1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/module.h>
34 #include <linux/errno.h>
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/in.h>
38 #include <linux/poll.h>
39 #include <net/sock.h>
40
41 #include "rds.h"
42
43 /* this is just used for stats gathering :/ */
44 static DEFINE_SPINLOCK(rds_sock_lock);
45 static unsigned long rds_sock_count;
46 static LIST_HEAD(rds_sock_list);
47 DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
48
49 /*
50 * This is called as the final descriptor referencing this socket is closed.
51 * We have to unbind the socket so that another socket can be bound to the
52 * address it was using.
53 *
54 * We have to be careful about racing with the incoming path. sock_orphan()
55 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
56 * messages shouldn't be queued.
57 */
rds_release(struct socket * sock)58 static int rds_release(struct socket *sock)
59 {
60 struct sock *sk = sock->sk;
61 struct rds_sock *rs;
62
63 if (!sk)
64 goto out;
65
66 rs = rds_sk_to_rs(sk);
67
68 sock_orphan(sk);
69 /* Note - rds_clear_recv_queue grabs rs_recv_lock, so
70 * that ensures the recv path has completed messing
71 * with the socket. */
72 rds_clear_recv_queue(rs);
73 rds_cong_remove_socket(rs);
74
75 rds_remove_bound(rs);
76
77 rds_send_drop_to(rs, NULL);
78 rds_rdma_drop_keys(rs);
79 rds_notify_queue_get(rs, NULL);
80
81 spin_lock_bh(&rds_sock_lock);
82 list_del_init(&rs->rs_item);
83 rds_sock_count--;
84 spin_unlock_bh(&rds_sock_lock);
85
86 rds_trans_put(rs->rs_transport);
87
88 sock->sk = NULL;
89 sock_put(sk);
90 out:
91 return 0;
92 }
93
94 /*
95 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
96 * _bh() isn't OK here, we're called from interrupt handlers. It's probably OK
97 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
98 * this seems more conservative.
99 * NB - normally, one would use sk_callback_lock for this, but we can
100 * get here from interrupts, whereas the network code grabs sk_callback_lock
101 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
102 */
rds_wake_sk_sleep(struct rds_sock * rs)103 void rds_wake_sk_sleep(struct rds_sock *rs)
104 {
105 unsigned long flags;
106
107 read_lock_irqsave(&rs->rs_recv_lock, flags);
108 __rds_wake_sk_sleep(rds_rs_to_sk(rs));
109 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
110 }
111
rds_getname(struct socket * sock,struct sockaddr * uaddr,int * uaddr_len,int peer)112 static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
113 int *uaddr_len, int peer)
114 {
115 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
116 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
117
118 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
119
120 /* racey, don't care */
121 if (peer) {
122 if (!rs->rs_conn_addr)
123 return -ENOTCONN;
124
125 sin->sin_port = rs->rs_conn_port;
126 sin->sin_addr.s_addr = rs->rs_conn_addr;
127 } else {
128 sin->sin_port = rs->rs_bound_port;
129 sin->sin_addr.s_addr = rs->rs_bound_addr;
130 }
131
132 sin->sin_family = AF_INET;
133
134 *uaddr_len = sizeof(*sin);
135 return 0;
136 }
137
138 /*
139 * RDS' poll is without a doubt the least intuitive part of the interface,
140 * as POLLIN and POLLOUT do not behave entirely as you would expect from
141 * a network protocol.
142 *
143 * POLLIN is asserted if
144 * - there is data on the receive queue.
145 * - to signal that a previously congested destination may have become
146 * uncongested
147 * - A notification has been queued to the socket (this can be a congestion
148 * update, or a RDMA completion).
149 *
150 * POLLOUT is asserted if there is room on the send queue. This does not mean
151 * however, that the next sendmsg() call will succeed. If the application tries
152 * to send to a congested destination, the system call may still fail (and
153 * return ENOBUFS).
154 */
rds_poll(struct file * file,struct socket * sock,poll_table * wait)155 static unsigned int rds_poll(struct file *file, struct socket *sock,
156 poll_table *wait)
157 {
158 struct sock *sk = sock->sk;
159 struct rds_sock *rs = rds_sk_to_rs(sk);
160 unsigned int mask = 0;
161 unsigned long flags;
162
163 poll_wait(file, sk_sleep(sk), wait);
164
165 if (rs->rs_seen_congestion)
166 poll_wait(file, &rds_poll_waitq, wait);
167
168 read_lock_irqsave(&rs->rs_recv_lock, flags);
169 if (!rs->rs_cong_monitor) {
170 /* When a congestion map was updated, we signal POLLIN for
171 * "historical" reasons. Applications can also poll for
172 * WRBAND instead. */
173 if (rds_cong_updated_since(&rs->rs_cong_track))
174 mask |= (POLLIN | POLLRDNORM | POLLWRBAND);
175 } else {
176 spin_lock(&rs->rs_lock);
177 if (rs->rs_cong_notify)
178 mask |= (POLLIN | POLLRDNORM);
179 spin_unlock(&rs->rs_lock);
180 }
181 if (!list_empty(&rs->rs_recv_queue) ||
182 !list_empty(&rs->rs_notify_queue))
183 mask |= (POLLIN | POLLRDNORM);
184 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
185 mask |= (POLLOUT | POLLWRNORM);
186 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
187
188 /* clear state any time we wake a seen-congested socket */
189 if (mask)
190 rs->rs_seen_congestion = 0;
191
192 return mask;
193 }
194
rds_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)195 static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
196 {
197 return -ENOIOCTLCMD;
198 }
199
rds_cancel_sent_to(struct rds_sock * rs,char __user * optval,int len)200 static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
201 int len)
202 {
203 struct sockaddr_in sin;
204 int ret = 0;
205
206 /* racing with another thread binding seems ok here */
207 if (rs->rs_bound_addr == 0) {
208 ret = -ENOTCONN; /* XXX not a great errno */
209 goto out;
210 }
211
212 if (len < sizeof(struct sockaddr_in)) {
213 ret = -EINVAL;
214 goto out;
215 }
216
217 if (copy_from_user(&sin, optval, sizeof(sin))) {
218 ret = -EFAULT;
219 goto out;
220 }
221
222 rds_send_drop_to(rs, &sin);
223 out:
224 return ret;
225 }
226
rds_set_bool_option(unsigned char * optvar,char __user * optval,int optlen)227 static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
228 int optlen)
229 {
230 int value;
231
232 if (optlen < sizeof(int))
233 return -EINVAL;
234 if (get_user(value, (int __user *) optval))
235 return -EFAULT;
236 *optvar = !!value;
237 return 0;
238 }
239
rds_cong_monitor(struct rds_sock * rs,char __user * optval,int optlen)240 static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
241 int optlen)
242 {
243 int ret;
244
245 ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
246 if (ret == 0) {
247 if (rs->rs_cong_monitor) {
248 rds_cong_add_socket(rs);
249 } else {
250 rds_cong_remove_socket(rs);
251 rs->rs_cong_mask = 0;
252 rs->rs_cong_notify = 0;
253 }
254 }
255 return ret;
256 }
257
rds_set_transport(struct rds_sock * rs,char __user * optval,int optlen)258 static int rds_set_transport(struct rds_sock *rs, char __user *optval,
259 int optlen)
260 {
261 int t_type;
262
263 if (rs->rs_transport)
264 return -EOPNOTSUPP; /* previously attached to transport */
265
266 if (optlen != sizeof(int))
267 return -EINVAL;
268
269 if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type)))
270 return -EFAULT;
271
272 if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
273 return -EINVAL;
274
275 rs->rs_transport = rds_trans_get(t_type);
276
277 return rs->rs_transport ? 0 : -ENOPROTOOPT;
278 }
279
rds_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)280 static int rds_setsockopt(struct socket *sock, int level, int optname,
281 char __user *optval, unsigned int optlen)
282 {
283 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
284 int ret;
285
286 if (level != SOL_RDS) {
287 ret = -ENOPROTOOPT;
288 goto out;
289 }
290
291 switch (optname) {
292 case RDS_CANCEL_SENT_TO:
293 ret = rds_cancel_sent_to(rs, optval, optlen);
294 break;
295 case RDS_GET_MR:
296 ret = rds_get_mr(rs, optval, optlen);
297 break;
298 case RDS_GET_MR_FOR_DEST:
299 ret = rds_get_mr_for_dest(rs, optval, optlen);
300 break;
301 case RDS_FREE_MR:
302 ret = rds_free_mr(rs, optval, optlen);
303 break;
304 case RDS_RECVERR:
305 ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
306 break;
307 case RDS_CONG_MONITOR:
308 ret = rds_cong_monitor(rs, optval, optlen);
309 break;
310 case SO_RDS_TRANSPORT:
311 lock_sock(sock->sk);
312 ret = rds_set_transport(rs, optval, optlen);
313 release_sock(sock->sk);
314 break;
315 default:
316 ret = -ENOPROTOOPT;
317 }
318 out:
319 return ret;
320 }
321
rds_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)322 static int rds_getsockopt(struct socket *sock, int level, int optname,
323 char __user *optval, int __user *optlen)
324 {
325 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
326 int ret = -ENOPROTOOPT, len;
327 int trans;
328
329 if (level != SOL_RDS)
330 goto out;
331
332 if (get_user(len, optlen)) {
333 ret = -EFAULT;
334 goto out;
335 }
336
337 switch (optname) {
338 case RDS_INFO_FIRST ... RDS_INFO_LAST:
339 ret = rds_info_getsockopt(sock, optname, optval,
340 optlen);
341 break;
342
343 case RDS_RECVERR:
344 if (len < sizeof(int))
345 ret = -EINVAL;
346 else
347 if (put_user(rs->rs_recverr, (int __user *) optval) ||
348 put_user(sizeof(int), optlen))
349 ret = -EFAULT;
350 else
351 ret = 0;
352 break;
353 case SO_RDS_TRANSPORT:
354 if (len < sizeof(int)) {
355 ret = -EINVAL;
356 break;
357 }
358 trans = (rs->rs_transport ? rs->rs_transport->t_type :
359 RDS_TRANS_NONE); /* unbound */
360 if (put_user(trans, (int __user *)optval) ||
361 put_user(sizeof(int), optlen))
362 ret = -EFAULT;
363 else
364 ret = 0;
365 break;
366 default:
367 break;
368 }
369
370 out:
371 return ret;
372
373 }
374
rds_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)375 static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
376 int addr_len, int flags)
377 {
378 struct sock *sk = sock->sk;
379 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
380 struct rds_sock *rs = rds_sk_to_rs(sk);
381 int ret = 0;
382
383 lock_sock(sk);
384
385 if (addr_len != sizeof(struct sockaddr_in)) {
386 ret = -EINVAL;
387 goto out;
388 }
389
390 if (sin->sin_family != AF_INET) {
391 ret = -EAFNOSUPPORT;
392 goto out;
393 }
394
395 if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
396 ret = -EDESTADDRREQ;
397 goto out;
398 }
399
400 rs->rs_conn_addr = sin->sin_addr.s_addr;
401 rs->rs_conn_port = sin->sin_port;
402
403 out:
404 release_sock(sk);
405 return ret;
406 }
407
408 static struct proto rds_proto = {
409 .name = "RDS",
410 .owner = THIS_MODULE,
411 .obj_size = sizeof(struct rds_sock),
412 };
413
414 static const struct proto_ops rds_proto_ops = {
415 .family = AF_RDS,
416 .owner = THIS_MODULE,
417 .release = rds_release,
418 .bind = rds_bind,
419 .connect = rds_connect,
420 .socketpair = sock_no_socketpair,
421 .accept = sock_no_accept,
422 .getname = rds_getname,
423 .poll = rds_poll,
424 .ioctl = rds_ioctl,
425 .listen = sock_no_listen,
426 .shutdown = sock_no_shutdown,
427 .setsockopt = rds_setsockopt,
428 .getsockopt = rds_getsockopt,
429 .sendmsg = rds_sendmsg,
430 .recvmsg = rds_recvmsg,
431 .mmap = sock_no_mmap,
432 .sendpage = sock_no_sendpage,
433 };
434
rds_sock_destruct(struct sock * sk)435 static void rds_sock_destruct(struct sock *sk)
436 {
437 struct rds_sock *rs = rds_sk_to_rs(sk);
438
439 WARN_ON((&rs->rs_item != rs->rs_item.next ||
440 &rs->rs_item != rs->rs_item.prev));
441 }
442
__rds_create(struct socket * sock,struct sock * sk,int protocol)443 static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
444 {
445 struct rds_sock *rs;
446
447 sock_init_data(sock, sk);
448 sock->ops = &rds_proto_ops;
449 sk->sk_protocol = protocol;
450 sk->sk_destruct = rds_sock_destruct;
451
452 rs = rds_sk_to_rs(sk);
453 spin_lock_init(&rs->rs_lock);
454 rwlock_init(&rs->rs_recv_lock);
455 INIT_LIST_HEAD(&rs->rs_send_queue);
456 INIT_LIST_HEAD(&rs->rs_recv_queue);
457 INIT_LIST_HEAD(&rs->rs_notify_queue);
458 INIT_LIST_HEAD(&rs->rs_cong_list);
459 spin_lock_init(&rs->rs_rdma_lock);
460 rs->rs_rdma_keys = RB_ROOT;
461
462 spin_lock_bh(&rds_sock_lock);
463 list_add_tail(&rs->rs_item, &rds_sock_list);
464 rds_sock_count++;
465 spin_unlock_bh(&rds_sock_lock);
466
467 return 0;
468 }
469
rds_create(struct net * net,struct socket * sock,int protocol,int kern)470 static int rds_create(struct net *net, struct socket *sock, int protocol,
471 int kern)
472 {
473 struct sock *sk;
474
475 if (sock->type != SOCK_SEQPACKET || protocol)
476 return -ESOCKTNOSUPPORT;
477
478 sk = sk_alloc(net, AF_RDS, GFP_ATOMIC, &rds_proto, kern);
479 if (!sk)
480 return -ENOMEM;
481
482 return __rds_create(sock, sk, protocol);
483 }
484
rds_sock_addref(struct rds_sock * rs)485 void rds_sock_addref(struct rds_sock *rs)
486 {
487 sock_hold(rds_rs_to_sk(rs));
488 }
489
rds_sock_put(struct rds_sock * rs)490 void rds_sock_put(struct rds_sock *rs)
491 {
492 sock_put(rds_rs_to_sk(rs));
493 }
494
495 static const struct net_proto_family rds_family_ops = {
496 .family = AF_RDS,
497 .create = rds_create,
498 .owner = THIS_MODULE,
499 };
500
rds_sock_inc_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)501 static void rds_sock_inc_info(struct socket *sock, unsigned int len,
502 struct rds_info_iterator *iter,
503 struct rds_info_lengths *lens)
504 {
505 struct rds_sock *rs;
506 struct rds_incoming *inc;
507 unsigned int total = 0;
508
509 len /= sizeof(struct rds_info_message);
510
511 spin_lock_bh(&rds_sock_lock);
512
513 list_for_each_entry(rs, &rds_sock_list, rs_item) {
514 read_lock(&rs->rs_recv_lock);
515
516 /* XXX too lazy to maintain counts.. */
517 list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
518 total++;
519 if (total <= len)
520 rds_inc_info_copy(inc, iter, inc->i_saddr,
521 rs->rs_bound_addr, 1);
522 }
523
524 read_unlock(&rs->rs_recv_lock);
525 }
526
527 spin_unlock_bh(&rds_sock_lock);
528
529 lens->nr = total;
530 lens->each = sizeof(struct rds_info_message);
531 }
532
rds_sock_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)533 static void rds_sock_info(struct socket *sock, unsigned int len,
534 struct rds_info_iterator *iter,
535 struct rds_info_lengths *lens)
536 {
537 struct rds_info_socket sinfo;
538 struct rds_sock *rs;
539
540 len /= sizeof(struct rds_info_socket);
541
542 spin_lock_bh(&rds_sock_lock);
543
544 if (len < rds_sock_count)
545 goto out;
546
547 list_for_each_entry(rs, &rds_sock_list, rs_item) {
548 sinfo.sndbuf = rds_sk_sndbuf(rs);
549 sinfo.rcvbuf = rds_sk_rcvbuf(rs);
550 sinfo.bound_addr = rs->rs_bound_addr;
551 sinfo.connected_addr = rs->rs_conn_addr;
552 sinfo.bound_port = rs->rs_bound_port;
553 sinfo.connected_port = rs->rs_conn_port;
554 sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
555
556 rds_info_copy(iter, &sinfo, sizeof(sinfo));
557 }
558
559 out:
560 lens->nr = rds_sock_count;
561 lens->each = sizeof(struct rds_info_socket);
562
563 spin_unlock_bh(&rds_sock_lock);
564 }
565
rds_exit(void)566 static void rds_exit(void)
567 {
568 sock_unregister(rds_family_ops.family);
569 proto_unregister(&rds_proto);
570 rds_conn_exit();
571 rds_cong_exit();
572 rds_sysctl_exit();
573 rds_threads_exit();
574 rds_stats_exit();
575 rds_page_exit();
576 rds_bind_lock_destroy();
577 rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
578 rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
579 }
580 module_exit(rds_exit);
581
rds_init(void)582 static int rds_init(void)
583 {
584 int ret;
585
586 ret = rds_bind_lock_init();
587 if (ret)
588 goto out;
589
590 ret = rds_conn_init();
591 if (ret)
592 goto out_bind;
593
594 ret = rds_threads_init();
595 if (ret)
596 goto out_conn;
597 ret = rds_sysctl_init();
598 if (ret)
599 goto out_threads;
600 ret = rds_stats_init();
601 if (ret)
602 goto out_sysctl;
603 ret = proto_register(&rds_proto, 1);
604 if (ret)
605 goto out_stats;
606 ret = sock_register(&rds_family_ops);
607 if (ret)
608 goto out_proto;
609
610 rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
611 rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
612
613 goto out;
614
615 out_proto:
616 proto_unregister(&rds_proto);
617 out_stats:
618 rds_stats_exit();
619 out_sysctl:
620 rds_sysctl_exit();
621 out_threads:
622 rds_threads_exit();
623 out_conn:
624 rds_conn_exit();
625 rds_cong_exit();
626 rds_page_exit();
627 out_bind:
628 rds_bind_lock_destroy();
629 out:
630 return ret;
631 }
632 module_init(rds_init);
633
634 #define DRV_VERSION "4.0"
635 #define DRV_RELDATE "Feb 12, 2009"
636
637 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
638 MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
639 " v" DRV_VERSION " (" DRV_RELDATE ")");
640 MODULE_VERSION(DRV_VERSION);
641 MODULE_LICENSE("Dual BSD/GPL");
642 MODULE_ALIAS_NETPROTO(PF_RDS);
643