• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71 
72 #include <asm/uaccess.h>
73 
74 #include <trace/events/vmscan.h>
75 
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78 
79 #define MEM_CGROUP_RECLAIM_RETRIES	5
80 static struct mem_cgroup *root_mem_cgroup __read_mostly;
81 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
82 
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 static const char * const mem_cgroup_stat_names[] = {
91 	"cache",
92 	"rss",
93 	"rss_huge",
94 	"mapped_file",
95 	"dirty",
96 	"writeback",
97 	"swap",
98 };
99 
100 static const char * const mem_cgroup_events_names[] = {
101 	"pgpgin",
102 	"pgpgout",
103 	"pgfault",
104 	"pgmajfault",
105 };
106 
107 static const char * const mem_cgroup_lru_names[] = {
108 	"inactive_anon",
109 	"active_anon",
110 	"inactive_file",
111 	"active_file",
112 	"unevictable",
113 };
114 
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET	1024
118 
119 /*
120  * Cgroups above their limits are maintained in a RB-Tree, independent of
121  * their hierarchy representation
122  */
123 
124 struct mem_cgroup_tree_per_zone {
125 	struct rb_root rb_root;
126 	spinlock_t lock;
127 };
128 
129 struct mem_cgroup_tree_per_node {
130 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131 };
132 
133 struct mem_cgroup_tree {
134 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135 };
136 
137 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138 
139 /* for OOM */
140 struct mem_cgroup_eventfd_list {
141 	struct list_head list;
142 	struct eventfd_ctx *eventfd;
143 };
144 
145 /*
146  * cgroup_event represents events which userspace want to receive.
147  */
148 struct mem_cgroup_event {
149 	/*
150 	 * memcg which the event belongs to.
151 	 */
152 	struct mem_cgroup *memcg;
153 	/*
154 	 * eventfd to signal userspace about the event.
155 	 */
156 	struct eventfd_ctx *eventfd;
157 	/*
158 	 * Each of these stored in a list by the cgroup.
159 	 */
160 	struct list_head list;
161 	/*
162 	 * register_event() callback will be used to add new userspace
163 	 * waiter for changes related to this event.  Use eventfd_signal()
164 	 * on eventfd to send notification to userspace.
165 	 */
166 	int (*register_event)(struct mem_cgroup *memcg,
167 			      struct eventfd_ctx *eventfd, const char *args);
168 	/*
169 	 * unregister_event() callback will be called when userspace closes
170 	 * the eventfd or on cgroup removing.  This callback must be set,
171 	 * if you want provide notification functionality.
172 	 */
173 	void (*unregister_event)(struct mem_cgroup *memcg,
174 				 struct eventfd_ctx *eventfd);
175 	/*
176 	 * All fields below needed to unregister event when
177 	 * userspace closes eventfd.
178 	 */
179 	poll_table pt;
180 	wait_queue_head_t *wqh;
181 	wait_queue_t wait;
182 	struct work_struct remove;
183 };
184 
185 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
187 
188 /* Stuffs for move charges at task migration. */
189 /*
190  * Types of charges to be moved.
191  */
192 #define MOVE_ANON	0x1U
193 #define MOVE_FILE	0x2U
194 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
195 
196 /* "mc" and its members are protected by cgroup_mutex */
197 static struct move_charge_struct {
198 	spinlock_t	  lock; /* for from, to */
199 	struct mm_struct  *mm;
200 	struct mem_cgroup *from;
201 	struct mem_cgroup *to;
202 	unsigned long flags;
203 	unsigned long precharge;
204 	unsigned long moved_charge;
205 	unsigned long moved_swap;
206 	struct task_struct *moving_task;	/* a task moving charges */
207 	wait_queue_head_t waitq;		/* a waitq for other context */
208 } mc = {
209 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
210 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
211 };
212 
213 /*
214  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
215  * limit reclaim to prevent infinite loops, if they ever occur.
216  */
217 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
218 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
219 
220 enum charge_type {
221 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
222 	MEM_CGROUP_CHARGE_TYPE_ANON,
223 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
224 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
225 	NR_CHARGE_TYPE,
226 };
227 
228 /* for encoding cft->private value on file */
229 enum res_type {
230 	_MEM,
231 	_MEMSWAP,
232 	_OOM_TYPE,
233 	_KMEM,
234 };
235 
236 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
237 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
238 #define MEMFILE_ATTR(val)	((val) & 0xffff)
239 /* Used for OOM nofiier */
240 #define OOM_CONTROL		(0)
241 
242 /*
243  * The memcg_create_mutex will be held whenever a new cgroup is created.
244  * As a consequence, any change that needs to protect against new child cgroups
245  * appearing has to hold it as well.
246  */
247 static DEFINE_MUTEX(memcg_create_mutex);
248 
249 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)250 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251 {
252 	if (!memcg)
253 		memcg = root_mem_cgroup;
254 	return &memcg->vmpressure;
255 }
256 
vmpressure_to_css(struct vmpressure * vmpr)257 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258 {
259 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260 }
261 
mem_cgroup_is_root(struct mem_cgroup * memcg)262 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
263 {
264 	return (memcg == root_mem_cgroup);
265 }
266 
267 /*
268  * We restrict the id in the range of [1, 65535], so it can fit into
269  * an unsigned short.
270  */
271 #define MEM_CGROUP_ID_MAX	USHRT_MAX
272 
mem_cgroup_id(struct mem_cgroup * memcg)273 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
274 {
275 	return memcg->id.id;
276 }
277 
278 /* Writing them here to avoid exposing memcg's inner layout */
279 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
280 
sock_update_memcg(struct sock * sk)281 void sock_update_memcg(struct sock *sk)
282 {
283 	if (mem_cgroup_sockets_enabled) {
284 		struct mem_cgroup *memcg;
285 		struct cg_proto *cg_proto;
286 
287 		BUG_ON(!sk->sk_prot->proto_cgroup);
288 
289 		/* Socket cloning can throw us here with sk_cgrp already
290 		 * filled. It won't however, necessarily happen from
291 		 * process context. So the test for root memcg given
292 		 * the current task's memcg won't help us in this case.
293 		 *
294 		 * Respecting the original socket's memcg is a better
295 		 * decision in this case.
296 		 */
297 		if (sk->sk_cgrp) {
298 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
299 			css_get(&sk->sk_cgrp->memcg->css);
300 			return;
301 		}
302 
303 		rcu_read_lock();
304 		memcg = mem_cgroup_from_task(current);
305 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
306 		if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
307 		    css_tryget_online(&memcg->css)) {
308 			sk->sk_cgrp = cg_proto;
309 		}
310 		rcu_read_unlock();
311 	}
312 }
313 EXPORT_SYMBOL(sock_update_memcg);
314 
sock_release_memcg(struct sock * sk)315 void sock_release_memcg(struct sock *sk)
316 {
317 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
318 		struct mem_cgroup *memcg;
319 		WARN_ON(!sk->sk_cgrp->memcg);
320 		memcg = sk->sk_cgrp->memcg;
321 		css_put(&sk->sk_cgrp->memcg->css);
322 	}
323 }
324 
tcp_proto_cgroup(struct mem_cgroup * memcg)325 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
326 {
327 	if (!memcg || mem_cgroup_is_root(memcg))
328 		return NULL;
329 
330 	return &memcg->tcp_mem;
331 }
332 EXPORT_SYMBOL(tcp_proto_cgroup);
333 
334 #endif
335 
336 #ifdef CONFIG_MEMCG_KMEM
337 /*
338  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
339  * The main reason for not using cgroup id for this:
340  *  this works better in sparse environments, where we have a lot of memcgs,
341  *  but only a few kmem-limited. Or also, if we have, for instance, 200
342  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
343  *  200 entry array for that.
344  *
345  * The current size of the caches array is stored in memcg_nr_cache_ids. It
346  * will double each time we have to increase it.
347  */
348 static DEFINE_IDA(memcg_cache_ida);
349 int memcg_nr_cache_ids;
350 
351 /* Protects memcg_nr_cache_ids */
352 static DECLARE_RWSEM(memcg_cache_ids_sem);
353 
memcg_get_cache_ids(void)354 void memcg_get_cache_ids(void)
355 {
356 	down_read(&memcg_cache_ids_sem);
357 }
358 
memcg_put_cache_ids(void)359 void memcg_put_cache_ids(void)
360 {
361 	up_read(&memcg_cache_ids_sem);
362 }
363 
364 /*
365  * MIN_SIZE is different than 1, because we would like to avoid going through
366  * the alloc/free process all the time. In a small machine, 4 kmem-limited
367  * cgroups is a reasonable guess. In the future, it could be a parameter or
368  * tunable, but that is strictly not necessary.
369  *
370  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
371  * this constant directly from cgroup, but it is understandable that this is
372  * better kept as an internal representation in cgroup.c. In any case, the
373  * cgrp_id space is not getting any smaller, and we don't have to necessarily
374  * increase ours as well if it increases.
375  */
376 #define MEMCG_CACHES_MIN_SIZE 4
377 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
378 
379 /*
380  * A lot of the calls to the cache allocation functions are expected to be
381  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
382  * conditional to this static branch, we'll have to allow modules that does
383  * kmem_cache_alloc and the such to see this symbol as well
384  */
385 struct static_key memcg_kmem_enabled_key;
386 EXPORT_SYMBOL(memcg_kmem_enabled_key);
387 
388 #endif /* CONFIG_MEMCG_KMEM */
389 
390 static struct mem_cgroup_per_zone *
mem_cgroup_zone_zoneinfo(struct mem_cgroup * memcg,struct zone * zone)391 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
392 {
393 	int nid = zone_to_nid(zone);
394 	int zid = zone_idx(zone);
395 
396 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
397 }
398 
399 /**
400  * mem_cgroup_css_from_page - css of the memcg associated with a page
401  * @page: page of interest
402  *
403  * If memcg is bound to the default hierarchy, css of the memcg associated
404  * with @page is returned.  The returned css remains associated with @page
405  * until it is released.
406  *
407  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
408  * is returned.
409  *
410  * XXX: The above description of behavior on the default hierarchy isn't
411  * strictly true yet as replace_page_cache_page() can modify the
412  * association before @page is released even on the default hierarchy;
413  * however, the current and planned usages don't mix the the two functions
414  * and replace_page_cache_page() will soon be updated to make the invariant
415  * actually true.
416  */
mem_cgroup_css_from_page(struct page * page)417 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
418 {
419 	struct mem_cgroup *memcg;
420 
421 	rcu_read_lock();
422 
423 	memcg = page->mem_cgroup;
424 
425 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
426 		memcg = root_mem_cgroup;
427 
428 	rcu_read_unlock();
429 	return &memcg->css;
430 }
431 
432 /**
433  * page_cgroup_ino - return inode number of the memcg a page is charged to
434  * @page: the page
435  *
436  * Look up the closest online ancestor of the memory cgroup @page is charged to
437  * and return its inode number or 0 if @page is not charged to any cgroup. It
438  * is safe to call this function without holding a reference to @page.
439  *
440  * Note, this function is inherently racy, because there is nothing to prevent
441  * the cgroup inode from getting torn down and potentially reallocated a moment
442  * after page_cgroup_ino() returns, so it only should be used by callers that
443  * do not care (such as procfs interfaces).
444  */
page_cgroup_ino(struct page * page)445 ino_t page_cgroup_ino(struct page *page)
446 {
447 	struct mem_cgroup *memcg;
448 	unsigned long ino = 0;
449 
450 	rcu_read_lock();
451 	memcg = READ_ONCE(page->mem_cgroup);
452 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
453 		memcg = parent_mem_cgroup(memcg);
454 	if (memcg)
455 		ino = cgroup_ino(memcg->css.cgroup);
456 	rcu_read_unlock();
457 	return ino;
458 }
459 
460 static struct mem_cgroup_per_zone *
mem_cgroup_page_zoneinfo(struct mem_cgroup * memcg,struct page * page)461 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
462 {
463 	int nid = page_to_nid(page);
464 	int zid = page_zonenum(page);
465 
466 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
467 }
468 
469 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid,int zid)470 soft_limit_tree_node_zone(int nid, int zid)
471 {
472 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
473 }
474 
475 static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page * page)476 soft_limit_tree_from_page(struct page *page)
477 {
478 	int nid = page_to_nid(page);
479 	int zid = page_zonenum(page);
480 
481 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
482 }
483 
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz,unsigned long new_usage_in_excess)484 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
485 					 struct mem_cgroup_tree_per_zone *mctz,
486 					 unsigned long new_usage_in_excess)
487 {
488 	struct rb_node **p = &mctz->rb_root.rb_node;
489 	struct rb_node *parent = NULL;
490 	struct mem_cgroup_per_zone *mz_node;
491 
492 	if (mz->on_tree)
493 		return;
494 
495 	mz->usage_in_excess = new_usage_in_excess;
496 	if (!mz->usage_in_excess)
497 		return;
498 	while (*p) {
499 		parent = *p;
500 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
501 					tree_node);
502 		if (mz->usage_in_excess < mz_node->usage_in_excess)
503 			p = &(*p)->rb_left;
504 		/*
505 		 * We can't avoid mem cgroups that are over their soft
506 		 * limit by the same amount
507 		 */
508 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
509 			p = &(*p)->rb_right;
510 	}
511 	rb_link_node(&mz->tree_node, parent, p);
512 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
513 	mz->on_tree = true;
514 }
515 
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)516 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
517 					 struct mem_cgroup_tree_per_zone *mctz)
518 {
519 	if (!mz->on_tree)
520 		return;
521 	rb_erase(&mz->tree_node, &mctz->rb_root);
522 	mz->on_tree = false;
523 }
524 
mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone * mz,struct mem_cgroup_tree_per_zone * mctz)525 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
526 				       struct mem_cgroup_tree_per_zone *mctz)
527 {
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&mctz->lock, flags);
531 	__mem_cgroup_remove_exceeded(mz, mctz);
532 	spin_unlock_irqrestore(&mctz->lock, flags);
533 }
534 
soft_limit_excess(struct mem_cgroup * memcg)535 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
536 {
537 	unsigned long nr_pages = page_counter_read(&memcg->memory);
538 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
539 	unsigned long excess = 0;
540 
541 	if (nr_pages > soft_limit)
542 		excess = nr_pages - soft_limit;
543 
544 	return excess;
545 }
546 
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)547 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
548 {
549 	unsigned long excess;
550 	struct mem_cgroup_per_zone *mz;
551 	struct mem_cgroup_tree_per_zone *mctz;
552 
553 	mctz = soft_limit_tree_from_page(page);
554 	/*
555 	 * Necessary to update all ancestors when hierarchy is used.
556 	 * because their event counter is not touched.
557 	 */
558 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
559 		mz = mem_cgroup_page_zoneinfo(memcg, page);
560 		excess = soft_limit_excess(memcg);
561 		/*
562 		 * We have to update the tree if mz is on RB-tree or
563 		 * mem is over its softlimit.
564 		 */
565 		if (excess || mz->on_tree) {
566 			unsigned long flags;
567 
568 			spin_lock_irqsave(&mctz->lock, flags);
569 			/* if on-tree, remove it */
570 			if (mz->on_tree)
571 				__mem_cgroup_remove_exceeded(mz, mctz);
572 			/*
573 			 * Insert again. mz->usage_in_excess will be updated.
574 			 * If excess is 0, no tree ops.
575 			 */
576 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
577 			spin_unlock_irqrestore(&mctz->lock, flags);
578 		}
579 	}
580 }
581 
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)582 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
583 {
584 	struct mem_cgroup_tree_per_zone *mctz;
585 	struct mem_cgroup_per_zone *mz;
586 	int nid, zid;
587 
588 	for_each_node(nid) {
589 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
590 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
591 			mctz = soft_limit_tree_node_zone(nid, zid);
592 			mem_cgroup_remove_exceeded(mz, mctz);
593 		}
594 	}
595 }
596 
597 static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)598 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
599 {
600 	struct rb_node *rightmost = NULL;
601 	struct mem_cgroup_per_zone *mz;
602 
603 retry:
604 	mz = NULL;
605 	rightmost = rb_last(&mctz->rb_root);
606 	if (!rightmost)
607 		goto done;		/* Nothing to reclaim from */
608 
609 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
610 	/*
611 	 * Remove the node now but someone else can add it back,
612 	 * we will to add it back at the end of reclaim to its correct
613 	 * position in the tree.
614 	 */
615 	__mem_cgroup_remove_exceeded(mz, mctz);
616 	if (!soft_limit_excess(mz->memcg) ||
617 	    !css_tryget_online(&mz->memcg->css))
618 		goto retry;
619 done:
620 	return mz;
621 }
622 
623 static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone * mctz)624 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
625 {
626 	struct mem_cgroup_per_zone *mz;
627 
628 	spin_lock_irq(&mctz->lock);
629 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
630 	spin_unlock_irq(&mctz->lock);
631 	return mz;
632 }
633 
634 /*
635  * Return page count for single (non recursive) @memcg.
636  *
637  * Implementation Note: reading percpu statistics for memcg.
638  *
639  * Both of vmstat[] and percpu_counter has threshold and do periodic
640  * synchronization to implement "quick" read. There are trade-off between
641  * reading cost and precision of value. Then, we may have a chance to implement
642  * a periodic synchronization of counter in memcg's counter.
643  *
644  * But this _read() function is used for user interface now. The user accounts
645  * memory usage by memory cgroup and he _always_ requires exact value because
646  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647  * have to visit all online cpus and make sum. So, for now, unnecessary
648  * synchronization is not implemented. (just implemented for cpu hotplug)
649  *
650  * If there are kernel internal actions which can make use of some not-exact
651  * value, and reading all cpu value can be performance bottleneck in some
652  * common workload, threshold and synchronization as vmstat[] should be
653  * implemented.
654  */
655 static unsigned long
mem_cgroup_read_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)656 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
657 {
658 	long val = 0;
659 	int cpu;
660 
661 	/* Per-cpu values can be negative, use a signed accumulator */
662 	for_each_possible_cpu(cpu)
663 		val += per_cpu(memcg->stat->count[idx], cpu);
664 	/*
665 	 * Summing races with updates, so val may be negative.  Avoid exposing
666 	 * transient negative values.
667 	 */
668 	if (val < 0)
669 		val = 0;
670 	return val;
671 }
672 
mem_cgroup_read_events(struct mem_cgroup * memcg,enum mem_cgroup_events_index idx)673 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
674 					    enum mem_cgroup_events_index idx)
675 {
676 	unsigned long val = 0;
677 	int cpu;
678 
679 	for_each_possible_cpu(cpu)
680 		val += per_cpu(memcg->stat->events[idx], cpu);
681 	return val;
682 }
683 
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,int nr_pages)684 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
685 					 struct page *page,
686 					 int nr_pages)
687 {
688 	/*
689 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
690 	 * counted as CACHE even if it's on ANON LRU.
691 	 */
692 	if (PageAnon(page))
693 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
694 				nr_pages);
695 	else
696 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
697 				nr_pages);
698 
699 	if (PageTransHuge(page))
700 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
701 				nr_pages);
702 
703 	/* pagein of a big page is an event. So, ignore page size */
704 	if (nr_pages > 0)
705 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
706 	else {
707 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
708 		nr_pages = -nr_pages; /* for event */
709 	}
710 
711 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
712 }
713 
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask)714 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
715 						  int nid,
716 						  unsigned int lru_mask)
717 {
718 	unsigned long nr = 0;
719 	int zid;
720 
721 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
722 
723 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
724 		struct mem_cgroup_per_zone *mz;
725 		enum lru_list lru;
726 
727 		for_each_lru(lru) {
728 			if (!(BIT(lru) & lru_mask))
729 				continue;
730 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
731 			nr += mz->lru_size[lru];
732 		}
733 	}
734 	return nr;
735 }
736 
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask)737 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
738 			unsigned int lru_mask)
739 {
740 	unsigned long nr = 0;
741 	int nid;
742 
743 	for_each_node_state(nid, N_MEMORY)
744 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
745 	return nr;
746 }
747 
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)748 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
749 				       enum mem_cgroup_events_target target)
750 {
751 	unsigned long val, next;
752 
753 	val = __this_cpu_read(memcg->stat->nr_page_events);
754 	next = __this_cpu_read(memcg->stat->targets[target]);
755 	/* from time_after() in jiffies.h */
756 	if ((long)next - (long)val < 0) {
757 		switch (target) {
758 		case MEM_CGROUP_TARGET_THRESH:
759 			next = val + THRESHOLDS_EVENTS_TARGET;
760 			break;
761 		case MEM_CGROUP_TARGET_SOFTLIMIT:
762 			next = val + SOFTLIMIT_EVENTS_TARGET;
763 			break;
764 		case MEM_CGROUP_TARGET_NUMAINFO:
765 			next = val + NUMAINFO_EVENTS_TARGET;
766 			break;
767 		default:
768 			break;
769 		}
770 		__this_cpu_write(memcg->stat->targets[target], next);
771 		return true;
772 	}
773 	return false;
774 }
775 
776 /*
777  * Check events in order.
778  *
779  */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)780 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
781 {
782 	/* threshold event is triggered in finer grain than soft limit */
783 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
784 						MEM_CGROUP_TARGET_THRESH))) {
785 		bool do_softlimit;
786 		bool do_numainfo __maybe_unused;
787 
788 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
789 						MEM_CGROUP_TARGET_SOFTLIMIT);
790 #if MAX_NUMNODES > 1
791 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
792 						MEM_CGROUP_TARGET_NUMAINFO);
793 #endif
794 		mem_cgroup_threshold(memcg);
795 		if (unlikely(do_softlimit))
796 			mem_cgroup_update_tree(memcg, page);
797 #if MAX_NUMNODES > 1
798 		if (unlikely(do_numainfo))
799 			atomic_inc(&memcg->numainfo_events);
800 #endif
801 	}
802 }
803 
mem_cgroup_from_task(struct task_struct * p)804 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
805 {
806 	/*
807 	 * mm_update_next_owner() may clear mm->owner to NULL
808 	 * if it races with swapoff, page migration, etc.
809 	 * So this can be called with p == NULL.
810 	 */
811 	if (unlikely(!p))
812 		return NULL;
813 
814 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
815 }
816 EXPORT_SYMBOL(mem_cgroup_from_task);
817 
get_mem_cgroup_from_mm(struct mm_struct * mm)818 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
819 {
820 	struct mem_cgroup *memcg = NULL;
821 
822 	rcu_read_lock();
823 	do {
824 		/*
825 		 * Page cache insertions can happen withou an
826 		 * actual mm context, e.g. during disk probing
827 		 * on boot, loopback IO, acct() writes etc.
828 		 */
829 		if (unlikely(!mm))
830 			memcg = root_mem_cgroup;
831 		else {
832 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
833 			if (unlikely(!memcg))
834 				memcg = root_mem_cgroup;
835 		}
836 	} while (!css_tryget(&memcg->css));
837 	rcu_read_unlock();
838 	return memcg;
839 }
840 
841 /**
842  * mem_cgroup_iter - iterate over memory cgroup hierarchy
843  * @root: hierarchy root
844  * @prev: previously returned memcg, NULL on first invocation
845  * @reclaim: cookie for shared reclaim walks, NULL for full walks
846  *
847  * Returns references to children of the hierarchy below @root, or
848  * @root itself, or %NULL after a full round-trip.
849  *
850  * Caller must pass the return value in @prev on subsequent
851  * invocations for reference counting, or use mem_cgroup_iter_break()
852  * to cancel a hierarchy walk before the round-trip is complete.
853  *
854  * Reclaimers can specify a zone and a priority level in @reclaim to
855  * divide up the memcgs in the hierarchy among all concurrent
856  * reclaimers operating on the same zone and priority.
857  */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)858 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
859 				   struct mem_cgroup *prev,
860 				   struct mem_cgroup_reclaim_cookie *reclaim)
861 {
862 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
863 	struct cgroup_subsys_state *css = NULL;
864 	struct mem_cgroup *memcg = NULL;
865 	struct mem_cgroup *pos = NULL;
866 
867 	if (mem_cgroup_disabled())
868 		return NULL;
869 
870 	if (!root)
871 		root = root_mem_cgroup;
872 
873 	if (prev && !reclaim)
874 		pos = prev;
875 
876 	if (!root->use_hierarchy && root != root_mem_cgroup) {
877 		if (prev)
878 			goto out;
879 		return root;
880 	}
881 
882 	rcu_read_lock();
883 
884 	if (reclaim) {
885 		struct mem_cgroup_per_zone *mz;
886 
887 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
888 		iter = &mz->iter[reclaim->priority];
889 
890 		if (prev && reclaim->generation != iter->generation)
891 			goto out_unlock;
892 
893 		while (1) {
894 			pos = READ_ONCE(iter->position);
895 			if (!pos || css_tryget(&pos->css))
896 				break;
897 			/*
898 			 * css reference reached zero, so iter->position will
899 			 * be cleared by ->css_released. However, we should not
900 			 * rely on this happening soon, because ->css_released
901 			 * is called from a work queue, and by busy-waiting we
902 			 * might block it. So we clear iter->position right
903 			 * away.
904 			 */
905 			(void)cmpxchg(&iter->position, pos, NULL);
906 		}
907 	}
908 
909 	if (pos)
910 		css = &pos->css;
911 
912 	for (;;) {
913 		css = css_next_descendant_pre(css, &root->css);
914 		if (!css) {
915 			/*
916 			 * Reclaimers share the hierarchy walk, and a
917 			 * new one might jump in right at the end of
918 			 * the hierarchy - make sure they see at least
919 			 * one group and restart from the beginning.
920 			 */
921 			if (!prev)
922 				continue;
923 			break;
924 		}
925 
926 		/*
927 		 * Verify the css and acquire a reference.  The root
928 		 * is provided by the caller, so we know it's alive
929 		 * and kicking, and don't take an extra reference.
930 		 */
931 		memcg = mem_cgroup_from_css(css);
932 
933 		if (css == &root->css)
934 			break;
935 
936 		if (css_tryget(css)) {
937 			/*
938 			 * Make sure the memcg is initialized:
939 			 * mem_cgroup_css_online() orders the the
940 			 * initialization against setting the flag.
941 			 */
942 			if (smp_load_acquire(&memcg->initialized))
943 				break;
944 
945 			css_put(css);
946 		}
947 
948 		memcg = NULL;
949 	}
950 
951 	if (reclaim) {
952 		/*
953 		 * The position could have already been updated by a competing
954 		 * thread, so check that the value hasn't changed since we read
955 		 * it to avoid reclaiming from the same cgroup twice.
956 		 */
957 		(void)cmpxchg(&iter->position, pos, memcg);
958 
959 		if (pos)
960 			css_put(&pos->css);
961 
962 		if (!memcg)
963 			iter->generation++;
964 		else if (!prev)
965 			reclaim->generation = iter->generation;
966 	}
967 
968 out_unlock:
969 	rcu_read_unlock();
970 out:
971 	if (prev && prev != root)
972 		css_put(&prev->css);
973 
974 	return memcg;
975 }
976 
977 /**
978  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
979  * @root: hierarchy root
980  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
981  */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)982 void mem_cgroup_iter_break(struct mem_cgroup *root,
983 			   struct mem_cgroup *prev)
984 {
985 	if (!root)
986 		root = root_mem_cgroup;
987 	if (prev && prev != root)
988 		css_put(&prev->css);
989 }
990 
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)991 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
992 					struct mem_cgroup *dead_memcg)
993 {
994 	struct mem_cgroup_reclaim_iter *iter;
995 	struct mem_cgroup_per_zone *mz;
996 	int nid, zid;
997 	int i;
998 
999 	for_each_node(nid) {
1000 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1001 			mz = &from->nodeinfo[nid]->zoneinfo[zid];
1002 			for (i = 0; i <= DEF_PRIORITY; i++) {
1003 				iter = &mz->iter[i];
1004 				cmpxchg(&iter->position,
1005 					dead_memcg, NULL);
1006 			}
1007 		}
1008 	}
1009 }
1010 
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1011 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1012 {
1013 	struct mem_cgroup *memcg = dead_memcg;
1014 	struct mem_cgroup *last;
1015 
1016 	do {
1017 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1018 		last = memcg;
1019 	} while ((memcg = parent_mem_cgroup(memcg)));
1020 
1021 	/*
1022 	 * When cgruop1 non-hierarchy mode is used,
1023 	 * parent_mem_cgroup() does not walk all the way up to the
1024 	 * cgroup root (root_mem_cgroup). So we have to handle
1025 	 * dead_memcg from cgroup root separately.
1026 	 */
1027 	if (last != root_mem_cgroup)
1028 		__invalidate_reclaim_iterators(root_mem_cgroup,
1029 						dead_memcg);
1030 }
1031 
1032 /*
1033  * Iteration constructs for visiting all cgroups (under a tree).  If
1034  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1035  * be used for reference counting.
1036  */
1037 #define for_each_mem_cgroup_tree(iter, root)		\
1038 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1039 	     iter != NULL;				\
1040 	     iter = mem_cgroup_iter(root, iter, NULL))
1041 
1042 #define for_each_mem_cgroup(iter)			\
1043 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1044 	     iter != NULL;				\
1045 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1046 
1047 /**
1048  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1049  * @zone: zone of the wanted lruvec
1050  * @memcg: memcg of the wanted lruvec
1051  *
1052  * Returns the lru list vector holding pages for the given @zone and
1053  * @mem.  This can be the global zone lruvec, if the memory controller
1054  * is disabled.
1055  */
mem_cgroup_zone_lruvec(struct zone * zone,struct mem_cgroup * memcg)1056 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1057 				      struct mem_cgroup *memcg)
1058 {
1059 	struct mem_cgroup_per_zone *mz;
1060 	struct lruvec *lruvec;
1061 
1062 	if (mem_cgroup_disabled()) {
1063 		lruvec = &zone->lruvec;
1064 		goto out;
1065 	}
1066 
1067 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1068 	lruvec = &mz->lruvec;
1069 out:
1070 	/*
1071 	 * Since a node can be onlined after the mem_cgroup was created,
1072 	 * we have to be prepared to initialize lruvec->zone here;
1073 	 * and if offlined then reonlined, we need to reinitialize it.
1074 	 */
1075 	if (unlikely(lruvec->zone != zone))
1076 		lruvec->zone = zone;
1077 	return lruvec;
1078 }
1079 
1080 /**
1081  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1082  * @page: the page
1083  * @zone: zone of the page
1084  *
1085  * This function is only safe when following the LRU page isolation
1086  * and putback protocol: the LRU lock must be held, and the page must
1087  * either be PageLRU() or the caller must have isolated/allocated it.
1088  */
mem_cgroup_page_lruvec(struct page * page,struct zone * zone)1089 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1090 {
1091 	struct mem_cgroup_per_zone *mz;
1092 	struct mem_cgroup *memcg;
1093 	struct lruvec *lruvec;
1094 
1095 	if (mem_cgroup_disabled()) {
1096 		lruvec = &zone->lruvec;
1097 		goto out;
1098 	}
1099 
1100 	memcg = page->mem_cgroup;
1101 	/*
1102 	 * Swapcache readahead pages are added to the LRU - and
1103 	 * possibly migrated - before they are charged.
1104 	 */
1105 	if (!memcg)
1106 		memcg = root_mem_cgroup;
1107 
1108 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1109 	lruvec = &mz->lruvec;
1110 out:
1111 	/*
1112 	 * Since a node can be onlined after the mem_cgroup was created,
1113 	 * we have to be prepared to initialize lruvec->zone here;
1114 	 * and if offlined then reonlined, we need to reinitialize it.
1115 	 */
1116 	if (unlikely(lruvec->zone != zone))
1117 		lruvec->zone = zone;
1118 	return lruvec;
1119 }
1120 
1121 /**
1122  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1123  * @lruvec: mem_cgroup per zone lru vector
1124  * @lru: index of lru list the page is sitting on
1125  * @nr_pages: positive when adding or negative when removing
1126  *
1127  * This function must be called when a page is added to or removed from an
1128  * lru list.
1129  */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int nr_pages)1130 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1131 				int nr_pages)
1132 {
1133 	struct mem_cgroup_per_zone *mz;
1134 	unsigned long *lru_size;
1135 
1136 	if (mem_cgroup_disabled())
1137 		return;
1138 
1139 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1140 	lru_size = mz->lru_size + lru;
1141 	*lru_size += nr_pages;
1142 	VM_BUG_ON((long)(*lru_size) < 0);
1143 }
1144 
task_in_mem_cgroup(struct task_struct * task,struct mem_cgroup * memcg)1145 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1146 {
1147 	struct mem_cgroup *task_memcg;
1148 	struct task_struct *p;
1149 	bool ret;
1150 
1151 	p = find_lock_task_mm(task);
1152 	if (p) {
1153 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1154 		task_unlock(p);
1155 	} else {
1156 		/*
1157 		 * All threads may have already detached their mm's, but the oom
1158 		 * killer still needs to detect if they have already been oom
1159 		 * killed to prevent needlessly killing additional tasks.
1160 		 */
1161 		rcu_read_lock();
1162 		task_memcg = mem_cgroup_from_task(task);
1163 		css_get(&task_memcg->css);
1164 		rcu_read_unlock();
1165 	}
1166 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1167 	css_put(&task_memcg->css);
1168 	return ret;
1169 }
1170 
1171 #define mem_cgroup_from_counter(counter, member)	\
1172 	container_of(counter, struct mem_cgroup, member)
1173 
1174 /**
1175  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1176  * @memcg: the memory cgroup
1177  *
1178  * Returns the maximum amount of memory @mem can be charged with, in
1179  * pages.
1180  */
mem_cgroup_margin(struct mem_cgroup * memcg)1181 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1182 {
1183 	unsigned long margin = 0;
1184 	unsigned long count;
1185 	unsigned long limit;
1186 
1187 	count = page_counter_read(&memcg->memory);
1188 	limit = READ_ONCE(memcg->memory.limit);
1189 	if (count < limit)
1190 		margin = limit - count;
1191 
1192 	if (do_swap_account) {
1193 		count = page_counter_read(&memcg->memsw);
1194 		limit = READ_ONCE(memcg->memsw.limit);
1195 		if (count <= limit)
1196 			margin = min(margin, limit - count);
1197 	}
1198 
1199 	return margin;
1200 }
1201 
1202 /*
1203  * A routine for checking "mem" is under move_account() or not.
1204  *
1205  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1206  * moving cgroups. This is for waiting at high-memory pressure
1207  * caused by "move".
1208  */
mem_cgroup_under_move(struct mem_cgroup * memcg)1209 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1210 {
1211 	struct mem_cgroup *from;
1212 	struct mem_cgroup *to;
1213 	bool ret = false;
1214 	/*
1215 	 * Unlike task_move routines, we access mc.to, mc.from not under
1216 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1217 	 */
1218 	spin_lock(&mc.lock);
1219 	from = mc.from;
1220 	to = mc.to;
1221 	if (!from)
1222 		goto unlock;
1223 
1224 	ret = mem_cgroup_is_descendant(from, memcg) ||
1225 		mem_cgroup_is_descendant(to, memcg);
1226 unlock:
1227 	spin_unlock(&mc.lock);
1228 	return ret;
1229 }
1230 
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1231 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1232 {
1233 	if (mc.moving_task && current != mc.moving_task) {
1234 		if (mem_cgroup_under_move(memcg)) {
1235 			DEFINE_WAIT(wait);
1236 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1237 			/* moving charge context might have finished. */
1238 			if (mc.moving_task)
1239 				schedule();
1240 			finish_wait(&mc.waitq, &wait);
1241 			return true;
1242 		}
1243 	}
1244 	return false;
1245 }
1246 
1247 #define K(x) ((x) << (PAGE_SHIFT-10))
1248 /**
1249  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1250  * @memcg: The memory cgroup that went over limit
1251  * @p: Task that is going to be killed
1252  *
1253  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1254  * enabled
1255  */
mem_cgroup_print_oom_info(struct mem_cgroup * memcg,struct task_struct * p)1256 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1257 {
1258 	/* oom_info_lock ensures that parallel ooms do not interleave */
1259 	static DEFINE_MUTEX(oom_info_lock);
1260 	struct mem_cgroup *iter;
1261 	unsigned int i;
1262 
1263 	mutex_lock(&oom_info_lock);
1264 	rcu_read_lock();
1265 
1266 	if (p) {
1267 		pr_info("Task in ");
1268 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1269 		pr_cont(" killed as a result of limit of ");
1270 	} else {
1271 		pr_info("Memory limit reached of cgroup ");
1272 	}
1273 
1274 	pr_cont_cgroup_path(memcg->css.cgroup);
1275 	pr_cont("\n");
1276 
1277 	rcu_read_unlock();
1278 
1279 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1280 		K((u64)page_counter_read(&memcg->memory)),
1281 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1282 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1283 		K((u64)page_counter_read(&memcg->memsw)),
1284 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1285 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1286 		K((u64)page_counter_read(&memcg->kmem)),
1287 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1288 
1289 	for_each_mem_cgroup_tree(iter, memcg) {
1290 		pr_info("Memory cgroup stats for ");
1291 		pr_cont_cgroup_path(iter->css.cgroup);
1292 		pr_cont(":");
1293 
1294 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1295 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1296 				continue;
1297 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1298 				K(mem_cgroup_read_stat(iter, i)));
1299 		}
1300 
1301 		for (i = 0; i < NR_LRU_LISTS; i++)
1302 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1303 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1304 
1305 		pr_cont("\n");
1306 	}
1307 	mutex_unlock(&oom_info_lock);
1308 }
1309 
1310 /*
1311  * This function returns the number of memcg under hierarchy tree. Returns
1312  * 1(self count) if no children.
1313  */
mem_cgroup_count_children(struct mem_cgroup * memcg)1314 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1315 {
1316 	int num = 0;
1317 	struct mem_cgroup *iter;
1318 
1319 	for_each_mem_cgroup_tree(iter, memcg)
1320 		num++;
1321 	return num;
1322 }
1323 
1324 /*
1325  * Return the memory (and swap, if configured) limit for a memcg.
1326  */
mem_cgroup_get_limit(struct mem_cgroup * memcg)1327 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1328 {
1329 	unsigned long limit;
1330 
1331 	limit = memcg->memory.limit;
1332 	if (mem_cgroup_swappiness(memcg)) {
1333 		unsigned long memsw_limit;
1334 
1335 		memsw_limit = memcg->memsw.limit;
1336 		limit = min(limit + total_swap_pages, memsw_limit);
1337 	}
1338 	return limit;
1339 }
1340 
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1341 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1342 				     int order)
1343 {
1344 	struct oom_control oc = {
1345 		.zonelist = NULL,
1346 		.nodemask = NULL,
1347 		.gfp_mask = gfp_mask,
1348 		.order = order,
1349 	};
1350 	struct mem_cgroup *iter;
1351 	unsigned long chosen_points = 0;
1352 	unsigned long totalpages;
1353 	unsigned int points = 0;
1354 	struct task_struct *chosen = NULL;
1355 
1356 	mutex_lock(&oom_lock);
1357 
1358 	/*
1359 	 * If current has a pending SIGKILL or is exiting, then automatically
1360 	 * select it.  The goal is to allow it to allocate so that it may
1361 	 * quickly exit and free its memory.
1362 	 */
1363 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1364 		mark_oom_victim(current);
1365 		goto unlock;
1366 	}
1367 
1368 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1369 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1370 	for_each_mem_cgroup_tree(iter, memcg) {
1371 		struct css_task_iter it;
1372 		struct task_struct *task;
1373 
1374 		css_task_iter_start(&iter->css, &it);
1375 		while ((task = css_task_iter_next(&it))) {
1376 			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1377 			case OOM_SCAN_SELECT:
1378 				if (chosen)
1379 					put_task_struct(chosen);
1380 				chosen = task;
1381 				chosen_points = ULONG_MAX;
1382 				get_task_struct(chosen);
1383 				/* fall through */
1384 			case OOM_SCAN_CONTINUE:
1385 				continue;
1386 			case OOM_SCAN_ABORT:
1387 				css_task_iter_end(&it);
1388 				mem_cgroup_iter_break(memcg, iter);
1389 				if (chosen)
1390 					put_task_struct(chosen);
1391 				goto unlock;
1392 			case OOM_SCAN_OK:
1393 				break;
1394 			};
1395 			points = oom_badness(task, memcg, NULL, totalpages);
1396 			if (!points || points < chosen_points)
1397 				continue;
1398 			/* Prefer thread group leaders for display purposes */
1399 			if (points == chosen_points &&
1400 			    thread_group_leader(chosen))
1401 				continue;
1402 
1403 			if (chosen)
1404 				put_task_struct(chosen);
1405 			chosen = task;
1406 			chosen_points = points;
1407 			get_task_struct(chosen);
1408 		}
1409 		css_task_iter_end(&it);
1410 	}
1411 
1412 	if (chosen) {
1413 		points = chosen_points * 1000 / totalpages;
1414 		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1415 				 "Memory cgroup out of memory");
1416 	}
1417 unlock:
1418 	mutex_unlock(&oom_lock);
1419 	return chosen;
1420 }
1421 
1422 #if MAX_NUMNODES > 1
1423 
1424 /**
1425  * test_mem_cgroup_node_reclaimable
1426  * @memcg: the target memcg
1427  * @nid: the node ID to be checked.
1428  * @noswap : specify true here if the user wants flle only information.
1429  *
1430  * This function returns whether the specified memcg contains any
1431  * reclaimable pages on a node. Returns true if there are any reclaimable
1432  * pages in the node.
1433  */
test_mem_cgroup_node_reclaimable(struct mem_cgroup * memcg,int nid,bool noswap)1434 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1435 		int nid, bool noswap)
1436 {
1437 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1438 		return true;
1439 	if (noswap || !total_swap_pages)
1440 		return false;
1441 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1442 		return true;
1443 	return false;
1444 
1445 }
1446 
1447 /*
1448  * Always updating the nodemask is not very good - even if we have an empty
1449  * list or the wrong list here, we can start from some node and traverse all
1450  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1451  *
1452  */
mem_cgroup_may_update_nodemask(struct mem_cgroup * memcg)1453 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1454 {
1455 	int nid;
1456 	/*
1457 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1458 	 * pagein/pageout changes since the last update.
1459 	 */
1460 	if (!atomic_read(&memcg->numainfo_events))
1461 		return;
1462 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1463 		return;
1464 
1465 	/* make a nodemask where this memcg uses memory from */
1466 	memcg->scan_nodes = node_states[N_MEMORY];
1467 
1468 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1469 
1470 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1471 			node_clear(nid, memcg->scan_nodes);
1472 	}
1473 
1474 	atomic_set(&memcg->numainfo_events, 0);
1475 	atomic_set(&memcg->numainfo_updating, 0);
1476 }
1477 
1478 /*
1479  * Selecting a node where we start reclaim from. Because what we need is just
1480  * reducing usage counter, start from anywhere is O,K. Considering
1481  * memory reclaim from current node, there are pros. and cons.
1482  *
1483  * Freeing memory from current node means freeing memory from a node which
1484  * we'll use or we've used. So, it may make LRU bad. And if several threads
1485  * hit limits, it will see a contention on a node. But freeing from remote
1486  * node means more costs for memory reclaim because of memory latency.
1487  *
1488  * Now, we use round-robin. Better algorithm is welcomed.
1489  */
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1490 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1491 {
1492 	int node;
1493 
1494 	mem_cgroup_may_update_nodemask(memcg);
1495 	node = memcg->last_scanned_node;
1496 
1497 	node = next_node(node, memcg->scan_nodes);
1498 	if (node == MAX_NUMNODES)
1499 		node = first_node(memcg->scan_nodes);
1500 	/*
1501 	 * We call this when we hit limit, not when pages are added to LRU.
1502 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1503 	 * memcg is too small and all pages are not on LRU. In that case,
1504 	 * we use curret node.
1505 	 */
1506 	if (unlikely(node == MAX_NUMNODES))
1507 		node = numa_node_id();
1508 
1509 	memcg->last_scanned_node = node;
1510 	return node;
1511 }
1512 #else
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1513 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1514 {
1515 	return 0;
1516 }
1517 #endif
1518 
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,struct zone * zone,gfp_t gfp_mask,unsigned long * total_scanned)1519 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1520 				   struct zone *zone,
1521 				   gfp_t gfp_mask,
1522 				   unsigned long *total_scanned)
1523 {
1524 	struct mem_cgroup *victim = NULL;
1525 	int total = 0;
1526 	int loop = 0;
1527 	unsigned long excess;
1528 	unsigned long nr_scanned;
1529 	struct mem_cgroup_reclaim_cookie reclaim = {
1530 		.zone = zone,
1531 		.priority = 0,
1532 	};
1533 
1534 	excess = soft_limit_excess(root_memcg);
1535 
1536 	while (1) {
1537 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1538 		if (!victim) {
1539 			loop++;
1540 			if (loop >= 2) {
1541 				/*
1542 				 * If we have not been able to reclaim
1543 				 * anything, it might because there are
1544 				 * no reclaimable pages under this hierarchy
1545 				 */
1546 				if (!total)
1547 					break;
1548 				/*
1549 				 * We want to do more targeted reclaim.
1550 				 * excess >> 2 is not to excessive so as to
1551 				 * reclaim too much, nor too less that we keep
1552 				 * coming back to reclaim from this cgroup
1553 				 */
1554 				if (total >= (excess >> 2) ||
1555 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1556 					break;
1557 			}
1558 			continue;
1559 		}
1560 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1561 						     zone, &nr_scanned);
1562 		*total_scanned += nr_scanned;
1563 		if (!soft_limit_excess(root_memcg))
1564 			break;
1565 	}
1566 	mem_cgroup_iter_break(root_memcg, victim);
1567 	return total;
1568 }
1569 
1570 #ifdef CONFIG_LOCKDEP
1571 static struct lockdep_map memcg_oom_lock_dep_map = {
1572 	.name = "memcg_oom_lock",
1573 };
1574 #endif
1575 
1576 static DEFINE_SPINLOCK(memcg_oom_lock);
1577 
1578 /*
1579  * Check OOM-Killer is already running under our hierarchy.
1580  * If someone is running, return false.
1581  */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1582 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1583 {
1584 	struct mem_cgroup *iter, *failed = NULL;
1585 
1586 	spin_lock(&memcg_oom_lock);
1587 
1588 	for_each_mem_cgroup_tree(iter, memcg) {
1589 		if (iter->oom_lock) {
1590 			/*
1591 			 * this subtree of our hierarchy is already locked
1592 			 * so we cannot give a lock.
1593 			 */
1594 			failed = iter;
1595 			mem_cgroup_iter_break(memcg, iter);
1596 			break;
1597 		} else
1598 			iter->oom_lock = true;
1599 	}
1600 
1601 	if (failed) {
1602 		/*
1603 		 * OK, we failed to lock the whole subtree so we have
1604 		 * to clean up what we set up to the failing subtree
1605 		 */
1606 		for_each_mem_cgroup_tree(iter, memcg) {
1607 			if (iter == failed) {
1608 				mem_cgroup_iter_break(memcg, iter);
1609 				break;
1610 			}
1611 			iter->oom_lock = false;
1612 		}
1613 	} else
1614 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1615 
1616 	spin_unlock(&memcg_oom_lock);
1617 
1618 	return !failed;
1619 }
1620 
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1621 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1622 {
1623 	struct mem_cgroup *iter;
1624 
1625 	spin_lock(&memcg_oom_lock);
1626 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1627 	for_each_mem_cgroup_tree(iter, memcg)
1628 		iter->oom_lock = false;
1629 	spin_unlock(&memcg_oom_lock);
1630 }
1631 
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1632 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1633 {
1634 	struct mem_cgroup *iter;
1635 
1636 	spin_lock(&memcg_oom_lock);
1637 	for_each_mem_cgroup_tree(iter, memcg)
1638 		iter->under_oom++;
1639 	spin_unlock(&memcg_oom_lock);
1640 }
1641 
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1642 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1643 {
1644 	struct mem_cgroup *iter;
1645 
1646 	/*
1647 	 * When a new child is created while the hierarchy is under oom,
1648 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1649 	 */
1650 	spin_lock(&memcg_oom_lock);
1651 	for_each_mem_cgroup_tree(iter, memcg)
1652 		if (iter->under_oom > 0)
1653 			iter->under_oom--;
1654 	spin_unlock(&memcg_oom_lock);
1655 }
1656 
1657 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1658 
1659 struct oom_wait_info {
1660 	struct mem_cgroup *memcg;
1661 	wait_queue_t	wait;
1662 };
1663 
memcg_oom_wake_function(wait_queue_t * wait,unsigned mode,int sync,void * arg)1664 static int memcg_oom_wake_function(wait_queue_t *wait,
1665 	unsigned mode, int sync, void *arg)
1666 {
1667 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1668 	struct mem_cgroup *oom_wait_memcg;
1669 	struct oom_wait_info *oom_wait_info;
1670 
1671 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1672 	oom_wait_memcg = oom_wait_info->memcg;
1673 
1674 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1675 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1676 		return 0;
1677 	return autoremove_wake_function(wait, mode, sync, arg);
1678 }
1679 
memcg_oom_recover(struct mem_cgroup * memcg)1680 static void memcg_oom_recover(struct mem_cgroup *memcg)
1681 {
1682 	/*
1683 	 * For the following lockless ->under_oom test, the only required
1684 	 * guarantee is that it must see the state asserted by an OOM when
1685 	 * this function is called as a result of userland actions
1686 	 * triggered by the notification of the OOM.  This is trivially
1687 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1688 	 * triggering notification.
1689 	 */
1690 	if (memcg && memcg->under_oom)
1691 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1692 }
1693 
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1694 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1695 {
1696 	if (!current->memcg_may_oom)
1697 		return;
1698 	/*
1699 	 * We are in the middle of the charge context here, so we
1700 	 * don't want to block when potentially sitting on a callstack
1701 	 * that holds all kinds of filesystem and mm locks.
1702 	 *
1703 	 * Also, the caller may handle a failed allocation gracefully
1704 	 * (like optional page cache readahead) and so an OOM killer
1705 	 * invocation might not even be necessary.
1706 	 *
1707 	 * That's why we don't do anything here except remember the
1708 	 * OOM context and then deal with it at the end of the page
1709 	 * fault when the stack is unwound, the locks are released,
1710 	 * and when we know whether the fault was overall successful.
1711 	 */
1712 	css_get(&memcg->css);
1713 	current->memcg_in_oom = memcg;
1714 	current->memcg_oom_gfp_mask = mask;
1715 	current->memcg_oom_order = order;
1716 }
1717 
1718 /**
1719  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1720  * @handle: actually kill/wait or just clean up the OOM state
1721  *
1722  * This has to be called at the end of a page fault if the memcg OOM
1723  * handler was enabled.
1724  *
1725  * Memcg supports userspace OOM handling where failed allocations must
1726  * sleep on a waitqueue until the userspace task resolves the
1727  * situation.  Sleeping directly in the charge context with all kinds
1728  * of locks held is not a good idea, instead we remember an OOM state
1729  * in the task and mem_cgroup_oom_synchronize() has to be called at
1730  * the end of the page fault to complete the OOM handling.
1731  *
1732  * Returns %true if an ongoing memcg OOM situation was detected and
1733  * completed, %false otherwise.
1734  */
mem_cgroup_oom_synchronize(bool handle)1735 bool mem_cgroup_oom_synchronize(bool handle)
1736 {
1737 	struct mem_cgroup *memcg = current->memcg_in_oom;
1738 	struct oom_wait_info owait;
1739 	bool locked;
1740 
1741 	/* OOM is global, do not handle */
1742 	if (!memcg)
1743 		return false;
1744 
1745 	if (!handle || oom_killer_disabled)
1746 		goto cleanup;
1747 
1748 	owait.memcg = memcg;
1749 	owait.wait.flags = 0;
1750 	owait.wait.func = memcg_oom_wake_function;
1751 	owait.wait.private = current;
1752 	INIT_LIST_HEAD(&owait.wait.task_list);
1753 
1754 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1755 	mem_cgroup_mark_under_oom(memcg);
1756 
1757 	locked = mem_cgroup_oom_trylock(memcg);
1758 
1759 	if (locked)
1760 		mem_cgroup_oom_notify(memcg);
1761 
1762 	if (locked && !memcg->oom_kill_disable) {
1763 		mem_cgroup_unmark_under_oom(memcg);
1764 		finish_wait(&memcg_oom_waitq, &owait.wait);
1765 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1766 					 current->memcg_oom_order);
1767 	} else {
1768 		schedule();
1769 		mem_cgroup_unmark_under_oom(memcg);
1770 		finish_wait(&memcg_oom_waitq, &owait.wait);
1771 	}
1772 
1773 	if (locked) {
1774 		mem_cgroup_oom_unlock(memcg);
1775 		/*
1776 		 * There is no guarantee that an OOM-lock contender
1777 		 * sees the wakeups triggered by the OOM kill
1778 		 * uncharges.  Wake any sleepers explicitely.
1779 		 */
1780 		memcg_oom_recover(memcg);
1781 	}
1782 cleanup:
1783 	current->memcg_in_oom = NULL;
1784 	css_put(&memcg->css);
1785 	return true;
1786 }
1787 
1788 /**
1789  * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1790  * @page: page that is going to change accounted state
1791  *
1792  * This function must mark the beginning of an accounted page state
1793  * change to prevent double accounting when the page is concurrently
1794  * being moved to another memcg:
1795  *
1796  *   memcg = mem_cgroup_begin_page_stat(page);
1797  *   if (TestClearPageState(page))
1798  *     mem_cgroup_update_page_stat(memcg, state, -1);
1799  *   mem_cgroup_end_page_stat(memcg);
1800  */
mem_cgroup_begin_page_stat(struct page * page)1801 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1802 {
1803 	struct mem_cgroup *memcg;
1804 	unsigned long flags;
1805 
1806 	/*
1807 	 * The RCU lock is held throughout the transaction.  The fast
1808 	 * path can get away without acquiring the memcg->move_lock
1809 	 * because page moving starts with an RCU grace period.
1810 	 *
1811 	 * The RCU lock also protects the memcg from being freed when
1812 	 * the page state that is going to change is the only thing
1813 	 * preventing the page from being uncharged.
1814 	 * E.g. end-writeback clearing PageWriteback(), which allows
1815 	 * migration to go ahead and uncharge the page before the
1816 	 * account transaction might be complete.
1817 	 */
1818 	rcu_read_lock();
1819 
1820 	if (mem_cgroup_disabled())
1821 		return NULL;
1822 again:
1823 	memcg = page->mem_cgroup;
1824 	if (unlikely(!memcg))
1825 		return NULL;
1826 
1827 	if (atomic_read(&memcg->moving_account) <= 0)
1828 		return memcg;
1829 
1830 	spin_lock_irqsave(&memcg->move_lock, flags);
1831 	if (memcg != page->mem_cgroup) {
1832 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1833 		goto again;
1834 	}
1835 
1836 	/*
1837 	 * When charge migration first begins, we can have locked and
1838 	 * unlocked page stat updates happening concurrently.  Track
1839 	 * the task who has the lock for mem_cgroup_end_page_stat().
1840 	 */
1841 	memcg->move_lock_task = current;
1842 	memcg->move_lock_flags = flags;
1843 
1844 	return memcg;
1845 }
1846 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1847 
1848 /**
1849  * mem_cgroup_end_page_stat - finish a page state statistics transaction
1850  * @memcg: the memcg that was accounted against
1851  */
mem_cgroup_end_page_stat(struct mem_cgroup * memcg)1852 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1853 {
1854 	if (memcg && memcg->move_lock_task == current) {
1855 		unsigned long flags = memcg->move_lock_flags;
1856 
1857 		memcg->move_lock_task = NULL;
1858 		memcg->move_lock_flags = 0;
1859 
1860 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1861 	}
1862 
1863 	rcu_read_unlock();
1864 }
1865 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1866 
1867 /*
1868  * size of first charge trial. "32" comes from vmscan.c's magic value.
1869  * TODO: maybe necessary to use big numbers in big irons.
1870  */
1871 #define CHARGE_BATCH	32U
1872 struct memcg_stock_pcp {
1873 	struct mem_cgroup *cached; /* this never be root cgroup */
1874 	unsigned int nr_pages;
1875 	struct work_struct work;
1876 	unsigned long flags;
1877 #define FLUSHING_CACHED_CHARGE	0
1878 };
1879 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1880 static DEFINE_MUTEX(percpu_charge_mutex);
1881 
1882 /**
1883  * consume_stock: Try to consume stocked charge on this cpu.
1884  * @memcg: memcg to consume from.
1885  * @nr_pages: how many pages to charge.
1886  *
1887  * The charges will only happen if @memcg matches the current cpu's memcg
1888  * stock, and at least @nr_pages are available in that stock.  Failure to
1889  * service an allocation will refill the stock.
1890  *
1891  * returns true if successful, false otherwise.
1892  */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1893 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1894 {
1895 	struct memcg_stock_pcp *stock;
1896 	bool ret = false;
1897 
1898 	if (nr_pages > CHARGE_BATCH)
1899 		return ret;
1900 
1901 	stock = &get_cpu_var(memcg_stock);
1902 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1903 		stock->nr_pages -= nr_pages;
1904 		ret = true;
1905 	}
1906 	put_cpu_var(memcg_stock);
1907 	return ret;
1908 }
1909 
1910 /*
1911  * Returns stocks cached in percpu and reset cached information.
1912  */
drain_stock(struct memcg_stock_pcp * stock)1913 static void drain_stock(struct memcg_stock_pcp *stock)
1914 {
1915 	struct mem_cgroup *old = stock->cached;
1916 
1917 	if (stock->nr_pages) {
1918 		page_counter_uncharge(&old->memory, stock->nr_pages);
1919 		if (do_swap_account)
1920 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1921 		css_put_many(&old->css, stock->nr_pages);
1922 		stock->nr_pages = 0;
1923 	}
1924 	stock->cached = NULL;
1925 }
1926 
1927 /*
1928  * This must be called under preempt disabled or must be called by
1929  * a thread which is pinned to local cpu.
1930  */
drain_local_stock(struct work_struct * dummy)1931 static void drain_local_stock(struct work_struct *dummy)
1932 {
1933 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1934 	drain_stock(stock);
1935 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1936 }
1937 
1938 /*
1939  * Cache charges(val) to local per_cpu area.
1940  * This will be consumed by consume_stock() function, later.
1941  */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1942 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1943 {
1944 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1945 
1946 	if (stock->cached != memcg) { /* reset if necessary */
1947 		drain_stock(stock);
1948 		stock->cached = memcg;
1949 	}
1950 	stock->nr_pages += nr_pages;
1951 	put_cpu_var(memcg_stock);
1952 }
1953 
1954 /*
1955  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1956  * of the hierarchy under it.
1957  */
drain_all_stock(struct mem_cgroup * root_memcg)1958 static void drain_all_stock(struct mem_cgroup *root_memcg)
1959 {
1960 	int cpu, curcpu;
1961 
1962 	/* If someone's already draining, avoid adding running more workers. */
1963 	if (!mutex_trylock(&percpu_charge_mutex))
1964 		return;
1965 	/* Notify other cpus that system-wide "drain" is running */
1966 	get_online_cpus();
1967 	curcpu = get_cpu();
1968 	for_each_online_cpu(cpu) {
1969 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1970 		struct mem_cgroup *memcg;
1971 
1972 		memcg = stock->cached;
1973 		if (!memcg || !stock->nr_pages)
1974 			continue;
1975 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1976 			continue;
1977 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1978 			if (cpu == curcpu)
1979 				drain_local_stock(&stock->work);
1980 			else
1981 				schedule_work_on(cpu, &stock->work);
1982 		}
1983 	}
1984 	put_cpu();
1985 	put_online_cpus();
1986 	mutex_unlock(&percpu_charge_mutex);
1987 }
1988 
memcg_cpu_hotplug_callback(struct notifier_block * nb,unsigned long action,void * hcpu)1989 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1990 					unsigned long action,
1991 					void *hcpu)
1992 {
1993 	int cpu = (unsigned long)hcpu;
1994 	struct memcg_stock_pcp *stock;
1995 
1996 	if (action == CPU_ONLINE)
1997 		return NOTIFY_OK;
1998 
1999 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2000 		return NOTIFY_OK;
2001 
2002 	stock = &per_cpu(memcg_stock, cpu);
2003 	drain_stock(stock);
2004 	return NOTIFY_OK;
2005 }
2006 
2007 /*
2008  * Scheduled by try_charge() to be executed from the userland return path
2009  * and reclaims memory over the high limit.
2010  */
mem_cgroup_handle_over_high(void)2011 void mem_cgroup_handle_over_high(void)
2012 {
2013 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2014 	struct mem_cgroup *memcg, *pos;
2015 
2016 	if (likely(!nr_pages))
2017 		return;
2018 
2019 	pos = memcg = get_mem_cgroup_from_mm(current->mm);
2020 
2021 	do {
2022 		if (page_counter_read(&pos->memory) <= pos->high)
2023 			continue;
2024 		mem_cgroup_events(pos, MEMCG_HIGH, 1);
2025 		try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2026 	} while ((pos = parent_mem_cgroup(pos)));
2027 
2028 	css_put(&memcg->css);
2029 	current->memcg_nr_pages_over_high = 0;
2030 }
2031 
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2032 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2033 		      unsigned int nr_pages)
2034 {
2035 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2036 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2037 	struct mem_cgroup *mem_over_limit;
2038 	struct page_counter *counter;
2039 	unsigned long nr_reclaimed;
2040 	bool may_swap = true;
2041 	bool drained = false;
2042 
2043 	if (mem_cgroup_is_root(memcg))
2044 		return 0;
2045 retry:
2046 	if (consume_stock(memcg, nr_pages))
2047 		return 0;
2048 
2049 	if (!do_swap_account ||
2050 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2051 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2052 			goto done_restock;
2053 		if (do_swap_account)
2054 			page_counter_uncharge(&memcg->memsw, batch);
2055 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2056 	} else {
2057 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2058 		may_swap = false;
2059 	}
2060 
2061 	if (batch > nr_pages) {
2062 		batch = nr_pages;
2063 		goto retry;
2064 	}
2065 
2066 	/*
2067 	 * Unlike in global OOM situations, memcg is not in a physical
2068 	 * memory shortage.  Allow dying and OOM-killed tasks to
2069 	 * bypass the last charges so that they can exit quickly and
2070 	 * free their memory.
2071 	 */
2072 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2073 		     fatal_signal_pending(current) ||
2074 		     current->flags & PF_EXITING))
2075 		goto force;
2076 
2077 	/*
2078 	 * Prevent unbounded recursion when reclaim operations need to
2079 	 * allocate memory. This might exceed the limits temporarily,
2080 	 * but we prefer facilitating memory reclaim and getting back
2081 	 * under the limit over triggering OOM kills in these cases.
2082 	 */
2083 	if (unlikely(current->flags & PF_MEMALLOC))
2084 		goto force;
2085 
2086 	if (unlikely(task_in_memcg_oom(current)))
2087 		goto nomem;
2088 
2089 	if (!gfpflags_allow_blocking(gfp_mask))
2090 		goto nomem;
2091 
2092 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2093 
2094 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2095 						    gfp_mask, may_swap);
2096 
2097 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2098 		goto retry;
2099 
2100 	if (!drained) {
2101 		drain_all_stock(mem_over_limit);
2102 		drained = true;
2103 		goto retry;
2104 	}
2105 
2106 	if (gfp_mask & __GFP_NORETRY)
2107 		goto nomem;
2108 	/*
2109 	 * Even though the limit is exceeded at this point, reclaim
2110 	 * may have been able to free some pages.  Retry the charge
2111 	 * before killing the task.
2112 	 *
2113 	 * Only for regular pages, though: huge pages are rather
2114 	 * unlikely to succeed so close to the limit, and we fall back
2115 	 * to regular pages anyway in case of failure.
2116 	 */
2117 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2118 		goto retry;
2119 	/*
2120 	 * At task move, charge accounts can be doubly counted. So, it's
2121 	 * better to wait until the end of task_move if something is going on.
2122 	 */
2123 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2124 		goto retry;
2125 
2126 	if (nr_retries--)
2127 		goto retry;
2128 
2129 	if (gfp_mask & __GFP_NOFAIL)
2130 		goto force;
2131 
2132 	if (fatal_signal_pending(current))
2133 		goto force;
2134 
2135 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2136 
2137 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2138 		       get_order(nr_pages * PAGE_SIZE));
2139 nomem:
2140 	if (!(gfp_mask & __GFP_NOFAIL))
2141 		return -ENOMEM;
2142 force:
2143 	/*
2144 	 * The allocation either can't fail or will lead to more memory
2145 	 * being freed very soon.  Allow memory usage go over the limit
2146 	 * temporarily by force charging it.
2147 	 */
2148 	page_counter_charge(&memcg->memory, nr_pages);
2149 	if (do_swap_account)
2150 		page_counter_charge(&memcg->memsw, nr_pages);
2151 	css_get_many(&memcg->css, nr_pages);
2152 
2153 	return 0;
2154 
2155 done_restock:
2156 	css_get_many(&memcg->css, batch);
2157 	if (batch > nr_pages)
2158 		refill_stock(memcg, batch - nr_pages);
2159 
2160 	/*
2161 	 * If the hierarchy is above the normal consumption range, schedule
2162 	 * reclaim on returning to userland.  We can perform reclaim here
2163 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2164 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2165 	 * not recorded as it most likely matches current's and won't
2166 	 * change in the meantime.  As high limit is checked again before
2167 	 * reclaim, the cost of mismatch is negligible.
2168 	 */
2169 	do {
2170 		if (page_counter_read(&memcg->memory) > memcg->high) {
2171 			current->memcg_nr_pages_over_high += batch;
2172 			set_notify_resume(current);
2173 			break;
2174 		}
2175 	} while ((memcg = parent_mem_cgroup(memcg)));
2176 
2177 	return 0;
2178 }
2179 
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2180 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2181 {
2182 	if (mem_cgroup_is_root(memcg))
2183 		return;
2184 
2185 	page_counter_uncharge(&memcg->memory, nr_pages);
2186 	if (do_swap_account)
2187 		page_counter_uncharge(&memcg->memsw, nr_pages);
2188 
2189 	css_put_many(&memcg->css, nr_pages);
2190 }
2191 
lock_page_lru(struct page * page,int * isolated)2192 static void lock_page_lru(struct page *page, int *isolated)
2193 {
2194 	struct zone *zone = page_zone(page);
2195 
2196 	spin_lock_irq(&zone->lru_lock);
2197 	if (PageLRU(page)) {
2198 		struct lruvec *lruvec;
2199 
2200 		lruvec = mem_cgroup_page_lruvec(page, zone);
2201 		ClearPageLRU(page);
2202 		del_page_from_lru_list(page, lruvec, page_lru(page));
2203 		*isolated = 1;
2204 	} else
2205 		*isolated = 0;
2206 }
2207 
unlock_page_lru(struct page * page,int isolated)2208 static void unlock_page_lru(struct page *page, int isolated)
2209 {
2210 	struct zone *zone = page_zone(page);
2211 
2212 	if (isolated) {
2213 		struct lruvec *lruvec;
2214 
2215 		lruvec = mem_cgroup_page_lruvec(page, zone);
2216 		VM_BUG_ON_PAGE(PageLRU(page), page);
2217 		SetPageLRU(page);
2218 		add_page_to_lru_list(page, lruvec, page_lru(page));
2219 	}
2220 	spin_unlock_irq(&zone->lru_lock);
2221 }
2222 
commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)2223 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2224 			  bool lrucare)
2225 {
2226 	int isolated;
2227 
2228 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2229 
2230 	/*
2231 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2232 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2233 	 */
2234 	if (lrucare)
2235 		lock_page_lru(page, &isolated);
2236 
2237 	/*
2238 	 * Nobody should be changing or seriously looking at
2239 	 * page->mem_cgroup at this point:
2240 	 *
2241 	 * - the page is uncharged
2242 	 *
2243 	 * - the page is off-LRU
2244 	 *
2245 	 * - an anonymous fault has exclusive page access, except for
2246 	 *   a locked page table
2247 	 *
2248 	 * - a page cache insertion, a swapin fault, or a migration
2249 	 *   have the page locked
2250 	 */
2251 	page->mem_cgroup = memcg;
2252 
2253 	if (lrucare)
2254 		unlock_page_lru(page, isolated);
2255 }
2256 
2257 #ifdef CONFIG_MEMCG_KMEM
memcg_alloc_cache_id(void)2258 static int memcg_alloc_cache_id(void)
2259 {
2260 	int id, size;
2261 	int err;
2262 
2263 	id = ida_simple_get(&memcg_cache_ida,
2264 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2265 	if (id < 0)
2266 		return id;
2267 
2268 	if (id < memcg_nr_cache_ids)
2269 		return id;
2270 
2271 	/*
2272 	 * There's no space for the new id in memcg_caches arrays,
2273 	 * so we have to grow them.
2274 	 */
2275 	down_write(&memcg_cache_ids_sem);
2276 
2277 	size = 2 * (id + 1);
2278 	if (size < MEMCG_CACHES_MIN_SIZE)
2279 		size = MEMCG_CACHES_MIN_SIZE;
2280 	else if (size > MEMCG_CACHES_MAX_SIZE)
2281 		size = MEMCG_CACHES_MAX_SIZE;
2282 
2283 	err = memcg_update_all_caches(size);
2284 	if (!err)
2285 		err = memcg_update_all_list_lrus(size);
2286 	if (!err)
2287 		memcg_nr_cache_ids = size;
2288 
2289 	up_write(&memcg_cache_ids_sem);
2290 
2291 	if (err) {
2292 		ida_simple_remove(&memcg_cache_ida, id);
2293 		return err;
2294 	}
2295 	return id;
2296 }
2297 
memcg_free_cache_id(int id)2298 static void memcg_free_cache_id(int id)
2299 {
2300 	ida_simple_remove(&memcg_cache_ida, id);
2301 }
2302 
2303 struct memcg_kmem_cache_create_work {
2304 	struct mem_cgroup *memcg;
2305 	struct kmem_cache *cachep;
2306 	struct work_struct work;
2307 };
2308 
memcg_kmem_cache_create_func(struct work_struct * w)2309 static void memcg_kmem_cache_create_func(struct work_struct *w)
2310 {
2311 	struct memcg_kmem_cache_create_work *cw =
2312 		container_of(w, struct memcg_kmem_cache_create_work, work);
2313 	struct mem_cgroup *memcg = cw->memcg;
2314 	struct kmem_cache *cachep = cw->cachep;
2315 
2316 	memcg_create_kmem_cache(memcg, cachep);
2317 
2318 	css_put(&memcg->css);
2319 	kfree(cw);
2320 }
2321 
2322 /*
2323  * Enqueue the creation of a per-memcg kmem_cache.
2324  */
__memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2325 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2326 					       struct kmem_cache *cachep)
2327 {
2328 	struct memcg_kmem_cache_create_work *cw;
2329 
2330 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2331 	if (!cw)
2332 		return;
2333 
2334 	css_get(&memcg->css);
2335 
2336 	cw->memcg = memcg;
2337 	cw->cachep = cachep;
2338 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2339 
2340 	schedule_work(&cw->work);
2341 }
2342 
memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2343 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2344 					     struct kmem_cache *cachep)
2345 {
2346 	/*
2347 	 * We need to stop accounting when we kmalloc, because if the
2348 	 * corresponding kmalloc cache is not yet created, the first allocation
2349 	 * in __memcg_schedule_kmem_cache_create will recurse.
2350 	 *
2351 	 * However, it is better to enclose the whole function. Depending on
2352 	 * the debugging options enabled, INIT_WORK(), for instance, can
2353 	 * trigger an allocation. This too, will make us recurse. Because at
2354 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2355 	 * the safest choice is to do it like this, wrapping the whole function.
2356 	 */
2357 	current->memcg_kmem_skip_account = 1;
2358 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2359 	current->memcg_kmem_skip_account = 0;
2360 }
2361 
2362 /*
2363  * Return the kmem_cache we're supposed to use for a slab allocation.
2364  * We try to use the current memcg's version of the cache.
2365  *
2366  * If the cache does not exist yet, if we are the first user of it,
2367  * we either create it immediately, if possible, or create it asynchronously
2368  * in a workqueue.
2369  * In the latter case, we will let the current allocation go through with
2370  * the original cache.
2371  *
2372  * Can't be called in interrupt context or from kernel threads.
2373  * This function needs to be called with rcu_read_lock() held.
2374  */
__memcg_kmem_get_cache(struct kmem_cache * cachep)2375 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2376 {
2377 	struct mem_cgroup *memcg;
2378 	struct kmem_cache *memcg_cachep;
2379 	int kmemcg_id;
2380 
2381 	VM_BUG_ON(!is_root_cache(cachep));
2382 
2383 	if (current->memcg_kmem_skip_account)
2384 		return cachep;
2385 
2386 	memcg = get_mem_cgroup_from_mm(current->mm);
2387 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2388 	if (kmemcg_id < 0)
2389 		goto out;
2390 
2391 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2392 	if (likely(memcg_cachep))
2393 		return memcg_cachep;
2394 
2395 	/*
2396 	 * If we are in a safe context (can wait, and not in interrupt
2397 	 * context), we could be be predictable and return right away.
2398 	 * This would guarantee that the allocation being performed
2399 	 * already belongs in the new cache.
2400 	 *
2401 	 * However, there are some clashes that can arrive from locking.
2402 	 * For instance, because we acquire the slab_mutex while doing
2403 	 * memcg_create_kmem_cache, this means no further allocation
2404 	 * could happen with the slab_mutex held. So it's better to
2405 	 * defer everything.
2406 	 */
2407 	memcg_schedule_kmem_cache_create(memcg, cachep);
2408 out:
2409 	css_put(&memcg->css);
2410 	return cachep;
2411 }
2412 
__memcg_kmem_put_cache(struct kmem_cache * cachep)2413 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2414 {
2415 	if (!is_root_cache(cachep))
2416 		css_put(&cachep->memcg_params.memcg->css);
2417 }
2418 
__memcg_kmem_charge_memcg(struct page * page,gfp_t gfp,int order,struct mem_cgroup * memcg)2419 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2420 			      struct mem_cgroup *memcg)
2421 {
2422 	unsigned int nr_pages = 1 << order;
2423 	struct page_counter *counter;
2424 	int ret;
2425 
2426 	if (!memcg_kmem_is_active(memcg))
2427 		return 0;
2428 
2429 	if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2430 		return -ENOMEM;
2431 
2432 	ret = try_charge(memcg, gfp, nr_pages);
2433 	if (ret) {
2434 		page_counter_uncharge(&memcg->kmem, nr_pages);
2435 		return ret;
2436 	}
2437 
2438 	page->mem_cgroup = memcg;
2439 
2440 	return 0;
2441 }
2442 
__memcg_kmem_charge(struct page * page,gfp_t gfp,int order)2443 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2444 {
2445 	struct mem_cgroup *memcg;
2446 	int ret;
2447 
2448 	memcg = get_mem_cgroup_from_mm(current->mm);
2449 	ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2450 	css_put(&memcg->css);
2451 	return ret;
2452 }
2453 
__memcg_kmem_uncharge(struct page * page,int order)2454 void __memcg_kmem_uncharge(struct page *page, int order)
2455 {
2456 	struct mem_cgroup *memcg = page->mem_cgroup;
2457 	unsigned int nr_pages = 1 << order;
2458 
2459 	if (!memcg)
2460 		return;
2461 
2462 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2463 
2464 	page_counter_uncharge(&memcg->kmem, nr_pages);
2465 	page_counter_uncharge(&memcg->memory, nr_pages);
2466 	if (do_swap_account)
2467 		page_counter_uncharge(&memcg->memsw, nr_pages);
2468 
2469 	page->mem_cgroup = NULL;
2470 	css_put_many(&memcg->css, nr_pages);
2471 }
2472 #endif /* CONFIG_MEMCG_KMEM */
2473 
2474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2475 
2476 /*
2477  * Because tail pages are not marked as "used", set it. We're under
2478  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2479  * charge/uncharge will be never happen and move_account() is done under
2480  * compound_lock(), so we don't have to take care of races.
2481  */
mem_cgroup_split_huge_fixup(struct page * head)2482 void mem_cgroup_split_huge_fixup(struct page *head)
2483 {
2484 	int i;
2485 
2486 	if (mem_cgroup_disabled())
2487 		return;
2488 
2489 	for (i = 1; i < HPAGE_PMD_NR; i++)
2490 		head[i].mem_cgroup = head->mem_cgroup;
2491 
2492 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2493 		       HPAGE_PMD_NR);
2494 }
2495 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2496 
2497 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_swap_statistics(struct mem_cgroup * memcg,bool charge)2498 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2499 					 bool charge)
2500 {
2501 	int val = (charge) ? 1 : -1;
2502 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2503 }
2504 
2505 /**
2506  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2507  * @entry: swap entry to be moved
2508  * @from:  mem_cgroup which the entry is moved from
2509  * @to:  mem_cgroup which the entry is moved to
2510  *
2511  * It succeeds only when the swap_cgroup's record for this entry is the same
2512  * as the mem_cgroup's id of @from.
2513  *
2514  * Returns 0 on success, -EINVAL on failure.
2515  *
2516  * The caller must have charged to @to, IOW, called page_counter_charge() about
2517  * both res and memsw, and called css_get().
2518  */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2519 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2520 				struct mem_cgroup *from, struct mem_cgroup *to)
2521 {
2522 	unsigned short old_id, new_id;
2523 
2524 	old_id = mem_cgroup_id(from);
2525 	new_id = mem_cgroup_id(to);
2526 
2527 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2528 		mem_cgroup_swap_statistics(from, false);
2529 		mem_cgroup_swap_statistics(to, true);
2530 		return 0;
2531 	}
2532 	return -EINVAL;
2533 }
2534 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2535 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2536 				struct mem_cgroup *from, struct mem_cgroup *to)
2537 {
2538 	return -EINVAL;
2539 }
2540 #endif
2541 
2542 static DEFINE_MUTEX(memcg_limit_mutex);
2543 
mem_cgroup_resize_limit(struct mem_cgroup * memcg,unsigned long limit)2544 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2545 				   unsigned long limit)
2546 {
2547 	unsigned long curusage;
2548 	unsigned long oldusage;
2549 	bool enlarge = false;
2550 	int retry_count;
2551 	int ret;
2552 
2553 	/*
2554 	 * For keeping hierarchical_reclaim simple, how long we should retry
2555 	 * is depends on callers. We set our retry-count to be function
2556 	 * of # of children which we should visit in this loop.
2557 	 */
2558 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2559 		      mem_cgroup_count_children(memcg);
2560 
2561 	oldusage = page_counter_read(&memcg->memory);
2562 
2563 	do {
2564 		if (signal_pending(current)) {
2565 			ret = -EINTR;
2566 			break;
2567 		}
2568 
2569 		mutex_lock(&memcg_limit_mutex);
2570 		if (limit > memcg->memsw.limit) {
2571 			mutex_unlock(&memcg_limit_mutex);
2572 			ret = -EINVAL;
2573 			break;
2574 		}
2575 		if (limit > memcg->memory.limit)
2576 			enlarge = true;
2577 		ret = page_counter_limit(&memcg->memory, limit);
2578 		mutex_unlock(&memcg_limit_mutex);
2579 
2580 		if (!ret)
2581 			break;
2582 
2583 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2584 
2585 		curusage = page_counter_read(&memcg->memory);
2586 		/* Usage is reduced ? */
2587 		if (curusage >= oldusage)
2588 			retry_count--;
2589 		else
2590 			oldusage = curusage;
2591 	} while (retry_count);
2592 
2593 	if (!ret && enlarge)
2594 		memcg_oom_recover(memcg);
2595 
2596 	return ret;
2597 }
2598 
mem_cgroup_resize_memsw_limit(struct mem_cgroup * memcg,unsigned long limit)2599 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2600 					 unsigned long limit)
2601 {
2602 	unsigned long curusage;
2603 	unsigned long oldusage;
2604 	bool enlarge = false;
2605 	int retry_count;
2606 	int ret;
2607 
2608 	/* see mem_cgroup_resize_res_limit */
2609 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2610 		      mem_cgroup_count_children(memcg);
2611 
2612 	oldusage = page_counter_read(&memcg->memsw);
2613 
2614 	do {
2615 		if (signal_pending(current)) {
2616 			ret = -EINTR;
2617 			break;
2618 		}
2619 
2620 		mutex_lock(&memcg_limit_mutex);
2621 		if (limit < memcg->memory.limit) {
2622 			mutex_unlock(&memcg_limit_mutex);
2623 			ret = -EINVAL;
2624 			break;
2625 		}
2626 		if (limit > memcg->memsw.limit)
2627 			enlarge = true;
2628 		ret = page_counter_limit(&memcg->memsw, limit);
2629 		mutex_unlock(&memcg_limit_mutex);
2630 
2631 		if (!ret)
2632 			break;
2633 
2634 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2635 
2636 		curusage = page_counter_read(&memcg->memsw);
2637 		/* Usage is reduced ? */
2638 		if (curusage >= oldusage)
2639 			retry_count--;
2640 		else
2641 			oldusage = curusage;
2642 	} while (retry_count);
2643 
2644 	if (!ret && enlarge)
2645 		memcg_oom_recover(memcg);
2646 
2647 	return ret;
2648 }
2649 
mem_cgroup_soft_limit_reclaim(struct zone * zone,int order,gfp_t gfp_mask,unsigned long * total_scanned)2650 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2651 					    gfp_t gfp_mask,
2652 					    unsigned long *total_scanned)
2653 {
2654 	unsigned long nr_reclaimed = 0;
2655 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2656 	unsigned long reclaimed;
2657 	int loop = 0;
2658 	struct mem_cgroup_tree_per_zone *mctz;
2659 	unsigned long excess;
2660 	unsigned long nr_scanned;
2661 
2662 	if (order > 0)
2663 		return 0;
2664 
2665 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2666 	/*
2667 	 * This loop can run a while, specially if mem_cgroup's continuously
2668 	 * keep exceeding their soft limit and putting the system under
2669 	 * pressure
2670 	 */
2671 	do {
2672 		if (next_mz)
2673 			mz = next_mz;
2674 		else
2675 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2676 		if (!mz)
2677 			break;
2678 
2679 		nr_scanned = 0;
2680 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2681 						    gfp_mask, &nr_scanned);
2682 		nr_reclaimed += reclaimed;
2683 		*total_scanned += nr_scanned;
2684 		spin_lock_irq(&mctz->lock);
2685 		__mem_cgroup_remove_exceeded(mz, mctz);
2686 
2687 		/*
2688 		 * If we failed to reclaim anything from this memory cgroup
2689 		 * it is time to move on to the next cgroup
2690 		 */
2691 		next_mz = NULL;
2692 		if (!reclaimed)
2693 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2694 
2695 		excess = soft_limit_excess(mz->memcg);
2696 		/*
2697 		 * One school of thought says that we should not add
2698 		 * back the node to the tree if reclaim returns 0.
2699 		 * But our reclaim could return 0, simply because due
2700 		 * to priority we are exposing a smaller subset of
2701 		 * memory to reclaim from. Consider this as a longer
2702 		 * term TODO.
2703 		 */
2704 		/* If excess == 0, no tree ops */
2705 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2706 		spin_unlock_irq(&mctz->lock);
2707 		css_put(&mz->memcg->css);
2708 		loop++;
2709 		/*
2710 		 * Could not reclaim anything and there are no more
2711 		 * mem cgroups to try or we seem to be looping without
2712 		 * reclaiming anything.
2713 		 */
2714 		if (!nr_reclaimed &&
2715 			(next_mz == NULL ||
2716 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2717 			break;
2718 	} while (!nr_reclaimed);
2719 	if (next_mz)
2720 		css_put(&next_mz->memcg->css);
2721 	return nr_reclaimed;
2722 }
2723 
2724 /*
2725  * Test whether @memcg has children, dead or alive.  Note that this
2726  * function doesn't care whether @memcg has use_hierarchy enabled and
2727  * returns %true if there are child csses according to the cgroup
2728  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2729  */
memcg_has_children(struct mem_cgroup * memcg)2730 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2731 {
2732 	bool ret;
2733 
2734 	/*
2735 	 * The lock does not prevent addition or deletion of children, but
2736 	 * it prevents a new child from being initialized based on this
2737 	 * parent in css_online(), so it's enough to decide whether
2738 	 * hierarchically inherited attributes can still be changed or not.
2739 	 */
2740 	lockdep_assert_held(&memcg_create_mutex);
2741 
2742 	rcu_read_lock();
2743 	ret = css_next_child(NULL, &memcg->css);
2744 	rcu_read_unlock();
2745 	return ret;
2746 }
2747 
2748 /*
2749  * Reclaims as many pages from the given memcg as possible and moves
2750  * the rest to the parent.
2751  *
2752  * Caller is responsible for holding css reference for memcg.
2753  */
mem_cgroup_force_empty(struct mem_cgroup * memcg)2754 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2755 {
2756 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2757 
2758 	/* we call try-to-free pages for make this cgroup empty */
2759 	lru_add_drain_all();
2760 	/* try to free all pages in this cgroup */
2761 	while (nr_retries && page_counter_read(&memcg->memory)) {
2762 		int progress;
2763 
2764 		if (signal_pending(current))
2765 			return -EINTR;
2766 
2767 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2768 							GFP_KERNEL, true);
2769 		if (!progress) {
2770 			nr_retries--;
2771 			/* maybe some writeback is necessary */
2772 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2773 		}
2774 
2775 	}
2776 
2777 	return 0;
2778 }
2779 
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2780 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2781 					    char *buf, size_t nbytes,
2782 					    loff_t off)
2783 {
2784 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2785 
2786 	if (mem_cgroup_is_root(memcg))
2787 		return -EINVAL;
2788 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2789 }
2790 
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)2791 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2792 				     struct cftype *cft)
2793 {
2794 	return mem_cgroup_from_css(css)->use_hierarchy;
2795 }
2796 
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2797 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2798 				      struct cftype *cft, u64 val)
2799 {
2800 	int retval = 0;
2801 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2802 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2803 
2804 	mutex_lock(&memcg_create_mutex);
2805 
2806 	if (memcg->use_hierarchy == val)
2807 		goto out;
2808 
2809 	/*
2810 	 * If parent's use_hierarchy is set, we can't make any modifications
2811 	 * in the child subtrees. If it is unset, then the change can
2812 	 * occur, provided the current cgroup has no children.
2813 	 *
2814 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2815 	 * set if there are no children.
2816 	 */
2817 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2818 				(val == 1 || val == 0)) {
2819 		if (!memcg_has_children(memcg))
2820 			memcg->use_hierarchy = val;
2821 		else
2822 			retval = -EBUSY;
2823 	} else
2824 		retval = -EINVAL;
2825 
2826 out:
2827 	mutex_unlock(&memcg_create_mutex);
2828 
2829 	return retval;
2830 }
2831 
tree_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)2832 static unsigned long tree_stat(struct mem_cgroup *memcg,
2833 			       enum mem_cgroup_stat_index idx)
2834 {
2835 	struct mem_cgroup *iter;
2836 	unsigned long val = 0;
2837 
2838 	for_each_mem_cgroup_tree(iter, memcg)
2839 		val += mem_cgroup_read_stat(iter, idx);
2840 
2841 	return val;
2842 }
2843 
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)2844 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2845 {
2846 	unsigned long val;
2847 
2848 	if (mem_cgroup_is_root(memcg)) {
2849 		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2850 		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2851 		if (swap)
2852 			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2853 	} else {
2854 		if (!swap)
2855 			val = page_counter_read(&memcg->memory);
2856 		else
2857 			val = page_counter_read(&memcg->memsw);
2858 	}
2859 	return val;
2860 }
2861 
2862 enum {
2863 	RES_USAGE,
2864 	RES_LIMIT,
2865 	RES_MAX_USAGE,
2866 	RES_FAILCNT,
2867 	RES_SOFT_LIMIT,
2868 };
2869 
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2870 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2871 			       struct cftype *cft)
2872 {
2873 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2874 	struct page_counter *counter;
2875 
2876 	switch (MEMFILE_TYPE(cft->private)) {
2877 	case _MEM:
2878 		counter = &memcg->memory;
2879 		break;
2880 	case _MEMSWAP:
2881 		counter = &memcg->memsw;
2882 		break;
2883 	case _KMEM:
2884 		counter = &memcg->kmem;
2885 		break;
2886 	default:
2887 		BUG();
2888 	}
2889 
2890 	switch (MEMFILE_ATTR(cft->private)) {
2891 	case RES_USAGE:
2892 		if (counter == &memcg->memory)
2893 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2894 		if (counter == &memcg->memsw)
2895 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2896 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2897 	case RES_LIMIT:
2898 		return (u64)counter->limit * PAGE_SIZE;
2899 	case RES_MAX_USAGE:
2900 		return (u64)counter->watermark * PAGE_SIZE;
2901 	case RES_FAILCNT:
2902 		return counter->failcnt;
2903 	case RES_SOFT_LIMIT:
2904 		return (u64)memcg->soft_limit * PAGE_SIZE;
2905 	default:
2906 		BUG();
2907 	}
2908 }
2909 
2910 #ifdef CONFIG_MEMCG_KMEM
memcg_activate_kmem(struct mem_cgroup * memcg,unsigned long nr_pages)2911 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2912 			       unsigned long nr_pages)
2913 {
2914 	int err = 0;
2915 	int memcg_id;
2916 
2917 	BUG_ON(memcg->kmemcg_id >= 0);
2918 	BUG_ON(memcg->kmem_acct_activated);
2919 	BUG_ON(memcg->kmem_acct_active);
2920 
2921 	/*
2922 	 * For simplicity, we won't allow this to be disabled.  It also can't
2923 	 * be changed if the cgroup has children already, or if tasks had
2924 	 * already joined.
2925 	 *
2926 	 * If tasks join before we set the limit, a person looking at
2927 	 * kmem.usage_in_bytes will have no way to determine when it took
2928 	 * place, which makes the value quite meaningless.
2929 	 *
2930 	 * After it first became limited, changes in the value of the limit are
2931 	 * of course permitted.
2932 	 */
2933 	mutex_lock(&memcg_create_mutex);
2934 	if (cgroup_is_populated(memcg->css.cgroup) ||
2935 	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2936 		err = -EBUSY;
2937 	mutex_unlock(&memcg_create_mutex);
2938 	if (err)
2939 		goto out;
2940 
2941 	memcg_id = memcg_alloc_cache_id();
2942 	if (memcg_id < 0) {
2943 		err = memcg_id;
2944 		goto out;
2945 	}
2946 
2947 	/*
2948 	 * We couldn't have accounted to this cgroup, because it hasn't got
2949 	 * activated yet, so this should succeed.
2950 	 */
2951 	err = page_counter_limit(&memcg->kmem, nr_pages);
2952 	VM_BUG_ON(err);
2953 
2954 	static_key_slow_inc(&memcg_kmem_enabled_key);
2955 	/*
2956 	 * A memory cgroup is considered kmem-active as soon as it gets
2957 	 * kmemcg_id. Setting the id after enabling static branching will
2958 	 * guarantee no one starts accounting before all call sites are
2959 	 * patched.
2960 	 */
2961 	memcg->kmemcg_id = memcg_id;
2962 	memcg->kmem_acct_activated = true;
2963 	memcg->kmem_acct_active = true;
2964 out:
2965 	return err;
2966 }
2967 
memcg_update_kmem_limit(struct mem_cgroup * memcg,unsigned long limit)2968 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2969 				   unsigned long limit)
2970 {
2971 	int ret;
2972 
2973 	mutex_lock(&memcg_limit_mutex);
2974 	if (!memcg_kmem_is_active(memcg))
2975 		ret = memcg_activate_kmem(memcg, limit);
2976 	else
2977 		ret = page_counter_limit(&memcg->kmem, limit);
2978 	mutex_unlock(&memcg_limit_mutex);
2979 	return ret;
2980 }
2981 
memcg_propagate_kmem(struct mem_cgroup * memcg)2982 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2983 {
2984 	int ret = 0;
2985 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2986 
2987 	if (!parent)
2988 		return 0;
2989 
2990 	mutex_lock(&memcg_limit_mutex);
2991 	/*
2992 	 * If the parent cgroup is not kmem-active now, it cannot be activated
2993 	 * after this point, because it has at least one child already.
2994 	 */
2995 	if (memcg_kmem_is_active(parent))
2996 		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2997 	mutex_unlock(&memcg_limit_mutex);
2998 	return ret;
2999 }
3000 #else
memcg_update_kmem_limit(struct mem_cgroup * memcg,unsigned long limit)3001 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3002 				   unsigned long limit)
3003 {
3004 	return -EINVAL;
3005 }
3006 #endif /* CONFIG_MEMCG_KMEM */
3007 
3008 /*
3009  * The user of this function is...
3010  * RES_LIMIT.
3011  */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3012 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3013 				char *buf, size_t nbytes, loff_t off)
3014 {
3015 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3016 	unsigned long nr_pages;
3017 	int ret;
3018 
3019 	buf = strstrip(buf);
3020 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3021 	if (ret)
3022 		return ret;
3023 
3024 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3025 	case RES_LIMIT:
3026 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3027 			ret = -EINVAL;
3028 			break;
3029 		}
3030 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3031 		case _MEM:
3032 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3033 			break;
3034 		case _MEMSWAP:
3035 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3036 			break;
3037 		case _KMEM:
3038 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3039 			break;
3040 		}
3041 		break;
3042 	case RES_SOFT_LIMIT:
3043 		memcg->soft_limit = nr_pages;
3044 		ret = 0;
3045 		break;
3046 	}
3047 	return ret ?: nbytes;
3048 }
3049 
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3050 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3051 				size_t nbytes, loff_t off)
3052 {
3053 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3054 	struct page_counter *counter;
3055 
3056 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3057 	case _MEM:
3058 		counter = &memcg->memory;
3059 		break;
3060 	case _MEMSWAP:
3061 		counter = &memcg->memsw;
3062 		break;
3063 	case _KMEM:
3064 		counter = &memcg->kmem;
3065 		break;
3066 	default:
3067 		BUG();
3068 	}
3069 
3070 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3071 	case RES_MAX_USAGE:
3072 		page_counter_reset_watermark(counter);
3073 		break;
3074 	case RES_FAILCNT:
3075 		counter->failcnt = 0;
3076 		break;
3077 	default:
3078 		BUG();
3079 	}
3080 
3081 	return nbytes;
3082 }
3083 
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3084 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3085 					struct cftype *cft)
3086 {
3087 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3088 }
3089 
3090 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3091 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3092 					struct cftype *cft, u64 val)
3093 {
3094 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3095 
3096 	if (val & ~MOVE_MASK)
3097 		return -EINVAL;
3098 
3099 	/*
3100 	 * No kind of locking is needed in here, because ->can_attach() will
3101 	 * check this value once in the beginning of the process, and then carry
3102 	 * on with stale data. This means that changes to this value will only
3103 	 * affect task migrations starting after the change.
3104 	 */
3105 	memcg->move_charge_at_immigrate = val;
3106 	return 0;
3107 }
3108 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3109 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3110 					struct cftype *cft, u64 val)
3111 {
3112 	return -ENOSYS;
3113 }
3114 #endif
3115 
3116 #ifdef CONFIG_NUMA
memcg_numa_stat_show(struct seq_file * m,void * v)3117 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3118 {
3119 	struct numa_stat {
3120 		const char *name;
3121 		unsigned int lru_mask;
3122 	};
3123 
3124 	static const struct numa_stat stats[] = {
3125 		{ "total", LRU_ALL },
3126 		{ "file", LRU_ALL_FILE },
3127 		{ "anon", LRU_ALL_ANON },
3128 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3129 	};
3130 	const struct numa_stat *stat;
3131 	int nid;
3132 	unsigned long nr;
3133 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3134 
3135 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3136 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3137 		seq_printf(m, "%s=%lu", stat->name, nr);
3138 		for_each_node_state(nid, N_MEMORY) {
3139 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3140 							  stat->lru_mask);
3141 			seq_printf(m, " N%d=%lu", nid, nr);
3142 		}
3143 		seq_putc(m, '\n');
3144 	}
3145 
3146 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3147 		struct mem_cgroup *iter;
3148 
3149 		nr = 0;
3150 		for_each_mem_cgroup_tree(iter, memcg)
3151 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3152 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3153 		for_each_node_state(nid, N_MEMORY) {
3154 			nr = 0;
3155 			for_each_mem_cgroup_tree(iter, memcg)
3156 				nr += mem_cgroup_node_nr_lru_pages(
3157 					iter, nid, stat->lru_mask);
3158 			seq_printf(m, " N%d=%lu", nid, nr);
3159 		}
3160 		seq_putc(m, '\n');
3161 	}
3162 
3163 	return 0;
3164 }
3165 #endif /* CONFIG_NUMA */
3166 
memcg_stat_show(struct seq_file * m,void * v)3167 static int memcg_stat_show(struct seq_file *m, void *v)
3168 {
3169 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3170 	unsigned long memory, memsw;
3171 	struct mem_cgroup *mi;
3172 	unsigned int i;
3173 
3174 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3175 		     MEM_CGROUP_STAT_NSTATS);
3176 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3177 		     MEM_CGROUP_EVENTS_NSTATS);
3178 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3179 
3180 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3181 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3182 			continue;
3183 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3184 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3185 	}
3186 
3187 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3188 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3189 			   mem_cgroup_read_events(memcg, i));
3190 
3191 	for (i = 0; i < NR_LRU_LISTS; i++)
3192 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3193 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3194 
3195 	/* Hierarchical information */
3196 	memory = memsw = PAGE_COUNTER_MAX;
3197 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3198 		memory = min(memory, mi->memory.limit);
3199 		memsw = min(memsw, mi->memsw.limit);
3200 	}
3201 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3202 		   (u64)memory * PAGE_SIZE);
3203 	if (do_swap_account)
3204 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3205 			   (u64)memsw * PAGE_SIZE);
3206 
3207 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3208 		unsigned long long val = 0;
3209 
3210 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3211 			continue;
3212 		for_each_mem_cgroup_tree(mi, memcg)
3213 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3214 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3215 	}
3216 
3217 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3218 		unsigned long long val = 0;
3219 
3220 		for_each_mem_cgroup_tree(mi, memcg)
3221 			val += mem_cgroup_read_events(mi, i);
3222 		seq_printf(m, "total_%s %llu\n",
3223 			   mem_cgroup_events_names[i], val);
3224 	}
3225 
3226 	for (i = 0; i < NR_LRU_LISTS; i++) {
3227 		unsigned long long val = 0;
3228 
3229 		for_each_mem_cgroup_tree(mi, memcg)
3230 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3231 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3232 	}
3233 
3234 #ifdef CONFIG_DEBUG_VM
3235 	{
3236 		int nid, zid;
3237 		struct mem_cgroup_per_zone *mz;
3238 		struct zone_reclaim_stat *rstat;
3239 		unsigned long recent_rotated[2] = {0, 0};
3240 		unsigned long recent_scanned[2] = {0, 0};
3241 
3242 		for_each_online_node(nid)
3243 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3244 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3245 				rstat = &mz->lruvec.reclaim_stat;
3246 
3247 				recent_rotated[0] += rstat->recent_rotated[0];
3248 				recent_rotated[1] += rstat->recent_rotated[1];
3249 				recent_scanned[0] += rstat->recent_scanned[0];
3250 				recent_scanned[1] += rstat->recent_scanned[1];
3251 			}
3252 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3253 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3254 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3255 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3256 	}
3257 #endif
3258 
3259 	return 0;
3260 }
3261 
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)3262 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3263 				      struct cftype *cft)
3264 {
3265 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3266 
3267 	return mem_cgroup_swappiness(memcg);
3268 }
3269 
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3270 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3271 				       struct cftype *cft, u64 val)
3272 {
3273 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3274 
3275 	if (val > 100)
3276 		return -EINVAL;
3277 
3278 	if (css->parent)
3279 		memcg->swappiness = val;
3280 	else
3281 		vm_swappiness = val;
3282 
3283 	return 0;
3284 }
3285 
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)3286 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3287 {
3288 	struct mem_cgroup_threshold_ary *t;
3289 	unsigned long usage;
3290 	int i;
3291 
3292 	rcu_read_lock();
3293 	if (!swap)
3294 		t = rcu_dereference(memcg->thresholds.primary);
3295 	else
3296 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3297 
3298 	if (!t)
3299 		goto unlock;
3300 
3301 	usage = mem_cgroup_usage(memcg, swap);
3302 
3303 	/*
3304 	 * current_threshold points to threshold just below or equal to usage.
3305 	 * If it's not true, a threshold was crossed after last
3306 	 * call of __mem_cgroup_threshold().
3307 	 */
3308 	i = t->current_threshold;
3309 
3310 	/*
3311 	 * Iterate backward over array of thresholds starting from
3312 	 * current_threshold and check if a threshold is crossed.
3313 	 * If none of thresholds below usage is crossed, we read
3314 	 * only one element of the array here.
3315 	 */
3316 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3317 		eventfd_signal(t->entries[i].eventfd, 1);
3318 
3319 	/* i = current_threshold + 1 */
3320 	i++;
3321 
3322 	/*
3323 	 * Iterate forward over array of thresholds starting from
3324 	 * current_threshold+1 and check if a threshold is crossed.
3325 	 * If none of thresholds above usage is crossed, we read
3326 	 * only one element of the array here.
3327 	 */
3328 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3329 		eventfd_signal(t->entries[i].eventfd, 1);
3330 
3331 	/* Update current_threshold */
3332 	t->current_threshold = i - 1;
3333 unlock:
3334 	rcu_read_unlock();
3335 }
3336 
mem_cgroup_threshold(struct mem_cgroup * memcg)3337 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3338 {
3339 	while (memcg) {
3340 		__mem_cgroup_threshold(memcg, false);
3341 		if (do_swap_account)
3342 			__mem_cgroup_threshold(memcg, true);
3343 
3344 		memcg = parent_mem_cgroup(memcg);
3345 	}
3346 }
3347 
compare_thresholds(const void * a,const void * b)3348 static int compare_thresholds(const void *a, const void *b)
3349 {
3350 	const struct mem_cgroup_threshold *_a = a;
3351 	const struct mem_cgroup_threshold *_b = b;
3352 
3353 	if (_a->threshold > _b->threshold)
3354 		return 1;
3355 
3356 	if (_a->threshold < _b->threshold)
3357 		return -1;
3358 
3359 	return 0;
3360 }
3361 
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)3362 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3363 {
3364 	struct mem_cgroup_eventfd_list *ev;
3365 
3366 	spin_lock(&memcg_oom_lock);
3367 
3368 	list_for_each_entry(ev, &memcg->oom_notify, list)
3369 		eventfd_signal(ev->eventfd, 1);
3370 
3371 	spin_unlock(&memcg_oom_lock);
3372 	return 0;
3373 }
3374 
mem_cgroup_oom_notify(struct mem_cgroup * memcg)3375 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3376 {
3377 	struct mem_cgroup *iter;
3378 
3379 	for_each_mem_cgroup_tree(iter, memcg)
3380 		mem_cgroup_oom_notify_cb(iter);
3381 }
3382 
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)3383 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3384 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3385 {
3386 	struct mem_cgroup_thresholds *thresholds;
3387 	struct mem_cgroup_threshold_ary *new;
3388 	unsigned long threshold;
3389 	unsigned long usage;
3390 	int i, size, ret;
3391 
3392 	ret = page_counter_memparse(args, "-1", &threshold);
3393 	if (ret)
3394 		return ret;
3395 
3396 	mutex_lock(&memcg->thresholds_lock);
3397 
3398 	if (type == _MEM) {
3399 		thresholds = &memcg->thresholds;
3400 		usage = mem_cgroup_usage(memcg, false);
3401 	} else if (type == _MEMSWAP) {
3402 		thresholds = &memcg->memsw_thresholds;
3403 		usage = mem_cgroup_usage(memcg, true);
3404 	} else
3405 		BUG();
3406 
3407 	/* Check if a threshold crossed before adding a new one */
3408 	if (thresholds->primary)
3409 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3410 
3411 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3412 
3413 	/* Allocate memory for new array of thresholds */
3414 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3415 			GFP_KERNEL);
3416 	if (!new) {
3417 		ret = -ENOMEM;
3418 		goto unlock;
3419 	}
3420 	new->size = size;
3421 
3422 	/* Copy thresholds (if any) to new array */
3423 	if (thresholds->primary) {
3424 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3425 				sizeof(struct mem_cgroup_threshold));
3426 	}
3427 
3428 	/* Add new threshold */
3429 	new->entries[size - 1].eventfd = eventfd;
3430 	new->entries[size - 1].threshold = threshold;
3431 
3432 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3433 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3434 			compare_thresholds, NULL);
3435 
3436 	/* Find current threshold */
3437 	new->current_threshold = -1;
3438 	for (i = 0; i < size; i++) {
3439 		if (new->entries[i].threshold <= usage) {
3440 			/*
3441 			 * new->current_threshold will not be used until
3442 			 * rcu_assign_pointer(), so it's safe to increment
3443 			 * it here.
3444 			 */
3445 			++new->current_threshold;
3446 		} else
3447 			break;
3448 	}
3449 
3450 	/* Free old spare buffer and save old primary buffer as spare */
3451 	kfree(thresholds->spare);
3452 	thresholds->spare = thresholds->primary;
3453 
3454 	rcu_assign_pointer(thresholds->primary, new);
3455 
3456 	/* To be sure that nobody uses thresholds */
3457 	synchronize_rcu();
3458 
3459 unlock:
3460 	mutex_unlock(&memcg->thresholds_lock);
3461 
3462 	return ret;
3463 }
3464 
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3465 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3466 	struct eventfd_ctx *eventfd, const char *args)
3467 {
3468 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3469 }
3470 
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3471 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3472 	struct eventfd_ctx *eventfd, const char *args)
3473 {
3474 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3475 }
3476 
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)3477 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3478 	struct eventfd_ctx *eventfd, enum res_type type)
3479 {
3480 	struct mem_cgroup_thresholds *thresholds;
3481 	struct mem_cgroup_threshold_ary *new;
3482 	unsigned long usage;
3483 	int i, j, size, entries;
3484 
3485 	mutex_lock(&memcg->thresholds_lock);
3486 
3487 	if (type == _MEM) {
3488 		thresholds = &memcg->thresholds;
3489 		usage = mem_cgroup_usage(memcg, false);
3490 	} else if (type == _MEMSWAP) {
3491 		thresholds = &memcg->memsw_thresholds;
3492 		usage = mem_cgroup_usage(memcg, true);
3493 	} else
3494 		BUG();
3495 
3496 	if (!thresholds->primary)
3497 		goto unlock;
3498 
3499 	/* Check if a threshold crossed before removing */
3500 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3501 
3502 	/* Calculate new number of threshold */
3503 	size = entries = 0;
3504 	for (i = 0; i < thresholds->primary->size; i++) {
3505 		if (thresholds->primary->entries[i].eventfd != eventfd)
3506 			size++;
3507 		else
3508 			entries++;
3509 	}
3510 
3511 	new = thresholds->spare;
3512 
3513 	/* If no items related to eventfd have been cleared, nothing to do */
3514 	if (!entries)
3515 		goto unlock;
3516 
3517 	/* Set thresholds array to NULL if we don't have thresholds */
3518 	if (!size) {
3519 		kfree(new);
3520 		new = NULL;
3521 		goto swap_buffers;
3522 	}
3523 
3524 	new->size = size;
3525 
3526 	/* Copy thresholds and find current threshold */
3527 	new->current_threshold = -1;
3528 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3529 		if (thresholds->primary->entries[i].eventfd == eventfd)
3530 			continue;
3531 
3532 		new->entries[j] = thresholds->primary->entries[i];
3533 		if (new->entries[j].threshold <= usage) {
3534 			/*
3535 			 * new->current_threshold will not be used
3536 			 * until rcu_assign_pointer(), so it's safe to increment
3537 			 * it here.
3538 			 */
3539 			++new->current_threshold;
3540 		}
3541 		j++;
3542 	}
3543 
3544 swap_buffers:
3545 	/* Swap primary and spare array */
3546 	thresholds->spare = thresholds->primary;
3547 
3548 	rcu_assign_pointer(thresholds->primary, new);
3549 
3550 	/* To be sure that nobody uses thresholds */
3551 	synchronize_rcu();
3552 
3553 	/* If all events are unregistered, free the spare array */
3554 	if (!new) {
3555 		kfree(thresholds->spare);
3556 		thresholds->spare = NULL;
3557 	}
3558 unlock:
3559 	mutex_unlock(&memcg->thresholds_lock);
3560 }
3561 
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3562 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3563 	struct eventfd_ctx *eventfd)
3564 {
3565 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3566 }
3567 
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3568 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3569 	struct eventfd_ctx *eventfd)
3570 {
3571 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3572 }
3573 
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3574 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3575 	struct eventfd_ctx *eventfd, const char *args)
3576 {
3577 	struct mem_cgroup_eventfd_list *event;
3578 
3579 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3580 	if (!event)
3581 		return -ENOMEM;
3582 
3583 	spin_lock(&memcg_oom_lock);
3584 
3585 	event->eventfd = eventfd;
3586 	list_add(&event->list, &memcg->oom_notify);
3587 
3588 	/* already in OOM ? */
3589 	if (memcg->under_oom)
3590 		eventfd_signal(eventfd, 1);
3591 	spin_unlock(&memcg_oom_lock);
3592 
3593 	return 0;
3594 }
3595 
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3596 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3597 	struct eventfd_ctx *eventfd)
3598 {
3599 	struct mem_cgroup_eventfd_list *ev, *tmp;
3600 
3601 	spin_lock(&memcg_oom_lock);
3602 
3603 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3604 		if (ev->eventfd == eventfd) {
3605 			list_del(&ev->list);
3606 			kfree(ev);
3607 		}
3608 	}
3609 
3610 	spin_unlock(&memcg_oom_lock);
3611 }
3612 
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)3613 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3614 {
3615 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3616 
3617 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3618 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3619 	return 0;
3620 }
3621 
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3622 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3623 	struct cftype *cft, u64 val)
3624 {
3625 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3626 
3627 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3628 	if (!css->parent || !((val == 0) || (val == 1)))
3629 		return -EINVAL;
3630 
3631 	memcg->oom_kill_disable = val;
3632 	if (!val)
3633 		memcg_oom_recover(memcg);
3634 
3635 	return 0;
3636 }
3637 
3638 #ifdef CONFIG_MEMCG_KMEM
memcg_init_kmem(struct mem_cgroup * memcg,struct cgroup_subsys * ss)3639 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3640 {
3641 	int ret;
3642 
3643 	ret = memcg_propagate_kmem(memcg);
3644 	if (ret)
3645 		return ret;
3646 
3647 	return mem_cgroup_sockets_init(memcg, ss);
3648 }
3649 
memcg_deactivate_kmem(struct mem_cgroup * memcg)3650 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3651 {
3652 	struct cgroup_subsys_state *css;
3653 	struct mem_cgroup *parent, *child;
3654 	int kmemcg_id;
3655 
3656 	if (!memcg->kmem_acct_active)
3657 		return;
3658 
3659 	/*
3660 	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3661 	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3662 	 * guarantees no cache will be created for this cgroup after we are
3663 	 * done (see memcg_create_kmem_cache()).
3664 	 */
3665 	memcg->kmem_acct_active = false;
3666 
3667 	memcg_deactivate_kmem_caches(memcg);
3668 
3669 	kmemcg_id = memcg->kmemcg_id;
3670 	BUG_ON(kmemcg_id < 0);
3671 
3672 	parent = parent_mem_cgroup(memcg);
3673 	if (!parent)
3674 		parent = root_mem_cgroup;
3675 
3676 	/*
3677 	 * Change kmemcg_id of this cgroup and all its descendants to the
3678 	 * parent's id, and then move all entries from this cgroup's list_lrus
3679 	 * to ones of the parent. After we have finished, all list_lrus
3680 	 * corresponding to this cgroup are guaranteed to remain empty. The
3681 	 * ordering is imposed by list_lru_node->lock taken by
3682 	 * memcg_drain_all_list_lrus().
3683 	 */
3684 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3685 	css_for_each_descendant_pre(css, &memcg->css) {
3686 		child = mem_cgroup_from_css(css);
3687 		BUG_ON(child->kmemcg_id != kmemcg_id);
3688 		child->kmemcg_id = parent->kmemcg_id;
3689 		if (!memcg->use_hierarchy)
3690 			break;
3691 	}
3692 	rcu_read_unlock();
3693 
3694 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3695 
3696 	memcg_free_cache_id(kmemcg_id);
3697 }
3698 
memcg_destroy_kmem(struct mem_cgroup * memcg)3699 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3700 {
3701 	if (memcg->kmem_acct_activated) {
3702 		memcg_destroy_kmem_caches(memcg);
3703 		static_key_slow_dec(&memcg_kmem_enabled_key);
3704 		WARN_ON(page_counter_read(&memcg->kmem));
3705 	}
3706 	mem_cgroup_sockets_destroy(memcg);
3707 }
3708 #else
memcg_init_kmem(struct mem_cgroup * memcg,struct cgroup_subsys * ss)3709 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3710 {
3711 	return 0;
3712 }
3713 
memcg_deactivate_kmem(struct mem_cgroup * memcg)3714 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3715 {
3716 }
3717 
memcg_destroy_kmem(struct mem_cgroup * memcg)3718 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3719 {
3720 }
3721 #endif
3722 
3723 #ifdef CONFIG_CGROUP_WRITEBACK
3724 
mem_cgroup_cgwb_list(struct mem_cgroup * memcg)3725 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3726 {
3727 	return &memcg->cgwb_list;
3728 }
3729 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3730 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3731 {
3732 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3733 }
3734 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3735 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3736 {
3737 	wb_domain_exit(&memcg->cgwb_domain);
3738 }
3739 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3740 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3741 {
3742 	wb_domain_size_changed(&memcg->cgwb_domain);
3743 }
3744 
mem_cgroup_wb_domain(struct bdi_writeback * wb)3745 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3746 {
3747 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3748 
3749 	if (!memcg->css.parent)
3750 		return NULL;
3751 
3752 	return &memcg->cgwb_domain;
3753 }
3754 
3755 /**
3756  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3757  * @wb: bdi_writeback in question
3758  * @pfilepages: out parameter for number of file pages
3759  * @pheadroom: out parameter for number of allocatable pages according to memcg
3760  * @pdirty: out parameter for number of dirty pages
3761  * @pwriteback: out parameter for number of pages under writeback
3762  *
3763  * Determine the numbers of file, headroom, dirty, and writeback pages in
3764  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3765  * is a bit more involved.
3766  *
3767  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3768  * headroom is calculated as the lowest headroom of itself and the
3769  * ancestors.  Note that this doesn't consider the actual amount of
3770  * available memory in the system.  The caller should further cap
3771  * *@pheadroom accordingly.
3772  */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3773 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3774 			 unsigned long *pheadroom, unsigned long *pdirty,
3775 			 unsigned long *pwriteback)
3776 {
3777 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3778 	struct mem_cgroup *parent;
3779 
3780 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3781 
3782 	/* this should eventually include NR_UNSTABLE_NFS */
3783 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3784 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3785 						     (1 << LRU_ACTIVE_FILE));
3786 	*pheadroom = PAGE_COUNTER_MAX;
3787 
3788 	while ((parent = parent_mem_cgroup(memcg))) {
3789 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3790 		unsigned long used = page_counter_read(&memcg->memory);
3791 
3792 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3793 		memcg = parent;
3794 	}
3795 }
3796 
3797 #else	/* CONFIG_CGROUP_WRITEBACK */
3798 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3799 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3800 {
3801 	return 0;
3802 }
3803 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3804 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3805 {
3806 }
3807 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3808 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3809 {
3810 }
3811 
3812 #endif	/* CONFIG_CGROUP_WRITEBACK */
3813 
3814 /*
3815  * DO NOT USE IN NEW FILES.
3816  *
3817  * "cgroup.event_control" implementation.
3818  *
3819  * This is way over-engineered.  It tries to support fully configurable
3820  * events for each user.  Such level of flexibility is completely
3821  * unnecessary especially in the light of the planned unified hierarchy.
3822  *
3823  * Please deprecate this and replace with something simpler if at all
3824  * possible.
3825  */
3826 
3827 /*
3828  * Unregister event and free resources.
3829  *
3830  * Gets called from workqueue.
3831  */
memcg_event_remove(struct work_struct * work)3832 static void memcg_event_remove(struct work_struct *work)
3833 {
3834 	struct mem_cgroup_event *event =
3835 		container_of(work, struct mem_cgroup_event, remove);
3836 	struct mem_cgroup *memcg = event->memcg;
3837 
3838 	remove_wait_queue(event->wqh, &event->wait);
3839 
3840 	event->unregister_event(memcg, event->eventfd);
3841 
3842 	/* Notify userspace the event is going away. */
3843 	eventfd_signal(event->eventfd, 1);
3844 
3845 	eventfd_ctx_put(event->eventfd);
3846 	kfree(event);
3847 	css_put(&memcg->css);
3848 }
3849 
3850 /*
3851  * Gets called on POLLHUP on eventfd when user closes it.
3852  *
3853  * Called with wqh->lock held and interrupts disabled.
3854  */
memcg_event_wake(wait_queue_t * wait,unsigned mode,int sync,void * key)3855 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3856 			    int sync, void *key)
3857 {
3858 	struct mem_cgroup_event *event =
3859 		container_of(wait, struct mem_cgroup_event, wait);
3860 	struct mem_cgroup *memcg = event->memcg;
3861 	unsigned long flags = (unsigned long)key;
3862 
3863 	if (flags & POLLHUP) {
3864 		/*
3865 		 * If the event has been detached at cgroup removal, we
3866 		 * can simply return knowing the other side will cleanup
3867 		 * for us.
3868 		 *
3869 		 * We can't race against event freeing since the other
3870 		 * side will require wqh->lock via remove_wait_queue(),
3871 		 * which we hold.
3872 		 */
3873 		spin_lock(&memcg->event_list_lock);
3874 		if (!list_empty(&event->list)) {
3875 			list_del_init(&event->list);
3876 			/*
3877 			 * We are in atomic context, but cgroup_event_remove()
3878 			 * may sleep, so we have to call it in workqueue.
3879 			 */
3880 			schedule_work(&event->remove);
3881 		}
3882 		spin_unlock(&memcg->event_list_lock);
3883 	}
3884 
3885 	return 0;
3886 }
3887 
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)3888 static void memcg_event_ptable_queue_proc(struct file *file,
3889 		wait_queue_head_t *wqh, poll_table *pt)
3890 {
3891 	struct mem_cgroup_event *event =
3892 		container_of(pt, struct mem_cgroup_event, pt);
3893 
3894 	event->wqh = wqh;
3895 	add_wait_queue(wqh, &event->wait);
3896 }
3897 
3898 /*
3899  * DO NOT USE IN NEW FILES.
3900  *
3901  * Parse input and register new cgroup event handler.
3902  *
3903  * Input must be in format '<event_fd> <control_fd> <args>'.
3904  * Interpretation of args is defined by control file implementation.
3905  */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3906 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3907 					 char *buf, size_t nbytes, loff_t off)
3908 {
3909 	struct cgroup_subsys_state *css = of_css(of);
3910 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3911 	struct mem_cgroup_event *event;
3912 	struct cgroup_subsys_state *cfile_css;
3913 	unsigned int efd, cfd;
3914 	struct fd efile;
3915 	struct fd cfile;
3916 	const char *name;
3917 	char *endp;
3918 	int ret;
3919 
3920 	buf = strstrip(buf);
3921 
3922 	efd = simple_strtoul(buf, &endp, 10);
3923 	if (*endp != ' ')
3924 		return -EINVAL;
3925 	buf = endp + 1;
3926 
3927 	cfd = simple_strtoul(buf, &endp, 10);
3928 	if ((*endp != ' ') && (*endp != '\0'))
3929 		return -EINVAL;
3930 	buf = endp + 1;
3931 
3932 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3933 	if (!event)
3934 		return -ENOMEM;
3935 
3936 	event->memcg = memcg;
3937 	INIT_LIST_HEAD(&event->list);
3938 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3939 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3940 	INIT_WORK(&event->remove, memcg_event_remove);
3941 
3942 	efile = fdget(efd);
3943 	if (!efile.file) {
3944 		ret = -EBADF;
3945 		goto out_kfree;
3946 	}
3947 
3948 	event->eventfd = eventfd_ctx_fileget(efile.file);
3949 	if (IS_ERR(event->eventfd)) {
3950 		ret = PTR_ERR(event->eventfd);
3951 		goto out_put_efile;
3952 	}
3953 
3954 	cfile = fdget(cfd);
3955 	if (!cfile.file) {
3956 		ret = -EBADF;
3957 		goto out_put_eventfd;
3958 	}
3959 
3960 	/* the process need read permission on control file */
3961 	/* AV: shouldn't we check that it's been opened for read instead? */
3962 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3963 	if (ret < 0)
3964 		goto out_put_cfile;
3965 
3966 	/*
3967 	 * Determine the event callbacks and set them in @event.  This used
3968 	 * to be done via struct cftype but cgroup core no longer knows
3969 	 * about these events.  The following is crude but the whole thing
3970 	 * is for compatibility anyway.
3971 	 *
3972 	 * DO NOT ADD NEW FILES.
3973 	 */
3974 	name = cfile.file->f_path.dentry->d_name.name;
3975 
3976 	if (!strcmp(name, "memory.usage_in_bytes")) {
3977 		event->register_event = mem_cgroup_usage_register_event;
3978 		event->unregister_event = mem_cgroup_usage_unregister_event;
3979 	} else if (!strcmp(name, "memory.oom_control")) {
3980 		event->register_event = mem_cgroup_oom_register_event;
3981 		event->unregister_event = mem_cgroup_oom_unregister_event;
3982 	} else if (!strcmp(name, "memory.pressure_level")) {
3983 		event->register_event = vmpressure_register_event;
3984 		event->unregister_event = vmpressure_unregister_event;
3985 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3986 		event->register_event = memsw_cgroup_usage_register_event;
3987 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3988 	} else {
3989 		ret = -EINVAL;
3990 		goto out_put_cfile;
3991 	}
3992 
3993 	/*
3994 	 * Verify @cfile should belong to @css.  Also, remaining events are
3995 	 * automatically removed on cgroup destruction but the removal is
3996 	 * asynchronous, so take an extra ref on @css.
3997 	 */
3998 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3999 					       &memory_cgrp_subsys);
4000 	ret = -EINVAL;
4001 	if (IS_ERR(cfile_css))
4002 		goto out_put_cfile;
4003 	if (cfile_css != css) {
4004 		css_put(cfile_css);
4005 		goto out_put_cfile;
4006 	}
4007 
4008 	ret = event->register_event(memcg, event->eventfd, buf);
4009 	if (ret)
4010 		goto out_put_css;
4011 
4012 	efile.file->f_op->poll(efile.file, &event->pt);
4013 
4014 	spin_lock(&memcg->event_list_lock);
4015 	list_add(&event->list, &memcg->event_list);
4016 	spin_unlock(&memcg->event_list_lock);
4017 
4018 	fdput(cfile);
4019 	fdput(efile);
4020 
4021 	return nbytes;
4022 
4023 out_put_css:
4024 	css_put(css);
4025 out_put_cfile:
4026 	fdput(cfile);
4027 out_put_eventfd:
4028 	eventfd_ctx_put(event->eventfd);
4029 out_put_efile:
4030 	fdput(efile);
4031 out_kfree:
4032 	kfree(event);
4033 
4034 	return ret;
4035 }
4036 
4037 static struct cftype mem_cgroup_legacy_files[] = {
4038 	{
4039 		.name = "usage_in_bytes",
4040 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4041 		.read_u64 = mem_cgroup_read_u64,
4042 	},
4043 	{
4044 		.name = "max_usage_in_bytes",
4045 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4046 		.write = mem_cgroup_reset,
4047 		.read_u64 = mem_cgroup_read_u64,
4048 	},
4049 	{
4050 		.name = "limit_in_bytes",
4051 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4052 		.write = mem_cgroup_write,
4053 		.read_u64 = mem_cgroup_read_u64,
4054 	},
4055 	{
4056 		.name = "soft_limit_in_bytes",
4057 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4058 		.write = mem_cgroup_write,
4059 		.read_u64 = mem_cgroup_read_u64,
4060 	},
4061 	{
4062 		.name = "failcnt",
4063 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4064 		.write = mem_cgroup_reset,
4065 		.read_u64 = mem_cgroup_read_u64,
4066 	},
4067 	{
4068 		.name = "stat",
4069 		.seq_show = memcg_stat_show,
4070 	},
4071 	{
4072 		.name = "force_empty",
4073 		.write = mem_cgroup_force_empty_write,
4074 	},
4075 	{
4076 		.name = "use_hierarchy",
4077 		.write_u64 = mem_cgroup_hierarchy_write,
4078 		.read_u64 = mem_cgroup_hierarchy_read,
4079 	},
4080 	{
4081 		.name = "cgroup.event_control",		/* XXX: for compat */
4082 		.write = memcg_write_event_control,
4083 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4084 	},
4085 	{
4086 		.name = "swappiness",
4087 		.read_u64 = mem_cgroup_swappiness_read,
4088 		.write_u64 = mem_cgroup_swappiness_write,
4089 	},
4090 	{
4091 		.name = "move_charge_at_immigrate",
4092 		.read_u64 = mem_cgroup_move_charge_read,
4093 		.write_u64 = mem_cgroup_move_charge_write,
4094 	},
4095 	{
4096 		.name = "oom_control",
4097 		.seq_show = mem_cgroup_oom_control_read,
4098 		.write_u64 = mem_cgroup_oom_control_write,
4099 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4100 	},
4101 	{
4102 		.name = "pressure_level",
4103 	},
4104 #ifdef CONFIG_NUMA
4105 	{
4106 		.name = "numa_stat",
4107 		.seq_show = memcg_numa_stat_show,
4108 	},
4109 #endif
4110 #ifdef CONFIG_MEMCG_KMEM
4111 	{
4112 		.name = "kmem.limit_in_bytes",
4113 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4114 		.write = mem_cgroup_write,
4115 		.read_u64 = mem_cgroup_read_u64,
4116 	},
4117 	{
4118 		.name = "kmem.usage_in_bytes",
4119 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4120 		.read_u64 = mem_cgroup_read_u64,
4121 	},
4122 	{
4123 		.name = "kmem.failcnt",
4124 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4125 		.write = mem_cgroup_reset,
4126 		.read_u64 = mem_cgroup_read_u64,
4127 	},
4128 	{
4129 		.name = "kmem.max_usage_in_bytes",
4130 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4131 		.write = mem_cgroup_reset,
4132 		.read_u64 = mem_cgroup_read_u64,
4133 	},
4134 #ifdef CONFIG_SLABINFO
4135 	{
4136 		.name = "kmem.slabinfo",
4137 		.seq_start = slab_start,
4138 		.seq_next = slab_next,
4139 		.seq_stop = slab_stop,
4140 		.seq_show = memcg_slab_show,
4141 	},
4142 #endif
4143 #endif
4144 	{ },	/* terminate */
4145 };
4146 
4147 /*
4148  * Private memory cgroup IDR
4149  *
4150  * Swap-out records and page cache shadow entries need to store memcg
4151  * references in constrained space, so we maintain an ID space that is
4152  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4153  * memory-controlled cgroups to 64k.
4154  *
4155  * However, there usually are many references to the oflline CSS after
4156  * the cgroup has been destroyed, such as page cache or reclaimable
4157  * slab objects, that don't need to hang on to the ID. We want to keep
4158  * those dead CSS from occupying IDs, or we might quickly exhaust the
4159  * relatively small ID space and prevent the creation of new cgroups
4160  * even when there are much fewer than 64k cgroups - possibly none.
4161  *
4162  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4163  * be freed and recycled when it's no longer needed, which is usually
4164  * when the CSS is offlined.
4165  *
4166  * The only exception to that are records of swapped out tmpfs/shmem
4167  * pages that need to be attributed to live ancestors on swapin. But
4168  * those references are manageable from userspace.
4169  */
4170 
4171 static DEFINE_IDR(mem_cgroup_idr);
4172 
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)4173 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4174 {
4175 	atomic_add(n, &memcg->id.ref);
4176 }
4177 
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)4178 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4179 {
4180 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4181 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4182 		memcg->id.id = 0;
4183 
4184 		/* Memcg ID pins CSS */
4185 		css_put(&memcg->css);
4186 	}
4187 }
4188 
mem_cgroup_id_get(struct mem_cgroup * memcg)4189 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4190 {
4191 	mem_cgroup_id_get_many(memcg, 1);
4192 }
4193 
mem_cgroup_id_put(struct mem_cgroup * memcg)4194 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4195 {
4196 	mem_cgroup_id_put_many(memcg, 1);
4197 }
4198 
4199 /**
4200  * mem_cgroup_from_id - look up a memcg from a memcg id
4201  * @id: the memcg id to look up
4202  *
4203  * Caller must hold rcu_read_lock().
4204  */
mem_cgroup_from_id(unsigned short id)4205 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4206 {
4207 	WARN_ON_ONCE(!rcu_read_lock_held());
4208 	return idr_find(&mem_cgroup_idr, id);
4209 }
4210 
alloc_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)4211 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4212 {
4213 	struct mem_cgroup_per_node *pn;
4214 	struct mem_cgroup_per_zone *mz;
4215 	int zone, tmp = node;
4216 	/*
4217 	 * This routine is called against possible nodes.
4218 	 * But it's BUG to call kmalloc() against offline node.
4219 	 *
4220 	 * TODO: this routine can waste much memory for nodes which will
4221 	 *       never be onlined. It's better to use memory hotplug callback
4222 	 *       function.
4223 	 */
4224 	if (!node_state(node, N_NORMAL_MEMORY))
4225 		tmp = -1;
4226 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4227 	if (!pn)
4228 		return 1;
4229 
4230 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4231 		mz = &pn->zoneinfo[zone];
4232 		lruvec_init(&mz->lruvec);
4233 		mz->usage_in_excess = 0;
4234 		mz->on_tree = false;
4235 		mz->memcg = memcg;
4236 	}
4237 	memcg->nodeinfo[node] = pn;
4238 	return 0;
4239 }
4240 
free_mem_cgroup_per_zone_info(struct mem_cgroup * memcg,int node)4241 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4242 {
4243 	kfree(memcg->nodeinfo[node]);
4244 }
4245 
mem_cgroup_alloc(void)4246 static struct mem_cgroup *mem_cgroup_alloc(void)
4247 {
4248 	struct mem_cgroup *memcg;
4249 	size_t size;
4250 
4251 	size = sizeof(struct mem_cgroup);
4252 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4253 
4254 	memcg = kzalloc(size, GFP_KERNEL);
4255 	if (!memcg)
4256 		return NULL;
4257 
4258 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4259 	if (!memcg->stat)
4260 		goto out_free;
4261 
4262 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4263 		goto out_free_stat;
4264 
4265 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4266 				 1, MEM_CGROUP_ID_MAX,
4267 				 GFP_KERNEL);
4268 	if (memcg->id.id < 0)
4269 		goto out_free_stat;
4270 
4271 	return memcg;
4272 
4273 out_free_stat:
4274 	free_percpu(memcg->stat);
4275 out_free:
4276 	kfree(memcg);
4277 	return NULL;
4278 }
4279 
4280 /*
4281  * At destroying mem_cgroup, references from swap_cgroup can remain.
4282  * (scanning all at force_empty is too costly...)
4283  *
4284  * Instead of clearing all references at force_empty, we remember
4285  * the number of reference from swap_cgroup and free mem_cgroup when
4286  * it goes down to 0.
4287  *
4288  * Removal of cgroup itself succeeds regardless of refs from swap.
4289  */
4290 
__mem_cgroup_free(struct mem_cgroup * memcg)4291 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4292 {
4293 	int node;
4294 
4295 	mem_cgroup_remove_from_trees(memcg);
4296 
4297 	for_each_node(node)
4298 		free_mem_cgroup_per_zone_info(memcg, node);
4299 
4300 	free_percpu(memcg->stat);
4301 	memcg_wb_domain_exit(memcg);
4302 	kfree(memcg);
4303 }
4304 
4305 /*
4306  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4307  */
parent_mem_cgroup(struct mem_cgroup * memcg)4308 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4309 {
4310 	if (!memcg->memory.parent)
4311 		return NULL;
4312 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4313 }
4314 EXPORT_SYMBOL(parent_mem_cgroup);
4315 
4316 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)4317 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4318 {
4319 	struct mem_cgroup *memcg;
4320 	long error = -ENOMEM;
4321 	int node;
4322 
4323 	memcg = mem_cgroup_alloc();
4324 	if (!memcg)
4325 		return ERR_PTR(error);
4326 
4327 	for_each_node(node)
4328 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4329 			goto free_out;
4330 
4331 	/* root ? */
4332 	if (parent_css == NULL) {
4333 		root_mem_cgroup = memcg;
4334 		mem_cgroup_root_css = &memcg->css;
4335 		page_counter_init(&memcg->memory, NULL);
4336 		memcg->high = PAGE_COUNTER_MAX;
4337 		memcg->soft_limit = PAGE_COUNTER_MAX;
4338 		page_counter_init(&memcg->memsw, NULL);
4339 		page_counter_init(&memcg->kmem, NULL);
4340 	}
4341 
4342 	memcg->last_scanned_node = MAX_NUMNODES;
4343 	INIT_LIST_HEAD(&memcg->oom_notify);
4344 	memcg->move_charge_at_immigrate = 0;
4345 	mutex_init(&memcg->thresholds_lock);
4346 	spin_lock_init(&memcg->move_lock);
4347 	vmpressure_init(&memcg->vmpressure);
4348 	INIT_LIST_HEAD(&memcg->event_list);
4349 	spin_lock_init(&memcg->event_list_lock);
4350 #ifdef CONFIG_MEMCG_KMEM
4351 	memcg->kmemcg_id = -1;
4352 #endif
4353 #ifdef CONFIG_CGROUP_WRITEBACK
4354 	INIT_LIST_HEAD(&memcg->cgwb_list);
4355 #endif
4356 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4357 	return &memcg->css;
4358 
4359 free_out:
4360 	idr_remove(&mem_cgroup_idr, memcg->id.id);
4361 	__mem_cgroup_free(memcg);
4362 	return ERR_PTR(error);
4363 }
4364 
4365 static int
mem_cgroup_css_online(struct cgroup_subsys_state * css)4366 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4367 {
4368 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4369 	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4370 	int ret;
4371 
4372 	/* Online state pins memcg ID, memcg ID pins CSS */
4373 	mem_cgroup_id_get(mem_cgroup_from_css(css));
4374 	css_get(css);
4375 
4376 	if (!parent)
4377 		return 0;
4378 
4379 	mutex_lock(&memcg_create_mutex);
4380 
4381 	memcg->use_hierarchy = parent->use_hierarchy;
4382 	memcg->oom_kill_disable = parent->oom_kill_disable;
4383 	memcg->swappiness = mem_cgroup_swappiness(parent);
4384 
4385 	if (parent->use_hierarchy) {
4386 		page_counter_init(&memcg->memory, &parent->memory);
4387 		memcg->high = PAGE_COUNTER_MAX;
4388 		memcg->soft_limit = PAGE_COUNTER_MAX;
4389 		page_counter_init(&memcg->memsw, &parent->memsw);
4390 		page_counter_init(&memcg->kmem, &parent->kmem);
4391 
4392 		/*
4393 		 * No need to take a reference to the parent because cgroup
4394 		 * core guarantees its existence.
4395 		 */
4396 	} else {
4397 		page_counter_init(&memcg->memory, NULL);
4398 		memcg->high = PAGE_COUNTER_MAX;
4399 		memcg->soft_limit = PAGE_COUNTER_MAX;
4400 		page_counter_init(&memcg->memsw, NULL);
4401 		page_counter_init(&memcg->kmem, NULL);
4402 		/*
4403 		 * Deeper hierachy with use_hierarchy == false doesn't make
4404 		 * much sense so let cgroup subsystem know about this
4405 		 * unfortunate state in our controller.
4406 		 */
4407 		if (parent != root_mem_cgroup)
4408 			memory_cgrp_subsys.broken_hierarchy = true;
4409 	}
4410 	mutex_unlock(&memcg_create_mutex);
4411 
4412 	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4413 	if (ret)
4414 		return ret;
4415 
4416 	/*
4417 	 * Make sure the memcg is initialized: mem_cgroup_iter()
4418 	 * orders reading memcg->initialized against its callers
4419 	 * reading the memcg members.
4420 	 */
4421 	smp_store_release(&memcg->initialized, 1);
4422 
4423 	return 0;
4424 }
4425 
mem_cgroup_css_offline(struct cgroup_subsys_state * css)4426 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4427 {
4428 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4429 	struct mem_cgroup_event *event, *tmp;
4430 
4431 	/*
4432 	 * Unregister events and notify userspace.
4433 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4434 	 * directory to avoid race between userspace and kernelspace.
4435 	 */
4436 	spin_lock(&memcg->event_list_lock);
4437 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4438 		list_del_init(&event->list);
4439 		schedule_work(&event->remove);
4440 	}
4441 	spin_unlock(&memcg->event_list_lock);
4442 
4443 	vmpressure_cleanup(&memcg->vmpressure);
4444 
4445 	memcg_deactivate_kmem(memcg);
4446 
4447 	wb_memcg_offline(memcg);
4448 
4449 	mem_cgroup_id_put(memcg);
4450 }
4451 
mem_cgroup_css_released(struct cgroup_subsys_state * css)4452 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4453 {
4454 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4455 
4456 	invalidate_reclaim_iterators(memcg);
4457 }
4458 
mem_cgroup_css_free(struct cgroup_subsys_state * css)4459 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4460 {
4461 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4462 
4463 	memcg_destroy_kmem(memcg);
4464 	__mem_cgroup_free(memcg);
4465 }
4466 
4467 /**
4468  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4469  * @css: the target css
4470  *
4471  * Reset the states of the mem_cgroup associated with @css.  This is
4472  * invoked when the userland requests disabling on the default hierarchy
4473  * but the memcg is pinned through dependency.  The memcg should stop
4474  * applying policies and should revert to the vanilla state as it may be
4475  * made visible again.
4476  *
4477  * The current implementation only resets the essential configurations.
4478  * This needs to be expanded to cover all the visible parts.
4479  */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)4480 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4481 {
4482 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4483 
4484 	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4485 	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4486 	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4487 	memcg->low = 0;
4488 	memcg->high = PAGE_COUNTER_MAX;
4489 	memcg->soft_limit = PAGE_COUNTER_MAX;
4490 	memcg_wb_domain_size_changed(memcg);
4491 }
4492 
4493 #ifdef CONFIG_MMU
4494 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)4495 static int mem_cgroup_do_precharge(unsigned long count)
4496 {
4497 	int ret;
4498 
4499 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4500 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4501 	if (!ret) {
4502 		mc.precharge += count;
4503 		return ret;
4504 	}
4505 
4506 	/* Try charges one by one with reclaim, but do not retry */
4507 	while (count--) {
4508 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4509 		if (ret)
4510 			return ret;
4511 		mc.precharge++;
4512 		cond_resched();
4513 	}
4514 	return 0;
4515 }
4516 
4517 /**
4518  * get_mctgt_type - get target type of moving charge
4519  * @vma: the vma the pte to be checked belongs
4520  * @addr: the address corresponding to the pte to be checked
4521  * @ptent: the pte to be checked
4522  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4523  *
4524  * Returns
4525  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4526  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4527  *     move charge. if @target is not NULL, the page is stored in target->page
4528  *     with extra refcnt got(Callers should handle it).
4529  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4530  *     target for charge migration. if @target is not NULL, the entry is stored
4531  *     in target->ent.
4532  *
4533  * Called with pte lock held.
4534  */
4535 union mc_target {
4536 	struct page	*page;
4537 	swp_entry_t	ent;
4538 };
4539 
4540 enum mc_target_type {
4541 	MC_TARGET_NONE = 0,
4542 	MC_TARGET_PAGE,
4543 	MC_TARGET_SWAP,
4544 };
4545 
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)4546 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4547 						unsigned long addr, pte_t ptent)
4548 {
4549 	struct page *page = vm_normal_page(vma, addr, ptent);
4550 
4551 	if (!page || !page_mapped(page))
4552 		return NULL;
4553 	if (PageAnon(page)) {
4554 		if (!(mc.flags & MOVE_ANON))
4555 			return NULL;
4556 	} else {
4557 		if (!(mc.flags & MOVE_FILE))
4558 			return NULL;
4559 	}
4560 	if (!get_page_unless_zero(page))
4561 		return NULL;
4562 
4563 	return page;
4564 }
4565 
4566 #ifdef CONFIG_SWAP
mc_handle_swap_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4567 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4568 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4569 {
4570 	struct page *page = NULL;
4571 	swp_entry_t ent = pte_to_swp_entry(ptent);
4572 
4573 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4574 		return NULL;
4575 	/*
4576 	 * Because lookup_swap_cache() updates some statistics counter,
4577 	 * we call find_get_page() with swapper_space directly.
4578 	 */
4579 	page = find_get_page(swap_address_space(ent), ent.val);
4580 	if (do_swap_account)
4581 		entry->val = ent.val;
4582 
4583 	return page;
4584 }
4585 #else
mc_handle_swap_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4586 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4587 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4588 {
4589 	return NULL;
4590 }
4591 #endif
4592 
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4593 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4594 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4595 {
4596 	struct page *page = NULL;
4597 	struct address_space *mapping;
4598 	pgoff_t pgoff;
4599 
4600 	if (!vma->vm_file) /* anonymous vma */
4601 		return NULL;
4602 	if (!(mc.flags & MOVE_FILE))
4603 		return NULL;
4604 
4605 	mapping = vma->vm_file->f_mapping;
4606 	pgoff = linear_page_index(vma, addr);
4607 
4608 	/* page is moved even if it's not RSS of this task(page-faulted). */
4609 #ifdef CONFIG_SWAP
4610 	/* shmem/tmpfs may report page out on swap: account for that too. */
4611 	if (shmem_mapping(mapping)) {
4612 		page = find_get_entry(mapping, pgoff);
4613 		if (radix_tree_exceptional_entry(page)) {
4614 			swp_entry_t swp = radix_to_swp_entry(page);
4615 			if (do_swap_account)
4616 				*entry = swp;
4617 			page = find_get_page(swap_address_space(swp), swp.val);
4618 		}
4619 	} else
4620 		page = find_get_page(mapping, pgoff);
4621 #else
4622 	page = find_get_page(mapping, pgoff);
4623 #endif
4624 	return page;
4625 }
4626 
4627 /**
4628  * mem_cgroup_move_account - move account of the page
4629  * @page: the page
4630  * @nr_pages: number of regular pages (>1 for huge pages)
4631  * @from: mem_cgroup which the page is moved from.
4632  * @to:	mem_cgroup which the page is moved to. @from != @to.
4633  *
4634  * The caller must confirm following.
4635  * - page is not on LRU (isolate_page() is useful.)
4636  * - compound_lock is held when nr_pages > 1
4637  *
4638  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4639  * from old cgroup.
4640  */
mem_cgroup_move_account(struct page * page,unsigned int nr_pages,struct mem_cgroup * from,struct mem_cgroup * to)4641 static int mem_cgroup_move_account(struct page *page,
4642 				   unsigned int nr_pages,
4643 				   struct mem_cgroup *from,
4644 				   struct mem_cgroup *to)
4645 {
4646 	unsigned long flags;
4647 	int ret;
4648 	bool anon;
4649 
4650 	VM_BUG_ON(from == to);
4651 	VM_BUG_ON_PAGE(PageLRU(page), page);
4652 	/*
4653 	 * The page is isolated from LRU. So, collapse function
4654 	 * will not handle this page. But page splitting can happen.
4655 	 * Do this check under compound_page_lock(). The caller should
4656 	 * hold it.
4657 	 */
4658 	ret = -EBUSY;
4659 	if (nr_pages > 1 && !PageTransHuge(page))
4660 		goto out;
4661 
4662 	/*
4663 	 * Prevent mem_cgroup_replace_page() from looking at
4664 	 * page->mem_cgroup of its source page while we change it.
4665 	 */
4666 	if (!trylock_page(page))
4667 		goto out;
4668 
4669 	ret = -EINVAL;
4670 	if (page->mem_cgroup != from)
4671 		goto out_unlock;
4672 
4673 	anon = PageAnon(page);
4674 
4675 	spin_lock_irqsave(&from->move_lock, flags);
4676 
4677 	if (!anon && page_mapped(page)) {
4678 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4679 			       nr_pages);
4680 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4681 			       nr_pages);
4682 	}
4683 
4684 	/*
4685 	 * move_lock grabbed above and caller set from->moving_account, so
4686 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4687 	 * So mapping should be stable for dirty pages.
4688 	 */
4689 	if (!anon && PageDirty(page)) {
4690 		struct address_space *mapping = page_mapping(page);
4691 
4692 		if (mapping_cap_account_dirty(mapping)) {
4693 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4694 				       nr_pages);
4695 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4696 				       nr_pages);
4697 		}
4698 	}
4699 
4700 	if (PageWriteback(page)) {
4701 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4702 			       nr_pages);
4703 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4704 			       nr_pages);
4705 	}
4706 
4707 	/*
4708 	 * It is safe to change page->mem_cgroup here because the page
4709 	 * is referenced, charged, and isolated - we can't race with
4710 	 * uncharging, charging, migration, or LRU putback.
4711 	 */
4712 
4713 	/* caller should have done css_get */
4714 	page->mem_cgroup = to;
4715 	spin_unlock_irqrestore(&from->move_lock, flags);
4716 
4717 	ret = 0;
4718 
4719 	local_irq_disable();
4720 	mem_cgroup_charge_statistics(to, page, nr_pages);
4721 	memcg_check_events(to, page);
4722 	mem_cgroup_charge_statistics(from, page, -nr_pages);
4723 	memcg_check_events(from, page);
4724 	local_irq_enable();
4725 out_unlock:
4726 	unlock_page(page);
4727 out:
4728 	return ret;
4729 }
4730 
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)4731 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4732 		unsigned long addr, pte_t ptent, union mc_target *target)
4733 {
4734 	struct page *page = NULL;
4735 	enum mc_target_type ret = MC_TARGET_NONE;
4736 	swp_entry_t ent = { .val = 0 };
4737 
4738 	if (pte_present(ptent))
4739 		page = mc_handle_present_pte(vma, addr, ptent);
4740 	else if (is_swap_pte(ptent))
4741 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4742 	else if (pte_none(ptent))
4743 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4744 
4745 	if (!page && !ent.val)
4746 		return ret;
4747 	if (page) {
4748 		/*
4749 		 * Do only loose check w/o serialization.
4750 		 * mem_cgroup_move_account() checks the page is valid or
4751 		 * not under LRU exclusion.
4752 		 */
4753 		if (page->mem_cgroup == mc.from) {
4754 			ret = MC_TARGET_PAGE;
4755 			if (target)
4756 				target->page = page;
4757 		}
4758 		if (!ret || !target)
4759 			put_page(page);
4760 	}
4761 	/* There is a swap entry and a page doesn't exist or isn't charged */
4762 	if (ent.val && !ret &&
4763 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4764 		ret = MC_TARGET_SWAP;
4765 		if (target)
4766 			target->ent = ent;
4767 	}
4768 	return ret;
4769 }
4770 
4771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4772 /*
4773  * We don't consider swapping or file mapped pages because THP does not
4774  * support them for now.
4775  * Caller should make sure that pmd_trans_huge(pmd) is true.
4776  */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)4777 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4778 		unsigned long addr, pmd_t pmd, union mc_target *target)
4779 {
4780 	struct page *page = NULL;
4781 	enum mc_target_type ret = MC_TARGET_NONE;
4782 
4783 	page = pmd_page(pmd);
4784 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4785 	if (!(mc.flags & MOVE_ANON))
4786 		return ret;
4787 	if (page->mem_cgroup == mc.from) {
4788 		ret = MC_TARGET_PAGE;
4789 		if (target) {
4790 			get_page(page);
4791 			target->page = page;
4792 		}
4793 	}
4794 	return ret;
4795 }
4796 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)4797 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4798 		unsigned long addr, pmd_t pmd, union mc_target *target)
4799 {
4800 	return MC_TARGET_NONE;
4801 }
4802 #endif
4803 
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)4804 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4805 					unsigned long addr, unsigned long end,
4806 					struct mm_walk *walk)
4807 {
4808 	struct vm_area_struct *vma = walk->vma;
4809 	pte_t *pte;
4810 	spinlock_t *ptl;
4811 
4812 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4813 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4814 			mc.precharge += HPAGE_PMD_NR;
4815 		spin_unlock(ptl);
4816 		return 0;
4817 	}
4818 
4819 	if (pmd_trans_unstable(pmd))
4820 		return 0;
4821 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4822 	for (; addr != end; pte++, addr += PAGE_SIZE)
4823 		if (get_mctgt_type(vma, addr, *pte, NULL))
4824 			mc.precharge++;	/* increment precharge temporarily */
4825 	pte_unmap_unlock(pte - 1, ptl);
4826 	cond_resched();
4827 
4828 	return 0;
4829 }
4830 
mem_cgroup_count_precharge(struct mm_struct * mm)4831 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4832 {
4833 	unsigned long precharge;
4834 
4835 	struct mm_walk mem_cgroup_count_precharge_walk = {
4836 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4837 		.mm = mm,
4838 	};
4839 	down_read(&mm->mmap_sem);
4840 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4841 	up_read(&mm->mmap_sem);
4842 
4843 	precharge = mc.precharge;
4844 	mc.precharge = 0;
4845 
4846 	return precharge;
4847 }
4848 
mem_cgroup_precharge_mc(struct mm_struct * mm)4849 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4850 {
4851 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4852 
4853 	VM_BUG_ON(mc.moving_task);
4854 	mc.moving_task = current;
4855 	return mem_cgroup_do_precharge(precharge);
4856 }
4857 
4858 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)4859 static void __mem_cgroup_clear_mc(void)
4860 {
4861 	struct mem_cgroup *from = mc.from;
4862 	struct mem_cgroup *to = mc.to;
4863 
4864 	/* we must uncharge all the leftover precharges from mc.to */
4865 	if (mc.precharge) {
4866 		cancel_charge(mc.to, mc.precharge);
4867 		mc.precharge = 0;
4868 	}
4869 	/*
4870 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4871 	 * we must uncharge here.
4872 	 */
4873 	if (mc.moved_charge) {
4874 		cancel_charge(mc.from, mc.moved_charge);
4875 		mc.moved_charge = 0;
4876 	}
4877 	/* we must fixup refcnts and charges */
4878 	if (mc.moved_swap) {
4879 		/* uncharge swap account from the old cgroup */
4880 		if (!mem_cgroup_is_root(mc.from))
4881 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4882 
4883 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4884 
4885 		/*
4886 		 * we charged both to->memory and to->memsw, so we
4887 		 * should uncharge to->memory.
4888 		 */
4889 		if (!mem_cgroup_is_root(mc.to))
4890 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4891 
4892 		css_put_many(&mc.to->css, mc.moved_swap);
4893 
4894 		mc.moved_swap = 0;
4895 	}
4896 	memcg_oom_recover(from);
4897 	memcg_oom_recover(to);
4898 	wake_up_all(&mc.waitq);
4899 }
4900 
mem_cgroup_clear_mc(void)4901 static void mem_cgroup_clear_mc(void)
4902 {
4903 	struct mm_struct *mm = mc.mm;
4904 
4905 	/*
4906 	 * we must clear moving_task before waking up waiters at the end of
4907 	 * task migration.
4908 	 */
4909 	mc.moving_task = NULL;
4910 	__mem_cgroup_clear_mc();
4911 	spin_lock(&mc.lock);
4912 	mc.from = NULL;
4913 	mc.to = NULL;
4914 	mc.mm = NULL;
4915 	spin_unlock(&mc.lock);
4916 
4917 	mmput(mm);
4918 }
4919 
mem_cgroup_can_attach(struct cgroup_taskset * tset)4920 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4921 {
4922 	struct cgroup_subsys_state *css;
4923 	struct mem_cgroup *memcg;
4924 	struct mem_cgroup *from;
4925 	struct task_struct *leader, *p;
4926 	struct mm_struct *mm;
4927 	unsigned long move_flags;
4928 	int ret = 0;
4929 
4930 	/* charge immigration isn't supported on the default hierarchy */
4931 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4932 		return 0;
4933 
4934 	/*
4935 	 * Multi-process migrations only happen on the default hierarchy
4936 	 * where charge immigration is not used.  Perform charge
4937 	 * immigration if @tset contains a leader and whine if there are
4938 	 * multiple.
4939 	 */
4940 	p = NULL;
4941 	cgroup_taskset_for_each_leader(leader, css, tset) {
4942 		WARN_ON_ONCE(p);
4943 		p = leader;
4944 		memcg = mem_cgroup_from_css(css);
4945 	}
4946 	if (!p)
4947 		return 0;
4948 
4949 	/*
4950 	 * We are now commited to this value whatever it is. Changes in this
4951 	 * tunable will only affect upcoming migrations, not the current one.
4952 	 * So we need to save it, and keep it going.
4953 	 */
4954 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4955 	if (!move_flags)
4956 		return 0;
4957 
4958 	from = mem_cgroup_from_task(p);
4959 
4960 	VM_BUG_ON(from == memcg);
4961 
4962 	mm = get_task_mm(p);
4963 	if (!mm)
4964 		return 0;
4965 	/* We move charges only when we move a owner of the mm */
4966 	if (mm->owner == p) {
4967 		VM_BUG_ON(mc.from);
4968 		VM_BUG_ON(mc.to);
4969 		VM_BUG_ON(mc.precharge);
4970 		VM_BUG_ON(mc.moved_charge);
4971 		VM_BUG_ON(mc.moved_swap);
4972 
4973 		spin_lock(&mc.lock);
4974 		mc.mm = mm;
4975 		mc.from = from;
4976 		mc.to = memcg;
4977 		mc.flags = move_flags;
4978 		spin_unlock(&mc.lock);
4979 		/* We set mc.moving_task later */
4980 
4981 		ret = mem_cgroup_precharge_mc(mm);
4982 		if (ret)
4983 			mem_cgroup_clear_mc();
4984 	} else {
4985 		mmput(mm);
4986 	}
4987 	return ret;
4988 }
4989 
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)4990 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4991 {
4992 	if (mc.to)
4993 		mem_cgroup_clear_mc();
4994 }
4995 
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)4996 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4997 				unsigned long addr, unsigned long end,
4998 				struct mm_walk *walk)
4999 {
5000 	int ret = 0;
5001 	struct vm_area_struct *vma = walk->vma;
5002 	pte_t *pte;
5003 	spinlock_t *ptl;
5004 	enum mc_target_type target_type;
5005 	union mc_target target;
5006 	struct page *page;
5007 
5008 	/*
5009 	 * We don't take compound_lock() here but no race with splitting thp
5010 	 * happens because:
5011 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5012 	 *    under splitting, which means there's no concurrent thp split,
5013 	 *  - if another thread runs into split_huge_page() just after we
5014 	 *    entered this if-block, the thread must wait for page table lock
5015 	 *    to be unlocked in __split_huge_page_splitting(), where the main
5016 	 *    part of thp split is not executed yet.
5017 	 */
5018 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5019 		if (mc.precharge < HPAGE_PMD_NR) {
5020 			spin_unlock(ptl);
5021 			return 0;
5022 		}
5023 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5024 		if (target_type == MC_TARGET_PAGE) {
5025 			page = target.page;
5026 			if (!isolate_lru_page(page)) {
5027 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5028 							     mc.from, mc.to)) {
5029 					mc.precharge -= HPAGE_PMD_NR;
5030 					mc.moved_charge += HPAGE_PMD_NR;
5031 				}
5032 				putback_lru_page(page);
5033 			}
5034 			put_page(page);
5035 		}
5036 		spin_unlock(ptl);
5037 		return 0;
5038 	}
5039 
5040 	if (pmd_trans_unstable(pmd))
5041 		return 0;
5042 retry:
5043 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5044 	for (; addr != end; addr += PAGE_SIZE) {
5045 		pte_t ptent = *(pte++);
5046 		swp_entry_t ent;
5047 
5048 		if (!mc.precharge)
5049 			break;
5050 
5051 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5052 		case MC_TARGET_PAGE:
5053 			page = target.page;
5054 			if (isolate_lru_page(page))
5055 				goto put;
5056 			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5057 				mc.precharge--;
5058 				/* we uncharge from mc.from later. */
5059 				mc.moved_charge++;
5060 			}
5061 			putback_lru_page(page);
5062 put:			/* get_mctgt_type() gets the page */
5063 			put_page(page);
5064 			break;
5065 		case MC_TARGET_SWAP:
5066 			ent = target.ent;
5067 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5068 				mc.precharge--;
5069 				mem_cgroup_id_get_many(mc.to, 1);
5070 				/* we fixup other refcnts and charges later. */
5071 				mc.moved_swap++;
5072 			}
5073 			break;
5074 		default:
5075 			break;
5076 		}
5077 	}
5078 	pte_unmap_unlock(pte - 1, ptl);
5079 	cond_resched();
5080 
5081 	if (addr != end) {
5082 		/*
5083 		 * We have consumed all precharges we got in can_attach().
5084 		 * We try charge one by one, but don't do any additional
5085 		 * charges to mc.to if we have failed in charge once in attach()
5086 		 * phase.
5087 		 */
5088 		ret = mem_cgroup_do_precharge(1);
5089 		if (!ret)
5090 			goto retry;
5091 	}
5092 
5093 	return ret;
5094 }
5095 
mem_cgroup_move_charge(void)5096 static void mem_cgroup_move_charge(void)
5097 {
5098 	struct mm_walk mem_cgroup_move_charge_walk = {
5099 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5100 		.mm = mc.mm,
5101 	};
5102 
5103 	lru_add_drain_all();
5104 	/*
5105 	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5106 	 * move_lock while we're moving its pages to another memcg.
5107 	 * Then wait for already started RCU-only updates to finish.
5108 	 */
5109 	atomic_inc(&mc.from->moving_account);
5110 	synchronize_rcu();
5111 retry:
5112 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5113 		/*
5114 		 * Someone who are holding the mmap_sem might be waiting in
5115 		 * waitq. So we cancel all extra charges, wake up all waiters,
5116 		 * and retry. Because we cancel precharges, we might not be able
5117 		 * to move enough charges, but moving charge is a best-effort
5118 		 * feature anyway, so it wouldn't be a big problem.
5119 		 */
5120 		__mem_cgroup_clear_mc();
5121 		cond_resched();
5122 		goto retry;
5123 	}
5124 	/*
5125 	 * When we have consumed all precharges and failed in doing
5126 	 * additional charge, the page walk just aborts.
5127 	 */
5128 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5129 	up_read(&mc.mm->mmap_sem);
5130 	atomic_dec(&mc.from->moving_account);
5131 }
5132 
mem_cgroup_move_task(void)5133 static void mem_cgroup_move_task(void)
5134 {
5135 	if (mc.to) {
5136 		mem_cgroup_move_charge();
5137 		mem_cgroup_clear_mc();
5138 	}
5139 }
5140 #else	/* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)5141 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5142 {
5143 	return 0;
5144 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)5145 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5146 {
5147 }
mem_cgroup_move_task(void)5148 static void mem_cgroup_move_task(void)
5149 {
5150 }
5151 #endif
5152 
5153 /*
5154  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5155  * to verify whether we're attached to the default hierarchy on each mount
5156  * attempt.
5157  */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)5158 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5159 {
5160 	/*
5161 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5162 	 * guarantees that @root doesn't have any children, so turning it
5163 	 * on for the root memcg is enough.
5164 	 */
5165 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5166 		root_mem_cgroup->use_hierarchy = true;
5167 	else
5168 		root_mem_cgroup->use_hierarchy = false;
5169 }
5170 
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5171 static u64 memory_current_read(struct cgroup_subsys_state *css,
5172 			       struct cftype *cft)
5173 {
5174 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5175 
5176 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5177 }
5178 
memory_low_show(struct seq_file * m,void * v)5179 static int memory_low_show(struct seq_file *m, void *v)
5180 {
5181 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5182 	unsigned long low = READ_ONCE(memcg->low);
5183 
5184 	if (low == PAGE_COUNTER_MAX)
5185 		seq_puts(m, "max\n");
5186 	else
5187 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5188 
5189 	return 0;
5190 }
5191 
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5192 static ssize_t memory_low_write(struct kernfs_open_file *of,
5193 				char *buf, size_t nbytes, loff_t off)
5194 {
5195 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5196 	unsigned long low;
5197 	int err;
5198 
5199 	buf = strstrip(buf);
5200 	err = page_counter_memparse(buf, "max", &low);
5201 	if (err)
5202 		return err;
5203 
5204 	memcg->low = low;
5205 
5206 	return nbytes;
5207 }
5208 
memory_high_show(struct seq_file * m,void * v)5209 static int memory_high_show(struct seq_file *m, void *v)
5210 {
5211 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5212 	unsigned long high = READ_ONCE(memcg->high);
5213 
5214 	if (high == PAGE_COUNTER_MAX)
5215 		seq_puts(m, "max\n");
5216 	else
5217 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5218 
5219 	return 0;
5220 }
5221 
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5222 static ssize_t memory_high_write(struct kernfs_open_file *of,
5223 				 char *buf, size_t nbytes, loff_t off)
5224 {
5225 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5226 	unsigned long nr_pages;
5227 	unsigned long high;
5228 	int err;
5229 
5230 	buf = strstrip(buf);
5231 	err = page_counter_memparse(buf, "max", &high);
5232 	if (err)
5233 		return err;
5234 
5235 	memcg->high = high;
5236 
5237 	nr_pages = page_counter_read(&memcg->memory);
5238 	if (nr_pages > high)
5239 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5240 					     GFP_KERNEL, true);
5241 
5242 	memcg_wb_domain_size_changed(memcg);
5243 	return nbytes;
5244 }
5245 
memory_max_show(struct seq_file * m,void * v)5246 static int memory_max_show(struct seq_file *m, void *v)
5247 {
5248 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5249 	unsigned long max = READ_ONCE(memcg->memory.limit);
5250 
5251 	if (max == PAGE_COUNTER_MAX)
5252 		seq_puts(m, "max\n");
5253 	else
5254 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5255 
5256 	return 0;
5257 }
5258 
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5259 static ssize_t memory_max_write(struct kernfs_open_file *of,
5260 				char *buf, size_t nbytes, loff_t off)
5261 {
5262 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5263 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5264 	bool drained = false;
5265 	unsigned long max;
5266 	int err;
5267 
5268 	buf = strstrip(buf);
5269 	err = page_counter_memparse(buf, "max", &max);
5270 	if (err)
5271 		return err;
5272 
5273 	xchg(&memcg->memory.limit, max);
5274 
5275 	for (;;) {
5276 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5277 
5278 		if (nr_pages <= max)
5279 			break;
5280 
5281 		if (signal_pending(current)) {
5282 			err = -EINTR;
5283 			break;
5284 		}
5285 
5286 		if (!drained) {
5287 			drain_all_stock(memcg);
5288 			drained = true;
5289 			continue;
5290 		}
5291 
5292 		if (nr_reclaims) {
5293 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5294 							  GFP_KERNEL, true))
5295 				nr_reclaims--;
5296 			continue;
5297 		}
5298 
5299 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5300 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5301 			break;
5302 	}
5303 
5304 	memcg_wb_domain_size_changed(memcg);
5305 	return nbytes;
5306 }
5307 
memory_events_show(struct seq_file * m,void * v)5308 static int memory_events_show(struct seq_file *m, void *v)
5309 {
5310 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5311 
5312 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5313 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5314 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5315 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5316 
5317 	return 0;
5318 }
5319 
5320 static struct cftype memory_files[] = {
5321 	{
5322 		.name = "current",
5323 		.flags = CFTYPE_NOT_ON_ROOT,
5324 		.read_u64 = memory_current_read,
5325 	},
5326 	{
5327 		.name = "low",
5328 		.flags = CFTYPE_NOT_ON_ROOT,
5329 		.seq_show = memory_low_show,
5330 		.write = memory_low_write,
5331 	},
5332 	{
5333 		.name = "high",
5334 		.flags = CFTYPE_NOT_ON_ROOT,
5335 		.seq_show = memory_high_show,
5336 		.write = memory_high_write,
5337 	},
5338 	{
5339 		.name = "max",
5340 		.flags = CFTYPE_NOT_ON_ROOT,
5341 		.seq_show = memory_max_show,
5342 		.write = memory_max_write,
5343 	},
5344 	{
5345 		.name = "events",
5346 		.flags = CFTYPE_NOT_ON_ROOT,
5347 		.file_offset = offsetof(struct mem_cgroup, events_file),
5348 		.seq_show = memory_events_show,
5349 	},
5350 	{ }	/* terminate */
5351 };
5352 
5353 struct cgroup_subsys memory_cgrp_subsys = {
5354 	.css_alloc = mem_cgroup_css_alloc,
5355 	.css_online = mem_cgroup_css_online,
5356 	.css_offline = mem_cgroup_css_offline,
5357 	.css_released = mem_cgroup_css_released,
5358 	.css_free = mem_cgroup_css_free,
5359 	.css_reset = mem_cgroup_css_reset,
5360 	.can_attach = mem_cgroup_can_attach,
5361 	.cancel_attach = mem_cgroup_cancel_attach,
5362 	.post_attach = mem_cgroup_move_task,
5363 	.bind = mem_cgroup_bind,
5364 	.dfl_cftypes = memory_files,
5365 	.legacy_cftypes = mem_cgroup_legacy_files,
5366 	.early_init = 0,
5367 };
5368 
5369 /**
5370  * mem_cgroup_low - check if memory consumption is below the normal range
5371  * @root: the highest ancestor to consider
5372  * @memcg: the memory cgroup to check
5373  *
5374  * Returns %true if memory consumption of @memcg, and that of all
5375  * configurable ancestors up to @root, is below the normal range.
5376  */
mem_cgroup_low(struct mem_cgroup * root,struct mem_cgroup * memcg)5377 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5378 {
5379 	if (mem_cgroup_disabled())
5380 		return false;
5381 
5382 	/*
5383 	 * The toplevel group doesn't have a configurable range, so
5384 	 * it's never low when looked at directly, and it is not
5385 	 * considered an ancestor when assessing the hierarchy.
5386 	 */
5387 
5388 	if (memcg == root_mem_cgroup)
5389 		return false;
5390 
5391 	if (page_counter_read(&memcg->memory) >= memcg->low)
5392 		return false;
5393 
5394 	while (memcg != root) {
5395 		memcg = parent_mem_cgroup(memcg);
5396 
5397 		if (memcg == root_mem_cgroup)
5398 			break;
5399 
5400 		if (page_counter_read(&memcg->memory) >= memcg->low)
5401 			return false;
5402 	}
5403 	return true;
5404 }
5405 
5406 /**
5407  * mem_cgroup_try_charge - try charging a page
5408  * @page: page to charge
5409  * @mm: mm context of the victim
5410  * @gfp_mask: reclaim mode
5411  * @memcgp: charged memcg return
5412  *
5413  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5414  * pages according to @gfp_mask if necessary.
5415  *
5416  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5417  * Otherwise, an error code is returned.
5418  *
5419  * After page->mapping has been set up, the caller must finalize the
5420  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5421  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5422  */
mem_cgroup_try_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp)5423 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5424 			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
5425 {
5426 	struct mem_cgroup *memcg = NULL;
5427 	unsigned int nr_pages = 1;
5428 	int ret = 0;
5429 
5430 	if (mem_cgroup_disabled())
5431 		goto out;
5432 
5433 	if (PageSwapCache(page)) {
5434 		/*
5435 		 * Every swap fault against a single page tries to charge the
5436 		 * page, bail as early as possible.  shmem_unuse() encounters
5437 		 * already charged pages, too.  The USED bit is protected by
5438 		 * the page lock, which serializes swap cache removal, which
5439 		 * in turn serializes uncharging.
5440 		 */
5441 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5442 		if (page->mem_cgroup)
5443 			goto out;
5444 
5445 		if (do_swap_account) {
5446 			swp_entry_t ent = { .val = page_private(page), };
5447 			unsigned short id = lookup_swap_cgroup_id(ent);
5448 
5449 			rcu_read_lock();
5450 			memcg = mem_cgroup_from_id(id);
5451 			if (memcg && !css_tryget_online(&memcg->css))
5452 				memcg = NULL;
5453 			rcu_read_unlock();
5454 		}
5455 	}
5456 
5457 	if (PageTransHuge(page)) {
5458 		nr_pages <<= compound_order(page);
5459 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5460 	}
5461 
5462 	if (!memcg)
5463 		memcg = get_mem_cgroup_from_mm(mm);
5464 
5465 	ret = try_charge(memcg, gfp_mask, nr_pages);
5466 
5467 	css_put(&memcg->css);
5468 out:
5469 	*memcgp = memcg;
5470 	return ret;
5471 }
5472 
5473 /**
5474  * mem_cgroup_commit_charge - commit a page charge
5475  * @page: page to charge
5476  * @memcg: memcg to charge the page to
5477  * @lrucare: page might be on LRU already
5478  *
5479  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5480  * after page->mapping has been set up.  This must happen atomically
5481  * as part of the page instantiation, i.e. under the page table lock
5482  * for anonymous pages, under the page lock for page and swap cache.
5483  *
5484  * In addition, the page must not be on the LRU during the commit, to
5485  * prevent racing with task migration.  If it might be, use @lrucare.
5486  *
5487  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5488  */
mem_cgroup_commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)5489 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5490 			      bool lrucare)
5491 {
5492 	unsigned int nr_pages = 1;
5493 
5494 	VM_BUG_ON_PAGE(!page->mapping, page);
5495 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5496 
5497 	if (mem_cgroup_disabled())
5498 		return;
5499 	/*
5500 	 * Swap faults will attempt to charge the same page multiple
5501 	 * times.  But reuse_swap_page() might have removed the page
5502 	 * from swapcache already, so we can't check PageSwapCache().
5503 	 */
5504 	if (!memcg)
5505 		return;
5506 
5507 	commit_charge(page, memcg, lrucare);
5508 
5509 	if (PageTransHuge(page)) {
5510 		nr_pages <<= compound_order(page);
5511 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5512 	}
5513 
5514 	local_irq_disable();
5515 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
5516 	memcg_check_events(memcg, page);
5517 	local_irq_enable();
5518 
5519 	if (do_swap_account && PageSwapCache(page)) {
5520 		swp_entry_t entry = { .val = page_private(page) };
5521 		/*
5522 		 * The swap entry might not get freed for a long time,
5523 		 * let's not wait for it.  The page already received a
5524 		 * memory+swap charge, drop the swap entry duplicate.
5525 		 */
5526 		mem_cgroup_uncharge_swap(entry);
5527 	}
5528 }
5529 
5530 /**
5531  * mem_cgroup_cancel_charge - cancel a page charge
5532  * @page: page to charge
5533  * @memcg: memcg to charge the page to
5534  *
5535  * Cancel a charge transaction started by mem_cgroup_try_charge().
5536  */
mem_cgroup_cancel_charge(struct page * page,struct mem_cgroup * memcg)5537 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5538 {
5539 	unsigned int nr_pages = 1;
5540 
5541 	if (mem_cgroup_disabled())
5542 		return;
5543 	/*
5544 	 * Swap faults will attempt to charge the same page multiple
5545 	 * times.  But reuse_swap_page() might have removed the page
5546 	 * from swapcache already, so we can't check PageSwapCache().
5547 	 */
5548 	if (!memcg)
5549 		return;
5550 
5551 	if (PageTransHuge(page)) {
5552 		nr_pages <<= compound_order(page);
5553 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5554 	}
5555 
5556 	cancel_charge(memcg, nr_pages);
5557 }
5558 
uncharge_batch(struct mem_cgroup * memcg,unsigned long pgpgout,unsigned long nr_anon,unsigned long nr_file,unsigned long nr_huge,struct page * dummy_page)5559 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5560 			   unsigned long nr_anon, unsigned long nr_file,
5561 			   unsigned long nr_huge, struct page *dummy_page)
5562 {
5563 	unsigned long nr_pages = nr_anon + nr_file;
5564 	unsigned long flags;
5565 
5566 	if (!mem_cgroup_is_root(memcg)) {
5567 		page_counter_uncharge(&memcg->memory, nr_pages);
5568 		if (do_swap_account)
5569 			page_counter_uncharge(&memcg->memsw, nr_pages);
5570 		memcg_oom_recover(memcg);
5571 	}
5572 
5573 	local_irq_save(flags);
5574 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5575 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5576 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5577 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5578 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5579 	memcg_check_events(memcg, dummy_page);
5580 	local_irq_restore(flags);
5581 
5582 	if (!mem_cgroup_is_root(memcg))
5583 		css_put_many(&memcg->css, nr_pages);
5584 }
5585 
uncharge_list(struct list_head * page_list)5586 static void uncharge_list(struct list_head *page_list)
5587 {
5588 	struct mem_cgroup *memcg = NULL;
5589 	unsigned long nr_anon = 0;
5590 	unsigned long nr_file = 0;
5591 	unsigned long nr_huge = 0;
5592 	unsigned long pgpgout = 0;
5593 	struct list_head *next;
5594 	struct page *page;
5595 
5596 	next = page_list->next;
5597 	do {
5598 		unsigned int nr_pages = 1;
5599 
5600 		page = list_entry(next, struct page, lru);
5601 		next = page->lru.next;
5602 
5603 		VM_BUG_ON_PAGE(PageLRU(page), page);
5604 		VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5605 
5606 		if (!page->mem_cgroup)
5607 			continue;
5608 
5609 		/*
5610 		 * Nobody should be changing or seriously looking at
5611 		 * page->mem_cgroup at this point, we have fully
5612 		 * exclusive access to the page.
5613 		 */
5614 
5615 		if (memcg != page->mem_cgroup) {
5616 			if (memcg) {
5617 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5618 					       nr_huge, page);
5619 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5620 			}
5621 			memcg = page->mem_cgroup;
5622 		}
5623 
5624 		if (PageTransHuge(page)) {
5625 			nr_pages <<= compound_order(page);
5626 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5627 			nr_huge += nr_pages;
5628 		}
5629 
5630 		if (PageAnon(page))
5631 			nr_anon += nr_pages;
5632 		else
5633 			nr_file += nr_pages;
5634 
5635 		page->mem_cgroup = NULL;
5636 
5637 		pgpgout++;
5638 	} while (next != page_list);
5639 
5640 	if (memcg)
5641 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5642 			       nr_huge, page);
5643 }
5644 
5645 /**
5646  * mem_cgroup_uncharge - uncharge a page
5647  * @page: page to uncharge
5648  *
5649  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5650  * mem_cgroup_commit_charge().
5651  */
mem_cgroup_uncharge(struct page * page)5652 void mem_cgroup_uncharge(struct page *page)
5653 {
5654 	if (mem_cgroup_disabled())
5655 		return;
5656 
5657 	/* Don't touch page->lru of any random page, pre-check: */
5658 	if (!page->mem_cgroup)
5659 		return;
5660 
5661 	INIT_LIST_HEAD(&page->lru);
5662 	uncharge_list(&page->lru);
5663 }
5664 
5665 /**
5666  * mem_cgroup_uncharge_list - uncharge a list of page
5667  * @page_list: list of pages to uncharge
5668  *
5669  * Uncharge a list of pages previously charged with
5670  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5671  */
mem_cgroup_uncharge_list(struct list_head * page_list)5672 void mem_cgroup_uncharge_list(struct list_head *page_list)
5673 {
5674 	if (mem_cgroup_disabled())
5675 		return;
5676 
5677 	if (!list_empty(page_list))
5678 		uncharge_list(page_list);
5679 }
5680 
5681 /**
5682  * mem_cgroup_replace_page - migrate a charge to another page
5683  * @oldpage: currently charged page
5684  * @newpage: page to transfer the charge to
5685  *
5686  * Migrate the charge from @oldpage to @newpage.
5687  *
5688  * Both pages must be locked, @newpage->mapping must be set up.
5689  * Either or both pages might be on the LRU already.
5690  */
mem_cgroup_replace_page(struct page * oldpage,struct page * newpage)5691 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5692 {
5693 	struct mem_cgroup *memcg;
5694 	int isolated;
5695 
5696 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5697 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5698 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5699 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5700 		       newpage);
5701 
5702 	if (mem_cgroup_disabled())
5703 		return;
5704 
5705 	/* Page cache replacement: new page already charged? */
5706 	if (newpage->mem_cgroup)
5707 		return;
5708 
5709 	/* Swapcache readahead pages can get replaced before being charged */
5710 	memcg = oldpage->mem_cgroup;
5711 	if (!memcg)
5712 		return;
5713 
5714 	lock_page_lru(oldpage, &isolated);
5715 	oldpage->mem_cgroup = NULL;
5716 	unlock_page_lru(oldpage, isolated);
5717 
5718 	commit_charge(newpage, memcg, true);
5719 }
5720 
5721 /*
5722  * subsys_initcall() for memory controller.
5723  *
5724  * Some parts like hotcpu_notifier() have to be initialized from this context
5725  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5726  * everything that doesn't depend on a specific mem_cgroup structure should
5727  * be initialized from here.
5728  */
mem_cgroup_init(void)5729 static int __init mem_cgroup_init(void)
5730 {
5731 	int cpu, node;
5732 
5733 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5734 
5735 	for_each_possible_cpu(cpu)
5736 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5737 			  drain_local_stock);
5738 
5739 	for_each_node(node) {
5740 		struct mem_cgroup_tree_per_node *rtpn;
5741 		int zone;
5742 
5743 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5744 				    node_online(node) ? node : NUMA_NO_NODE);
5745 
5746 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5747 			struct mem_cgroup_tree_per_zone *rtpz;
5748 
5749 			rtpz = &rtpn->rb_tree_per_zone[zone];
5750 			rtpz->rb_root = RB_ROOT;
5751 			spin_lock_init(&rtpz->lock);
5752 		}
5753 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5754 	}
5755 
5756 	return 0;
5757 }
5758 subsys_initcall(mem_cgroup_init);
5759 
5760 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)5761 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5762 {
5763 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5764 		/*
5765 		 * The root cgroup cannot be destroyed, so it's refcount must
5766 		 * always be >= 1.
5767 		 */
5768 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5769 			VM_BUG_ON(1);
5770 			break;
5771 		}
5772 		memcg = parent_mem_cgroup(memcg);
5773 		if (!memcg)
5774 			memcg = root_mem_cgroup;
5775 	}
5776 	return memcg;
5777 }
5778 
5779 /**
5780  * mem_cgroup_swapout - transfer a memsw charge to swap
5781  * @page: page whose memsw charge to transfer
5782  * @entry: swap entry to move the charge to
5783  *
5784  * Transfer the memsw charge of @page to @entry.
5785  */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)5786 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5787 {
5788 	struct mem_cgroup *memcg, *swap_memcg;
5789 	unsigned short oldid;
5790 
5791 	VM_BUG_ON_PAGE(PageLRU(page), page);
5792 	VM_BUG_ON_PAGE(page_count(page), page);
5793 
5794 	if (!do_swap_account)
5795 		return;
5796 
5797 	memcg = page->mem_cgroup;
5798 
5799 	/* Readahead page, never charged */
5800 	if (!memcg)
5801 		return;
5802 
5803 	/*
5804 	 * In case the memcg owning these pages has been offlined and doesn't
5805 	 * have an ID allocated to it anymore, charge the closest online
5806 	 * ancestor for the swap instead and transfer the memory+swap charge.
5807 	 */
5808 	swap_memcg = mem_cgroup_id_get_online(memcg);
5809 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5810 	VM_BUG_ON_PAGE(oldid, page);
5811 	mem_cgroup_swap_statistics(swap_memcg, true);
5812 
5813 	page->mem_cgroup = NULL;
5814 
5815 	if (!mem_cgroup_is_root(memcg))
5816 		page_counter_uncharge(&memcg->memory, 1);
5817 
5818 	if (memcg != swap_memcg) {
5819 		if (!mem_cgroup_is_root(swap_memcg))
5820 			page_counter_charge(&swap_memcg->memsw, 1);
5821 		page_counter_uncharge(&memcg->memsw, 1);
5822 	}
5823 
5824 	/*
5825 	 * Interrupts should be disabled here because the caller holds the
5826 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5827 	 * important here to have the interrupts disabled because it is the
5828 	 * only synchronisation we have for udpating the per-CPU variables.
5829 	 */
5830 	VM_BUG_ON(!irqs_disabled());
5831 	mem_cgroup_charge_statistics(memcg, page, -1);
5832 	memcg_check_events(memcg, page);
5833 
5834 	if (!mem_cgroup_is_root(memcg))
5835 		css_put(&memcg->css);
5836 }
5837 
5838 /**
5839  * mem_cgroup_uncharge_swap - uncharge a swap entry
5840  * @entry: swap entry to uncharge
5841  *
5842  * Drop the memsw charge associated with @entry.
5843  */
mem_cgroup_uncharge_swap(swp_entry_t entry)5844 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5845 {
5846 	struct mem_cgroup *memcg;
5847 	unsigned short id;
5848 
5849 	if (!do_swap_account)
5850 		return;
5851 
5852 	id = swap_cgroup_record(entry, 0);
5853 	rcu_read_lock();
5854 	memcg = mem_cgroup_from_id(id);
5855 	if (memcg) {
5856 		if (!mem_cgroup_is_root(memcg))
5857 			page_counter_uncharge(&memcg->memsw, 1);
5858 		mem_cgroup_swap_statistics(memcg, false);
5859 		mem_cgroup_id_put(memcg);
5860 	}
5861 	rcu_read_unlock();
5862 }
5863 
5864 /* for remember boot option*/
5865 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5866 static int really_do_swap_account __initdata = 1;
5867 #else
5868 static int really_do_swap_account __initdata;
5869 #endif
5870 
enable_swap_account(char * s)5871 static int __init enable_swap_account(char *s)
5872 {
5873 	if (!strcmp(s, "1"))
5874 		really_do_swap_account = 1;
5875 	else if (!strcmp(s, "0"))
5876 		really_do_swap_account = 0;
5877 	return 1;
5878 }
5879 __setup("swapaccount=", enable_swap_account);
5880 
5881 static struct cftype memsw_cgroup_files[] = {
5882 	{
5883 		.name = "memsw.usage_in_bytes",
5884 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5885 		.read_u64 = mem_cgroup_read_u64,
5886 	},
5887 	{
5888 		.name = "memsw.max_usage_in_bytes",
5889 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5890 		.write = mem_cgroup_reset,
5891 		.read_u64 = mem_cgroup_read_u64,
5892 	},
5893 	{
5894 		.name = "memsw.limit_in_bytes",
5895 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5896 		.write = mem_cgroup_write,
5897 		.read_u64 = mem_cgroup_read_u64,
5898 	},
5899 	{
5900 		.name = "memsw.failcnt",
5901 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5902 		.write = mem_cgroup_reset,
5903 		.read_u64 = mem_cgroup_read_u64,
5904 	},
5905 	{ },	/* terminate */
5906 };
5907 
mem_cgroup_swap_init(void)5908 static int __init mem_cgroup_swap_init(void)
5909 {
5910 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5911 		do_swap_account = 1;
5912 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5913 						  memsw_cgroup_files));
5914 	}
5915 	return 0;
5916 }
5917 subsys_initcall(mem_cgroup_swap_init);
5918 
5919 #endif /* CONFIG_MEMCG_SWAP */
5920