
1144 }
1145 
1146 /**
1147  * set_supply - set regulator supply regulator
1148  * @rdev: regulator name
1149  * @supply_rdev: supply regulator name
1150  *
1151  * Called by platform initialisation code to set the supply regulator for this
1152  * regulator. This ensures that a regulators supply will also be enabled by the
1153  * core if it's child is enabled.
1154  */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1155 static int set_supply(struct regulator_dev *rdev,
1156 		      struct regulator_dev *supply_rdev)
1157 {
1158 	int err;
1159 
1160 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1161 
1162 	if (!try_module_get(supply_rdev->owner))
1163 		return -ENODEV;
1164 
1165 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1166 	if (rdev->supply == NULL) {
1167 		err = -ENOMEM;
1168 		return err;
1169 	}
1170 	supply_rdev->open_count++;
1171 
1172 	return 0;
1173 }
1174 
1175 /**
1176  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1177  * @rdev:         regulator source
1178  * @consumer_dev_name: dev_name() string for device supply applies to
1179  * @supply:       symbolic name for supply
1180  *
1181  * Allows platform initialisation code to map physical regulator
1182  * sources to symbolic names for supplies for use by devices.  Devices
1183  * should use these symbolic names to request regulators, avoiding the
1184  * need to provide board-specific regulator names as platform data.
1185  */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1186 static int set_consumer_device_supply(struct regulator_dev *rdev,
1187 				      const char *consumer_dev_name,
1188 				      const char *supply)
1189 {
1190 	struct regulator_map *node;
1191 	int has_dev;
1192 
1193 	if (supply == NULL)
1194 		return -EINVAL;
1195 
1196 	if (consumer_dev_name != NULL)
1197 		has_dev = 1;
1198 	else
1199 		has_dev = 0;
1200 
1201 	list_for_each_entry(node, &regulator_map_list, list) {
1202 		if (node->dev_name && consumer_dev_name) {
1203 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1204 				continue;
1205 		} else if (node->dev_name || consumer_dev_name) {
1206 			continue;
1207 		}
1208 
1209 		if (strcmp(node->supply, supply) != 0)
1210 			continue;
1211 
1212 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1213 			 consumer_dev_name,
1214 			 dev_name(&node->regulator->dev),
1215 			 node->regulator->desc->name,
1216 			 supply,
1217 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1218 		return -EBUSY;
1219 	}
1220 
1221 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1222 	if (node == NULL)
1223 		return -ENOMEM;
1224 
1225 	node->regulator = rdev;
1226 	node->supply = supply;
1227 
1228 	if (has_dev) {
1229 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1230 		if (node->dev_name == NULL) {
1231 			kfree(node);
1232 			return -ENOMEM;
1233 		}
1234 	}
1235 
1236 	list_add(&node->list, &regulator_map_list);
1237 	return 0;
1238 }
1239 
unset_regulator_supplies(struct regulator_dev * rdev)1240 static void unset_regulator_supplies(struct regulator_dev *rdev)
1241 {
1242 	struct regulator_map *node, *n;
1243 
1244 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1245 		if (rdev == node->regulator) {
1246 			list_del(&node->list);
1247 			kfree(node->dev_name);
1248 			kfree(node);
1249 		}
1250 	}
1251 }
1252 
1253 #define REG_STR_SIZE	64
1254 
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1255 static struct regulator *create_regulator(struct regulator_dev *rdev,
1256 					  struct device *dev,
1257 					  const char *supply_name)
1258 {
1259 	struct regulator *regulator;
1260 	char buf[REG_STR_SIZE];
1261 	int err, size;
1262 
1263 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1264 	if (regulator == NULL)
1265 		return NULL;
1266 
1267 	mutex_lock(&rdev->mutex);
1268 	regulator->rdev = rdev;
1269 	list_add(&regulator->list, &rdev->consumer_list);
1270 
1271 	if (dev) {
1272 		regulator->dev = dev;
1273 
1274 		/* Add a link to the device sysfs entry */
1275 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1276 				 dev->kobj.name, supply_name);
1277 		if (size >= REG_STR_SIZE)
1278 			goto overflow_err;
1279 
1280 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1281 		if (regulator->supply_name == NULL)
1282 			goto overflow_err;
1283 
1284 		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1285 					buf);
1286 		if (err) {
1287 			rdev_dbg(rdev, "could not add device link %s err %d\n",
1288 				  dev->kobj.name, err);
1289 			/* non-fatal */
1290 		}
1291 	} else {
1292 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1293 		if (regulator->supply_name == NULL)
1294 			goto overflow_err;
1295 	}
1296 
1297 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1298 						rdev->debugfs);
1299 	if (!regulator->debugfs) {
1300 		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1301 	} else {
1302 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1303 				   &regulator->uA_load);
1304 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1305 				   &regulator->min_uV);
1306 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1307 				   &regulator->max_uV);
1308 	}
1309 
1310 	/*
1311 	 * Check now if the regulator is an always on regulator - if
1312 	 * it is then we don't need to do nearly so much work for
1313 	 * enable/disable calls.
1314 	 */
1315 	if (!_regulator_can_change_status(rdev) &&
1316 	    _regulator_is_enabled(rdev))
1317 		regulator->always_on = true;
1318 
1319 	mutex_unlock(&rdev->mutex);
1320 	return regulator;
1321 overflow_err:
1322 	list_del(&regulator->list);
1323 	kfree(regulator);
1324 	mutex_unlock(&rdev->mutex);
1325 	return NULL;
1326 }
1327 
_regulator_get_enable_time(struct regulator_dev * rdev)1328 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1329 {
1330 	if (rdev->constraints && rdev->constraints->enable_time)
1331 		return rdev->constraints->enable_time;
1332 	if (!rdev->desc->ops->enable_time)
1333 		return rdev->desc->enable_time;
1334 	return rdev->desc->ops->enable_time(rdev);
1335 }
1336 
regulator_find_supply_alias(struct device * dev,const char * supply)1337 static struct regulator_supply_alias *regulator_find_supply_alias(
1338 		struct device *dev, const char *supply)
1339 {
1340 	struct regulator_supply_alias *map;
1341 
1342 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1343 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1344 			return map;
1345 
1346 	return NULL;
1347 }
1348 
regulator_supply_alias(struct device ** dev,const char ** supply)1349 static void regulator_supply_alias(struct device **dev, const char **supply)
1350 {
1351 	struct regulator_supply_alias *map;
1352 
1353 	map = regulator_find_supply_alias(*dev, *supply);
1354 	if (map) {
1355 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1356 				*supply, map->alias_supply,
1357 				dev_name(map->alias_dev));
1358 		*dev = map->alias_dev;
1359 		*supply = map->alias_supply;
1360 	}
1361 }
1362 
of_node_match(struct device * dev,const void * data)1363 static int of_node_match(struct device *dev, const void *data)
1364 {
1365 	return dev->of_node == data;
1366 }
1367 
of_find_regulator_by_node(struct device_node * np)1368 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1369 {
1370 	struct device *dev;
1371 
1372 	dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1373 
1374 	return dev ? dev_to_rdev(dev) : NULL;
1375 }
1376 
regulator_match(struct device * dev,const void * data)1377 static int regulator_match(struct device *dev, const void *data)
1378 {
1379 	struct regulator_dev *r = dev_to_rdev(dev);
1380 
1381 	return strcmp(rdev_get_name(r), data) == 0;
1382 }
1383 
regulator_lookup_by_name(const char * name)1384 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1385 {
1386 	struct device *dev;
1387 
1388 	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1389 
1390 	return dev ? dev_to_rdev(dev) : NULL;
1391 }
1392 
1393 /**
1394  * regulator_dev_lookup - lookup a regulator device.
1395  * @dev: device for regulator "consumer".
1396  * @supply: Supply name or regulator ID.
1397  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1398  * lookup could succeed in the future.
1399  *
1400  * If successful, returns a struct regulator_dev that corresponds to the name
1401  * @supply and with the embedded struct device refcount incremented by one,
1402  * or NULL on failure. The refcount must be dropped by calling put_device().
1403  */
regulator_dev_lookup(struct device * dev,const char * supply,int * ret)1404 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1405 						  const char *supply,
1406 						  int *ret)
1407 {
1408 	struct regulator_dev *r;
1409 	struct device_node *node;
1410 	struct regulator_map *map;
1411 	const char *devname = NULL;
1412 
1413 	regulator_supply_alias(&dev, &supply);
1414 
1415 	/* first do a dt based lookup */
1416 	if (dev && dev->of_node) {
1417 		node = of_get_regulator(dev, supply);
1418 		if (node) {
1419 			r = of_find_regulator_by_node(node);
1420 			if (r)
1421 				return r;
1422 			*ret = -EPROBE_DEFER;
1423 			return NULL;
1424 		} else {
1425 			/*
1426 			 * If we couldn't even get the node then it's
1427 			 * not just that the device didn't register
1428 			 * yet, there's no node and we'll never
1429 			 * succeed.
1430 			 */
1431 			*ret = -ENODEV;
1432 		}
1433 	}
1434 
1435 	/* if not found, try doing it non-dt way */
1436 	if (dev)
1437 		devname = dev_name(dev);
1438 
1439 	r = regulator_lookup_by_name(supply);
1440 	if (r)
1441 		return r;
1442 
1443 	mutex_lock(&regulator_list_mutex);
1444 	list_for_each_entry(map, &regulator_map_list, list) {
1445 		/* If the mapping has a device set up it must match */
1446 		if (map->dev_name &&
1447 		    (!devname || strcmp(map->dev_name, devname)))
1448 			continue;
1449 
1450 		if (strcmp(map->supply, supply) == 0 &&
1451 		    get_device(&map->regulator->dev)) {
1452 			mutex_unlock(&regulator_list_mutex);
1453 			return map->regulator;
1454 		}
1455 	}
1456 	mutex_unlock(&regulator_list_mutex);
1457 
1458 	return NULL;
1459 }
1460 
regulator_resolve_supply(struct regulator_dev * rdev)1461 static int regulator_resolve_supply(struct regulator_dev *rdev)
1462 {
1463 	struct regulator_dev *r;
1464 	struct device *dev = rdev->dev.parent;
1465 	int ret;
1466 
1467 	/* No supply to resovle? */
1468 	if (!rdev->supply_name)
1469 		return 0;
1470 
1471 	/* Supply already resolved? */
1472 	if (rdev->supply)
1473 		return 0;
1474 
1475 	r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1476 	if (!r) {
1477 		if (ret == -ENODEV) {
1478 			/*
1479 			 * No supply was specified for this regulator and
1480 			 * there will never be one.
1481 			 */
1482 			return 0;
1483 		}
1484 
1485 		/* Did the lookup explicitly defer for us? */
1486 		if (ret == -EPROBE_DEFER)
1487 			return ret;
1488 
1489 		if (have_full_constraints()) {
1490 			r = dummy_regulator_rdev;
1491 			get_device(&r->dev);
1492 		} else {
1493 			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1494 				rdev->supply_name, rdev->desc->name);
1495 			return -EPROBE_DEFER;
1496 		}
1497 	}
1498 
1499 	/* Recursively resolve the supply of the supply */
1500 	ret = regulator_resolve_supply(r);
1501 	if (ret < 0) {
1502 		put_device(&r->dev);
1503 		return ret;
1504 	}
1505 
1506 	ret = set_supply(rdev, r);
1507 	if (ret < 0) {
1508 		put_device(&r->dev);
1509 		return ret;
1510 	}
1511 
1512 	/* Cascade always-on state to supply */
1513 	if (_regulator_is_enabled(rdev) && rdev->supply) {
1514 		ret = regulator_enable(rdev->supply);
1515 		if (ret < 0) {
1516 			_regulator_put(rdev->supply);
1517 			rdev->supply = NULL;
1518 			return ret;
1519 		}
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,bool exclusive,bool allow_dummy)1526 static struct regulator *_regulator_get(struct device *dev, const char *id,
1527 					bool exclusive, bool allow_dummy)
1528 {
1529 	struct regulator_dev *rdev;
1530 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1531 	const char *devname = NULL;
1532 	int ret;
1533 
1534 	if (id == NULL) {
1535 		pr_err("get() with no identifier\n");
1536 		return ERR_PTR(-EINVAL);
1537 	}
1538 
1539 	if (dev)
1540 		devname = dev_name(dev);
1541 
1542 	if (have_full_constraints())
1543 		ret = -ENODEV;
1544 	else
1545 		ret = -EPROBE_DEFER;
1546 
1547 	rdev = regulator_dev_lookup(dev, id, &ret);
1548 	if (rdev)
1549 		goto found;
1550 
1551 	regulator = ERR_PTR(ret);
1552 
1553 	/*
1554 	 * If we have return value from dev_lookup fail, we do not expect to
1555 	 * succeed, so, quit with appropriate error value
1556 	 */
1557 	if (ret && ret != -ENODEV)
1558 		return regulator;
1559 
1560 	if (!devname)
1561 		devname = "deviceless";
1562 
1563 	/*
1564 	 * Assume that a regulator is physically present and enabled
1565 	 * even if it isn't hooked up and just provide a dummy.
1566 	 */
1567 	if (have_full_constraints() && allow_dummy) {
1568 		pr_warn("%s supply %s not found, using dummy regulator\n",
1569 			devname, id);
1570 
1571 		rdev = dummy_regulator_rdev;
1572 		get_device(&rdev->dev);
1573 		goto found;
1574 	/* Don't log an error when called from regulator_get_optional() */
1575 	} else if (!have_full_constraints() || exclusive) {
1576 		dev_warn(dev, "dummy supplies not allowed\n");
1577 	}
1578 
1579 	return regulator;
1580 
1581 found:
1582 	if (rdev->exclusive) {
1583 		regulator = ERR_PTR(-EPERM);
1584 		put_device(&rdev->dev);
1585 		return regulator;
1586 	}
1587 
1588 	if (exclusive && rdev->open_count) {
1589 		regulator = ERR_PTR(-EBUSY);
1590 		put_device(&rdev->dev);
1591 		return regulator;
1592 	}
1593 
1594 	ret = regulator_resolve_supply(rdev);
1595 	if (ret < 0) {
1596 		regulator = ERR_PTR(ret);
1597 		put_device(&rdev->dev);
1598 		return regulator;
1599 	}
1600 
1601 	if (!try_module_get(rdev->owner)) {
1602 		put_device(&rdev->dev);
1603 		return regulator;
1604 	}
1605 
1606 	regulator = create_regulator(rdev, dev, id);
1607 	if (regulator == NULL) {
1608 		regulator = ERR_PTR(-ENOMEM);
1609 		put_device(&rdev->dev);
1610 		module_put(rdev->owner);
1611 		return regulator;
1612 	}
1613 
1614 	rdev->open_count++;
1615 	if (exclusive) {
1616 		rdev->exclusive = 1;
1617 
1618 		ret = _regulator_is_enabled(rdev);
1619 		if (ret > 0)
1620 			rdev->use_count = 1;
1621 		else
1622 			rdev->use_count = 0;
1623 	}
1624 
1625 	return regulator;
1626 }
1627 
1628 /**
1629  * regulator_get - lookup and obtain a reference to a regulator.
1630  * @dev: device for regulator "consumer"
1631  * @id: Supply name or regulator ID.
1632  *
1633  * Returns a struct regulator corresponding to the regulator producer,
1634  * or IS_ERR() condition containing errno.
1635  *
1636  * Use of supply names configured via regulator_set_device_supply() is
1637  * strongly encouraged.  It is recommended that the supply name used
1638  * should match the name used for the supply and/or the relevant
1639  * device pins in the datasheet.
1640  */
regulator_get(struct device * dev,const char * id)1641 struct regulator *regulator_get(struct device *dev, const char *id)
1642 {
1643 	return _regulator_get(dev, id, false, true);
1644 }
1645 EXPORT_SYMBOL_GPL(regulator_get);
1646 
1647 /**
1648  * regulator_get_exclusive - obtain exclusive access to a regulator.
1649  * @dev: device for regulator "consumer"
1650  * @id: Supply name or regulator ID.
1651  *
1652  * Returns a struct regulator corresponding to the regulator producer,
1653  * or IS_ERR() condition containing errno.  Other consumers will be
1654  * unable to obtain this regulator while this reference is held and the
1655  * use count for the regulator will be initialised to reflect the current
1656  * state of the regulator.
1657  *
1658  * This is intended for use by consumers which cannot tolerate shared
1659  * use of the regulator such as those which need to force the
1660  * regulator off for correct operation of the hardware they are
1661  * controlling.
1662  *
1663  * Use of supply names configured via regulator_set_device_supply() is
1664  * strongly encouraged.  It is recommended that the supply name used
1665  * should match the name used for the supply and/or the relevant
1666  * device pins in the datasheet.
1667  */
regulator_get_exclusive(struct device * dev,const char * id)1668 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1669 {
1670 	return _regulator_get(dev, id, true, false);
1671 }
1672 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1673 
1674 /**
1675  * regulator_get_optional - obtain optional access to a regulator.
1676  * @dev: device for regulator "consumer"
1677  * @id: Supply name or regulator ID.
1678  *
1679  * Returns a struct regulator corresponding to the regulator producer,
1680  * or IS_ERR() condition containing errno.
1681  *
1682  * This is intended for use by consumers for devices which can have
1683  * some supplies unconnected in normal use, such as some MMC devices.
1684  * It can allow the regulator core to provide stub supplies for other
1685  * supplies requested using normal regulator_get() calls without
1686  * disrupting the operation of drivers that can handle absent
1687  * supplies.
1688  *
1689  * Use of supply names configured via regulator_set_device_supply() is
1690  * strongly encouraged.  It is recommended that the supply name used
1691  * should match the name used for the supply and/or the relevant
1692  * device pins in the datasheet.
1693  */
regulator_get_optional(struct device * dev,const char * id)1694 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1695 {
1696 	return _regulator_get(dev, id, false, false);
1697 }
1698 EXPORT_SYMBOL_GPL(regulator_get_optional);
1699 
1700 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)1701 static void _regulator_put(struct regulator *regulator)
1702 {
1703 	struct regulator_dev *rdev;
1704 
1705 	if (IS_ERR_OR_NULL(regulator))
1706 		return;
1707 
1708 	lockdep_assert_held_once(&regulator_list_mutex);
1709 
1710 	rdev = regulator->rdev;
1711 
1712 	debugfs_remove_recursive(regulator->debugfs);
1713 
1714 	/* remove any sysfs entries */
1715 	if (regulator->dev)
1716 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1717 	mutex_lock(&rdev->mutex);
1718 	list_del(&regulator->list);
1719 
1720 	rdev->open_count--;
1721 	rdev->exclusive = 0;
1722 	put_device(&rdev->dev);
1723 	mutex_unlock(&rdev->mutex);
1724 
1725 	kfree(regulator->supply_name);
1726 	kfree(regulator);
1727 
1728 	module_put(rdev->owner);
1729 }
1730 
1731 /**
1732  * regulator_put - "free" the regulator source
1733  * @regulator: regulator source
1734  *
1735  * Note: drivers must ensure that all regulator_enable calls made on this
1736  * regulator source are balanced by regulator_disable calls prior to calling
1737  * this function.
1738  */
regulator_put(struct regulator * regulator)1739 void regulator_put(struct regulator *regulator)
1740 {
1741 	mutex_lock(&regulator_list_mutex);
1742 	_regulator_put(regulator);
1743 	mutex_unlock(&regulator_list_mutex);
1744 }
1745 EXPORT_SYMBOL_GPL(regulator_put);
1746 
1747 /**
1748  * regulator_register_supply_alias - Provide device alias for supply lookup
1749  *
1750  * @dev: device that will be given as the regulator "consumer"
1751  * @id: Supply name or regulator ID
1752  * @alias_dev: device that should be used to lookup the supply
1753  * @alias_id: Supply name or regulator ID that should be used to lookup the
1754  * supply
1755  *
1756  * All lookups for id on dev will instead be conducted for alias_id on
1757  * alias_dev.
1758  */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)1759 int regulator_register_supply_alias(struct device *dev, const char *id,
1760 				    struct device *alias_dev,
1761 				    const char *alias_id)
1762 {
1763 	struct regulator_supply_alias *map;
1764 
1765 	map = regulator_find_supply_alias(dev, id);
1766 	if (map)
1767 		return -EEXIST;
1768 
1769 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1770 	if (!map)
1771 		return -ENOMEM;
1772 
1773 	map->src_dev = dev;
1774 	map->src_supply = id;
1775 	map->alias_dev = alias_dev;
1776 	map->alias_supply = alias_id;
1777 
1778 	list_add(&map->list, &regulator_supply_alias_list);
1779 
1780 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1781 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1782 
1783 	return 0;
1784 }
1785 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1786 
1787 /**
1788  * regulator_unregister_supply_alias - Remove device alias
1789  *
1790  * @dev: device that will be given as the regulator "consumer"
1791  * @id: Supply name or regulator ID
1792  *
1793  * Remove a lookup alias if one exists for id on dev.
1794  */
regulator_unregister_supply_alias(struct device * dev,const char * id)1795 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1796 {
1797 	struct regulator_supply_alias *map;
1798 
1799 	map = regulator_find_supply_alias(dev, id);
1800 	if (map) {
1801 		list_del(&map->list);
1802 		kfree(map);
1803 	}
1804 }
1805 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1806 
1807 /**
1808  * regulator_bulk_register_supply_alias - register multiple aliases
1809  *
1810  * @dev: device that will be given as the regulator "consumer"
1811  * @id: List of supply names or regulator IDs
1812  * @alias_dev: device that should be used to lookup the supply
1813  * @alias_id: List of supply names or regulator IDs that should be used to
1814  * lookup the supply
1815  * @num_id: Number of aliases to register
1816  *
1817  * @return 0 on success, an errno on failure.
1818  *
1819  * This helper function allows drivers to register several supply
1820  * aliases in one operation.  If any of the aliases cannot be
1821  * registered any aliases that were registered will be removed
1822  * before returning to the caller.
1823  */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)1824 int regulator_bulk_register_supply_alias(struct device *dev,
1825 					 const char *const *id,
1826 					 struct device *alias_dev,
1827 					 const char *const *alias_id,
1828 					 int num_id)
1829 {
1830 	int i;
1831 	int ret;
1832 
1833 	for (i = 0; i < num_id; ++i) {
1834 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1835 						      alias_id[i]);
1836 		if (ret < 0)
1837 			goto err;
1838 	}
1839 
1840 	return 0;
1841 
1842 err:
1843 	dev_err(dev,
1844 		"Failed to create supply alias %s,%s -> %s,%s\n",
1845 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1846 
1847 	while (--i >= 0)
1848 		regulator_unregister_supply_alias(dev, id[i]);
1849 
1850 	return ret;
1851 }
1852 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1853 
1854 /**
1855  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1856  *
1857  * @dev: device that will be given as the regulator "consumer"
1858  * @id: List of supply names or regulator IDs
1859  * @num_id: Number of aliases to unregister
1860  *
1861  * This helper function allows drivers to unregister several supply
1862  * aliases in one operation.
1863  */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)1864 void regulator_bulk_unregister_supply_alias(struct device *dev,
1865 					    const char *const *id,
1866 					    int num_id)
1867 {
1868 	int i;
1869 
1870 	for (i = 0; i < num_id; ++i)
1871 		regulator_unregister_supply_alias(dev, id[i]);
1872 }
1873 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1874 
1875 
1876 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)1877 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1878 				const struct regulator_config *config)
1879 {
1880 	struct regulator_enable_gpio *pin;
1881 	struct gpio_desc *gpiod;
1882 	int ret;
1883 
1884 	gpiod = gpio_to_desc(config->ena_gpio);
1885 
1886 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1887 		if (pin->gpiod == gpiod) {
1888 			rdev_dbg(rdev, "GPIO %d is already used\n",
1889 				config->ena_gpio);
1890 			goto update_ena_gpio_to_rdev;
1891 		}
1892 	}
1893 
1894 	ret = gpio_request_one(config->ena_gpio,
1895 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1896 				rdev_get_name(rdev));
1897 	if (ret)
1898 		return ret;
1899 
1900 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1901 	if (pin == NULL) {
1902 		gpio_free(config->ena_gpio);
1903 		return -ENOMEM;
1904 	}
1905 
1906 	pin->gpiod = gpiod;
1907 	pin->ena_gpio_invert = config->ena_gpio_invert;
1908 	list_add(&pin->list, &regulator_ena_gpio_list);
1909 
1910 update_ena_gpio_to_rdev:
1911 	pin->request_count++;
1912 	rdev->ena_pin = pin;
1913 	return 0;
1914 }
1915 
regulator_ena_gpio_free(struct regulator_dev * rdev)1916 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1917 {
1918 	struct regulator_enable_gpio *pin, *n;
1919 
1920 	if (!rdev->ena_pin)
1921 		return;
1922 
1923 	/* Free the GPIO only in case of no use */
1924 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1925 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1926 			if (pin->request_count <= 1) {
1927 				pin->request_count = 0;
1928 				gpiod_put(pin->gpiod);
1929 				list_del(&pin->list);
1930 				kfree(pin);
1931 				rdev->ena_pin = NULL;
1932 				return;
1933 			} else {
1934 				pin->request_count--;
1935 			}
1936 		}
1937 	}
1938 }
1939 
1940 /**
1941  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1942  * @rdev: regulator_dev structure
1943  * @enable: enable GPIO at initial use?
1944  *
1945  * GPIO is enabled in case of initial use. (enable_count is 0)
1946  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1947  */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)1948 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1949 {
1950 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1951 
1952 	if (!pin)
1953 		return -EINVAL;
1954 
1955 	if (enable) {
1956 		/* Enable GPIO at initial use */
1957 		if (pin->enable_count == 0)
1958 			gpiod_set_value_cansleep(pin->gpiod,
1959 						 !pin->ena_gpio_invert);
1960 
1961 		pin->enable_count++;
1962 	} else {
1963 		if (pin->enable_count > 1) {
1964 			pin->enable_count--;
1965 			return 0;
1966 		}
1967 
1968 		/* Disable GPIO if not used */
1969 		if (pin->enable_count <= 1) {
1970 			gpiod_set_value_cansleep(pin->gpiod,
1971 						 pin->ena_gpio_invert);
1972 			pin->enable_count = 0;
1973 		}
1974 	}
1975 
1976 	return 0;
1977 }
1978 
1979 /**
1980  * _regulator_enable_delay - a delay helper function
1981  * @delay: time to delay in microseconds
1982  *
1983  * Delay for the requested amount of time as per the guidelines in:
1984  *
1985  *     Documentation/timers/timers-howto.txt
1986  *
1987  * The assumption here is that regulators will never be enabled in
1988  * atomic context and therefore sleeping functions can be used.
1989  */
_regulator_enable_delay(unsigned int delay)1990 static void _regulator_enable_delay(unsigned int delay)
1991 {
1992 	unsigned int ms = delay / 1000;
1993 	unsigned int us = delay % 1000;
1994 
1995 	if (ms > 0) {
1996 		/*
1997 		 * For small enough values, handle super-millisecond
1998 		 * delays in the usleep_range() call below.
1999 		 */
2000 		if (ms < 20)
2001 			us += ms * 1000;
2002 		else
2003 			msleep(ms);
2004 	}
2005 
2006 	/*
2007 	 * Give the scheduler some room to coalesce with any other
2008 	 * wakeup sources. For delays shorter than 10 us, don't even
2009 	 * bother setting up high-resolution timers and just busy-
2010 	 * loop.
2011 	 */
2012 	if (us >= 10)
2013 		usleep_range(us, us + 100);
2014 	else
2015 		udelay(us);
2016 }
2017 
_regulator_do_enable(struct regulator_dev * rdev)2018 static int _regulator_do_enable(struct regulator_dev *rdev)
2019 {
2020 	int ret, delay;
2021 
2022 	/* Query before enabling in case configuration dependent.  */
2023 	ret = _regulator_get_enable_time(rdev);
2024 	if (ret >= 0) {
2025 		delay = ret;
2026 	} else {
2027 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2028 		delay = 0;
2029 	}
2030 
2031 	trace_regulator_enable(rdev_get_name(rdev));
2032 
2033 	if (rdev->desc->off_on_delay) {
2034 		/* if needed, keep a distance of off_on_delay from last time
2035 		 * this regulator was disabled.
2036 		 */
2037 		unsigned long start_jiffy = jiffies;
2038 		unsigned long intended, max_delay, remaining;
2039 
2040 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2041 		intended = rdev->last_off_jiffy + max_delay;
2042 
2043 		if (time_before(start_jiffy, intended)) {
2044 			/* calc remaining jiffies to deal with one-time
2045 			 * timer wrapping.
2046 			 * in case of multiple timer wrapping, either it can be
2047 			 * detected by out-of-range remaining, or it cannot be
2048 			 * detected and we gets a panelty of
2049 			 * _regulator_enable_delay().
2050 			 */
2051 			remaining = intended - start_jiffy;
2052 			if (remaining <= max_delay)
2053 				_regulator_enable_delay(
2054 						jiffies_to_usecs(remaining));
2055 		}
2056 	}
2057 
2058 	if (rdev->ena_pin) {
2059 		if (!rdev->ena_gpio_state) {
2060 			ret = regulator_ena_gpio_ctrl(rdev, true);
2061 			if (ret < 0)
2062 				return ret;
2063 			rdev->ena_gpio_state = 1;
2064 		}
2065 	} else if (rdev->desc->ops->enable) {
2066 		ret = rdev->desc->ops->enable(rdev);
2067 		if (ret < 0)
2068 			return ret;
2069 	} else {
2070 		return -EINVAL;
2071 	}
2072 
2073 	/* Allow the regulator to ramp; it would be useful to extend
2074 	 * this for bulk operations so that the regulators can ramp
2075 	 * together.  */
2076 	trace_regulator_enable_delay(rdev_get_name(rdev));
2077 
2078 	_regulator_enable_delay(delay);
2079 
2080 	trace_regulator_enable_complete(rdev_get_name(rdev));
2081 
2082 	return 0;
2083 }
2084 
2085 /* locks held by regulator_enable() */
_regulator_enable(struct regulator_dev * rdev)2086 static int _regulator_enable(struct regulator_dev *rdev)
2087 {
2088 	int ret;
2089 
2090 	lockdep_assert_held_once(&rdev->mutex);
2091 
2092 	/* check voltage and requested load before enabling */
2093 	if (rdev->constraints &&
2094 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2095 		drms_uA_update(rdev);
2096 
2097 	if (rdev->use_count == 0) {
2098 		/* The regulator may on if it's not switchable or left on */
2099 		ret = _regulator_is_enabled(rdev);
2100 		if (ret == -EINVAL || ret == 0) {
2101 			if (!_regulator_can_change_status(rdev))
2102 				return -EPERM;
2103 
2104 			ret = _regulator_do_enable(rdev);
2105 			if (ret < 0)
2106 				return ret;
2107 
2108 		} else if (ret < 0) {
2109 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2110 			return ret;
2111 		}
2112 		/* Fallthrough on positive return values - already enabled */
2113 	}
2114 
2115 	rdev->use_count++;
2116 
2117 	return 0;
2118 }
2119 
2120 /**
2121  * regulator_enable - enable regulator output
2122  * @regulator: regulator source
2123  *
2124  * Request that the regulator be enabled with the regulator output at
2125  * the predefined voltage or current value.  Calls to regulator_enable()
2126  * must be balanced with calls to regulator_disable().
2127  *
2128  * NOTE: the output value can be set by other drivers, boot loader or may be
2129  * hardwired in the regulator.
2130  */
regulator_enable(struct regulator * regulator)2131 int regulator_enable(struct regulator *regulator)
2132 {
2133 	struct regulator_dev *rdev = regulator->rdev;
2134 	int ret = 0;
2135 
2136 	if (regulator->always_on)
2137 		return 0;
2138 
2139 	if (rdev->supply) {
2140 		ret = regulator_enable(rdev->supply);
2141 		if (ret != 0)
2142 			return ret;
2143 	}
2144 
2145 	mutex_lock(&rdev->mutex);
2146 	ret = _regulator_enable(rdev);
2147 	mutex_unlock(&rdev->mutex);
2148 
2149 	if (ret != 0 && rdev->supply)
2150 		regulator_disable(rdev->supply);
2151 
2152 	return ret;
2153 }
2154 EXPORT_SYMBOL_GPL(regulator_enable);
2155 
_regulator_do_disable(struct regulator_dev * rdev)2156 static int _regulator_do_disable(struct regulator_dev *rdev)
2157 {
2158 	int ret;
2159 
2160 	trace_regulator_disable(rdev_get_name(rdev));
2161 
2162 	if (rdev->ena_pin) {
2163 		if (rdev->ena_gpio_state) {
2164 			ret = regulator_ena_gpio_ctrl(rdev, false);
2165 			if (ret < 0)
2166 				return ret;
2167 			rdev->ena_gpio_state = 0;
2168 		}
2169 
2170 	} else if (rdev->desc->ops->disable) {
2171 		ret = rdev->desc->ops->disable(rdev);
2172 		if (ret != 0)
2173 			return ret;
2174 	}
2175 
2176 	/* cares about last_off_jiffy only if off_on_delay is required by
2177 	 * device.
2178 	 */
2179 	if (rdev->desc->off_on_delay)
2180 		rdev->last_off_jiffy = jiffies;
2181 
2182 	trace_regulator_disable_complete(rdev_get_name(rdev));
2183 
2184 	return 0;
2185 }
2186 
2187 /* locks held by regulator_disable() */
_regulator_disable(struct regulator_dev * rdev)2188 static int _regulator_disable(struct regulator_dev *rdev)
2189 {
2190 	int ret = 0;
2191 
2192 	lockdep_assert_held_once(&rdev->mutex);
2193 
2194 	if (WARN(rdev->use_count <= 0,
2195 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2196 		return -EIO;
2197 
2198 	/* are we the last user and permitted to disable ? */
2199 	if (rdev->use_count == 1 &&
2200 	    (rdev->constraints && !rdev->constraints->always_on)) {
2201 
2202 		/* we are last user */
2203 		if (_regulator_can_change_status(rdev)) {
2204 			ret = _notifier_call_chain(rdev,
2205 						   REGULATOR_EVENT_PRE_DISABLE,
2206 						   NULL);
2207 			if (ret & NOTIFY_STOP_MASK)
2208 				return -EINVAL;
2209 
2210 			ret = _regulator_do_disable(rdev);
2211 			if (ret < 0) {
2212 				rdev_err(rdev, "failed to disable\n");
2213 				_notifier_call_chain(rdev,
2214 						REGULATOR_EVENT_ABORT_DISABLE,
2215 						NULL);
2216 				return ret;
2217 			}
2218 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2219 					NULL);
2220 		}
2221 
2222 		rdev->use_count = 0;
2223 	} else if (rdev->use_count > 1) {
2224 
2225 		if (rdev->constraints &&
2226 			(rdev->constraints->valid_ops_mask &
2227 			REGULATOR_CHANGE_DRMS))
2228 			drms_uA_update(rdev);
2229 
2230 		rdev->use_count--;
2231 	}
2232 
2233 	return ret;
2234 }
2235 
2236 /**
2237  * regulator_disable - disable regulator output
2238  * @regulator: regulator source
2239  *
2240  * Disable the regulator output voltage or current.  Calls to
2241  * regulator_enable() must be balanced with calls to
2242  * regulator_disable().
2243  *
2244  * NOTE: this will only disable the regulator output if no other consumer
2245  * devices have it enabled, the regulator device supports disabling and
2246  * machine constraints permit this operation.
2247  */
regulator_disable(struct regulator * regulator)2248 int regulator_disable(struct regulator *regulator)
2249 {
2250 	struct regulator_dev *rdev = regulator->rdev;
2251 	int ret = 0;
2252 
2253 	if (regulator->always_on)
2254 		return 0;
2255 
2256 	mutex_lock(&rdev->mutex);
2257 	ret = _regulator_disable(rdev);
2258 	mutex_unlock(&rdev->mutex);
2259 
2260 	if (ret == 0 && rdev->supply)
2261 		regulator_disable(rdev->supply);
2262 
2263 	return ret;
2264 }
2265 EXPORT_SYMBOL_GPL(regulator_disable);
2266 
2267 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2268 static int _regulator_force_disable(struct regulator_dev *rdev)
2269 {
2270 	int ret = 0;
2271 
2272 	lockdep_assert_held_once(&rdev->mutex);
2273 
2274 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2275 			REGULATOR_EVENT_PRE_DISABLE, NULL);
2276 	if (ret & NOTIFY_STOP_MASK)
2277 		return -EINVAL;
2278 
2279 	ret = _regulator_do_disable(rdev);
2280 	if (ret < 0) {
2281 		rdev_err(rdev, "failed to force disable\n");
2282 		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2283 				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2284 		return ret;
2285 	}
2286 
2287 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2288 			REGULATOR_EVENT_DISABLE, NULL);
2289 
2290 	return 0;
2291 }
2292 
2293 /**
2294  * regulator_force_disable - force disable regulator output
2295  * @regulator: regulator source
2296  *
2297  * Forcibly disable the regulator output voltage or current.
2298  * NOTE: this *will* disable the regulator output even if other consumer
2299  * devices have it enabled. This should be used for situations when device
2300  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2301  */
regulator_force_disable(struct regulator * regulator)2302 int regulator_force_disable(struct regulator *regulator)
2303 {
2304 	struct regulator_dev *rdev = regulator->rdev;
2305 	int ret;
2306 
2307 	mutex_lock(&rdev->mutex);
2308 	regulator->uA_load = 0;
2309 	ret = _regulator_force_disable(regulator->rdev);
2310 	mutex_unlock(&rdev->mutex);
2311 
2312 	if (rdev->supply)
2313 		while (rdev->open_count--)
2314 			regulator_disable(rdev->supply);
2315 
2316 	return ret;
2317 }
2318 EXPORT_SYMBOL_GPL(regulator_force_disable);
2319 
regulator_disable_work(struct work_struct * work)2320 static void regulator_disable_work(struct work_struct *work)
2321 {
2322 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2323 						  disable_work.work);
2324 	int count, i, ret;
2325 
2326 	mutex_lock(&rdev->mutex);
2327 
2328 	BUG_ON(!rdev->deferred_disables);
2329 
2330 	count = rdev->deferred_disables;
2331 	rdev->deferred_disables = 0;
2332 
2333 	for (i = 0; i < count; i++) {
2334 		ret = _regulator_disable(rdev);
2335 		if (ret != 0)
2336 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2337 	}
2338 
2339 	mutex_unlock(&rdev->mutex);
2340 
2341 	if (rdev->supply) {
2342 		for (i = 0; i < count; i++) {
2343 			ret = regulator_disable(rdev->supply);
2344 			if (ret != 0) {
2345 				rdev_err(rdev,
2346 					 "Supply disable failed: %d\n", ret);
2347 			}
2348 		}
2349 	}
2350 }
2351 
2352 /**
2353  * regulator_disable_deferred - disable regulator output with delay
2354  * @regulator: regulator source
2355  * @ms: miliseconds until the regulator is disabled
2356  *
2357  * Execute regulator_disable() on the regulator after a delay.  This
2358  * is intended for use with devices that require some time to quiesce.
2359  *
2360  * NOTE: this will only disable the regulator output if no other consumer
2361  * devices have it enabled, the regulator device supports disabling and
2362  * machine constraints permit this operation.
2363  */
regulator_disable_deferred(struct regulator * regulator,int ms)2364 int regulator_disable_deferred(struct regulator *regulator, int ms)
2365 {
2366 	struct regulator_dev *rdev = regulator->rdev;
2367 	int ret;
2368 
2369 	if (regulator->always_on)
2370 		return 0;
2371 
2372 	if (!ms)
2373 		return regulator_disable(regulator);
2374 
2375 	mutex_lock(&rdev->mutex);
2376 	rdev->deferred_disables++;
2377 	mutex_unlock(&rdev->mutex);
2378 
2379 	ret = queue_delayed_work(system_power_efficient_wq,
2380 				 &rdev->disable_work,
2381 				 msecs_to_jiffies(ms));
2382 	if (ret < 0)
2383 		return ret;
2384 	else
2385 		return 0;
2386 }
2387 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2388 
_regulator_is_enabled(struct regulator_dev * rdev)2389 static int _regulator_is_enabled(struct regulator_dev *rdev)
2390 {
2391 	/* A GPIO control always takes precedence */
2392 	if (rdev->ena_pin)
2393 		return rdev->ena_gpio_state;
2394 
2395 	/* If we don't know then assume that the regulator is always on */
2396 	if (!rdev->desc->ops->is_enabled)
2397 		return 1;
2398 
2399 	return rdev->desc->ops->is_enabled(rdev);
2400 }
2401 
_regulator_list_voltage(struct regulator * regulator,unsigned selector,int lock)2402 static int _regulator_list_voltage(struct regulator *regulator,
2403 				    unsigned selector, int lock)
2404 {
2405 	struct regulator_dev *rdev = regulator->rdev;
2406 	const struct regulator_ops *ops = rdev->desc->ops;
2407 	int ret;
2408 
2409 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2410 		return rdev->desc->fixed_uV;
2411 
2412 	if (ops->list_voltage) {
2413 		if (selector >= rdev->desc->n_voltages)
2414 			return -EINVAL;
2415 		if (lock)
2416 			mutex_lock(&rdev->mutex);
2417 		ret = ops->list_voltage(rdev, selector);
2418 		if (lock)
2419 			mutex_unlock(&rdev->mutex);
2420 	} else if (rdev->supply) {
2421 		ret = _regulator_list_voltage(rdev->supply, selector, lock);
2422 	} else {
2423 		return -EINVAL;
2424 	}
2425 
2426 	if (ret > 0) {
2427 		if (ret < rdev->constraints->min_uV)
2428 			ret = 0;
2429 		else if (ret > rdev->constraints->max_uV)
2430 			ret = 0;
2431 	}
2432 
2433 	return ret;
2434 }
2435 
2436 /**
2437  * regulator_is_enabled - is the regulator output enabled
2438  * @regulator: regulator source
2439  *
2440  * Returns positive if the regulator driver backing the source/client
2441  * has requested that the device be enabled, zero if it hasn't, else a
2442  * negative errno code.
2443  *
2444  * Note that the device backing this regulator handle can have multiple
2445  * users, so it might be enabled even if regulator_enable() was never
2446  * called for this particular source.
2447  */
regulator_is_enabled(struct regulator * regulator)2448 int regulator_is_enabled(struct regulator *regulator)
2449 {
2450 	int ret;
2451 
2452 	if (regulator->always_on)
2453 		return 1;
2454 
2455 	mutex_lock(&regulator->rdev->mutex);
2456 	ret = _regulator_is_enabled(regulator->rdev);
2457 	mutex_unlock(&regulator->rdev->mutex);
2458 
2459 	return ret;
2460 }
2461 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2462 
2463 /**
2464  * regulator_can_change_voltage - check if regulator can change voltage
2465  * @regulator: regulator source
2466  *
2467  * Returns positive if the regulator driver backing the source/client
2468  * can change its voltage, false otherwise. Useful for detecting fixed
2469  * or dummy regulators and disabling voltage change logic in the client
2470  * driver.
2471  */
regulator_can_change_voltage(struct regulator * regulator)2472 int regulator_can_change_voltage(struct regulator *regulator)
2473 {
2474 	struct regulator_dev	*rdev = regulator->rdev;
2475 
2476 	if (rdev->constraints &&
2477 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2478 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2479 			return 1;
2480 
2481 		if (rdev->desc->continuous_voltage_range &&
2482 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2483 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2484 			return 1;
2485 	}
2486 
2487 	return 0;
2488 }
2489 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2490 
2491 /**
2492  * regulator_count_voltages - count regulator_list_voltage() selectors
2493  * @regulator: regulator source
2494  *
2495  * Returns number of selectors, or negative errno.  Selectors are
2496  * numbered starting at zero, and typically correspond to bitfields
2497  * in hardware registers.
2498  */
regulator_count_voltages(struct regulator * regulator)2499 int regulator_count_voltages(struct regulator *regulator)
2500 {
2501 	struct regulator_dev	*rdev = regulator->rdev;
2502 
2503 	if (rdev->desc->n_voltages)
2504 		return rdev->desc->n_voltages;
2505 
2506 	if (!rdev->supply)
2507 		return -EINVAL;
2508 
2509 	return regulator_count_voltages(rdev->supply);
2510 }
2511 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2512 
2513 /**
2514  * regulator_list_voltage - enumerate supported voltages
2515  * @regulator: regulator source
2516  * @selector: identify voltage to list
2517  * Context: can sleep
2518  *
2519  * Returns a voltage that can be passed to @regulator_set_voltage(),
2520  * zero if this selector code can't be used on this system, or a
2521  * negative errno.
2522  */
regulator_list_voltage(struct regulator * regulator,unsigned selector)2523 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2524 {
2525 	return _regulator_list_voltage(regulator, selector, 1);
2526 }
2527 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2528 
2529 /**
2530  * regulator_get_regmap - get the regulator's register map
2531  * @regulator: regulator source
2532  *
2533  * Returns the register map for the given regulator, or an ERR_PTR value
2534  * if the regulator doesn't use regmap.
2535  */
regulator_get_regmap(struct regulator * regulator)2536 struct regmap *regulator_get_regmap(struct regulator *regulator)
2537 {
2538 	struct regmap *map = regulator->rdev->regmap;
2539 
2540 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2541 }
2542 
2543 /**
2544  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2545  * @regulator: regulator source
2546  * @vsel_reg: voltage selector register, output parameter
2547  * @vsel_mask: mask for voltage selector bitfield, output parameter
2548  *
2549  * Returns the hardware register offset and bitmask used for setting the
2550  * regulator voltage. This might be useful when configuring voltage-scaling
2551  * hardware or firmware that can make I2C requests behind the kernel's back,
2552  * for example.
2553  *
2554  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2555  * and 0 is returned, otherwise a negative errno is returned.
2556  */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)2557 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2558 					 unsigned *vsel_reg,
2559 					 unsigned *vsel_mask)
2560 {
2561 	struct regulator_dev *rdev = regulator->rdev;
2562 	const struct regulator_ops *ops = rdev->desc->ops;
2563 
2564 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2565 		return -EOPNOTSUPP;
2566 
2567 	 *vsel_reg = rdev->desc->vsel_reg;
2568 	 *vsel_mask = rdev->desc->vsel_mask;
2569 
2570 	 return 0;
2571 }
2572 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2573 
2574 /**
2575  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2576  * @regulator: regulator source
2577  * @selector: identify voltage to list
2578  *
2579  * Converts the selector to a hardware-specific voltage selector that can be
2580  * directly written to the regulator registers. The address of the voltage
2581  * register can be determined by calling @regulator_get_hardware_vsel_register.
2582  *
2583  * On error a negative errno is returned.
2584  */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)2585 int regulator_list_hardware_vsel(struct regulator *regulator,
2586 				 unsigned selector)
2587 {
2588 	struct regulator_dev *rdev = regulator->rdev;
2589 	const struct regulator_ops *ops = rdev->desc->ops;
2590 
2591 	if (selector >= rdev->desc->n_voltages)
2592 		return -EINVAL;
2593 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2594 		return -EOPNOTSUPP;
2595 
2596 	return selector;
2597 }
2598 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2599 
2600 /**
2601  * regulator_get_linear_step - return the voltage step size between VSEL values
2602  * @regulator: regulator source
2603  *
2604  * Returns the voltage step size between VSEL values for linear
2605  * regulators, or return 0 if the regulator isn't a linear regulator.
2606  */
regulator_get_linear_step(struct regulator * regulator)2607 unsigned int regulator_get_linear_step(struct regulator *regulator)
2608 {
2609 	struct regulator_dev *rdev = regulator->rdev;
2610 
2611 	return rdev->desc->uV_step;
2612 }
2613 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2614 
2615 /**
2616  * regulator_is_supported_voltage - check if a voltage range can be supported
2617  *
2618  * @regulator: Regulator to check.
2619  * @min_uV: Minimum required voltage in uV.
2620  * @max_uV: Maximum required voltage in uV.
2621  *
2622  * Returns a boolean or a negative error code.
2623  */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)2624 int regulator_is_supported_voltage(struct regulator *regulator,
2625 				   int min_uV, int max_uV)
2626 {
2627 	struct regulator_dev *rdev = regulator->rdev;
2628 	int i, voltages, ret;
2629 
2630 	/* If we can't change voltage check the current voltage */
2631 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2632 		ret = regulator_get_voltage(regulator);
2633 		if (ret >= 0)
2634 			return min_uV <= ret && ret <= max_uV;
2635 		else
2636 			return ret;
2637 	}
2638 
2639 	/* Any voltage within constrains range is fine? */
2640 	if (rdev->desc->continuous_voltage_range)
2641 		return min_uV >= rdev->constraints->min_uV &&
2642 				max_uV <= rdev->constraints->max_uV;
2643 
2644 	ret = regulator_count_voltages(regulator);
2645 	if (ret < 0)
2646 		return ret;
2647 	voltages = ret;
2648 
2649 	for (i = 0; i < voltages; i++) {
2650 		ret = regulator_list_voltage(regulator, i);
2651 
2652 		if (ret >= min_uV && ret <= max_uV)
2653 			return 1;
2654 	}
2655 
2656 	return 0;
2657 }
2658 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2659 
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)2660 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2661 				 int max_uV)
2662 {
2663 	const struct regulator_desc *desc = rdev->desc;
2664 
2665 	if (desc->ops->map_voltage)
2666 		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2667 
2668 	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2669 		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2670 
2671 	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2672 		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2673 
2674 	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2675 }
2676 
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)2677 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2678 				       int min_uV, int max_uV,
2679 				       unsigned *selector)
2680 {
2681 	struct pre_voltage_change_data data;
2682 	int ret;
2683 
2684 	data.old_uV = _regulator_get_voltage(rdev);
2685 	data.min_uV = min_uV;
2686 	data.max_uV = max_uV;
2687 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2688 				   &data);
2689 	if (ret & NOTIFY_STOP_MASK)
2690 		return -EINVAL;
2691 
2692 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2693 	if (ret >= 0)
2694 		return ret;
2695 
2696 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2697 			     (void *)data.old_uV);
2698 
2699 	return ret;
2700 }
2701 
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)2702 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2703 					   int uV, unsigned selector)
2704 {
2705 	struct pre_voltage_change_data data;
2706 	int ret;
2707 
2708 	data.old_uV = _regulator_get_voltage(rdev);
2709 	data.min_uV = uV;
2710 	data.max_uV = uV;
2711 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2712 				   &data);
2713 	if (ret & NOTIFY_STOP_MASK)
2714 		return -EINVAL;
2715 
2716 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2717 	if (ret >= 0)
2718 		return ret;
2719 
2720 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2721 			     (void *)data.old_uV);
2722 
2723 	return ret;
2724 }
2725 
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)2726 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2727 				     int min_uV, int max_uV)
2728 {
2729 	int ret;
2730 	int delay = 0;
2731 	int best_val = 0;
2732 	unsigned int selector;
2733 	int old_selector = -1;
2734 
2735 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2736 
2737 	min_uV += rdev->constraints->uV_offset;
2738 	max_uV += rdev->constraints->uV_offset;
2739 
2740 	/*
2741 	 * If we can't obtain the old selector there is not enough
2742 	 * info to call set_voltage_time_sel().
2743 	 */
2744 	if (_regulator_is_enabled(rdev) &&
2745 	    rdev->desc->ops->set_voltage_time_sel &&
2746 	    rdev->desc->ops->get_voltage_sel) {
2747 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2748 		if (old_selector < 0)
2749 			return old_selector;
2750 	}
2751 
2752 	if (rdev->desc->ops->set_voltage) {
2753 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2754 						  &selector);
2755 
2756 		if (ret >= 0) {
2757 			if (rdev->desc->ops->list_voltage)
2758 				best_val = rdev->desc->ops->list_voltage(rdev,
2759 									 selector);
2760 			else
2761 				best_val = _regulator_get_voltage(rdev);
2762 		}
2763 
2764 	} else if (rdev->desc->ops->set_voltage_sel) {
2765 		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2766 		if (ret >= 0) {
2767 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2768 			if (min_uV <= best_val && max_uV >= best_val) {
2769 				selector = ret;
2770 				if (old_selector == selector)
2771 					ret = 0;
2772 				else
2773 					ret = _regulator_call_set_voltage_sel(
2774 						rdev, best_val, selector);
2775 			} else {
2776 				ret = -EINVAL;
2777 			}
2778 		}
2779 	} else {
2780 		ret = -EINVAL;
2781 	}
2782 
2783 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2784 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2785 		&& old_selector != selector) {
2786 
2787 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2788 						old_selector, selector);
2789 		if (delay < 0) {
2790 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2791 				  delay);
2792 			delay = 0;
2793 		}
2794 
2795 		/* Insert any necessary delays */
2796 		if (delay >= 1000) {
2797 			mdelay(delay / 1000);
2798 			udelay(delay % 1000);
2799 		} else if (delay) {
2800 			udelay(delay);
2801 		}
2802 	}
2803 
2804 	if (ret == 0 && best_val >= 0) {
2805 		unsigned long data = best_val;
2806 
2807 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2808 				     (void *)data);
2809 	}
2810 
2811 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2812 
2813 	return ret;
2814 }
2815 
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV)2816 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2817 					  int min_uV, int max_uV)
2818 {
2819 	struct regulator_dev *rdev = regulator->rdev;
2820 	int ret = 0;
2821 	int old_min_uV, old_max_uV;
2822 	int current_uV;
2823 	int best_supply_uV = 0;
2824 	int supply_change_uV = 0;
2825 
2826 	/* If we're setting the same range as last time the change
2827 	 * should be a noop (some cpufreq implementations use the same
2828 	 * voltage for multiple frequencies, for example).
2829 	 */
2830 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2831 		goto out;
2832 
2833 	/* If we're trying to set a range that overlaps the current voltage,
2834 	 * return successfully even though the regulator does not support
2835 	 * changing the voltage.
2836 	 */
2837 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2838 		current_uV = _regulator_get_voltage(rdev);
2839 		if (min_uV <= current_uV && current_uV <= max_uV) {
2840 			regulator->min_uV = min_uV;
2841 			regulator->max_uV = max_uV;
2842 			goto out;
2843 		}
2844 	}
2845 
2846 	/* sanity check */
2847 	if (!rdev->desc->ops->set_voltage &&
2848 	    !rdev->desc->ops->set_voltage_sel) {
2849 		ret = -EINVAL;
2850 		goto out;
2851 	}
2852 
2853 	/* constraints check */
2854 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2855 	if (ret < 0)
2856 		goto out;
2857 
2858 	/* restore original values in case of error */
2859 	old_min_uV = regulator->min_uV;
2860 	old_max_uV = regulator->max_uV;
2861 	regulator->min_uV = min_uV;
2862 	regulator->max_uV = max_uV;
2863 
2864 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2865 	if (ret < 0)
2866 		goto out2;
2867 
2868 	if (rdev->supply && (rdev->desc->min_dropout_uV ||
2869 				!rdev->desc->ops->get_voltage)) {
2870 		int current_supply_uV;
2871 		int selector;
2872 
2873 		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2874 		if (selector < 0) {
2875 			ret = selector;
2876 			goto out2;
2877 		}
2878 
2879 		best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2880 		if (best_supply_uV < 0) {
2881 			ret = best_supply_uV;
2882 			goto out2;
2883 		}
2884 
2885 		best_supply_uV += rdev->desc->min_dropout_uV;
2886 
2887 		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2888 		if (current_supply_uV < 0) {
2889 			ret = current_supply_uV;
2890 			goto out2;
2891 		}
2892 
2893 		supply_change_uV = best_supply_uV - current_supply_uV;
2894 	}
2895 
2896 	if (supply_change_uV > 0) {
2897 		ret = regulator_set_voltage_unlocked(rdev->supply,
2898 				best_supply_uV, INT_MAX);
2899 		if (ret) {
2900 			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2901 					ret);
2902 			goto out2;
2903 		}
2904 	}
2905 
2906 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2907 	if (ret < 0)
2908 		goto out2;
2909 
2910 	if (supply_change_uV < 0) {
2911 		ret = regulator_set_voltage_unlocked(rdev->supply,
2912 				best_supply_uV, INT_MAX);
2913 		if (ret)
2914 			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2915 					ret);
2916 		/* No need to fail here */
2917 		ret = 0;
2918 	}
2919 
2920 out:
2921 	return ret;
2922 out2:
2923 	regulator->min_uV = old_min_uV;
2924 	regulator->max_uV = old_max_uV;
2925 
2926 	return ret;
2927 }
2928 
2929 /**
2930  * regulator_set_voltage - set regulator output voltage
2931  * @regulator: regulator source
2932  * @min_uV: Minimum required voltage in uV
2933  * @max_uV: Maximum acceptable voltage in uV
2934  *
2935  * Sets a voltage regulator to the desired output voltage. This can be set
2936  * during any regulator state. IOW, regulator can be disabled or enabled.
2937  *
2938  * If the regulator is enabled then the voltage will change to the new value
2939  * immediately otherwise if the regulator is disabled the regulator will
2940  * output at the new voltage when enabled.
2941  *
2942  * NOTE: If the regulator is shared between several devices then the lowest
2943  * request voltage that meets the system constraints will be used.
2944  * Regulator system constraints must be set for this regulator before
2945  * calling this function otherwise this call will fail.
2946  */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)2947 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2948 {
2949 	int ret = 0;
2950 
2951 	regulator_lock_supply(regulator->rdev);
2952 
2953 	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2954 
2955 	regulator_unlock_supply(regulator->rdev);
2956 
2957 	return ret;
2958 }
2959 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2960 
2961 /**
2962  * regulator_set_voltage_time - get raise/fall time
2963  * @regulator: regulator source
2964  * @old_uV: starting voltage in microvolts
2965  * @new_uV: target voltage in microvolts
2966  *
2967  * Provided with the starting and ending voltage, this function attempts to
2968  * calculate the time in microseconds required to rise or fall to this new
2969  * voltage.
2970  */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)2971 int regulator_set_voltage_time(struct regulator *regulator,
2972 			       int old_uV, int new_uV)
2973 {
2974 	struct regulator_dev *rdev = regulator->rdev;
2975 	const struct regulator_ops *ops = rdev->desc->ops;
2976 	int old_sel = -1;
2977 	int new_sel = -1;
2978 	int voltage;
2979 	int i;
2980 
2981 	/* Currently requires operations to do this */
2982 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2983 	    || !rdev->desc->n_voltages)
2984 		return -EINVAL;
2985 
2986 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2987 		/* We only look for exact voltage matches here */
2988 		voltage = regulator_list_voltage(regulator, i);
2989 		if (voltage < 0)
2990 			return -EINVAL;
2991 		if (voltage == 0)
2992 			continue;
2993 		if (voltage == old_uV)
2994 			old_sel = i;
2995 		if (voltage == new_uV)
2996 			new_sel = i;
2997 	}
2998 
2999 	if (old_sel < 0 || new_sel < 0)
3000 		return -EINVAL;
3001 
3002 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3003 }
3004 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3005 
3006 /**
3007  * regulator_set_voltage_time_sel - get raise/fall time
3008  * @rdev: regulator source device
3009  * @old_selector: selector for starting voltage
3010  * @new_selector: selector for target voltage
3011  *
3012  * Provided with the starting and target voltage selectors, this function
3013  * returns time in microseconds required to rise or fall to this new voltage
3014  *
3015  * Drivers providing ramp_delay in regulation_constraints can use this as their
3016  * set_voltage_time_sel() operation.
3017  */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)3018 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3019 				   unsigned int old_selector,
3020 				   unsigned int new_selector)
3021 {
3022 	unsigned int ramp_delay = 0;
3023 	int old_volt, new_volt;
3024 
3025 	if (rdev->constraints->ramp_delay)
3026 		ramp_delay = rdev->constraints->ramp_delay;
3027 	else if (rdev->desc->ramp_delay)
3028 		ramp_delay = rdev->desc->ramp_delay;
3029 
3030 	if (ramp_delay == 0) {
3031 		rdev_warn(rdev, "ramp_delay not set\n");
3032 		return 0;
3033 	}
3034 
3035 	/* sanity check */
3036 	if (!rdev->desc->ops->list_voltage)
3037 		return -EINVAL;
3038 
3039 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3040 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3041 
3042 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3043 }
3044 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3045 
3046 /**
3047  * regulator_sync_voltage - re-apply last regulator output voltage
3048  * @regulator: regulator source
3049  *
3050  * Re-apply the last configured voltage.  This is intended to be used
3051  * where some external control source the consumer is cooperating with
3052  * has caused the configured voltage to change.
3053  */
regulator_sync_voltage(struct regulator * regulator)3054 int regulator_sync_voltage(struct regulator *regulator)
3055 {
3056 	struct regulator_dev *rdev = regulator->rdev;
3057 	int ret, min_uV, max_uV;
3058 
3059 	mutex_lock(&rdev->mutex);
3060 
3061 	if (!rdev->desc->ops->set_voltage &&
3062 	    !rdev->desc->ops->set_voltage_sel) {
3063 		ret = -EINVAL;
3064 		goto out;
3065 	}
3066 
3067 	/* This is only going to work if we've had a voltage configured. */
3068 	if (!regulator->min_uV && !regulator->max_uV) {
3069 		ret = -EINVAL;
3070 		goto out;
3071 	}
3072 
3073 	min_uV = regulator->min_uV;
3074 	max_uV = regulator->max_uV;
3075 
3076 	/* This should be a paranoia check... */
3077 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3078 	if (ret < 0)
3079 		goto out;
3080 
3081 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3082 	if (ret < 0)
3083 		goto out;
3084 
3085 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3086 
3087 out:
3088 	mutex_unlock(&rdev->mutex);
3089 	return ret;
3090 }
3091 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3092 
_regulator_get_voltage(struct regulator_dev * rdev)3093 static int _regulator_get_voltage(struct regulator_dev *rdev)
3094 {
3095 	int sel, ret;
3096 
3097 	if (rdev->desc->ops->get_voltage_sel) {
3098 		sel = rdev->desc->ops->get_voltage_sel(rdev);
3099 		if (sel < 0)
3100 			return sel;
3101 		ret = rdev->desc->ops->list_voltage(rdev, sel);
3102 	} else if (rdev->desc->ops->get_voltage) {
3103 		ret = rdev->desc->ops->get_voltage(rdev);
3104 	} else if (rdev->desc->ops->list_voltage) {
3105 		ret = rdev->desc->ops->list_voltage(rdev, 0);
3106 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3107 		ret = rdev->desc->fixed_uV;
3108 	} else if (rdev->supply) {
3109 		ret = _regulator_get_voltage(rdev->supply->rdev);
3110 	} else {
3111 		return -EINVAL;
3112 	}
3113 
3114 	if (ret < 0)
3115 		return ret;
3116 	return ret - rdev->constraints->uV_offset;
3117 }
3118 
3119 /**
3120  * regulator_get_voltage - get regulator output voltage
3121  * @regulator: regulator source
3122  *
3123  * This returns the current regulator voltage in uV.
3124  *
3125  * NOTE: If the regulator is disabled it will return the voltage value. This
3126  * function should not be used to determine regulator state.
3127  */
regulator_get_voltage(struct regulator * regulator)3128 int regulator_get_voltage(struct regulator *regulator)
3129 {
3130 	int ret;
3131 
3132 	regulator_lock_supply(regulator->rdev);
3133 
3134 	ret = _regulator_get_voltage(regulator->rdev);
3135 
3136 	regulator_unlock_supply(regulator->rdev);
3137 
3138 	return ret;
3139 }
3140 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3141 
3142 /**
3143  * regulator_set_current_limit - set regulator output current limit
3144  * @regulator: regulator source
3145  * @min_uA: Minimum supported current in uA
3146  * @max_uA: Maximum supported current in uA
3147  *
3148  * Sets current sink to the desired output current. This can be set during
3149  * any regulator state. IOW, regulator can be disabled or enabled.
3150  *
3151  * If the regulator is enabled then the current will change to the new value
3152  * immediately otherwise if the regulator is disabled the regulator will
3153  * output at the new current when enabled.
3154  *
3155  * NOTE: Regulator system constraints must be set for this regulator before
3156  * calling this function otherwise this call will fail.
3157  */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)3158 int regulator_set_current_limit(struct regulator *regulator,
3159 			       int min_uA, int max_uA)
3160 {
3161 	struct regulator_dev *rdev = regulator->rdev;
3162 	int ret;
3163 
3164 	mutex_lock(&rdev->mutex);
3165 
3166 	/* sanity check */
3167 	if (!rdev->desc->ops->set_current_limit) {
3168 		ret = -EINVAL;
3169 		goto out;
3170 	}
3171 
3172 	/* constraints check */
3173 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3174 	if (ret < 0)
3175 		goto out;
3176 
3177 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3178 out:
3179 	mutex_unlock(&rdev->mutex);
3180 	return ret;
3181 }
3182 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3183 
_regulator_get_current_limit(struct regulator_dev * rdev)3184 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3185 {
3186 	int ret;
3187 
3188 	mutex_lock(&rdev->mutex);
3189 
3190 	/* sanity check */
3191 	if (!rdev->desc->ops->get_current_limit) {
3192 		ret = -EINVAL;
3193 		goto out;
3194 	}
3195 
3196 	ret = rdev->desc->ops->get_current_limit(rdev);
3197 out:
3198 	mutex_unlock(&rdev->mutex);
3199 	return ret;
3200 }
3201 
3202 /**
3203  * regulator_get_current_limit - get regulator output current
3204  * @regulator: regulator source
3205  *
3206  * This returns the current supplied by the specified current sink in uA.
3207  *
3208  * NOTE: If the regulator is disabled it will return the current value. This
3209  * function should not be used to determine regulator state.
3210  */
regulator_get_current_limit(struct regulator * regulator)3211 int regulator_get_current_limit(struct regulator *regulator)
3212 {
3213 	return _regulator_get_current_limit(regulator->rdev);
3214 }
3215 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3216 
3217 /**
3218  * regulator_set_mode - set regulator operating mode
3219  * @regulator: regulator source
3220  * @mode: operating mode - one of the REGULATOR_MODE constants
3221  *
3222  * Set regulator operating mode to increase regulator efficiency or improve
3223  * regulation performance.
3224  *
3225  * NOTE: Regulator system constraints must be set for this regulator before
3226  * calling this function otherwise this call will fail.
3227  */
regulator_set_mode(struct regulator * regulator,unsigned int mode)3228 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3229 {
3230 	struct regulator_dev *rdev = regulator->rdev;
3231 	int ret;
3232 	int regulator_curr_mode;
3233 
3234 	mutex_lock(&rdev->mutex);
3235 
3236 	/* sanity check */
3237 	if (!rdev->desc->ops->set_mode) {
3238 		ret = -EINVAL;
3239 		goto out;
3240 	}
3241 
3242 	/* return if the same mode is requested */
3243 	if (rdev->desc->ops->get_mode) {
3244 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3245 		if (regulator_curr_mode == mode) {
3246 			ret = 0;
3247 			goto out;
3248 		}
3249 	}
3250 
3251 	/* constraints check */
3252 	ret = regulator_mode_constrain(rdev, &mode);
3253 	if (ret < 0)
3254 		goto out;
3255 
3256 	ret = rdev->desc->ops->set_mode(rdev, mode);
3257 out:
3258 	mutex_unlock(&rdev->mutex);
3259 	return ret;
3260 }
3261 EXPORT_SYMBOL_GPL(regulator_set_mode);
3262 
_regulator_get_mode(struct regulator_dev * rdev)3263 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3264 {
3265 	int ret;
3266 
3267 	mutex_lock(&rdev->mutex);
3268 
3269 	/* sanity check */
3270 	if (!rdev->desc->ops->get_mode) {
3271 		ret = -EINVAL;
3272 		goto out;
3273 	}
3274 
3275 	ret = rdev->desc->ops->get_mode(rdev);
3276 out:
3277 	mutex_unlock(&rdev->mutex);
3278 	return ret;
3279 }
3280 
3281 /**
3282  * regulator_get_mode - get regulator operating mode
3283  * @regulator: regulator source
3284  *
3285  * Get the current regulator operating mode.
3286  */
regulator_get_mode(struct regulator * regulator)3287 unsigned int regulator_get_mode(struct regulator *regulator)
3288 {
3289 	return _regulator_get_mode(regulator->rdev);
3290 }
3291 EXPORT_SYMBOL_GPL(regulator_get_mode);
3292 
3293 /**
3294  * regulator_set_load - set regulator load
3295  * @regulator: regulator source
3296  * @uA_load: load current
3297  *
3298  * Notifies the regulator core of a new device load. This is then used by
3299  * DRMS (if enabled by constraints) to set the most efficient regulator
3300  * operating mode for the new regulator loading.
3301  *
3302  * Consumer devices notify their supply regulator of the maximum power
3303  * they will require (can be taken from device datasheet in the power
3304  * consumption tables) when they change operational status and hence power
3305  * state. Examples of operational state changes that can affect power
3306  * consumption are :-
3307  *
3308  *    o Device is opened / closed.
3309  *    o Device I/O is about to begin or has just finished.
3310  *    o Device is idling in between work.
3311  *
3312  * This information is also exported via sysfs to userspace.
3313  *
3314  * DRMS will sum the total requested load on the regulator and change
3315  * to the most efficient operating mode if platform constraints allow.
3316  *
3317  * On error a negative errno is returned.
3318  */
regulator_set_load(struct regulator * regulator,int uA_load)3319 int regulator_set_load(struct regulator *regulator, int uA_load)
3320 {
3321 	struct regulator_dev *rdev = regulator->rdev;
3322 	int ret;
3323 
3324 	mutex_lock(&rdev->mutex);
3325 	regulator->uA_load = uA_load;
3326 	ret = drms_uA_update(rdev);
3327 	mutex_unlock(&rdev->mutex);
3328 
3329 	return ret;
3330 }
3331 EXPORT_SYMBOL_GPL(regulator_set_load);
3332 
3333 /**
3334  * regulator_allow_bypass - allow the regulator to go into bypass mode
3335  *
3336  * @regulator: Regulator to configure
3337  * @enable: enable or disable bypass mode
3338  *
3339  * Allow the regulator to go into bypass mode if all other consumers
3340  * for the regulator also enable bypass mode and the machine
3341  * constraints allow this.  Bypass mode means that the regulator is
3342  * simply passing the input directly to the output with no regulation.
3343  */
regulator_allow_bypass(struct regulator * regulator,bool enable)3344 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3345 {
3346 	struct regulator_dev *rdev = regulator->rdev;
3347 	int ret = 0;
3348 
3349 	if (!rdev->desc->ops->set_bypass)
3350 		return 0;
3351 
3352 	if (rdev->constraints &&
3353 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3354 		return 0;
3355 
3356 	mutex_lock(&rdev->mutex);
3357 
3358 	if (enable && !regulator->bypass) {
3359 		rdev->bypass_count++;
3360 
3361 		if (rdev->bypass_count == rdev->open_count) {
3362 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3363 			if (ret != 0)
3364 				rdev->bypass_count--;
3365 		}
3366 
3367 	} else if (!enable && regulator->bypass) {
3368 		rdev->bypass_count--;
3369 
3370 		if (rdev->bypass_count != rdev->open_count) {
3371 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3372 			if (ret != 0)
3373 				rdev->bypass_count++;
3374 		}
3375 	}
3376 
3377 	if (ret == 0)
3378 		regulator->bypass = enable;
3379 
3380 	mutex_unlock(&rdev->mutex);
3381 
3382 	return ret;
3383 }
3384 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3385 
3386 /**
3387  * regulator_register_notifier - register regulator event notifier
3388  * @regulator: regulator source
3389  * @nb: notifier block
3390  *
3391  * Register notifier block to receive regulator events.
3392  */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)3393 int regulator_register_notifier(struct regulator *regulator,
3394 			      struct notifier_block *nb)
3395 {
3396 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3397 						nb);
3398 }
3399 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3400 
3401 /**
3402  * regulator_unregister_notifier - unregister regulator event notifier
3403  * @regulator: regulator source
3404  * @nb: notifier block
3405  *
3406  * Unregister regulator event notifier block.
3407  */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)3408 int regulator_unregister_notifier(struct regulator *regulator,
3409 				struct notifier_block *nb)
3410 {
3411 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3412 						  nb);
3413 }
3414 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3415 
3416 /* notify regulator consumers and downstream regulator consumers.
3417  * Note mutex must be held by caller.
3418  */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3419 static int _notifier_call_chain(struct regulator_dev *rdev,
3420 				  unsigned long event, void *data)
3421 {
3422 	/* call rdev chain first */
3423 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3424 }
3425 
3426 /**
3427  * regulator_bulk_get - get multiple regulator consumers
3428  *
3429  * @dev:           Device to supply
3430  * @num_consumers: Number of consumers to register
3431  * @consumers:     Configuration of consumers; clients are stored here.
3432  *
3433  * @return 0 on success, an errno on failure.
3434  *
3435  * This helper function allows drivers to get several regulator
3436  * consumers in one operation.  If any of the regulators cannot be
3437  * acquired then any regulators that were allocated will be freed
3438  * before returning to the caller.
3439  */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)3440 int regulator_bulk_get(struct device *dev, int num_consumers,
3441 		       struct regulator_bulk_data *consumers)
3442 {
3443 	int i;
3444 	int ret;
3445 
3446 	for (i = 0; i < num_consumers; i++)
3447 		consumers[i].consumer = NULL;
3448 
3449 	for (i = 0; i < num_consumers; i++) {
3450 		consumers[i].consumer = regulator_get(dev,
3451 						      consumers[i].supply);
3452 		if (IS_ERR(consumers[i].consumer)) {
3453 			ret = PTR_ERR(consumers[i].consumer);
3454 			dev_err(dev, "Failed to get supply '%s': %d\n",
3455 				consumers[i].supply, ret);
3456 			consumers[i].consumer = NULL;
3457 			goto err;
3458 		}
3459 	}
3460 
3461 	return 0;
3462 
3463 err:
3464 	while (--i >= 0)
3465 		regulator_put(consumers[i].consumer);
3466 
3467 	return ret;
3468 }
3469 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3470 
regulator_bulk_enable_async(void * data,async_cookie_t cookie)3471 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3472 {
3473 	struct regulator_bulk_data *bulk = data;
3474 
3475 	bulk->ret = regulator_enable(bulk->consumer);
3476 }
3477 
3478 /**
3479  * regulator_bulk_enable - enable multiple regulator consumers
3480  *
3481  * @num_consumers: Number of consumers
3482  * @consumers:     Consumer data; clients are stored here.
3483  * @return         0 on success, an errno on failure
3484  *
3485  * This convenience API allows consumers to enable multiple regulator
3486  * clients in a single API call.  If any consumers cannot be enabled
3487  * then any others that were enabled will be disabled again prior to
3488  * return.
3489  */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)3490 int regulator_bulk_enable(int num_consumers,
3491 			  struct regulator_bulk_data *consumers)
3492 {
3493 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3494 	int i;
3495 	int ret = 0;
3496 
3497 	for (i = 0; i < num_consumers; i++) {
3498 		if (consumers[i].consumer->always_on)
3499 			consumers[i].ret = 0;
3500 		else
3501 			async_schedule_domain(regulator_bulk_enable_async,
3502 					      &consumers[i], &async_domain);
3503 	}
3504 
3505 	async_synchronize_full_domain(&async_domain);
3506 
3507 	/* If any consumer failed we need to unwind any that succeeded */
3508 	for (i = 0; i < num_consumers; i++) {
3509 		if (consumers[i].ret != 0) {
3510 			ret = consumers[i].ret;
3511 			goto err;
3512 		}
3513 	}
3514 
3515 	return 0;
3516 
3517 err:
3518 	for (i = 0; i < num_consumers; i++) {
3519 		if (consumers[i].ret < 0)
3520 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3521 			       consumers[i].ret);
3522 		else
3523 			regulator_disable(consumers[i].consumer);
3524 	}
3525 
3526 	return ret;
3527 }
3528 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3529 
3530 /**
3531  * regulator_bulk_disable - disable multiple regulator consumers
3532  *
3533  * @num_consumers: Number of consumers
3534  * @consumers:     Consumer data; clients are stored here.
3535  * @return         0 on success, an errno on failure
3536  *
3537  * This convenience API allows consumers to disable multiple regulator
3538  * clients in a single API call.  If any consumers cannot be disabled
3539  * then any others that were disabled will be enabled again prior to
3540  * return.
3541  */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)3542 int regulator_bulk_disable(int num_consumers,
3543 			   struct regulator_bulk_data *consumers)
3544 {
3545 	int i;
3546 	int ret, r;
3547 
3548 	for (i = num_consumers - 1; i >= 0; --i) {
3549 		ret = regulator_disable(consumers[i].consumer);
3550 		if (ret != 0)
3551 			goto err;
3552 	}
3553 
3554 	return 0;
3555 
3556 err:
3557 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3558 	for (++i; i < num_consumers; ++i) {
3559 		r = regulator_enable(consumers[i].consumer);
3560 		if (r != 0)
3561 			pr_err("Failed to reename %s: %d\n",
3562 			       consumers[i].supply, r);
3563 	}
3564 
3565 	return ret;
3566 }
3567 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3568 
3569 /**
3570  * regulator_bulk_force_disable - force disable multiple regulator consumers
3571  *
3572  * @num_consumers: Number of consumers
3573  * @consumers:     Consumer data; clients are stored here.
3574  * @return         0 on success, an errno on failure
3575  *
3576  * This convenience API allows consumers to forcibly disable multiple regulator
3577  * clients in a single API call.
3578  * NOTE: This should be used for situations when device damage will
3579  * likely occur if the regulators are not disabled (e.g. over temp).
3580  * Although regulator_force_disable function call for some consumers can
3581  * return error numbers, the function is called for all consumers.
3582  */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)3583 int regulator_bulk_force_disable(int num_consumers,
3584 			   struct regulator_bulk_data *consumers)
3585 {
3586 	int i;
3587 	int ret;
3588 
3589 	for (i = 0; i < num_consumers; i++)
3590 		consumers[i].ret =
3591 			    regulator_force_disable(consumers[i].consumer);
3592 
3593 	for (i = 0; i < num_consumers; i++) {
3594 		if (consumers[i].ret != 0) {
3595 			ret = consumers[i].ret;
3596 			goto out;
3597 		}
3598 	}
3599 
3600 	return 0;
3601 out:
3602 	return ret;
3603 }
3604 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3605 
3606 /**
3607  * regulator_bulk_free - free multiple regulator consumers
3608  *
3609  * @num_consumers: Number of consumers
3610  * @consumers:     Consumer data; clients are stored here.
3611  *
3612  * This convenience API allows consumers to free multiple regulator
3613  * clients in a single API call.
3614  */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)3615 void regulator_bulk_free(int num_consumers,
3616 			 struct regulator_bulk_data *consumers)
3617 {
3618 	int i;
3619 
3620 	for (i = 0; i < num_consumers; i++) {
3621 		regulator_put(consumers[i].consumer);
3622 		consumers[i].consumer = NULL;
3623 	}
3624 }
3625 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3626 
3627 /**
3628  * regulator_notifier_call_chain - call regulator event notifier
3629  * @rdev: regulator source
3630  * @event: notifier block
3631  * @data: callback-specific data.
3632  *
3633  * Called by regulator drivers to notify clients a regulator event has
3634  * occurred. We also notify regulator clients downstream.
3635  * Note lock must be held by caller.
3636  */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3637 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3638 				  unsigned long event, void *data)
3639 {
3640 	lockdep_assert_held_once(&rdev->mutex);
3641 
3642 	_notifier_call_chain(rdev, event, data);
3643 	return NOTIFY_DONE;
3644 
3645 }
3646 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3647 
3648 /**
3649  * regulator_mode_to_status - convert a regulator mode into a status
3650  *
3651  * @mode: Mode to convert
3652  *
3653  * Convert a regulator mode into a status.
3654  */
regulator_mode_to_status(unsigned int mode)3655 int regulator_mode_to_status(unsigned int mode)
3656 {
3657 	switch (mode) {
3658 	case REGULATOR_MODE_FAST:
3659 		return REGULATOR_STATUS_FAST;
3660 	case REGULATOR_MODE_NORMAL:
3661 		return REGULATOR_STATUS_NORMAL;
3662 	case REGULATOR_MODE_IDLE:
3663 		return REGULATOR_STATUS_IDLE;
3664 	case REGULATOR_MODE_STANDBY:
3665 		return REGULATOR_STATUS_STANDBY;
3666 	default:
3667 		return REGULATOR_STATUS_UNDEFINED;
3668 	}
3669 }
3670 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3671 
3672 static struct attribute *regulator_dev_attrs[] = {
3673 	&dev_attr_name.attr,
3674 	&dev_attr_num_users.attr,
3675 	&dev_attr_type.attr,
3676 	&dev_attr_microvolts.attr,
3677 	&dev_attr_microamps.attr,
3678 	&dev_attr_opmode.attr,
3679 	&dev_attr_state.attr,
3680 	&dev_attr_status.attr,
3681 	&dev_attr_bypass.attr,
3682 	&dev_attr_requested_microamps.attr,
3683 	&dev_attr_min_microvolts.attr,
3684 	&dev_attr_max_microvolts.attr,
3685 	&dev_attr_min_microamps.attr,
3686 	&dev_attr_max_microamps.attr,
3687 	&dev_attr_suspend_standby_state.attr,
3688 	&dev_attr_suspend_mem_state.attr,
3689 	&dev_attr_suspend_disk_state.attr,
3690 	&dev_attr_suspend_standby_microvolts.attr,
3691 	&dev_attr_suspend_mem_microvolts.attr,
3692 	&dev_attr_suspend_disk_microvolts.attr,
3693 	&dev_attr_suspend_standby_mode.attr,
3694 	&dev_attr_suspend_mem_mode.attr,
3695 	&dev_attr_suspend_disk_mode.attr,
3696 	NULL
3697 };
3698 
3699 /*
3700  * To avoid cluttering sysfs (and memory) with useless state, only
3701  * create attributes that can be meaningfully displayed.
3702  */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)3703 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3704 					 struct attribute *attr, int idx)
3705 {
3706 	struct device *dev = kobj_to_dev(kobj);
3707 	struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3708 	const struct regulator_ops *ops = rdev->desc->ops;
3709 	umode_t mode = attr->mode;
3710 
3711 	/* these three are always present */
3712 	if (attr == &dev_attr_name.attr ||
3713 	    attr == &dev_attr_num_users.attr ||
3714 	    attr == &dev_attr_type.attr)
3715 		return mode;
3716 
3717 	/* some attributes need specific methods to be displayed */
3718 	if (attr == &dev_attr_microvolts.attr) {
3719 		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3720 		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3721 		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3722 		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3723 			return mode;
3724 		return 0;
3725 	}
3726 
3727 	if (attr == &dev_attr_microamps.attr)
3728 		return ops->get_current_limit ? mode : 0;
3729 
3730 	if (attr == &dev_attr_opmode.attr)
3731 		return ops->get_mode ? mode : 0;
3732 
3733 	if (attr == &dev_attr_state.attr)
3734 		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3735 
3736 	if (attr == &dev_attr_status.attr)
3737 		return ops->get_status ? mode : 0;
3738 
3739 	if (attr == &dev_attr_bypass.attr)
3740 		return ops->get_bypass ? mode : 0;
3741 
3742 	/* some attributes are type-specific */
3743 	if (attr == &dev_attr_requested_microamps.attr)
3744 		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3745 
3746 	/* constraints need specific supporting methods */
3747 	if (attr == &dev_attr_min_microvolts.attr ||
3748 	    attr == &dev_attr_max_microvolts.attr)
3749 		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3750 
3751 	if (attr == &dev_attr_min_microamps.attr ||
3752 	    attr == &dev_attr_max_microamps.attr)
3753 		return ops->set_current_limit ? mode : 0;
3754 
3755 	if (attr == &dev_attr_suspend_standby_state.attr ||
3756 	    attr == &dev_attr_suspend_mem_state.attr ||
3757 	    attr == &dev_attr_suspend_disk_state.attr)
3758 		return mode;
3759 
3760 	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3761 	    attr == &dev_attr_suspend_mem_microvolts.attr ||
3762 	    attr == &dev_attr_suspend_disk_microvolts.attr)
3763 		return ops->set_suspend_voltage ? mode : 0;
3764 
3765 	if (attr == &dev_attr_suspend_standby_mode.attr ||
3766 	    attr == &dev_attr_suspend_mem_mode.attr ||
3767 	    attr == &dev_attr_suspend_disk_mode.attr)
3768 		return ops->set_suspend_mode ? mode : 0;
3769 
3770 	return mode;
3771 }
3772 
3773 static const struct attribute_group regulator_dev_group = {
3774 	.attrs = regulator_dev_attrs,
3775 	.is_visible = regulator_attr_is_visible,
3776 };
3777 
3778 static const struct attribute_group *regulator_dev_groups[] = {
3779 	&regulator_dev_group,
3780 	NULL
3781 };
3782 
regulator_dev_release(struct device * dev)3783 static void regulator_dev_release(struct device *dev)
3784 {
3785 	struct regulator_dev *rdev = dev_get_drvdata(dev);
3786 
3787 	kfree(rdev->constraints);
3788 	of_node_put(rdev->dev.of_node);
3789 	kfree(rdev);
3790 }
3791 
3792 static struct class regulator_class = {
3793 	.name = "regulator",
3794 	.dev_release = regulator_dev_release,
3795 	.dev_groups = regulator_dev_groups,
3796 };
3797 
rdev_init_debugfs(struct regulator_dev * rdev)3798 static void rdev_init_debugfs(struct regulator_dev *rdev)
3799 {
3800 	struct device *parent = rdev->dev.parent;
3801 	const char *rname = rdev_get_name(rdev);
3802 	char name[NAME_MAX];
3803 
3804 	/* Avoid duplicate debugfs directory names */
3805 	if (parent && rname == rdev->desc->name) {
3806 		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3807 			 rname);
3808 		rname = name;
3809 	}
3810 
3811 	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3812 	if (!rdev->debugfs) {
3813 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3814 		return;
3815 	}
3816 
3817 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3818 			   &rdev->use_count);
3819 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3820 			   &rdev->open_count);
3821 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3822 			   &rdev->bypass_count);
3823 }
3824 
3825 /**
3826  * regulator_register - register regulator
3827  * @regulator_desc: regulator to register
3828  * @cfg: runtime configuration for regulator
3829  *
3830  * Called by regulator drivers to register a regulator.
3831  * Returns a valid pointer to struct regulator_dev on success
3832  * or an ERR_PTR() on error.
3833  */
3834 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)3835 regulator_register(const struct regulator_desc *regulator_desc,
3836 		   const struct regulator_config *cfg)
3837 {
3838 	const struct regulation_constraints *constraints = NULL;
3839 	const struct regulator_init_data *init_data;
3840 	struct regulator_config *config = NULL;
3841 	static atomic_t regulator_no = ATOMIC_INIT(-1);
3842 	struct regulator_dev *rdev;
3843 	struct device *dev;
3844 	int ret, i;
3845 
3846 	if (regulator_desc == NULL || cfg == NULL)
3847 		return ERR_PTR(-EINVAL);
3848 
3849 	dev = cfg->dev;
3850 	WARN_ON(!dev);
3851 
3852 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3853 		return ERR_PTR(-EINVAL);
3854 
3855 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3856 	    regulator_desc->type != REGULATOR_CURRENT)
3857 		return ERR_PTR(-EINVAL);
3858 
3859 	/* Only one of each should be implemented */
3860 	WARN_ON(regulator_desc->ops->get_voltage &&
3861 		regulator_desc->ops->get_voltage_sel);
3862 	WARN_ON(regulator_desc->ops->set_voltage &&
3863 		regulator_desc->ops->set_voltage_sel);
3864 
3865 	/* If we're using selectors we must implement list_voltage. */
3866 	if (regulator_desc->ops->get_voltage_sel &&
3867 	    !regulator_desc->ops->list_voltage) {
3868 		return ERR_PTR(-EINVAL);
3869 	}
3870 	if (regulator_desc->ops->set_voltage_sel &&
3871 	    !regulator_desc->ops->list_voltage) {
3872 		return ERR_PTR(-EINVAL);
3873 	}
3874 
3875 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3876 	if (rdev == NULL)
3877 		return ERR_PTR(-ENOMEM);
3878 
3879 	/*
3880 	 * Duplicate the config so the driver could override it after
3881 	 * parsing init data.
3882 	 */
3883 	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3884 	if (config == NULL) {
3885 		kfree(rdev);
3886 		return ERR_PTR(-ENOMEM);
3887 	}
3888 
3889 	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3890 					       &rdev->dev.of_node);
3891 	if (!init_data) {
3892 		init_data = config->init_data;
3893 		rdev->dev.of_node = of_node_get(config->of_node);
3894 	}
3895 
3896 	mutex_lock(&regulator_list_mutex);
3897 
3898 	mutex_init(&rdev->mutex);
3899 	rdev->reg_data = config->driver_data;
3900 	rdev->owner = regulator_desc->owner;
3901 	rdev->desc = regulator_desc;
3902 	if (config->regmap)
3903 		rdev->regmap = config->regmap;
3904 	else if (dev_get_regmap(dev, NULL))
3905 		rdev->regmap = dev_get_regmap(dev, NULL);
3906 	else if (dev->parent)
3907 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3908 	INIT_LIST_HEAD(&rdev->consumer_list);
3909 	INIT_LIST_HEAD(&rdev->list);
3910 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3911 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3912 
3913 	/* preform any regulator specific init */
3914 	if (init_data && init_data->regulator_init) {
3915 		ret = init_data->regulator_init(rdev->reg_data);
3916 		if (ret < 0)
3917 			goto clean;
3918 	}
3919 
3920 	/* register with sysfs */
3921 	rdev->dev.class = &regulator_class;
3922 	rdev->dev.parent = dev;
3923 	dev_set_name(&rdev->dev, "regulator.%lu",
3924 		    (unsigned long) atomic_inc_return(&regulator_no));
3925 	ret = device_register(&rdev->dev);
3926 	if (ret != 0) {
3927 		put_device(&rdev->dev);
3928 		goto clean;
3929 	}
3930 
3931 	dev_set_drvdata(&rdev->dev, rdev);
3932 
3933 	if ((config->ena_gpio || config->ena_gpio_initialized) &&
3934 	    gpio_is_valid(config->ena_gpio)) {
3935 		ret = regulator_ena_gpio_request(rdev, config);
3936 		if (ret != 0) {
3937 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3938 				 config->ena_gpio, ret);
3939 			goto wash;
3940 		}
3941 	}
3942 
3943 	/* set regulator constraints */
3944 	if (init_data)
3945 		constraints = &init_data->constraints;
3946 
3947 	ret = set_machine_constraints(rdev, constraints);
3948 	if (ret < 0)
3949 		goto scrub;
3950 
3951 	if (init_data && init_data->supply_regulator)
3952 		rdev->supply_name = init_data->supply_regulator;
3953 	else if (regulator_desc->supply_name)
3954 		rdev->supply_name = regulator_desc->supply_name;
3955 
3956 	/* add consumers devices */
3957 	if (init_data) {
3958 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3959 			ret = set_consumer_device_supply(rdev,
3960 				init_data->consumer_supplies[i].dev_name,
3961 				init_data->consumer_supplies[i].supply);
3962 			if (ret < 0) {
3963 				dev_err(dev, "Failed to set supply %s\n",
3964 					init_data->consumer_supplies[i].supply);
3965 				goto unset_supplies;
3966 			}
3967 		}
3968 	}
3969 
3970 	rdev_init_debugfs(rdev);
3971 out:
3972 	mutex_unlock(&regulator_list_mutex);
3973 	kfree(config);
3974 	return rdev;
3975 
3976 unset_supplies:
3977 	unset_regulator_supplies(rdev);
3978 
3979 scrub:
3980 	regulator_ena_gpio_free(rdev);
3981 
3982 wash:
3983 	device_unregister(&rdev->dev);
3984 	/* device core frees rdev */
3985 	rdev = ERR_PTR(ret);
3986 	goto out;
3987 
3988 clean:
3989 	kfree(rdev);
3990 	rdev = ERR_PTR(ret);
3991 	goto out;
3992 }
3993 EXPORT_SYMBOL_GPL(regulator_register);
3994 
3995 /**
3996  * regulator_unregister - unregister regulator
3997  * @rdev: regulator to unregister
3998  *
3999  * Called by regulator drivers to unregister a regulator.
4000  */
regulator_unregister(struct regulator_dev * rdev)4001 void regulator_unregister(struct regulator_dev *rdev)
4002 {
4003 	if (rdev == NULL)
4004 		return;
4005 
4006 	if (rdev->supply) {
4007 		while (rdev->use_count--)
4008 			regulator_disable(rdev->supply);
4009 		regulator_put(rdev->supply);
4010 	}
4011 	mutex_lock(&regulator_list_mutex);
4012 	debugfs_remove_recursive(rdev->debugfs);
4013 	flush_work(&rdev->disable_work.work);
4014 	WARN_ON(rdev->open_count);
4015 	unset_regulator_supplies(rdev);
4016 	list_del(&rdev->list);
4017 	mutex_unlock(&regulator_list_mutex);
4018 	regulator_ena_gpio_free(rdev);
4019 	device_unregister(&rdev->dev);
4020 }
4021 EXPORT_SYMBOL_GPL(regulator_unregister);
4022 
_regulator_suspend_prepare(struct device * dev,void * data)4023 static int _regulator_suspend_prepare(struct device *dev, void *data)
4024 {
4025 	struct regulator_dev *rdev = dev_to_rdev(dev);
4026 	const suspend_state_t *state = data;
4027 	int ret;
4028 
4029 	mutex_lock(&rdev->mutex);
4030 	ret = suspend_prepare(rdev, *state);
4031 	mutex_unlock(&rdev->mutex);
4032 
4033 	return ret;
4034 }
4035 
4036 /**
4037  * regulator_suspend_prepare - prepare regulators for system wide suspend
4038  * @state: system suspend state
4039  *
4040  * Configure each regulator with it's suspend operating parameters for state.
4041  * This will usually be called by machine suspend code prior to supending.
4042  */
regulator_suspend_prepare(suspend_state_t state)4043 int regulator_suspend_prepare(suspend_state_t state)
4044 {
4045 	/* ON is handled by regulator active state */
4046 	if (state == PM_SUSPEND_ON)
4047 		return -EINVAL;
4048 
4049 	return class_for_each_device(&regulator_class, NULL, &state,
4050 				     _regulator_suspend_prepare);
4051 }
4052 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4053 
_regulator_suspend_finish(struct device * dev,void * data)4054 static int _regulator_suspend_finish(struct device *dev, void *data)
4055 {
4056 	struct regulator_dev *rdev = dev_to_rdev(dev);
4057 	int ret;
4058 
4059 	mutex_lock(&rdev->mutex);
4060 	if (rdev->use_count > 0  || rdev->constraints->always_on) {
4061 		if (!_regulator_is_enabled(rdev)) {
4062 			ret = _regulator_do_enable(rdev);
4063 			if (ret)
4064 				dev_err(dev,
4065 					"Failed to resume regulator %d\n",
4066 					ret);
4067 		}
4068 	} else {
4069 		if (!have_full_constraints())
4070 			goto unlock;
4071 		if (!_regulator_is_enabled(rdev))
4072 			goto unlock;
4073 
4074 		ret = _regulator_do_disable(rdev);
4075 		if (ret)
4076 			dev_err(dev, "Failed to suspend regulator %d\n", ret);
4077 	}
4078 unlock:
4079 	mutex_unlock(&rdev->mutex);
4080 
4081 	/* Keep processing regulators in spite of any errors */
4082 	return 0;
4083 }
4084 
4085 /**
4086  * regulator_suspend_finish - resume regulators from system wide suspend
4087  *
4088  * Turn on regulators that might be turned off by regulator_suspend_prepare
4089  * and that should be turned on according to the regulators properties.
4090  */
regulator_suspend_finish(void)4091 int regulator_suspend_finish(void)
4092 {
4093 	return class_for_each_device(&regulator_class, NULL, NULL,
4094 				     _regulator_suspend_finish);
4095 }
4096 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4097 
4098 /**
4099  * regulator_has_full_constraints - the system has fully specified constraints
4100  *
4101  * Calling this function will cause the regulator API to disable all
4102  * regulators which have a zero use count and don't have an always_on
4103  * constraint in a late_initcall.
4104  *
4105  * The intention is that this will become the default behaviour in a
4106  * future kernel release so users are encouraged to use this facility
4107  * now.
4108  */
regulator_has_full_constraints(void)4109 void regulator_has_full_constraints(void)
4110 {
4111 	has_full_constraints = 1;
4112 }
4113 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4114 
4115 /**
4116  * rdev_get_drvdata - get rdev regulator driver data
4117  * @rdev: regulator
4118  *
4119  * Get rdev regulator driver private data. This call can be used in the
4120  * regulator driver context.
4121  */
rdev_get_drvdata(struct regulator_dev * rdev)4122 void *rdev_get_drvdata(struct regulator_dev *rdev)
4123 {
4124 	return rdev->reg_data;
4125 }
4126 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4127 
4128 /**
4129  * regulator_get_drvdata - get regulator driver data
4130  * @regulator: regulator
4131  *
4132  * Get regulator driver private data. This call can be used in the consumer
4133  * driver context when non API regulator specific functions need to be called.
4134  */
regulator_get_drvdata(struct regulator * regulator)4135 void *regulator_get_drvdata(struct regulator *regulator)
4136 {
4137 	return regulator->rdev->reg_data;
4138 }
4139 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4140 
4141 /**
4142  * regulator_set_drvdata - set regulator driver data
4143  * @regulator: regulator
4144  * @data: data
4145  */
regulator_set_drvdata(struct regulator * regulator,void * data)4146 void regulator_set_drvdata(struct regulator *regulator, void *data)
4147 {
4148 	regulator->rdev->reg_data = data;
4149 }
4150 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4151 
4152 /**
4153  * regulator_get_id - get regulator ID
4154  * @rdev: regulator
4155  */
rdev_get_id(struct regulator_dev * rdev)4156 int rdev_get_id(struct regulator_dev *rdev)
4157 {
4158 	return rdev->desc->id;
4159 }
4160 EXPORT_SYMBOL_GPL(rdev_get_id);
4161 
rdev_get_dev(struct regulator_dev * rdev)4162 struct device *rdev_get_dev(struct regulator_dev *rdev)
4163 {
4164 	return &rdev->dev;
4165 }
4166 EXPORT_SYMBOL_GPL(rdev_get_dev);
4167 
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)4168 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4169 {
4170 	return reg_init_data->driver_data;
4171 }
4172 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4173 
4174 #ifdef CONFIG_DEBUG_FS
supply_map_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)4175 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4176 				    size_t count, loff_t *ppos)
4177 {
4178 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4179 	ssize_t len, ret = 0;
4180 	struct regulator_map *map;
4181 
4182 	if (!buf)
4183 		return -ENOMEM;
4184 
4185 	list_for_each_entry(map, &regulator_map_list, list) {
4186 		len = snprintf(buf + ret, PAGE_SIZE - ret,
4187 			       "%s -> %s.%s\n",
4188 			       rdev_get_name(map->regulator), map->dev_name,
4189 			       map->supply);
4190 		if (len >= 0)
4191 			ret += len;
4192 		if (ret > PAGE_SIZE) {
4193 			ret = PAGE_SIZE;
4194 			break;
4195 		}
4196 	}
4197 
4198 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4199 
4200 	kfree(buf);
4201 
4202 	return ret;
4203 }
4204 #endif
4205 
4206 static const struct file_operations supply_map_fops = {
4207 #ifdef CONFIG_DEBUG_FS
4208 	.read = supply_map_read_file,
4209 	.llseek = default_llseek,
4210 #endif
4211 };
4212 
4213 #ifdef CONFIG_DEBUG_FS
4214 struct summary_data {
4215 	struct seq_file *s;
4216 	struct regulator_dev *parent;
4217 	int level;
4218 };
4219 
4220 static void regulator_summary_show_subtree(struct seq_file *s,
4221 					   struct regulator_dev *rdev,
4222 					   int level);
4223 
regulator_summary_show_children(struct device * dev,void * data)4224 static int regulator_summary_show_children(struct device *dev, void *data)
4225 {
4226 	struct regulator_dev *rdev = dev_to_rdev(dev);
4227 	struct summary_data *summary_data = data;
4228 
4229 	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4230 		regulator_summary_show_subtree(summary_data->s, rdev,
4231 					       summary_data->level + 1);
4232 
4233 	return 0;
4234 }
4235 
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)4236 static void regulator_summary_show_subtree(struct seq_file *s,
4237 					   struct regulator_dev *rdev,
4238 					   int level)
4239 {
4240 	struct regulation_constraints *c;
4241 	struct regulator *consumer;
4242 	struct summary_data summary_data;
4243 
4244 	if (!rdev)
4245 		return;
4246 
4247 	seq_printf(s, "%*s%-*s %3d %4d %6d ",
4248 		   level * 3 + 1, "",
4249 		   30 - level * 3, rdev_get_name(rdev),
4250 		   rdev->use_count, rdev->open_count, rdev->bypass_count);
4251 
4252 	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4253 	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4254 
4255 	c = rdev->constraints;
4256 	if (c) {
4257 		switch (rdev->desc->type) {
4258 		case REGULATOR_VOLTAGE:
4259 			seq_printf(s, "%5dmV %5dmV ",
4260 				   c->min_uV / 1000, c->max_uV / 1000);
4261 			break;
4262 		case REGULATOR_CURRENT:
4263 			seq_printf(s, "%5dmA %5dmA ",
4264 				   c->min_uA / 1000, c->max_uA / 1000);
4265 			break;
4266 		}
4267 	}
4268 
4269 	seq_puts(s, "\n");
4270 
4271 	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4272 		if (consumer->dev && consumer->dev->class == &regulator_class)
4273 			continue;
4274 
4275 		seq_printf(s, "%*s%-*s ",
4276 			   (level + 1) * 3 + 1, "",
4277 			   30 - (level + 1) * 3,
4278 			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4279 
4280 		switch (rdev->desc->type) {
4281 		case REGULATOR_VOLTAGE:
4282 			seq_printf(s, "%37dmV %5dmV",
4283 				   consumer->min_uV / 1000,
4284 				   consumer->max_uV / 1000);
4285 			break;
4286 		case REGULATOR_CURRENT:
4287 			break;
4288 		}
4289 
4290 		seq_puts(s, "\n");
4291 	}
4292 
4293 	summary_data.s = s;
4294 	summary_data.level = level;
4295 	summary_data.parent = rdev;
4296 
4297 	class_for_each_device(&regulator_class, NULL, &summary_data,
4298 			      regulator_summary_show_children);
4299 }
4300 
regulator_summary_show_roots(struct device * dev,void * data)4301 static int regulator_summary_show_roots(struct device *dev, void *data)
4302 {
4303 	struct regulator_dev *rdev = dev_to_rdev(dev);
4304 	struct seq_file *s = data;
4305 
4306 	if (!rdev->supply)
4307 		regulator_summary_show_subtree(s, rdev, 0);
4308 
4309 	return 0;
4310 }
4311 
regulator_summary_show(struct seq_file * s,void * data)4312 static int regulator_summary_show(struct seq_file *s, void *data)
4313 {
4314 	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4315 	seq_puts(s, "-------------------------------------------------------------------------------\n");
4316 
4317 	class_for_each_device(&regulator_class, NULL, s,
4318 			      regulator_summary_show_roots);
4319 
4320 	return 0;
4321 }
4322 
regulator_summary_open(struct inode * inode,struct file * file)4323 static int regulator_summary_open(struct inode *inode, struct file *file)
4324 {
4325 	return single_open(file, regulator_summary_show, inode->i_private);
4326 }
4327 #endif
4328 
4329 static const struct file_operations regulator_summary_fops = {
4330 #ifdef CONFIG_DEBUG_FS
4331 	.open		= regulator_summary_open,
4332 	.read		= seq_read,
4333 	.llseek		= seq_lseek,
4334 	.release	= single_release,
4335 #endif
4336 };
4337 
regulator_init(void)4338 static int __init regulator_init(void)
4339 {
4340 	int ret;
4341 
4342 	ret = class_register(&regulator_class);
4343 
4344 	debugfs_root = debugfs_create_dir("regulator", NULL);
4345 	if (!debugfs_root)
4346 		pr_warn("regulator: Failed to create debugfs directory\n");
4347 
4348 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4349 			    &supply_map_fops);
4350 
4351 	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4352 			    NULL, &regulator_summary_fops);
4353 
4354 	regulator_dummy_init();
4355 
4356 	return ret;
4357 }
4358 
4359 /* init early to allow our consumers to complete system booting */
4360 core_initcall(regulator_init);
4361 
regulator_late_cleanup(struct device * dev,void * data)4362 static int __init regulator_late_cleanup(struct device *dev, void *data)
4363 {
4364 	struct regulator_dev *rdev = dev_to_rdev(dev);
4365 	const struct regulator_ops *ops = rdev->desc->ops;
4366 	struct regulation_constraints *c = rdev->constraints;
4367 	int enabled, ret;
4368 
4369 	if (c && c->always_on)
4370 		return 0;
4371 
4372 	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4373 		return 0;
4374 
4375 	mutex_lock(&rdev->mutex);
4376 
4377 	if (rdev->use_count)
4378 		goto unlock;
4379 
4380 	/* If we can't read the status assume it's on. */
4381 	if (ops->is_enabled)
4382 		enabled = ops->is_enabled(rdev);
4383 	else
4384 		enabled = 1;
4385 
4386 	if (!enabled)
4387 		goto unlock;
4388 
4389 	if (have_full_constraints()) {
4390 		/* We log since this may kill the system if it goes
4391 		 * wrong. */
4392 		rdev_info(rdev, "disabling\n");
4393 		ret = _regulator_do_disable(rdev);
4394 		if (ret != 0)
4395 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4396 	} else {
4397 		/* The intention is that in future we will
4398 		 * assume that full constraints are provided
4399 		 * so warn even if we aren't going to do
4400 		 * anything here.
4401 		 */
4402 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4403 	}
4404 
4405 unlock:
4406 	mutex_unlock(&rdev->mutex);
4407 
4408 	return 0;
4409 }
4410 
regulator_init_complete(void)4411 static int __init regulator_init_complete(void)
4412 {
4413 	/*
4414 	 * Since DT doesn't provide an idiomatic mechanism for
4415 	 * enabling full constraints and since it's much more natural
4416 	 * with DT to provide them just assume that a DT enabled
4417 	 * system has full constraints.
4418 	 */
4419 	if (of_have_populated_dt())
4420 		has_full_constraints = true;
4421 
4422 	/* If we have a full configuration then disable any regulators
4423 	 * we have permission to change the status for and which are
4424 	 * not in use or always_on.  This is effectively the default
4425 	 * for DT and ACPI as they have full constraints.
4426 	 */
4427 	class_for_each_device(&regulator_class, NULL, NULL,
4428 			      regulator_late_cleanup);
4429 
4430 	return 0;
4431 }
4432 late_initcall_sync(regulator_init_complete);
4433