1 /**
2 * Copyright (c) 2014 Redpine Signals Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <linux/etherdevice.h>
18 #include "rsi_mgmt.h"
19 #include "rsi_common.h"
20
21 static struct bootup_params boot_params_20 = {
22 .magic_number = cpu_to_le16(0x5aa5),
23 .crystal_good_time = 0x0,
24 .valid = cpu_to_le32(VALID_20),
25 .reserved_for_valids = 0x0,
26 .bootup_mode_info = 0x0,
27 .digital_loop_back_params = 0x0,
28 .rtls_timestamp_en = 0x0,
29 .host_spi_intr_cfg = 0x0,
30 .device_clk_info = {{
31 .pll_config_g = {
32 .tapll_info_g = {
33 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
34 (TA_PLL_M_VAL_20)),
35 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
36 },
37 .pll960_info_g = {
38 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
39 (PLL960_N_VAL_20)),
40 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
41 .pll_reg_3 = 0x0,
42 },
43 .afepll_info_g = {
44 .pll_reg = cpu_to_le16(0x9f0),
45 }
46 },
47 .switch_clk_g = {
48 .switch_clk_info = cpu_to_le16(BIT(3)),
49 .bbp_lmac_clk_reg_val = cpu_to_le16(0x121),
50 .umac_clock_reg_config = 0x0,
51 .qspi_uart_clock_reg_config = 0x0
52 }
53 },
54 {
55 .pll_config_g = {
56 .tapll_info_g = {
57 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
58 (TA_PLL_M_VAL_20)),
59 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
60 },
61 .pll960_info_g = {
62 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
63 (PLL960_N_VAL_20)),
64 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
65 .pll_reg_3 = 0x0,
66 },
67 .afepll_info_g = {
68 .pll_reg = cpu_to_le16(0x9f0),
69 }
70 },
71 .switch_clk_g = {
72 .switch_clk_info = 0x0,
73 .bbp_lmac_clk_reg_val = 0x0,
74 .umac_clock_reg_config = 0x0,
75 .qspi_uart_clock_reg_config = 0x0
76 }
77 },
78 {
79 .pll_config_g = {
80 .tapll_info_g = {
81 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
82 (TA_PLL_M_VAL_20)),
83 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
84 },
85 .pll960_info_g = {
86 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
87 (PLL960_N_VAL_20)),
88 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
89 .pll_reg_3 = 0x0,
90 },
91 .afepll_info_g = {
92 .pll_reg = cpu_to_le16(0x9f0),
93 }
94 },
95 .switch_clk_g = {
96 .switch_clk_info = 0x0,
97 .bbp_lmac_clk_reg_val = 0x0,
98 .umac_clock_reg_config = 0x0,
99 .qspi_uart_clock_reg_config = 0x0
100 }
101 } },
102 .buckboost_wakeup_cnt = 0x0,
103 .pmu_wakeup_wait = 0x0,
104 .shutdown_wait_time = 0x0,
105 .pmu_slp_clkout_sel = 0x0,
106 .wdt_prog_value = 0x0,
107 .wdt_soc_rst_delay = 0x0,
108 .dcdc_operation_mode = 0x0,
109 .soc_reset_wait_cnt = 0x0
110 };
111
112 static struct bootup_params boot_params_40 = {
113 .magic_number = cpu_to_le16(0x5aa5),
114 .crystal_good_time = 0x0,
115 .valid = cpu_to_le32(VALID_40),
116 .reserved_for_valids = 0x0,
117 .bootup_mode_info = 0x0,
118 .digital_loop_back_params = 0x0,
119 .rtls_timestamp_en = 0x0,
120 .host_spi_intr_cfg = 0x0,
121 .device_clk_info = {{
122 .pll_config_g = {
123 .tapll_info_g = {
124 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
125 (TA_PLL_M_VAL_40)),
126 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
127 },
128 .pll960_info_g = {
129 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
130 (PLL960_N_VAL_40)),
131 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
132 .pll_reg_3 = 0x0,
133 },
134 .afepll_info_g = {
135 .pll_reg = cpu_to_le16(0x9f0),
136 }
137 },
138 .switch_clk_g = {
139 .switch_clk_info = cpu_to_le16(0x09),
140 .bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
141 .umac_clock_reg_config = cpu_to_le16(0x48),
142 .qspi_uart_clock_reg_config = 0x0
143 }
144 },
145 {
146 .pll_config_g = {
147 .tapll_info_g = {
148 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
149 (TA_PLL_M_VAL_40)),
150 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
151 },
152 .pll960_info_g = {
153 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
154 (PLL960_N_VAL_40)),
155 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
156 .pll_reg_3 = 0x0,
157 },
158 .afepll_info_g = {
159 .pll_reg = cpu_to_le16(0x9f0),
160 }
161 },
162 .switch_clk_g = {
163 .switch_clk_info = 0x0,
164 .bbp_lmac_clk_reg_val = 0x0,
165 .umac_clock_reg_config = 0x0,
166 .qspi_uart_clock_reg_config = 0x0
167 }
168 },
169 {
170 .pll_config_g = {
171 .tapll_info_g = {
172 .pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
173 (TA_PLL_M_VAL_40)),
174 .pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
175 },
176 .pll960_info_g = {
177 .pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
178 (PLL960_N_VAL_40)),
179 .pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
180 .pll_reg_3 = 0x0,
181 },
182 .afepll_info_g = {
183 .pll_reg = cpu_to_le16(0x9f0),
184 }
185 },
186 .switch_clk_g = {
187 .switch_clk_info = 0x0,
188 .bbp_lmac_clk_reg_val = 0x0,
189 .umac_clock_reg_config = 0x0,
190 .qspi_uart_clock_reg_config = 0x0
191 }
192 } },
193 .buckboost_wakeup_cnt = 0x0,
194 .pmu_wakeup_wait = 0x0,
195 .shutdown_wait_time = 0x0,
196 .pmu_slp_clkout_sel = 0x0,
197 .wdt_prog_value = 0x0,
198 .wdt_soc_rst_delay = 0x0,
199 .dcdc_operation_mode = 0x0,
200 .soc_reset_wait_cnt = 0x0
201 };
202
203 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
204
205 /**
206 * rsi_set_default_parameters() - This function sets default parameters.
207 * @common: Pointer to the driver private structure.
208 *
209 * Return: none
210 */
rsi_set_default_parameters(struct rsi_common * common)211 static void rsi_set_default_parameters(struct rsi_common *common)
212 {
213 common->band = IEEE80211_BAND_2GHZ;
214 common->channel_width = BW_20MHZ;
215 common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
216 common->channel = 1;
217 common->min_rate = 0xffff;
218 common->fsm_state = FSM_CARD_NOT_READY;
219 common->iface_down = true;
220 common->endpoint = EP_2GHZ_20MHZ;
221 }
222
223 /**
224 * rsi_set_contention_vals() - This function sets the contention values for the
225 * backoff procedure.
226 * @common: Pointer to the driver private structure.
227 *
228 * Return: None.
229 */
rsi_set_contention_vals(struct rsi_common * common)230 static void rsi_set_contention_vals(struct rsi_common *common)
231 {
232 u8 ii = 0;
233
234 for (; ii < NUM_EDCA_QUEUES; ii++) {
235 common->tx_qinfo[ii].wme_params =
236 (((common->edca_params[ii].cw_min / 2) +
237 (common->edca_params[ii].aifs)) *
238 WMM_SHORT_SLOT_TIME + SIFS_DURATION);
239 common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
240 common->tx_qinfo[ii].pkt_contended = 0;
241 }
242 }
243
244 /**
245 * rsi_send_internal_mgmt_frame() - This function sends management frames to
246 * firmware.Also schedules packet to queue
247 * for transmission.
248 * @common: Pointer to the driver private structure.
249 * @skb: Pointer to the socket buffer structure.
250 *
251 * Return: 0 on success, -1 on failure.
252 */
rsi_send_internal_mgmt_frame(struct rsi_common * common,struct sk_buff * skb)253 static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
254 struct sk_buff *skb)
255 {
256 struct skb_info *tx_params;
257
258 if (skb == NULL) {
259 rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
260 return -ENOMEM;
261 }
262 tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
263 tx_params->flags |= INTERNAL_MGMT_PKT;
264 skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
265 rsi_set_event(&common->tx_thread.event);
266 return 0;
267 }
268
269 /**
270 * rsi_load_radio_caps() - This function is used to send radio capabilities
271 * values to firmware.
272 * @common: Pointer to the driver private structure.
273 *
274 * Return: 0 on success, corresponding negative error code on failure.
275 */
rsi_load_radio_caps(struct rsi_common * common)276 static int rsi_load_radio_caps(struct rsi_common *common)
277 {
278 struct rsi_radio_caps *radio_caps;
279 struct rsi_hw *adapter = common->priv;
280 u16 inx = 0;
281 u8 ii;
282 u8 radio_id = 0;
283 u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
284 0xf0, 0xf0, 0xf0, 0xf0,
285 0xf0, 0xf0, 0xf0, 0xf0,
286 0xf0, 0xf0, 0xf0, 0xf0,
287 0xf0, 0xf0, 0xf0, 0xf0};
288 struct sk_buff *skb;
289
290 rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
291
292 skb = dev_alloc_skb(sizeof(struct rsi_radio_caps));
293
294 if (!skb) {
295 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
296 __func__);
297 return -ENOMEM;
298 }
299
300 memset(skb->data, 0, sizeof(struct rsi_radio_caps));
301 radio_caps = (struct rsi_radio_caps *)skb->data;
302
303 radio_caps->desc_word[1] = cpu_to_le16(RADIO_CAPABILITIES);
304 radio_caps->desc_word[4] = cpu_to_le16(RSI_RF_TYPE << 8);
305
306 if (common->channel_width == BW_40MHZ) {
307 radio_caps->desc_word[7] |= cpu_to_le16(RSI_LMAC_CLOCK_80MHZ);
308 radio_caps->desc_word[7] |= cpu_to_le16(RSI_ENABLE_40MHZ);
309
310 if (common->fsm_state == FSM_MAC_INIT_DONE) {
311 struct ieee80211_hw *hw = adapter->hw;
312 struct ieee80211_conf *conf = &hw->conf;
313 if (conf_is_ht40_plus(conf)) {
314 radio_caps->desc_word[5] =
315 cpu_to_le16(LOWER_20_ENABLE);
316 radio_caps->desc_word[5] |=
317 cpu_to_le16(LOWER_20_ENABLE >> 12);
318 } else if (conf_is_ht40_minus(conf)) {
319 radio_caps->desc_word[5] =
320 cpu_to_le16(UPPER_20_ENABLE);
321 radio_caps->desc_word[5] |=
322 cpu_to_le16(UPPER_20_ENABLE >> 12);
323 } else {
324 radio_caps->desc_word[5] =
325 cpu_to_le16(BW_40MHZ << 12);
326 radio_caps->desc_word[5] |=
327 cpu_to_le16(FULL40M_ENABLE);
328 }
329 }
330 }
331
332 radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
333 radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
334 radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
335 radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
336 radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
337 radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
338
339 radio_caps->desc_word[7] |= cpu_to_le16(radio_id << 8);
340
341 for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
342 radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
343 radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
344 radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
345 radio_caps->qos_params[ii].txop_q = 0;
346 }
347
348 for (ii = 0; ii < MAX_HW_QUEUES - 4; ii++) {
349 radio_caps->qos_params[ii].cont_win_min_q =
350 cpu_to_le16(common->edca_params[ii].cw_min);
351 radio_caps->qos_params[ii].cont_win_max_q =
352 cpu_to_le16(common->edca_params[ii].cw_max);
353 radio_caps->qos_params[ii].aifsn_val_q =
354 cpu_to_le16((common->edca_params[ii].aifs) << 8);
355 radio_caps->qos_params[ii].txop_q =
356 cpu_to_le16(common->edca_params[ii].txop);
357 }
358
359 memcpy(&common->rate_pwr[0], &gc[0], 40);
360 for (ii = 0; ii < 20; ii++)
361 radio_caps->gcpd_per_rate[inx++] =
362 cpu_to_le16(common->rate_pwr[ii] & 0x00FF);
363
364 radio_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_radio_caps) -
365 FRAME_DESC_SZ) |
366 (RSI_WIFI_MGMT_Q << 12));
367
368
369 skb_put(skb, (sizeof(struct rsi_radio_caps)));
370
371 return rsi_send_internal_mgmt_frame(common, skb);
372 }
373
374 /**
375 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
376 * @common: Pointer to the driver private structure.
377 * @msg: Pointer to received packet.
378 * @msg_len: Length of the recieved packet.
379 * @type: Type of recieved packet.
380 *
381 * Return: 0 on success, -1 on failure.
382 */
rsi_mgmt_pkt_to_core(struct rsi_common * common,u8 * msg,s32 msg_len,u8 type)383 static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
384 u8 *msg,
385 s32 msg_len,
386 u8 type)
387 {
388 struct rsi_hw *adapter = common->priv;
389 struct ieee80211_tx_info *info;
390 struct skb_info *rx_params;
391 u8 pad_bytes = msg[4];
392 u8 pkt_recv;
393 struct sk_buff *skb;
394 char *buffer;
395
396 if (type == RX_DOT11_MGMT) {
397 if (!adapter->sc_nvifs)
398 return -ENOLINK;
399
400 msg_len -= pad_bytes;
401 if ((msg_len <= 0) || (!msg)) {
402 rsi_dbg(MGMT_RX_ZONE,
403 "%s: Invalid rx msg of len = %d\n",
404 __func__, msg_len);
405 return -EINVAL;
406 }
407
408 skb = dev_alloc_skb(msg_len);
409 if (!skb) {
410 rsi_dbg(ERR_ZONE, "%s: Failed to allocate skb\n",
411 __func__);
412 return -ENOMEM;
413 }
414
415 buffer = skb_put(skb, msg_len);
416
417 memcpy(buffer,
418 (u8 *)(msg + FRAME_DESC_SZ + pad_bytes),
419 msg_len);
420
421 pkt_recv = buffer[0];
422
423 info = IEEE80211_SKB_CB(skb);
424 rx_params = (struct skb_info *)info->driver_data;
425 rx_params->rssi = rsi_get_rssi(msg);
426 rx_params->channel = rsi_get_channel(msg);
427 rsi_indicate_pkt_to_os(common, skb);
428 } else {
429 rsi_dbg(MGMT_TX_ZONE, "%s: Internal Packet\n", __func__);
430 }
431
432 return 0;
433 }
434
435 /**
436 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
437 * frame to firmware.
438 * @common: Pointer to the driver private structure.
439 * @opmode: Operating mode of device.
440 * @notify_event: Notification about station connection.
441 * @bssid: bssid.
442 * @qos_enable: Qos is enabled.
443 * @aid: Aid (unique for all STA).
444 *
445 * Return: status: 0 on success, corresponding negative error code on failure.
446 */
rsi_hal_send_sta_notify_frame(struct rsi_common * common,u8 opmode,u8 notify_event,const unsigned char * bssid,u8 qos_enable,u16 aid)447 static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
448 u8 opmode,
449 u8 notify_event,
450 const unsigned char *bssid,
451 u8 qos_enable,
452 u16 aid)
453 {
454 struct sk_buff *skb = NULL;
455 struct rsi_peer_notify *peer_notify;
456 u16 vap_id = 0;
457 int status;
458
459 rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
460
461 skb = dev_alloc_skb(sizeof(struct rsi_peer_notify));
462
463 if (!skb) {
464 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
465 __func__);
466 return -ENOMEM;
467 }
468
469 memset(skb->data, 0, sizeof(struct rsi_peer_notify));
470 peer_notify = (struct rsi_peer_notify *)skb->data;
471
472 peer_notify->command = cpu_to_le16(opmode << 1);
473
474 switch (notify_event) {
475 case STA_CONNECTED:
476 peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
477 break;
478 case STA_DISCONNECTED:
479 peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
480 break;
481 default:
482 break;
483 }
484
485 peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
486 ether_addr_copy(peer_notify->mac_addr, bssid);
487
488 peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
489
490 peer_notify->desc_word[0] =
491 cpu_to_le16((sizeof(struct rsi_peer_notify) - FRAME_DESC_SZ) |
492 (RSI_WIFI_MGMT_Q << 12));
493 peer_notify->desc_word[1] = cpu_to_le16(PEER_NOTIFY);
494 peer_notify->desc_word[7] |= cpu_to_le16(vap_id << 8);
495
496 skb_put(skb, sizeof(struct rsi_peer_notify));
497
498 status = rsi_send_internal_mgmt_frame(common, skb);
499
500 if (!status && qos_enable) {
501 rsi_set_contention_vals(common);
502 status = rsi_load_radio_caps(common);
503 }
504 return status;
505 }
506
507 /**
508 * rsi_send_aggregation_params_frame() - This function sends the ampdu
509 * indication frame to firmware.
510 * @common: Pointer to the driver private structure.
511 * @tid: traffic identifier.
512 * @ssn: ssn.
513 * @buf_size: buffer size.
514 * @event: notification about station connection.
515 *
516 * Return: 0 on success, corresponding negative error code on failure.
517 */
rsi_send_aggregation_params_frame(struct rsi_common * common,u16 tid,u16 ssn,u8 buf_size,u8 event)518 int rsi_send_aggregation_params_frame(struct rsi_common *common,
519 u16 tid,
520 u16 ssn,
521 u8 buf_size,
522 u8 event)
523 {
524 struct sk_buff *skb = NULL;
525 struct rsi_mac_frame *mgmt_frame;
526 u8 peer_id = 0;
527
528 skb = dev_alloc_skb(FRAME_DESC_SZ);
529
530 if (!skb) {
531 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
532 __func__);
533 return -ENOMEM;
534 }
535
536 memset(skb->data, 0, FRAME_DESC_SZ);
537 mgmt_frame = (struct rsi_mac_frame *)skb->data;
538
539 rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
540
541 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
542 mgmt_frame->desc_word[1] = cpu_to_le16(AMPDU_IND);
543
544 if (event == STA_TX_ADDBA_DONE) {
545 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
546 mgmt_frame->desc_word[5] = cpu_to_le16(buf_size);
547 mgmt_frame->desc_word[7] =
548 cpu_to_le16((tid | (START_AMPDU_AGGR << 4) | (peer_id << 8)));
549 } else if (event == STA_RX_ADDBA_DONE) {
550 mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
551 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
552 (START_AMPDU_AGGR << 4) |
553 (RX_BA_INDICATION << 5) |
554 (peer_id << 8));
555 } else if (event == STA_TX_DELBA) {
556 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
557 (STOP_AMPDU_AGGR << 4) |
558 (peer_id << 8));
559 } else if (event == STA_RX_DELBA) {
560 mgmt_frame->desc_word[7] = cpu_to_le16(tid |
561 (STOP_AMPDU_AGGR << 4) |
562 (RX_BA_INDICATION << 5) |
563 (peer_id << 8));
564 }
565
566 skb_put(skb, FRAME_DESC_SZ);
567
568 return rsi_send_internal_mgmt_frame(common, skb);
569 }
570
571 /**
572 * rsi_program_bb_rf() - This function starts base band and RF programming.
573 * This is called after initial configurations are done.
574 * @common: Pointer to the driver private structure.
575 *
576 * Return: 0 on success, corresponding negative error code on failure.
577 */
rsi_program_bb_rf(struct rsi_common * common)578 static int rsi_program_bb_rf(struct rsi_common *common)
579 {
580 struct sk_buff *skb;
581 struct rsi_mac_frame *mgmt_frame;
582
583 rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
584
585 skb = dev_alloc_skb(FRAME_DESC_SZ);
586 if (!skb) {
587 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
588 __func__);
589 return -ENOMEM;
590 }
591
592 memset(skb->data, 0, FRAME_DESC_SZ);
593 mgmt_frame = (struct rsi_mac_frame *)skb->data;
594
595 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
596 mgmt_frame->desc_word[1] = cpu_to_le16(BBP_PROG_IN_TA);
597 mgmt_frame->desc_word[4] = cpu_to_le16(common->endpoint);
598
599 if (common->rf_reset) {
600 mgmt_frame->desc_word[7] = cpu_to_le16(RF_RESET_ENABLE);
601 rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
602 __func__);
603 common->rf_reset = 0;
604 }
605 common->bb_rf_prog_count = 1;
606 mgmt_frame->desc_word[7] |= cpu_to_le16(PUT_BBP_RESET |
607 BBP_REG_WRITE | (RSI_RF_TYPE << 4));
608 skb_put(skb, FRAME_DESC_SZ);
609
610 return rsi_send_internal_mgmt_frame(common, skb);
611 }
612
613 /**
614 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
615 * @common: Pointer to the driver private structure.
616 * @opmode: Operating mode of device.
617 *
618 * Return: 0 on success, corresponding negative error code on failure.
619 */
rsi_set_vap_capabilities(struct rsi_common * common,enum opmode mode)620 int rsi_set_vap_capabilities(struct rsi_common *common, enum opmode mode)
621 {
622 struct sk_buff *skb = NULL;
623 struct rsi_vap_caps *vap_caps;
624 struct rsi_hw *adapter = common->priv;
625 struct ieee80211_hw *hw = adapter->hw;
626 struct ieee80211_conf *conf = &hw->conf;
627 u16 vap_id = 0;
628
629 rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
630
631 skb = dev_alloc_skb(sizeof(struct rsi_vap_caps));
632 if (!skb) {
633 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
634 __func__);
635 return -ENOMEM;
636 }
637
638 memset(skb->data, 0, sizeof(struct rsi_vap_caps));
639 vap_caps = (struct rsi_vap_caps *)skb->data;
640
641 vap_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_vap_caps) -
642 FRAME_DESC_SZ) |
643 (RSI_WIFI_MGMT_Q << 12));
644 vap_caps->desc_word[1] = cpu_to_le16(VAP_CAPABILITIES);
645 vap_caps->desc_word[4] = cpu_to_le16(mode |
646 (common->channel_width << 8));
647 vap_caps->desc_word[7] = cpu_to_le16((vap_id << 8) |
648 (common->mac_id << 4) |
649 common->radio_id);
650
651 memcpy(vap_caps->mac_addr, common->mac_addr, IEEE80211_ADDR_LEN);
652 vap_caps->keep_alive_period = cpu_to_le16(90);
653 vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
654
655 vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
656 vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
657
658 if (common->band == IEEE80211_BAND_5GHZ) {
659 vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_6);
660 if (conf_is_ht40(&common->priv->hw->conf)) {
661 vap_caps->default_ctrl_rate |=
662 cpu_to_le32(FULL40M_ENABLE << 16);
663 }
664 } else {
665 vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_1);
666 if (conf_is_ht40_minus(conf))
667 vap_caps->default_ctrl_rate |=
668 cpu_to_le32(UPPER_20_ENABLE << 16);
669 else if (conf_is_ht40_plus(conf))
670 vap_caps->default_ctrl_rate |=
671 cpu_to_le32(LOWER_20_ENABLE << 16);
672 }
673
674 vap_caps->default_data_rate = 0;
675 vap_caps->beacon_interval = cpu_to_le16(200);
676 vap_caps->dtim_period = cpu_to_le16(4);
677
678 skb_put(skb, sizeof(*vap_caps));
679
680 return rsi_send_internal_mgmt_frame(common, skb);
681 }
682
683 /**
684 * rsi_hal_load_key() - This function is used to load keys within the firmware.
685 * @common: Pointer to the driver private structure.
686 * @data: Pointer to the key data.
687 * @key_len: Key length to be loaded.
688 * @key_type: Type of key: GROUP/PAIRWISE.
689 * @key_id: Key index.
690 * @cipher: Type of cipher used.
691 *
692 * Return: 0 on success, -1 on failure.
693 */
rsi_hal_load_key(struct rsi_common * common,u8 * data,u16 key_len,u8 key_type,u8 key_id,u32 cipher)694 int rsi_hal_load_key(struct rsi_common *common,
695 u8 *data,
696 u16 key_len,
697 u8 key_type,
698 u8 key_id,
699 u32 cipher)
700 {
701 struct sk_buff *skb = NULL;
702 struct rsi_set_key *set_key;
703 u16 key_descriptor = 0;
704
705 rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
706
707 skb = dev_alloc_skb(sizeof(struct rsi_set_key));
708 if (!skb) {
709 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
710 __func__);
711 return -ENOMEM;
712 }
713
714 memset(skb->data, 0, sizeof(struct rsi_set_key));
715 set_key = (struct rsi_set_key *)skb->data;
716
717 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
718 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
719 key_len += 1;
720 key_descriptor |= BIT(2);
721 if (key_len >= 13)
722 key_descriptor |= BIT(3);
723 } else if (cipher != KEY_TYPE_CLEAR) {
724 key_descriptor |= BIT(4);
725 if (key_type == RSI_PAIRWISE_KEY)
726 key_id = 0;
727 if (cipher == WLAN_CIPHER_SUITE_TKIP)
728 key_descriptor |= BIT(5);
729 }
730 key_descriptor |= (key_type | BIT(13) | (key_id << 14));
731
732 set_key->desc_word[0] = cpu_to_le16((sizeof(struct rsi_set_key) -
733 FRAME_DESC_SZ) |
734 (RSI_WIFI_MGMT_Q << 12));
735 set_key->desc_word[1] = cpu_to_le16(SET_KEY_REQ);
736 set_key->desc_word[4] = cpu_to_le16(key_descriptor);
737
738 if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
739 (cipher == WLAN_CIPHER_SUITE_WEP104)) {
740 memcpy(&set_key->key[key_id][1],
741 data,
742 key_len * 2);
743 } else {
744 memcpy(&set_key->key[0][0], data, key_len);
745 }
746
747 memcpy(set_key->tx_mic_key, &data[16], 8);
748 memcpy(set_key->rx_mic_key, &data[24], 8);
749
750 skb_put(skb, sizeof(struct rsi_set_key));
751
752 return rsi_send_internal_mgmt_frame(common, skb);
753 }
754
755 /*
756 * rsi_load_bootup_params() - This function send bootup params to the firmware.
757 * @common: Pointer to the driver private structure.
758 *
759 * Return: 0 on success, corresponding error code on failure.
760 */
rsi_load_bootup_params(struct rsi_common * common)761 static int rsi_load_bootup_params(struct rsi_common *common)
762 {
763 struct sk_buff *skb;
764 struct rsi_boot_params *boot_params;
765
766 rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
767 skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
768 if (!skb) {
769 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
770 __func__);
771 return -ENOMEM;
772 }
773
774 memset(skb->data, 0, sizeof(struct rsi_boot_params));
775 boot_params = (struct rsi_boot_params *)skb->data;
776
777 rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
778
779 if (common->channel_width == BW_40MHZ) {
780 memcpy(&boot_params->bootup_params,
781 &boot_params_40,
782 sizeof(struct bootup_params));
783 rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
784 UMAC_CLK_40BW);
785 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
786 } else {
787 memcpy(&boot_params->bootup_params,
788 &boot_params_20,
789 sizeof(struct bootup_params));
790 if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
791 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
792 rsi_dbg(MGMT_TX_ZONE,
793 "%s: Packet 20MHZ <=== %d\n", __func__,
794 UMAC_CLK_20BW);
795 } else {
796 boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
797 rsi_dbg(MGMT_TX_ZONE,
798 "%s: Packet 20MHZ <=== %d\n", __func__,
799 UMAC_CLK_40MHZ);
800 }
801 }
802
803 /**
804 * Bit{0:11} indicates length of the Packet
805 * Bit{12:15} indicates host queue number
806 */
807 boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
808 (RSI_WIFI_MGMT_Q << 12));
809 boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
810
811 skb_put(skb, sizeof(struct rsi_boot_params));
812
813 return rsi_send_internal_mgmt_frame(common, skb);
814 }
815
816 /**
817 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
818 * internal management frame to indicate it to firmware.
819 * @common: Pointer to the driver private structure.
820 *
821 * Return: 0 on success, corresponding error code on failure.
822 */
rsi_send_reset_mac(struct rsi_common * common)823 static int rsi_send_reset_mac(struct rsi_common *common)
824 {
825 struct sk_buff *skb;
826 struct rsi_mac_frame *mgmt_frame;
827
828 rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
829
830 skb = dev_alloc_skb(FRAME_DESC_SZ);
831 if (!skb) {
832 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
833 __func__);
834 return -ENOMEM;
835 }
836
837 memset(skb->data, 0, FRAME_DESC_SZ);
838 mgmt_frame = (struct rsi_mac_frame *)skb->data;
839
840 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
841 mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
842 mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
843
844 skb_put(skb, FRAME_DESC_SZ);
845
846 return rsi_send_internal_mgmt_frame(common, skb);
847 }
848
849 /**
850 * rsi_band_check() - This function programs the band
851 * @common: Pointer to the driver private structure.
852 *
853 * Return: 0 on success, corresponding error code on failure.
854 */
rsi_band_check(struct rsi_common * common)855 int rsi_band_check(struct rsi_common *common)
856 {
857 struct rsi_hw *adapter = common->priv;
858 struct ieee80211_hw *hw = adapter->hw;
859 u8 prev_bw = common->channel_width;
860 u8 prev_ep = common->endpoint;
861 struct ieee80211_channel *curchan = hw->conf.chandef.chan;
862 int status = 0;
863
864 if (common->band != curchan->band) {
865 common->rf_reset = 1;
866 common->band = curchan->band;
867 }
868
869 if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
870 (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
871 common->channel_width = BW_20MHZ;
872 else
873 common->channel_width = BW_40MHZ;
874
875 if (common->band == IEEE80211_BAND_2GHZ) {
876 if (common->channel_width)
877 common->endpoint = EP_2GHZ_40MHZ;
878 else
879 common->endpoint = EP_2GHZ_20MHZ;
880 } else {
881 if (common->channel_width)
882 common->endpoint = EP_5GHZ_40MHZ;
883 else
884 common->endpoint = EP_5GHZ_20MHZ;
885 }
886
887 if (common->endpoint != prev_ep) {
888 status = rsi_program_bb_rf(common);
889 if (status)
890 return status;
891 }
892
893 if (common->channel_width != prev_bw) {
894 status = rsi_load_bootup_params(common);
895 if (status)
896 return status;
897
898 status = rsi_load_radio_caps(common);
899 if (status)
900 return status;
901 }
902
903 return status;
904 }
905
906 /**
907 * rsi_set_channel() - This function programs the channel.
908 * @common: Pointer to the driver private structure.
909 * @channel: Channel value to be set.
910 *
911 * Return: 0 on success, corresponding error code on failure.
912 */
rsi_set_channel(struct rsi_common * common,u16 channel)913 int rsi_set_channel(struct rsi_common *common, u16 channel)
914 {
915 struct sk_buff *skb = NULL;
916 struct rsi_mac_frame *mgmt_frame;
917
918 rsi_dbg(MGMT_TX_ZONE,
919 "%s: Sending scan req frame\n", __func__);
920
921 skb = dev_alloc_skb(FRAME_DESC_SZ);
922 if (!skb) {
923 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
924 __func__);
925 return -ENOMEM;
926 }
927
928 memset(skb->data, 0, FRAME_DESC_SZ);
929 mgmt_frame = (struct rsi_mac_frame *)skb->data;
930
931 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
932 mgmt_frame->desc_word[1] = cpu_to_le16(SCAN_REQUEST);
933 mgmt_frame->desc_word[4] = cpu_to_le16(channel);
934
935 mgmt_frame->desc_word[7] = cpu_to_le16(PUT_BBP_RESET |
936 BBP_REG_WRITE |
937 (RSI_RF_TYPE << 4));
938
939 mgmt_frame->desc_word[5] = cpu_to_le16(0x01);
940 mgmt_frame->desc_word[6] = cpu_to_le16(0x12);
941
942 if (common->channel_width == BW_40MHZ)
943 mgmt_frame->desc_word[5] |= cpu_to_le16(0x1 << 8);
944
945 common->channel = channel;
946
947 skb_put(skb, FRAME_DESC_SZ);
948
949 return rsi_send_internal_mgmt_frame(common, skb);
950 }
951
952 /**
953 * rsi_compare() - This function is used to compare two integers
954 * @a: pointer to the first integer
955 * @b: pointer to the second integer
956 *
957 * Return: 0 if both are equal, -1 if the first is smaller, else 1
958 */
rsi_compare(const void * a,const void * b)959 static int rsi_compare(const void *a, const void *b)
960 {
961 u16 _a = *(const u16 *)(a);
962 u16 _b = *(const u16 *)(b);
963
964 if (_a > _b)
965 return -1;
966
967 if (_a < _b)
968 return 1;
969
970 return 0;
971 }
972
973 /**
974 * rsi_map_rates() - This function is used to map selected rates to hw rates.
975 * @rate: The standard rate to be mapped.
976 * @offset: Offset that will be returned.
977 *
978 * Return: 0 if it is a mcs rate, else 1
979 */
rsi_map_rates(u16 rate,int * offset)980 static bool rsi_map_rates(u16 rate, int *offset)
981 {
982 int kk;
983 for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
984 if (rate == mcs[kk]) {
985 *offset = kk;
986 return false;
987 }
988 }
989
990 for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
991 if (rate == rsi_rates[kk].bitrate / 5) {
992 *offset = kk;
993 break;
994 }
995 }
996 return true;
997 }
998
999 /**
1000 * rsi_send_auto_rate_request() - This function is to set rates for connection
1001 * and send autorate request to firmware.
1002 * @common: Pointer to the driver private structure.
1003 *
1004 * Return: 0 on success, corresponding error code on failure.
1005 */
rsi_send_auto_rate_request(struct rsi_common * common)1006 static int rsi_send_auto_rate_request(struct rsi_common *common)
1007 {
1008 struct sk_buff *skb;
1009 struct rsi_auto_rate *auto_rate;
1010 int ii = 0, jj = 0, kk = 0;
1011 struct ieee80211_hw *hw = common->priv->hw;
1012 u8 band = hw->conf.chandef.chan->band;
1013 u8 num_supported_rates = 0;
1014 u8 rate_table_offset, rate_offset = 0;
1015 u32 rate_bitmap = common->bitrate_mask[band];
1016
1017 u16 *selected_rates, min_rate;
1018
1019 skb = dev_alloc_skb(sizeof(struct rsi_auto_rate));
1020 if (!skb) {
1021 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1022 __func__);
1023 return -ENOMEM;
1024 }
1025
1026 selected_rates = kmalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1027 if (!selected_rates) {
1028 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1029 __func__);
1030 dev_kfree_skb(skb);
1031 return -ENOMEM;
1032 }
1033
1034 memset(skb->data, 0, sizeof(struct rsi_auto_rate));
1035 memset(selected_rates, 0, 2 * RSI_TBL_SZ);
1036
1037 auto_rate = (struct rsi_auto_rate *)skb->data;
1038
1039 auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1040 auto_rate->collision_tolerance = cpu_to_le16(3);
1041 auto_rate->failure_limit = cpu_to_le16(3);
1042 auto_rate->initial_boundary = cpu_to_le16(3);
1043 auto_rate->max_threshold_limt = cpu_to_le16(27);
1044
1045 auto_rate->desc_word[1] = cpu_to_le16(AUTO_RATE_IND);
1046
1047 if (common->channel_width == BW_40MHZ)
1048 auto_rate->desc_word[7] |= cpu_to_le16(1);
1049
1050 if (band == IEEE80211_BAND_2GHZ) {
1051 min_rate = RSI_RATE_1;
1052 rate_table_offset = 0;
1053 } else {
1054 min_rate = RSI_RATE_6;
1055 rate_table_offset = 4;
1056 }
1057
1058 for (ii = 0, jj = 0;
1059 ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1060 if (rate_bitmap & BIT(ii)) {
1061 selected_rates[jj++] =
1062 (rsi_rates[ii + rate_table_offset].bitrate / 5);
1063 rate_offset++;
1064 }
1065 }
1066 num_supported_rates = jj;
1067
1068 if (common->vif_info[0].is_ht) {
1069 for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1070 selected_rates[jj++] = mcs[ii];
1071 num_supported_rates += ARRAY_SIZE(mcs);
1072 rate_offset += ARRAY_SIZE(mcs);
1073 }
1074
1075 sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1076
1077 /* mapping the rates to RSI rates */
1078 for (ii = 0; ii < jj; ii++) {
1079 if (rsi_map_rates(selected_rates[ii], &kk)) {
1080 auto_rate->supported_rates[ii] =
1081 cpu_to_le16(rsi_rates[kk].hw_value);
1082 } else {
1083 auto_rate->supported_rates[ii] =
1084 cpu_to_le16(rsi_mcsrates[kk]);
1085 }
1086 }
1087
1088 /* loading HT rates in the bottom half of the auto rate table */
1089 if (common->vif_info[0].is_ht) {
1090 for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1091 ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1092 if (common->vif_info[0].sgi ||
1093 conf_is_ht40(&common->priv->hw->conf))
1094 auto_rate->supported_rates[ii++] =
1095 cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1096 auto_rate->supported_rates[ii] =
1097 cpu_to_le16(rsi_mcsrates[kk--]);
1098 }
1099
1100 for (; ii < (RSI_TBL_SZ - 1); ii++) {
1101 auto_rate->supported_rates[ii] =
1102 cpu_to_le16(rsi_mcsrates[0]);
1103 }
1104 }
1105
1106 for (; ii < RSI_TBL_SZ; ii++)
1107 auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1108
1109 auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1110 auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1111 auto_rate->desc_word[7] |= cpu_to_le16(0 << 8);
1112 num_supported_rates *= 2;
1113
1114 auto_rate->desc_word[0] = cpu_to_le16((sizeof(*auto_rate) -
1115 FRAME_DESC_SZ) |
1116 (RSI_WIFI_MGMT_Q << 12));
1117
1118 skb_put(skb,
1119 sizeof(struct rsi_auto_rate));
1120 kfree(selected_rates);
1121
1122 return rsi_send_internal_mgmt_frame(common, skb);
1123 }
1124
1125 /**
1126 * rsi_inform_bss_status() - This function informs about bss status with the
1127 * help of sta notify params by sending an internal
1128 * management frame to firmware.
1129 * @common: Pointer to the driver private structure.
1130 * @status: Bss status type.
1131 * @bssid: Bssid.
1132 * @qos_enable: Qos is enabled.
1133 * @aid: Aid (unique for all STAs).
1134 *
1135 * Return: None.
1136 */
rsi_inform_bss_status(struct rsi_common * common,u8 status,const unsigned char * bssid,u8 qos_enable,u16 aid)1137 void rsi_inform_bss_status(struct rsi_common *common,
1138 u8 status,
1139 const unsigned char *bssid,
1140 u8 qos_enable,
1141 u16 aid)
1142 {
1143 if (status) {
1144 rsi_hal_send_sta_notify_frame(common,
1145 RSI_IFTYPE_STATION,
1146 STA_CONNECTED,
1147 bssid,
1148 qos_enable,
1149 aid);
1150 if (common->min_rate == 0xffff)
1151 rsi_send_auto_rate_request(common);
1152 } else {
1153 rsi_hal_send_sta_notify_frame(common,
1154 RSI_IFTYPE_STATION,
1155 STA_DISCONNECTED,
1156 bssid,
1157 qos_enable,
1158 aid);
1159 }
1160 }
1161
1162 /**
1163 * rsi_eeprom_read() - This function sends a frame to read the mac address
1164 * from the eeprom.
1165 * @common: Pointer to the driver private structure.
1166 *
1167 * Return: 0 on success, -1 on failure.
1168 */
rsi_eeprom_read(struct rsi_common * common)1169 static int rsi_eeprom_read(struct rsi_common *common)
1170 {
1171 struct rsi_mac_frame *mgmt_frame;
1172 struct sk_buff *skb;
1173
1174 rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1175
1176 skb = dev_alloc_skb(FRAME_DESC_SZ);
1177 if (!skb) {
1178 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1179 __func__);
1180 return -ENOMEM;
1181 }
1182
1183 memset(skb->data, 0, FRAME_DESC_SZ);
1184 mgmt_frame = (struct rsi_mac_frame *)skb->data;
1185
1186 /* FrameType */
1187 mgmt_frame->desc_word[1] = cpu_to_le16(EEPROM_READ_TYPE);
1188 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1189 /* Number of bytes to read */
1190 mgmt_frame->desc_word[3] = cpu_to_le16(ETH_ALEN +
1191 WLAN_MAC_MAGIC_WORD_LEN +
1192 WLAN_HOST_MODE_LEN +
1193 WLAN_FW_VERSION_LEN);
1194 /* Address to read */
1195 mgmt_frame->desc_word[4] = cpu_to_le16(WLAN_MAC_EEPROM_ADDR);
1196
1197 skb_put(skb, FRAME_DESC_SZ);
1198
1199 return rsi_send_internal_mgmt_frame(common, skb);
1200 }
1201
1202 /**
1203 * This function sends a frame to block/unblock
1204 * data queues in the firmware
1205 *
1206 * @param common Pointer to the driver private structure.
1207 * @param block event - block if true, unblock if false
1208 * @return 0 on success, -1 on failure.
1209 */
rsi_send_block_unblock_frame(struct rsi_common * common,bool block_event)1210 int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1211 {
1212 struct rsi_mac_frame *mgmt_frame;
1213 struct sk_buff *skb;
1214
1215 rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1216
1217 skb = dev_alloc_skb(FRAME_DESC_SZ);
1218 if (!skb) {
1219 rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1220 __func__);
1221 return -ENOMEM;
1222 }
1223
1224 memset(skb->data, 0, FRAME_DESC_SZ);
1225 mgmt_frame = (struct rsi_mac_frame *)skb->data;
1226
1227 mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1228 mgmt_frame->desc_word[1] = cpu_to_le16(BLOCK_HW_QUEUE);
1229
1230 if (block_event == true) {
1231 rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1232 mgmt_frame->desc_word[4] = cpu_to_le16(0xf);
1233 } else {
1234 rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1235 mgmt_frame->desc_word[5] = cpu_to_le16(0xf);
1236 }
1237
1238 skb_put(skb, FRAME_DESC_SZ);
1239
1240 return rsi_send_internal_mgmt_frame(common, skb);
1241
1242 }
1243
1244
1245 /**
1246 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1247 * @common: Pointer to the driver private structure.
1248 * @msg: Pointer to received packet.
1249 *
1250 * Return: 0 on success, -1 on failure.
1251 */
rsi_handle_ta_confirm_type(struct rsi_common * common,u8 * msg)1252 static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1253 u8 *msg)
1254 {
1255 u8 sub_type = (msg[15] & 0xff);
1256
1257 switch (sub_type) {
1258 case BOOTUP_PARAMS_REQUEST:
1259 rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1260 __func__);
1261 if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1262 if (rsi_eeprom_read(common)) {
1263 common->fsm_state = FSM_CARD_NOT_READY;
1264 goto out;
1265 } else {
1266 common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1267 }
1268 } else {
1269 rsi_dbg(INFO_ZONE,
1270 "%s: Received bootup params cfm in %d state\n",
1271 __func__, common->fsm_state);
1272 return 0;
1273 }
1274 break;
1275
1276 case EEPROM_READ_TYPE:
1277 if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1278 if (msg[16] == MAGIC_WORD) {
1279 u8 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN
1280 + WLAN_MAC_MAGIC_WORD_LEN);
1281 memcpy(common->mac_addr,
1282 &msg[offset],
1283 ETH_ALEN);
1284 memcpy(&common->fw_ver,
1285 &msg[offset + ETH_ALEN],
1286 sizeof(struct version_info));
1287
1288 } else {
1289 common->fsm_state = FSM_CARD_NOT_READY;
1290 break;
1291 }
1292 if (rsi_send_reset_mac(common))
1293 goto out;
1294 else
1295 common->fsm_state = FSM_RESET_MAC_SENT;
1296 } else {
1297 rsi_dbg(ERR_ZONE,
1298 "%s: Received eeprom mac addr in %d state\n",
1299 __func__, common->fsm_state);
1300 return 0;
1301 }
1302 break;
1303
1304 case RESET_MAC_REQ:
1305 if (common->fsm_state == FSM_RESET_MAC_SENT) {
1306 rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
1307 __func__);
1308
1309 if (rsi_load_radio_caps(common))
1310 goto out;
1311 else
1312 common->fsm_state = FSM_RADIO_CAPS_SENT;
1313 } else {
1314 rsi_dbg(ERR_ZONE,
1315 "%s: Received reset mac cfm in %d state\n",
1316 __func__, common->fsm_state);
1317 return 0;
1318 }
1319 break;
1320
1321 case RADIO_CAPABILITIES:
1322 if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
1323 common->rf_reset = 1;
1324 if (rsi_program_bb_rf(common)) {
1325 goto out;
1326 } else {
1327 common->fsm_state = FSM_BB_RF_PROG_SENT;
1328 rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
1329 __func__);
1330 }
1331 } else {
1332 rsi_dbg(INFO_ZONE,
1333 "%s: Received radio caps cfm in %d state\n",
1334 __func__, common->fsm_state);
1335 return 0;
1336 }
1337 break;
1338
1339 case BB_PROG_VALUES_REQUEST:
1340 case RF_PROG_VALUES_REQUEST:
1341 case BBP_PROG_IN_TA:
1342 rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
1343 if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
1344 common->bb_rf_prog_count--;
1345 if (!common->bb_rf_prog_count) {
1346 common->fsm_state = FSM_MAC_INIT_DONE;
1347 return rsi_mac80211_attach(common);
1348 }
1349 } else {
1350 rsi_dbg(INFO_ZONE,
1351 "%s: Received bbb_rf cfm in %d state\n",
1352 __func__, common->fsm_state);
1353 return 0;
1354 }
1355 break;
1356
1357 default:
1358 rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
1359 __func__);
1360 break;
1361 }
1362 return 0;
1363 out:
1364 rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
1365 __func__);
1366 return -EINVAL;
1367 }
1368
1369 /**
1370 * rsi_mgmt_pkt_recv() - This function processes the management packets
1371 * recieved from the hardware.
1372 * @common: Pointer to the driver private structure.
1373 * @msg: Pointer to the received packet.
1374 *
1375 * Return: 0 on success, -1 on failure.
1376 */
rsi_mgmt_pkt_recv(struct rsi_common * common,u8 * msg)1377 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
1378 {
1379 s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
1380 u16 msg_type = (msg[2]);
1381 int ret;
1382
1383 rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
1384 __func__, msg_len, msg_type);
1385
1386 if (msg_type == TA_CONFIRM_TYPE) {
1387 return rsi_handle_ta_confirm_type(common, msg);
1388 } else if (msg_type == CARD_READY_IND) {
1389 rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
1390 __func__);
1391 if (common->fsm_state == FSM_CARD_NOT_READY) {
1392 rsi_set_default_parameters(common);
1393
1394 ret = rsi_load_bootup_params(common);
1395 if (ret)
1396 return ret;
1397 else
1398 common->fsm_state = FSM_BOOT_PARAMS_SENT;
1399 } else {
1400 return -EINVAL;
1401 }
1402 } else if (msg_type == TX_STATUS_IND) {
1403 if (msg[15] == PROBEREQ_CONFIRM) {
1404 common->mgmt_q_block = false;
1405 rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
1406 __func__);
1407 }
1408 } else {
1409 return rsi_mgmt_pkt_to_core(common, msg, msg_len, msg_type);
1410 }
1411 return 0;
1412 }
1413