1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/user_namespace.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
__register_binfmt(struct linux_binfmt * fmt,int insert)75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
unregister_binfmt(struct linux_binfmt * fmt)88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
put_binfmt(struct linux_binfmt * fmt)97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 module_put(fmt->module);
100 }
101
path_noexec(const struct path * path)102 bool path_noexec(const struct path *path)
103 {
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
112 *
113 * Also note that we take the address to load from from the file itself.
114 */
SYSCALL_DEFINE1(uselib,const char __user *,library)115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
126 };
127
128 if (IS_ERR(tmp))
129 goto out;
130
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
136
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
140
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
144
145 fsnotify_open(file);
146
147 error = -ENOEXEC;
148
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
161 }
162 read_unlock(&binfmt_lock);
163 exit:
164 fput(file);
165 out:
166 return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
176 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
181
182 if (!mm || !diff)
183 return;
184
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
191 {
192 struct page *page;
193 int ret;
194 unsigned int gup_flags = FOLL_FORCE;
195
196 #ifdef CONFIG_STACK_GROWSUP
197 if (write) {
198 ret = expand_downwards(bprm->vma, pos);
199 if (ret < 0)
200 return NULL;
201 }
202 #endif
203
204 if (write)
205 gup_flags |= FOLL_WRITE;
206
207 ret = get_user_pages(current, bprm->mm, pos, 1, gup_flags,
208 &page, NULL);
209 if (ret <= 0)
210 return NULL;
211
212 if (write) {
213 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
214 unsigned long ptr_size, limit;
215
216 /*
217 * Since the stack will hold pointers to the strings, we
218 * must account for them as well.
219 *
220 * The size calculation is the entire vma while each arg page is
221 * built, so each time we get here it's calculating how far it
222 * is currently (rather than each call being just the newly
223 * added size from the arg page). As a result, we need to
224 * always add the entire size of the pointers, so that on the
225 * last call to get_arg_page() we'll actually have the entire
226 * correct size.
227 */
228 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
229 if (ptr_size > ULONG_MAX - size)
230 goto fail;
231 size += ptr_size;
232
233 acct_arg_size(bprm, size / PAGE_SIZE);
234
235 /*
236 * We've historically supported up to 32 pages (ARG_MAX)
237 * of argument strings even with small stacks
238 */
239 if (size <= ARG_MAX)
240 return page;
241
242 /*
243 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
244 * (whichever is smaller) for the argv+env strings.
245 * This ensures that:
246 * - the remaining binfmt code will not run out of stack space,
247 * - the program will have a reasonable amount of stack left
248 * to work from.
249 */
250 limit = _STK_LIM / 4 * 3;
251 limit = min(limit, rlimit(RLIMIT_STACK) / 4);
252 if (size > limit)
253 goto fail;
254 }
255
256 return page;
257
258 fail:
259 put_page(page);
260 return NULL;
261 }
262
put_arg_page(struct page * page)263 static void put_arg_page(struct page *page)
264 {
265 put_page(page);
266 }
267
free_arg_page(struct linux_binprm * bprm,int i)268 static void free_arg_page(struct linux_binprm *bprm, int i)
269 {
270 }
271
free_arg_pages(struct linux_binprm * bprm)272 static void free_arg_pages(struct linux_binprm *bprm)
273 {
274 }
275
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)276 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
277 struct page *page)
278 {
279 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
280 }
281
__bprm_mm_init(struct linux_binprm * bprm)282 static int __bprm_mm_init(struct linux_binprm *bprm)
283 {
284 int err;
285 struct vm_area_struct *vma = NULL;
286 struct mm_struct *mm = bprm->mm;
287
288 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
289 if (!vma)
290 return -ENOMEM;
291
292 down_write(&mm->mmap_sem);
293 vma->vm_mm = mm;
294
295 /*
296 * Place the stack at the largest stack address the architecture
297 * supports. Later, we'll move this to an appropriate place. We don't
298 * use STACK_TOP because that can depend on attributes which aren't
299 * configured yet.
300 */
301 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
302 vma->vm_end = STACK_TOP_MAX;
303 vma->vm_start = vma->vm_end - PAGE_SIZE;
304 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
305 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
306 INIT_LIST_HEAD(&vma->anon_vma_chain);
307
308 err = insert_vm_struct(mm, vma);
309 if (err)
310 goto err;
311
312 mm->stack_vm = mm->total_vm = 1;
313 arch_bprm_mm_init(mm, vma);
314 up_write(&mm->mmap_sem);
315 bprm->p = vma->vm_end - sizeof(void *);
316 return 0;
317 err:
318 up_write(&mm->mmap_sem);
319 bprm->vma = NULL;
320 kmem_cache_free(vm_area_cachep, vma);
321 return err;
322 }
323
valid_arg_len(struct linux_binprm * bprm,long len)324 static bool valid_arg_len(struct linux_binprm *bprm, long len)
325 {
326 return len <= MAX_ARG_STRLEN;
327 }
328
329 #else
330
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)331 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
332 {
333 }
334
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)335 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
336 int write)
337 {
338 struct page *page;
339
340 page = bprm->page[pos / PAGE_SIZE];
341 if (!page && write) {
342 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
343 if (!page)
344 return NULL;
345 bprm->page[pos / PAGE_SIZE] = page;
346 }
347
348 return page;
349 }
350
put_arg_page(struct page * page)351 static void put_arg_page(struct page *page)
352 {
353 }
354
free_arg_page(struct linux_binprm * bprm,int i)355 static void free_arg_page(struct linux_binprm *bprm, int i)
356 {
357 if (bprm->page[i]) {
358 __free_page(bprm->page[i]);
359 bprm->page[i] = NULL;
360 }
361 }
362
free_arg_pages(struct linux_binprm * bprm)363 static void free_arg_pages(struct linux_binprm *bprm)
364 {
365 int i;
366
367 for (i = 0; i < MAX_ARG_PAGES; i++)
368 free_arg_page(bprm, i);
369 }
370
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)371 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
372 struct page *page)
373 {
374 }
375
__bprm_mm_init(struct linux_binprm * bprm)376 static int __bprm_mm_init(struct linux_binprm *bprm)
377 {
378 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
379 return 0;
380 }
381
valid_arg_len(struct linux_binprm * bprm,long len)382 static bool valid_arg_len(struct linux_binprm *bprm, long len)
383 {
384 return len <= bprm->p;
385 }
386
387 #endif /* CONFIG_MMU */
388
389 /*
390 * Create a new mm_struct and populate it with a temporary stack
391 * vm_area_struct. We don't have enough context at this point to set the stack
392 * flags, permissions, and offset, so we use temporary values. We'll update
393 * them later in setup_arg_pages().
394 */
bprm_mm_init(struct linux_binprm * bprm)395 static int bprm_mm_init(struct linux_binprm *bprm)
396 {
397 int err;
398 struct mm_struct *mm = NULL;
399
400 bprm->mm = mm = mm_alloc();
401 err = -ENOMEM;
402 if (!mm)
403 goto err;
404
405 err = __bprm_mm_init(bprm);
406 if (err)
407 goto err;
408
409 return 0;
410
411 err:
412 if (mm) {
413 bprm->mm = NULL;
414 mmdrop(mm);
415 }
416
417 return err;
418 }
419
420 struct user_arg_ptr {
421 #ifdef CONFIG_COMPAT
422 bool is_compat;
423 #endif
424 union {
425 const char __user *const __user *native;
426 #ifdef CONFIG_COMPAT
427 const compat_uptr_t __user *compat;
428 #endif
429 } ptr;
430 };
431
get_user_arg_ptr(struct user_arg_ptr argv,int nr)432 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
433 {
434 const char __user *native;
435
436 #ifdef CONFIG_COMPAT
437 if (unlikely(argv.is_compat)) {
438 compat_uptr_t compat;
439
440 if (get_user(compat, argv.ptr.compat + nr))
441 return ERR_PTR(-EFAULT);
442
443 return compat_ptr(compat);
444 }
445 #endif
446
447 if (get_user(native, argv.ptr.native + nr))
448 return ERR_PTR(-EFAULT);
449
450 return native;
451 }
452
453 /*
454 * count() counts the number of strings in array ARGV.
455 */
count(struct user_arg_ptr argv,int max)456 static int count(struct user_arg_ptr argv, int max)
457 {
458 int i = 0;
459
460 if (argv.ptr.native != NULL) {
461 for (;;) {
462 const char __user *p = get_user_arg_ptr(argv, i);
463
464 if (!p)
465 break;
466
467 if (IS_ERR(p))
468 return -EFAULT;
469
470 if (i >= max)
471 return -E2BIG;
472 ++i;
473
474 if (fatal_signal_pending(current))
475 return -ERESTARTNOHAND;
476 cond_resched();
477 }
478 }
479 return i;
480 }
481
482 /*
483 * 'copy_strings()' copies argument/environment strings from the old
484 * processes's memory to the new process's stack. The call to get_user_pages()
485 * ensures the destination page is created and not swapped out.
486 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)487 static int copy_strings(int argc, struct user_arg_ptr argv,
488 struct linux_binprm *bprm)
489 {
490 struct page *kmapped_page = NULL;
491 char *kaddr = NULL;
492 unsigned long kpos = 0;
493 int ret;
494
495 while (argc-- > 0) {
496 const char __user *str;
497 int len;
498 unsigned long pos;
499
500 ret = -EFAULT;
501 str = get_user_arg_ptr(argv, argc);
502 if (IS_ERR(str))
503 goto out;
504
505 len = strnlen_user(str, MAX_ARG_STRLEN);
506 if (!len)
507 goto out;
508
509 ret = -E2BIG;
510 if (!valid_arg_len(bprm, len))
511 goto out;
512
513 /* We're going to work our way backwords. */
514 pos = bprm->p;
515 str += len;
516 bprm->p -= len;
517
518 while (len > 0) {
519 int offset, bytes_to_copy;
520
521 if (fatal_signal_pending(current)) {
522 ret = -ERESTARTNOHAND;
523 goto out;
524 }
525 cond_resched();
526
527 offset = pos % PAGE_SIZE;
528 if (offset == 0)
529 offset = PAGE_SIZE;
530
531 bytes_to_copy = offset;
532 if (bytes_to_copy > len)
533 bytes_to_copy = len;
534
535 offset -= bytes_to_copy;
536 pos -= bytes_to_copy;
537 str -= bytes_to_copy;
538 len -= bytes_to_copy;
539
540 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
541 struct page *page;
542
543 page = get_arg_page(bprm, pos, 1);
544 if (!page) {
545 ret = -E2BIG;
546 goto out;
547 }
548
549 if (kmapped_page) {
550 flush_kernel_dcache_page(kmapped_page);
551 kunmap(kmapped_page);
552 put_arg_page(kmapped_page);
553 }
554 kmapped_page = page;
555 kaddr = kmap(kmapped_page);
556 kpos = pos & PAGE_MASK;
557 flush_arg_page(bprm, kpos, kmapped_page);
558 }
559 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
560 ret = -EFAULT;
561 goto out;
562 }
563 }
564 }
565 ret = 0;
566 out:
567 if (kmapped_page) {
568 flush_kernel_dcache_page(kmapped_page);
569 kunmap(kmapped_page);
570 put_arg_page(kmapped_page);
571 }
572 return ret;
573 }
574
575 /*
576 * Like copy_strings, but get argv and its values from kernel memory.
577 */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)578 int copy_strings_kernel(int argc, const char *const *__argv,
579 struct linux_binprm *bprm)
580 {
581 int r;
582 mm_segment_t oldfs = get_fs();
583 struct user_arg_ptr argv = {
584 .ptr.native = (const char __user *const __user *)__argv,
585 };
586
587 set_fs(KERNEL_DS);
588 r = copy_strings(argc, argv, bprm);
589 set_fs(oldfs);
590
591 return r;
592 }
593 EXPORT_SYMBOL(copy_strings_kernel);
594
595 #ifdef CONFIG_MMU
596
597 /*
598 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
599 * the binfmt code determines where the new stack should reside, we shift it to
600 * its final location. The process proceeds as follows:
601 *
602 * 1) Use shift to calculate the new vma endpoints.
603 * 2) Extend vma to cover both the old and new ranges. This ensures the
604 * arguments passed to subsequent functions are consistent.
605 * 3) Move vma's page tables to the new range.
606 * 4) Free up any cleared pgd range.
607 * 5) Shrink the vma to cover only the new range.
608 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)609 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
610 {
611 struct mm_struct *mm = vma->vm_mm;
612 unsigned long old_start = vma->vm_start;
613 unsigned long old_end = vma->vm_end;
614 unsigned long length = old_end - old_start;
615 unsigned long new_start = old_start - shift;
616 unsigned long new_end = old_end - shift;
617 struct mmu_gather tlb;
618
619 BUG_ON(new_start > new_end);
620
621 /*
622 * ensure there are no vmas between where we want to go
623 * and where we are
624 */
625 if (vma != find_vma(mm, new_start))
626 return -EFAULT;
627
628 /*
629 * cover the whole range: [new_start, old_end)
630 */
631 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
632 return -ENOMEM;
633
634 /*
635 * move the page tables downwards, on failure we rely on
636 * process cleanup to remove whatever mess we made.
637 */
638 if (length != move_page_tables(vma, old_start,
639 vma, new_start, length, false))
640 return -ENOMEM;
641
642 lru_add_drain();
643 tlb_gather_mmu(&tlb, mm, old_start, old_end);
644 if (new_end > old_start) {
645 /*
646 * when the old and new regions overlap clear from new_end.
647 */
648 free_pgd_range(&tlb, new_end, old_end, new_end,
649 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
650 } else {
651 /*
652 * otherwise, clean from old_start; this is done to not touch
653 * the address space in [new_end, old_start) some architectures
654 * have constraints on va-space that make this illegal (IA64) -
655 * for the others its just a little faster.
656 */
657 free_pgd_range(&tlb, old_start, old_end, new_end,
658 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
659 }
660 tlb_finish_mmu(&tlb, old_start, old_end);
661
662 /*
663 * Shrink the vma to just the new range. Always succeeds.
664 */
665 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
666
667 return 0;
668 }
669
670 /*
671 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
672 * the stack is optionally relocated, and some extra space is added.
673 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)674 int setup_arg_pages(struct linux_binprm *bprm,
675 unsigned long stack_top,
676 int executable_stack)
677 {
678 unsigned long ret;
679 unsigned long stack_shift;
680 struct mm_struct *mm = current->mm;
681 struct vm_area_struct *vma = bprm->vma;
682 struct vm_area_struct *prev = NULL;
683 unsigned long vm_flags;
684 unsigned long stack_base;
685 unsigned long stack_size;
686 unsigned long stack_expand;
687 unsigned long rlim_stack;
688
689 #ifdef CONFIG_STACK_GROWSUP
690 /* Limit stack size */
691 stack_base = rlimit_max(RLIMIT_STACK);
692 if (stack_base > STACK_SIZE_MAX)
693 stack_base = STACK_SIZE_MAX;
694
695 /* Add space for stack randomization. */
696 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
697
698 /* Make sure we didn't let the argument array grow too large. */
699 if (vma->vm_end - vma->vm_start > stack_base)
700 return -ENOMEM;
701
702 stack_base = PAGE_ALIGN(stack_top - stack_base);
703
704 stack_shift = vma->vm_start - stack_base;
705 mm->arg_start = bprm->p - stack_shift;
706 bprm->p = vma->vm_end - stack_shift;
707 #else
708 stack_top = arch_align_stack(stack_top);
709 stack_top = PAGE_ALIGN(stack_top);
710
711 if (unlikely(stack_top < mmap_min_addr) ||
712 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
713 return -ENOMEM;
714
715 stack_shift = vma->vm_end - stack_top;
716
717 bprm->p -= stack_shift;
718 mm->arg_start = bprm->p;
719 #endif
720
721 if (bprm->loader)
722 bprm->loader -= stack_shift;
723 bprm->exec -= stack_shift;
724
725 down_write(&mm->mmap_sem);
726 vm_flags = VM_STACK_FLAGS;
727
728 /*
729 * Adjust stack execute permissions; explicitly enable for
730 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
731 * (arch default) otherwise.
732 */
733 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
734 vm_flags |= VM_EXEC;
735 else if (executable_stack == EXSTACK_DISABLE_X)
736 vm_flags &= ~VM_EXEC;
737 vm_flags |= mm->def_flags;
738 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
739
740 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
741 vm_flags);
742 if (ret)
743 goto out_unlock;
744 BUG_ON(prev != vma);
745
746 /* Move stack pages down in memory. */
747 if (stack_shift) {
748 ret = shift_arg_pages(vma, stack_shift);
749 if (ret)
750 goto out_unlock;
751 }
752
753 /* mprotect_fixup is overkill to remove the temporary stack flags */
754 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
755
756 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
757 stack_size = vma->vm_end - vma->vm_start;
758 /*
759 * Align this down to a page boundary as expand_stack
760 * will align it up.
761 */
762 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
763 #ifdef CONFIG_STACK_GROWSUP
764 if (stack_size + stack_expand > rlim_stack)
765 stack_base = vma->vm_start + rlim_stack;
766 else
767 stack_base = vma->vm_end + stack_expand;
768 #else
769 if (stack_size + stack_expand > rlim_stack)
770 stack_base = vma->vm_end - rlim_stack;
771 else
772 stack_base = vma->vm_start - stack_expand;
773 #endif
774 current->mm->start_stack = bprm->p;
775 ret = expand_stack(vma, stack_base);
776 if (ret)
777 ret = -EFAULT;
778
779 out_unlock:
780 up_write(&mm->mmap_sem);
781 return ret;
782 }
783 EXPORT_SYMBOL(setup_arg_pages);
784
785 #endif /* CONFIG_MMU */
786
do_open_execat(int fd,struct filename * name,int flags)787 static struct file *do_open_execat(int fd, struct filename *name, int flags)
788 {
789 struct file *file;
790 int err;
791 struct open_flags open_exec_flags = {
792 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
793 .acc_mode = MAY_EXEC | MAY_OPEN,
794 .intent = LOOKUP_OPEN,
795 .lookup_flags = LOOKUP_FOLLOW,
796 };
797
798 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
799 return ERR_PTR(-EINVAL);
800 if (flags & AT_SYMLINK_NOFOLLOW)
801 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
802 if (flags & AT_EMPTY_PATH)
803 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
804
805 file = do_filp_open(fd, name, &open_exec_flags);
806 if (IS_ERR(file))
807 goto out;
808
809 err = -EACCES;
810 if (!S_ISREG(file_inode(file)->i_mode))
811 goto exit;
812
813 if (path_noexec(&file->f_path))
814 goto exit;
815
816 err = deny_write_access(file);
817 if (err)
818 goto exit;
819
820 if (name->name[0] != '\0')
821 fsnotify_open(file);
822
823 out:
824 return file;
825
826 exit:
827 fput(file);
828 return ERR_PTR(err);
829 }
830
open_exec(const char * name)831 struct file *open_exec(const char *name)
832 {
833 struct filename *filename = getname_kernel(name);
834 struct file *f = ERR_CAST(filename);
835
836 if (!IS_ERR(filename)) {
837 f = do_open_execat(AT_FDCWD, filename, 0);
838 putname(filename);
839 }
840 return f;
841 }
842 EXPORT_SYMBOL(open_exec);
843
kernel_read(struct file * file,loff_t offset,char * addr,unsigned long count)844 int kernel_read(struct file *file, loff_t offset,
845 char *addr, unsigned long count)
846 {
847 mm_segment_t old_fs;
848 loff_t pos = offset;
849 int result;
850
851 old_fs = get_fs();
852 set_fs(get_ds());
853 /* The cast to a user pointer is valid due to the set_fs() */
854 result = vfs_read(file, (void __user *)addr, count, &pos);
855 set_fs(old_fs);
856 return result;
857 }
858
859 EXPORT_SYMBOL(kernel_read);
860
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)861 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
862 {
863 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
864 if (res > 0)
865 flush_icache_range(addr, addr + len);
866 return res;
867 }
868 EXPORT_SYMBOL(read_code);
869
exec_mmap(struct mm_struct * mm)870 static int exec_mmap(struct mm_struct *mm)
871 {
872 struct task_struct *tsk;
873 struct mm_struct *old_mm, *active_mm;
874
875 /* Notify parent that we're no longer interested in the old VM */
876 tsk = current;
877 old_mm = current->mm;
878 exec_mm_release(tsk, old_mm);
879
880 if (old_mm) {
881 sync_mm_rss(old_mm);
882 /*
883 * Make sure that if there is a core dump in progress
884 * for the old mm, we get out and die instead of going
885 * through with the exec. We must hold mmap_sem around
886 * checking core_state and changing tsk->mm.
887 */
888 down_read(&old_mm->mmap_sem);
889 if (unlikely(old_mm->core_state)) {
890 up_read(&old_mm->mmap_sem);
891 return -EINTR;
892 }
893 }
894 task_lock(tsk);
895 active_mm = tsk->active_mm;
896 tsk->mm = mm;
897 tsk->active_mm = mm;
898 activate_mm(active_mm, mm);
899 tsk->mm->vmacache_seqnum = 0;
900 vmacache_flush(tsk);
901 task_unlock(tsk);
902 if (old_mm) {
903 up_read(&old_mm->mmap_sem);
904 BUG_ON(active_mm != old_mm);
905 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
906 mm_update_next_owner(old_mm);
907 mmput(old_mm);
908 return 0;
909 }
910 mmdrop(active_mm);
911 return 0;
912 }
913
914 /*
915 * This function makes sure the current process has its own signal table,
916 * so that flush_signal_handlers can later reset the handlers without
917 * disturbing other processes. (Other processes might share the signal
918 * table via the CLONE_SIGHAND option to clone().)
919 */
de_thread(struct task_struct * tsk)920 static int de_thread(struct task_struct *tsk)
921 {
922 struct signal_struct *sig = tsk->signal;
923 struct sighand_struct *oldsighand = tsk->sighand;
924 spinlock_t *lock = &oldsighand->siglock;
925
926 if (thread_group_empty(tsk))
927 goto no_thread_group;
928
929 /*
930 * Kill all other threads in the thread group.
931 */
932 spin_lock_irq(lock);
933 if (signal_group_exit(sig)) {
934 /*
935 * Another group action in progress, just
936 * return so that the signal is processed.
937 */
938 spin_unlock_irq(lock);
939 return -EAGAIN;
940 }
941
942 sig->group_exit_task = tsk;
943 sig->notify_count = zap_other_threads(tsk);
944 if (!thread_group_leader(tsk))
945 sig->notify_count--;
946
947 while (sig->notify_count) {
948 __set_current_state(TASK_KILLABLE);
949 spin_unlock_irq(lock);
950 schedule();
951 if (unlikely(__fatal_signal_pending(tsk)))
952 goto killed;
953 spin_lock_irq(lock);
954 }
955 spin_unlock_irq(lock);
956
957 /*
958 * At this point all other threads have exited, all we have to
959 * do is to wait for the thread group leader to become inactive,
960 * and to assume its PID:
961 */
962 if (!thread_group_leader(tsk)) {
963 struct task_struct *leader = tsk->group_leader;
964
965 for (;;) {
966 threadgroup_change_begin(tsk);
967 write_lock_irq(&tasklist_lock);
968 /*
969 * Do this under tasklist_lock to ensure that
970 * exit_notify() can't miss ->group_exit_task
971 */
972 sig->notify_count = -1;
973 if (likely(leader->exit_state))
974 break;
975 __set_current_state(TASK_KILLABLE);
976 write_unlock_irq(&tasklist_lock);
977 threadgroup_change_end(tsk);
978 schedule();
979 if (unlikely(__fatal_signal_pending(tsk)))
980 goto killed;
981 }
982
983 /*
984 * The only record we have of the real-time age of a
985 * process, regardless of execs it's done, is start_time.
986 * All the past CPU time is accumulated in signal_struct
987 * from sister threads now dead. But in this non-leader
988 * exec, nothing survives from the original leader thread,
989 * whose birth marks the true age of this process now.
990 * When we take on its identity by switching to its PID, we
991 * also take its birthdate (always earlier than our own).
992 */
993 tsk->start_time = leader->start_time;
994 tsk->real_start_time = leader->real_start_time;
995
996 BUG_ON(!same_thread_group(leader, tsk));
997 BUG_ON(has_group_leader_pid(tsk));
998 /*
999 * An exec() starts a new thread group with the
1000 * TGID of the previous thread group. Rehash the
1001 * two threads with a switched PID, and release
1002 * the former thread group leader:
1003 */
1004
1005 /* Become a process group leader with the old leader's pid.
1006 * The old leader becomes a thread of the this thread group.
1007 * Note: The old leader also uses this pid until release_task
1008 * is called. Odd but simple and correct.
1009 */
1010 tsk->pid = leader->pid;
1011 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1012 transfer_pid(leader, tsk, PIDTYPE_PGID);
1013 transfer_pid(leader, tsk, PIDTYPE_SID);
1014
1015 list_replace_rcu(&leader->tasks, &tsk->tasks);
1016 list_replace_init(&leader->sibling, &tsk->sibling);
1017
1018 tsk->group_leader = tsk;
1019 leader->group_leader = tsk;
1020
1021 tsk->exit_signal = SIGCHLD;
1022 leader->exit_signal = -1;
1023
1024 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1025 leader->exit_state = EXIT_DEAD;
1026
1027 /*
1028 * We are going to release_task()->ptrace_unlink() silently,
1029 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1030 * the tracer wont't block again waiting for this thread.
1031 */
1032 if (unlikely(leader->ptrace))
1033 __wake_up_parent(leader, leader->parent);
1034 write_unlock_irq(&tasklist_lock);
1035 threadgroup_change_end(tsk);
1036
1037 release_task(leader);
1038 }
1039
1040 sig->group_exit_task = NULL;
1041 sig->notify_count = 0;
1042
1043 no_thread_group:
1044 /* we have changed execution domain */
1045 tsk->exit_signal = SIGCHLD;
1046
1047 exit_itimers(sig);
1048 flush_itimer_signals();
1049
1050 if (atomic_read(&oldsighand->count) != 1) {
1051 struct sighand_struct *newsighand;
1052 /*
1053 * This ->sighand is shared with the CLONE_SIGHAND
1054 * but not CLONE_THREAD task, switch to the new one.
1055 */
1056 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1057 if (!newsighand)
1058 return -ENOMEM;
1059
1060 atomic_set(&newsighand->count, 1);
1061 memcpy(newsighand->action, oldsighand->action,
1062 sizeof(newsighand->action));
1063
1064 write_lock_irq(&tasklist_lock);
1065 spin_lock(&oldsighand->siglock);
1066 rcu_assign_pointer(tsk->sighand, newsighand);
1067 spin_unlock(&oldsighand->siglock);
1068 write_unlock_irq(&tasklist_lock);
1069
1070 __cleanup_sighand(oldsighand);
1071 }
1072
1073 BUG_ON(!thread_group_leader(tsk));
1074 return 0;
1075
1076 killed:
1077 /* protects against exit_notify() and __exit_signal() */
1078 read_lock(&tasklist_lock);
1079 sig->group_exit_task = NULL;
1080 sig->notify_count = 0;
1081 read_unlock(&tasklist_lock);
1082 return -EAGAIN;
1083 }
1084
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1085 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1086 {
1087 task_lock(tsk);
1088 strncpy(buf, tsk->comm, buf_size);
1089 task_unlock(tsk);
1090 return buf;
1091 }
1092 EXPORT_SYMBOL_GPL(__get_task_comm);
1093
1094 /*
1095 * These functions flushes out all traces of the currently running executable
1096 * so that a new one can be started
1097 */
1098
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1099 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1100 {
1101 task_lock(tsk);
1102 trace_task_rename(tsk, buf);
1103 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1104 task_unlock(tsk);
1105 perf_event_comm(tsk, exec);
1106 }
1107
flush_old_exec(struct linux_binprm * bprm)1108 int flush_old_exec(struct linux_binprm * bprm)
1109 {
1110 int retval;
1111
1112 /*
1113 * Make sure we have a private signal table and that
1114 * we are unassociated from the previous thread group.
1115 */
1116 retval = de_thread(current);
1117 if (retval)
1118 goto out;
1119
1120 /*
1121 * Must be called _before_ exec_mmap() as bprm->mm is
1122 * not visibile until then. This also enables the update
1123 * to be lockless.
1124 */
1125 set_mm_exe_file(bprm->mm, bprm->file);
1126
1127 would_dump(bprm, bprm->file);
1128
1129 /*
1130 * Release all of the old mmap stuff
1131 */
1132 acct_arg_size(bprm, 0);
1133 retval = exec_mmap(bprm->mm);
1134 if (retval)
1135 goto out;
1136
1137 bprm->mm = NULL; /* We're using it now */
1138
1139 set_fs(USER_DS);
1140 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1141 PF_NOFREEZE | PF_NO_SETAFFINITY);
1142 flush_thread();
1143 current->personality &= ~bprm->per_clear;
1144
1145 /*
1146 * We have to apply CLOEXEC before we change whether the process is
1147 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1148 * trying to access the should-be-closed file descriptors of a process
1149 * undergoing exec(2).
1150 */
1151 do_close_on_exec(current->files);
1152 return 0;
1153
1154 out:
1155 return retval;
1156 }
1157 EXPORT_SYMBOL(flush_old_exec);
1158
would_dump(struct linux_binprm * bprm,struct file * file)1159 void would_dump(struct linux_binprm *bprm, struct file *file)
1160 {
1161 struct inode *inode = file_inode(file);
1162
1163 if (inode_permission2(file->f_path.mnt, inode, MAY_READ) < 0) {
1164 struct user_namespace *old, *user_ns;
1165
1166 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1167
1168 /* Ensure mm->user_ns contains the executable */
1169 user_ns = old = bprm->mm->user_ns;
1170 while ((user_ns != &init_user_ns) &&
1171 !privileged_wrt_inode_uidgid(user_ns, inode))
1172 user_ns = user_ns->parent;
1173
1174 if (old != user_ns) {
1175 bprm->mm->user_ns = get_user_ns(user_ns);
1176 put_user_ns(old);
1177 }
1178 }
1179 }
1180 EXPORT_SYMBOL(would_dump);
1181
setup_new_exec(struct linux_binprm * bprm)1182 void setup_new_exec(struct linux_binprm * bprm)
1183 {
1184 arch_pick_mmap_layout(current->mm);
1185
1186 /* This is the point of no return */
1187 current->sas_ss_sp = current->sas_ss_size = 0;
1188
1189 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1190 set_dumpable(current->mm, SUID_DUMP_USER);
1191 else
1192 set_dumpable(current->mm, suid_dumpable);
1193
1194 perf_event_exec();
1195 __set_task_comm(current, kbasename(bprm->filename), true);
1196
1197 /* Set the new mm task size. We have to do that late because it may
1198 * depend on TIF_32BIT which is only updated in flush_thread() on
1199 * some architectures like powerpc
1200 */
1201 current->mm->task_size = TASK_SIZE;
1202
1203 /* install the new credentials */
1204 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1205 !gid_eq(bprm->cred->gid, current_egid())) {
1206 current->pdeath_signal = 0;
1207 } else {
1208 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1209 set_dumpable(current->mm, suid_dumpable);
1210 }
1211
1212 /* An exec changes our domain. We are no longer part of the thread
1213 group */
1214 WRITE_ONCE(current->self_exec_id, current->self_exec_id + 1);
1215 flush_signal_handlers(current, 0);
1216 }
1217 EXPORT_SYMBOL(setup_new_exec);
1218
1219 /*
1220 * Prepare credentials and lock ->cred_guard_mutex.
1221 * install_exec_creds() commits the new creds and drops the lock.
1222 * Or, if exec fails before, free_bprm() should release ->cred and
1223 * and unlock.
1224 */
prepare_bprm_creds(struct linux_binprm * bprm)1225 int prepare_bprm_creds(struct linux_binprm *bprm)
1226 {
1227 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1228 return -ERESTARTNOINTR;
1229
1230 bprm->cred = prepare_exec_creds();
1231 if (likely(bprm->cred))
1232 return 0;
1233
1234 mutex_unlock(¤t->signal->cred_guard_mutex);
1235 return -ENOMEM;
1236 }
1237
free_bprm(struct linux_binprm * bprm)1238 static void free_bprm(struct linux_binprm *bprm)
1239 {
1240 free_arg_pages(bprm);
1241 if (bprm->cred) {
1242 mutex_unlock(¤t->signal->cred_guard_mutex);
1243 abort_creds(bprm->cred);
1244 }
1245 if (bprm->file) {
1246 allow_write_access(bprm->file);
1247 fput(bprm->file);
1248 }
1249 /* If a binfmt changed the interp, free it. */
1250 if (bprm->interp != bprm->filename)
1251 kfree(bprm->interp);
1252 kfree(bprm);
1253 }
1254
bprm_change_interp(char * interp,struct linux_binprm * bprm)1255 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1256 {
1257 /* If a binfmt changed the interp, free it first. */
1258 if (bprm->interp != bprm->filename)
1259 kfree(bprm->interp);
1260 bprm->interp = kstrdup(interp, GFP_KERNEL);
1261 if (!bprm->interp)
1262 return -ENOMEM;
1263 return 0;
1264 }
1265 EXPORT_SYMBOL(bprm_change_interp);
1266
1267 /*
1268 * install the new credentials for this executable
1269 */
install_exec_creds(struct linux_binprm * bprm)1270 void install_exec_creds(struct linux_binprm *bprm)
1271 {
1272 security_bprm_committing_creds(bprm);
1273
1274 commit_creds(bprm->cred);
1275 bprm->cred = NULL;
1276
1277 /*
1278 * Disable monitoring for regular users
1279 * when executing setuid binaries. Must
1280 * wait until new credentials are committed
1281 * by commit_creds() above
1282 */
1283 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1284 perf_event_exit_task(current);
1285 /*
1286 * cred_guard_mutex must be held at least to this point to prevent
1287 * ptrace_attach() from altering our determination of the task's
1288 * credentials; any time after this it may be unlocked.
1289 */
1290 security_bprm_committed_creds(bprm);
1291 mutex_unlock(¤t->signal->cred_guard_mutex);
1292 }
1293 EXPORT_SYMBOL(install_exec_creds);
1294
1295 /*
1296 * determine how safe it is to execute the proposed program
1297 * - the caller must hold ->cred_guard_mutex to protect against
1298 * PTRACE_ATTACH or seccomp thread-sync
1299 */
check_unsafe_exec(struct linux_binprm * bprm)1300 static void check_unsafe_exec(struct linux_binprm *bprm)
1301 {
1302 struct task_struct *p = current, *t;
1303 unsigned n_fs;
1304
1305 if (p->ptrace) {
1306 if (ptracer_capable(p, current_user_ns()))
1307 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1308 else
1309 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1310 }
1311
1312 /*
1313 * This isn't strictly necessary, but it makes it harder for LSMs to
1314 * mess up.
1315 */
1316 if (task_no_new_privs(current))
1317 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1318
1319 t = p;
1320 n_fs = 1;
1321 spin_lock(&p->fs->lock);
1322 rcu_read_lock();
1323 while_each_thread(p, t) {
1324 if (t->fs == p->fs)
1325 n_fs++;
1326 }
1327 rcu_read_unlock();
1328
1329 if (p->fs->users > n_fs)
1330 bprm->unsafe |= LSM_UNSAFE_SHARE;
1331 else
1332 p->fs->in_exec = 1;
1333 spin_unlock(&p->fs->lock);
1334 }
1335
bprm_fill_uid(struct linux_binprm * bprm)1336 static void bprm_fill_uid(struct linux_binprm *bprm)
1337 {
1338 struct inode *inode;
1339 unsigned int mode;
1340 kuid_t uid;
1341 kgid_t gid;
1342
1343 /* clear any previous set[ug]id data from a previous binary */
1344 bprm->cred->euid = current_euid();
1345 bprm->cred->egid = current_egid();
1346
1347 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1348 return;
1349
1350 if (task_no_new_privs(current))
1351 return;
1352
1353 inode = file_inode(bprm->file);
1354 mode = READ_ONCE(inode->i_mode);
1355 if (!(mode & (S_ISUID|S_ISGID)))
1356 return;
1357
1358 /* Be careful if suid/sgid is set */
1359 mutex_lock(&inode->i_mutex);
1360
1361 /* reload atomically mode/uid/gid now that lock held */
1362 mode = inode->i_mode;
1363 uid = inode->i_uid;
1364 gid = inode->i_gid;
1365 mutex_unlock(&inode->i_mutex);
1366
1367 /* We ignore suid/sgid if there are no mappings for them in the ns */
1368 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1369 !kgid_has_mapping(bprm->cred->user_ns, gid))
1370 return;
1371
1372 if (mode & S_ISUID) {
1373 bprm->per_clear |= PER_CLEAR_ON_SETID;
1374 bprm->cred->euid = uid;
1375 }
1376
1377 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1378 bprm->per_clear |= PER_CLEAR_ON_SETID;
1379 bprm->cred->egid = gid;
1380 }
1381 }
1382
1383 /*
1384 * Fill the binprm structure from the inode.
1385 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1386 *
1387 * This may be called multiple times for binary chains (scripts for example).
1388 */
prepare_binprm(struct linux_binprm * bprm)1389 int prepare_binprm(struct linux_binprm *bprm)
1390 {
1391 int retval;
1392
1393 bprm_fill_uid(bprm);
1394
1395 /* fill in binprm security blob */
1396 retval = security_bprm_set_creds(bprm);
1397 if (retval)
1398 return retval;
1399 bprm->cred_prepared = 1;
1400
1401 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1402 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1403 }
1404
1405 EXPORT_SYMBOL(prepare_binprm);
1406
1407 /*
1408 * Arguments are '\0' separated strings found at the location bprm->p
1409 * points to; chop off the first by relocating brpm->p to right after
1410 * the first '\0' encountered.
1411 */
remove_arg_zero(struct linux_binprm * bprm)1412 int remove_arg_zero(struct linux_binprm *bprm)
1413 {
1414 int ret = 0;
1415 unsigned long offset;
1416 char *kaddr;
1417 struct page *page;
1418
1419 if (!bprm->argc)
1420 return 0;
1421
1422 do {
1423 offset = bprm->p & ~PAGE_MASK;
1424 page = get_arg_page(bprm, bprm->p, 0);
1425 if (!page) {
1426 ret = -EFAULT;
1427 goto out;
1428 }
1429 kaddr = kmap_atomic(page);
1430
1431 for (; offset < PAGE_SIZE && kaddr[offset];
1432 offset++, bprm->p++)
1433 ;
1434
1435 kunmap_atomic(kaddr);
1436 put_arg_page(page);
1437
1438 if (offset == PAGE_SIZE)
1439 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1440 } while (offset == PAGE_SIZE);
1441
1442 bprm->p++;
1443 bprm->argc--;
1444 ret = 0;
1445
1446 out:
1447 return ret;
1448 }
1449 EXPORT_SYMBOL(remove_arg_zero);
1450
1451 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1452 /*
1453 * cycle the list of binary formats handler, until one recognizes the image
1454 */
search_binary_handler(struct linux_binprm * bprm)1455 int search_binary_handler(struct linux_binprm *bprm)
1456 {
1457 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1458 struct linux_binfmt *fmt;
1459 int retval;
1460
1461 /* This allows 4 levels of binfmt rewrites before failing hard. */
1462 if (bprm->recursion_depth > 5)
1463 return -ELOOP;
1464
1465 retval = security_bprm_check(bprm);
1466 if (retval)
1467 return retval;
1468
1469 retval = -ENOENT;
1470 retry:
1471 read_lock(&binfmt_lock);
1472 list_for_each_entry(fmt, &formats, lh) {
1473 if (!try_module_get(fmt->module))
1474 continue;
1475 read_unlock(&binfmt_lock);
1476 bprm->recursion_depth++;
1477 retval = fmt->load_binary(bprm);
1478 read_lock(&binfmt_lock);
1479 put_binfmt(fmt);
1480 bprm->recursion_depth--;
1481 if (retval < 0 && !bprm->mm) {
1482 /* we got to flush_old_exec() and failed after it */
1483 read_unlock(&binfmt_lock);
1484 force_sigsegv(SIGSEGV, current);
1485 return retval;
1486 }
1487 if (retval != -ENOEXEC || !bprm->file) {
1488 read_unlock(&binfmt_lock);
1489 return retval;
1490 }
1491 }
1492 read_unlock(&binfmt_lock);
1493
1494 if (need_retry) {
1495 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1496 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1497 return retval;
1498 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1499 return retval;
1500 need_retry = false;
1501 goto retry;
1502 }
1503
1504 return retval;
1505 }
1506 EXPORT_SYMBOL(search_binary_handler);
1507
exec_binprm(struct linux_binprm * bprm)1508 static int exec_binprm(struct linux_binprm *bprm)
1509 {
1510 pid_t old_pid, old_vpid;
1511 int ret;
1512
1513 /* Need to fetch pid before load_binary changes it */
1514 old_pid = current->pid;
1515 rcu_read_lock();
1516 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1517 rcu_read_unlock();
1518
1519 ret = search_binary_handler(bprm);
1520 if (ret >= 0) {
1521 audit_bprm(bprm);
1522 trace_sched_process_exec(current, old_pid, bprm);
1523 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1524 proc_exec_connector(current);
1525 }
1526
1527 return ret;
1528 }
1529
1530 /*
1531 * sys_execve() executes a new program.
1532 */
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1533 static int do_execveat_common(int fd, struct filename *filename,
1534 struct user_arg_ptr argv,
1535 struct user_arg_ptr envp,
1536 int flags)
1537 {
1538 char *pathbuf = NULL;
1539 struct linux_binprm *bprm;
1540 struct file *file;
1541 struct files_struct *displaced;
1542 int retval;
1543
1544 if (IS_ERR(filename))
1545 return PTR_ERR(filename);
1546
1547 /*
1548 * We move the actual failure in case of RLIMIT_NPROC excess from
1549 * set*uid() to execve() because too many poorly written programs
1550 * don't check setuid() return code. Here we additionally recheck
1551 * whether NPROC limit is still exceeded.
1552 */
1553 if ((current->flags & PF_NPROC_EXCEEDED) &&
1554 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1555 retval = -EAGAIN;
1556 goto out_ret;
1557 }
1558
1559 /* We're below the limit (still or again), so we don't want to make
1560 * further execve() calls fail. */
1561 current->flags &= ~PF_NPROC_EXCEEDED;
1562
1563 retval = unshare_files(&displaced);
1564 if (retval)
1565 goto out_ret;
1566
1567 retval = -ENOMEM;
1568 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1569 if (!bprm)
1570 goto out_files;
1571
1572 retval = prepare_bprm_creds(bprm);
1573 if (retval)
1574 goto out_free;
1575
1576 check_unsafe_exec(bprm);
1577 current->in_execve = 1;
1578
1579 file = do_open_execat(fd, filename, flags);
1580 retval = PTR_ERR(file);
1581 if (IS_ERR(file))
1582 goto out_unmark;
1583
1584 sched_exec();
1585
1586 bprm->file = file;
1587 if (fd == AT_FDCWD || filename->name[0] == '/') {
1588 bprm->filename = filename->name;
1589 } else {
1590 if (filename->name[0] == '\0')
1591 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1592 else
1593 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1594 fd, filename->name);
1595 if (!pathbuf) {
1596 retval = -ENOMEM;
1597 goto out_unmark;
1598 }
1599 /*
1600 * Record that a name derived from an O_CLOEXEC fd will be
1601 * inaccessible after exec. Relies on having exclusive access to
1602 * current->files (due to unshare_files above).
1603 */
1604 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1605 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1606 bprm->filename = pathbuf;
1607 }
1608 bprm->interp = bprm->filename;
1609
1610 retval = bprm_mm_init(bprm);
1611 if (retval)
1612 goto out_unmark;
1613
1614 bprm->argc = count(argv, MAX_ARG_STRINGS);
1615 if ((retval = bprm->argc) < 0)
1616 goto out;
1617
1618 bprm->envc = count(envp, MAX_ARG_STRINGS);
1619 if ((retval = bprm->envc) < 0)
1620 goto out;
1621
1622 retval = prepare_binprm(bprm);
1623 if (retval < 0)
1624 goto out;
1625
1626 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1627 if (retval < 0)
1628 goto out;
1629
1630 bprm->exec = bprm->p;
1631 retval = copy_strings(bprm->envc, envp, bprm);
1632 if (retval < 0)
1633 goto out;
1634
1635 retval = copy_strings(bprm->argc, argv, bprm);
1636 if (retval < 0)
1637 goto out;
1638
1639 retval = exec_binprm(bprm);
1640 if (retval < 0)
1641 goto out;
1642
1643 /* execve succeeded */
1644 current->fs->in_exec = 0;
1645 current->in_execve = 0;
1646 acct_update_integrals(current);
1647 task_numa_free(current, false);
1648 free_bprm(bprm);
1649 kfree(pathbuf);
1650 putname(filename);
1651 if (displaced)
1652 put_files_struct(displaced);
1653 return retval;
1654
1655 out:
1656 if (bprm->mm) {
1657 acct_arg_size(bprm, 0);
1658 mmput(bprm->mm);
1659 }
1660
1661 out_unmark:
1662 current->fs->in_exec = 0;
1663 current->in_execve = 0;
1664
1665 out_free:
1666 free_bprm(bprm);
1667 kfree(pathbuf);
1668
1669 out_files:
1670 if (displaced)
1671 reset_files_struct(displaced);
1672 out_ret:
1673 putname(filename);
1674 return retval;
1675 }
1676
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1677 int do_execve(struct filename *filename,
1678 const char __user *const __user *__argv,
1679 const char __user *const __user *__envp)
1680 {
1681 struct user_arg_ptr argv = { .ptr.native = __argv };
1682 struct user_arg_ptr envp = { .ptr.native = __envp };
1683 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1684 }
1685
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)1686 int do_execveat(int fd, struct filename *filename,
1687 const char __user *const __user *__argv,
1688 const char __user *const __user *__envp,
1689 int flags)
1690 {
1691 struct user_arg_ptr argv = { .ptr.native = __argv };
1692 struct user_arg_ptr envp = { .ptr.native = __envp };
1693
1694 return do_execveat_common(fd, filename, argv, envp, flags);
1695 }
1696
1697 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1698 static int compat_do_execve(struct filename *filename,
1699 const compat_uptr_t __user *__argv,
1700 const compat_uptr_t __user *__envp)
1701 {
1702 struct user_arg_ptr argv = {
1703 .is_compat = true,
1704 .ptr.compat = __argv,
1705 };
1706 struct user_arg_ptr envp = {
1707 .is_compat = true,
1708 .ptr.compat = __envp,
1709 };
1710 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1711 }
1712
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)1713 static int compat_do_execveat(int fd, struct filename *filename,
1714 const compat_uptr_t __user *__argv,
1715 const compat_uptr_t __user *__envp,
1716 int flags)
1717 {
1718 struct user_arg_ptr argv = {
1719 .is_compat = true,
1720 .ptr.compat = __argv,
1721 };
1722 struct user_arg_ptr envp = {
1723 .is_compat = true,
1724 .ptr.compat = __envp,
1725 };
1726 return do_execveat_common(fd, filename, argv, envp, flags);
1727 }
1728 #endif
1729
set_binfmt(struct linux_binfmt * new)1730 void set_binfmt(struct linux_binfmt *new)
1731 {
1732 struct mm_struct *mm = current->mm;
1733
1734 if (mm->binfmt)
1735 module_put(mm->binfmt->module);
1736
1737 mm->binfmt = new;
1738 if (new)
1739 __module_get(new->module);
1740 }
1741 EXPORT_SYMBOL(set_binfmt);
1742
1743 /*
1744 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1745 */
set_dumpable(struct mm_struct * mm,int value)1746 void set_dumpable(struct mm_struct *mm, int value)
1747 {
1748 unsigned long old, new;
1749
1750 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1751 return;
1752
1753 do {
1754 old = ACCESS_ONCE(mm->flags);
1755 new = (old & ~MMF_DUMPABLE_MASK) | value;
1756 } while (cmpxchg(&mm->flags, old, new) != old);
1757 }
1758
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)1759 SYSCALL_DEFINE3(execve,
1760 const char __user *, filename,
1761 const char __user *const __user *, argv,
1762 const char __user *const __user *, envp)
1763 {
1764 return do_execve(getname(filename), argv, envp);
1765 }
1766
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)1767 SYSCALL_DEFINE5(execveat,
1768 int, fd, const char __user *, filename,
1769 const char __user *const __user *, argv,
1770 const char __user *const __user *, envp,
1771 int, flags)
1772 {
1773 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1774
1775 return do_execveat(fd,
1776 getname_flags(filename, lookup_flags, NULL),
1777 argv, envp, flags);
1778 }
1779
1780 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)1781 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1782 const compat_uptr_t __user *, argv,
1783 const compat_uptr_t __user *, envp)
1784 {
1785 return compat_do_execve(getname(filename), argv, envp);
1786 }
1787
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)1788 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1789 const char __user *, filename,
1790 const compat_uptr_t __user *, argv,
1791 const compat_uptr_t __user *, envp,
1792 int, flags)
1793 {
1794 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1795
1796 return compat_do_execveat(fd,
1797 getname_flags(filename, lookup_flags, NULL),
1798 argv, envp, flags);
1799 }
1800 #endif
1801