1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2010, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 */
36 /** \defgroup PtlRPC Portal RPC and networking module.
37 *
38 * PortalRPC is the layer used by rest of lustre code to achieve network
39 * communications: establish connections with corresponding export and import
40 * states, listen for a service, send and receive RPCs.
41 * PortalRPC also includes base recovery framework: packet resending and
42 * replaying, reconnections, pinger.
43 *
44 * PortalRPC utilizes LNet as its transport layer.
45 *
46 * @{
47 */
48
49 #ifndef _LUSTRE_NET_H
50 #define _LUSTRE_NET_H
51
52 /** \defgroup net net
53 *
54 * @{
55 */
56
57 #include "../../include/linux/libcfs/libcfs.h"
58 #include "../../include/linux/lnet/nidstr.h"
59 #include "../../include/linux/lnet/api.h"
60 #include "lustre/lustre_idl.h"
61 #include "lustre_ha.h"
62 #include "lustre_sec.h"
63 #include "lustre_import.h"
64 #include "lprocfs_status.h"
65 #include "lu_object.h"
66 #include "lustre_req_layout.h"
67
68 #include "obd_support.h"
69 #include "lustre_ver.h"
70
71 /* MD flags we _always_ use */
72 #define PTLRPC_MD_OPTIONS 0
73
74 /**
75 * Max # of bulk operations in one request.
76 * In order for the client and server to properly negotiate the maximum
77 * possible transfer size, PTLRPC_BULK_OPS_COUNT must be a power-of-two
78 * value. The client is free to limit the actual RPC size for any bulk
79 * transfer via cl_max_pages_per_rpc to some non-power-of-two value. */
80 #define PTLRPC_BULK_OPS_BITS 2
81 #define PTLRPC_BULK_OPS_COUNT (1U << PTLRPC_BULK_OPS_BITS)
82 /**
83 * PTLRPC_BULK_OPS_MASK is for the convenience of the client only, and
84 * should not be used on the server at all. Otherwise, it imposes a
85 * protocol limitation on the maximum RPC size that can be used by any
86 * RPC sent to that server in the future. Instead, the server should
87 * use the negotiated per-client ocd_brw_size to determine the bulk
88 * RPC count. */
89 #define PTLRPC_BULK_OPS_MASK (~((__u64)PTLRPC_BULK_OPS_COUNT - 1))
90
91 /**
92 * Define maxima for bulk I/O.
93 *
94 * A single PTLRPC BRW request is sent via up to PTLRPC_BULK_OPS_COUNT
95 * of LNET_MTU sized RDMA transfers. Clients and servers negotiate the
96 * currently supported maximum between peers at connect via ocd_brw_size.
97 */
98 #define PTLRPC_MAX_BRW_BITS (LNET_MTU_BITS + PTLRPC_BULK_OPS_BITS)
99 #define PTLRPC_MAX_BRW_SIZE (1 << PTLRPC_MAX_BRW_BITS)
100 #define PTLRPC_MAX_BRW_PAGES (PTLRPC_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
101
102 #define ONE_MB_BRW_SIZE (1 << LNET_MTU_BITS)
103 #define MD_MAX_BRW_SIZE (1 << LNET_MTU_BITS)
104 #define MD_MAX_BRW_PAGES (MD_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
105 #define DT_MAX_BRW_SIZE PTLRPC_MAX_BRW_SIZE
106 #define DT_MAX_BRW_PAGES (DT_MAX_BRW_SIZE >> PAGE_CACHE_SHIFT)
107 #define OFD_MAX_BRW_SIZE (1 << LNET_MTU_BITS)
108
109 /* When PAGE_SIZE is a constant, we can check our arithmetic here with cpp! */
110 # if ((PTLRPC_MAX_BRW_PAGES & (PTLRPC_MAX_BRW_PAGES - 1)) != 0)
111 # error "PTLRPC_MAX_BRW_PAGES isn't a power of two"
112 # endif
113 # if (PTLRPC_MAX_BRW_SIZE != (PTLRPC_MAX_BRW_PAGES * PAGE_CACHE_SIZE))
114 # error "PTLRPC_MAX_BRW_SIZE isn't PTLRPC_MAX_BRW_PAGES * PAGE_CACHE_SIZE"
115 # endif
116 # if (PTLRPC_MAX_BRW_SIZE > LNET_MTU * PTLRPC_BULK_OPS_COUNT)
117 # error "PTLRPC_MAX_BRW_SIZE too big"
118 # endif
119 # if (PTLRPC_MAX_BRW_PAGES > LNET_MAX_IOV * PTLRPC_BULK_OPS_COUNT)
120 # error "PTLRPC_MAX_BRW_PAGES too big"
121 # endif
122
123 #define PTLRPC_NTHRS_INIT 2
124
125 /**
126 * Buffer Constants
127 *
128 * Constants determine how memory is used to buffer incoming service requests.
129 *
130 * ?_NBUFS # buffers to allocate when growing the pool
131 * ?_BUFSIZE # bytes in a single request buffer
132 * ?_MAXREQSIZE # maximum request service will receive
133 *
134 * When fewer than ?_NBUFS/2 buffers are posted for receive, another chunk
135 * of ?_NBUFS is added to the pool.
136 *
137 * Messages larger than ?_MAXREQSIZE are dropped. Request buffers are
138 * considered full when less than ?_MAXREQSIZE is left in them.
139 */
140 /**
141 * Thread Constants
142 *
143 * Constants determine how threads are created for ptlrpc service.
144 *
145 * ?_NTHRS_INIT # threads to create for each service partition on
146 * initializing. If it's non-affinity service and
147 * there is only one partition, it's the overall #
148 * threads for the service while initializing.
149 * ?_NTHRS_BASE # threads should be created at least for each
150 * ptlrpc partition to keep the service healthy.
151 * It's the low-water mark of threads upper-limit
152 * for each partition.
153 * ?_THR_FACTOR # threads can be added on threads upper-limit for
154 * each CPU core. This factor is only for reference,
155 * we might decrease value of factor if number of cores
156 * per CPT is above a limit.
157 * ?_NTHRS_MAX # overall threads can be created for a service,
158 * it's a soft limit because if service is running
159 * on machine with hundreds of cores and tens of
160 * CPU partitions, we need to guarantee each partition
161 * has ?_NTHRS_BASE threads, which means total threads
162 * will be ?_NTHRS_BASE * number_of_cpts which can
163 * exceed ?_NTHRS_MAX.
164 *
165 * Examples
166 *
167 * #define MDS_NTHRS_INIT 2
168 * #define MDS_NTHRS_BASE 64
169 * #define MDS_NTHRS_FACTOR 8
170 * #define MDS_NTHRS_MAX 1024
171 *
172 * Example 1):
173 * ---------------------------------------------------------------------
174 * Server(A) has 16 cores, user configured it to 4 partitions so each
175 * partition has 4 cores, then actual number of service threads on each
176 * partition is:
177 * MDS_NTHRS_BASE(64) + cores(4) * MDS_NTHRS_FACTOR(8) = 96
178 *
179 * Total number of threads for the service is:
180 * 96 * partitions(4) = 384
181 *
182 * Example 2):
183 * ---------------------------------------------------------------------
184 * Server(B) has 32 cores, user configured it to 4 partitions so each
185 * partition has 8 cores, then actual number of service threads on each
186 * partition is:
187 * MDS_NTHRS_BASE(64) + cores(8) * MDS_NTHRS_FACTOR(8) = 128
188 *
189 * Total number of threads for the service is:
190 * 128 * partitions(4) = 512
191 *
192 * Example 3):
193 * ---------------------------------------------------------------------
194 * Server(B) has 96 cores, user configured it to 8 partitions so each
195 * partition has 12 cores, then actual number of service threads on each
196 * partition is:
197 * MDS_NTHRS_BASE(64) + cores(12) * MDS_NTHRS_FACTOR(8) = 160
198 *
199 * Total number of threads for the service is:
200 * 160 * partitions(8) = 1280
201 *
202 * However, it's above the soft limit MDS_NTHRS_MAX, so we choose this number
203 * as upper limit of threads number for each partition:
204 * MDS_NTHRS_MAX(1024) / partitions(8) = 128
205 *
206 * Example 4):
207 * ---------------------------------------------------------------------
208 * Server(C) have a thousand of cores and user configured it to 32 partitions
209 * MDS_NTHRS_BASE(64) * 32 = 2048
210 *
211 * which is already above soft limit MDS_NTHRS_MAX(1024), but we still need
212 * to guarantee that each partition has at least MDS_NTHRS_BASE(64) threads
213 * to keep service healthy, so total number of threads will just be 2048.
214 *
215 * NB: we don't suggest to choose server with that many cores because backend
216 * filesystem itself, buffer cache, or underlying network stack might
217 * have some SMP scalability issues at that large scale.
218 *
219 * If user already has a fat machine with hundreds or thousands of cores,
220 * there are two choices for configuration:
221 * a) create CPU table from subset of all CPUs and run Lustre on
222 * top of this subset
223 * b) bind service threads on a few partitions, see modparameters of
224 * MDS and OSS for details
225 *
226 * NB: these calculations (and examples below) are simplified to help
227 * understanding, the real implementation is a little more complex,
228 * please see ptlrpc_server_nthreads_check() for details.
229 *
230 */
231
232 /*
233 * LDLM threads constants:
234 *
235 * Given 8 as factor and 24 as base threads number
236 *
237 * example 1)
238 * On 4-core machine we will have 24 + 8 * 4 = 56 threads.
239 *
240 * example 2)
241 * On 8-core machine with 2 partitions we will have 24 + 4 * 8 = 56
242 * threads for each partition and total threads number will be 112.
243 *
244 * example 3)
245 * On 64-core machine with 8 partitions we will need LDLM_NTHRS_BASE(24)
246 * threads for each partition to keep service healthy, so total threads
247 * number should be 24 * 8 = 192.
248 *
249 * So with these constants, threads number will be at the similar level
250 * of old versions, unless target machine has over a hundred cores
251 */
252 #define LDLM_THR_FACTOR 8
253 #define LDLM_NTHRS_INIT PTLRPC_NTHRS_INIT
254 #define LDLM_NTHRS_BASE 24
255 #define LDLM_NTHRS_MAX (num_online_cpus() == 1 ? 64 : 128)
256
257 #define LDLM_BL_THREADS LDLM_NTHRS_AUTO_INIT
258 #define LDLM_CLIENT_NBUFS 1
259 #define LDLM_SERVER_NBUFS 64
260 #define LDLM_BUFSIZE (8 * 1024)
261 #define LDLM_MAXREQSIZE (5 * 1024)
262 #define LDLM_MAXREPSIZE (1024)
263
264 #define MDS_MAXREQSIZE (5 * 1024) /* >= 4736 */
265
266 #define OST_MAXREQSIZE (5 * 1024)
267
268 /* Macro to hide a typecast. */
269 #define ptlrpc_req_async_args(req) ((void *)&req->rq_async_args)
270
271 /**
272 * Structure to single define portal connection.
273 */
274 struct ptlrpc_connection {
275 /** linkage for connections hash table */
276 struct hlist_node c_hash;
277 /** Our own lnet nid for this connection */
278 lnet_nid_t c_self;
279 /** Remote side nid for this connection */
280 lnet_process_id_t c_peer;
281 /** UUID of the other side */
282 struct obd_uuid c_remote_uuid;
283 /** reference counter for this connection */
284 atomic_t c_refcount;
285 };
286
287 /** Client definition for PortalRPC */
288 struct ptlrpc_client {
289 /** What lnet portal does this client send messages to by default */
290 __u32 cli_request_portal;
291 /** What portal do we expect replies on */
292 __u32 cli_reply_portal;
293 /** Name of the client */
294 char *cli_name;
295 };
296
297 /** state flags of requests */
298 /* XXX only ones left are those used by the bulk descs as well! */
299 #define PTL_RPC_FL_INTR (1 << 0) /* reply wait was interrupted by user */
300 #define PTL_RPC_FL_TIMEOUT (1 << 7) /* request timed out waiting for reply */
301
302 #define REQ_MAX_ACK_LOCKS 8
303
304 union ptlrpc_async_args {
305 /**
306 * Scratchpad for passing args to completion interpreter. Users
307 * cast to the struct of their choosing, and CLASSERT that this is
308 * big enough. For _tons_ of context, kmalloc a struct and store
309 * a pointer to it here. The pointer_arg ensures this struct is at
310 * least big enough for that.
311 */
312 void *pointer_arg[11];
313 __u64 space[7];
314 };
315
316 struct ptlrpc_request_set;
317 typedef int (*set_interpreter_func)(struct ptlrpc_request_set *, void *, int);
318 typedef int (*set_producer_func)(struct ptlrpc_request_set *, void *);
319
320 /**
321 * Definition of request set structure.
322 * Request set is a list of requests (not necessary to the same target) that
323 * once populated with RPCs could be sent in parallel.
324 * There are two kinds of request sets. General purpose and with dedicated
325 * serving thread. Example of the latter is ptlrpcd set.
326 * For general purpose sets once request set started sending it is impossible
327 * to add new requests to such set.
328 * Provides a way to call "completion callbacks" when all requests in the set
329 * returned.
330 */
331 struct ptlrpc_request_set {
332 atomic_t set_refcount;
333 /** number of in queue requests */
334 atomic_t set_new_count;
335 /** number of uncompleted requests */
336 atomic_t set_remaining;
337 /** wait queue to wait on for request events */
338 wait_queue_head_t set_waitq;
339 wait_queue_head_t *set_wakeup_ptr;
340 /** List of requests in the set */
341 struct list_head set_requests;
342 /**
343 * List of completion callbacks to be called when the set is completed
344 * This is only used if \a set_interpret is NULL.
345 * Links struct ptlrpc_set_cbdata.
346 */
347 struct list_head set_cblist;
348 /** Completion callback, if only one. */
349 set_interpreter_func set_interpret;
350 /** opaq argument passed to completion \a set_interpret callback. */
351 void *set_arg;
352 /**
353 * Lock for \a set_new_requests manipulations
354 * locked so that any old caller can communicate requests to
355 * the set holder who can then fold them into the lock-free set
356 */
357 spinlock_t set_new_req_lock;
358 /** List of new yet unsent requests. Only used with ptlrpcd now. */
359 struct list_head set_new_requests;
360
361 /** rq_status of requests that have been freed already */
362 int set_rc;
363 /** Additional fields used by the flow control extension */
364 /** Maximum number of RPCs in flight */
365 int set_max_inflight;
366 /** Callback function used to generate RPCs */
367 set_producer_func set_producer;
368 /** opaq argument passed to the producer callback */
369 void *set_producer_arg;
370 };
371
372 /**
373 * Description of a single ptrlrpc_set callback
374 */
375 struct ptlrpc_set_cbdata {
376 /** List linkage item */
377 struct list_head psc_item;
378 /** Pointer to interpreting function */
379 set_interpreter_func psc_interpret;
380 /** Opaq argument to pass to the callback */
381 void *psc_data;
382 };
383
384 struct ptlrpc_bulk_desc;
385 struct ptlrpc_service_part;
386 struct ptlrpc_service;
387
388 /**
389 * ptlrpc callback & work item stuff
390 */
391 struct ptlrpc_cb_id {
392 void (*cbid_fn)(lnet_event_t *ev); /* specific callback fn */
393 void *cbid_arg; /* additional arg */
394 };
395
396 /** Maximum number of locks to fit into reply state */
397 #define RS_MAX_LOCKS 8
398 #define RS_DEBUG 0
399
400 /**
401 * Structure to define reply state on the server
402 * Reply state holds various reply message information. Also for "difficult"
403 * replies (rep-ack case) we store the state after sending reply and wait
404 * for the client to acknowledge the reception. In these cases locks could be
405 * added to the state for replay/failover consistency guarantees.
406 */
407 struct ptlrpc_reply_state {
408 /** Callback description */
409 struct ptlrpc_cb_id rs_cb_id;
410 /** Linkage for list of all reply states in a system */
411 struct list_head rs_list;
412 /** Linkage for list of all reply states on same export */
413 struct list_head rs_exp_list;
414 /** Linkage for list of all reply states for same obd */
415 struct list_head rs_obd_list;
416 #if RS_DEBUG
417 struct list_head rs_debug_list;
418 #endif
419 /** A spinlock to protect the reply state flags */
420 spinlock_t rs_lock;
421 /** Reply state flags */
422 unsigned long rs_difficult:1; /* ACK/commit stuff */
423 unsigned long rs_no_ack:1; /* no ACK, even for
424 difficult requests */
425 unsigned long rs_scheduled:1; /* being handled? */
426 unsigned long rs_scheduled_ever:1;/* any schedule attempts? */
427 unsigned long rs_handled:1; /* been handled yet? */
428 unsigned long rs_on_net:1; /* reply_out_callback pending? */
429 unsigned long rs_prealloc:1; /* rs from prealloc list */
430 unsigned long rs_committed:1;/* the transaction was committed
431 * and the rs was dispatched */
432 /** Size of the state */
433 int rs_size;
434 /** opcode */
435 __u32 rs_opc;
436 /** Transaction number */
437 __u64 rs_transno;
438 /** xid */
439 __u64 rs_xid;
440 struct obd_export *rs_export;
441 struct ptlrpc_service_part *rs_svcpt;
442 /** Lnet metadata handle for the reply */
443 lnet_handle_md_t rs_md_h;
444 atomic_t rs_refcount;
445
446 /** Context for the service thread */
447 struct ptlrpc_svc_ctx *rs_svc_ctx;
448 /** Reply buffer (actually sent to the client), encoded if needed */
449 struct lustre_msg *rs_repbuf; /* wrapper */
450 /** Size of the reply buffer */
451 int rs_repbuf_len; /* wrapper buf length */
452 /** Size of the reply message */
453 int rs_repdata_len; /* wrapper msg length */
454 /**
455 * Actual reply message. Its content is encrypted (if needed) to
456 * produce reply buffer for actual sending. In simple case
457 * of no network encryption we just set \a rs_repbuf to \a rs_msg
458 */
459 struct lustre_msg *rs_msg; /* reply message */
460
461 /** Number of locks awaiting client ACK */
462 int rs_nlocks;
463 /** Handles of locks awaiting client reply ACK */
464 struct lustre_handle rs_locks[RS_MAX_LOCKS];
465 /** Lock modes of locks in \a rs_locks */
466 ldlm_mode_t rs_modes[RS_MAX_LOCKS];
467 };
468
469 struct ptlrpc_thread;
470
471 /** RPC stages */
472 enum rq_phase {
473 RQ_PHASE_NEW = 0xebc0de00,
474 RQ_PHASE_RPC = 0xebc0de01,
475 RQ_PHASE_BULK = 0xebc0de02,
476 RQ_PHASE_INTERPRET = 0xebc0de03,
477 RQ_PHASE_COMPLETE = 0xebc0de04,
478 RQ_PHASE_UNREGISTERING = 0xebc0de05,
479 RQ_PHASE_UNDEFINED = 0xebc0de06
480 };
481
482 /** Type of request interpreter call-back */
483 typedef int (*ptlrpc_interpterer_t)(const struct lu_env *env,
484 struct ptlrpc_request *req,
485 void *arg, int rc);
486
487 /**
488 * Definition of request pool structure.
489 * The pool is used to store empty preallocated requests for the case
490 * when we would actually need to send something without performing
491 * any allocations (to avoid e.g. OOM).
492 */
493 struct ptlrpc_request_pool {
494 /** Locks the list */
495 spinlock_t prp_lock;
496 /** list of ptlrpc_request structs */
497 struct list_head prp_req_list;
498 /** Maximum message size that would fit into a request from this pool */
499 int prp_rq_size;
500 /** Function to allocate more requests for this pool */
501 int (*prp_populate)(struct ptlrpc_request_pool *, int);
502 };
503
504 struct lu_context;
505 struct lu_env;
506
507 struct ldlm_lock;
508
509 /**
510 * \defgroup nrs Network Request Scheduler
511 * @{
512 */
513 struct ptlrpc_nrs_policy;
514 struct ptlrpc_nrs_resource;
515 struct ptlrpc_nrs_request;
516
517 /**
518 * NRS control operations.
519 *
520 * These are common for all policies.
521 */
522 enum ptlrpc_nrs_ctl {
523 /**
524 * Not a valid opcode.
525 */
526 PTLRPC_NRS_CTL_INVALID,
527 /**
528 * Activate the policy.
529 */
530 PTLRPC_NRS_CTL_START,
531 /**
532 * Reserved for multiple primary policies, which may be a possibility
533 * in the future.
534 */
535 PTLRPC_NRS_CTL_STOP,
536 /**
537 * Policies can start using opcodes from this value and onwards for
538 * their own purposes; the assigned value itself is arbitrary.
539 */
540 PTLRPC_NRS_CTL_1ST_POL_SPEC = 0x20,
541 };
542
543 /**
544 * ORR policy operations
545 */
546 enum nrs_ctl_orr {
547 NRS_CTL_ORR_RD_QUANTUM = PTLRPC_NRS_CTL_1ST_POL_SPEC,
548 NRS_CTL_ORR_WR_QUANTUM,
549 NRS_CTL_ORR_RD_OFF_TYPE,
550 NRS_CTL_ORR_WR_OFF_TYPE,
551 NRS_CTL_ORR_RD_SUPP_REQ,
552 NRS_CTL_ORR_WR_SUPP_REQ,
553 };
554
555 /**
556 * NRS policy operations.
557 *
558 * These determine the behaviour of a policy, and are called in response to
559 * NRS core events.
560 */
561 struct ptlrpc_nrs_pol_ops {
562 /**
563 * Called during policy registration; this operation is optional.
564 *
565 * \param[in,out] policy The policy being initialized
566 */
567 int (*op_policy_init) (struct ptlrpc_nrs_policy *policy);
568 /**
569 * Called during policy unregistration; this operation is optional.
570 *
571 * \param[in,out] policy The policy being unregistered/finalized
572 */
573 void (*op_policy_fini) (struct ptlrpc_nrs_policy *policy);
574 /**
575 * Called when activating a policy via lprocfs; policies allocate and
576 * initialize their resources here; this operation is optional.
577 *
578 * \param[in,out] policy The policy being started
579 *
580 * \see nrs_policy_start_locked()
581 */
582 int (*op_policy_start) (struct ptlrpc_nrs_policy *policy);
583 /**
584 * Called when deactivating a policy via lprocfs; policies deallocate
585 * their resources here; this operation is optional
586 *
587 * \param[in,out] policy The policy being stopped
588 *
589 * \see nrs_policy_stop0()
590 */
591 void (*op_policy_stop) (struct ptlrpc_nrs_policy *policy);
592 /**
593 * Used for policy-specific operations; i.e. not generic ones like
594 * \e PTLRPC_NRS_CTL_START and \e PTLRPC_NRS_CTL_GET_INFO; analogous
595 * to an ioctl; this operation is optional.
596 *
597 * \param[in,out] policy The policy carrying out operation \a opc
598 * \param[in] opc The command operation being carried out
599 * \param[in,out] arg An generic buffer for communication between the
600 * user and the control operation
601 *
602 * \retval -ve error
603 * \retval 0 success
604 *
605 * \see ptlrpc_nrs_policy_control()
606 */
607 int (*op_policy_ctl) (struct ptlrpc_nrs_policy *policy,
608 enum ptlrpc_nrs_ctl opc, void *arg);
609
610 /**
611 * Called when obtaining references to the resources of the resource
612 * hierarchy for a request that has arrived for handling at the PTLRPC
613 * service. Policies should return -ve for requests they do not wish
614 * to handle. This operation is mandatory.
615 *
616 * \param[in,out] policy The policy we're getting resources for.
617 * \param[in,out] nrq The request we are getting resources for.
618 * \param[in] parent The parent resource of the resource being
619 * requested; set to NULL if none.
620 * \param[out] resp The resource is to be returned here; the
621 * fallback policy in an NRS head should
622 * \e always return a non-NULL pointer value.
623 * \param[in] moving_req When set, signifies that this is an attempt
624 * to obtain resources for a request being moved
625 * to the high-priority NRS head by
626 * ldlm_lock_reorder_req().
627 * This implies two things:
628 * 1. We are under obd_export::exp_rpc_lock and
629 * so should not sleep.
630 * 2. We should not perform non-idempotent or can
631 * skip performing idempotent operations that
632 * were carried out when resources were first
633 * taken for the request when it was initialized
634 * in ptlrpc_nrs_req_initialize().
635 *
636 * \retval 0, +ve The level of the returned resource in the resource
637 * hierarchy; currently only 0 (for a non-leaf resource)
638 * and 1 (for a leaf resource) are supported by the
639 * framework.
640 * \retval -ve error
641 *
642 * \see ptlrpc_nrs_req_initialize()
643 * \see ptlrpc_nrs_hpreq_add_nolock()
644 */
645 int (*op_res_get) (struct ptlrpc_nrs_policy *policy,
646 struct ptlrpc_nrs_request *nrq,
647 const struct ptlrpc_nrs_resource *parent,
648 struct ptlrpc_nrs_resource **resp,
649 bool moving_req);
650 /**
651 * Called when releasing references taken for resources in the resource
652 * hierarchy for the request; this operation is optional.
653 *
654 * \param[in,out] policy The policy the resource belongs to
655 * \param[in] res The resource to be freed
656 *
657 * \see ptlrpc_nrs_req_finalize()
658 * \see ptlrpc_nrs_hpreq_add_nolock()
659 */
660 void (*op_res_put) (struct ptlrpc_nrs_policy *policy,
661 const struct ptlrpc_nrs_resource *res);
662
663 /**
664 * Obtains a request for handling from the policy, and optionally
665 * removes the request from the policy; this operation is mandatory.
666 *
667 * \param[in,out] policy The policy to poll
668 * \param[in] peek When set, signifies that we just want to
669 * examine the request, and not handle it, so the
670 * request is not removed from the policy.
671 * \param[in] force When set, it will force a policy to return a
672 * request if it has one queued.
673 *
674 * \retval NULL No request available for handling
675 * \retval valid-pointer The request polled for handling
676 *
677 * \see ptlrpc_nrs_req_get_nolock()
678 */
679 struct ptlrpc_nrs_request *
680 (*op_req_get) (struct ptlrpc_nrs_policy *policy, bool peek,
681 bool force);
682 /**
683 * Called when attempting to add a request to a policy for later
684 * handling; this operation is mandatory.
685 *
686 * \param[in,out] policy The policy on which to enqueue \a nrq
687 * \param[in,out] nrq The request to enqueue
688 *
689 * \retval 0 success
690 * \retval != 0 error
691 *
692 * \see ptlrpc_nrs_req_add_nolock()
693 */
694 int (*op_req_enqueue) (struct ptlrpc_nrs_policy *policy,
695 struct ptlrpc_nrs_request *nrq);
696 /**
697 * Removes a request from the policy's set of pending requests. Normally
698 * called after a request has been polled successfully from the policy
699 * for handling; this operation is mandatory.
700 *
701 * \param[in,out] policy The policy the request \a nrq belongs to
702 * \param[in,out] nrq The request to dequeue
703 */
704 void (*op_req_dequeue) (struct ptlrpc_nrs_policy *policy,
705 struct ptlrpc_nrs_request *nrq);
706 /**
707 * Called after the request being carried out. Could be used for
708 * job/resource control; this operation is optional.
709 *
710 * \param[in,out] policy The policy which is stopping to handle request
711 * \a nrq
712 * \param[in,out] nrq The request
713 *
714 * \pre assert_spin_locked(&svcpt->scp_req_lock)
715 *
716 * \see ptlrpc_nrs_req_stop_nolock()
717 */
718 void (*op_req_stop) (struct ptlrpc_nrs_policy *policy,
719 struct ptlrpc_nrs_request *nrq);
720 /**
721 * Registers the policy's lprocfs interface with a PTLRPC service.
722 *
723 * \param[in] svc The service
724 *
725 * \retval 0 success
726 * \retval != 0 error
727 */
728 int (*op_lprocfs_init) (struct ptlrpc_service *svc);
729 /**
730 * Unegisters the policy's lprocfs interface with a PTLRPC service.
731 *
732 * In cases of failed policy registration in
733 * \e ptlrpc_nrs_policy_register(), this function may be called for a
734 * service which has not registered the policy successfully, so
735 * implementations of this method should make sure their operations are
736 * safe in such cases.
737 *
738 * \param[in] svc The service
739 */
740 void (*op_lprocfs_fini) (struct ptlrpc_service *svc);
741 };
742
743 /**
744 * Policy flags
745 */
746 enum nrs_policy_flags {
747 /**
748 * Fallback policy, use this flag only on a single supported policy per
749 * service. The flag cannot be used on policies that use
750 * \e PTLRPC_NRS_FL_REG_EXTERN
751 */
752 PTLRPC_NRS_FL_FALLBACK = (1 << 0),
753 /**
754 * Start policy immediately after registering.
755 */
756 PTLRPC_NRS_FL_REG_START = (1 << 1),
757 /**
758 * This is a policy registering from a module different to the one NRS
759 * core ships in (currently ptlrpc).
760 */
761 PTLRPC_NRS_FL_REG_EXTERN = (1 << 2),
762 };
763
764 /**
765 * NRS queue type.
766 *
767 * Denotes whether an NRS instance is for handling normal or high-priority
768 * RPCs, or whether an operation pertains to one or both of the NRS instances
769 * in a service.
770 */
771 enum ptlrpc_nrs_queue_type {
772 PTLRPC_NRS_QUEUE_REG = (1 << 0),
773 PTLRPC_NRS_QUEUE_HP = (1 << 1),
774 PTLRPC_NRS_QUEUE_BOTH = (PTLRPC_NRS_QUEUE_REG | PTLRPC_NRS_QUEUE_HP)
775 };
776
777 /**
778 * NRS head
779 *
780 * A PTLRPC service has at least one NRS head instance for handling normal
781 * priority RPCs, and may optionally have a second NRS head instance for
782 * handling high-priority RPCs. Each NRS head maintains a list of available
783 * policies, of which one and only one policy is acting as the fallback policy,
784 * and optionally a different policy may be acting as the primary policy. For
785 * all RPCs handled by this NRS head instance, NRS core will first attempt to
786 * enqueue the RPC using the primary policy (if any). The fallback policy is
787 * used in the following cases:
788 * - when there was no primary policy in the
789 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state at the time the request
790 * was initialized.
791 * - when the primary policy that was at the
792 * ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the
793 * RPC was initialized, denoted it did not wish, or for some other reason was
794 * not able to handle the request, by returning a non-valid NRS resource
795 * reference.
796 * - when the primary policy that was at the
797 * ptlrpc_nrs_pol_state::PTLRPC_NRS_POL_STATE_STARTED state at the time the
798 * RPC was initialized, fails later during the request enqueueing stage.
799 *
800 * \see nrs_resource_get_safe()
801 * \see nrs_request_enqueue()
802 */
803 struct ptlrpc_nrs {
804 spinlock_t nrs_lock;
805 /** XXX Possibly replace svcpt->scp_req_lock with another lock here. */
806 /**
807 * List of registered policies
808 */
809 struct list_head nrs_policy_list;
810 /**
811 * List of policies with queued requests. Policies that have any
812 * outstanding requests are queued here, and this list is queried
813 * in a round-robin manner from NRS core when obtaining a request
814 * for handling. This ensures that requests from policies that at some
815 * point transition away from the
816 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED state are drained.
817 */
818 struct list_head nrs_policy_queued;
819 /**
820 * Service partition for this NRS head
821 */
822 struct ptlrpc_service_part *nrs_svcpt;
823 /**
824 * Primary policy, which is the preferred policy for handling RPCs
825 */
826 struct ptlrpc_nrs_policy *nrs_policy_primary;
827 /**
828 * Fallback policy, which is the backup policy for handling RPCs
829 */
830 struct ptlrpc_nrs_policy *nrs_policy_fallback;
831 /**
832 * This NRS head handles either HP or regular requests
833 */
834 enum ptlrpc_nrs_queue_type nrs_queue_type;
835 /**
836 * # queued requests from all policies in this NRS head
837 */
838 unsigned long nrs_req_queued;
839 /**
840 * # scheduled requests from all policies in this NRS head
841 */
842 unsigned long nrs_req_started;
843 /**
844 * # policies on this NRS
845 */
846 unsigned nrs_num_pols;
847 /**
848 * This NRS head is in progress of starting a policy
849 */
850 unsigned nrs_policy_starting:1;
851 /**
852 * In progress of shutting down the whole NRS head; used during
853 * unregistration
854 */
855 unsigned nrs_stopping:1;
856 };
857
858 #define NRS_POL_NAME_MAX 16
859
860 struct ptlrpc_nrs_pol_desc;
861
862 /**
863 * Service compatibility predicate; this determines whether a policy is adequate
864 * for handling RPCs of a particular PTLRPC service.
865 *
866 * XXX:This should give the same result during policy registration and
867 * unregistration, and for all partitions of a service; so the result should not
868 * depend on temporal service or other properties, that may influence the
869 * result.
870 */
871 typedef bool (*nrs_pol_desc_compat_t) (const struct ptlrpc_service *svc,
872 const struct ptlrpc_nrs_pol_desc *desc);
873
874 struct ptlrpc_nrs_pol_conf {
875 /**
876 * Human-readable policy name
877 */
878 char nc_name[NRS_POL_NAME_MAX];
879 /**
880 * NRS operations for this policy
881 */
882 const struct ptlrpc_nrs_pol_ops *nc_ops;
883 /**
884 * Service compatibility predicate
885 */
886 nrs_pol_desc_compat_t nc_compat;
887 /**
888 * Set for policies that support a single ptlrpc service, i.e. ones that
889 * have \a pd_compat set to nrs_policy_compat_one(). The variable value
890 * depicts the name of the single service that such policies are
891 * compatible with.
892 */
893 const char *nc_compat_svc_name;
894 /**
895 * Owner module for this policy descriptor; policies registering from a
896 * different module to the one the NRS framework is held within
897 * (currently ptlrpc), should set this field to THIS_MODULE.
898 */
899 struct module *nc_owner;
900 /**
901 * Policy registration flags; a bitmask of \e nrs_policy_flags
902 */
903 unsigned nc_flags;
904 };
905
906 /**
907 * NRS policy registering descriptor
908 *
909 * Is used to hold a description of a policy that can be passed to NRS core in
910 * order to register the policy with NRS heads in different PTLRPC services.
911 */
912 struct ptlrpc_nrs_pol_desc {
913 /**
914 * Human-readable policy name
915 */
916 char pd_name[NRS_POL_NAME_MAX];
917 /**
918 * Link into nrs_core::nrs_policies
919 */
920 struct list_head pd_list;
921 /**
922 * NRS operations for this policy
923 */
924 const struct ptlrpc_nrs_pol_ops *pd_ops;
925 /**
926 * Service compatibility predicate
927 */
928 nrs_pol_desc_compat_t pd_compat;
929 /**
930 * Set for policies that are compatible with only one PTLRPC service.
931 *
932 * \see ptlrpc_nrs_pol_conf::nc_compat_svc_name
933 */
934 const char *pd_compat_svc_name;
935 /**
936 * Owner module for this policy descriptor.
937 *
938 * We need to hold a reference to the module whenever we might make use
939 * of any of the module's contents, i.e.
940 * - If one or more instances of the policy are at a state where they
941 * might be handling a request, i.e.
942 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STARTED or
943 * ptlrpc_nrs_pol_state::NRS_POL_STATE_STOPPING as we will have to
944 * call into the policy's ptlrpc_nrs_pol_ops() handlers. A reference
945 * is taken on the module when
946 * \e ptlrpc_nrs_pol_desc::pd_refs becomes 1, and released when it
947 * becomes 0, so that we hold only one reference to the module maximum
948 * at any time.
949 *
950 * We do not need to hold a reference to the module, even though we
951 * might use code and data from the module, in the following cases:
952 * - During external policy registration, because this should happen in
953 * the module's init() function, in which case the module is safe from
954 * removal because a reference is being held on the module by the
955 * kernel, and iirc kmod (and I guess module-init-tools also) will
956 * serialize any racing processes properly anyway.
957 * - During external policy unregistration, because this should happen
958 * in a module's exit() function, and any attempts to start a policy
959 * instance would need to take a reference on the module, and this is
960 * not possible once we have reached the point where the exit()
961 * handler is called.
962 * - During service registration and unregistration, as service setup
963 * and cleanup, and policy registration, unregistration and policy
964 * instance starting, are serialized by \e nrs_core::nrs_mutex, so
965 * as long as users adhere to the convention of registering policies
966 * in init() and unregistering them in module exit() functions, there
967 * should not be a race between these operations.
968 * - During any policy-specific lprocfs operations, because a reference
969 * is held by the kernel on a proc entry that has been entered by a
970 * syscall, so as long as proc entries are removed during unregistration time,
971 * then unregistration and lprocfs operations will be properly
972 * serialized.
973 */
974 struct module *pd_owner;
975 /**
976 * Bitmask of \e nrs_policy_flags
977 */
978 unsigned pd_flags;
979 /**
980 * # of references on this descriptor
981 */
982 atomic_t pd_refs;
983 };
984
985 /**
986 * NRS policy state
987 *
988 * Policies transition from one state to the other during their lifetime
989 */
990 enum ptlrpc_nrs_pol_state {
991 /**
992 * Not a valid policy state.
993 */
994 NRS_POL_STATE_INVALID,
995 /**
996 * Policies are at this state either at the start of their life, or
997 * transition here when the user selects a different policy to act
998 * as the primary one.
999 */
1000 NRS_POL_STATE_STOPPED,
1001 /**
1002 * Policy is progress of stopping
1003 */
1004 NRS_POL_STATE_STOPPING,
1005 /**
1006 * Policy is in progress of starting
1007 */
1008 NRS_POL_STATE_STARTING,
1009 /**
1010 * A policy is in this state in two cases:
1011 * - it is the fallback policy, which is always in this state.
1012 * - it has been activated by the user; i.e. it is the primary policy,
1013 */
1014 NRS_POL_STATE_STARTED,
1015 };
1016
1017 /**
1018 * NRS policy information
1019 *
1020 * Used for obtaining information for the status of a policy via lprocfs
1021 */
1022 struct ptlrpc_nrs_pol_info {
1023 /**
1024 * Policy name
1025 */
1026 char pi_name[NRS_POL_NAME_MAX];
1027 /**
1028 * Current policy state
1029 */
1030 enum ptlrpc_nrs_pol_state pi_state;
1031 /**
1032 * # RPCs enqueued for later dispatching by the policy
1033 */
1034 long pi_req_queued;
1035 /**
1036 * # RPCs started for dispatch by the policy
1037 */
1038 long pi_req_started;
1039 /**
1040 * Is this a fallback policy?
1041 */
1042 unsigned pi_fallback:1;
1043 };
1044
1045 /**
1046 * NRS policy
1047 *
1048 * There is one instance of this for each policy in each NRS head of each
1049 * PTLRPC service partition.
1050 */
1051 struct ptlrpc_nrs_policy {
1052 /**
1053 * Linkage into the NRS head's list of policies,
1054 * ptlrpc_nrs:nrs_policy_list
1055 */
1056 struct list_head pol_list;
1057 /**
1058 * Linkage into the NRS head's list of policies with enqueued
1059 * requests ptlrpc_nrs:nrs_policy_queued
1060 */
1061 struct list_head pol_list_queued;
1062 /**
1063 * Current state of this policy
1064 */
1065 enum ptlrpc_nrs_pol_state pol_state;
1066 /**
1067 * Bitmask of nrs_policy_flags
1068 */
1069 unsigned pol_flags;
1070 /**
1071 * # RPCs enqueued for later dispatching by the policy
1072 */
1073 long pol_req_queued;
1074 /**
1075 * # RPCs started for dispatch by the policy
1076 */
1077 long pol_req_started;
1078 /**
1079 * Usage Reference count taken on the policy instance
1080 */
1081 long pol_ref;
1082 /**
1083 * The NRS head this policy has been created at
1084 */
1085 struct ptlrpc_nrs *pol_nrs;
1086 /**
1087 * Private policy data; varies by policy type
1088 */
1089 void *pol_private;
1090 /**
1091 * Policy descriptor for this policy instance.
1092 */
1093 struct ptlrpc_nrs_pol_desc *pol_desc;
1094 };
1095
1096 /**
1097 * NRS resource
1098 *
1099 * Resources are embedded into two types of NRS entities:
1100 * - Inside NRS policies, in the policy's private data in
1101 * ptlrpc_nrs_policy::pol_private
1102 * - In objects that act as prime-level scheduling entities in different NRS
1103 * policies; e.g. on a policy that performs round robin or similar order
1104 * scheduling across client NIDs, there would be one NRS resource per unique
1105 * client NID. On a policy which performs round robin scheduling across
1106 * backend filesystem objects, there would be one resource associated with
1107 * each of the backend filesystem objects partaking in the scheduling
1108 * performed by the policy.
1109 *
1110 * NRS resources share a parent-child relationship, in which resources embedded
1111 * in policy instances are the parent entities, with all scheduling entities
1112 * a policy schedules across being the children, thus forming a simple resource
1113 * hierarchy. This hierarchy may be extended with one or more levels in the
1114 * future if the ability to have more than one primary policy is added.
1115 *
1116 * Upon request initialization, references to the then active NRS policies are
1117 * taken and used to later handle the dispatching of the request with one of
1118 * these policies.
1119 *
1120 * \see nrs_resource_get_safe()
1121 * \see ptlrpc_nrs_req_add()
1122 */
1123 struct ptlrpc_nrs_resource {
1124 /**
1125 * This NRS resource's parent; is NULL for resources embedded in NRS
1126 * policy instances; i.e. those are top-level ones.
1127 */
1128 struct ptlrpc_nrs_resource *res_parent;
1129 /**
1130 * The policy associated with this resource.
1131 */
1132 struct ptlrpc_nrs_policy *res_policy;
1133 };
1134
1135 enum {
1136 NRS_RES_FALLBACK,
1137 NRS_RES_PRIMARY,
1138 NRS_RES_MAX
1139 };
1140
1141 /* \name fifo
1142 *
1143 * FIFO policy
1144 *
1145 * This policy is a logical wrapper around previous, non-NRS functionality.
1146 * It dispatches RPCs in the same order as they arrive from the network. This
1147 * policy is currently used as the fallback policy, and the only enabled policy
1148 * on all NRS heads of all PTLRPC service partitions.
1149 * @{
1150 */
1151
1152 /**
1153 * Private data structure for the FIFO policy
1154 */
1155 struct nrs_fifo_head {
1156 /**
1157 * Resource object for policy instance.
1158 */
1159 struct ptlrpc_nrs_resource fh_res;
1160 /**
1161 * List of queued requests.
1162 */
1163 struct list_head fh_list;
1164 /**
1165 * For debugging purposes.
1166 */
1167 __u64 fh_sequence;
1168 };
1169
1170 struct nrs_fifo_req {
1171 struct list_head fr_list;
1172 __u64 fr_sequence;
1173 };
1174
1175 /** @} fifo */
1176
1177 /**
1178 * NRS request
1179 *
1180 * Instances of this object exist embedded within ptlrpc_request; the main
1181 * purpose of this object is to hold references to the request's resources
1182 * for the lifetime of the request, and to hold properties that policies use
1183 * use for determining the request's scheduling priority.
1184 * */
1185 struct ptlrpc_nrs_request {
1186 /**
1187 * The request's resource hierarchy.
1188 */
1189 struct ptlrpc_nrs_resource *nr_res_ptrs[NRS_RES_MAX];
1190 /**
1191 * Index into ptlrpc_nrs_request::nr_res_ptrs of the resource of the
1192 * policy that was used to enqueue the request.
1193 *
1194 * \see nrs_request_enqueue()
1195 */
1196 unsigned nr_res_idx;
1197 unsigned nr_initialized:1;
1198 unsigned nr_enqueued:1;
1199 unsigned nr_started:1;
1200 unsigned nr_finalized:1;
1201
1202 /**
1203 * Policy-specific fields, used for determining a request's scheduling
1204 * priority, and other supporting functionality.
1205 */
1206 union {
1207 /**
1208 * Fields for the FIFO policy
1209 */
1210 struct nrs_fifo_req fifo;
1211 } nr_u;
1212 /**
1213 * Externally-registering policies may want to use this to allocate
1214 * their own request properties.
1215 */
1216 void *ext;
1217 };
1218
1219 /** @} nrs */
1220
1221 /**
1222 * Basic request prioritization operations structure.
1223 * The whole idea is centered around locks and RPCs that might affect locks.
1224 * When a lock is contended we try to give priority to RPCs that might lead
1225 * to fastest release of that lock.
1226 * Currently only implemented for OSTs only in a way that makes all
1227 * IO and truncate RPCs that are coming from a locked region where a lock is
1228 * contended a priority over other requests.
1229 */
1230 struct ptlrpc_hpreq_ops {
1231 /**
1232 * Check if the lock handle of the given lock is the same as
1233 * taken from the request.
1234 */
1235 int (*hpreq_lock_match)(struct ptlrpc_request *, struct ldlm_lock *);
1236 /**
1237 * Check if the request is a high priority one.
1238 */
1239 int (*hpreq_check)(struct ptlrpc_request *);
1240 /**
1241 * Called after the request has been handled.
1242 */
1243 void (*hpreq_fini)(struct ptlrpc_request *);
1244 };
1245
1246 /**
1247 * Represents remote procedure call.
1248 *
1249 * This is a staple structure used by everybody wanting to send a request
1250 * in Lustre.
1251 */
1252 struct ptlrpc_request {
1253 /* Request type: one of PTL_RPC_MSG_* */
1254 int rq_type;
1255 /** Result of request processing */
1256 int rq_status;
1257 /**
1258 * Linkage item through which this request is included into
1259 * sending/delayed lists on client and into rqbd list on server
1260 */
1261 struct list_head rq_list;
1262 /**
1263 * Server side list of incoming unserved requests sorted by arrival
1264 * time. Traversed from time to time to notice about to expire
1265 * requests and sent back "early replies" to clients to let them
1266 * know server is alive and well, just very busy to service their
1267 * requests in time
1268 */
1269 struct list_head rq_timed_list;
1270 /** server-side history, used for debugging purposes. */
1271 struct list_head rq_history_list;
1272 /** server-side per-export list */
1273 struct list_head rq_exp_list;
1274 /** server-side hp handlers */
1275 struct ptlrpc_hpreq_ops *rq_ops;
1276
1277 /** initial thread servicing this request */
1278 struct ptlrpc_thread *rq_svc_thread;
1279
1280 /** history sequence # */
1281 __u64 rq_history_seq;
1282 /** \addtogroup nrs
1283 * @{
1284 */
1285 /** stub for NRS request */
1286 struct ptlrpc_nrs_request rq_nrq;
1287 /** @} nrs */
1288 /** the index of service's srv_at_array into which request is linked */
1289 u32 rq_at_index;
1290 /** Lock to protect request flags and some other important bits, like
1291 * rq_list
1292 */
1293 spinlock_t rq_lock;
1294 /** client-side flags are serialized by rq_lock */
1295 unsigned int rq_intr:1, rq_replied:1, rq_err:1,
1296 rq_timedout:1, rq_resend:1, rq_restart:1,
1297 /**
1298 * when ->rq_replay is set, request is kept by the client even
1299 * after server commits corresponding transaction. This is
1300 * used for operations that require sequence of multiple
1301 * requests to be replayed. The only example currently is file
1302 * open/close. When last request in such a sequence is
1303 * committed, ->rq_replay is cleared on all requests in the
1304 * sequence.
1305 */
1306 rq_replay:1,
1307 rq_no_resend:1, rq_waiting:1, rq_receiving_reply:1,
1308 rq_no_delay:1, rq_net_err:1, rq_wait_ctx:1,
1309 rq_early:1,
1310 rq_req_unlink:1, rq_reply_unlink:1,
1311 rq_memalloc:1, /* req originated from "kswapd" */
1312 /* server-side flags */
1313 rq_packed_final:1, /* packed final reply */
1314 rq_hp:1, /* high priority RPC */
1315 rq_at_linked:1, /* link into service's srv_at_array */
1316 rq_reply_truncate:1,
1317 rq_committed:1,
1318 /* whether the "rq_set" is a valid one */
1319 rq_invalid_rqset:1,
1320 rq_generation_set:1,
1321 /* do not resend request on -EINPROGRESS */
1322 rq_no_retry_einprogress:1,
1323 /* allow the req to be sent if the import is in recovery
1324 * status */
1325 rq_allow_replay:1;
1326
1327 unsigned int rq_nr_resend;
1328
1329 enum rq_phase rq_phase; /* one of RQ_PHASE_* */
1330 enum rq_phase rq_next_phase; /* one of RQ_PHASE_* to be used next */
1331 atomic_t rq_refcount;/* client-side refcount for SENT race,
1332 server-side refcount for multiple replies */
1333
1334 /** Portal to which this request would be sent */
1335 short rq_request_portal; /* XXX FIXME bug 249 */
1336 /** Portal where to wait for reply and where reply would be sent */
1337 short rq_reply_portal; /* XXX FIXME bug 249 */
1338
1339 /**
1340 * client-side:
1341 * !rq_truncate : # reply bytes actually received,
1342 * rq_truncate : required repbuf_len for resend
1343 */
1344 int rq_nob_received;
1345 /** Request length */
1346 int rq_reqlen;
1347 /** Reply length */
1348 int rq_replen;
1349 /** Request message - what client sent */
1350 struct lustre_msg *rq_reqmsg;
1351 /** Reply message - server response */
1352 struct lustre_msg *rq_repmsg;
1353 /** Transaction number */
1354 __u64 rq_transno;
1355 /** xid */
1356 __u64 rq_xid;
1357 /**
1358 * List item to for replay list. Not yet committed requests get linked
1359 * there.
1360 * Also see \a rq_replay comment above.
1361 */
1362 struct list_head rq_replay_list;
1363
1364 /**
1365 * security and encryption data
1366 * @{ */
1367 struct ptlrpc_cli_ctx *rq_cli_ctx; /**< client's half ctx */
1368 struct ptlrpc_svc_ctx *rq_svc_ctx; /**< server's half ctx */
1369 struct list_head rq_ctx_chain; /**< link to waited ctx */
1370
1371 struct sptlrpc_flavor rq_flvr; /**< for client & server */
1372 enum lustre_sec_part rq_sp_from;
1373
1374 /* client/server security flags */
1375 unsigned int
1376 rq_ctx_init:1, /* context initiation */
1377 rq_ctx_fini:1, /* context destroy */
1378 rq_bulk_read:1, /* request bulk read */
1379 rq_bulk_write:1, /* request bulk write */
1380 /* server authentication flags */
1381 rq_auth_gss:1, /* authenticated by gss */
1382 rq_auth_remote:1, /* authed as remote user */
1383 rq_auth_usr_root:1, /* authed as root */
1384 rq_auth_usr_mdt:1, /* authed as mdt */
1385 rq_auth_usr_ost:1, /* authed as ost */
1386 /* security tfm flags */
1387 rq_pack_udesc:1,
1388 rq_pack_bulk:1,
1389 /* doesn't expect reply FIXME */
1390 rq_no_reply:1,
1391 rq_pill_init:1; /* pill initialized */
1392
1393 uid_t rq_auth_uid; /* authed uid */
1394 uid_t rq_auth_mapped_uid; /* authed uid mapped to */
1395
1396 /* (server side), pointed directly into req buffer */
1397 struct ptlrpc_user_desc *rq_user_desc;
1398
1399 /* various buffer pointers */
1400 struct lustre_msg *rq_reqbuf; /* req wrapper */
1401 char *rq_repbuf; /* rep buffer */
1402 struct lustre_msg *rq_repdata; /* rep wrapper msg */
1403 struct lustre_msg *rq_clrbuf; /* only in priv mode */
1404 int rq_reqbuf_len; /* req wrapper buf len */
1405 int rq_reqdata_len; /* req wrapper msg len */
1406 int rq_repbuf_len; /* rep buffer len */
1407 int rq_repdata_len; /* rep wrapper msg len */
1408 int rq_clrbuf_len; /* only in priv mode */
1409 int rq_clrdata_len; /* only in priv mode */
1410
1411 /** early replies go to offset 0, regular replies go after that */
1412 unsigned int rq_reply_off;
1413
1414 /** @} */
1415
1416 /** Fields that help to see if request and reply were swabbed or not */
1417 __u32 rq_req_swab_mask;
1418 __u32 rq_rep_swab_mask;
1419
1420 /** What was import generation when this request was sent */
1421 int rq_import_generation;
1422 enum lustre_imp_state rq_send_state;
1423
1424 /** how many early replies (for stats) */
1425 int rq_early_count;
1426
1427 /** client+server request */
1428 lnet_handle_md_t rq_req_md_h;
1429 struct ptlrpc_cb_id rq_req_cbid;
1430 /** optional time limit for send attempts */
1431 long rq_delay_limit;
1432 /** time request was first queued */
1433 unsigned long rq_queued_time;
1434
1435 /* server-side... */
1436 /** request arrival time */
1437 struct timespec64 rq_arrival_time;
1438 /** separated reply state */
1439 struct ptlrpc_reply_state *rq_reply_state;
1440 /** incoming request buffer */
1441 struct ptlrpc_request_buffer_desc *rq_rqbd;
1442
1443 /** client-only incoming reply */
1444 lnet_handle_md_t rq_reply_md_h;
1445 wait_queue_head_t rq_reply_waitq;
1446 struct ptlrpc_cb_id rq_reply_cbid;
1447
1448 /** our LNet NID */
1449 lnet_nid_t rq_self;
1450 /** Peer description (the other side) */
1451 lnet_process_id_t rq_peer;
1452 /** Server-side, export on which request was received */
1453 struct obd_export *rq_export;
1454 /** Client side, import where request is being sent */
1455 struct obd_import *rq_import;
1456
1457 /** Replay callback, called after request is replayed at recovery */
1458 void (*rq_replay_cb)(struct ptlrpc_request *);
1459 /**
1460 * Commit callback, called when request is committed and about to be
1461 * freed.
1462 */
1463 void (*rq_commit_cb)(struct ptlrpc_request *);
1464 /** Opaq data for replay and commit callbacks. */
1465 void *rq_cb_data;
1466
1467 /** For bulk requests on client only: bulk descriptor */
1468 struct ptlrpc_bulk_desc *rq_bulk;
1469
1470 /** client outgoing req */
1471 /**
1472 * when request/reply sent (secs), or time when request should be sent
1473 */
1474 time64_t rq_sent;
1475 /** time for request really sent out */
1476 time64_t rq_real_sent;
1477
1478 /** when request must finish. volatile
1479 * so that servers' early reply updates to the deadline aren't
1480 * kept in per-cpu cache */
1481 volatile time64_t rq_deadline;
1482 /** when req reply unlink must finish. */
1483 time64_t rq_reply_deadline;
1484 /** when req bulk unlink must finish. */
1485 time64_t rq_bulk_deadline;
1486 /**
1487 * service time estimate (secs)
1488 * If the requestsis not served by this time, it is marked as timed out.
1489 */
1490 int rq_timeout;
1491
1492 /** Multi-rpc bits */
1493 /** Per-request waitq introduced by bug 21938 for recovery waiting */
1494 wait_queue_head_t rq_set_waitq;
1495 /** Link item for request set lists */
1496 struct list_head rq_set_chain;
1497 /** Link back to the request set */
1498 struct ptlrpc_request_set *rq_set;
1499 /** Async completion handler, called when reply is received */
1500 ptlrpc_interpterer_t rq_interpret_reply;
1501 /** Async completion context */
1502 union ptlrpc_async_args rq_async_args;
1503
1504 /** Pool if request is from preallocated list */
1505 struct ptlrpc_request_pool *rq_pool;
1506
1507 struct lu_context rq_session;
1508 struct lu_context rq_recov_session;
1509
1510 /** request format description */
1511 struct req_capsule rq_pill;
1512 };
1513
1514 /**
1515 * Call completion handler for rpc if any, return it's status or original
1516 * rc if there was no handler defined for this request.
1517 */
ptlrpc_req_interpret(const struct lu_env * env,struct ptlrpc_request * req,int rc)1518 static inline int ptlrpc_req_interpret(const struct lu_env *env,
1519 struct ptlrpc_request *req, int rc)
1520 {
1521 if (req->rq_interpret_reply != NULL) {
1522 req->rq_status = req->rq_interpret_reply(env, req,
1523 &req->rq_async_args,
1524 rc);
1525 return req->rq_status;
1526 }
1527 return rc;
1528 }
1529
1530 /*
1531 * Can the request be moved from the regular NRS head to the high-priority NRS
1532 * head (of the same PTLRPC service partition), if any?
1533 *
1534 * For a reliable result, this should be checked under svcpt->scp_req lock.
1535 */
ptlrpc_nrs_req_can_move(struct ptlrpc_request * req)1536 static inline bool ptlrpc_nrs_req_can_move(struct ptlrpc_request *req)
1537 {
1538 struct ptlrpc_nrs_request *nrq = &req->rq_nrq;
1539
1540 /**
1541 * LU-898: Check ptlrpc_nrs_request::nr_enqueued to make sure the
1542 * request has been enqueued first, and ptlrpc_nrs_request::nr_started
1543 * to make sure it has not been scheduled yet (analogous to previous
1544 * (non-NRS) checking of !list_empty(&ptlrpc_request::rq_list).
1545 */
1546 return nrq->nr_enqueued && !nrq->nr_started && !req->rq_hp;
1547 }
1548
1549 /** @} nrs */
1550
1551 /**
1552 * Returns 1 if request buffer at offset \a index was already swabbed
1553 */
lustre_req_swabbed(struct ptlrpc_request * req,int index)1554 static inline int lustre_req_swabbed(struct ptlrpc_request *req, int index)
1555 {
1556 LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
1557 return req->rq_req_swab_mask & (1 << index);
1558 }
1559
1560 /**
1561 * Returns 1 if request reply buffer at offset \a index was already swabbed
1562 */
lustre_rep_swabbed(struct ptlrpc_request * req,int index)1563 static inline int lustre_rep_swabbed(struct ptlrpc_request *req, int index)
1564 {
1565 LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
1566 return req->rq_rep_swab_mask & (1 << index);
1567 }
1568
1569 /**
1570 * Returns 1 if request needs to be swabbed into local cpu byteorder
1571 */
ptlrpc_req_need_swab(struct ptlrpc_request * req)1572 static inline int ptlrpc_req_need_swab(struct ptlrpc_request *req)
1573 {
1574 return lustre_req_swabbed(req, MSG_PTLRPC_HEADER_OFF);
1575 }
1576
1577 /**
1578 * Returns 1 if request reply needs to be swabbed into local cpu byteorder
1579 */
ptlrpc_rep_need_swab(struct ptlrpc_request * req)1580 static inline int ptlrpc_rep_need_swab(struct ptlrpc_request *req)
1581 {
1582 return lustre_rep_swabbed(req, MSG_PTLRPC_HEADER_OFF);
1583 }
1584
1585 /**
1586 * Mark request buffer at offset \a index that it was already swabbed
1587 */
lustre_set_req_swabbed(struct ptlrpc_request * req,int index)1588 static inline void lustre_set_req_swabbed(struct ptlrpc_request *req, int index)
1589 {
1590 LASSERT(index < sizeof(req->rq_req_swab_mask) * 8);
1591 LASSERT((req->rq_req_swab_mask & (1 << index)) == 0);
1592 req->rq_req_swab_mask |= 1 << index;
1593 }
1594
1595 /**
1596 * Mark request reply buffer at offset \a index that it was already swabbed
1597 */
lustre_set_rep_swabbed(struct ptlrpc_request * req,int index)1598 static inline void lustre_set_rep_swabbed(struct ptlrpc_request *req, int index)
1599 {
1600 LASSERT(index < sizeof(req->rq_rep_swab_mask) * 8);
1601 LASSERT((req->rq_rep_swab_mask & (1 << index)) == 0);
1602 req->rq_rep_swab_mask |= 1 << index;
1603 }
1604
1605 /**
1606 * Convert numerical request phase value \a phase into text string description
1607 */
1608 static inline const char *
ptlrpc_phase2str(enum rq_phase phase)1609 ptlrpc_phase2str(enum rq_phase phase)
1610 {
1611 switch (phase) {
1612 case RQ_PHASE_NEW:
1613 return "New";
1614 case RQ_PHASE_RPC:
1615 return "Rpc";
1616 case RQ_PHASE_BULK:
1617 return "Bulk";
1618 case RQ_PHASE_INTERPRET:
1619 return "Interpret";
1620 case RQ_PHASE_COMPLETE:
1621 return "Complete";
1622 case RQ_PHASE_UNREGISTERING:
1623 return "Unregistering";
1624 default:
1625 return "?Phase?";
1626 }
1627 }
1628
1629 /**
1630 * Convert numerical request phase of the request \a req into text stringi
1631 * description
1632 */
1633 static inline const char *
ptlrpc_rqphase2str(struct ptlrpc_request * req)1634 ptlrpc_rqphase2str(struct ptlrpc_request *req)
1635 {
1636 return ptlrpc_phase2str(req->rq_phase);
1637 }
1638
1639 /**
1640 * Debugging functions and helpers to print request structure into debug log
1641 * @{
1642 */
1643 /* Spare the preprocessor, spoil the bugs. */
1644 #define FLAG(field, str) (field ? str : "")
1645
1646 /** Convert bit flags into a string */
1647 #define DEBUG_REQ_FLAGS(req) \
1648 ptlrpc_rqphase2str(req), \
1649 FLAG(req->rq_intr, "I"), FLAG(req->rq_replied, "R"), \
1650 FLAG(req->rq_err, "E"), \
1651 FLAG(req->rq_timedout, "X") /* eXpired */, FLAG(req->rq_resend, "S"), \
1652 FLAG(req->rq_restart, "T"), FLAG(req->rq_replay, "P"), \
1653 FLAG(req->rq_no_resend, "N"), \
1654 FLAG(req->rq_waiting, "W"), \
1655 FLAG(req->rq_wait_ctx, "C"), FLAG(req->rq_hp, "H"), \
1656 FLAG(req->rq_committed, "M")
1657
1658 #define REQ_FLAGS_FMT "%s:%s%s%s%s%s%s%s%s%s%s%s%s"
1659
1660 void _debug_req(struct ptlrpc_request *req,
1661 struct libcfs_debug_msg_data *data, const char *fmt, ...)
1662 __printf(3, 4);
1663
1664 /**
1665 * Helper that decides if we need to print request according to current debug
1666 * level settings
1667 */
1668 #define debug_req(msgdata, mask, cdls, req, fmt, a...) \
1669 do { \
1670 CFS_CHECK_STACK(msgdata, mask, cdls); \
1671 \
1672 if (((mask) & D_CANTMASK) != 0 || \
1673 ((libcfs_debug & (mask)) != 0 && \
1674 (libcfs_subsystem_debug & DEBUG_SUBSYSTEM) != 0)) \
1675 _debug_req((req), msgdata, fmt, ##a); \
1676 } while (0)
1677
1678 /**
1679 * This is the debug print function you need to use to print request structure
1680 * content into lustre debug log.
1681 * for most callers (level is a constant) this is resolved at compile time */
1682 #define DEBUG_REQ(level, req, fmt, args...) \
1683 do { \
1684 if ((level) & (D_ERROR | D_WARNING)) { \
1685 static struct cfs_debug_limit_state cdls; \
1686 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, &cdls); \
1687 debug_req(&msgdata, level, &cdls, req, "@@@ "fmt" ", ## args);\
1688 } else { \
1689 LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, level, NULL); \
1690 debug_req(&msgdata, level, NULL, req, "@@@ "fmt" ", ## args); \
1691 } \
1692 } while (0)
1693 /** @} */
1694
1695 /**
1696 * Structure that defines a single page of a bulk transfer
1697 */
1698 struct ptlrpc_bulk_page {
1699 /** Linkage to list of pages in a bulk */
1700 struct list_head bp_link;
1701 /**
1702 * Number of bytes in a page to transfer starting from \a bp_pageoffset
1703 */
1704 int bp_buflen;
1705 /** offset within a page */
1706 int bp_pageoffset;
1707 /** The page itself */
1708 struct page *bp_page;
1709 };
1710
1711 #define BULK_GET_SOURCE 0
1712 #define BULK_PUT_SINK 1
1713 #define BULK_GET_SINK 2
1714 #define BULK_PUT_SOURCE 3
1715
1716 /**
1717 * Definition of bulk descriptor.
1718 * Bulks are special "Two phase" RPCs where initial request message
1719 * is sent first and it is followed bt a transfer (o receiving) of a large
1720 * amount of data to be settled into pages referenced from the bulk descriptors.
1721 * Bulks transfers (the actual data following the small requests) are done
1722 * on separate LNet portals.
1723 * In lustre we use bulk transfers for READ and WRITE transfers from/to OSTs.
1724 * Another user is readpage for MDT.
1725 */
1726 struct ptlrpc_bulk_desc {
1727 /** completed with failure */
1728 unsigned long bd_failure:1;
1729 /** {put,get}{source,sink} */
1730 unsigned long bd_type:2;
1731 /** client side */
1732 unsigned long bd_registered:1;
1733 /** For serialization with callback */
1734 spinlock_t bd_lock;
1735 /** Import generation when request for this bulk was sent */
1736 int bd_import_generation;
1737 /** LNet portal for this bulk */
1738 __u32 bd_portal;
1739 /** Server side - export this bulk created for */
1740 struct obd_export *bd_export;
1741 /** Client side - import this bulk was sent on */
1742 struct obd_import *bd_import;
1743 /** Back pointer to the request */
1744 struct ptlrpc_request *bd_req;
1745 wait_queue_head_t bd_waitq; /* server side only WQ */
1746 int bd_iov_count; /* # entries in bd_iov */
1747 int bd_max_iov; /* allocated size of bd_iov */
1748 int bd_nob; /* # bytes covered */
1749 int bd_nob_transferred; /* # bytes GOT/PUT */
1750
1751 __u64 bd_last_xid;
1752
1753 struct ptlrpc_cb_id bd_cbid; /* network callback info */
1754 lnet_nid_t bd_sender; /* stash event::sender */
1755 int bd_md_count; /* # valid entries in bd_mds */
1756 int bd_md_max_brw; /* max entries in bd_mds */
1757 /** array of associated MDs */
1758 lnet_handle_md_t bd_mds[PTLRPC_BULK_OPS_COUNT];
1759
1760 /*
1761 * encrypt iov, size is either 0 or bd_iov_count.
1762 */
1763 lnet_kiov_t *bd_enc_iov;
1764
1765 lnet_kiov_t bd_iov[0];
1766 };
1767
1768 enum {
1769 SVC_STOPPED = 1 << 0,
1770 SVC_STOPPING = 1 << 1,
1771 SVC_STARTING = 1 << 2,
1772 SVC_RUNNING = 1 << 3,
1773 SVC_EVENT = 1 << 4,
1774 SVC_SIGNAL = 1 << 5,
1775 };
1776
1777 #define PTLRPC_THR_NAME_LEN 32
1778 /**
1779 * Definition of server service thread structure
1780 */
1781 struct ptlrpc_thread {
1782 /**
1783 * List of active threads in svc->srv_threads
1784 */
1785 struct list_head t_link;
1786 /**
1787 * thread-private data (preallocated memory)
1788 */
1789 void *t_data;
1790 __u32 t_flags;
1791 /**
1792 * service thread index, from ptlrpc_start_threads
1793 */
1794 unsigned int t_id;
1795 /**
1796 * service thread pid
1797 */
1798 pid_t t_pid;
1799 /**
1800 * put watchdog in the structure per thread b=14840
1801 *
1802 * Lustre watchdog is removed for client in the hope
1803 * of a generic watchdog can be merged in kernel.
1804 * When that happens, we should add below back.
1805 *
1806 * struct lc_watchdog *t_watchdog;
1807 */
1808 /**
1809 * the svc this thread belonged to b=18582
1810 */
1811 struct ptlrpc_service_part *t_svcpt;
1812 wait_queue_head_t t_ctl_waitq;
1813 struct lu_env *t_env;
1814 char t_name[PTLRPC_THR_NAME_LEN];
1815 };
1816
thread_is_init(struct ptlrpc_thread * thread)1817 static inline int thread_is_init(struct ptlrpc_thread *thread)
1818 {
1819 return thread->t_flags == 0;
1820 }
1821
thread_is_stopped(struct ptlrpc_thread * thread)1822 static inline int thread_is_stopped(struct ptlrpc_thread *thread)
1823 {
1824 return !!(thread->t_flags & SVC_STOPPED);
1825 }
1826
thread_is_stopping(struct ptlrpc_thread * thread)1827 static inline int thread_is_stopping(struct ptlrpc_thread *thread)
1828 {
1829 return !!(thread->t_flags & SVC_STOPPING);
1830 }
1831
thread_is_starting(struct ptlrpc_thread * thread)1832 static inline int thread_is_starting(struct ptlrpc_thread *thread)
1833 {
1834 return !!(thread->t_flags & SVC_STARTING);
1835 }
1836
thread_is_running(struct ptlrpc_thread * thread)1837 static inline int thread_is_running(struct ptlrpc_thread *thread)
1838 {
1839 return !!(thread->t_flags & SVC_RUNNING);
1840 }
1841
thread_is_event(struct ptlrpc_thread * thread)1842 static inline int thread_is_event(struct ptlrpc_thread *thread)
1843 {
1844 return !!(thread->t_flags & SVC_EVENT);
1845 }
1846
thread_is_signal(struct ptlrpc_thread * thread)1847 static inline int thread_is_signal(struct ptlrpc_thread *thread)
1848 {
1849 return !!(thread->t_flags & SVC_SIGNAL);
1850 }
1851
thread_clear_flags(struct ptlrpc_thread * thread,__u32 flags)1852 static inline void thread_clear_flags(struct ptlrpc_thread *thread, __u32 flags)
1853 {
1854 thread->t_flags &= ~flags;
1855 }
1856
thread_set_flags(struct ptlrpc_thread * thread,__u32 flags)1857 static inline void thread_set_flags(struct ptlrpc_thread *thread, __u32 flags)
1858 {
1859 thread->t_flags = flags;
1860 }
1861
thread_add_flags(struct ptlrpc_thread * thread,__u32 flags)1862 static inline void thread_add_flags(struct ptlrpc_thread *thread, __u32 flags)
1863 {
1864 thread->t_flags |= flags;
1865 }
1866
thread_test_and_clear_flags(struct ptlrpc_thread * thread,__u32 flags)1867 static inline int thread_test_and_clear_flags(struct ptlrpc_thread *thread,
1868 __u32 flags)
1869 {
1870 if (thread->t_flags & flags) {
1871 thread->t_flags &= ~flags;
1872 return 1;
1873 }
1874 return 0;
1875 }
1876
1877 /**
1878 * Request buffer descriptor structure.
1879 * This is a structure that contains one posted request buffer for service.
1880 * Once data land into a buffer, event callback creates actual request and
1881 * notifies wakes one of the service threads to process new incoming request.
1882 * More than one request can fit into the buffer.
1883 */
1884 struct ptlrpc_request_buffer_desc {
1885 /** Link item for rqbds on a service */
1886 struct list_head rqbd_list;
1887 /** History of requests for this buffer */
1888 struct list_head rqbd_reqs;
1889 /** Back pointer to service for which this buffer is registered */
1890 struct ptlrpc_service_part *rqbd_svcpt;
1891 /** LNet descriptor */
1892 lnet_handle_md_t rqbd_md_h;
1893 int rqbd_refcount;
1894 /** The buffer itself */
1895 char *rqbd_buffer;
1896 struct ptlrpc_cb_id rqbd_cbid;
1897 /**
1898 * This "embedded" request structure is only used for the
1899 * last request to fit into the buffer
1900 */
1901 struct ptlrpc_request rqbd_req;
1902 };
1903
1904 typedef int (*svc_handler_t)(struct ptlrpc_request *req);
1905
1906 struct ptlrpc_service_ops {
1907 /**
1908 * if non-NULL called during thread creation (ptlrpc_start_thread())
1909 * to initialize service specific per-thread state.
1910 */
1911 int (*so_thr_init)(struct ptlrpc_thread *thr);
1912 /**
1913 * if non-NULL called during thread shutdown (ptlrpc_main()) to
1914 * destruct state created by ->srv_init().
1915 */
1916 void (*so_thr_done)(struct ptlrpc_thread *thr);
1917 /**
1918 * Handler function for incoming requests for this service
1919 */
1920 int (*so_req_handler)(struct ptlrpc_request *req);
1921 /**
1922 * function to determine priority of the request, it's called
1923 * on every new request
1924 */
1925 int (*so_hpreq_handler)(struct ptlrpc_request *);
1926 /**
1927 * service-specific print fn
1928 */
1929 void (*so_req_printer)(void *, struct ptlrpc_request *);
1930 };
1931
1932 #ifndef __cfs_cacheline_aligned
1933 /* NB: put it here for reducing patche dependence */
1934 # define __cfs_cacheline_aligned
1935 #endif
1936
1937 /**
1938 * How many high priority requests to serve before serving one normal
1939 * priority request
1940 */
1941 #define PTLRPC_SVC_HP_RATIO 10
1942
1943 /**
1944 * Definition of PortalRPC service.
1945 * The service is listening on a particular portal (like tcp port)
1946 * and perform actions for a specific server like IO service for OST
1947 * or general metadata service for MDS.
1948 */
1949 struct ptlrpc_service {
1950 /** serialize /proc operations */
1951 spinlock_t srv_lock;
1952 /** most often accessed fields */
1953 /** chain thru all services */
1954 struct list_head srv_list;
1955 /** service operations table */
1956 struct ptlrpc_service_ops srv_ops;
1957 /** only statically allocated strings here; we don't clean them */
1958 char *srv_name;
1959 /** only statically allocated strings here; we don't clean them */
1960 char *srv_thread_name;
1961 /** service thread list */
1962 struct list_head srv_threads;
1963 /** threads # should be created for each partition on initializing */
1964 int srv_nthrs_cpt_init;
1965 /** limit of threads number for each partition */
1966 int srv_nthrs_cpt_limit;
1967 /** Root of debugfs dir tree for this service */
1968 struct dentry *srv_debugfs_entry;
1969 /** Pointer to statistic data for this service */
1970 struct lprocfs_stats *srv_stats;
1971 /** # hp per lp reqs to handle */
1972 int srv_hpreq_ratio;
1973 /** biggest request to receive */
1974 int srv_max_req_size;
1975 /** biggest reply to send */
1976 int srv_max_reply_size;
1977 /** size of individual buffers */
1978 int srv_buf_size;
1979 /** # buffers to allocate in 1 group */
1980 int srv_nbuf_per_group;
1981 /** Local portal on which to receive requests */
1982 __u32 srv_req_portal;
1983 /** Portal on the client to send replies to */
1984 __u32 srv_rep_portal;
1985 /**
1986 * Tags for lu_context associated with this thread, see struct
1987 * lu_context.
1988 */
1989 __u32 srv_ctx_tags;
1990 /** soft watchdog timeout multiplier */
1991 int srv_watchdog_factor;
1992 /** under unregister_service */
1993 unsigned srv_is_stopping:1;
1994
1995 /** max # request buffers in history per partition */
1996 int srv_hist_nrqbds_cpt_max;
1997 /** number of CPTs this service bound on */
1998 int srv_ncpts;
1999 /** CPTs array this service bound on */
2000 __u32 *srv_cpts;
2001 /** 2^srv_cptab_bits >= cfs_cpt_numbert(srv_cptable) */
2002 int srv_cpt_bits;
2003 /** CPT table this service is running over */
2004 struct cfs_cpt_table *srv_cptable;
2005
2006 /* sysfs object */
2007 struct kobject srv_kobj;
2008 struct completion srv_kobj_unregister;
2009 /**
2010 * partition data for ptlrpc service
2011 */
2012 struct ptlrpc_service_part *srv_parts[0];
2013 };
2014
2015 /**
2016 * Definition of PortalRPC service partition data.
2017 * Although a service only has one instance of it right now, but we
2018 * will have multiple instances very soon (instance per CPT).
2019 *
2020 * it has four locks:
2021 * \a scp_lock
2022 * serialize operations on rqbd and requests waiting for preprocess
2023 * \a scp_req_lock
2024 * serialize operations active requests sent to this portal
2025 * \a scp_at_lock
2026 * serialize adaptive timeout stuff
2027 * \a scp_rep_lock
2028 * serialize operations on RS list (reply states)
2029 *
2030 * We don't have any use-case to take two or more locks at the same time
2031 * for now, so there is no lock order issue.
2032 */
2033 struct ptlrpc_service_part {
2034 /** back reference to owner */
2035 struct ptlrpc_service *scp_service __cfs_cacheline_aligned;
2036 /* CPT id, reserved */
2037 int scp_cpt;
2038 /** always increasing number */
2039 int scp_thr_nextid;
2040 /** # of starting threads */
2041 int scp_nthrs_starting;
2042 /** # of stopping threads, reserved for shrinking threads */
2043 int scp_nthrs_stopping;
2044 /** # running threads */
2045 int scp_nthrs_running;
2046 /** service threads list */
2047 struct list_head scp_threads;
2048
2049 /**
2050 * serialize the following fields, used for protecting
2051 * rqbd list and incoming requests waiting for preprocess,
2052 * threads starting & stopping are also protected by this lock.
2053 */
2054 spinlock_t scp_lock __cfs_cacheline_aligned;
2055 /** total # req buffer descs allocated */
2056 int scp_nrqbds_total;
2057 /** # posted request buffers for receiving */
2058 int scp_nrqbds_posted;
2059 /** in progress of allocating rqbd */
2060 int scp_rqbd_allocating;
2061 /** # incoming reqs */
2062 int scp_nreqs_incoming;
2063 /** request buffers to be reposted */
2064 struct list_head scp_rqbd_idle;
2065 /** req buffers receiving */
2066 struct list_head scp_rqbd_posted;
2067 /** incoming reqs */
2068 struct list_head scp_req_incoming;
2069 /** timeout before re-posting reqs, in tick */
2070 long scp_rqbd_timeout;
2071 /**
2072 * all threads sleep on this. This wait-queue is signalled when new
2073 * incoming request arrives and when difficult reply has to be handled.
2074 */
2075 wait_queue_head_t scp_waitq;
2076
2077 /** request history */
2078 struct list_head scp_hist_reqs;
2079 /** request buffer history */
2080 struct list_head scp_hist_rqbds;
2081 /** # request buffers in history */
2082 int scp_hist_nrqbds;
2083 /** sequence number for request */
2084 __u64 scp_hist_seq;
2085 /** highest seq culled from history */
2086 __u64 scp_hist_seq_culled;
2087
2088 /**
2089 * serialize the following fields, used for processing requests
2090 * sent to this portal
2091 */
2092 spinlock_t scp_req_lock __cfs_cacheline_aligned;
2093 /** # reqs in either of the NRS heads below */
2094 /** # reqs being served */
2095 int scp_nreqs_active;
2096 /** # HPreqs being served */
2097 int scp_nhreqs_active;
2098 /** # hp requests handled */
2099 int scp_hreq_count;
2100
2101 /** NRS head for regular requests */
2102 struct ptlrpc_nrs scp_nrs_reg;
2103 /** NRS head for HP requests; this is only valid for services that can
2104 * handle HP requests */
2105 struct ptlrpc_nrs *scp_nrs_hp;
2106
2107 /** AT stuff */
2108 /** @{ */
2109 /**
2110 * serialize the following fields, used for changes on
2111 * adaptive timeout
2112 */
2113 spinlock_t scp_at_lock __cfs_cacheline_aligned;
2114 /** estimated rpc service time */
2115 struct adaptive_timeout scp_at_estimate;
2116 /** reqs waiting for replies */
2117 struct ptlrpc_at_array scp_at_array;
2118 /** early reply timer */
2119 struct timer_list scp_at_timer;
2120 /** debug */
2121 unsigned long scp_at_checktime;
2122 /** check early replies */
2123 unsigned scp_at_check;
2124 /** @} */
2125
2126 /**
2127 * serialize the following fields, used for processing
2128 * replies for this portal
2129 */
2130 spinlock_t scp_rep_lock __cfs_cacheline_aligned;
2131 /** all the active replies */
2132 struct list_head scp_rep_active;
2133 /** List of free reply_states */
2134 struct list_head scp_rep_idle;
2135 /** waitq to run, when adding stuff to srv_free_rs_list */
2136 wait_queue_head_t scp_rep_waitq;
2137 /** # 'difficult' replies */
2138 atomic_t scp_nreps_difficult;
2139 };
2140
2141 #define ptlrpc_service_for_each_part(part, i, svc) \
2142 for (i = 0; \
2143 i < (svc)->srv_ncpts && \
2144 (svc)->srv_parts != NULL && \
2145 ((part) = (svc)->srv_parts[i]) != NULL; i++)
2146
2147 /**
2148 * Declaration of ptlrpcd control structure
2149 */
2150 struct ptlrpcd_ctl {
2151 /**
2152 * Ptlrpc thread control flags (LIOD_START, LIOD_STOP, LIOD_FORCE)
2153 */
2154 unsigned long pc_flags;
2155 /**
2156 * Thread lock protecting structure fields.
2157 */
2158 spinlock_t pc_lock;
2159 /**
2160 * Start completion.
2161 */
2162 struct completion pc_starting;
2163 /**
2164 * Stop completion.
2165 */
2166 struct completion pc_finishing;
2167 /**
2168 * Thread requests set.
2169 */
2170 struct ptlrpc_request_set *pc_set;
2171 /**
2172 * Thread name used in kthread_run()
2173 */
2174 char pc_name[16];
2175 /**
2176 * Environment for request interpreters to run in.
2177 */
2178 struct lu_env pc_env;
2179 /**
2180 * CPT the thread is bound on.
2181 */
2182 int pc_cpt;
2183 /**
2184 * Index of ptlrpcd thread in the array.
2185 */
2186 int pc_index;
2187 /**
2188 * Pointer to the array of partners' ptlrpcd_ctl structure.
2189 */
2190 struct ptlrpcd_ctl **pc_partners;
2191 /**
2192 * Number of the ptlrpcd's partners.
2193 */
2194 int pc_npartners;
2195 /**
2196 * Record the partner index to be processed next.
2197 */
2198 int pc_cursor;
2199 /**
2200 * Error code if the thread failed to fully start.
2201 */
2202 int pc_error;
2203 };
2204
2205 /* Bits for pc_flags */
2206 enum ptlrpcd_ctl_flags {
2207 /**
2208 * Ptlrpc thread start flag.
2209 */
2210 LIOD_START = 1 << 0,
2211 /**
2212 * Ptlrpc thread stop flag.
2213 */
2214 LIOD_STOP = 1 << 1,
2215 /**
2216 * Ptlrpc thread force flag (only stop force so far).
2217 * This will cause aborting any inflight rpcs handled
2218 * by thread if LIOD_STOP is specified.
2219 */
2220 LIOD_FORCE = 1 << 2,
2221 /**
2222 * This is a recovery ptlrpc thread.
2223 */
2224 LIOD_RECOVERY = 1 << 3,
2225 };
2226
2227 /**
2228 * \addtogroup nrs
2229 * @{
2230 *
2231 * Service compatibility function; the policy is compatible with all services.
2232 *
2233 * \param[in] svc The service the policy is attempting to register with.
2234 * \param[in] desc The policy descriptor
2235 *
2236 * \retval true The policy is compatible with the service
2237 *
2238 * \see ptlrpc_nrs_pol_desc::pd_compat()
2239 */
nrs_policy_compat_all(const struct ptlrpc_service * svc,const struct ptlrpc_nrs_pol_desc * desc)2240 static inline bool nrs_policy_compat_all(const struct ptlrpc_service *svc,
2241 const struct ptlrpc_nrs_pol_desc *desc)
2242 {
2243 return true;
2244 }
2245
2246 /**
2247 * Service compatibility function; the policy is compatible with only a specific
2248 * service which is identified by its human-readable name at
2249 * ptlrpc_service::srv_name.
2250 *
2251 * \param[in] svc The service the policy is attempting to register with.
2252 * \param[in] desc The policy descriptor
2253 *
2254 * \retval false The policy is not compatible with the service
2255 * \retval true The policy is compatible with the service
2256 *
2257 * \see ptlrpc_nrs_pol_desc::pd_compat()
2258 */
nrs_policy_compat_one(const struct ptlrpc_service * svc,const struct ptlrpc_nrs_pol_desc * desc)2259 static inline bool nrs_policy_compat_one(const struct ptlrpc_service *svc,
2260 const struct ptlrpc_nrs_pol_desc *desc)
2261 {
2262 LASSERT(desc->pd_compat_svc_name != NULL);
2263 return strcmp(svc->srv_name, desc->pd_compat_svc_name) == 0;
2264 }
2265
2266 /** @} nrs */
2267
2268 /* ptlrpc/events.c */
2269 extern lnet_handle_eq_t ptlrpc_eq_h;
2270 int ptlrpc_uuid_to_peer(struct obd_uuid *uuid,
2271 lnet_process_id_t *peer, lnet_nid_t *self);
2272 /**
2273 * These callbacks are invoked by LNet when something happened to
2274 * underlying buffer
2275 * @{
2276 */
2277 void request_out_callback(lnet_event_t *ev);
2278 void reply_in_callback(lnet_event_t *ev);
2279 void client_bulk_callback(lnet_event_t *ev);
2280 void request_in_callback(lnet_event_t *ev);
2281 void reply_out_callback(lnet_event_t *ev);
2282 /** @} */
2283
2284 /* ptlrpc/connection.c */
2285 struct ptlrpc_connection *ptlrpc_connection_get(lnet_process_id_t peer,
2286 lnet_nid_t self,
2287 struct obd_uuid *uuid);
2288 int ptlrpc_connection_put(struct ptlrpc_connection *c);
2289 struct ptlrpc_connection *ptlrpc_connection_addref(struct ptlrpc_connection *);
2290 int ptlrpc_connection_init(void);
2291 void ptlrpc_connection_fini(void);
2292
2293 /* ptlrpc/niobuf.c */
2294 /**
2295 * Actual interfacing with LNet to put/get/register/unregister stuff
2296 * @{
2297 */
2298
2299 int ptlrpc_unregister_bulk(struct ptlrpc_request *req, int async);
2300
ptlrpc_client_bulk_active(struct ptlrpc_request * req)2301 static inline int ptlrpc_client_bulk_active(struct ptlrpc_request *req)
2302 {
2303 struct ptlrpc_bulk_desc *desc;
2304 int rc;
2305
2306 LASSERT(req != NULL);
2307 desc = req->rq_bulk;
2308
2309 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK) &&
2310 req->rq_bulk_deadline > ktime_get_real_seconds())
2311 return 1;
2312
2313 if (!desc)
2314 return 0;
2315
2316 spin_lock(&desc->bd_lock);
2317 rc = desc->bd_md_count;
2318 spin_unlock(&desc->bd_lock);
2319 return rc;
2320 }
2321
2322 #define PTLRPC_REPLY_MAYBE_DIFFICULT 0x01
2323 #define PTLRPC_REPLY_EARLY 0x02
2324 int ptlrpc_send_reply(struct ptlrpc_request *req, int flags);
2325 int ptlrpc_reply(struct ptlrpc_request *req);
2326 int ptlrpc_send_error(struct ptlrpc_request *req, int difficult);
2327 int ptlrpc_error(struct ptlrpc_request *req);
2328 void ptlrpc_resend_req(struct ptlrpc_request *request);
2329 int ptlrpc_at_get_net_latency(struct ptlrpc_request *req);
2330 int ptl_send_rpc(struct ptlrpc_request *request, int noreply);
2331 int ptlrpc_register_rqbd(struct ptlrpc_request_buffer_desc *rqbd);
2332 /** @} */
2333
2334 /* ptlrpc/client.c */
2335 /**
2336 * Client-side portals API. Everything to send requests, receive replies,
2337 * request queues, request management, etc.
2338 * @{
2339 */
2340 void ptlrpc_request_committed(struct ptlrpc_request *req, int force);
2341
2342 void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
2343 struct ptlrpc_client *);
2344 struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid);
2345
2346 int ptlrpc_queue_wait(struct ptlrpc_request *req);
2347 int ptlrpc_replay_req(struct ptlrpc_request *req);
2348 int ptlrpc_unregister_reply(struct ptlrpc_request *req, int async);
2349 void ptlrpc_abort_inflight(struct obd_import *imp);
2350 void ptlrpc_abort_set(struct ptlrpc_request_set *set);
2351
2352 struct ptlrpc_request_set *ptlrpc_prep_set(void);
2353 struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
2354 void *arg);
2355 int ptlrpc_set_next_timeout(struct ptlrpc_request_set *);
2356 int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set);
2357 int ptlrpc_set_wait(struct ptlrpc_request_set *);
2358 int ptlrpc_expired_set(void *data);
2359 void ptlrpc_interrupted_set(void *data);
2360 void ptlrpc_mark_interrupted(struct ptlrpc_request *req);
2361 void ptlrpc_set_destroy(struct ptlrpc_request_set *);
2362 void ptlrpc_set_add_req(struct ptlrpc_request_set *, struct ptlrpc_request *);
2363 void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
2364 struct ptlrpc_request *req);
2365
2366 void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool);
2367 int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq);
2368
2369 struct ptlrpc_request_pool *
2370 ptlrpc_init_rq_pool(int, int,
2371 int (*populate_pool)(struct ptlrpc_request_pool *, int));
2372
2373 void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req);
2374 struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
2375 const struct req_format *format);
2376 struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
2377 struct ptlrpc_request_pool *,
2378 const struct req_format *format);
2379 void ptlrpc_request_free(struct ptlrpc_request *request);
2380 int ptlrpc_request_pack(struct ptlrpc_request *request,
2381 __u32 version, int opcode);
2382 struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
2383 const struct req_format *format,
2384 __u32 version, int opcode);
2385 int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
2386 __u32 version, int opcode, char **bufs,
2387 struct ptlrpc_cli_ctx *ctx);
2388 void ptlrpc_req_finished(struct ptlrpc_request *request);
2389 struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req);
2390 struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
2391 unsigned npages, unsigned max_brw,
2392 unsigned type, unsigned portal);
2393 void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *bulk, int pin);
ptlrpc_free_bulk_pin(struct ptlrpc_bulk_desc * bulk)2394 static inline void ptlrpc_free_bulk_pin(struct ptlrpc_bulk_desc *bulk)
2395 {
2396 __ptlrpc_free_bulk(bulk, 1);
2397 }
2398
ptlrpc_free_bulk_nopin(struct ptlrpc_bulk_desc * bulk)2399 static inline void ptlrpc_free_bulk_nopin(struct ptlrpc_bulk_desc *bulk)
2400 {
2401 __ptlrpc_free_bulk(bulk, 0);
2402 }
2403
2404 void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
2405 struct page *page, int pageoffset, int len, int);
ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc * desc,struct page * page,int pageoffset,int len)2406 static inline void ptlrpc_prep_bulk_page_pin(struct ptlrpc_bulk_desc *desc,
2407 struct page *page, int pageoffset,
2408 int len)
2409 {
2410 __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 1);
2411 }
2412
ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc * desc,struct page * page,int pageoffset,int len)2413 static inline void ptlrpc_prep_bulk_page_nopin(struct ptlrpc_bulk_desc *desc,
2414 struct page *page, int pageoffset,
2415 int len)
2416 {
2417 __ptlrpc_prep_bulk_page(desc, page, pageoffset, len, 0);
2418 }
2419
2420 void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
2421 struct obd_import *imp);
2422 __u64 ptlrpc_next_xid(void);
2423 __u64 ptlrpc_sample_next_xid(void);
2424 __u64 ptlrpc_req_xid(struct ptlrpc_request *request);
2425
2426 /* Set of routines to run a function in ptlrpcd context */
2427 void *ptlrpcd_alloc_work(struct obd_import *imp,
2428 int (*cb)(const struct lu_env *, void *), void *data);
2429 void ptlrpcd_destroy_work(void *handler);
2430 int ptlrpcd_queue_work(void *handler);
2431
2432 /** @} */
2433 struct ptlrpc_service_buf_conf {
2434 /* nbufs is buffers # to allocate when growing the pool */
2435 unsigned int bc_nbufs;
2436 /* buffer size to post */
2437 unsigned int bc_buf_size;
2438 /* portal to listed for requests on */
2439 unsigned int bc_req_portal;
2440 /* portal of where to send replies to */
2441 unsigned int bc_rep_portal;
2442 /* maximum request size to be accepted for this service */
2443 unsigned int bc_req_max_size;
2444 /* maximum reply size this service can ever send */
2445 unsigned int bc_rep_max_size;
2446 };
2447
2448 struct ptlrpc_service_thr_conf {
2449 /* threadname should be 8 characters or less - 6 will be added on */
2450 char *tc_thr_name;
2451 /* threads increasing factor for each CPU */
2452 unsigned int tc_thr_factor;
2453 /* service threads # to start on each partition while initializing */
2454 unsigned int tc_nthrs_init;
2455 /*
2456 * low water of threads # upper-limit on each partition while running,
2457 * service availability may be impacted if threads number is lower
2458 * than this value. It can be ZERO if the service doesn't require
2459 * CPU affinity or there is only one partition.
2460 */
2461 unsigned int tc_nthrs_base;
2462 /* "soft" limit for total threads number */
2463 unsigned int tc_nthrs_max;
2464 /* user specified threads number, it will be validated due to
2465 * other members of this structure. */
2466 unsigned int tc_nthrs_user;
2467 /* set NUMA node affinity for service threads */
2468 unsigned int tc_cpu_affinity;
2469 /* Tags for lu_context associated with service thread */
2470 __u32 tc_ctx_tags;
2471 };
2472
2473 struct ptlrpc_service_cpt_conf {
2474 struct cfs_cpt_table *cc_cptable;
2475 /* string pattern to describe CPTs for a service */
2476 char *cc_pattern;
2477 };
2478
2479 struct ptlrpc_service_conf {
2480 /* service name */
2481 char *psc_name;
2482 /* soft watchdog timeout multiplifier to print stuck service traces */
2483 unsigned int psc_watchdog_factor;
2484 /* buffer information */
2485 struct ptlrpc_service_buf_conf psc_buf;
2486 /* thread information */
2487 struct ptlrpc_service_thr_conf psc_thr;
2488 /* CPU partition information */
2489 struct ptlrpc_service_cpt_conf psc_cpt;
2490 /* function table */
2491 struct ptlrpc_service_ops psc_ops;
2492 };
2493
2494 /* ptlrpc/service.c */
2495 /**
2496 * Server-side services API. Register/unregister service, request state
2497 * management, service thread management
2498 *
2499 * @{
2500 */
2501 void ptlrpc_dispatch_difficult_reply(struct ptlrpc_reply_state *rs);
2502 void ptlrpc_schedule_difficult_reply(struct ptlrpc_reply_state *rs);
2503 struct ptlrpc_service *ptlrpc_register_service(
2504 struct ptlrpc_service_conf *conf,
2505 struct kset *parent,
2506 struct dentry *debugfs_entry);
2507
2508 int ptlrpc_start_threads(struct ptlrpc_service *svc);
2509 int ptlrpc_unregister_service(struct ptlrpc_service *service);
2510 int liblustre_check_services(void *arg);
2511
2512 int ptlrpc_hr_init(void);
2513 void ptlrpc_hr_fini(void);
2514
2515 /** @} */
2516
2517 /* ptlrpc/import.c */
2518 /**
2519 * Import API
2520 * @{
2521 */
2522 int ptlrpc_connect_import(struct obd_import *imp);
2523 int ptlrpc_init_import(struct obd_import *imp);
2524 int ptlrpc_disconnect_import(struct obd_import *imp, int noclose);
2525 int ptlrpc_import_recovery_state_machine(struct obd_import *imp);
2526
2527 /* ptlrpc/pack_generic.c */
2528 int ptlrpc_reconnect_import(struct obd_import *imp);
2529 /** @} */
2530
2531 /**
2532 * ptlrpc msg buffer and swab interface
2533 *
2534 * @{
2535 */
2536 int ptlrpc_buf_need_swab(struct ptlrpc_request *req, const int inout,
2537 int index);
2538 void ptlrpc_buf_set_swabbed(struct ptlrpc_request *req, const int inout,
2539 int index);
2540 int ptlrpc_unpack_rep_msg(struct ptlrpc_request *req, int len);
2541 int ptlrpc_unpack_req_msg(struct ptlrpc_request *req, int len);
2542
2543 void lustre_init_msg_v2(struct lustre_msg_v2 *msg, int count, __u32 *lens,
2544 char **bufs);
2545 int lustre_pack_request(struct ptlrpc_request *, __u32 magic, int count,
2546 __u32 *lens, char **bufs);
2547 int lustre_pack_reply(struct ptlrpc_request *, int count, __u32 *lens,
2548 char **bufs);
2549 int lustre_pack_reply_v2(struct ptlrpc_request *req, int count,
2550 __u32 *lens, char **bufs, int flags);
2551 #define LPRFL_EARLY_REPLY 1
2552 int lustre_pack_reply_flags(struct ptlrpc_request *, int count, __u32 *lens,
2553 char **bufs, int flags);
2554 int lustre_shrink_msg(struct lustre_msg *msg, int segment,
2555 unsigned int newlen, int move_data);
2556 void lustre_free_reply_state(struct ptlrpc_reply_state *rs);
2557 int __lustre_unpack_msg(struct lustre_msg *m, int len);
2558 int lustre_msg_hdr_size(__u32 magic, int count);
2559 int lustre_msg_size(__u32 magic, int count, __u32 *lengths);
2560 int lustre_msg_size_v2(int count, __u32 *lengths);
2561 int lustre_packed_msg_size(struct lustre_msg *msg);
2562 int lustre_msg_early_size(void);
2563 void *lustre_msg_buf_v2(struct lustre_msg_v2 *m, int n, int min_size);
2564 void *lustre_msg_buf(struct lustre_msg *m, int n, int minlen);
2565 int lustre_msg_buflen(struct lustre_msg *m, int n);
2566 int lustre_msg_bufcount(struct lustre_msg *m);
2567 char *lustre_msg_string(struct lustre_msg *m, int n, int max_len);
2568 __u32 lustre_msghdr_get_flags(struct lustre_msg *msg);
2569 void lustre_msghdr_set_flags(struct lustre_msg *msg, __u32 flags);
2570 __u32 lustre_msg_get_flags(struct lustre_msg *msg);
2571 void lustre_msg_add_flags(struct lustre_msg *msg, int flags);
2572 void lustre_msg_set_flags(struct lustre_msg *msg, int flags);
2573 void lustre_msg_clear_flags(struct lustre_msg *msg, int flags);
2574 __u32 lustre_msg_get_op_flags(struct lustre_msg *msg);
2575 void lustre_msg_add_op_flags(struct lustre_msg *msg, int flags);
2576 struct lustre_handle *lustre_msg_get_handle(struct lustre_msg *msg);
2577 __u32 lustre_msg_get_type(struct lustre_msg *msg);
2578 void lustre_msg_add_version(struct lustre_msg *msg, int version);
2579 __u32 lustre_msg_get_opc(struct lustre_msg *msg);
2580 __u64 lustre_msg_get_last_committed(struct lustre_msg *msg);
2581 __u64 *lustre_msg_get_versions(struct lustre_msg *msg);
2582 __u64 lustre_msg_get_transno(struct lustre_msg *msg);
2583 __u64 lustre_msg_get_slv(struct lustre_msg *msg);
2584 __u32 lustre_msg_get_limit(struct lustre_msg *msg);
2585 void lustre_msg_set_slv(struct lustre_msg *msg, __u64 slv);
2586 void lustre_msg_set_limit(struct lustre_msg *msg, __u64 limit);
2587 int lustre_msg_get_status(struct lustre_msg *msg);
2588 __u32 lustre_msg_get_conn_cnt(struct lustre_msg *msg);
2589 __u32 lustre_msg_get_magic(struct lustre_msg *msg);
2590 __u32 lustre_msg_get_timeout(struct lustre_msg *msg);
2591 __u32 lustre_msg_get_service_time(struct lustre_msg *msg);
2592 __u32 lustre_msg_get_cksum(struct lustre_msg *msg);
2593 __u32 lustre_msg_calc_cksum(struct lustre_msg *msg);
2594 void lustre_msg_set_handle(struct lustre_msg *msg,
2595 struct lustre_handle *handle);
2596 void lustre_msg_set_type(struct lustre_msg *msg, __u32 type);
2597 void lustre_msg_set_opc(struct lustre_msg *msg, __u32 opc);
2598 void lustre_msg_set_versions(struct lustre_msg *msg, __u64 *versions);
2599 void lustre_msg_set_transno(struct lustre_msg *msg, __u64 transno);
2600 void lustre_msg_set_status(struct lustre_msg *msg, __u32 status);
2601 void lustre_msg_set_conn_cnt(struct lustre_msg *msg, __u32 conn_cnt);
2602 void ptlrpc_request_set_replen(struct ptlrpc_request *req);
2603 void lustre_msg_set_timeout(struct lustre_msg *msg, __u32 timeout);
2604 void lustre_msg_set_service_time(struct lustre_msg *msg, __u32 service_time);
2605 void lustre_msg_set_jobid(struct lustre_msg *msg, char *jobid);
2606 void lustre_msg_set_cksum(struct lustre_msg *msg, __u32 cksum);
2607
2608 static inline void
lustre_shrink_reply(struct ptlrpc_request * req,int segment,unsigned int newlen,int move_data)2609 lustre_shrink_reply(struct ptlrpc_request *req, int segment,
2610 unsigned int newlen, int move_data)
2611 {
2612 LASSERT(req->rq_reply_state);
2613 LASSERT(req->rq_repmsg);
2614 req->rq_replen = lustre_shrink_msg(req->rq_repmsg, segment,
2615 newlen, move_data);
2616 }
2617
2618 #ifdef CONFIG_LUSTRE_TRANSLATE_ERRNOS
2619
ptlrpc_status_hton(int h)2620 static inline int ptlrpc_status_hton(int h)
2621 {
2622 /*
2623 * Positive errnos must be network errnos, such as LUSTRE_EDEADLK,
2624 * ELDLM_LOCK_ABORTED, etc.
2625 */
2626 if (h < 0)
2627 return -lustre_errno_hton(-h);
2628 else
2629 return h;
2630 }
2631
ptlrpc_status_ntoh(int n)2632 static inline int ptlrpc_status_ntoh(int n)
2633 {
2634 /*
2635 * See the comment in ptlrpc_status_hton().
2636 */
2637 if (n < 0)
2638 return -lustre_errno_ntoh(-n);
2639 else
2640 return n;
2641 }
2642
2643 #else
2644
2645 #define ptlrpc_status_hton(h) (h)
2646 #define ptlrpc_status_ntoh(n) (n)
2647
2648 #endif
2649 /** @} */
2650
2651 /** Change request phase of \a req to \a new_phase */
2652 static inline void
ptlrpc_rqphase_move(struct ptlrpc_request * req,enum rq_phase new_phase)2653 ptlrpc_rqphase_move(struct ptlrpc_request *req, enum rq_phase new_phase)
2654 {
2655 if (req->rq_phase == new_phase)
2656 return;
2657
2658 if (new_phase == RQ_PHASE_UNREGISTERING) {
2659 req->rq_next_phase = req->rq_phase;
2660 if (req->rq_import)
2661 atomic_inc(&req->rq_import->imp_unregistering);
2662 }
2663
2664 if (req->rq_phase == RQ_PHASE_UNREGISTERING) {
2665 if (req->rq_import)
2666 atomic_dec(&req->rq_import->imp_unregistering);
2667 }
2668
2669 DEBUG_REQ(D_INFO, req, "move req \"%s\" -> \"%s\"",
2670 ptlrpc_rqphase2str(req), ptlrpc_phase2str(new_phase));
2671
2672 req->rq_phase = new_phase;
2673 }
2674
2675 /**
2676 * Returns true if request \a req got early reply and hard deadline is not met
2677 */
2678 static inline int
ptlrpc_client_early(struct ptlrpc_request * req)2679 ptlrpc_client_early(struct ptlrpc_request *req)
2680 {
2681 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2682 req->rq_reply_deadline > ktime_get_real_seconds())
2683 return 0;
2684 return req->rq_early;
2685 }
2686
2687 /**
2688 * Returns true if we got real reply from server for this request
2689 */
2690 static inline int
ptlrpc_client_replied(struct ptlrpc_request * req)2691 ptlrpc_client_replied(struct ptlrpc_request *req)
2692 {
2693 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2694 req->rq_reply_deadline > ktime_get_real_seconds())
2695 return 0;
2696 return req->rq_replied;
2697 }
2698
2699 /** Returns true if request \a req is in process of receiving server reply */
2700 static inline int
ptlrpc_client_recv(struct ptlrpc_request * req)2701 ptlrpc_client_recv(struct ptlrpc_request *req)
2702 {
2703 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2704 req->rq_reply_deadline > ktime_get_real_seconds())
2705 return 1;
2706 return req->rq_receiving_reply;
2707 }
2708
2709 static inline int
ptlrpc_client_recv_or_unlink(struct ptlrpc_request * req)2710 ptlrpc_client_recv_or_unlink(struct ptlrpc_request *req)
2711 {
2712 int rc;
2713
2714 spin_lock(&req->rq_lock);
2715 if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
2716 req->rq_reply_deadline > ktime_get_real_seconds()) {
2717 spin_unlock(&req->rq_lock);
2718 return 1;
2719 }
2720 rc = req->rq_receiving_reply;
2721 rc = rc || req->rq_req_unlink || req->rq_reply_unlink;
2722 spin_unlock(&req->rq_lock);
2723 return rc;
2724 }
2725
2726 static inline void
ptlrpc_client_wake_req(struct ptlrpc_request * req)2727 ptlrpc_client_wake_req(struct ptlrpc_request *req)
2728 {
2729 if (req->rq_set == NULL)
2730 wake_up(&req->rq_reply_waitq);
2731 else
2732 wake_up(&req->rq_set->set_waitq);
2733 }
2734
2735 static inline void
ptlrpc_rs_addref(struct ptlrpc_reply_state * rs)2736 ptlrpc_rs_addref(struct ptlrpc_reply_state *rs)
2737 {
2738 LASSERT(atomic_read(&rs->rs_refcount) > 0);
2739 atomic_inc(&rs->rs_refcount);
2740 }
2741
2742 static inline void
ptlrpc_rs_decref(struct ptlrpc_reply_state * rs)2743 ptlrpc_rs_decref(struct ptlrpc_reply_state *rs)
2744 {
2745 LASSERT(atomic_read(&rs->rs_refcount) > 0);
2746 if (atomic_dec_and_test(&rs->rs_refcount))
2747 lustre_free_reply_state(rs);
2748 }
2749
2750 /* Should only be called once per req */
ptlrpc_req_drop_rs(struct ptlrpc_request * req)2751 static inline void ptlrpc_req_drop_rs(struct ptlrpc_request *req)
2752 {
2753 if (req->rq_reply_state == NULL)
2754 return; /* shouldn't occur */
2755 ptlrpc_rs_decref(req->rq_reply_state);
2756 req->rq_reply_state = NULL;
2757 req->rq_repmsg = NULL;
2758 }
2759
lustre_request_magic(struct ptlrpc_request * req)2760 static inline __u32 lustre_request_magic(struct ptlrpc_request *req)
2761 {
2762 return lustre_msg_get_magic(req->rq_reqmsg);
2763 }
2764
ptlrpc_req_get_repsize(struct ptlrpc_request * req)2765 static inline int ptlrpc_req_get_repsize(struct ptlrpc_request *req)
2766 {
2767 switch (req->rq_reqmsg->lm_magic) {
2768 case LUSTRE_MSG_MAGIC_V2:
2769 return req->rq_reqmsg->lm_repsize;
2770 default:
2771 LASSERTF(0, "incorrect message magic: %08x\n",
2772 req->rq_reqmsg->lm_magic);
2773 return -EFAULT;
2774 }
2775 }
2776
ptlrpc_send_limit_expired(struct ptlrpc_request * req)2777 static inline int ptlrpc_send_limit_expired(struct ptlrpc_request *req)
2778 {
2779 if (req->rq_delay_limit != 0 &&
2780 time_before(cfs_time_add(req->rq_queued_time,
2781 cfs_time_seconds(req->rq_delay_limit)),
2782 cfs_time_current())) {
2783 return 1;
2784 }
2785 return 0;
2786 }
2787
ptlrpc_no_resend(struct ptlrpc_request * req)2788 static inline int ptlrpc_no_resend(struct ptlrpc_request *req)
2789 {
2790 if (!req->rq_no_resend && ptlrpc_send_limit_expired(req)) {
2791 spin_lock(&req->rq_lock);
2792 req->rq_no_resend = 1;
2793 spin_unlock(&req->rq_lock);
2794 }
2795 return req->rq_no_resend;
2796 }
2797
2798 static inline int
ptlrpc_server_get_timeout(struct ptlrpc_service_part * svcpt)2799 ptlrpc_server_get_timeout(struct ptlrpc_service_part *svcpt)
2800 {
2801 int at = AT_OFF ? 0 : at_get(&svcpt->scp_at_estimate);
2802
2803 return svcpt->scp_service->srv_watchdog_factor *
2804 max_t(int, at, obd_timeout);
2805 }
2806
2807 static inline struct ptlrpc_service *
ptlrpc_req2svc(struct ptlrpc_request * req)2808 ptlrpc_req2svc(struct ptlrpc_request *req)
2809 {
2810 LASSERT(req->rq_rqbd != NULL);
2811 return req->rq_rqbd->rqbd_svcpt->scp_service;
2812 }
2813
2814 /* ldlm/ldlm_lib.c */
2815 /**
2816 * Target client logic
2817 * @{
2818 */
2819 int client_obd_setup(struct obd_device *obddev, struct lustre_cfg *lcfg);
2820 int client_obd_cleanup(struct obd_device *obddev);
2821 int client_connect_import(const struct lu_env *env,
2822 struct obd_export **exp, struct obd_device *obd,
2823 struct obd_uuid *cluuid, struct obd_connect_data *,
2824 void *localdata);
2825 int client_disconnect_export(struct obd_export *exp);
2826 int client_import_add_conn(struct obd_import *imp, struct obd_uuid *uuid,
2827 int priority);
2828 int client_import_del_conn(struct obd_import *imp, struct obd_uuid *uuid);
2829 int client_import_find_conn(struct obd_import *imp, lnet_nid_t peer,
2830 struct obd_uuid *uuid);
2831 int import_set_conn_priority(struct obd_import *imp, struct obd_uuid *uuid);
2832 void client_destroy_import(struct obd_import *imp);
2833 /** @} */
2834
2835 /* ptlrpc/pinger.c */
2836 /**
2837 * Pinger API (client side only)
2838 * @{
2839 */
2840 enum timeout_event {
2841 TIMEOUT_GRANT = 1
2842 };
2843
2844 struct timeout_item;
2845 typedef int (*timeout_cb_t)(struct timeout_item *, void *);
2846 int ptlrpc_pinger_add_import(struct obd_import *imp);
2847 int ptlrpc_pinger_del_import(struct obd_import *imp);
2848 int ptlrpc_add_timeout_client(int time, enum timeout_event event,
2849 timeout_cb_t cb, void *data,
2850 struct list_head *obd_list);
2851 int ptlrpc_del_timeout_client(struct list_head *obd_list,
2852 enum timeout_event event);
2853 struct ptlrpc_request *ptlrpc_prep_ping(struct obd_import *imp);
2854 int ptlrpc_obd_ping(struct obd_device *obd);
2855 void ptlrpc_pinger_ir_up(void);
2856 void ptlrpc_pinger_ir_down(void);
2857 /** @} */
2858 int ptlrpc_pinger_suppress_pings(void);
2859
2860 /* ptlrpc/ptlrpcd.c */
2861 void ptlrpcd_stop(struct ptlrpcd_ctl *pc, int force);
2862 void ptlrpcd_free(struct ptlrpcd_ctl *pc);
2863 void ptlrpcd_wake(struct ptlrpc_request *req);
2864 void ptlrpcd_add_req(struct ptlrpc_request *req);
2865 int ptlrpcd_addref(void);
2866 void ptlrpcd_decref(void);
2867
2868 /* ptlrpc/lproc_ptlrpc.c */
2869 /**
2870 * procfs output related functions
2871 * @{
2872 */
2873 const char *ll_opcode2str(__u32 opcode);
2874 void ptlrpc_lprocfs_register_obd(struct obd_device *obd);
2875 void ptlrpc_lprocfs_unregister_obd(struct obd_device *obd);
2876 void ptlrpc_lprocfs_brw(struct ptlrpc_request *req, int bytes);
2877 /** @} */
2878
2879 /* ptlrpc/llog_client.c */
2880 extern struct llog_operations llog_client_ops;
2881 /** @} net */
2882
2883 #endif
2884 /** @} PtlRPC */
2885