• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright (c) 2014 Redpine Signals Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/etherdevice.h>
18 #include "rsi_mgmt.h"
19 #include "rsi_common.h"
20 
21 static struct bootup_params boot_params_20 = {
22 	.magic_number = cpu_to_le16(0x5aa5),
23 	.crystal_good_time = 0x0,
24 	.valid = cpu_to_le32(VALID_20),
25 	.reserved_for_valids = 0x0,
26 	.bootup_mode_info = 0x0,
27 	.digital_loop_back_params = 0x0,
28 	.rtls_timestamp_en = 0x0,
29 	.host_spi_intr_cfg = 0x0,
30 	.device_clk_info = {{
31 		.pll_config_g = {
32 			.tapll_info_g = {
33 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
34 					      (TA_PLL_M_VAL_20)),
35 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
36 			},
37 			.pll960_info_g = {
38 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
39 							 (PLL960_N_VAL_20)),
40 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
41 				.pll_reg_3 = 0x0,
42 			},
43 			.afepll_info_g = {
44 				.pll_reg = cpu_to_le16(0x9f0),
45 			}
46 		},
47 		.switch_clk_g = {
48 			.switch_clk_info = cpu_to_le16(BIT(3)),
49 			.bbp_lmac_clk_reg_val = cpu_to_le16(0x121),
50 			.umac_clock_reg_config = 0x0,
51 			.qspi_uart_clock_reg_config = 0x0
52 		}
53 	},
54 	{
55 		.pll_config_g = {
56 			.tapll_info_g = {
57 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
58 							 (TA_PLL_M_VAL_20)),
59 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
60 			},
61 			.pll960_info_g = {
62 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
63 							 (PLL960_N_VAL_20)),
64 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
65 				.pll_reg_3 = 0x0,
66 			},
67 			.afepll_info_g = {
68 				.pll_reg = cpu_to_le16(0x9f0),
69 			}
70 		},
71 		.switch_clk_g = {
72 			.switch_clk_info = 0x0,
73 			.bbp_lmac_clk_reg_val = 0x0,
74 			.umac_clock_reg_config = 0x0,
75 			.qspi_uart_clock_reg_config = 0x0
76 		}
77 	},
78 	{
79 		.pll_config_g = {
80 			.tapll_info_g = {
81 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
82 							 (TA_PLL_M_VAL_20)),
83 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
84 			},
85 			.pll960_info_g = {
86 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
87 							 (PLL960_N_VAL_20)),
88 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
89 				.pll_reg_3 = 0x0,
90 			},
91 			.afepll_info_g = {
92 				.pll_reg = cpu_to_le16(0x9f0),
93 			}
94 		},
95 		.switch_clk_g = {
96 			.switch_clk_info = 0x0,
97 			.bbp_lmac_clk_reg_val = 0x0,
98 			.umac_clock_reg_config = 0x0,
99 			.qspi_uart_clock_reg_config = 0x0
100 		}
101 	} },
102 	.buckboost_wakeup_cnt = 0x0,
103 	.pmu_wakeup_wait = 0x0,
104 	.shutdown_wait_time = 0x0,
105 	.pmu_slp_clkout_sel = 0x0,
106 	.wdt_prog_value = 0x0,
107 	.wdt_soc_rst_delay = 0x0,
108 	.dcdc_operation_mode = 0x0,
109 	.soc_reset_wait_cnt = 0x0
110 };
111 
112 static struct bootup_params boot_params_40 = {
113 	.magic_number = cpu_to_le16(0x5aa5),
114 	.crystal_good_time = 0x0,
115 	.valid = cpu_to_le32(VALID_40),
116 	.reserved_for_valids = 0x0,
117 	.bootup_mode_info = 0x0,
118 	.digital_loop_back_params = 0x0,
119 	.rtls_timestamp_en = 0x0,
120 	.host_spi_intr_cfg = 0x0,
121 	.device_clk_info = {{
122 		.pll_config_g = {
123 			.tapll_info_g = {
124 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
125 							 (TA_PLL_M_VAL_40)),
126 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
127 			},
128 			.pll960_info_g = {
129 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
130 							 (PLL960_N_VAL_40)),
131 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
132 				.pll_reg_3 = 0x0,
133 			},
134 			.afepll_info_g = {
135 				.pll_reg = cpu_to_le16(0x9f0),
136 			}
137 		},
138 		.switch_clk_g = {
139 			.switch_clk_info = cpu_to_le16(0x09),
140 			.bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
141 			.umac_clock_reg_config = cpu_to_le16(0x48),
142 			.qspi_uart_clock_reg_config = 0x0
143 		}
144 	},
145 	{
146 		.pll_config_g = {
147 			.tapll_info_g = {
148 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
149 							 (TA_PLL_M_VAL_40)),
150 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
151 			},
152 			.pll960_info_g = {
153 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
154 							 (PLL960_N_VAL_40)),
155 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
156 				.pll_reg_3 = 0x0,
157 			},
158 			.afepll_info_g = {
159 				.pll_reg = cpu_to_le16(0x9f0),
160 			}
161 		},
162 		.switch_clk_g = {
163 			.switch_clk_info = 0x0,
164 			.bbp_lmac_clk_reg_val = 0x0,
165 			.umac_clock_reg_config = 0x0,
166 			.qspi_uart_clock_reg_config = 0x0
167 		}
168 	},
169 	{
170 		.pll_config_g = {
171 			.tapll_info_g = {
172 				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
173 							 (TA_PLL_M_VAL_40)),
174 				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
175 			},
176 			.pll960_info_g = {
177 				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
178 							 (PLL960_N_VAL_40)),
179 				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
180 				.pll_reg_3 = 0x0,
181 			},
182 			.afepll_info_g = {
183 				.pll_reg = cpu_to_le16(0x9f0),
184 			}
185 		},
186 		.switch_clk_g = {
187 			.switch_clk_info = 0x0,
188 			.bbp_lmac_clk_reg_val = 0x0,
189 			.umac_clock_reg_config = 0x0,
190 			.qspi_uart_clock_reg_config = 0x0
191 		}
192 	} },
193 	.buckboost_wakeup_cnt = 0x0,
194 	.pmu_wakeup_wait = 0x0,
195 	.shutdown_wait_time = 0x0,
196 	.pmu_slp_clkout_sel = 0x0,
197 	.wdt_prog_value = 0x0,
198 	.wdt_soc_rst_delay = 0x0,
199 	.dcdc_operation_mode = 0x0,
200 	.soc_reset_wait_cnt = 0x0
201 };
202 
203 static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
204 
205 /**
206  * rsi_set_default_parameters() - This function sets default parameters.
207  * @common: Pointer to the driver private structure.
208  *
209  * Return: none
210  */
rsi_set_default_parameters(struct rsi_common * common)211 static void rsi_set_default_parameters(struct rsi_common *common)
212 {
213 	common->band = IEEE80211_BAND_2GHZ;
214 	common->channel_width = BW_20MHZ;
215 	common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
216 	common->channel = 1;
217 	common->min_rate = 0xffff;
218 	common->fsm_state = FSM_CARD_NOT_READY;
219 	common->iface_down = true;
220 	common->endpoint = EP_2GHZ_20MHZ;
221 }
222 
223 /**
224  * rsi_set_contention_vals() - This function sets the contention values for the
225  *			       backoff procedure.
226  * @common: Pointer to the driver private structure.
227  *
228  * Return: None.
229  */
rsi_set_contention_vals(struct rsi_common * common)230 static void rsi_set_contention_vals(struct rsi_common *common)
231 {
232 	u8 ii = 0;
233 
234 	for (; ii < NUM_EDCA_QUEUES; ii++) {
235 		common->tx_qinfo[ii].wme_params =
236 			(((common->edca_params[ii].cw_min / 2) +
237 			  (common->edca_params[ii].aifs)) *
238 			  WMM_SHORT_SLOT_TIME + SIFS_DURATION);
239 		common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
240 		common->tx_qinfo[ii].pkt_contended = 0;
241 	}
242 }
243 
244 /**
245  * rsi_send_internal_mgmt_frame() - This function sends management frames to
246  *				    firmware.Also schedules packet to queue
247  *				    for transmission.
248  * @common: Pointer to the driver private structure.
249  * @skb: Pointer to the socket buffer structure.
250  *
251  * Return: 0 on success, -1 on failure.
252  */
rsi_send_internal_mgmt_frame(struct rsi_common * common,struct sk_buff * skb)253 static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
254 					struct sk_buff *skb)
255 {
256 	struct skb_info *tx_params;
257 
258 	if (skb == NULL) {
259 		rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
260 		return -ENOMEM;
261 	}
262 	tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
263 	tx_params->flags |= INTERNAL_MGMT_PKT;
264 	skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
265 	rsi_set_event(&common->tx_thread.event);
266 	return 0;
267 }
268 
269 /**
270  * rsi_load_radio_caps() - This function is used to send radio capabilities
271  *			   values to firmware.
272  * @common: Pointer to the driver private structure.
273  *
274  * Return: 0 on success, corresponding negative error code on failure.
275  */
rsi_load_radio_caps(struct rsi_common * common)276 static int rsi_load_radio_caps(struct rsi_common *common)
277 {
278 	struct rsi_radio_caps *radio_caps;
279 	struct rsi_hw *adapter = common->priv;
280 	u16 inx = 0;
281 	u8 ii;
282 	u8 radio_id = 0;
283 	u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
284 		      0xf0, 0xf0, 0xf0, 0xf0,
285 		      0xf0, 0xf0, 0xf0, 0xf0,
286 		      0xf0, 0xf0, 0xf0, 0xf0,
287 		      0xf0, 0xf0, 0xf0, 0xf0};
288 	struct sk_buff *skb;
289 
290 	rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
291 
292 	skb = dev_alloc_skb(sizeof(struct rsi_radio_caps));
293 
294 	if (!skb) {
295 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
296 			__func__);
297 		return -ENOMEM;
298 	}
299 
300 	memset(skb->data, 0, sizeof(struct rsi_radio_caps));
301 	radio_caps = (struct rsi_radio_caps *)skb->data;
302 
303 	radio_caps->desc_word[1] = cpu_to_le16(RADIO_CAPABILITIES);
304 	radio_caps->desc_word[4] = cpu_to_le16(RSI_RF_TYPE << 8);
305 
306 	if (common->channel_width == BW_40MHZ) {
307 		radio_caps->desc_word[7] |= cpu_to_le16(RSI_LMAC_CLOCK_80MHZ);
308 		radio_caps->desc_word[7] |= cpu_to_le16(RSI_ENABLE_40MHZ);
309 
310 		if (common->fsm_state == FSM_MAC_INIT_DONE) {
311 			struct ieee80211_hw *hw = adapter->hw;
312 			struct ieee80211_conf *conf = &hw->conf;
313 			if (conf_is_ht40_plus(conf)) {
314 				radio_caps->desc_word[5] =
315 					cpu_to_le16(LOWER_20_ENABLE);
316 				radio_caps->desc_word[5] |=
317 					cpu_to_le16(LOWER_20_ENABLE >> 12);
318 			} else if (conf_is_ht40_minus(conf)) {
319 				radio_caps->desc_word[5] =
320 					cpu_to_le16(UPPER_20_ENABLE);
321 				radio_caps->desc_word[5] |=
322 					cpu_to_le16(UPPER_20_ENABLE >> 12);
323 			} else {
324 				radio_caps->desc_word[5] =
325 					cpu_to_le16(BW_40MHZ << 12);
326 				radio_caps->desc_word[5] |=
327 					cpu_to_le16(FULL40M_ENABLE);
328 			}
329 		}
330 	}
331 
332 	radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
333 	radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
334 	radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
335 	radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
336 	radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
337 	radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
338 
339 	radio_caps->desc_word[7] |= cpu_to_le16(radio_id << 8);
340 
341 	for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
342 		radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
343 		radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
344 		radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
345 		radio_caps->qos_params[ii].txop_q = 0;
346 	}
347 
348 	for (ii = 0; ii < MAX_HW_QUEUES - 4; ii++) {
349 		radio_caps->qos_params[ii].cont_win_min_q =
350 			cpu_to_le16(common->edca_params[ii].cw_min);
351 		radio_caps->qos_params[ii].cont_win_max_q =
352 			cpu_to_le16(common->edca_params[ii].cw_max);
353 		radio_caps->qos_params[ii].aifsn_val_q =
354 			cpu_to_le16((common->edca_params[ii].aifs) << 8);
355 		radio_caps->qos_params[ii].txop_q =
356 			cpu_to_le16(common->edca_params[ii].txop);
357 	}
358 
359 	memcpy(&common->rate_pwr[0], &gc[0], 40);
360 	for (ii = 0; ii < 20; ii++)
361 		radio_caps->gcpd_per_rate[inx++] =
362 			cpu_to_le16(common->rate_pwr[ii]  & 0x00FF);
363 
364 	radio_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_radio_caps) -
365 						FRAME_DESC_SZ) |
366 					       (RSI_WIFI_MGMT_Q << 12));
367 
368 
369 	skb_put(skb, (sizeof(struct rsi_radio_caps)));
370 
371 	return rsi_send_internal_mgmt_frame(common, skb);
372 }
373 
374 /**
375  * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
376  * @common: Pointer to the driver private structure.
377  * @msg: Pointer to received packet.
378  * @msg_len: Length of the recieved packet.
379  * @type: Type of recieved packet.
380  *
381  * Return: 0 on success, -1 on failure.
382  */
rsi_mgmt_pkt_to_core(struct rsi_common * common,u8 * msg,s32 msg_len,u8 type)383 static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
384 				u8 *msg,
385 				s32 msg_len,
386 				u8 type)
387 {
388 	struct rsi_hw *adapter = common->priv;
389 	struct ieee80211_tx_info *info;
390 	struct skb_info *rx_params;
391 	u8 pad_bytes = msg[4];
392 	u8 pkt_recv;
393 	struct sk_buff *skb;
394 	char *buffer;
395 
396 	if (type == RX_DOT11_MGMT) {
397 		if (!adapter->sc_nvifs)
398 			return -ENOLINK;
399 
400 		msg_len -= pad_bytes;
401 		if ((msg_len <= 0) || (!msg)) {
402 			rsi_dbg(MGMT_RX_ZONE,
403 				"%s: Invalid rx msg of len = %d\n",
404 				__func__, msg_len);
405 			return -EINVAL;
406 		}
407 
408 		skb = dev_alloc_skb(msg_len);
409 		if (!skb) {
410 			rsi_dbg(ERR_ZONE, "%s: Failed to allocate skb\n",
411 				__func__);
412 			return -ENOMEM;
413 		}
414 
415 		buffer = skb_put(skb, msg_len);
416 
417 		memcpy(buffer,
418 		       (u8 *)(msg +  FRAME_DESC_SZ + pad_bytes),
419 		       msg_len);
420 
421 		pkt_recv = buffer[0];
422 
423 		info = IEEE80211_SKB_CB(skb);
424 		rx_params = (struct skb_info *)info->driver_data;
425 		rx_params->rssi = rsi_get_rssi(msg);
426 		rx_params->channel = rsi_get_channel(msg);
427 		rsi_indicate_pkt_to_os(common, skb);
428 	} else {
429 		rsi_dbg(MGMT_TX_ZONE, "%s: Internal Packet\n", __func__);
430 	}
431 
432 	return 0;
433 }
434 
435 /**
436  * rsi_hal_send_sta_notify_frame() - This function sends the station notify
437  *				     frame to firmware.
438  * @common: Pointer to the driver private structure.
439  * @opmode: Operating mode of device.
440  * @notify_event: Notification about station connection.
441  * @bssid: bssid.
442  * @qos_enable: Qos is enabled.
443  * @aid: Aid (unique for all STA).
444  *
445  * Return: status: 0 on success, corresponding negative error code on failure.
446  */
rsi_hal_send_sta_notify_frame(struct rsi_common * common,u8 opmode,u8 notify_event,const unsigned char * bssid,u8 qos_enable,u16 aid)447 static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
448 					 u8 opmode,
449 					 u8 notify_event,
450 					 const unsigned char *bssid,
451 					 u8 qos_enable,
452 					 u16 aid)
453 {
454 	struct sk_buff *skb = NULL;
455 	struct rsi_peer_notify *peer_notify;
456 	u16 vap_id = 0;
457 	int status;
458 
459 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
460 
461 	skb = dev_alloc_skb(sizeof(struct rsi_peer_notify));
462 
463 	if (!skb) {
464 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
465 			__func__);
466 		return -ENOMEM;
467 	}
468 
469 	memset(skb->data, 0, sizeof(struct rsi_peer_notify));
470 	peer_notify = (struct rsi_peer_notify *)skb->data;
471 
472 	peer_notify->command = cpu_to_le16(opmode << 1);
473 
474 	switch (notify_event) {
475 	case STA_CONNECTED:
476 		peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
477 		break;
478 	case STA_DISCONNECTED:
479 		peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
480 		break;
481 	default:
482 		break;
483 	}
484 
485 	peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
486 	ether_addr_copy(peer_notify->mac_addr, bssid);
487 
488 	peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
489 
490 	peer_notify->desc_word[0] =
491 		cpu_to_le16((sizeof(struct rsi_peer_notify) - FRAME_DESC_SZ) |
492 			    (RSI_WIFI_MGMT_Q << 12));
493 	peer_notify->desc_word[1] = cpu_to_le16(PEER_NOTIFY);
494 	peer_notify->desc_word[7] |= cpu_to_le16(vap_id << 8);
495 
496 	skb_put(skb, sizeof(struct rsi_peer_notify));
497 
498 	status = rsi_send_internal_mgmt_frame(common, skb);
499 
500 	if (!status && qos_enable) {
501 		rsi_set_contention_vals(common);
502 		status = rsi_load_radio_caps(common);
503 	}
504 	return status;
505 }
506 
507 /**
508  * rsi_send_aggregation_params_frame() - This function sends the ampdu
509  *					 indication frame to firmware.
510  * @common: Pointer to the driver private structure.
511  * @tid: traffic identifier.
512  * @ssn: ssn.
513  * @buf_size: buffer size.
514  * @event: notification about station connection.
515  *
516  * Return: 0 on success, corresponding negative error code on failure.
517  */
rsi_send_aggregation_params_frame(struct rsi_common * common,u16 tid,u16 ssn,u8 buf_size,u8 event)518 int rsi_send_aggregation_params_frame(struct rsi_common *common,
519 				      u16 tid,
520 				      u16 ssn,
521 				      u8 buf_size,
522 				      u8 event)
523 {
524 	struct sk_buff *skb = NULL;
525 	struct rsi_mac_frame *mgmt_frame;
526 	u8 peer_id = 0;
527 
528 	skb = dev_alloc_skb(FRAME_DESC_SZ);
529 
530 	if (!skb) {
531 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
532 			__func__);
533 		return -ENOMEM;
534 	}
535 
536 	memset(skb->data, 0, FRAME_DESC_SZ);
537 	mgmt_frame = (struct rsi_mac_frame *)skb->data;
538 
539 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
540 
541 	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
542 	mgmt_frame->desc_word[1] = cpu_to_le16(AMPDU_IND);
543 
544 	if (event == STA_TX_ADDBA_DONE) {
545 		mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
546 		mgmt_frame->desc_word[5] = cpu_to_le16(buf_size);
547 		mgmt_frame->desc_word[7] =
548 		cpu_to_le16((tid | (START_AMPDU_AGGR << 4) | (peer_id << 8)));
549 	} else if (event == STA_RX_ADDBA_DONE) {
550 		mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
551 		mgmt_frame->desc_word[7] = cpu_to_le16(tid |
552 						       (START_AMPDU_AGGR << 4) |
553 						       (RX_BA_INDICATION << 5) |
554 						       (peer_id << 8));
555 	} else if (event == STA_TX_DELBA) {
556 		mgmt_frame->desc_word[7] = cpu_to_le16(tid |
557 						       (STOP_AMPDU_AGGR << 4) |
558 						       (peer_id << 8));
559 	} else if (event == STA_RX_DELBA) {
560 		mgmt_frame->desc_word[7] = cpu_to_le16(tid |
561 						       (STOP_AMPDU_AGGR << 4) |
562 						       (RX_BA_INDICATION << 5) |
563 						       (peer_id << 8));
564 	}
565 
566 	skb_put(skb, FRAME_DESC_SZ);
567 
568 	return rsi_send_internal_mgmt_frame(common, skb);
569 }
570 
571 /**
572  * rsi_program_bb_rf() - This function starts base band and RF programming.
573  *			 This is called after initial configurations are done.
574  * @common: Pointer to the driver private structure.
575  *
576  * Return: 0 on success, corresponding negative error code on failure.
577  */
rsi_program_bb_rf(struct rsi_common * common)578 static int rsi_program_bb_rf(struct rsi_common *common)
579 {
580 	struct sk_buff *skb;
581 	struct rsi_mac_frame *mgmt_frame;
582 
583 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
584 
585 	skb = dev_alloc_skb(FRAME_DESC_SZ);
586 	if (!skb) {
587 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
588 			__func__);
589 		return -ENOMEM;
590 	}
591 
592 	memset(skb->data, 0, FRAME_DESC_SZ);
593 	mgmt_frame = (struct rsi_mac_frame *)skb->data;
594 
595 	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
596 	mgmt_frame->desc_word[1] = cpu_to_le16(BBP_PROG_IN_TA);
597 	mgmt_frame->desc_word[4] = cpu_to_le16(common->endpoint);
598 
599 	if (common->rf_reset) {
600 		mgmt_frame->desc_word[7] =  cpu_to_le16(RF_RESET_ENABLE);
601 		rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
602 			__func__);
603 		common->rf_reset = 0;
604 	}
605 	common->bb_rf_prog_count = 1;
606 	mgmt_frame->desc_word[7] |= cpu_to_le16(PUT_BBP_RESET |
607 				     BBP_REG_WRITE | (RSI_RF_TYPE << 4));
608 	skb_put(skb, FRAME_DESC_SZ);
609 
610 	return rsi_send_internal_mgmt_frame(common, skb);
611 }
612 
613 /**
614  * rsi_set_vap_capabilities() - This function send vap capability to firmware.
615  * @common: Pointer to the driver private structure.
616  * @opmode: Operating mode of device.
617  *
618  * Return: 0 on success, corresponding negative error code on failure.
619  */
rsi_set_vap_capabilities(struct rsi_common * common,enum opmode mode)620 int rsi_set_vap_capabilities(struct rsi_common *common, enum opmode mode)
621 {
622 	struct sk_buff *skb = NULL;
623 	struct rsi_vap_caps *vap_caps;
624 	struct rsi_hw *adapter = common->priv;
625 	struct ieee80211_hw *hw = adapter->hw;
626 	struct ieee80211_conf *conf = &hw->conf;
627 	u16 vap_id = 0;
628 
629 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
630 
631 	skb = dev_alloc_skb(sizeof(struct rsi_vap_caps));
632 	if (!skb) {
633 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
634 			__func__);
635 		return -ENOMEM;
636 	}
637 
638 	memset(skb->data, 0, sizeof(struct rsi_vap_caps));
639 	vap_caps = (struct rsi_vap_caps *)skb->data;
640 
641 	vap_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_vap_caps) -
642 					     FRAME_DESC_SZ) |
643 					     (RSI_WIFI_MGMT_Q << 12));
644 	vap_caps->desc_word[1] = cpu_to_le16(VAP_CAPABILITIES);
645 	vap_caps->desc_word[4] = cpu_to_le16(mode |
646 					     (common->channel_width << 8));
647 	vap_caps->desc_word[7] = cpu_to_le16((vap_id << 8) |
648 					     (common->mac_id << 4) |
649 					     common->radio_id);
650 
651 	memcpy(vap_caps->mac_addr, common->mac_addr, IEEE80211_ADDR_LEN);
652 	vap_caps->keep_alive_period = cpu_to_le16(90);
653 	vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
654 
655 	vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
656 	vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
657 
658 	if (common->band == IEEE80211_BAND_5GHZ) {
659 		vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_6);
660 		if (conf_is_ht40(&common->priv->hw->conf)) {
661 			vap_caps->default_ctrl_rate |=
662 				cpu_to_le32(FULL40M_ENABLE << 16);
663 		}
664 	} else {
665 		vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_1);
666 		if (conf_is_ht40_minus(conf))
667 			vap_caps->default_ctrl_rate |=
668 				cpu_to_le32(UPPER_20_ENABLE << 16);
669 		else if (conf_is_ht40_plus(conf))
670 			vap_caps->default_ctrl_rate |=
671 				cpu_to_le32(LOWER_20_ENABLE << 16);
672 	}
673 
674 	vap_caps->default_data_rate = 0;
675 	vap_caps->beacon_interval = cpu_to_le16(200);
676 	vap_caps->dtim_period = cpu_to_le16(4);
677 
678 	skb_put(skb, sizeof(*vap_caps));
679 
680 	return rsi_send_internal_mgmt_frame(common, skb);
681 }
682 
683 /**
684  * rsi_hal_load_key() - This function is used to load keys within the firmware.
685  * @common: Pointer to the driver private structure.
686  * @data: Pointer to the key data.
687  * @key_len: Key length to be loaded.
688  * @key_type: Type of key: GROUP/PAIRWISE.
689  * @key_id: Key index.
690  * @cipher: Type of cipher used.
691  *
692  * Return: 0 on success, -1 on failure.
693  */
rsi_hal_load_key(struct rsi_common * common,u8 * data,u16 key_len,u8 key_type,u8 key_id,u32 cipher)694 int rsi_hal_load_key(struct rsi_common *common,
695 		     u8 *data,
696 		     u16 key_len,
697 		     u8 key_type,
698 		     u8 key_id,
699 		     u32 cipher)
700 {
701 	struct sk_buff *skb = NULL;
702 	struct rsi_set_key *set_key;
703 	u16 key_descriptor = 0;
704 
705 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
706 
707 	skb = dev_alloc_skb(sizeof(struct rsi_set_key));
708 	if (!skb) {
709 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
710 			__func__);
711 		return -ENOMEM;
712 	}
713 
714 	memset(skb->data, 0, sizeof(struct rsi_set_key));
715 	set_key = (struct rsi_set_key *)skb->data;
716 
717 	if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
718 	    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
719 		key_len += 1;
720 		key_descriptor |= BIT(2);
721 		if (key_len >= 13)
722 			key_descriptor |= BIT(3);
723 	} else if (cipher != KEY_TYPE_CLEAR) {
724 		key_descriptor |= BIT(4);
725 		if (key_type == RSI_PAIRWISE_KEY)
726 			key_id = 0;
727 		if (cipher == WLAN_CIPHER_SUITE_TKIP)
728 			key_descriptor |= BIT(5);
729 	}
730 	key_descriptor |= (key_type | BIT(13) | (key_id << 14));
731 
732 	set_key->desc_word[0] = cpu_to_le16((sizeof(struct rsi_set_key) -
733 					    FRAME_DESC_SZ) |
734 					    (RSI_WIFI_MGMT_Q << 12));
735 	set_key->desc_word[1] = cpu_to_le16(SET_KEY_REQ);
736 	set_key->desc_word[4] = cpu_to_le16(key_descriptor);
737 
738 	if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
739 	    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
740 		memcpy(&set_key->key[key_id][1],
741 		       data,
742 		       key_len * 2);
743 	} else {
744 		memcpy(&set_key->key[0][0], data, key_len);
745 	}
746 
747 	memcpy(set_key->tx_mic_key, &data[16], 8);
748 	memcpy(set_key->rx_mic_key, &data[24], 8);
749 
750 	skb_put(skb, sizeof(struct rsi_set_key));
751 
752 	return rsi_send_internal_mgmt_frame(common, skb);
753 }
754 
755 /*
756  * rsi_load_bootup_params() - This function send bootup params to the firmware.
757  * @common: Pointer to the driver private structure.
758  *
759  * Return: 0 on success, corresponding error code on failure.
760  */
rsi_load_bootup_params(struct rsi_common * common)761 static int rsi_load_bootup_params(struct rsi_common *common)
762 {
763 	struct sk_buff *skb;
764 	struct rsi_boot_params *boot_params;
765 
766 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
767 	skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
768 	if (!skb) {
769 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
770 			__func__);
771 		return -ENOMEM;
772 	}
773 
774 	memset(skb->data, 0, sizeof(struct rsi_boot_params));
775 	boot_params = (struct rsi_boot_params *)skb->data;
776 
777 	rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
778 
779 	if (common->channel_width == BW_40MHZ) {
780 		memcpy(&boot_params->bootup_params,
781 		       &boot_params_40,
782 		       sizeof(struct bootup_params));
783 		rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
784 			UMAC_CLK_40BW);
785 		boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
786 	} else {
787 		memcpy(&boot_params->bootup_params,
788 		       &boot_params_20,
789 		       sizeof(struct bootup_params));
790 		if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
791 			boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
792 			rsi_dbg(MGMT_TX_ZONE,
793 				"%s: Packet 20MHZ <=== %d\n", __func__,
794 				UMAC_CLK_20BW);
795 		} else {
796 			boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
797 			rsi_dbg(MGMT_TX_ZONE,
798 				"%s: Packet 20MHZ <=== %d\n", __func__,
799 				UMAC_CLK_40MHZ);
800 		}
801 	}
802 
803 	/**
804 	 * Bit{0:11} indicates length of the Packet
805 	 * Bit{12:15} indicates host queue number
806 	 */
807 	boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
808 				    (RSI_WIFI_MGMT_Q << 12));
809 	boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
810 
811 	skb_put(skb, sizeof(struct rsi_boot_params));
812 
813 	return rsi_send_internal_mgmt_frame(common, skb);
814 }
815 
816 /**
817  * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
818  *			  internal management frame to indicate it to firmware.
819  * @common: Pointer to the driver private structure.
820  *
821  * Return: 0 on success, corresponding error code on failure.
822  */
rsi_send_reset_mac(struct rsi_common * common)823 static int rsi_send_reset_mac(struct rsi_common *common)
824 {
825 	struct sk_buff *skb;
826 	struct rsi_mac_frame *mgmt_frame;
827 
828 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
829 
830 	skb = dev_alloc_skb(FRAME_DESC_SZ);
831 	if (!skb) {
832 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
833 			__func__);
834 		return -ENOMEM;
835 	}
836 
837 	memset(skb->data, 0, FRAME_DESC_SZ);
838 	mgmt_frame = (struct rsi_mac_frame *)skb->data;
839 
840 	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
841 	mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
842 	mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
843 
844 	skb_put(skb, FRAME_DESC_SZ);
845 
846 	return rsi_send_internal_mgmt_frame(common, skb);
847 }
848 
849 /**
850  * rsi_band_check() - This function programs the band
851  * @common: Pointer to the driver private structure.
852  *
853  * Return: 0 on success, corresponding error code on failure.
854  */
rsi_band_check(struct rsi_common * common)855 int rsi_band_check(struct rsi_common *common)
856 {
857 	struct rsi_hw *adapter = common->priv;
858 	struct ieee80211_hw *hw = adapter->hw;
859 	u8 prev_bw = common->channel_width;
860 	u8 prev_ep = common->endpoint;
861 	struct ieee80211_channel *curchan = hw->conf.chandef.chan;
862 	int status = 0;
863 
864 	if (common->band != curchan->band) {
865 		common->rf_reset = 1;
866 		common->band = curchan->band;
867 	}
868 
869 	if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
870 	    (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
871 		common->channel_width = BW_20MHZ;
872 	else
873 		common->channel_width = BW_40MHZ;
874 
875 	if (common->band == IEEE80211_BAND_2GHZ) {
876 		if (common->channel_width)
877 			common->endpoint = EP_2GHZ_40MHZ;
878 		else
879 			common->endpoint = EP_2GHZ_20MHZ;
880 	} else {
881 		if (common->channel_width)
882 			common->endpoint = EP_5GHZ_40MHZ;
883 		else
884 			common->endpoint = EP_5GHZ_20MHZ;
885 	}
886 
887 	if (common->endpoint != prev_ep) {
888 		status = rsi_program_bb_rf(common);
889 		if (status)
890 			return status;
891 	}
892 
893 	if (common->channel_width != prev_bw) {
894 		status = rsi_load_bootup_params(common);
895 		if (status)
896 			return status;
897 
898 		status = rsi_load_radio_caps(common);
899 		if (status)
900 			return status;
901 	}
902 
903 	return status;
904 }
905 
906 /**
907  * rsi_set_channel() - This function programs the channel.
908  * @common: Pointer to the driver private structure.
909  * @channel: Channel value to be set.
910  *
911  * Return: 0 on success, corresponding error code on failure.
912  */
rsi_set_channel(struct rsi_common * common,u16 channel)913 int rsi_set_channel(struct rsi_common *common, u16 channel)
914 {
915 	struct sk_buff *skb = NULL;
916 	struct rsi_mac_frame *mgmt_frame;
917 
918 	rsi_dbg(MGMT_TX_ZONE,
919 		"%s: Sending scan req frame\n", __func__);
920 
921 	skb = dev_alloc_skb(FRAME_DESC_SZ);
922 	if (!skb) {
923 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
924 			__func__);
925 		return -ENOMEM;
926 	}
927 
928 	memset(skb->data, 0, FRAME_DESC_SZ);
929 	mgmt_frame = (struct rsi_mac_frame *)skb->data;
930 
931 	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
932 	mgmt_frame->desc_word[1] = cpu_to_le16(SCAN_REQUEST);
933 	mgmt_frame->desc_word[4] = cpu_to_le16(channel);
934 
935 	mgmt_frame->desc_word[7] = cpu_to_le16(PUT_BBP_RESET |
936 					       BBP_REG_WRITE |
937 					       (RSI_RF_TYPE << 4));
938 
939 	mgmt_frame->desc_word[5] = cpu_to_le16(0x01);
940 	mgmt_frame->desc_word[6] = cpu_to_le16(0x12);
941 
942 	if (common->channel_width == BW_40MHZ)
943 		mgmt_frame->desc_word[5] |= cpu_to_le16(0x1 << 8);
944 
945 	common->channel = channel;
946 
947 	skb_put(skb, FRAME_DESC_SZ);
948 
949 	return rsi_send_internal_mgmt_frame(common, skb);
950 }
951 
952 /**
953  * rsi_compare() - This function is used to compare two integers
954  * @a: pointer to the first integer
955  * @b: pointer to the second integer
956  *
957  * Return: 0 if both are equal, -1 if the first is smaller, else 1
958  */
rsi_compare(const void * a,const void * b)959 static int rsi_compare(const void *a, const void *b)
960 {
961 	u16 _a = *(const u16 *)(a);
962 	u16 _b = *(const u16 *)(b);
963 
964 	if (_a > _b)
965 		return -1;
966 
967 	if (_a < _b)
968 		return 1;
969 
970 	return 0;
971 }
972 
973 /**
974  * rsi_map_rates() - This function is used to map selected rates to hw rates.
975  * @rate: The standard rate to be mapped.
976  * @offset: Offset that will be returned.
977  *
978  * Return: 0 if it is a mcs rate, else 1
979  */
rsi_map_rates(u16 rate,int * offset)980 static bool rsi_map_rates(u16 rate, int *offset)
981 {
982 	int kk;
983 	for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
984 		if (rate == mcs[kk]) {
985 			*offset = kk;
986 			return false;
987 		}
988 	}
989 
990 	for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
991 		if (rate == rsi_rates[kk].bitrate / 5) {
992 			*offset = kk;
993 			break;
994 		}
995 	}
996 	return true;
997 }
998 
999 /**
1000  * rsi_send_auto_rate_request() - This function is to set rates for connection
1001  *				  and send autorate request to firmware.
1002  * @common: Pointer to the driver private structure.
1003  *
1004  * Return: 0 on success, corresponding error code on failure.
1005  */
rsi_send_auto_rate_request(struct rsi_common * common)1006 static int rsi_send_auto_rate_request(struct rsi_common *common)
1007 {
1008 	struct sk_buff *skb;
1009 	struct rsi_auto_rate *auto_rate;
1010 	int ii = 0, jj = 0, kk = 0;
1011 	struct ieee80211_hw *hw = common->priv->hw;
1012 	u8 band = hw->conf.chandef.chan->band;
1013 	u8 num_supported_rates = 0;
1014 	u8 rate_table_offset, rate_offset = 0;
1015 	u32 rate_bitmap = common->bitrate_mask[band];
1016 
1017 	u16 *selected_rates, min_rate;
1018 
1019 	skb = dev_alloc_skb(sizeof(struct rsi_auto_rate));
1020 	if (!skb) {
1021 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1022 			__func__);
1023 		return -ENOMEM;
1024 	}
1025 
1026 	selected_rates = kmalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1027 	if (!selected_rates) {
1028 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1029 			__func__);
1030 		dev_kfree_skb(skb);
1031 		return -ENOMEM;
1032 	}
1033 
1034 	memset(skb->data, 0, sizeof(struct rsi_auto_rate));
1035 	memset(selected_rates, 0, 2 * RSI_TBL_SZ);
1036 
1037 	auto_rate = (struct rsi_auto_rate *)skb->data;
1038 
1039 	auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1040 	auto_rate->collision_tolerance = cpu_to_le16(3);
1041 	auto_rate->failure_limit = cpu_to_le16(3);
1042 	auto_rate->initial_boundary = cpu_to_le16(3);
1043 	auto_rate->max_threshold_limt = cpu_to_le16(27);
1044 
1045 	auto_rate->desc_word[1] = cpu_to_le16(AUTO_RATE_IND);
1046 
1047 	if (common->channel_width == BW_40MHZ)
1048 		auto_rate->desc_word[7] |= cpu_to_le16(1);
1049 
1050 	if (band == IEEE80211_BAND_2GHZ) {
1051 		min_rate = RSI_RATE_1;
1052 		rate_table_offset = 0;
1053 	} else {
1054 		min_rate = RSI_RATE_6;
1055 		rate_table_offset = 4;
1056 	}
1057 
1058 	for (ii = 0, jj = 0;
1059 	     ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1060 		if (rate_bitmap & BIT(ii)) {
1061 			selected_rates[jj++] =
1062 			(rsi_rates[ii + rate_table_offset].bitrate / 5);
1063 			rate_offset++;
1064 		}
1065 	}
1066 	num_supported_rates = jj;
1067 
1068 	if (common->vif_info[0].is_ht) {
1069 		for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1070 			selected_rates[jj++] = mcs[ii];
1071 		num_supported_rates += ARRAY_SIZE(mcs);
1072 		rate_offset += ARRAY_SIZE(mcs);
1073 	}
1074 
1075 	sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1076 
1077 	/* mapping the rates to RSI rates */
1078 	for (ii = 0; ii < jj; ii++) {
1079 		if (rsi_map_rates(selected_rates[ii], &kk)) {
1080 			auto_rate->supported_rates[ii] =
1081 				cpu_to_le16(rsi_rates[kk].hw_value);
1082 		} else {
1083 			auto_rate->supported_rates[ii] =
1084 				cpu_to_le16(rsi_mcsrates[kk]);
1085 		}
1086 	}
1087 
1088 	/* loading HT rates in the bottom half of the auto rate table */
1089 	if (common->vif_info[0].is_ht) {
1090 		for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1091 		     ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1092 			if (common->vif_info[0].sgi ||
1093 			    conf_is_ht40(&common->priv->hw->conf))
1094 				auto_rate->supported_rates[ii++] =
1095 					cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1096 			auto_rate->supported_rates[ii] =
1097 				cpu_to_le16(rsi_mcsrates[kk--]);
1098 		}
1099 
1100 		for (; ii < (RSI_TBL_SZ - 1); ii++) {
1101 			auto_rate->supported_rates[ii] =
1102 				cpu_to_le16(rsi_mcsrates[0]);
1103 		}
1104 	}
1105 
1106 	for (; ii < RSI_TBL_SZ; ii++)
1107 		auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1108 
1109 	auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1110 	auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1111 	auto_rate->desc_word[7] |= cpu_to_le16(0 << 8);
1112 	num_supported_rates *= 2;
1113 
1114 	auto_rate->desc_word[0] = cpu_to_le16((sizeof(*auto_rate) -
1115 					       FRAME_DESC_SZ) |
1116 					       (RSI_WIFI_MGMT_Q << 12));
1117 
1118 	skb_put(skb,
1119 		sizeof(struct rsi_auto_rate));
1120 	kfree(selected_rates);
1121 
1122 	return rsi_send_internal_mgmt_frame(common, skb);
1123 }
1124 
1125 /**
1126  * rsi_inform_bss_status() - This function informs about bss status with the
1127  *			     help of sta notify params by sending an internal
1128  *			     management frame to firmware.
1129  * @common: Pointer to the driver private structure.
1130  * @status: Bss status type.
1131  * @bssid: Bssid.
1132  * @qos_enable: Qos is enabled.
1133  * @aid: Aid (unique for all STAs).
1134  *
1135  * Return: None.
1136  */
rsi_inform_bss_status(struct rsi_common * common,u8 status,const unsigned char * bssid,u8 qos_enable,u16 aid)1137 void rsi_inform_bss_status(struct rsi_common *common,
1138 			   u8 status,
1139 			   const unsigned char *bssid,
1140 			   u8 qos_enable,
1141 			   u16 aid)
1142 {
1143 	if (status) {
1144 		rsi_hal_send_sta_notify_frame(common,
1145 					      RSI_IFTYPE_STATION,
1146 					      STA_CONNECTED,
1147 					      bssid,
1148 					      qos_enable,
1149 					      aid);
1150 		if (common->min_rate == 0xffff)
1151 			rsi_send_auto_rate_request(common);
1152 	} else {
1153 		rsi_hal_send_sta_notify_frame(common,
1154 					      RSI_IFTYPE_STATION,
1155 					      STA_DISCONNECTED,
1156 					      bssid,
1157 					      qos_enable,
1158 					      aid);
1159 	}
1160 }
1161 
1162 /**
1163  * rsi_eeprom_read() - This function sends a frame to read the mac address
1164  *		       from the eeprom.
1165  * @common: Pointer to the driver private structure.
1166  *
1167  * Return: 0 on success, -1 on failure.
1168  */
rsi_eeprom_read(struct rsi_common * common)1169 static int rsi_eeprom_read(struct rsi_common *common)
1170 {
1171 	struct rsi_mac_frame *mgmt_frame;
1172 	struct sk_buff *skb;
1173 
1174 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1175 
1176 	skb = dev_alloc_skb(FRAME_DESC_SZ);
1177 	if (!skb) {
1178 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1179 			__func__);
1180 		return -ENOMEM;
1181 	}
1182 
1183 	memset(skb->data, 0, FRAME_DESC_SZ);
1184 	mgmt_frame = (struct rsi_mac_frame *)skb->data;
1185 
1186 	/* FrameType */
1187 	mgmt_frame->desc_word[1] = cpu_to_le16(EEPROM_READ_TYPE);
1188 	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1189 	/* Number of bytes to read */
1190 	mgmt_frame->desc_word[3] = cpu_to_le16(ETH_ALEN +
1191 					       WLAN_MAC_MAGIC_WORD_LEN +
1192 					       WLAN_HOST_MODE_LEN +
1193 					       WLAN_FW_VERSION_LEN);
1194 	/* Address to read */
1195 	mgmt_frame->desc_word[4] = cpu_to_le16(WLAN_MAC_EEPROM_ADDR);
1196 
1197 	skb_put(skb, FRAME_DESC_SZ);
1198 
1199 	return rsi_send_internal_mgmt_frame(common, skb);
1200 }
1201 
1202 /**
1203  * This function sends a frame to block/unblock
1204  * data queues in the firmware
1205  *
1206  * @param common Pointer to the driver private structure.
1207  * @param block event - block if true, unblock if false
1208  * @return 0 on success, -1 on failure.
1209  */
rsi_send_block_unblock_frame(struct rsi_common * common,bool block_event)1210 int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1211 {
1212 	struct rsi_mac_frame *mgmt_frame;
1213 	struct sk_buff *skb;
1214 
1215 	rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1216 
1217 	skb = dev_alloc_skb(FRAME_DESC_SZ);
1218 	if (!skb) {
1219 		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1220 			__func__);
1221 		return -ENOMEM;
1222 	}
1223 
1224 	memset(skb->data, 0, FRAME_DESC_SZ);
1225 	mgmt_frame = (struct rsi_mac_frame *)skb->data;
1226 
1227 	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1228 	mgmt_frame->desc_word[1] = cpu_to_le16(BLOCK_HW_QUEUE);
1229 
1230 	if (block_event == true) {
1231 		rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1232 		mgmt_frame->desc_word[4] = cpu_to_le16(0xf);
1233 	} else {
1234 		rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1235 		mgmt_frame->desc_word[5] = cpu_to_le16(0xf);
1236 	}
1237 
1238 	skb_put(skb, FRAME_DESC_SZ);
1239 
1240 	return rsi_send_internal_mgmt_frame(common, skb);
1241 
1242 }
1243 
1244 
1245 /**
1246  * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1247  * @common: Pointer to the driver private structure.
1248  * @msg: Pointer to received packet.
1249  *
1250  * Return: 0 on success, -1 on failure.
1251  */
rsi_handle_ta_confirm_type(struct rsi_common * common,u8 * msg)1252 static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1253 				      u8 *msg)
1254 {
1255 	u8 sub_type = (msg[15] & 0xff);
1256 
1257 	switch (sub_type) {
1258 	case BOOTUP_PARAMS_REQUEST:
1259 		rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1260 			__func__);
1261 		if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1262 			if (rsi_eeprom_read(common)) {
1263 				common->fsm_state = FSM_CARD_NOT_READY;
1264 				goto out;
1265 			} else {
1266 				common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1267 			}
1268 		} else {
1269 			rsi_dbg(INFO_ZONE,
1270 				"%s: Received bootup params cfm in %d state\n",
1271 				 __func__, common->fsm_state);
1272 			return 0;
1273 		}
1274 		break;
1275 
1276 	case EEPROM_READ_TYPE:
1277 		if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1278 			if (msg[16] == MAGIC_WORD) {
1279 				u8 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN
1280 					     + WLAN_MAC_MAGIC_WORD_LEN);
1281 				memcpy(common->mac_addr,
1282 				       &msg[offset],
1283 				       ETH_ALEN);
1284 				memcpy(&common->fw_ver,
1285 				       &msg[offset + ETH_ALEN],
1286 				       sizeof(struct version_info));
1287 
1288 			} else {
1289 				common->fsm_state = FSM_CARD_NOT_READY;
1290 				break;
1291 			}
1292 			if (rsi_send_reset_mac(common))
1293 				goto out;
1294 			else
1295 				common->fsm_state = FSM_RESET_MAC_SENT;
1296 		} else {
1297 			rsi_dbg(ERR_ZONE,
1298 				"%s: Received eeprom mac addr in %d state\n",
1299 				__func__, common->fsm_state);
1300 			return 0;
1301 		}
1302 		break;
1303 
1304 	case RESET_MAC_REQ:
1305 		if (common->fsm_state == FSM_RESET_MAC_SENT) {
1306 			rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
1307 				__func__);
1308 
1309 			if (rsi_load_radio_caps(common))
1310 				goto out;
1311 			else
1312 				common->fsm_state = FSM_RADIO_CAPS_SENT;
1313 		} else {
1314 			rsi_dbg(ERR_ZONE,
1315 				"%s: Received reset mac cfm in %d state\n",
1316 				 __func__, common->fsm_state);
1317 			return 0;
1318 		}
1319 		break;
1320 
1321 	case RADIO_CAPABILITIES:
1322 		if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
1323 			common->rf_reset = 1;
1324 			if (rsi_program_bb_rf(common)) {
1325 				goto out;
1326 			} else {
1327 				common->fsm_state = FSM_BB_RF_PROG_SENT;
1328 				rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
1329 					__func__);
1330 			}
1331 		} else {
1332 			rsi_dbg(INFO_ZONE,
1333 				"%s: Received radio caps cfm in %d state\n",
1334 				 __func__, common->fsm_state);
1335 			return 0;
1336 		}
1337 		break;
1338 
1339 	case BB_PROG_VALUES_REQUEST:
1340 	case RF_PROG_VALUES_REQUEST:
1341 	case BBP_PROG_IN_TA:
1342 		rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
1343 		if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
1344 			common->bb_rf_prog_count--;
1345 			if (!common->bb_rf_prog_count) {
1346 				common->fsm_state = FSM_MAC_INIT_DONE;
1347 				return rsi_mac80211_attach(common);
1348 			}
1349 		} else {
1350 			rsi_dbg(INFO_ZONE,
1351 				"%s: Received bbb_rf cfm in %d state\n",
1352 				 __func__, common->fsm_state);
1353 			return 0;
1354 		}
1355 		break;
1356 
1357 	default:
1358 		rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
1359 			__func__);
1360 		break;
1361 	}
1362 	return 0;
1363 out:
1364 	rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
1365 		__func__);
1366 	return -EINVAL;
1367 }
1368 
1369 /**
1370  * rsi_mgmt_pkt_recv() - This function processes the management packets
1371  *			 recieved from the hardware.
1372  * @common: Pointer to the driver private structure.
1373  * @msg: Pointer to the received packet.
1374  *
1375  * Return: 0 on success, -1 on failure.
1376  */
rsi_mgmt_pkt_recv(struct rsi_common * common,u8 * msg)1377 int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
1378 {
1379 	s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
1380 	u16 msg_type = (msg[2]);
1381 	int ret;
1382 
1383 	rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
1384 		__func__, msg_len, msg_type);
1385 
1386 	if (msg_type == TA_CONFIRM_TYPE) {
1387 		return rsi_handle_ta_confirm_type(common, msg);
1388 	} else if (msg_type == CARD_READY_IND) {
1389 		rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
1390 			__func__);
1391 		if (common->fsm_state == FSM_CARD_NOT_READY) {
1392 			rsi_set_default_parameters(common);
1393 
1394 			ret = rsi_load_bootup_params(common);
1395 			if (ret)
1396 				return ret;
1397 			else
1398 				common->fsm_state = FSM_BOOT_PARAMS_SENT;
1399 		} else {
1400 			return -EINVAL;
1401 		}
1402 	} else if (msg_type == TX_STATUS_IND) {
1403 		if (msg[15] == PROBEREQ_CONFIRM) {
1404 			common->mgmt_q_block = false;
1405 			rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
1406 				__func__);
1407 		}
1408 	} else {
1409 		return rsi_mgmt_pkt_to_core(common, msg, msg_len, msg_type);
1410 	}
1411 	return 0;
1412 }
1413