• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <linux/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 #include <linux/uio.h>
22 
23 int reiserfs_commit_write(struct file *f, struct page *page,
24 			  unsigned from, unsigned to);
25 
reiserfs_evict_inode(struct inode * inode)26 void reiserfs_evict_inode(struct inode *inode)
27 {
28 	/*
29 	 * We need blocks for transaction + (user+group) quota
30 	 * update (possibly delete)
31 	 */
32 	int jbegin_count =
33 	    JOURNAL_PER_BALANCE_CNT * 2 +
34 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
35 	struct reiserfs_transaction_handle th;
36 	int err;
37 
38 	if (!inode->i_nlink && !is_bad_inode(inode))
39 		dquot_initialize(inode);
40 
41 	truncate_inode_pages_final(&inode->i_data);
42 	if (inode->i_nlink)
43 		goto no_delete;
44 
45 	/*
46 	 * The = 0 happens when we abort creating a new inode
47 	 * for some reason like lack of space..
48 	 * also handles bad_inode case
49 	 */
50 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {
51 
52 		reiserfs_delete_xattrs(inode);
53 
54 		reiserfs_write_lock(inode->i_sb);
55 
56 		if (journal_begin(&th, inode->i_sb, jbegin_count))
57 			goto out;
58 		reiserfs_update_inode_transaction(inode);
59 
60 		reiserfs_discard_prealloc(&th, inode);
61 
62 		err = reiserfs_delete_object(&th, inode);
63 
64 		/*
65 		 * Do quota update inside a transaction for journaled quotas.
66 		 * We must do that after delete_object so that quota updates
67 		 * go into the same transaction as stat data deletion
68 		 */
69 		if (!err) {
70 			int depth = reiserfs_write_unlock_nested(inode->i_sb);
71 			dquot_free_inode(inode);
72 			reiserfs_write_lock_nested(inode->i_sb, depth);
73 		}
74 
75 		if (journal_end(&th))
76 			goto out;
77 
78 		/*
79 		 * check return value from reiserfs_delete_object after
80 		 * ending the transaction
81 		 */
82 		if (err)
83 		    goto out;
84 
85 		/*
86 		 * all items of file are deleted, so we can remove
87 		 * "save" link
88 		 * we can't do anything about an error here
89 		 */
90 		remove_save_link(inode, 0 /* not truncate */);
91 out:
92 		reiserfs_write_unlock(inode->i_sb);
93 	} else {
94 		/* no object items are in the tree */
95 		;
96 	}
97 
98 	/* note this must go after the journal_end to prevent deadlock */
99 	clear_inode(inode);
100 
101 	dquot_drop(inode);
102 	inode->i_blocks = 0;
103 	return;
104 
105 no_delete:
106 	clear_inode(inode);
107 	dquot_drop(inode);
108 }
109 
_make_cpu_key(struct cpu_key * key,int version,__u32 dirid,__u32 objectid,loff_t offset,int type,int length)110 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
111 			  __u32 objectid, loff_t offset, int type, int length)
112 {
113 	key->version = version;
114 
115 	key->on_disk_key.k_dir_id = dirid;
116 	key->on_disk_key.k_objectid = objectid;
117 	set_cpu_key_k_offset(key, offset);
118 	set_cpu_key_k_type(key, type);
119 	key->key_length = length;
120 }
121 
122 /*
123  * take base of inode_key (it comes from inode always) (dirid, objectid)
124  * and version from an inode, set offset and type of key
125  */
make_cpu_key(struct cpu_key * key,struct inode * inode,loff_t offset,int type,int length)126 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
127 		  int type, int length)
128 {
129 	_make_cpu_key(key, get_inode_item_key_version(inode),
130 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
131 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
132 		      length);
133 }
134 
135 /* when key is 0, do not set version and short key */
make_le_item_head(struct item_head * ih,const struct cpu_key * key,int version,loff_t offset,int type,int length,int entry_count)136 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
137 			      int version,
138 			      loff_t offset, int type, int length,
139 			      int entry_count /*or ih_free_space */ )
140 {
141 	if (key) {
142 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
143 		ih->ih_key.k_objectid =
144 		    cpu_to_le32(key->on_disk_key.k_objectid);
145 	}
146 	put_ih_version(ih, version);
147 	set_le_ih_k_offset(ih, offset);
148 	set_le_ih_k_type(ih, type);
149 	put_ih_item_len(ih, length);
150 	/*    set_ih_free_space (ih, 0); */
151 	/*
152 	 * for directory items it is entry count, for directs and stat
153 	 * datas - 0xffff, for indirects - 0
154 	 */
155 	put_ih_entry_count(ih, entry_count);
156 }
157 
158 /*
159  * FIXME: we might cache recently accessed indirect item
160  * Ugh.  Not too eager for that....
161  * I cut the code until such time as I see a convincing argument (benchmark).
162  * I don't want a bloated inode struct..., and I don't like code complexity....
163  */
164 
165 /*
166  * cutting the code is fine, since it really isn't in use yet and is easy
167  * to add back in.  But, Vladimir has a really good idea here.  Think
168  * about what happens for reading a file.  For each page,
169  * The VFS layer calls reiserfs_readpage, who searches the tree to find
170  * an indirect item.  This indirect item has X number of pointers, where
171  * X is a big number if we've done the block allocation right.  But,
172  * we only use one or two of these pointers during each call to readpage,
173  * needlessly researching again later on.
174  *
175  * The size of the cache could be dynamic based on the size of the file.
176  *
177  * I'd also like to see us cache the location the stat data item, since
178  * we are needlessly researching for that frequently.
179  *
180  * --chris
181  */
182 
183 /*
184  * If this page has a file tail in it, and
185  * it was read in by get_block_create_0, the page data is valid,
186  * but tail is still sitting in a direct item, and we can't write to
187  * it.  So, look through this page, and check all the mapped buffers
188  * to make sure they have valid block numbers.  Any that don't need
189  * to be unmapped, so that __block_write_begin will correctly call
190  * reiserfs_get_block to convert the tail into an unformatted node
191  */
fix_tail_page_for_writing(struct page * page)192 static inline void fix_tail_page_for_writing(struct page *page)
193 {
194 	struct buffer_head *head, *next, *bh;
195 
196 	if (page && page_has_buffers(page)) {
197 		head = page_buffers(page);
198 		bh = head;
199 		do {
200 			next = bh->b_this_page;
201 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
202 				reiserfs_unmap_buffer(bh);
203 			}
204 			bh = next;
205 		} while (bh != head);
206 	}
207 }
208 
209 /*
210  * reiserfs_get_block does not need to allocate a block only if it has been
211  * done already or non-hole position has been found in the indirect item
212  */
allocation_needed(int retval,b_blocknr_t allocated,struct item_head * ih,__le32 * item,int pos_in_item)213 static inline int allocation_needed(int retval, b_blocknr_t allocated,
214 				    struct item_head *ih,
215 				    __le32 * item, int pos_in_item)
216 {
217 	if (allocated)
218 		return 0;
219 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
220 	    get_block_num(item, pos_in_item))
221 		return 0;
222 	return 1;
223 }
224 
indirect_item_found(int retval,struct item_head * ih)225 static inline int indirect_item_found(int retval, struct item_head *ih)
226 {
227 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
228 }
229 
set_block_dev_mapped(struct buffer_head * bh,b_blocknr_t block,struct inode * inode)230 static inline void set_block_dev_mapped(struct buffer_head *bh,
231 					b_blocknr_t block, struct inode *inode)
232 {
233 	map_bh(bh, inode->i_sb, block);
234 }
235 
236 /*
237  * files which were created in the earlier version can not be longer,
238  * than 2 gb
239  */
file_capable(struct inode * inode,sector_t block)240 static int file_capable(struct inode *inode, sector_t block)
241 {
242 	/* it is new file. */
243 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||
244 	    /* old file, but 'block' is inside of 2gb */
245 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))
246 		return 1;
247 
248 	return 0;
249 }
250 
restart_transaction(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path)251 static int restart_transaction(struct reiserfs_transaction_handle *th,
252 			       struct inode *inode, struct treepath *path)
253 {
254 	struct super_block *s = th->t_super;
255 	int err;
256 
257 	BUG_ON(!th->t_trans_id);
258 	BUG_ON(!th->t_refcount);
259 
260 	pathrelse(path);
261 
262 	/* we cannot restart while nested */
263 	if (th->t_refcount > 1) {
264 		return 0;
265 	}
266 	reiserfs_update_sd(th, inode);
267 	err = journal_end(th);
268 	if (!err) {
269 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
270 		if (!err)
271 			reiserfs_update_inode_transaction(inode);
272 	}
273 	return err;
274 }
275 
276 /*
277  * it is called by get_block when create == 0. Returns block number
278  * for 'block'-th logical block of file. When it hits direct item it
279  * returns 0 (being called from bmap) or read direct item into piece
280  * of page (bh_result)
281  * Please improve the english/clarity in the comment above, as it is
282  * hard to understand.
283  */
_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int args)284 static int _get_block_create_0(struct inode *inode, sector_t block,
285 			       struct buffer_head *bh_result, int args)
286 {
287 	INITIALIZE_PATH(path);
288 	struct cpu_key key;
289 	struct buffer_head *bh;
290 	struct item_head *ih, tmp_ih;
291 	b_blocknr_t blocknr;
292 	char *p = NULL;
293 	int chars;
294 	int ret;
295 	int result;
296 	int done = 0;
297 	unsigned long offset;
298 
299 	/* prepare the key to look for the 'block'-th block of file */
300 	make_cpu_key(&key, inode,
301 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
302 		     3);
303 
304 	result = search_for_position_by_key(inode->i_sb, &key, &path);
305 	if (result != POSITION_FOUND) {
306 		pathrelse(&path);
307 		if (p)
308 			kunmap(bh_result->b_page);
309 		if (result == IO_ERROR)
310 			return -EIO;
311 		/*
312 		 * We do not return -ENOENT if there is a hole but page is
313 		 * uptodate, because it means that there is some MMAPED data
314 		 * associated with it that is yet to be written to disk.
315 		 */
316 		if ((args & GET_BLOCK_NO_HOLE)
317 		    && !PageUptodate(bh_result->b_page)) {
318 			return -ENOENT;
319 		}
320 		return 0;
321 	}
322 
323 	bh = get_last_bh(&path);
324 	ih = tp_item_head(&path);
325 	if (is_indirect_le_ih(ih)) {
326 		__le32 *ind_item = (__le32 *) ih_item_body(bh, ih);
327 
328 		/*
329 		 * FIXME: here we could cache indirect item or part of it in
330 		 * the inode to avoid search_by_key in case of subsequent
331 		 * access to file
332 		 */
333 		blocknr = get_block_num(ind_item, path.pos_in_item);
334 		ret = 0;
335 		if (blocknr) {
336 			map_bh(bh_result, inode->i_sb, blocknr);
337 			if (path.pos_in_item ==
338 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
339 				set_buffer_boundary(bh_result);
340 			}
341 		} else
342 			/*
343 			 * We do not return -ENOENT if there is a hole but
344 			 * page is uptodate, because it means that there is
345 			 * some MMAPED data associated with it that is
346 			 * yet to be written to disk.
347 			 */
348 		if ((args & GET_BLOCK_NO_HOLE)
349 			    && !PageUptodate(bh_result->b_page)) {
350 			ret = -ENOENT;
351 		}
352 
353 		pathrelse(&path);
354 		if (p)
355 			kunmap(bh_result->b_page);
356 		return ret;
357 	}
358 	/* requested data are in direct item(s) */
359 	if (!(args & GET_BLOCK_READ_DIRECT)) {
360 		/*
361 		 * we are called by bmap. FIXME: we can not map block of file
362 		 * when it is stored in direct item(s)
363 		 */
364 		pathrelse(&path);
365 		if (p)
366 			kunmap(bh_result->b_page);
367 		return -ENOENT;
368 	}
369 
370 	/*
371 	 * if we've got a direct item, and the buffer or page was uptodate,
372 	 * we don't want to pull data off disk again.  skip to the
373 	 * end, where we map the buffer and return
374 	 */
375 	if (buffer_uptodate(bh_result)) {
376 		goto finished;
377 	} else
378 		/*
379 		 * grab_tail_page can trigger calls to reiserfs_get_block on
380 		 * up to date pages without any buffers.  If the page is up
381 		 * to date, we don't want read old data off disk.  Set the up
382 		 * to date bit on the buffer instead and jump to the end
383 		 */
384 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
385 		set_buffer_uptodate(bh_result);
386 		goto finished;
387 	}
388 	/* read file tail into part of page */
389 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
390 	copy_item_head(&tmp_ih, ih);
391 
392 	/*
393 	 * we only want to kmap if we are reading the tail into the page.
394 	 * this is not the common case, so we don't kmap until we are
395 	 * sure we need to.  But, this means the item might move if
396 	 * kmap schedules
397 	 */
398 	if (!p)
399 		p = (char *)kmap(bh_result->b_page);
400 
401 	p += offset;
402 	memset(p, 0, inode->i_sb->s_blocksize);
403 	do {
404 		if (!is_direct_le_ih(ih)) {
405 			BUG();
406 		}
407 		/*
408 		 * make sure we don't read more bytes than actually exist in
409 		 * the file.  This can happen in odd cases where i_size isn't
410 		 * correct, and when direct item padding results in a few
411 		 * extra bytes at the end of the direct item
412 		 */
413 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
414 			break;
415 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
416 			chars =
417 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
418 			    path.pos_in_item;
419 			done = 1;
420 		} else {
421 			chars = ih_item_len(ih) - path.pos_in_item;
422 		}
423 		memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars);
424 
425 		if (done)
426 			break;
427 
428 		p += chars;
429 
430 		/*
431 		 * we done, if read direct item is not the last item of
432 		 * node FIXME: we could try to check right delimiting key
433 		 * to see whether direct item continues in the right
434 		 * neighbor or rely on i_size
435 		 */
436 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
437 			break;
438 
439 		/* update key to look for the next piece */
440 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
441 		result = search_for_position_by_key(inode->i_sb, &key, &path);
442 		if (result != POSITION_FOUND)
443 			/* i/o error most likely */
444 			break;
445 		bh = get_last_bh(&path);
446 		ih = tp_item_head(&path);
447 	} while (1);
448 
449 	flush_dcache_page(bh_result->b_page);
450 	kunmap(bh_result->b_page);
451 
452 finished:
453 	pathrelse(&path);
454 
455 	if (result == IO_ERROR)
456 		return -EIO;
457 
458 	/*
459 	 * this buffer has valid data, but isn't valid for io.  mapping it to
460 	 * block #0 tells the rest of reiserfs it just has a tail in it
461 	 */
462 	map_bh(bh_result, inode->i_sb, 0);
463 	set_buffer_uptodate(bh_result);
464 	return 0;
465 }
466 
467 /*
468  * this is called to create file map. So, _get_block_create_0 will not
469  * read direct item
470  */
reiserfs_bmap(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)471 static int reiserfs_bmap(struct inode *inode, sector_t block,
472 			 struct buffer_head *bh_result, int create)
473 {
474 	if (!file_capable(inode, block))
475 		return -EFBIG;
476 
477 	reiserfs_write_lock(inode->i_sb);
478 	/* do not read the direct item */
479 	_get_block_create_0(inode, block, bh_result, 0);
480 	reiserfs_write_unlock(inode->i_sb);
481 	return 0;
482 }
483 
484 /*
485  * special version of get_block that is only used by grab_tail_page right
486  * now.  It is sent to __block_write_begin, and when you try to get a
487  * block past the end of the file (or a block from a hole) it returns
488  * -ENOENT instead of a valid buffer.  __block_write_begin expects to
489  * be able to do i/o on the buffers returned, unless an error value
490  * is also returned.
491  *
492  * So, this allows __block_write_begin to be used for reading a single block
493  * in a page.  Where it does not produce a valid page for holes, or past the
494  * end of the file.  This turns out to be exactly what we need for reading
495  * tails for conversion.
496  *
497  * The point of the wrapper is forcing a certain value for create, even
498  * though the VFS layer is calling this function with create==1.  If you
499  * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
500  * don't use this function.
501 */
reiserfs_get_block_create_0(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)502 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
503 				       struct buffer_head *bh_result,
504 				       int create)
505 {
506 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
507 }
508 
509 /*
510  * This is special helper for reiserfs_get_block in case we are executing
511  * direct_IO request.
512  */
reiserfs_get_blocks_direct_io(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)513 static int reiserfs_get_blocks_direct_io(struct inode *inode,
514 					 sector_t iblock,
515 					 struct buffer_head *bh_result,
516 					 int create)
517 {
518 	int ret;
519 
520 	bh_result->b_page = NULL;
521 
522 	/*
523 	 * We set the b_size before reiserfs_get_block call since it is
524 	 * referenced in convert_tail_for_hole() that may be called from
525 	 * reiserfs_get_block()
526 	 */
527 	bh_result->b_size = i_blocksize(inode);
528 
529 	ret = reiserfs_get_block(inode, iblock, bh_result,
530 				 create | GET_BLOCK_NO_DANGLE);
531 	if (ret)
532 		goto out;
533 
534 	/* don't allow direct io onto tail pages */
535 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
536 		/*
537 		 * make sure future calls to the direct io funcs for this
538 		 * offset in the file fail by unmapping the buffer
539 		 */
540 		clear_buffer_mapped(bh_result);
541 		ret = -EINVAL;
542 	}
543 
544 	/*
545 	 * Possible unpacked tail. Flush the data before pages have
546 	 * disappeared
547 	 */
548 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
549 		int err;
550 
551 		reiserfs_write_lock(inode->i_sb);
552 
553 		err = reiserfs_commit_for_inode(inode);
554 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
555 
556 		reiserfs_write_unlock(inode->i_sb);
557 
558 		if (err < 0)
559 			ret = err;
560 	}
561 out:
562 	return ret;
563 }
564 
565 /*
566  * helper function for when reiserfs_get_block is called for a hole
567  * but the file tail is still in a direct item
568  * bh_result is the buffer head for the hole
569  * tail_offset is the offset of the start of the tail in the file
570  *
571  * This calls prepare_write, which will start a new transaction
572  * you should not be in a transaction, or have any paths held when you
573  * call this.
574  */
convert_tail_for_hole(struct inode * inode,struct buffer_head * bh_result,loff_t tail_offset)575 static int convert_tail_for_hole(struct inode *inode,
576 				 struct buffer_head *bh_result,
577 				 loff_t tail_offset)
578 {
579 	unsigned long index;
580 	unsigned long tail_end;
581 	unsigned long tail_start;
582 	struct page *tail_page;
583 	struct page *hole_page = bh_result->b_page;
584 	int retval = 0;
585 
586 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
587 		return -EIO;
588 
589 	/* always try to read until the end of the block */
590 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
591 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
592 
593 	index = tail_offset >> PAGE_CACHE_SHIFT;
594 	/*
595 	 * hole_page can be zero in case of direct_io, we are sure
596 	 * that we cannot get here if we write with O_DIRECT into tail page
597 	 */
598 	if (!hole_page || index != hole_page->index) {
599 		tail_page = grab_cache_page(inode->i_mapping, index);
600 		retval = -ENOMEM;
601 		if (!tail_page) {
602 			goto out;
603 		}
604 	} else {
605 		tail_page = hole_page;
606 	}
607 
608 	/*
609 	 * we don't have to make sure the conversion did not happen while
610 	 * we were locking the page because anyone that could convert
611 	 * must first take i_mutex.
612 	 *
613 	 * We must fix the tail page for writing because it might have buffers
614 	 * that are mapped, but have a block number of 0.  This indicates tail
615 	 * data that has been read directly into the page, and
616 	 * __block_write_begin won't trigger a get_block in this case.
617 	 */
618 	fix_tail_page_for_writing(tail_page);
619 	retval = __reiserfs_write_begin(tail_page, tail_start,
620 				      tail_end - tail_start);
621 	if (retval)
622 		goto unlock;
623 
624 	/* tail conversion might change the data in the page */
625 	flush_dcache_page(tail_page);
626 
627 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
628 
629 unlock:
630 	if (tail_page != hole_page) {
631 		unlock_page(tail_page);
632 		page_cache_release(tail_page);
633 	}
634 out:
635 	return retval;
636 }
637 
_allocate_block(struct reiserfs_transaction_handle * th,sector_t block,struct inode * inode,b_blocknr_t * allocated_block_nr,struct treepath * path,int flags)638 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
639 				  sector_t block,
640 				  struct inode *inode,
641 				  b_blocknr_t * allocated_block_nr,
642 				  struct treepath *path, int flags)
643 {
644 	BUG_ON(!th->t_trans_id);
645 
646 #ifdef REISERFS_PREALLOCATE
647 	if (!(flags & GET_BLOCK_NO_IMUX)) {
648 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
649 						  path, block);
650 	}
651 #endif
652 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
653 					 block);
654 }
655 
reiserfs_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)656 int reiserfs_get_block(struct inode *inode, sector_t block,
657 		       struct buffer_head *bh_result, int create)
658 {
659 	int repeat, retval = 0;
660 	/* b_blocknr_t is (unsigned) 32 bit int*/
661 	b_blocknr_t allocated_block_nr = 0;
662 	INITIALIZE_PATH(path);
663 	int pos_in_item;
664 	struct cpu_key key;
665 	struct buffer_head *bh, *unbh = NULL;
666 	struct item_head *ih, tmp_ih;
667 	__le32 *item;
668 	int done;
669 	int fs_gen;
670 	struct reiserfs_transaction_handle *th = NULL;
671 	/*
672 	 * space reserved in transaction batch:
673 	 * . 3 balancings in direct->indirect conversion
674 	 * . 1 block involved into reiserfs_update_sd()
675 	 * XXX in practically impossible worst case direct2indirect()
676 	 * can incur (much) more than 3 balancings.
677 	 * quota update for user, group
678 	 */
679 	int jbegin_count =
680 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
681 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
682 	int version;
683 	int dangle = 1;
684 	loff_t new_offset =
685 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
686 
687 	reiserfs_write_lock(inode->i_sb);
688 	version = get_inode_item_key_version(inode);
689 
690 	if (!file_capable(inode, block)) {
691 		reiserfs_write_unlock(inode->i_sb);
692 		return -EFBIG;
693 	}
694 
695 	/*
696 	 * if !create, we aren't changing the FS, so we don't need to
697 	 * log anything, so we don't need to start a transaction
698 	 */
699 	if (!(create & GET_BLOCK_CREATE)) {
700 		int ret;
701 		/* find number of block-th logical block of the file */
702 		ret = _get_block_create_0(inode, block, bh_result,
703 					  create | GET_BLOCK_READ_DIRECT);
704 		reiserfs_write_unlock(inode->i_sb);
705 		return ret;
706 	}
707 
708 	/*
709 	 * if we're already in a transaction, make sure to close
710 	 * any new transactions we start in this func
711 	 */
712 	if ((create & GET_BLOCK_NO_DANGLE) ||
713 	    reiserfs_transaction_running(inode->i_sb))
714 		dangle = 0;
715 
716 	/*
717 	 * If file is of such a size, that it might have a tail and
718 	 * tails are enabled  we should mark it as possibly needing
719 	 * tail packing on close
720 	 */
721 	if ((have_large_tails(inode->i_sb)
722 	     && inode->i_size < i_block_size(inode) * 4)
723 	    || (have_small_tails(inode->i_sb)
724 		&& inode->i_size < i_block_size(inode)))
725 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
726 
727 	/* set the key of the first byte in the 'block'-th block of file */
728 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
729 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
730 start_trans:
731 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
732 		if (!th) {
733 			retval = -ENOMEM;
734 			goto failure;
735 		}
736 		reiserfs_update_inode_transaction(inode);
737 	}
738 research:
739 
740 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
741 	if (retval == IO_ERROR) {
742 		retval = -EIO;
743 		goto failure;
744 	}
745 
746 	bh = get_last_bh(&path);
747 	ih = tp_item_head(&path);
748 	item = tp_item_body(&path);
749 	pos_in_item = path.pos_in_item;
750 
751 	fs_gen = get_generation(inode->i_sb);
752 	copy_item_head(&tmp_ih, ih);
753 
754 	if (allocation_needed
755 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
756 		/* we have to allocate block for the unformatted node */
757 		if (!th) {
758 			pathrelse(&path);
759 			goto start_trans;
760 		}
761 
762 		repeat =
763 		    _allocate_block(th, block, inode, &allocated_block_nr,
764 				    &path, create);
765 
766 		/*
767 		 * restart the transaction to give the journal a chance to free
768 		 * some blocks.  releases the path, so we have to go back to
769 		 * research if we succeed on the second try
770 		 */
771 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
772 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
773 			retval = restart_transaction(th, inode, &path);
774 			if (retval)
775 				goto failure;
776 			repeat =
777 			    _allocate_block(th, block, inode,
778 					    &allocated_block_nr, NULL, create);
779 
780 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
781 				goto research;
782 			}
783 			if (repeat == QUOTA_EXCEEDED)
784 				retval = -EDQUOT;
785 			else
786 				retval = -ENOSPC;
787 			goto failure;
788 		}
789 
790 		if (fs_changed(fs_gen, inode->i_sb)
791 		    && item_moved(&tmp_ih, &path)) {
792 			goto research;
793 		}
794 	}
795 
796 	if (indirect_item_found(retval, ih)) {
797 		b_blocknr_t unfm_ptr;
798 		/*
799 		 * 'block'-th block is in the file already (there is
800 		 * corresponding cell in some indirect item). But it may be
801 		 * zero unformatted node pointer (hole)
802 		 */
803 		unfm_ptr = get_block_num(item, pos_in_item);
804 		if (unfm_ptr == 0) {
805 			/* use allocated block to plug the hole */
806 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
807 			if (fs_changed(fs_gen, inode->i_sb)
808 			    && item_moved(&tmp_ih, &path)) {
809 				reiserfs_restore_prepared_buffer(inode->i_sb,
810 								 bh);
811 				goto research;
812 			}
813 			set_buffer_new(bh_result);
814 			if (buffer_dirty(bh_result)
815 			    && reiserfs_data_ordered(inode->i_sb))
816 				reiserfs_add_ordered_list(inode, bh_result);
817 			put_block_num(item, pos_in_item, allocated_block_nr);
818 			unfm_ptr = allocated_block_nr;
819 			journal_mark_dirty(th, bh);
820 			reiserfs_update_sd(th, inode);
821 		}
822 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
823 		pathrelse(&path);
824 		retval = 0;
825 		if (!dangle && th)
826 			retval = reiserfs_end_persistent_transaction(th);
827 
828 		reiserfs_write_unlock(inode->i_sb);
829 
830 		/*
831 		 * the item was found, so new blocks were not added to the file
832 		 * there is no need to make sure the inode is updated with this
833 		 * transaction
834 		 */
835 		return retval;
836 	}
837 
838 	if (!th) {
839 		pathrelse(&path);
840 		goto start_trans;
841 	}
842 
843 	/*
844 	 * desired position is not found or is in the direct item. We have
845 	 * to append file with holes up to 'block'-th block converting
846 	 * direct items to indirect one if necessary
847 	 */
848 	done = 0;
849 	do {
850 		if (is_statdata_le_ih(ih)) {
851 			__le32 unp = 0;
852 			struct cpu_key tmp_key;
853 
854 			/* indirect item has to be inserted */
855 			make_le_item_head(&tmp_ih, &key, version, 1,
856 					  TYPE_INDIRECT, UNFM_P_SIZE,
857 					  0 /* free_space */ );
858 
859 			/*
860 			 * we are going to add 'block'-th block to the file.
861 			 * Use allocated block for that
862 			 */
863 			if (cpu_key_k_offset(&key) == 1) {
864 				unp = cpu_to_le32(allocated_block_nr);
865 				set_block_dev_mapped(bh_result,
866 						     allocated_block_nr, inode);
867 				set_buffer_new(bh_result);
868 				done = 1;
869 			}
870 			tmp_key = key;	/* ;) */
871 			set_cpu_key_k_offset(&tmp_key, 1);
872 			PATH_LAST_POSITION(&path)++;
873 
874 			retval =
875 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
876 						 inode, (char *)&unp);
877 			if (retval) {
878 				reiserfs_free_block(th, inode,
879 						    allocated_block_nr, 1);
880 				/*
881 				 * retval == -ENOSPC, -EDQUOT or -EIO
882 				 * or -EEXIST
883 				 */
884 				goto failure;
885 			}
886 		} else if (is_direct_le_ih(ih)) {
887 			/* direct item has to be converted */
888 			loff_t tail_offset;
889 
890 			tail_offset =
891 			    ((le_ih_k_offset(ih) -
892 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
893 
894 			/*
895 			 * direct item we just found fits into block we have
896 			 * to map. Convert it into unformatted node: use
897 			 * bh_result for the conversion
898 			 */
899 			if (tail_offset == cpu_key_k_offset(&key)) {
900 				set_block_dev_mapped(bh_result,
901 						     allocated_block_nr, inode);
902 				unbh = bh_result;
903 				done = 1;
904 			} else {
905 				/*
906 				 * we have to pad file tail stored in direct
907 				 * item(s) up to block size and convert it
908 				 * to unformatted node. FIXME: this should
909 				 * also get into page cache
910 				 */
911 
912 				pathrelse(&path);
913 				/*
914 				 * ugly, but we can only end the transaction if
915 				 * we aren't nested
916 				 */
917 				BUG_ON(!th->t_refcount);
918 				if (th->t_refcount == 1) {
919 					retval =
920 					    reiserfs_end_persistent_transaction
921 					    (th);
922 					th = NULL;
923 					if (retval)
924 						goto failure;
925 				}
926 
927 				retval =
928 				    convert_tail_for_hole(inode, bh_result,
929 							  tail_offset);
930 				if (retval) {
931 					if (retval != -ENOSPC)
932 						reiserfs_error(inode->i_sb,
933 							"clm-6004",
934 							"convert tail failed "
935 							"inode %lu, error %d",
936 							inode->i_ino,
937 							retval);
938 					if (allocated_block_nr) {
939 						/*
940 						 * the bitmap, the super,
941 						 * and the stat data == 3
942 						 */
943 						if (!th)
944 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
945 						if (th)
946 							reiserfs_free_block(th,
947 									    inode,
948 									    allocated_block_nr,
949 									    1);
950 					}
951 					goto failure;
952 				}
953 				goto research;
954 			}
955 			retval =
956 			    direct2indirect(th, inode, &path, unbh,
957 					    tail_offset);
958 			if (retval) {
959 				reiserfs_unmap_buffer(unbh);
960 				reiserfs_free_block(th, inode,
961 						    allocated_block_nr, 1);
962 				goto failure;
963 			}
964 			/*
965 			 * it is important the set_buffer_uptodate is done
966 			 * after the direct2indirect.  The buffer might
967 			 * contain valid data newer than the data on disk
968 			 * (read by readpage, changed, and then sent here by
969 			 * writepage).  direct2indirect needs to know if unbh
970 			 * was already up to date, so it can decide if the
971 			 * data in unbh needs to be replaced with data from
972 			 * the disk
973 			 */
974 			set_buffer_uptodate(unbh);
975 
976 			/*
977 			 * unbh->b_page == NULL in case of DIRECT_IO request,
978 			 * this means buffer will disappear shortly, so it
979 			 * should not be added to
980 			 */
981 			if (unbh->b_page) {
982 				/*
983 				 * we've converted the tail, so we must
984 				 * flush unbh before the transaction commits
985 				 */
986 				reiserfs_add_tail_list(inode, unbh);
987 
988 				/*
989 				 * mark it dirty now to prevent commit_write
990 				 * from adding this buffer to the inode's
991 				 * dirty buffer list
992 				 */
993 				/*
994 				 * AKPM: changed __mark_buffer_dirty to
995 				 * mark_buffer_dirty().  It's still atomic,
996 				 * but it sets the page dirty too, which makes
997 				 * it eligible for writeback at any time by the
998 				 * VM (which was also the case with
999 				 * __mark_buffer_dirty())
1000 				 */
1001 				mark_buffer_dirty(unbh);
1002 			}
1003 		} else {
1004 			/*
1005 			 * append indirect item with holes if needed, when
1006 			 * appending pointer to 'block'-th block use block,
1007 			 * which is already allocated
1008 			 */
1009 			struct cpu_key tmp_key;
1010 			/*
1011 			 * We use this in case we need to allocate
1012 			 * only one block which is a fastpath
1013 			 */
1014 			unp_t unf_single = 0;
1015 			unp_t *un;
1016 			__u64 max_to_insert =
1017 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
1018 			    UNFM_P_SIZE;
1019 			__u64 blocks_needed;
1020 
1021 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
1022 			       "vs-804: invalid position for append");
1023 			/*
1024 			 * indirect item has to be appended,
1025 			 * set up key of that position
1026 			 * (key type is unimportant)
1027 			 */
1028 			make_cpu_key(&tmp_key, inode,
1029 				     le_key_k_offset(version,
1030 						     &ih->ih_key) +
1031 				     op_bytes_number(ih,
1032 						     inode->i_sb->s_blocksize),
1033 				     TYPE_INDIRECT, 3);
1034 
1035 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
1036 			       "green-805: invalid offset");
1037 			blocks_needed =
1038 			    1 +
1039 			    ((cpu_key_k_offset(&key) -
1040 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
1041 			     s_blocksize_bits);
1042 
1043 			if (blocks_needed == 1) {
1044 				un = &unf_single;
1045 			} else {
1046 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
1047 				if (!un) {
1048 					un = &unf_single;
1049 					blocks_needed = 1;
1050 					max_to_insert = 0;
1051 				}
1052 			}
1053 			if (blocks_needed <= max_to_insert) {
1054 				/*
1055 				 * we are going to add target block to
1056 				 * the file. Use allocated block for that
1057 				 */
1058 				un[blocks_needed - 1] =
1059 				    cpu_to_le32(allocated_block_nr);
1060 				set_block_dev_mapped(bh_result,
1061 						     allocated_block_nr, inode);
1062 				set_buffer_new(bh_result);
1063 				done = 1;
1064 			} else {
1065 				/* paste hole to the indirect item */
1066 				/*
1067 				 * If kmalloc failed, max_to_insert becomes
1068 				 * zero and it means we only have space for
1069 				 * one block
1070 				 */
1071 				blocks_needed =
1072 				    max_to_insert ? max_to_insert : 1;
1073 			}
1074 			retval =
1075 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
1076 						     (char *)un,
1077 						     UNFM_P_SIZE *
1078 						     blocks_needed);
1079 
1080 			if (blocks_needed != 1)
1081 				kfree(un);
1082 
1083 			if (retval) {
1084 				reiserfs_free_block(th, inode,
1085 						    allocated_block_nr, 1);
1086 				goto failure;
1087 			}
1088 			if (!done) {
1089 				/*
1090 				 * We need to mark new file size in case
1091 				 * this function will be interrupted/aborted
1092 				 * later on. And we may do this only for
1093 				 * holes.
1094 				 */
1095 				inode->i_size +=
1096 				    inode->i_sb->s_blocksize * blocks_needed;
1097 			}
1098 		}
1099 
1100 		if (done == 1)
1101 			break;
1102 
1103 		/*
1104 		 * this loop could log more blocks than we had originally
1105 		 * asked for.  So, we have to allow the transaction to end
1106 		 * if it is too big or too full.  Update the inode so things
1107 		 * are consistent if we crash before the function returns
1108 		 * release the path so that anybody waiting on the path before
1109 		 * ending their transaction will be able to continue.
1110 		 */
1111 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1112 			retval = restart_transaction(th, inode, &path);
1113 			if (retval)
1114 				goto failure;
1115 		}
1116 		/*
1117 		 * inserting indirect pointers for a hole can take a
1118 		 * long time.  reschedule if needed and also release the write
1119 		 * lock for others.
1120 		 */
1121 		reiserfs_cond_resched(inode->i_sb);
1122 
1123 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1124 		if (retval == IO_ERROR) {
1125 			retval = -EIO;
1126 			goto failure;
1127 		}
1128 		if (retval == POSITION_FOUND) {
1129 			reiserfs_warning(inode->i_sb, "vs-825",
1130 					 "%K should not be found", &key);
1131 			retval = -EEXIST;
1132 			if (allocated_block_nr)
1133 				reiserfs_free_block(th, inode,
1134 						    allocated_block_nr, 1);
1135 			pathrelse(&path);
1136 			goto failure;
1137 		}
1138 		bh = get_last_bh(&path);
1139 		ih = tp_item_head(&path);
1140 		item = tp_item_body(&path);
1141 		pos_in_item = path.pos_in_item;
1142 	} while (1);
1143 
1144 	retval = 0;
1145 
1146 failure:
1147 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1148 		int err;
1149 		if (th->t_trans_id)
1150 			reiserfs_update_sd(th, inode);
1151 		err = reiserfs_end_persistent_transaction(th);
1152 		if (err)
1153 			retval = err;
1154 	}
1155 
1156 	reiserfs_write_unlock(inode->i_sb);
1157 	reiserfs_check_path(&path);
1158 	return retval;
1159 }
1160 
1161 static int
reiserfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1162 reiserfs_readpages(struct file *file, struct address_space *mapping,
1163 		   struct list_head *pages, unsigned nr_pages)
1164 {
1165 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1166 }
1167 
1168 /*
1169  * Compute real number of used bytes by file
1170  * Following three functions can go away when we'll have enough space in
1171  * stat item
1172  */
real_space_diff(struct inode * inode,int sd_size)1173 static int real_space_diff(struct inode *inode, int sd_size)
1174 {
1175 	int bytes;
1176 	loff_t blocksize = inode->i_sb->s_blocksize;
1177 
1178 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1179 		return sd_size;
1180 
1181 	/*
1182 	 * End of file is also in full block with indirect reference, so round
1183 	 * up to the next block.
1184 	 *
1185 	 * there is just no way to know if the tail is actually packed
1186 	 * on the file, so we have to assume it isn't.  When we pack the
1187 	 * tail, we add 4 bytes to pretend there really is an unformatted
1188 	 * node pointer
1189 	 */
1190 	bytes =
1191 	    ((inode->i_size +
1192 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1193 	    sd_size;
1194 	return bytes;
1195 }
1196 
to_real_used_space(struct inode * inode,ulong blocks,int sd_size)1197 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1198 					int sd_size)
1199 {
1200 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1201 		return inode->i_size +
1202 		    (loff_t) (real_space_diff(inode, sd_size));
1203 	}
1204 	return ((loff_t) real_space_diff(inode, sd_size)) +
1205 	    (((loff_t) blocks) << 9);
1206 }
1207 
1208 /* Compute number of blocks used by file in ReiserFS counting */
to_fake_used_blocks(struct inode * inode,int sd_size)1209 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1210 {
1211 	loff_t bytes = inode_get_bytes(inode);
1212 	loff_t real_space = real_space_diff(inode, sd_size);
1213 
1214 	/* keeps fsck and non-quota versions of reiserfs happy */
1215 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1216 		bytes += (loff_t) 511;
1217 	}
1218 
1219 	/*
1220 	 * files from before the quota patch might i_blocks such that
1221 	 * bytes < real_space.  Deal with that here to prevent it from
1222 	 * going negative.
1223 	 */
1224 	if (bytes < real_space)
1225 		return 0;
1226 	return (bytes - real_space) >> 9;
1227 }
1228 
1229 /*
1230  * BAD: new directories have stat data of new type and all other items
1231  * of old type. Version stored in the inode says about body items, so
1232  * in update_stat_data we can not rely on inode, but have to check
1233  * item version directly
1234  */
1235 
1236 /* called by read_locked_inode */
init_inode(struct inode * inode,struct treepath * path)1237 static void init_inode(struct inode *inode, struct treepath *path)
1238 {
1239 	struct buffer_head *bh;
1240 	struct item_head *ih;
1241 	__u32 rdev;
1242 
1243 	bh = PATH_PLAST_BUFFER(path);
1244 	ih = tp_item_head(path);
1245 
1246 	copy_key(INODE_PKEY(inode), &ih->ih_key);
1247 
1248 	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
1249 	REISERFS_I(inode)->i_flags = 0;
1250 	REISERFS_I(inode)->i_prealloc_block = 0;
1251 	REISERFS_I(inode)->i_prealloc_count = 0;
1252 	REISERFS_I(inode)->i_trans_id = 0;
1253 	REISERFS_I(inode)->i_jl = NULL;
1254 	reiserfs_init_xattr_rwsem(inode);
1255 
1256 	if (stat_data_v1(ih)) {
1257 		struct stat_data_v1 *sd =
1258 		    (struct stat_data_v1 *)ih_item_body(bh, ih);
1259 		unsigned long blocks;
1260 
1261 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1262 		set_inode_sd_version(inode, STAT_DATA_V1);
1263 		inode->i_mode = sd_v1_mode(sd);
1264 		set_nlink(inode, sd_v1_nlink(sd));
1265 		i_uid_write(inode, sd_v1_uid(sd));
1266 		i_gid_write(inode, sd_v1_gid(sd));
1267 		inode->i_size = sd_v1_size(sd);
1268 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1269 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1270 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1271 		inode->i_atime.tv_nsec = 0;
1272 		inode->i_ctime.tv_nsec = 0;
1273 		inode->i_mtime.tv_nsec = 0;
1274 
1275 		inode->i_blocks = sd_v1_blocks(sd);
1276 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1277 		blocks = (inode->i_size + 511) >> 9;
1278 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1279 
1280 		/*
1281 		 * there was a bug in <=3.5.23 when i_blocks could take
1282 		 * negative values. Starting from 3.5.17 this value could
1283 		 * even be stored in stat data. For such files we set
1284 		 * i_blocks based on file size. Just 2 notes: this can be
1285 		 * wrong for sparse files. On-disk value will be only
1286 		 * updated if file's inode will ever change
1287 		 */
1288 		if (inode->i_blocks > blocks) {
1289 			inode->i_blocks = blocks;
1290 		}
1291 
1292 		rdev = sd_v1_rdev(sd);
1293 		REISERFS_I(inode)->i_first_direct_byte =
1294 		    sd_v1_first_direct_byte(sd);
1295 
1296 		/*
1297 		 * an early bug in the quota code can give us an odd
1298 		 * number for the block count.  This is incorrect, fix it here.
1299 		 */
1300 		if (inode->i_blocks & 1) {
1301 			inode->i_blocks++;
1302 		}
1303 		inode_set_bytes(inode,
1304 				to_real_used_space(inode, inode->i_blocks,
1305 						   SD_V1_SIZE));
1306 		/*
1307 		 * nopack is initially zero for v1 objects. For v2 objects,
1308 		 * nopack is initialised from sd_attrs
1309 		 */
1310 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1311 	} else {
1312 		/*
1313 		 * new stat data found, but object may have old items
1314 		 * (directories and symlinks)
1315 		 */
1316 		struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih);
1317 
1318 		inode->i_mode = sd_v2_mode(sd);
1319 		set_nlink(inode, sd_v2_nlink(sd));
1320 		i_uid_write(inode, sd_v2_uid(sd));
1321 		inode->i_size = sd_v2_size(sd);
1322 		i_gid_write(inode, sd_v2_gid(sd));
1323 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1324 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1325 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1326 		inode->i_ctime.tv_nsec = 0;
1327 		inode->i_mtime.tv_nsec = 0;
1328 		inode->i_atime.tv_nsec = 0;
1329 		inode->i_blocks = sd_v2_blocks(sd);
1330 		rdev = sd_v2_rdev(sd);
1331 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1332 			inode->i_generation =
1333 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1334 		else
1335 			inode->i_generation = sd_v2_generation(sd);
1336 
1337 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1338 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1339 		else
1340 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1341 		REISERFS_I(inode)->i_first_direct_byte = 0;
1342 		set_inode_sd_version(inode, STAT_DATA_V2);
1343 		inode_set_bytes(inode,
1344 				to_real_used_space(inode, inode->i_blocks,
1345 						   SD_V2_SIZE));
1346 		/*
1347 		 * read persistent inode attributes from sd and initialise
1348 		 * generic inode flags from them
1349 		 */
1350 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1351 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1352 	}
1353 
1354 	pathrelse(path);
1355 	if (S_ISREG(inode->i_mode)) {
1356 		inode->i_op = &reiserfs_file_inode_operations;
1357 		inode->i_fop = &reiserfs_file_operations;
1358 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1359 	} else if (S_ISDIR(inode->i_mode)) {
1360 		inode->i_op = &reiserfs_dir_inode_operations;
1361 		inode->i_fop = &reiserfs_dir_operations;
1362 	} else if (S_ISLNK(inode->i_mode)) {
1363 		inode->i_op = &reiserfs_symlink_inode_operations;
1364 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1365 	} else {
1366 		inode->i_blocks = 0;
1367 		inode->i_op = &reiserfs_special_inode_operations;
1368 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1369 	}
1370 }
1371 
1372 /* update new stat data with inode fields */
inode2sd(void * sd,struct inode * inode,loff_t size)1373 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1374 {
1375 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1376 	__u16 flags;
1377 
1378 	set_sd_v2_mode(sd_v2, inode->i_mode);
1379 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1380 	set_sd_v2_uid(sd_v2, i_uid_read(inode));
1381 	set_sd_v2_size(sd_v2, size);
1382 	set_sd_v2_gid(sd_v2, i_gid_read(inode));
1383 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1384 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1385 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1386 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1387 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1388 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1389 	else
1390 		set_sd_v2_generation(sd_v2, inode->i_generation);
1391 	flags = REISERFS_I(inode)->i_attrs;
1392 	i_attrs_to_sd_attrs(inode, &flags);
1393 	set_sd_v2_attrs(sd_v2, flags);
1394 }
1395 
1396 /* used to copy inode's fields to old stat data */
inode2sd_v1(void * sd,struct inode * inode,loff_t size)1397 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1398 {
1399 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1400 
1401 	set_sd_v1_mode(sd_v1, inode->i_mode);
1402 	set_sd_v1_uid(sd_v1, i_uid_read(inode));
1403 	set_sd_v1_gid(sd_v1, i_gid_read(inode));
1404 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1405 	set_sd_v1_size(sd_v1, size);
1406 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1407 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1408 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1409 
1410 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1411 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1412 	else
1413 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1414 
1415 	/* Sigh. i_first_direct_byte is back */
1416 	set_sd_v1_first_direct_byte(sd_v1,
1417 				    REISERFS_I(inode)->i_first_direct_byte);
1418 }
1419 
1420 /*
1421  * NOTE, you must prepare the buffer head before sending it here,
1422  * and then log it after the call
1423  */
update_stat_data(struct treepath * path,struct inode * inode,loff_t size)1424 static void update_stat_data(struct treepath *path, struct inode *inode,
1425 			     loff_t size)
1426 {
1427 	struct buffer_head *bh;
1428 	struct item_head *ih;
1429 
1430 	bh = PATH_PLAST_BUFFER(path);
1431 	ih = tp_item_head(path);
1432 
1433 	if (!is_statdata_le_ih(ih))
1434 		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1435 			       INODE_PKEY(inode), ih);
1436 
1437 	/* path points to old stat data */
1438 	if (stat_data_v1(ih)) {
1439 		inode2sd_v1(ih_item_body(bh, ih), inode, size);
1440 	} else {
1441 		inode2sd(ih_item_body(bh, ih), inode, size);
1442 	}
1443 
1444 	return;
1445 }
1446 
reiserfs_update_sd_size(struct reiserfs_transaction_handle * th,struct inode * inode,loff_t size)1447 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1448 			     struct inode *inode, loff_t size)
1449 {
1450 	struct cpu_key key;
1451 	INITIALIZE_PATH(path);
1452 	struct buffer_head *bh;
1453 	int fs_gen;
1454 	struct item_head *ih, tmp_ih;
1455 	int retval;
1456 
1457 	BUG_ON(!th->t_trans_id);
1458 
1459 	/* key type is unimportant */
1460 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);
1461 
1462 	for (;;) {
1463 		int pos;
1464 		/* look for the object's stat data */
1465 		retval = search_item(inode->i_sb, &key, &path);
1466 		if (retval == IO_ERROR) {
1467 			reiserfs_error(inode->i_sb, "vs-13050",
1468 				       "i/o failure occurred trying to "
1469 				       "update %K stat data", &key);
1470 			return;
1471 		}
1472 		if (retval == ITEM_NOT_FOUND) {
1473 			pos = PATH_LAST_POSITION(&path);
1474 			pathrelse(&path);
1475 			if (inode->i_nlink == 0) {
1476 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1477 				return;
1478 			}
1479 			reiserfs_warning(inode->i_sb, "vs-13060",
1480 					 "stat data of object %k (nlink == %d) "
1481 					 "not found (pos %d)",
1482 					 INODE_PKEY(inode), inode->i_nlink,
1483 					 pos);
1484 			reiserfs_check_path(&path);
1485 			return;
1486 		}
1487 
1488 		/*
1489 		 * sigh, prepare_for_journal might schedule.  When it
1490 		 * schedules the FS might change.  We have to detect that,
1491 		 * and loop back to the search if the stat data item has moved
1492 		 */
1493 		bh = get_last_bh(&path);
1494 		ih = tp_item_head(&path);
1495 		copy_item_head(&tmp_ih, ih);
1496 		fs_gen = get_generation(inode->i_sb);
1497 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1498 
1499 		/* Stat_data item has been moved after scheduling. */
1500 		if (fs_changed(fs_gen, inode->i_sb)
1501 		    && item_moved(&tmp_ih, &path)) {
1502 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1503 			continue;
1504 		}
1505 		break;
1506 	}
1507 	update_stat_data(&path, inode, size);
1508 	journal_mark_dirty(th, bh);
1509 	pathrelse(&path);
1510 	return;
1511 }
1512 
1513 /*
1514  * reiserfs_read_locked_inode is called to read the inode off disk, and it
1515  * does a make_bad_inode when things go wrong.  But, we need to make sure
1516  * and clear the key in the private portion of the inode, otherwise a
1517  * corresponding iput might try to delete whatever object the inode last
1518  * represented.
1519  */
reiserfs_make_bad_inode(struct inode * inode)1520 static void reiserfs_make_bad_inode(struct inode *inode)
1521 {
1522 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1523 	make_bad_inode(inode);
1524 }
1525 
1526 /*
1527  * initially this function was derived from minix or ext2's analog and
1528  * evolved as the prototype did
1529  */
reiserfs_init_locked_inode(struct inode * inode,void * p)1530 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1531 {
1532 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1533 	inode->i_ino = args->objectid;
1534 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1535 	return 0;
1536 }
1537 
1538 /*
1539  * looks for stat data in the tree, and fills up the fields of in-core
1540  * inode stat data fields
1541  */
reiserfs_read_locked_inode(struct inode * inode,struct reiserfs_iget_args * args)1542 void reiserfs_read_locked_inode(struct inode *inode,
1543 				struct reiserfs_iget_args *args)
1544 {
1545 	INITIALIZE_PATH(path_to_sd);
1546 	struct cpu_key key;
1547 	unsigned long dirino;
1548 	int retval;
1549 
1550 	dirino = args->dirid;
1551 
1552 	/*
1553 	 * set version 1, version 2 could be used too, because stat data
1554 	 * key is the same in both versions
1555 	 */
1556 	_make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3);
1557 
1558 	/* look for the object's stat data */
1559 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1560 	if (retval == IO_ERROR) {
1561 		reiserfs_error(inode->i_sb, "vs-13070",
1562 			       "i/o failure occurred trying to find "
1563 			       "stat data of %K", &key);
1564 		reiserfs_make_bad_inode(inode);
1565 		return;
1566 	}
1567 
1568 	/* a stale NFS handle can trigger this without it being an error */
1569 	if (retval != ITEM_FOUND) {
1570 		pathrelse(&path_to_sd);
1571 		reiserfs_make_bad_inode(inode);
1572 		clear_nlink(inode);
1573 		return;
1574 	}
1575 
1576 	init_inode(inode, &path_to_sd);
1577 
1578 	/*
1579 	 * It is possible that knfsd is trying to access inode of a file
1580 	 * that is being removed from the disk by some other thread. As we
1581 	 * update sd on unlink all that is required is to check for nlink
1582 	 * here. This bug was first found by Sizif when debugging
1583 	 * SquidNG/Butterfly, forgotten, and found again after Philippe
1584 	 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1585 
1586 	 * More logical fix would require changes in fs/inode.c:iput() to
1587 	 * remove inode from hash-table _after_ fs cleaned disk stuff up and
1588 	 * in iget() to return NULL if I_FREEING inode is found in
1589 	 * hash-table.
1590 	 */
1591 
1592 	/*
1593 	 * Currently there is one place where it's ok to meet inode with
1594 	 * nlink==0: processing of open-unlinked and half-truncated files
1595 	 * during mount (fs/reiserfs/super.c:finish_unfinished()).
1596 	 */
1597 	if ((inode->i_nlink == 0) &&
1598 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1599 		reiserfs_warning(inode->i_sb, "vs-13075",
1600 				 "dead inode read from disk %K. "
1601 				 "This is likely to be race with knfsd. Ignore",
1602 				 &key);
1603 		reiserfs_make_bad_inode(inode);
1604 	}
1605 
1606 	/* init inode should be relsing */
1607 	reiserfs_check_path(&path_to_sd);
1608 
1609 	/*
1610 	 * Stat data v1 doesn't support ACLs.
1611 	 */
1612 	if (get_inode_sd_version(inode) == STAT_DATA_V1)
1613 		cache_no_acl(inode);
1614 }
1615 
1616 /*
1617  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1618  *
1619  * @inode:    inode from hash table to check
1620  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1621  *
1622  * This function is called by iget5_locked() to distinguish reiserfs inodes
1623  * having the same inode numbers. Such inodes can only exist due to some
1624  * error condition. One of them should be bad. Inodes with identical
1625  * inode numbers (objectids) are distinguished by parent directory ids.
1626  *
1627  */
reiserfs_find_actor(struct inode * inode,void * opaque)1628 int reiserfs_find_actor(struct inode *inode, void *opaque)
1629 {
1630 	struct reiserfs_iget_args *args;
1631 
1632 	args = opaque;
1633 	/* args is already in CPU order */
1634 	return (inode->i_ino == args->objectid) &&
1635 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1636 }
1637 
reiserfs_iget(struct super_block * s,const struct cpu_key * key)1638 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1639 {
1640 	struct inode *inode;
1641 	struct reiserfs_iget_args args;
1642 	int depth;
1643 
1644 	args.objectid = key->on_disk_key.k_objectid;
1645 	args.dirid = key->on_disk_key.k_dir_id;
1646 	depth = reiserfs_write_unlock_nested(s);
1647 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1648 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1649 			     (void *)(&args));
1650 	reiserfs_write_lock_nested(s, depth);
1651 	if (!inode)
1652 		return ERR_PTR(-ENOMEM);
1653 
1654 	if (inode->i_state & I_NEW) {
1655 		reiserfs_read_locked_inode(inode, &args);
1656 		unlock_new_inode(inode);
1657 	}
1658 
1659 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1660 		/* either due to i/o error or a stale NFS handle */
1661 		iput(inode);
1662 		inode = NULL;
1663 	}
1664 	return inode;
1665 }
1666 
reiserfs_get_dentry(struct super_block * sb,u32 objectid,u32 dir_id,u32 generation)1667 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1668 	u32 objectid, u32 dir_id, u32 generation)
1669 
1670 {
1671 	struct cpu_key key;
1672 	struct inode *inode;
1673 
1674 	key.on_disk_key.k_objectid = objectid;
1675 	key.on_disk_key.k_dir_id = dir_id;
1676 	reiserfs_write_lock(sb);
1677 	inode = reiserfs_iget(sb, &key);
1678 	if (inode && !IS_ERR(inode) && generation != 0 &&
1679 	    generation != inode->i_generation) {
1680 		iput(inode);
1681 		inode = NULL;
1682 	}
1683 	reiserfs_write_unlock(sb);
1684 
1685 	return d_obtain_alias(inode);
1686 }
1687 
reiserfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1688 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1689 		int fh_len, int fh_type)
1690 {
1691 	/*
1692 	 * fhtype happens to reflect the number of u32s encoded.
1693 	 * due to a bug in earlier code, fhtype might indicate there
1694 	 * are more u32s then actually fitted.
1695 	 * so if fhtype seems to be more than len, reduce fhtype.
1696 	 * Valid types are:
1697 	 *   2 - objectid + dir_id - legacy support
1698 	 *   3 - objectid + dir_id + generation
1699 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1700 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1701 	 *   6 - as above plus generation of directory
1702 	 * 6 does not fit in NFSv2 handles
1703 	 */
1704 	if (fh_type > fh_len) {
1705 		if (fh_type != 6 || fh_len != 5)
1706 			reiserfs_warning(sb, "reiserfs-13077",
1707 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1708 				fh_type, fh_len);
1709 		fh_type = fh_len;
1710 	}
1711 	if (fh_len < 2)
1712 		return NULL;
1713 
1714 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1715 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1716 }
1717 
reiserfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1718 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1719 		int fh_len, int fh_type)
1720 {
1721 	if (fh_type > fh_len)
1722 		fh_type = fh_len;
1723 	if (fh_type < 4)
1724 		return NULL;
1725 
1726 	return reiserfs_get_dentry(sb,
1727 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1728 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1729 		(fh_type == 6) ? fid->raw[5] : 0);
1730 }
1731 
reiserfs_encode_fh(struct inode * inode,__u32 * data,int * lenp,struct inode * parent)1732 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1733 		       struct inode *parent)
1734 {
1735 	int maxlen = *lenp;
1736 
1737 	if (parent && (maxlen < 5)) {
1738 		*lenp = 5;
1739 		return FILEID_INVALID;
1740 	} else if (maxlen < 3) {
1741 		*lenp = 3;
1742 		return FILEID_INVALID;
1743 	}
1744 
1745 	data[0] = inode->i_ino;
1746 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1747 	data[2] = inode->i_generation;
1748 	*lenp = 3;
1749 	if (parent) {
1750 		data[3] = parent->i_ino;
1751 		data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1752 		*lenp = 5;
1753 		if (maxlen >= 6) {
1754 			data[5] = parent->i_generation;
1755 			*lenp = 6;
1756 		}
1757 	}
1758 	return *lenp;
1759 }
1760 
1761 /*
1762  * looks for stat data, then copies fields to it, marks the buffer
1763  * containing stat data as dirty
1764  */
1765 /*
1766  * reiserfs inodes are never really dirty, since the dirty inode call
1767  * always logs them.  This call allows the VFS inode marking routines
1768  * to properly mark inodes for datasync and such, but only actually
1769  * does something when called for a synchronous update.
1770  */
reiserfs_write_inode(struct inode * inode,struct writeback_control * wbc)1771 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1772 {
1773 	struct reiserfs_transaction_handle th;
1774 	int jbegin_count = 1;
1775 
1776 	if (inode->i_sb->s_flags & MS_RDONLY)
1777 		return -EROFS;
1778 	/*
1779 	 * memory pressure can sometimes initiate write_inode calls with
1780 	 * sync == 1,
1781 	 * these cases are just when the system needs ram, not when the
1782 	 * inode needs to reach disk for safety, and they can safely be
1783 	 * ignored because the altered inode has already been logged.
1784 	 */
1785 	if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1786 		reiserfs_write_lock(inode->i_sb);
1787 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1788 			reiserfs_update_sd(&th, inode);
1789 			journal_end_sync(&th);
1790 		}
1791 		reiserfs_write_unlock(inode->i_sb);
1792 	}
1793 	return 0;
1794 }
1795 
1796 /*
1797  * stat data of new object is inserted already, this inserts the item
1798  * containing "." and ".." entries
1799  */
reiserfs_new_directory(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,struct inode * dir)1800 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1801 				  struct inode *inode,
1802 				  struct item_head *ih, struct treepath *path,
1803 				  struct inode *dir)
1804 {
1805 	struct super_block *sb = th->t_super;
1806 	char empty_dir[EMPTY_DIR_SIZE];
1807 	char *body = empty_dir;
1808 	struct cpu_key key;
1809 	int retval;
1810 
1811 	BUG_ON(!th->t_trans_id);
1812 
1813 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1814 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1815 		      TYPE_DIRENTRY, 3 /*key length */ );
1816 
1817 	/*
1818 	 * compose item head for new item. Directories consist of items of
1819 	 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1820 	 * is done by reiserfs_new_inode
1821 	 */
1822 	if (old_format_only(sb)) {
1823 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1824 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1825 
1826 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1827 				       ih->ih_key.k_objectid,
1828 				       INODE_PKEY(dir)->k_dir_id,
1829 				       INODE_PKEY(dir)->k_objectid);
1830 	} else {
1831 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1832 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1833 
1834 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1835 				    ih->ih_key.k_objectid,
1836 				    INODE_PKEY(dir)->k_dir_id,
1837 				    INODE_PKEY(dir)->k_objectid);
1838 	}
1839 
1840 	/* look for place in the tree for new item */
1841 	retval = search_item(sb, &key, path);
1842 	if (retval == IO_ERROR) {
1843 		reiserfs_error(sb, "vs-13080",
1844 			       "i/o failure occurred creating new directory");
1845 		return -EIO;
1846 	}
1847 	if (retval == ITEM_FOUND) {
1848 		pathrelse(path);
1849 		reiserfs_warning(sb, "vs-13070",
1850 				 "object with this key exists (%k)",
1851 				 &(ih->ih_key));
1852 		return -EEXIST;
1853 	}
1854 
1855 	/* insert item, that is empty directory item */
1856 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1857 }
1858 
1859 /*
1860  * stat data of object has been inserted, this inserts the item
1861  * containing the body of symlink
1862  */
reiserfs_new_symlink(struct reiserfs_transaction_handle * th,struct inode * inode,struct item_head * ih,struct treepath * path,const char * symname,int item_len)1863 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th,
1864 				struct inode *inode,
1865 				struct item_head *ih,
1866 				struct treepath *path, const char *symname,
1867 				int item_len)
1868 {
1869 	struct super_block *sb = th->t_super;
1870 	struct cpu_key key;
1871 	int retval;
1872 
1873 	BUG_ON(!th->t_trans_id);
1874 
1875 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1876 		      le32_to_cpu(ih->ih_key.k_dir_id),
1877 		      le32_to_cpu(ih->ih_key.k_objectid),
1878 		      1, TYPE_DIRECT, 3 /*key length */ );
1879 
1880 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1881 			  0 /*free_space */ );
1882 
1883 	/* look for place in the tree for new item */
1884 	retval = search_item(sb, &key, path);
1885 	if (retval == IO_ERROR) {
1886 		reiserfs_error(sb, "vs-13080",
1887 			       "i/o failure occurred creating new symlink");
1888 		return -EIO;
1889 	}
1890 	if (retval == ITEM_FOUND) {
1891 		pathrelse(path);
1892 		reiserfs_warning(sb, "vs-13080",
1893 				 "object with this key exists (%k)",
1894 				 &(ih->ih_key));
1895 		return -EEXIST;
1896 	}
1897 
1898 	/* insert item, that is body of symlink */
1899 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1900 }
1901 
1902 /*
1903  * inserts the stat data into the tree, and then calls
1904  * reiserfs_new_directory (to insert ".", ".." item if new object is
1905  * directory) or reiserfs_new_symlink (to insert symlink body if new
1906  * object is symlink) or nothing (if new object is regular file)
1907 
1908  * NOTE! uid and gid must already be set in the inode.  If we return
1909  * non-zero due to an error, we have to drop the quota previously allocated
1910  * for the fresh inode.  This can only be done outside a transaction, so
1911  * if we return non-zero, we also end the transaction.
1912  *
1913  * @th: active transaction handle
1914  * @dir: parent directory for new inode
1915  * @mode: mode of new inode
1916  * @symname: symlink contents if inode is symlink
1917  * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for
1918  *         symlinks
1919  * @inode: inode to be filled
1920  * @security: optional security context to associate with this inode
1921  */
reiserfs_new_inode(struct reiserfs_transaction_handle * th,struct inode * dir,umode_t mode,const char * symname,loff_t i_size,struct dentry * dentry,struct inode * inode,struct reiserfs_security_handle * security)1922 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1923 		       struct inode *dir, umode_t mode, const char *symname,
1924 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1925 		          strlen (symname) for symlinks) */
1926 		       loff_t i_size, struct dentry *dentry,
1927 		       struct inode *inode,
1928 		       struct reiserfs_security_handle *security)
1929 {
1930 	struct super_block *sb = dir->i_sb;
1931 	struct reiserfs_iget_args args;
1932 	INITIALIZE_PATH(path_to_key);
1933 	struct cpu_key key;
1934 	struct item_head ih;
1935 	struct stat_data sd;
1936 	int retval;
1937 	int err;
1938 	int depth;
1939 
1940 	BUG_ON(!th->t_trans_id);
1941 
1942 	depth = reiserfs_write_unlock_nested(sb);
1943 	err = dquot_alloc_inode(inode);
1944 	reiserfs_write_lock_nested(sb, depth);
1945 	if (err)
1946 		goto out_end_trans;
1947 	if (!dir->i_nlink) {
1948 		err = -EPERM;
1949 		goto out_bad_inode;
1950 	}
1951 
1952 	/* item head of new item */
1953 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1954 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1955 	if (!ih.ih_key.k_objectid) {
1956 		err = -ENOMEM;
1957 		goto out_bad_inode;
1958 	}
1959 	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1960 	if (old_format_only(sb))
1961 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1962 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1963 	else
1964 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1965 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1966 	memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE);
1967 	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1968 
1969 	depth = reiserfs_write_unlock_nested(inode->i_sb);
1970 	err = insert_inode_locked4(inode, args.objectid,
1971 			     reiserfs_find_actor, &args);
1972 	reiserfs_write_lock_nested(inode->i_sb, depth);
1973 	if (err) {
1974 		err = -EINVAL;
1975 		goto out_bad_inode;
1976 	}
1977 
1978 	if (old_format_only(sb))
1979 		/*
1980 		 * not a perfect generation count, as object ids can be reused,
1981 		 * but this is as good as reiserfs can do right now.
1982 		 * note that the private part of inode isn't filled in yet,
1983 		 * we have to use the directory.
1984 		 */
1985 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1986 	else
1987 #if defined( USE_INODE_GENERATION_COUNTER )
1988 		inode->i_generation =
1989 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1990 #else
1991 		inode->i_generation = ++event;
1992 #endif
1993 
1994 	/* fill stat data */
1995 	set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1996 
1997 	/* uid and gid must already be set by the caller for quota init */
1998 
1999 	/* symlink cannot be immutable or append only, right? */
2000 	if (S_ISLNK(inode->i_mode))
2001 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
2002 
2003 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
2004 	inode->i_size = i_size;
2005 	inode->i_blocks = 0;
2006 	inode->i_bytes = 0;
2007 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
2008 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
2009 
2010 	INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list);
2011 	REISERFS_I(inode)->i_flags = 0;
2012 	REISERFS_I(inode)->i_prealloc_block = 0;
2013 	REISERFS_I(inode)->i_prealloc_count = 0;
2014 	REISERFS_I(inode)->i_trans_id = 0;
2015 	REISERFS_I(inode)->i_jl = NULL;
2016 	REISERFS_I(inode)->i_attrs =
2017 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
2018 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
2019 	reiserfs_init_xattr_rwsem(inode);
2020 
2021 	/* key to search for correct place for new stat data */
2022 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
2023 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
2024 		      TYPE_STAT_DATA, 3 /*key length */ );
2025 
2026 	/* find proper place for inserting of stat data */
2027 	retval = search_item(sb, &key, &path_to_key);
2028 	if (retval == IO_ERROR) {
2029 		err = -EIO;
2030 		goto out_bad_inode;
2031 	}
2032 	if (retval == ITEM_FOUND) {
2033 		pathrelse(&path_to_key);
2034 		err = -EEXIST;
2035 		goto out_bad_inode;
2036 	}
2037 	if (old_format_only(sb)) {
2038 		/* i_uid or i_gid is too big to be stored in stat data v3.5 */
2039 		if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
2040 			pathrelse(&path_to_key);
2041 			err = -EINVAL;
2042 			goto out_bad_inode;
2043 		}
2044 		inode2sd_v1(&sd, inode, inode->i_size);
2045 	} else {
2046 		inode2sd(&sd, inode, inode->i_size);
2047 	}
2048 	/*
2049 	 * store in in-core inode the key of stat data and version all
2050 	 * object items will have (directory items will have old offset
2051 	 * format, other new objects will consist of new items)
2052 	 */
2053 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
2054 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
2055 	else
2056 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
2057 	if (old_format_only(sb))
2058 		set_inode_sd_version(inode, STAT_DATA_V1);
2059 	else
2060 		set_inode_sd_version(inode, STAT_DATA_V2);
2061 
2062 	/* insert the stat data into the tree */
2063 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2064 	if (REISERFS_I(dir)->new_packing_locality)
2065 		th->displace_new_blocks = 1;
2066 #endif
2067 	retval =
2068 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
2069 				 (char *)(&sd));
2070 	if (retval) {
2071 		err = retval;
2072 		reiserfs_check_path(&path_to_key);
2073 		goto out_bad_inode;
2074 	}
2075 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2076 	if (!th->displace_new_blocks)
2077 		REISERFS_I(dir)->new_packing_locality = 0;
2078 #endif
2079 	if (S_ISDIR(mode)) {
2080 		/* insert item with "." and ".." */
2081 		retval =
2082 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
2083 	}
2084 
2085 	if (S_ISLNK(mode)) {
2086 		/* insert body of symlink */
2087 		if (!old_format_only(sb))
2088 			i_size = ROUND_UP(i_size);
2089 		retval =
2090 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
2091 					 i_size);
2092 	}
2093 	if (retval) {
2094 		err = retval;
2095 		reiserfs_check_path(&path_to_key);
2096 		journal_end(th);
2097 		goto out_inserted_sd;
2098 	}
2099 
2100 	if (reiserfs_posixacl(inode->i_sb)) {
2101 		reiserfs_write_unlock(inode->i_sb);
2102 		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
2103 		reiserfs_write_lock(inode->i_sb);
2104 		if (retval) {
2105 			err = retval;
2106 			reiserfs_check_path(&path_to_key);
2107 			journal_end(th);
2108 			goto out_inserted_sd;
2109 		}
2110 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
2111 		reiserfs_warning(inode->i_sb, "jdm-13090",
2112 				 "ACLs aren't enabled in the fs, "
2113 				 "but vfs thinks they are!");
2114 	} else if (IS_PRIVATE(dir))
2115 		inode->i_flags |= S_PRIVATE;
2116 
2117 	if (security->name) {
2118 		reiserfs_write_unlock(inode->i_sb);
2119 		retval = reiserfs_security_write(th, inode, security);
2120 		reiserfs_write_lock(inode->i_sb);
2121 		if (retval) {
2122 			err = retval;
2123 			reiserfs_check_path(&path_to_key);
2124 			retval = journal_end(th);
2125 			if (retval)
2126 				err = retval;
2127 			goto out_inserted_sd;
2128 		}
2129 	}
2130 
2131 	reiserfs_update_sd(th, inode);
2132 	reiserfs_check_path(&path_to_key);
2133 
2134 	return 0;
2135 
2136 out_bad_inode:
2137 	/* Invalidate the object, nothing was inserted yet */
2138 	INODE_PKEY(inode)->k_objectid = 0;
2139 
2140 	/* Quota change must be inside a transaction for journaling */
2141 	depth = reiserfs_write_unlock_nested(inode->i_sb);
2142 	dquot_free_inode(inode);
2143 	reiserfs_write_lock_nested(inode->i_sb, depth);
2144 
2145 out_end_trans:
2146 	journal_end(th);
2147 	/*
2148 	 * Drop can be outside and it needs more credits so it's better
2149 	 * to have it outside
2150 	 */
2151 	depth = reiserfs_write_unlock_nested(inode->i_sb);
2152 	dquot_drop(inode);
2153 	reiserfs_write_lock_nested(inode->i_sb, depth);
2154 	inode->i_flags |= S_NOQUOTA;
2155 	make_bad_inode(inode);
2156 
2157 out_inserted_sd:
2158 	clear_nlink(inode);
2159 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
2160 	if (inode->i_state & I_NEW)
2161 		unlock_new_inode(inode);
2162 	iput(inode);
2163 	return err;
2164 }
2165 
2166 /*
2167  * finds the tail page in the page cache,
2168  * reads the last block in.
2169  *
2170  * On success, page_result is set to a locked, pinned page, and bh_result
2171  * is set to an up to date buffer for the last block in the file.  returns 0.
2172  *
2173  * tail conversion is not done, so bh_result might not be valid for writing
2174  * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2175  * trying to write the block.
2176  *
2177  * on failure, nonzero is returned, page_result and bh_result are untouched.
2178  */
grab_tail_page(struct inode * inode,struct page ** page_result,struct buffer_head ** bh_result)2179 static int grab_tail_page(struct inode *inode,
2180 			  struct page **page_result,
2181 			  struct buffer_head **bh_result)
2182 {
2183 
2184 	/*
2185 	 * we want the page with the last byte in the file,
2186 	 * not the page that will hold the next byte for appending
2187 	 */
2188 	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2189 	unsigned long pos = 0;
2190 	unsigned long start = 0;
2191 	unsigned long blocksize = inode->i_sb->s_blocksize;
2192 	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2193 	struct buffer_head *bh;
2194 	struct buffer_head *head;
2195 	struct page *page;
2196 	int error;
2197 
2198 	/*
2199 	 * we know that we are only called with inode->i_size > 0.
2200 	 * we also know that a file tail can never be as big as a block
2201 	 * If i_size % blocksize == 0, our file is currently block aligned
2202 	 * and it won't need converting or zeroing after a truncate.
2203 	 */
2204 	if ((offset & (blocksize - 1)) == 0) {
2205 		return -ENOENT;
2206 	}
2207 	page = grab_cache_page(inode->i_mapping, index);
2208 	error = -ENOMEM;
2209 	if (!page) {
2210 		goto out;
2211 	}
2212 	/* start within the page of the last block in the file */
2213 	start = (offset / blocksize) * blocksize;
2214 
2215 	error = __block_write_begin(page, start, offset - start,
2216 				    reiserfs_get_block_create_0);
2217 	if (error)
2218 		goto unlock;
2219 
2220 	head = page_buffers(page);
2221 	bh = head;
2222 	do {
2223 		if (pos >= start) {
2224 			break;
2225 		}
2226 		bh = bh->b_this_page;
2227 		pos += blocksize;
2228 	} while (bh != head);
2229 
2230 	if (!buffer_uptodate(bh)) {
2231 		/*
2232 		 * note, this should never happen, prepare_write should be
2233 		 * taking care of this for us.  If the buffer isn't up to
2234 		 * date, I've screwed up the code to find the buffer, or the
2235 		 * code to call prepare_write
2236 		 */
2237 		reiserfs_error(inode->i_sb, "clm-6000",
2238 			       "error reading block %lu", bh->b_blocknr);
2239 		error = -EIO;
2240 		goto unlock;
2241 	}
2242 	*bh_result = bh;
2243 	*page_result = page;
2244 
2245 out:
2246 	return error;
2247 
2248 unlock:
2249 	unlock_page(page);
2250 	page_cache_release(page);
2251 	return error;
2252 }
2253 
2254 /*
2255  * vfs version of truncate file.  Must NOT be called with
2256  * a transaction already started.
2257  *
2258  * some code taken from block_truncate_page
2259  */
reiserfs_truncate_file(struct inode * inode,int update_timestamps)2260 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2261 {
2262 	struct reiserfs_transaction_handle th;
2263 	/* we want the offset for the first byte after the end of the file */
2264 	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2265 	unsigned blocksize = inode->i_sb->s_blocksize;
2266 	unsigned length;
2267 	struct page *page = NULL;
2268 	int error;
2269 	struct buffer_head *bh = NULL;
2270 	int err2;
2271 
2272 	reiserfs_write_lock(inode->i_sb);
2273 
2274 	if (inode->i_size > 0) {
2275 		error = grab_tail_page(inode, &page, &bh);
2276 		if (error) {
2277 			/*
2278 			 * -ENOENT means we truncated past the end of the
2279 			 * file, and get_block_create_0 could not find a
2280 			 * block to read in, which is ok.
2281 			 */
2282 			if (error != -ENOENT)
2283 				reiserfs_error(inode->i_sb, "clm-6001",
2284 					       "grab_tail_page failed %d",
2285 					       error);
2286 			page = NULL;
2287 			bh = NULL;
2288 		}
2289 	}
2290 
2291 	/*
2292 	 * so, if page != NULL, we have a buffer head for the offset at
2293 	 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2294 	 * then we have an unformatted node.  Otherwise, we have a direct item,
2295 	 * and no zeroing is required on disk.  We zero after the truncate,
2296 	 * because the truncate might pack the item anyway
2297 	 * (it will unmap bh if it packs).
2298 	 *
2299 	 * it is enough to reserve space in transaction for 2 balancings:
2300 	 * one for "save" link adding and another for the first
2301 	 * cut_from_item. 1 is for update_sd
2302 	 */
2303 	error = journal_begin(&th, inode->i_sb,
2304 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2305 	if (error)
2306 		goto out;
2307 	reiserfs_update_inode_transaction(inode);
2308 	if (update_timestamps)
2309 		/*
2310 		 * we are doing real truncate: if the system crashes
2311 		 * before the last transaction of truncating gets committed
2312 		 * - on reboot the file either appears truncated properly
2313 		 * or not truncated at all
2314 		 */
2315 		add_save_link(&th, inode, 1);
2316 	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2317 	error = journal_end(&th);
2318 	if (error)
2319 		goto out;
2320 
2321 	/* check reiserfs_do_truncate after ending the transaction */
2322 	if (err2) {
2323 		error = err2;
2324   		goto out;
2325 	}
2326 
2327 	if (update_timestamps) {
2328 		error = remove_save_link(inode, 1 /* truncate */);
2329 		if (error)
2330 			goto out;
2331 	}
2332 
2333 	if (page) {
2334 		length = offset & (blocksize - 1);
2335 		/* if we are not on a block boundary */
2336 		if (length) {
2337 			length = blocksize - length;
2338 			zero_user(page, offset, length);
2339 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2340 				mark_buffer_dirty(bh);
2341 			}
2342 		}
2343 		unlock_page(page);
2344 		page_cache_release(page);
2345 	}
2346 
2347 	reiserfs_write_unlock(inode->i_sb);
2348 
2349 	return 0;
2350 out:
2351 	if (page) {
2352 		unlock_page(page);
2353 		page_cache_release(page);
2354 	}
2355 
2356 	reiserfs_write_unlock(inode->i_sb);
2357 
2358 	return error;
2359 }
2360 
map_block_for_writepage(struct inode * inode,struct buffer_head * bh_result,unsigned long block)2361 static int map_block_for_writepage(struct inode *inode,
2362 				   struct buffer_head *bh_result,
2363 				   unsigned long block)
2364 {
2365 	struct reiserfs_transaction_handle th;
2366 	int fs_gen;
2367 	struct item_head tmp_ih;
2368 	struct item_head *ih;
2369 	struct buffer_head *bh;
2370 	__le32 *item;
2371 	struct cpu_key key;
2372 	INITIALIZE_PATH(path);
2373 	int pos_in_item;
2374 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2375 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2376 	int retval;
2377 	int use_get_block = 0;
2378 	int bytes_copied = 0;
2379 	int copy_size;
2380 	int trans_running = 0;
2381 
2382 	/*
2383 	 * catch places below that try to log something without
2384 	 * starting a trans
2385 	 */
2386 	th.t_trans_id = 0;
2387 
2388 	if (!buffer_uptodate(bh_result)) {
2389 		return -EIO;
2390 	}
2391 
2392 	kmap(bh_result->b_page);
2393 start_over:
2394 	reiserfs_write_lock(inode->i_sb);
2395 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2396 
2397 research:
2398 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2399 	if (retval != POSITION_FOUND) {
2400 		use_get_block = 1;
2401 		goto out;
2402 	}
2403 
2404 	bh = get_last_bh(&path);
2405 	ih = tp_item_head(&path);
2406 	item = tp_item_body(&path);
2407 	pos_in_item = path.pos_in_item;
2408 
2409 	/* we've found an unformatted node */
2410 	if (indirect_item_found(retval, ih)) {
2411 		if (bytes_copied > 0) {
2412 			reiserfs_warning(inode->i_sb, "clm-6002",
2413 					 "bytes_copied %d", bytes_copied);
2414 		}
2415 		if (!get_block_num(item, pos_in_item)) {
2416 			/* crap, we are writing to a hole */
2417 			use_get_block = 1;
2418 			goto out;
2419 		}
2420 		set_block_dev_mapped(bh_result,
2421 				     get_block_num(item, pos_in_item), inode);
2422 	} else if (is_direct_le_ih(ih)) {
2423 		char *p;
2424 		p = page_address(bh_result->b_page);
2425 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2426 		copy_size = ih_item_len(ih) - pos_in_item;
2427 
2428 		fs_gen = get_generation(inode->i_sb);
2429 		copy_item_head(&tmp_ih, ih);
2430 
2431 		if (!trans_running) {
2432 			/* vs-3050 is gone, no need to drop the path */
2433 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2434 			if (retval)
2435 				goto out;
2436 			reiserfs_update_inode_transaction(inode);
2437 			trans_running = 1;
2438 			if (fs_changed(fs_gen, inode->i_sb)
2439 			    && item_moved(&tmp_ih, &path)) {
2440 				reiserfs_restore_prepared_buffer(inode->i_sb,
2441 								 bh);
2442 				goto research;
2443 			}
2444 		}
2445 
2446 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2447 
2448 		if (fs_changed(fs_gen, inode->i_sb)
2449 		    && item_moved(&tmp_ih, &path)) {
2450 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2451 			goto research;
2452 		}
2453 
2454 		memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied,
2455 		       copy_size);
2456 
2457 		journal_mark_dirty(&th, bh);
2458 		bytes_copied += copy_size;
2459 		set_block_dev_mapped(bh_result, 0, inode);
2460 
2461 		/* are there still bytes left? */
2462 		if (bytes_copied < bh_result->b_size &&
2463 		    (byte_offset + bytes_copied) < inode->i_size) {
2464 			set_cpu_key_k_offset(&key,
2465 					     cpu_key_k_offset(&key) +
2466 					     copy_size);
2467 			goto research;
2468 		}
2469 	} else {
2470 		reiserfs_warning(inode->i_sb, "clm-6003",
2471 				 "bad item inode %lu", inode->i_ino);
2472 		retval = -EIO;
2473 		goto out;
2474 	}
2475 	retval = 0;
2476 
2477 out:
2478 	pathrelse(&path);
2479 	if (trans_running) {
2480 		int err = journal_end(&th);
2481 		if (err)
2482 			retval = err;
2483 		trans_running = 0;
2484 	}
2485 	reiserfs_write_unlock(inode->i_sb);
2486 
2487 	/* this is where we fill in holes in the file. */
2488 	if (use_get_block) {
2489 		retval = reiserfs_get_block(inode, block, bh_result,
2490 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2491 					    | GET_BLOCK_NO_DANGLE);
2492 		if (!retval) {
2493 			if (!buffer_mapped(bh_result)
2494 			    || bh_result->b_blocknr == 0) {
2495 				/* get_block failed to find a mapped unformatted node. */
2496 				use_get_block = 0;
2497 				goto start_over;
2498 			}
2499 		}
2500 	}
2501 	kunmap(bh_result->b_page);
2502 
2503 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2504 		/*
2505 		 * we've copied data from the page into the direct item, so the
2506 		 * buffer in the page is now clean, mark it to reflect that.
2507 		 */
2508 		lock_buffer(bh_result);
2509 		clear_buffer_dirty(bh_result);
2510 		unlock_buffer(bh_result);
2511 	}
2512 	return retval;
2513 }
2514 
2515 /*
2516  * mason@suse.com: updated in 2.5.54 to follow the same general io
2517  * start/recovery path as __block_write_full_page, along with special
2518  * code to handle reiserfs tails.
2519  */
reiserfs_write_full_page(struct page * page,struct writeback_control * wbc)2520 static int reiserfs_write_full_page(struct page *page,
2521 				    struct writeback_control *wbc)
2522 {
2523 	struct inode *inode = page->mapping->host;
2524 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2525 	int error = 0;
2526 	unsigned long block;
2527 	sector_t last_block;
2528 	struct buffer_head *head, *bh;
2529 	int partial = 0;
2530 	int nr = 0;
2531 	int checked = PageChecked(page);
2532 	struct reiserfs_transaction_handle th;
2533 	struct super_block *s = inode->i_sb;
2534 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2535 	th.t_trans_id = 0;
2536 
2537 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2538 	if (checked && (current->flags & PF_MEMALLOC)) {
2539 		redirty_page_for_writepage(wbc, page);
2540 		unlock_page(page);
2541 		return 0;
2542 	}
2543 
2544 	/*
2545 	 * The page dirty bit is cleared before writepage is called, which
2546 	 * means we have to tell create_empty_buffers to make dirty buffers
2547 	 * The page really should be up to date at this point, so tossing
2548 	 * in the BH_Uptodate is just a sanity check.
2549 	 */
2550 	if (!page_has_buffers(page)) {
2551 		create_empty_buffers(page, s->s_blocksize,
2552 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2553 	}
2554 	head = page_buffers(page);
2555 
2556 	/*
2557 	 * last page in the file, zero out any contents past the
2558 	 * last byte in the file
2559 	 */
2560 	if (page->index >= end_index) {
2561 		unsigned last_offset;
2562 
2563 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2564 		/* no file contents in this page */
2565 		if (page->index >= end_index + 1 || !last_offset) {
2566 			unlock_page(page);
2567 			return 0;
2568 		}
2569 		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2570 	}
2571 	bh = head;
2572 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2573 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2574 	/* first map all the buffers, logging any direct items we find */
2575 	do {
2576 		if (block > last_block) {
2577 			/*
2578 			 * This can happen when the block size is less than
2579 			 * the page size.  The corresponding bytes in the page
2580 			 * were zero filled above
2581 			 */
2582 			clear_buffer_dirty(bh);
2583 			set_buffer_uptodate(bh);
2584 		} else if ((checked || buffer_dirty(bh)) &&
2585 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2586 						       && bh->b_blocknr ==
2587 						       0))) {
2588 			/*
2589 			 * not mapped yet, or it points to a direct item, search
2590 			 * the btree for the mapping info, and log any direct
2591 			 * items found
2592 			 */
2593 			if ((error = map_block_for_writepage(inode, bh, block))) {
2594 				goto fail;
2595 			}
2596 		}
2597 		bh = bh->b_this_page;
2598 		block++;
2599 	} while (bh != head);
2600 
2601 	/*
2602 	 * we start the transaction after map_block_for_writepage,
2603 	 * because it can create holes in the file (an unbounded operation).
2604 	 * starting it here, we can make a reliable estimate for how many
2605 	 * blocks we're going to log
2606 	 */
2607 	if (checked) {
2608 		ClearPageChecked(page);
2609 		reiserfs_write_lock(s);
2610 		error = journal_begin(&th, s, bh_per_page + 1);
2611 		if (error) {
2612 			reiserfs_write_unlock(s);
2613 			goto fail;
2614 		}
2615 		reiserfs_update_inode_transaction(inode);
2616 	}
2617 	/* now go through and lock any dirty buffers on the page */
2618 	do {
2619 		get_bh(bh);
2620 		if (!buffer_mapped(bh))
2621 			continue;
2622 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2623 			continue;
2624 
2625 		if (checked) {
2626 			reiserfs_prepare_for_journal(s, bh, 1);
2627 			journal_mark_dirty(&th, bh);
2628 			continue;
2629 		}
2630 		/*
2631 		 * from this point on, we know the buffer is mapped to a
2632 		 * real block and not a direct item
2633 		 */
2634 		if (wbc->sync_mode != WB_SYNC_NONE) {
2635 			lock_buffer(bh);
2636 		} else {
2637 			if (!trylock_buffer(bh)) {
2638 				redirty_page_for_writepage(wbc, page);
2639 				continue;
2640 			}
2641 		}
2642 		if (test_clear_buffer_dirty(bh)) {
2643 			mark_buffer_async_write(bh);
2644 		} else {
2645 			unlock_buffer(bh);
2646 		}
2647 	} while ((bh = bh->b_this_page) != head);
2648 
2649 	if (checked) {
2650 		error = journal_end(&th);
2651 		reiserfs_write_unlock(s);
2652 		if (error)
2653 			goto fail;
2654 	}
2655 	BUG_ON(PageWriteback(page));
2656 	set_page_writeback(page);
2657 	unlock_page(page);
2658 
2659 	/*
2660 	 * since any buffer might be the only dirty buffer on the page,
2661 	 * the first submit_bh can bring the page out of writeback.
2662 	 * be careful with the buffers.
2663 	 */
2664 	do {
2665 		struct buffer_head *next = bh->b_this_page;
2666 		if (buffer_async_write(bh)) {
2667 			submit_bh(WRITE, bh);
2668 			nr++;
2669 		}
2670 		put_bh(bh);
2671 		bh = next;
2672 	} while (bh != head);
2673 
2674 	error = 0;
2675 done:
2676 	if (nr == 0) {
2677 		/*
2678 		 * if this page only had a direct item, it is very possible for
2679 		 * no io to be required without there being an error.  Or,
2680 		 * someone else could have locked them and sent them down the
2681 		 * pipe without locking the page
2682 		 */
2683 		bh = head;
2684 		do {
2685 			if (!buffer_uptodate(bh)) {
2686 				partial = 1;
2687 				break;
2688 			}
2689 			bh = bh->b_this_page;
2690 		} while (bh != head);
2691 		if (!partial)
2692 			SetPageUptodate(page);
2693 		end_page_writeback(page);
2694 	}
2695 	return error;
2696 
2697 fail:
2698 	/*
2699 	 * catches various errors, we need to make sure any valid dirty blocks
2700 	 * get to the media.  The page is currently locked and not marked for
2701 	 * writeback
2702 	 */
2703 	ClearPageUptodate(page);
2704 	bh = head;
2705 	do {
2706 		get_bh(bh);
2707 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2708 			lock_buffer(bh);
2709 			mark_buffer_async_write(bh);
2710 		} else {
2711 			/*
2712 			 * clear any dirty bits that might have come from
2713 			 * getting attached to a dirty page
2714 			 */
2715 			clear_buffer_dirty(bh);
2716 		}
2717 		bh = bh->b_this_page;
2718 	} while (bh != head);
2719 	SetPageError(page);
2720 	BUG_ON(PageWriteback(page));
2721 	set_page_writeback(page);
2722 	unlock_page(page);
2723 	do {
2724 		struct buffer_head *next = bh->b_this_page;
2725 		if (buffer_async_write(bh)) {
2726 			clear_buffer_dirty(bh);
2727 			submit_bh(WRITE, bh);
2728 			nr++;
2729 		}
2730 		put_bh(bh);
2731 		bh = next;
2732 	} while (bh != head);
2733 	goto done;
2734 }
2735 
reiserfs_readpage(struct file * f,struct page * page)2736 static int reiserfs_readpage(struct file *f, struct page *page)
2737 {
2738 	return block_read_full_page(page, reiserfs_get_block);
2739 }
2740 
reiserfs_writepage(struct page * page,struct writeback_control * wbc)2741 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2742 {
2743 	struct inode *inode = page->mapping->host;
2744 	reiserfs_wait_on_write_block(inode->i_sb);
2745 	return reiserfs_write_full_page(page, wbc);
2746 }
2747 
reiserfs_truncate_failed_write(struct inode * inode)2748 static void reiserfs_truncate_failed_write(struct inode *inode)
2749 {
2750 	truncate_inode_pages(inode->i_mapping, inode->i_size);
2751 	reiserfs_truncate_file(inode, 0);
2752 }
2753 
reiserfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2754 static int reiserfs_write_begin(struct file *file,
2755 				struct address_space *mapping,
2756 				loff_t pos, unsigned len, unsigned flags,
2757 				struct page **pagep, void **fsdata)
2758 {
2759 	struct inode *inode;
2760 	struct page *page;
2761 	pgoff_t index;
2762 	int ret;
2763 	int old_ref = 0;
2764 
2765  	inode = mapping->host;
2766 	*fsdata = NULL;
2767  	if (flags & AOP_FLAG_CONT_EXPAND &&
2768  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2769  		pos ++;
2770 		*fsdata = (void *)(unsigned long)flags;
2771 	}
2772 
2773 	index = pos >> PAGE_CACHE_SHIFT;
2774 	page = grab_cache_page_write_begin(mapping, index, flags);
2775 	if (!page)
2776 		return -ENOMEM;
2777 	*pagep = page;
2778 
2779 	reiserfs_wait_on_write_block(inode->i_sb);
2780 	fix_tail_page_for_writing(page);
2781 	if (reiserfs_transaction_running(inode->i_sb)) {
2782 		struct reiserfs_transaction_handle *th;
2783 		th = (struct reiserfs_transaction_handle *)current->
2784 		    journal_info;
2785 		BUG_ON(!th->t_refcount);
2786 		BUG_ON(!th->t_trans_id);
2787 		old_ref = th->t_refcount;
2788 		th->t_refcount++;
2789 	}
2790 	ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2791 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2792 		struct reiserfs_transaction_handle *th = current->journal_info;
2793 		/*
2794 		 * this gets a little ugly.  If reiserfs_get_block returned an
2795 		 * error and left a transacstion running, we've got to close
2796 		 * it, and we've got to free handle if it was a persistent
2797 		 * transaction.
2798 		 *
2799 		 * But, if we had nested into an existing transaction, we need
2800 		 * to just drop the ref count on the handle.
2801 		 *
2802 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2803 		 * and it was a persistent trans.  Otherwise, it was nested
2804 		 * above.
2805 		 */
2806 		if (th->t_refcount > old_ref) {
2807 			if (old_ref)
2808 				th->t_refcount--;
2809 			else {
2810 				int err;
2811 				reiserfs_write_lock(inode->i_sb);
2812 				err = reiserfs_end_persistent_transaction(th);
2813 				reiserfs_write_unlock(inode->i_sb);
2814 				if (err)
2815 					ret = err;
2816 			}
2817 		}
2818 	}
2819 	if (ret) {
2820 		unlock_page(page);
2821 		page_cache_release(page);
2822 		/* Truncate allocated blocks */
2823 		reiserfs_truncate_failed_write(inode);
2824 	}
2825 	return ret;
2826 }
2827 
__reiserfs_write_begin(struct page * page,unsigned from,unsigned len)2828 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2829 {
2830 	struct inode *inode = page->mapping->host;
2831 	int ret;
2832 	int old_ref = 0;
2833 	int depth;
2834 
2835 	depth = reiserfs_write_unlock_nested(inode->i_sb);
2836 	reiserfs_wait_on_write_block(inode->i_sb);
2837 	reiserfs_write_lock_nested(inode->i_sb, depth);
2838 
2839 	fix_tail_page_for_writing(page);
2840 	if (reiserfs_transaction_running(inode->i_sb)) {
2841 		struct reiserfs_transaction_handle *th;
2842 		th = (struct reiserfs_transaction_handle *)current->
2843 		    journal_info;
2844 		BUG_ON(!th->t_refcount);
2845 		BUG_ON(!th->t_trans_id);
2846 		old_ref = th->t_refcount;
2847 		th->t_refcount++;
2848 	}
2849 
2850 	ret = __block_write_begin(page, from, len, reiserfs_get_block);
2851 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2852 		struct reiserfs_transaction_handle *th = current->journal_info;
2853 		/*
2854 		 * this gets a little ugly.  If reiserfs_get_block returned an
2855 		 * error and left a transacstion running, we've got to close
2856 		 * it, and we've got to free handle if it was a persistent
2857 		 * transaction.
2858 		 *
2859 		 * But, if we had nested into an existing transaction, we need
2860 		 * to just drop the ref count on the handle.
2861 		 *
2862 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2863 		 * and it was a persistent trans.  Otherwise, it was nested
2864 		 * above.
2865 		 */
2866 		if (th->t_refcount > old_ref) {
2867 			if (old_ref)
2868 				th->t_refcount--;
2869 			else {
2870 				int err;
2871 				reiserfs_write_lock(inode->i_sb);
2872 				err = reiserfs_end_persistent_transaction(th);
2873 				reiserfs_write_unlock(inode->i_sb);
2874 				if (err)
2875 					ret = err;
2876 			}
2877 		}
2878 	}
2879 	return ret;
2880 
2881 }
2882 
reiserfs_aop_bmap(struct address_space * as,sector_t block)2883 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2884 {
2885 	return generic_block_bmap(as, block, reiserfs_bmap);
2886 }
2887 
reiserfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2888 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2889 			      loff_t pos, unsigned len, unsigned copied,
2890 			      struct page *page, void *fsdata)
2891 {
2892 	struct inode *inode = page->mapping->host;
2893 	int ret = 0;
2894 	int update_sd = 0;
2895 	struct reiserfs_transaction_handle *th;
2896 	unsigned start;
2897 	bool locked = false;
2898 
2899 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2900 		pos ++;
2901 
2902 	reiserfs_wait_on_write_block(inode->i_sb);
2903 	if (reiserfs_transaction_running(inode->i_sb))
2904 		th = current->journal_info;
2905 	else
2906 		th = NULL;
2907 
2908 	start = pos & (PAGE_CACHE_SIZE - 1);
2909 	if (unlikely(copied < len)) {
2910 		if (!PageUptodate(page))
2911 			copied = 0;
2912 
2913 		page_zero_new_buffers(page, start + copied, start + len);
2914 	}
2915 	flush_dcache_page(page);
2916 
2917 	reiserfs_commit_page(inode, page, start, start + copied);
2918 
2919 	/*
2920 	 * generic_commit_write does this for us, but does not update the
2921 	 * transaction tracking stuff when the size changes.  So, we have
2922 	 * to do the i_size updates here.
2923 	 */
2924 	if (pos + copied > inode->i_size) {
2925 		struct reiserfs_transaction_handle myth;
2926 		reiserfs_write_lock(inode->i_sb);
2927 		locked = true;
2928 		/*
2929 		 * If the file have grown beyond the border where it
2930 		 * can have a tail, unmark it as needing a tail
2931 		 * packing
2932 		 */
2933 		if ((have_large_tails(inode->i_sb)
2934 		     && inode->i_size > i_block_size(inode) * 4)
2935 		    || (have_small_tails(inode->i_sb)
2936 			&& inode->i_size > i_block_size(inode)))
2937 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2938 
2939 		ret = journal_begin(&myth, inode->i_sb, 1);
2940 		if (ret)
2941 			goto journal_error;
2942 
2943 		reiserfs_update_inode_transaction(inode);
2944 		inode->i_size = pos + copied;
2945 		/*
2946 		 * this will just nest into our transaction.  It's important
2947 		 * to use mark_inode_dirty so the inode gets pushed around on
2948 		 * the dirty lists, and so that O_SYNC works as expected
2949 		 */
2950 		mark_inode_dirty(inode);
2951 		reiserfs_update_sd(&myth, inode);
2952 		update_sd = 1;
2953 		ret = journal_end(&myth);
2954 		if (ret)
2955 			goto journal_error;
2956 	}
2957 	if (th) {
2958 		if (!locked) {
2959 			reiserfs_write_lock(inode->i_sb);
2960 			locked = true;
2961 		}
2962 		if (!update_sd)
2963 			mark_inode_dirty(inode);
2964 		ret = reiserfs_end_persistent_transaction(th);
2965 		if (ret)
2966 			goto out;
2967 	}
2968 
2969 out:
2970 	if (locked)
2971 		reiserfs_write_unlock(inode->i_sb);
2972 	unlock_page(page);
2973 	page_cache_release(page);
2974 
2975 	if (pos + len > inode->i_size)
2976 		reiserfs_truncate_failed_write(inode);
2977 
2978 	return ret == 0 ? copied : ret;
2979 
2980 journal_error:
2981 	reiserfs_write_unlock(inode->i_sb);
2982 	locked = false;
2983 	if (th) {
2984 		if (!update_sd)
2985 			reiserfs_update_sd(th, inode);
2986 		ret = reiserfs_end_persistent_transaction(th);
2987 	}
2988 	goto out;
2989 }
2990 
reiserfs_commit_write(struct file * f,struct page * page,unsigned from,unsigned to)2991 int reiserfs_commit_write(struct file *f, struct page *page,
2992 			  unsigned from, unsigned to)
2993 {
2994 	struct inode *inode = page->mapping->host;
2995 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2996 	int ret = 0;
2997 	int update_sd = 0;
2998 	struct reiserfs_transaction_handle *th = NULL;
2999 	int depth;
3000 
3001 	depth = reiserfs_write_unlock_nested(inode->i_sb);
3002 	reiserfs_wait_on_write_block(inode->i_sb);
3003 	reiserfs_write_lock_nested(inode->i_sb, depth);
3004 
3005 	if (reiserfs_transaction_running(inode->i_sb)) {
3006 		th = current->journal_info;
3007 	}
3008 	reiserfs_commit_page(inode, page, from, to);
3009 
3010 	/*
3011 	 * generic_commit_write does this for us, but does not update the
3012 	 * transaction tracking stuff when the size changes.  So, we have
3013 	 * to do the i_size updates here.
3014 	 */
3015 	if (pos > inode->i_size) {
3016 		struct reiserfs_transaction_handle myth;
3017 		/*
3018 		 * If the file have grown beyond the border where it
3019 		 * can have a tail, unmark it as needing a tail
3020 		 * packing
3021 		 */
3022 		if ((have_large_tails(inode->i_sb)
3023 		     && inode->i_size > i_block_size(inode) * 4)
3024 		    || (have_small_tails(inode->i_sb)
3025 			&& inode->i_size > i_block_size(inode)))
3026 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
3027 
3028 		ret = journal_begin(&myth, inode->i_sb, 1);
3029 		if (ret)
3030 			goto journal_error;
3031 
3032 		reiserfs_update_inode_transaction(inode);
3033 		inode->i_size = pos;
3034 		/*
3035 		 * this will just nest into our transaction.  It's important
3036 		 * to use mark_inode_dirty so the inode gets pushed around
3037 		 * on the dirty lists, and so that O_SYNC works as expected
3038 		 */
3039 		mark_inode_dirty(inode);
3040 		reiserfs_update_sd(&myth, inode);
3041 		update_sd = 1;
3042 		ret = journal_end(&myth);
3043 		if (ret)
3044 			goto journal_error;
3045 	}
3046 	if (th) {
3047 		if (!update_sd)
3048 			mark_inode_dirty(inode);
3049 		ret = reiserfs_end_persistent_transaction(th);
3050 		if (ret)
3051 			goto out;
3052 	}
3053 
3054 out:
3055 	return ret;
3056 
3057 journal_error:
3058 	if (th) {
3059 		if (!update_sd)
3060 			reiserfs_update_sd(th, inode);
3061 		ret = reiserfs_end_persistent_transaction(th);
3062 	}
3063 
3064 	return ret;
3065 }
3066 
sd_attrs_to_i_attrs(__u16 sd_attrs,struct inode * inode)3067 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
3068 {
3069 	if (reiserfs_attrs(inode->i_sb)) {
3070 		if (sd_attrs & REISERFS_SYNC_FL)
3071 			inode->i_flags |= S_SYNC;
3072 		else
3073 			inode->i_flags &= ~S_SYNC;
3074 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
3075 			inode->i_flags |= S_IMMUTABLE;
3076 		else
3077 			inode->i_flags &= ~S_IMMUTABLE;
3078 		if (sd_attrs & REISERFS_APPEND_FL)
3079 			inode->i_flags |= S_APPEND;
3080 		else
3081 			inode->i_flags &= ~S_APPEND;
3082 		if (sd_attrs & REISERFS_NOATIME_FL)
3083 			inode->i_flags |= S_NOATIME;
3084 		else
3085 			inode->i_flags &= ~S_NOATIME;
3086 		if (sd_attrs & REISERFS_NOTAIL_FL)
3087 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
3088 		else
3089 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
3090 	}
3091 }
3092 
i_attrs_to_sd_attrs(struct inode * inode,__u16 * sd_attrs)3093 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
3094 {
3095 	if (reiserfs_attrs(inode->i_sb)) {
3096 		if (inode->i_flags & S_IMMUTABLE)
3097 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
3098 		else
3099 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
3100 		if (inode->i_flags & S_SYNC)
3101 			*sd_attrs |= REISERFS_SYNC_FL;
3102 		else
3103 			*sd_attrs &= ~REISERFS_SYNC_FL;
3104 		if (inode->i_flags & S_NOATIME)
3105 			*sd_attrs |= REISERFS_NOATIME_FL;
3106 		else
3107 			*sd_attrs &= ~REISERFS_NOATIME_FL;
3108 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
3109 			*sd_attrs |= REISERFS_NOTAIL_FL;
3110 		else
3111 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
3112 	}
3113 }
3114 
3115 /*
3116  * decide if this buffer needs to stay around for data logging or ordered
3117  * write purposes
3118  */
invalidatepage_can_drop(struct inode * inode,struct buffer_head * bh)3119 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
3120 {
3121 	int ret = 1;
3122 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3123 
3124 	lock_buffer(bh);
3125 	spin_lock(&j->j_dirty_buffers_lock);
3126 	if (!buffer_mapped(bh)) {
3127 		goto free_jh;
3128 	}
3129 	/*
3130 	 * the page is locked, and the only places that log a data buffer
3131 	 * also lock the page.
3132 	 */
3133 	if (reiserfs_file_data_log(inode)) {
3134 		/*
3135 		 * very conservative, leave the buffer pinned if
3136 		 * anyone might need it.
3137 		 */
3138 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
3139 			ret = 0;
3140 		}
3141 	} else  if (buffer_dirty(bh)) {
3142 		struct reiserfs_journal_list *jl;
3143 		struct reiserfs_jh *jh = bh->b_private;
3144 
3145 		/*
3146 		 * why is this safe?
3147 		 * reiserfs_setattr updates i_size in the on disk
3148 		 * stat data before allowing vmtruncate to be called.
3149 		 *
3150 		 * If buffer was put onto the ordered list for this
3151 		 * transaction, we know for sure either this transaction
3152 		 * or an older one already has updated i_size on disk,
3153 		 * and this ordered data won't be referenced in the file
3154 		 * if we crash.
3155 		 *
3156 		 * if the buffer was put onto the ordered list for an older
3157 		 * transaction, we need to leave it around
3158 		 */
3159 		if (jh && (jl = jh->jl)
3160 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
3161 			ret = 0;
3162 	}
3163 free_jh:
3164 	if (ret && bh->b_private) {
3165 		reiserfs_free_jh(bh);
3166 	}
3167 	spin_unlock(&j->j_dirty_buffers_lock);
3168 	unlock_buffer(bh);
3169 	return ret;
3170 }
3171 
3172 /* clm -- taken from fs/buffer.c:block_invalidate_page */
reiserfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3173 static void reiserfs_invalidatepage(struct page *page, unsigned int offset,
3174 				    unsigned int length)
3175 {
3176 	struct buffer_head *head, *bh, *next;
3177 	struct inode *inode = page->mapping->host;
3178 	unsigned int curr_off = 0;
3179 	unsigned int stop = offset + length;
3180 	int partial_page = (offset || length < PAGE_CACHE_SIZE);
3181 	int ret = 1;
3182 
3183 	BUG_ON(!PageLocked(page));
3184 
3185 	if (!partial_page)
3186 		ClearPageChecked(page);
3187 
3188 	if (!page_has_buffers(page))
3189 		goto out;
3190 
3191 	head = page_buffers(page);
3192 	bh = head;
3193 	do {
3194 		unsigned int next_off = curr_off + bh->b_size;
3195 		next = bh->b_this_page;
3196 
3197 		if (next_off > stop)
3198 			goto out;
3199 
3200 		/*
3201 		 * is this block fully invalidated?
3202 		 */
3203 		if (offset <= curr_off) {
3204 			if (invalidatepage_can_drop(inode, bh))
3205 				reiserfs_unmap_buffer(bh);
3206 			else
3207 				ret = 0;
3208 		}
3209 		curr_off = next_off;
3210 		bh = next;
3211 	} while (bh != head);
3212 
3213 	/*
3214 	 * We release buffers only if the entire page is being invalidated.
3215 	 * The get_block cached value has been unconditionally invalidated,
3216 	 * so real IO is not possible anymore.
3217 	 */
3218 	if (!partial_page && ret) {
3219 		ret = try_to_release_page(page, 0);
3220 		/* maybe should BUG_ON(!ret); - neilb */
3221 	}
3222 out:
3223 	return;
3224 }
3225 
reiserfs_set_page_dirty(struct page * page)3226 static int reiserfs_set_page_dirty(struct page *page)
3227 {
3228 	struct inode *inode = page->mapping->host;
3229 	if (reiserfs_file_data_log(inode)) {
3230 		SetPageChecked(page);
3231 		return __set_page_dirty_nobuffers(page);
3232 	}
3233 	return __set_page_dirty_buffers(page);
3234 }
3235 
3236 /*
3237  * Returns 1 if the page's buffers were dropped.  The page is locked.
3238  *
3239  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3240  * in the buffers at page_buffers(page).
3241  *
3242  * even in -o notail mode, we can't be sure an old mount without -o notail
3243  * didn't create files with tails.
3244  */
reiserfs_releasepage(struct page * page,gfp_t unused_gfp_flags)3245 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3246 {
3247 	struct inode *inode = page->mapping->host;
3248 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3249 	struct buffer_head *head;
3250 	struct buffer_head *bh;
3251 	int ret = 1;
3252 
3253 	WARN_ON(PageChecked(page));
3254 	spin_lock(&j->j_dirty_buffers_lock);
3255 	head = page_buffers(page);
3256 	bh = head;
3257 	do {
3258 		if (bh->b_private) {
3259 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3260 				reiserfs_free_jh(bh);
3261 			} else {
3262 				ret = 0;
3263 				break;
3264 			}
3265 		}
3266 		bh = bh->b_this_page;
3267 	} while (bh != head);
3268 	if (ret)
3269 		ret = try_to_free_buffers(page);
3270 	spin_unlock(&j->j_dirty_buffers_lock);
3271 	return ret;
3272 }
3273 
3274 /*
3275  * We thank Mingming Cao for helping us understand in great detail what
3276  * to do in this section of the code.
3277  */
reiserfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter,loff_t offset)3278 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3279 				  loff_t offset)
3280 {
3281 	struct file *file = iocb->ki_filp;
3282 	struct inode *inode = file->f_mapping->host;
3283 	size_t count = iov_iter_count(iter);
3284 	ssize_t ret;
3285 
3286 	ret = blockdev_direct_IO(iocb, inode, iter, offset,
3287 				 reiserfs_get_blocks_direct_io);
3288 
3289 	/*
3290 	 * In case of error extending write may have instantiated a few
3291 	 * blocks outside i_size. Trim these off again.
3292 	 */
3293 	if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) {
3294 		loff_t isize = i_size_read(inode);
3295 		loff_t end = offset + count;
3296 
3297 		if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3298 			truncate_setsize(inode, isize);
3299 			reiserfs_vfs_truncate_file(inode);
3300 		}
3301 	}
3302 
3303 	return ret;
3304 }
3305 
reiserfs_setattr(struct dentry * dentry,struct iattr * attr)3306 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3307 {
3308 	struct inode *inode = d_inode(dentry);
3309 	unsigned int ia_valid;
3310 	int error;
3311 
3312 	error = inode_change_ok(inode, attr);
3313 	if (error)
3314 		return error;
3315 
3316 	/* must be turned off for recursive notify_change calls */
3317 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3318 
3319 	if (is_quota_modification(inode, attr)) {
3320 		error = dquot_initialize(inode);
3321 		if (error)
3322 			return error;
3323 	}
3324 	reiserfs_write_lock(inode->i_sb);
3325 	if (attr->ia_valid & ATTR_SIZE) {
3326 		/*
3327 		 * version 2 items will be caught by the s_maxbytes check
3328 		 * done for us in vmtruncate
3329 		 */
3330 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3331 		    attr->ia_size > MAX_NON_LFS) {
3332 			reiserfs_write_unlock(inode->i_sb);
3333 			error = -EFBIG;
3334 			goto out;
3335 		}
3336 
3337 		inode_dio_wait(inode);
3338 
3339 		/* fill in hole pointers in the expanding truncate case. */
3340 		if (attr->ia_size > inode->i_size) {
3341 			error = generic_cont_expand_simple(inode, attr->ia_size);
3342 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3343 				int err;
3344 				struct reiserfs_transaction_handle th;
3345 				/* we're changing at most 2 bitmaps, inode + super */
3346 				err = journal_begin(&th, inode->i_sb, 4);
3347 				if (!err) {
3348 					reiserfs_discard_prealloc(&th, inode);
3349 					err = journal_end(&th);
3350 				}
3351 				if (err)
3352 					error = err;
3353 			}
3354 			if (error) {
3355 				reiserfs_write_unlock(inode->i_sb);
3356 				goto out;
3357 			}
3358 			/*
3359 			 * file size is changed, ctime and mtime are
3360 			 * to be updated
3361 			 */
3362 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3363 		}
3364 	}
3365 	reiserfs_write_unlock(inode->i_sb);
3366 
3367 	if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3368 	     ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3369 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3370 		/* stat data of format v3.5 has 16 bit uid and gid */
3371 		error = -EINVAL;
3372 		goto out;
3373 	}
3374 
3375 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3376 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3377 		struct reiserfs_transaction_handle th;
3378 		int jbegin_count =
3379 		    2 *
3380 		    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3381 		     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3382 		    2;
3383 
3384 		error = reiserfs_chown_xattrs(inode, attr);
3385 
3386 		if (error)
3387 			return error;
3388 
3389 		/*
3390 		 * (user+group)*(old+new) structure - we count quota
3391 		 * info and , inode write (sb, inode)
3392 		 */
3393 		reiserfs_write_lock(inode->i_sb);
3394 		error = journal_begin(&th, inode->i_sb, jbegin_count);
3395 		reiserfs_write_unlock(inode->i_sb);
3396 		if (error)
3397 			goto out;
3398 		error = dquot_transfer(inode, attr);
3399 		reiserfs_write_lock(inode->i_sb);
3400 		if (error) {
3401 			journal_end(&th);
3402 			reiserfs_write_unlock(inode->i_sb);
3403 			goto out;
3404 		}
3405 
3406 		/*
3407 		 * Update corresponding info in inode so that everything
3408 		 * is in one transaction
3409 		 */
3410 		if (attr->ia_valid & ATTR_UID)
3411 			inode->i_uid = attr->ia_uid;
3412 		if (attr->ia_valid & ATTR_GID)
3413 			inode->i_gid = attr->ia_gid;
3414 		mark_inode_dirty(inode);
3415 		error = journal_end(&th);
3416 		reiserfs_write_unlock(inode->i_sb);
3417 		if (error)
3418 			goto out;
3419 	}
3420 
3421 	if ((attr->ia_valid & ATTR_SIZE) &&
3422 	    attr->ia_size != i_size_read(inode)) {
3423 		error = inode_newsize_ok(inode, attr->ia_size);
3424 		if (!error) {
3425 			/*
3426 			 * Could race against reiserfs_file_release
3427 			 * if called from NFS, so take tailpack mutex.
3428 			 */
3429 			mutex_lock(&REISERFS_I(inode)->tailpack);
3430 			truncate_setsize(inode, attr->ia_size);
3431 			reiserfs_truncate_file(inode, 1);
3432 			mutex_unlock(&REISERFS_I(inode)->tailpack);
3433 		}
3434 	}
3435 
3436 	if (!error) {
3437 		setattr_copy(inode, attr);
3438 		mark_inode_dirty(inode);
3439 	}
3440 
3441 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3442 		if (attr->ia_valid & ATTR_MODE)
3443 			error = reiserfs_acl_chmod(inode);
3444 	}
3445 
3446 out:
3447 	return error;
3448 }
3449 
3450 const struct address_space_operations reiserfs_address_space_operations = {
3451 	.writepage = reiserfs_writepage,
3452 	.readpage = reiserfs_readpage,
3453 	.readpages = reiserfs_readpages,
3454 	.releasepage = reiserfs_releasepage,
3455 	.invalidatepage = reiserfs_invalidatepage,
3456 	.write_begin = reiserfs_write_begin,
3457 	.write_end = reiserfs_write_end,
3458 	.bmap = reiserfs_aop_bmap,
3459 	.direct_IO = reiserfs_direct_IO,
3460 	.set_page_dirty = reiserfs_set_page_dirty,
3461 };
3462