• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19 
20 #include "rtmutex_common.h"
21 
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner	bit0
29  * NULL		0	lock is free (fast acquire possible)
30  * NULL		1	lock is free and has waiters and the top waiter
31  *				is going to take the lock*
32  * taskpointer	0	lock is held (fast release possible)
33  * taskpointer	1	lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48 
49 static void
rt_mutex_set_owner(struct rt_mutex * lock,struct task_struct * owner)50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52 	unsigned long val = (unsigned long)owner;
53 
54 	if (rt_mutex_has_waiters(lock))
55 		val |= RT_MUTEX_HAS_WAITERS;
56 
57 	lock->owner = (struct task_struct *)val;
58 }
59 
clear_rt_mutex_waiters(struct rt_mutex * lock)60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62 	lock->owner = (struct task_struct *)
63 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65 
fixup_rt_mutex_waiters(struct rt_mutex * lock)66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68 	unsigned long owner, *p = (unsigned long *) &lock->owner;
69 
70 	if (rt_mutex_has_waiters(lock))
71 		return;
72 
73 	/*
74 	 * The rbtree has no waiters enqueued, now make sure that the
75 	 * lock->owner still has the waiters bit set, otherwise the
76 	 * following can happen:
77 	 *
78 	 * CPU 0	CPU 1		CPU2
79 	 * l->owner=T1
80 	 *		rt_mutex_lock(l)
81 	 *		lock(l->lock)
82 	 *		l->owner = T1 | HAS_WAITERS;
83 	 *		enqueue(T2)
84 	 *		boost()
85 	 *		  unlock(l->lock)
86 	 *		block()
87 	 *
88 	 *				rt_mutex_lock(l)
89 	 *				lock(l->lock)
90 	 *				l->owner = T1 | HAS_WAITERS;
91 	 *				enqueue(T3)
92 	 *				boost()
93 	 *				  unlock(l->lock)
94 	 *				block()
95 	 *		signal(->T2)	signal(->T3)
96 	 *		lock(l->lock)
97 	 *		dequeue(T2)
98 	 *		deboost()
99 	 *		  unlock(l->lock)
100 	 *				lock(l->lock)
101 	 *				dequeue(T3)
102 	 *				 ==> wait list is empty
103 	 *				deboost()
104 	 *				 unlock(l->lock)
105 	 *		lock(l->lock)
106 	 *		fixup_rt_mutex_waiters()
107 	 *		  if (wait_list_empty(l) {
108 	 *		    l->owner = owner
109 	 *		    owner = l->owner & ~HAS_WAITERS;
110 	 *		      ==> l->owner = T1
111 	 *		  }
112 	 *				lock(l->lock)
113 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
114 	 *				  if (wait_list_empty(l) {
115 	 *				    owner = l->owner & ~HAS_WAITERS;
116 	 * cmpxchg(l->owner, T1, NULL)
117 	 *  ===> Success (l->owner = NULL)
118 	 *
119 	 *				    l->owner = owner
120 	 *				      ==> l->owner = T1
121 	 *				  }
122 	 *
123 	 * With the check for the waiter bit in place T3 on CPU2 will not
124 	 * overwrite. All tasks fiddling with the waiters bit are
125 	 * serialized by l->lock, so nothing else can modify the waiters
126 	 * bit. If the bit is set then nothing can change l->owner either
127 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
128 	 * happens in the middle of the RMW because the waiters bit is
129 	 * still set.
130 	 */
131 	owner = READ_ONCE(*p);
132 	if (owner & RT_MUTEX_HAS_WAITERS)
133 		WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
134 }
135 
136 /*
137  * We can speed up the acquire/release, if there's no debugging state to be
138  * set up.
139  */
140 #ifndef CONFIG_DEBUG_RT_MUTEXES
141 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
142 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
143 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
144 
145 /*
146  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
147  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
148  * relaxed semantics suffice.
149  */
mark_rt_mutex_waiters(struct rt_mutex * lock)150 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
151 {
152 	unsigned long owner, *p = (unsigned long *) &lock->owner;
153 
154 	do {
155 		owner = *p;
156 	} while (cmpxchg_relaxed(p, owner,
157 				 owner | RT_MUTEX_HAS_WAITERS) != owner);
158 }
159 
160 /*
161  * Safe fastpath aware unlock:
162  * 1) Clear the waiters bit
163  * 2) Drop lock->wait_lock
164  * 3) Try to unlock the lock with cmpxchg
165  */
unlock_rt_mutex_safe(struct rt_mutex * lock,unsigned long flags)166 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
167 					unsigned long flags)
168 	__releases(lock->wait_lock)
169 {
170 	struct task_struct *owner = rt_mutex_owner(lock);
171 
172 	clear_rt_mutex_waiters(lock);
173 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
174 	/*
175 	 * If a new waiter comes in between the unlock and the cmpxchg
176 	 * we have two situations:
177 	 *
178 	 * unlock(wait_lock);
179 	 *					lock(wait_lock);
180 	 * cmpxchg(p, owner, 0) == owner
181 	 *					mark_rt_mutex_waiters(lock);
182 	 *					acquire(lock);
183 	 * or:
184 	 *
185 	 * unlock(wait_lock);
186 	 *					lock(wait_lock);
187 	 *					mark_rt_mutex_waiters(lock);
188 	 *
189 	 * cmpxchg(p, owner, 0) != owner
190 	 *					enqueue_waiter();
191 	 *					unlock(wait_lock);
192 	 * lock(wait_lock);
193 	 * wake waiter();
194 	 * unlock(wait_lock);
195 	 *					lock(wait_lock);
196 	 *					acquire(lock);
197 	 */
198 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
199 }
200 
201 #else
202 # define rt_mutex_cmpxchg_relaxed(l,c,n)	(0)
203 # define rt_mutex_cmpxchg_acquire(l,c,n)	(0)
204 # define rt_mutex_cmpxchg_release(l,c,n)	(0)
205 
mark_rt_mutex_waiters(struct rt_mutex * lock)206 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
207 {
208 	lock->owner = (struct task_struct *)
209 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
210 }
211 
212 /*
213  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
214  */
unlock_rt_mutex_safe(struct rt_mutex * lock,unsigned long flags)215 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
216 					unsigned long flags)
217 	__releases(lock->wait_lock)
218 {
219 	lock->owner = NULL;
220 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
221 	return true;
222 }
223 #endif
224 
225 static inline int
rt_mutex_waiter_less(struct rt_mutex_waiter * left,struct rt_mutex_waiter * right)226 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
227 		     struct rt_mutex_waiter *right)
228 {
229 	if (left->prio < right->prio)
230 		return 1;
231 
232 	/*
233 	 * If both waiters have dl_prio(), we check the deadlines of the
234 	 * associated tasks.
235 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
236 	 * then right waiter has a dl_prio() too.
237 	 */
238 	if (dl_prio(left->prio))
239 		return dl_time_before(left->task->dl.deadline,
240 				      right->task->dl.deadline);
241 
242 	return 0;
243 }
244 
245 static void
rt_mutex_enqueue(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)246 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
247 {
248 	struct rb_node **link = &lock->waiters.rb_node;
249 	struct rb_node *parent = NULL;
250 	struct rt_mutex_waiter *entry;
251 	int leftmost = 1;
252 
253 	while (*link) {
254 		parent = *link;
255 		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
256 		if (rt_mutex_waiter_less(waiter, entry)) {
257 			link = &parent->rb_left;
258 		} else {
259 			link = &parent->rb_right;
260 			leftmost = 0;
261 		}
262 	}
263 
264 	if (leftmost)
265 		lock->waiters_leftmost = &waiter->tree_entry;
266 
267 	rb_link_node(&waiter->tree_entry, parent, link);
268 	rb_insert_color(&waiter->tree_entry, &lock->waiters);
269 }
270 
271 static void
rt_mutex_dequeue(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)272 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
273 {
274 	if (RB_EMPTY_NODE(&waiter->tree_entry))
275 		return;
276 
277 	if (lock->waiters_leftmost == &waiter->tree_entry)
278 		lock->waiters_leftmost = rb_next(&waiter->tree_entry);
279 
280 	rb_erase(&waiter->tree_entry, &lock->waiters);
281 	RB_CLEAR_NODE(&waiter->tree_entry);
282 }
283 
284 static void
rt_mutex_enqueue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)285 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
286 {
287 	struct rb_node **link = &task->pi_waiters.rb_node;
288 	struct rb_node *parent = NULL;
289 	struct rt_mutex_waiter *entry;
290 	int leftmost = 1;
291 
292 	while (*link) {
293 		parent = *link;
294 		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
295 		if (rt_mutex_waiter_less(waiter, entry)) {
296 			link = &parent->rb_left;
297 		} else {
298 			link = &parent->rb_right;
299 			leftmost = 0;
300 		}
301 	}
302 
303 	if (leftmost)
304 		task->pi_waiters_leftmost = &waiter->pi_tree_entry;
305 
306 	rb_link_node(&waiter->pi_tree_entry, parent, link);
307 	rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
308 }
309 
310 static void
rt_mutex_dequeue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)311 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
312 {
313 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
314 		return;
315 
316 	if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
317 		task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
318 
319 	rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
320 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
321 }
322 
323 /*
324  * Calculate task priority from the waiter tree priority
325  *
326  * Return task->normal_prio when the waiter tree is empty or when
327  * the waiter is not allowed to do priority boosting
328  */
rt_mutex_getprio(struct task_struct * task)329 int rt_mutex_getprio(struct task_struct *task)
330 {
331 	if (likely(!task_has_pi_waiters(task)))
332 		return task->normal_prio;
333 
334 	return min(task_top_pi_waiter(task)->prio,
335 		   task->normal_prio);
336 }
337 
rt_mutex_get_top_task(struct task_struct * task)338 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
339 {
340 	if (likely(!task_has_pi_waiters(task)))
341 		return NULL;
342 
343 	return task_top_pi_waiter(task)->task;
344 }
345 
346 /*
347  * Called by sched_setscheduler() to get the priority which will be
348  * effective after the change.
349  */
rt_mutex_get_effective_prio(struct task_struct * task,int newprio)350 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
351 {
352 	if (!task_has_pi_waiters(task))
353 		return newprio;
354 
355 	if (task_top_pi_waiter(task)->task->prio <= newprio)
356 		return task_top_pi_waiter(task)->task->prio;
357 	return newprio;
358 }
359 
360 /*
361  * Adjust the priority of a task, after its pi_waiters got modified.
362  *
363  * This can be both boosting and unboosting. task->pi_lock must be held.
364  */
__rt_mutex_adjust_prio(struct task_struct * task)365 static void __rt_mutex_adjust_prio(struct task_struct *task)
366 {
367 	int prio = rt_mutex_getprio(task);
368 
369 	if (task->prio != prio || dl_prio(prio))
370 		rt_mutex_setprio(task, prio);
371 }
372 
373 /*
374  * Adjust task priority (undo boosting). Called from the exit path of
375  * rt_mutex_slowunlock() and rt_mutex_slowlock().
376  *
377  * (Note: We do this outside of the protection of lock->wait_lock to
378  * allow the lock to be taken while or before we readjust the priority
379  * of task. We do not use the spin_xx_mutex() variants here as we are
380  * outside of the debug path.)
381  */
rt_mutex_adjust_prio(struct task_struct * task)382 void rt_mutex_adjust_prio(struct task_struct *task)
383 {
384 	unsigned long flags;
385 
386 	raw_spin_lock_irqsave(&task->pi_lock, flags);
387 	__rt_mutex_adjust_prio(task);
388 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
389 }
390 
391 /*
392  * Deadlock detection is conditional:
393  *
394  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
395  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
396  *
397  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
398  * conducted independent of the detect argument.
399  *
400  * If the waiter argument is NULL this indicates the deboost path and
401  * deadlock detection is disabled independent of the detect argument
402  * and the config settings.
403  */
rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter * waiter,enum rtmutex_chainwalk chwalk)404 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
405 					  enum rtmutex_chainwalk chwalk)
406 {
407 	/*
408 	 * This is just a wrapper function for the following call,
409 	 * because debug_rt_mutex_detect_deadlock() smells like a magic
410 	 * debug feature and I wanted to keep the cond function in the
411 	 * main source file along with the comments instead of having
412 	 * two of the same in the headers.
413 	 */
414 	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
415 }
416 
417 /*
418  * Max number of times we'll walk the boosting chain:
419  */
420 int max_lock_depth = 1024;
421 
task_blocked_on_lock(struct task_struct * p)422 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
423 {
424 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
425 }
426 
427 /*
428  * Adjust the priority chain. Also used for deadlock detection.
429  * Decreases task's usage by one - may thus free the task.
430  *
431  * @task:	the task owning the mutex (owner) for which a chain walk is
432  *		probably needed
433  * @chwalk:	do we have to carry out deadlock detection?
434  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
435  *		things for a task that has just got its priority adjusted, and
436  *		is waiting on a mutex)
437  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
438  *		we dropped its pi_lock. Is never dereferenced, only used for
439  *		comparison to detect lock chain changes.
440  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
441  *		its priority to the mutex owner (can be NULL in the case
442  *		depicted above or if the top waiter is gone away and we are
443  *		actually deboosting the owner)
444  * @top_task:	the current top waiter
445  *
446  * Returns 0 or -EDEADLK.
447  *
448  * Chain walk basics and protection scope
449  *
450  * [R] refcount on task
451  * [P] task->pi_lock held
452  * [L] rtmutex->wait_lock held
453  *
454  * Step	Description				Protected by
455  *	function arguments:
456  *	@task					[R]
457  *	@orig_lock if != NULL			@top_task is blocked on it
458  *	@next_lock				Unprotected. Cannot be
459  *						dereferenced. Only used for
460  *						comparison.
461  *	@orig_waiter if != NULL			@top_task is blocked on it
462  *	@top_task				current, or in case of proxy
463  *						locking protected by calling
464  *						code
465  *	again:
466  *	  loop_sanity_check();
467  *	retry:
468  * [1]	  lock(task->pi_lock);			[R] acquire [P]
469  * [2]	  waiter = task->pi_blocked_on;		[P]
470  * [3]	  check_exit_conditions_1();		[P]
471  * [4]	  lock = waiter->lock;			[P]
472  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
473  *	    unlock(task->pi_lock);		release [P]
474  *	    goto retry;
475  *	  }
476  * [6]	  check_exit_conditions_2();		[P] + [L]
477  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
478  * [8]	  unlock(task->pi_lock);		release [P]
479  *	  put_task_struct(task);		release [R]
480  * [9]	  check_exit_conditions_3();		[L]
481  * [10]	  task = owner(lock);			[L]
482  *	  get_task_struct(task);		[L] acquire [R]
483  *	  lock(task->pi_lock);			[L] acquire [P]
484  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
485  * [12]	  check_exit_conditions_4();		[P] + [L]
486  * [13]	  unlock(task->pi_lock);		release [P]
487  *	  unlock(lock->wait_lock);		release [L]
488  *	  goto again;
489  */
rt_mutex_adjust_prio_chain(struct task_struct * task,enum rtmutex_chainwalk chwalk,struct rt_mutex * orig_lock,struct rt_mutex * next_lock,struct rt_mutex_waiter * orig_waiter,struct task_struct * top_task)490 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
491 				      enum rtmutex_chainwalk chwalk,
492 				      struct rt_mutex *orig_lock,
493 				      struct rt_mutex *next_lock,
494 				      struct rt_mutex_waiter *orig_waiter,
495 				      struct task_struct *top_task)
496 {
497 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
498 	struct rt_mutex_waiter *prerequeue_top_waiter;
499 	int ret = 0, depth = 0;
500 	struct rt_mutex *lock;
501 	bool detect_deadlock;
502 	bool requeue = true;
503 
504 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
505 
506 	/*
507 	 * The (de)boosting is a step by step approach with a lot of
508 	 * pitfalls. We want this to be preemptible and we want hold a
509 	 * maximum of two locks per step. So we have to check
510 	 * carefully whether things change under us.
511 	 */
512  again:
513 	/*
514 	 * We limit the lock chain length for each invocation.
515 	 */
516 	if (++depth > max_lock_depth) {
517 		static int prev_max;
518 
519 		/*
520 		 * Print this only once. If the admin changes the limit,
521 		 * print a new message when reaching the limit again.
522 		 */
523 		if (prev_max != max_lock_depth) {
524 			prev_max = max_lock_depth;
525 			printk(KERN_WARNING "Maximum lock depth %d reached "
526 			       "task: %s (%d)\n", max_lock_depth,
527 			       top_task->comm, task_pid_nr(top_task));
528 		}
529 		put_task_struct(task);
530 
531 		return -EDEADLK;
532 	}
533 
534 	/*
535 	 * We are fully preemptible here and only hold the refcount on
536 	 * @task. So everything can have changed under us since the
537 	 * caller or our own code below (goto retry/again) dropped all
538 	 * locks.
539 	 */
540  retry:
541 	/*
542 	 * [1] Task cannot go away as we did a get_task() before !
543 	 */
544 	raw_spin_lock_irq(&task->pi_lock);
545 
546 	/*
547 	 * [2] Get the waiter on which @task is blocked on.
548 	 */
549 	waiter = task->pi_blocked_on;
550 
551 	/*
552 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
553 	 */
554 
555 	/*
556 	 * Check whether the end of the boosting chain has been
557 	 * reached or the state of the chain has changed while we
558 	 * dropped the locks.
559 	 */
560 	if (!waiter)
561 		goto out_unlock_pi;
562 
563 	/*
564 	 * Check the orig_waiter state. After we dropped the locks,
565 	 * the previous owner of the lock might have released the lock.
566 	 */
567 	if (orig_waiter && !rt_mutex_owner(orig_lock))
568 		goto out_unlock_pi;
569 
570 	/*
571 	 * We dropped all locks after taking a refcount on @task, so
572 	 * the task might have moved on in the lock chain or even left
573 	 * the chain completely and blocks now on an unrelated lock or
574 	 * on @orig_lock.
575 	 *
576 	 * We stored the lock on which @task was blocked in @next_lock,
577 	 * so we can detect the chain change.
578 	 */
579 	if (next_lock != waiter->lock)
580 		goto out_unlock_pi;
581 
582 	/*
583 	 * Drop out, when the task has no waiters. Note,
584 	 * top_waiter can be NULL, when we are in the deboosting
585 	 * mode!
586 	 */
587 	if (top_waiter) {
588 		if (!task_has_pi_waiters(task))
589 			goto out_unlock_pi;
590 		/*
591 		 * If deadlock detection is off, we stop here if we
592 		 * are not the top pi waiter of the task. If deadlock
593 		 * detection is enabled we continue, but stop the
594 		 * requeueing in the chain walk.
595 		 */
596 		if (top_waiter != task_top_pi_waiter(task)) {
597 			if (!detect_deadlock)
598 				goto out_unlock_pi;
599 			else
600 				requeue = false;
601 		}
602 	}
603 
604 	/*
605 	 * If the waiter priority is the same as the task priority
606 	 * then there is no further priority adjustment necessary.  If
607 	 * deadlock detection is off, we stop the chain walk. If its
608 	 * enabled we continue, but stop the requeueing in the chain
609 	 * walk.
610 	 */
611 	if (waiter->prio == task->prio) {
612 		if (!detect_deadlock)
613 			goto out_unlock_pi;
614 		else
615 			requeue = false;
616 	}
617 
618 	/*
619 	 * [4] Get the next lock
620 	 */
621 	lock = waiter->lock;
622 	/*
623 	 * [5] We need to trylock here as we are holding task->pi_lock,
624 	 * which is the reverse lock order versus the other rtmutex
625 	 * operations.
626 	 */
627 	if (!raw_spin_trylock(&lock->wait_lock)) {
628 		raw_spin_unlock_irq(&task->pi_lock);
629 		cpu_relax();
630 		goto retry;
631 	}
632 
633 	/*
634 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
635 	 * lock->wait_lock.
636 	 *
637 	 * Deadlock detection. If the lock is the same as the original
638 	 * lock which caused us to walk the lock chain or if the
639 	 * current lock is owned by the task which initiated the chain
640 	 * walk, we detected a deadlock.
641 	 */
642 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
643 		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
644 		raw_spin_unlock(&lock->wait_lock);
645 		ret = -EDEADLK;
646 		goto out_unlock_pi;
647 	}
648 
649 	/*
650 	 * If we just follow the lock chain for deadlock detection, no
651 	 * need to do all the requeue operations. To avoid a truckload
652 	 * of conditionals around the various places below, just do the
653 	 * minimum chain walk checks.
654 	 */
655 	if (!requeue) {
656 		/*
657 		 * No requeue[7] here. Just release @task [8]
658 		 */
659 		raw_spin_unlock(&task->pi_lock);
660 		put_task_struct(task);
661 
662 		/*
663 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
664 		 * If there is no owner of the lock, end of chain.
665 		 */
666 		if (!rt_mutex_owner(lock)) {
667 			raw_spin_unlock_irq(&lock->wait_lock);
668 			return 0;
669 		}
670 
671 		/* [10] Grab the next task, i.e. owner of @lock */
672 		task = rt_mutex_owner(lock);
673 		get_task_struct(task);
674 		raw_spin_lock(&task->pi_lock);
675 
676 		/*
677 		 * No requeue [11] here. We just do deadlock detection.
678 		 *
679 		 * [12] Store whether owner is blocked
680 		 * itself. Decision is made after dropping the locks
681 		 */
682 		next_lock = task_blocked_on_lock(task);
683 		/*
684 		 * Get the top waiter for the next iteration
685 		 */
686 		top_waiter = rt_mutex_top_waiter(lock);
687 
688 		/* [13] Drop locks */
689 		raw_spin_unlock(&task->pi_lock);
690 		raw_spin_unlock_irq(&lock->wait_lock);
691 
692 		/* If owner is not blocked, end of chain. */
693 		if (!next_lock)
694 			goto out_put_task;
695 		goto again;
696 	}
697 
698 	/*
699 	 * Store the current top waiter before doing the requeue
700 	 * operation on @lock. We need it for the boost/deboost
701 	 * decision below.
702 	 */
703 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
704 
705 	/* [7] Requeue the waiter in the lock waiter tree. */
706 	rt_mutex_dequeue(lock, waiter);
707 	waiter->prio = task->prio;
708 	rt_mutex_enqueue(lock, waiter);
709 
710 	/* [8] Release the task */
711 	raw_spin_unlock(&task->pi_lock);
712 	put_task_struct(task);
713 
714 	/*
715 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
716 	 *
717 	 * We must abort the chain walk if there is no lock owner even
718 	 * in the dead lock detection case, as we have nothing to
719 	 * follow here. This is the end of the chain we are walking.
720 	 */
721 	if (!rt_mutex_owner(lock)) {
722 		/*
723 		 * If the requeue [7] above changed the top waiter,
724 		 * then we need to wake the new top waiter up to try
725 		 * to get the lock.
726 		 */
727 		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
728 			wake_up_process(rt_mutex_top_waiter(lock)->task);
729 		raw_spin_unlock_irq(&lock->wait_lock);
730 		return 0;
731 	}
732 
733 	/* [10] Grab the next task, i.e. the owner of @lock */
734 	task = rt_mutex_owner(lock);
735 	get_task_struct(task);
736 	raw_spin_lock(&task->pi_lock);
737 
738 	/* [11] requeue the pi waiters if necessary */
739 	if (waiter == rt_mutex_top_waiter(lock)) {
740 		/*
741 		 * The waiter became the new top (highest priority)
742 		 * waiter on the lock. Replace the previous top waiter
743 		 * in the owner tasks pi waiters tree with this waiter
744 		 * and adjust the priority of the owner.
745 		 */
746 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
747 		rt_mutex_enqueue_pi(task, waiter);
748 		__rt_mutex_adjust_prio(task);
749 
750 	} else if (prerequeue_top_waiter == waiter) {
751 		/*
752 		 * The waiter was the top waiter on the lock, but is
753 		 * no longer the top prority waiter. Replace waiter in
754 		 * the owner tasks pi waiters tree with the new top
755 		 * (highest priority) waiter and adjust the priority
756 		 * of the owner.
757 		 * The new top waiter is stored in @waiter so that
758 		 * @waiter == @top_waiter evaluates to true below and
759 		 * we continue to deboost the rest of the chain.
760 		 */
761 		rt_mutex_dequeue_pi(task, waiter);
762 		waiter = rt_mutex_top_waiter(lock);
763 		rt_mutex_enqueue_pi(task, waiter);
764 		__rt_mutex_adjust_prio(task);
765 	} else {
766 		/*
767 		 * Nothing changed. No need to do any priority
768 		 * adjustment.
769 		 */
770 	}
771 
772 	/*
773 	 * [12] check_exit_conditions_4() protected by task->pi_lock
774 	 * and lock->wait_lock. The actual decisions are made after we
775 	 * dropped the locks.
776 	 *
777 	 * Check whether the task which owns the current lock is pi
778 	 * blocked itself. If yes we store a pointer to the lock for
779 	 * the lock chain change detection above. After we dropped
780 	 * task->pi_lock next_lock cannot be dereferenced anymore.
781 	 */
782 	next_lock = task_blocked_on_lock(task);
783 	/*
784 	 * Store the top waiter of @lock for the end of chain walk
785 	 * decision below.
786 	 */
787 	top_waiter = rt_mutex_top_waiter(lock);
788 
789 	/* [13] Drop the locks */
790 	raw_spin_unlock(&task->pi_lock);
791 	raw_spin_unlock_irq(&lock->wait_lock);
792 
793 	/*
794 	 * Make the actual exit decisions [12], based on the stored
795 	 * values.
796 	 *
797 	 * We reached the end of the lock chain. Stop right here. No
798 	 * point to go back just to figure that out.
799 	 */
800 	if (!next_lock)
801 		goto out_put_task;
802 
803 	/*
804 	 * If the current waiter is not the top waiter on the lock,
805 	 * then we can stop the chain walk here if we are not in full
806 	 * deadlock detection mode.
807 	 */
808 	if (!detect_deadlock && waiter != top_waiter)
809 		goto out_put_task;
810 
811 	goto again;
812 
813  out_unlock_pi:
814 	raw_spin_unlock_irq(&task->pi_lock);
815  out_put_task:
816 	put_task_struct(task);
817 
818 	return ret;
819 }
820 
821 /*
822  * Try to take an rt-mutex
823  *
824  * Must be called with lock->wait_lock held and interrupts disabled
825  *
826  * @lock:   The lock to be acquired.
827  * @task:   The task which wants to acquire the lock
828  * @waiter: The waiter that is queued to the lock's wait tree if the
829  *	    callsite called task_blocked_on_lock(), otherwise NULL
830  */
try_to_take_rt_mutex(struct rt_mutex * lock,struct task_struct * task,struct rt_mutex_waiter * waiter)831 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
832 				struct rt_mutex_waiter *waiter)
833 {
834 	/*
835 	 * Before testing whether we can acquire @lock, we set the
836 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
837 	 * other tasks which try to modify @lock into the slow path
838 	 * and they serialize on @lock->wait_lock.
839 	 *
840 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
841 	 * as explained at the top of this file if and only if:
842 	 *
843 	 * - There is a lock owner. The caller must fixup the
844 	 *   transient state if it does a trylock or leaves the lock
845 	 *   function due to a signal or timeout.
846 	 *
847 	 * - @task acquires the lock and there are no other
848 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
849 	 *   the end of this function.
850 	 */
851 	mark_rt_mutex_waiters(lock);
852 
853 	/*
854 	 * If @lock has an owner, give up.
855 	 */
856 	if (rt_mutex_owner(lock))
857 		return 0;
858 
859 	/*
860 	 * If @waiter != NULL, @task has already enqueued the waiter
861 	 * into @lock waiter tree. If @waiter == NULL then this is a
862 	 * trylock attempt.
863 	 */
864 	if (waiter) {
865 		/*
866 		 * If waiter is not the highest priority waiter of
867 		 * @lock, give up.
868 		 */
869 		if (waiter != rt_mutex_top_waiter(lock))
870 			return 0;
871 
872 		/*
873 		 * We can acquire the lock. Remove the waiter from the
874 		 * lock waiters tree.
875 		 */
876 		rt_mutex_dequeue(lock, waiter);
877 
878 	} else {
879 		/*
880 		 * If the lock has waiters already we check whether @task is
881 		 * eligible to take over the lock.
882 		 *
883 		 * If there are no other waiters, @task can acquire
884 		 * the lock.  @task->pi_blocked_on is NULL, so it does
885 		 * not need to be dequeued.
886 		 */
887 		if (rt_mutex_has_waiters(lock)) {
888 			/*
889 			 * If @task->prio is greater than or equal to
890 			 * the top waiter priority (kernel view),
891 			 * @task lost.
892 			 */
893 			if (task->prio >= rt_mutex_top_waiter(lock)->prio)
894 				return 0;
895 
896 			/*
897 			 * The current top waiter stays enqueued. We
898 			 * don't have to change anything in the lock
899 			 * waiters order.
900 			 */
901 		} else {
902 			/*
903 			 * No waiters. Take the lock without the
904 			 * pi_lock dance.@task->pi_blocked_on is NULL
905 			 * and we have no waiters to enqueue in @task
906 			 * pi waiters tree.
907 			 */
908 			goto takeit;
909 		}
910 	}
911 
912 	/*
913 	 * Clear @task->pi_blocked_on. Requires protection by
914 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
915 	 * case, but conditionals are more expensive than a redundant
916 	 * store.
917 	 */
918 	raw_spin_lock(&task->pi_lock);
919 	task->pi_blocked_on = NULL;
920 	/*
921 	 * Finish the lock acquisition. @task is the new owner. If
922 	 * other waiters exist we have to insert the highest priority
923 	 * waiter into @task->pi_waiters tree.
924 	 */
925 	if (rt_mutex_has_waiters(lock))
926 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
927 	raw_spin_unlock(&task->pi_lock);
928 
929 takeit:
930 	/* We got the lock. */
931 	debug_rt_mutex_lock(lock);
932 
933 	/*
934 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
935 	 * are still waiters or clears it.
936 	 */
937 	rt_mutex_set_owner(lock, task);
938 
939 	return 1;
940 }
941 
942 /*
943  * Task blocks on lock.
944  *
945  * Prepare waiter and propagate pi chain
946  *
947  * This must be called with lock->wait_lock held and interrupts disabled
948  */
task_blocks_on_rt_mutex(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,enum rtmutex_chainwalk chwalk)949 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
950 				   struct rt_mutex_waiter *waiter,
951 				   struct task_struct *task,
952 				   enum rtmutex_chainwalk chwalk)
953 {
954 	struct task_struct *owner = rt_mutex_owner(lock);
955 	struct rt_mutex_waiter *top_waiter = waiter;
956 	struct rt_mutex *next_lock;
957 	int chain_walk = 0, res;
958 
959 	/*
960 	 * Early deadlock detection. We really don't want the task to
961 	 * enqueue on itself just to untangle the mess later. It's not
962 	 * only an optimization. We drop the locks, so another waiter
963 	 * can come in before the chain walk detects the deadlock. So
964 	 * the other will detect the deadlock and return -EDEADLOCK,
965 	 * which is wrong, as the other waiter is not in a deadlock
966 	 * situation.
967 	 */
968 	if (owner == task)
969 		return -EDEADLK;
970 
971 	raw_spin_lock(&task->pi_lock);
972 	__rt_mutex_adjust_prio(task);
973 	waiter->task = task;
974 	waiter->lock = lock;
975 	waiter->prio = task->prio;
976 
977 	/* Get the top priority waiter on the lock */
978 	if (rt_mutex_has_waiters(lock))
979 		top_waiter = rt_mutex_top_waiter(lock);
980 	rt_mutex_enqueue(lock, waiter);
981 
982 	task->pi_blocked_on = waiter;
983 
984 	raw_spin_unlock(&task->pi_lock);
985 
986 	if (!owner)
987 		return 0;
988 
989 	raw_spin_lock(&owner->pi_lock);
990 	if (waiter == rt_mutex_top_waiter(lock)) {
991 		rt_mutex_dequeue_pi(owner, top_waiter);
992 		rt_mutex_enqueue_pi(owner, waiter);
993 
994 		__rt_mutex_adjust_prio(owner);
995 		if (owner->pi_blocked_on)
996 			chain_walk = 1;
997 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
998 		chain_walk = 1;
999 	}
1000 
1001 	/* Store the lock on which owner is blocked or NULL */
1002 	next_lock = task_blocked_on_lock(owner);
1003 
1004 	raw_spin_unlock(&owner->pi_lock);
1005 	/*
1006 	 * Even if full deadlock detection is on, if the owner is not
1007 	 * blocked itself, we can avoid finding this out in the chain
1008 	 * walk.
1009 	 */
1010 	if (!chain_walk || !next_lock)
1011 		return 0;
1012 
1013 	/*
1014 	 * The owner can't disappear while holding a lock,
1015 	 * so the owner struct is protected by wait_lock.
1016 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
1017 	 */
1018 	get_task_struct(owner);
1019 
1020 	raw_spin_unlock_irq(&lock->wait_lock);
1021 
1022 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1023 					 next_lock, waiter, task);
1024 
1025 	raw_spin_lock_irq(&lock->wait_lock);
1026 
1027 	return res;
1028 }
1029 
1030 /*
1031  * Remove the top waiter from the current tasks pi waiter tree and
1032  * queue it up.
1033  *
1034  * Called with lock->wait_lock held and interrupts disabled.
1035  */
mark_wakeup_next_waiter(struct wake_q_head * wake_q,struct rt_mutex * lock)1036 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1037 				    struct rt_mutex *lock)
1038 {
1039 	struct rt_mutex_waiter *waiter;
1040 
1041 	raw_spin_lock(&current->pi_lock);
1042 
1043 	waiter = rt_mutex_top_waiter(lock);
1044 
1045 	/*
1046 	 * Remove it from current->pi_waiters. We do not adjust a
1047 	 * possible priority boost right now. We execute wakeup in the
1048 	 * boosted mode and go back to normal after releasing
1049 	 * lock->wait_lock.
1050 	 */
1051 	rt_mutex_dequeue_pi(current, waiter);
1052 
1053 	/*
1054 	 * As we are waking up the top waiter, and the waiter stays
1055 	 * queued on the lock until it gets the lock, this lock
1056 	 * obviously has waiters. Just set the bit here and this has
1057 	 * the added benefit of forcing all new tasks into the
1058 	 * slow path making sure no task of lower priority than
1059 	 * the top waiter can steal this lock.
1060 	 */
1061 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1062 
1063 	raw_spin_unlock(&current->pi_lock);
1064 
1065 	wake_q_add(wake_q, waiter->task);
1066 }
1067 
1068 /*
1069  * Remove a waiter from a lock and give up
1070  *
1071  * Must be called with lock->wait_lock held and interrupts disabled. I must
1072  * have just failed to try_to_take_rt_mutex().
1073  */
remove_waiter(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)1074 static void remove_waiter(struct rt_mutex *lock,
1075 			  struct rt_mutex_waiter *waiter)
1076 {
1077 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1078 	struct task_struct *owner = rt_mutex_owner(lock);
1079 	struct rt_mutex *next_lock;
1080 
1081 	raw_spin_lock(&current->pi_lock);
1082 	rt_mutex_dequeue(lock, waiter);
1083 	current->pi_blocked_on = NULL;
1084 	raw_spin_unlock(&current->pi_lock);
1085 
1086 	/*
1087 	 * Only update priority if the waiter was the highest priority
1088 	 * waiter of the lock and there is an owner to update.
1089 	 */
1090 	if (!owner || !is_top_waiter)
1091 		return;
1092 
1093 	raw_spin_lock(&owner->pi_lock);
1094 
1095 	rt_mutex_dequeue_pi(owner, waiter);
1096 
1097 	if (rt_mutex_has_waiters(lock))
1098 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1099 
1100 	__rt_mutex_adjust_prio(owner);
1101 
1102 	/* Store the lock on which owner is blocked or NULL */
1103 	next_lock = task_blocked_on_lock(owner);
1104 
1105 	raw_spin_unlock(&owner->pi_lock);
1106 
1107 	/*
1108 	 * Don't walk the chain, if the owner task is not blocked
1109 	 * itself.
1110 	 */
1111 	if (!next_lock)
1112 		return;
1113 
1114 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1115 	get_task_struct(owner);
1116 
1117 	raw_spin_unlock_irq(&lock->wait_lock);
1118 
1119 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1120 				   next_lock, NULL, current);
1121 
1122 	raw_spin_lock_irq(&lock->wait_lock);
1123 }
1124 
1125 /*
1126  * Recheck the pi chain, in case we got a priority setting
1127  *
1128  * Called from sched_setscheduler
1129  */
rt_mutex_adjust_pi(struct task_struct * task)1130 void rt_mutex_adjust_pi(struct task_struct *task)
1131 {
1132 	struct rt_mutex_waiter *waiter;
1133 	struct rt_mutex *next_lock;
1134 	unsigned long flags;
1135 
1136 	raw_spin_lock_irqsave(&task->pi_lock, flags);
1137 
1138 	waiter = task->pi_blocked_on;
1139 	if (!waiter || (waiter->prio == task->prio &&
1140 			!dl_prio(task->prio))) {
1141 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1142 		return;
1143 	}
1144 	next_lock = waiter->lock;
1145 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1146 
1147 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1148 	get_task_struct(task);
1149 
1150 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1151 				   next_lock, NULL, task);
1152 }
1153 
rt_mutex_init_waiter(struct rt_mutex_waiter * waiter)1154 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1155 {
1156 	debug_rt_mutex_init_waiter(waiter);
1157 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
1158 	RB_CLEAR_NODE(&waiter->tree_entry);
1159 	waiter->task = NULL;
1160 }
1161 
1162 /**
1163  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1164  * @lock:		 the rt_mutex to take
1165  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1166  *			 or TASK_UNINTERRUPTIBLE)
1167  * @timeout:		 the pre-initialized and started timer, or NULL for none
1168  * @waiter:		 the pre-initialized rt_mutex_waiter
1169  *
1170  * Must be called with lock->wait_lock held and interrupts disabled
1171  */
1172 static int __sched
__rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,struct rt_mutex_waiter * waiter)1173 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1174 		    struct hrtimer_sleeper *timeout,
1175 		    struct rt_mutex_waiter *waiter)
1176 {
1177 	int ret = 0;
1178 
1179 	for (;;) {
1180 		/* Try to acquire the lock: */
1181 		if (try_to_take_rt_mutex(lock, current, waiter))
1182 			break;
1183 
1184 		/*
1185 		 * TASK_INTERRUPTIBLE checks for signals and
1186 		 * timeout. Ignored otherwise.
1187 		 */
1188 		if (unlikely(state == TASK_INTERRUPTIBLE)) {
1189 			/* Signal pending? */
1190 			if (signal_pending(current))
1191 				ret = -EINTR;
1192 			if (timeout && !timeout->task)
1193 				ret = -ETIMEDOUT;
1194 			if (ret)
1195 				break;
1196 		}
1197 
1198 		raw_spin_unlock_irq(&lock->wait_lock);
1199 
1200 		debug_rt_mutex_print_deadlock(waiter);
1201 
1202 		schedule();
1203 
1204 		raw_spin_lock_irq(&lock->wait_lock);
1205 		set_current_state(state);
1206 	}
1207 
1208 	__set_current_state(TASK_RUNNING);
1209 	return ret;
1210 }
1211 
rt_mutex_handle_deadlock(int res,int detect_deadlock,struct rt_mutex_waiter * w)1212 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1213 				     struct rt_mutex_waiter *w)
1214 {
1215 	/*
1216 	 * If the result is not -EDEADLOCK or the caller requested
1217 	 * deadlock detection, nothing to do here.
1218 	 */
1219 	if (res != -EDEADLOCK || detect_deadlock)
1220 		return;
1221 
1222 	/*
1223 	 * Yell lowdly and stop the task right here.
1224 	 */
1225 	rt_mutex_print_deadlock(w);
1226 	while (1) {
1227 		set_current_state(TASK_INTERRUPTIBLE);
1228 		schedule();
1229 	}
1230 }
1231 
1232 /*
1233  * Slow path lock function:
1234  */
1235 static int __sched
rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk)1236 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1237 		  struct hrtimer_sleeper *timeout,
1238 		  enum rtmutex_chainwalk chwalk)
1239 {
1240 	struct rt_mutex_waiter waiter;
1241 	unsigned long flags;
1242 	int ret = 0;
1243 
1244 	rt_mutex_init_waiter(&waiter);
1245 
1246 	/*
1247 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1248 	 * be called in early boot if the cmpxchg() fast path is disabled
1249 	 * (debug, no architecture support). In this case we will acquire the
1250 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1251 	 * enable interrupts in that early boot case. So we need to use the
1252 	 * irqsave/restore variants.
1253 	 */
1254 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1255 
1256 	/* Try to acquire the lock again: */
1257 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1258 		raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1259 		return 0;
1260 	}
1261 
1262 	set_current_state(state);
1263 
1264 	/* Setup the timer, when timeout != NULL */
1265 	if (unlikely(timeout))
1266 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1267 
1268 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1269 
1270 	if (likely(!ret))
1271 		/* sleep on the mutex */
1272 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1273 
1274 	if (unlikely(ret)) {
1275 		__set_current_state(TASK_RUNNING);
1276 		if (rt_mutex_has_waiters(lock))
1277 			remove_waiter(lock, &waiter);
1278 		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1279 	}
1280 
1281 	/*
1282 	 * try_to_take_rt_mutex() sets the waiter bit
1283 	 * unconditionally. We might have to fix that up.
1284 	 */
1285 	fixup_rt_mutex_waiters(lock);
1286 
1287 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1288 
1289 	/* Remove pending timer: */
1290 	if (unlikely(timeout))
1291 		hrtimer_cancel(&timeout->timer);
1292 
1293 	debug_rt_mutex_free_waiter(&waiter);
1294 
1295 	return ret;
1296 }
1297 
__rt_mutex_slowtrylock(struct rt_mutex * lock)1298 static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1299 {
1300 	int ret = try_to_take_rt_mutex(lock, current, NULL);
1301 
1302 	/*
1303 	 * try_to_take_rt_mutex() sets the lock waiters bit
1304 	 * unconditionally. Clean this up.
1305 	 */
1306 	fixup_rt_mutex_waiters(lock);
1307 
1308 	return ret;
1309 }
1310 
1311 /*
1312  * Slow path try-lock function:
1313  */
rt_mutex_slowtrylock(struct rt_mutex * lock)1314 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1315 {
1316 	unsigned long flags;
1317 	int ret;
1318 
1319 	/*
1320 	 * If the lock already has an owner we fail to get the lock.
1321 	 * This can be done without taking the @lock->wait_lock as
1322 	 * it is only being read, and this is a trylock anyway.
1323 	 */
1324 	if (rt_mutex_owner(lock))
1325 		return 0;
1326 
1327 	/*
1328 	 * The mutex has currently no owner. Lock the wait lock and try to
1329 	 * acquire the lock. We use irqsave here to support early boot calls.
1330 	 */
1331 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1332 
1333 	ret = __rt_mutex_slowtrylock(lock);
1334 
1335 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1336 
1337 	return ret;
1338 }
1339 
1340 /*
1341  * Slow path to release a rt-mutex.
1342  * Return whether the current task needs to undo a potential priority boosting.
1343  */
rt_mutex_slowunlock(struct rt_mutex * lock,struct wake_q_head * wake_q)1344 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1345 					struct wake_q_head *wake_q)
1346 {
1347 	unsigned long flags;
1348 
1349 	/* irqsave required to support early boot calls */
1350 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1351 
1352 	debug_rt_mutex_unlock(lock);
1353 
1354 	/*
1355 	 * We must be careful here if the fast path is enabled. If we
1356 	 * have no waiters queued we cannot set owner to NULL here
1357 	 * because of:
1358 	 *
1359 	 * foo->lock->owner = NULL;
1360 	 *			rtmutex_lock(foo->lock);   <- fast path
1361 	 *			free = atomic_dec_and_test(foo->refcnt);
1362 	 *			rtmutex_unlock(foo->lock); <- fast path
1363 	 *			if (free)
1364 	 *				kfree(foo);
1365 	 * raw_spin_unlock(foo->lock->wait_lock);
1366 	 *
1367 	 * So for the fastpath enabled kernel:
1368 	 *
1369 	 * Nothing can set the waiters bit as long as we hold
1370 	 * lock->wait_lock. So we do the following sequence:
1371 	 *
1372 	 *	owner = rt_mutex_owner(lock);
1373 	 *	clear_rt_mutex_waiters(lock);
1374 	 *	raw_spin_unlock(&lock->wait_lock);
1375 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1376 	 *		return;
1377 	 *	goto retry;
1378 	 *
1379 	 * The fastpath disabled variant is simple as all access to
1380 	 * lock->owner is serialized by lock->wait_lock:
1381 	 *
1382 	 *	lock->owner = NULL;
1383 	 *	raw_spin_unlock(&lock->wait_lock);
1384 	 */
1385 	while (!rt_mutex_has_waiters(lock)) {
1386 		/* Drops lock->wait_lock ! */
1387 		if (unlock_rt_mutex_safe(lock, flags) == true)
1388 			return false;
1389 		/* Relock the rtmutex and try again */
1390 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1391 	}
1392 
1393 	/*
1394 	 * The wakeup next waiter path does not suffer from the above
1395 	 * race. See the comments there.
1396 	 *
1397 	 * Queue the next waiter for wakeup once we release the wait_lock.
1398 	 */
1399 	mark_wakeup_next_waiter(wake_q, lock);
1400 
1401 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1402 
1403 	/* check PI boosting */
1404 	return true;
1405 }
1406 
1407 /*
1408  * debug aware fast / slowpath lock,trylock,unlock
1409  *
1410  * The atomic acquire/release ops are compiled away, when either the
1411  * architecture does not support cmpxchg or when debugging is enabled.
1412  */
1413 static inline int
rt_mutex_fastlock(struct rt_mutex * lock,int state,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk))1414 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1415 		  int (*slowfn)(struct rt_mutex *lock, int state,
1416 				struct hrtimer_sleeper *timeout,
1417 				enum rtmutex_chainwalk chwalk))
1418 {
1419 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1420 		return 0;
1421 
1422 	return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1423 }
1424 
1425 static inline int
rt_mutex_timed_fastlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk))1426 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1427 			struct hrtimer_sleeper *timeout,
1428 			enum rtmutex_chainwalk chwalk,
1429 			int (*slowfn)(struct rt_mutex *lock, int state,
1430 				      struct hrtimer_sleeper *timeout,
1431 				      enum rtmutex_chainwalk chwalk))
1432 {
1433 	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1434 	    likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1435 		return 0;
1436 
1437 	return slowfn(lock, state, timeout, chwalk);
1438 }
1439 
1440 static inline int
rt_mutex_fasttrylock(struct rt_mutex * lock,int (* slowfn)(struct rt_mutex * lock))1441 rt_mutex_fasttrylock(struct rt_mutex *lock,
1442 		     int (*slowfn)(struct rt_mutex *lock))
1443 {
1444 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1445 		return 1;
1446 
1447 	return slowfn(lock);
1448 }
1449 
1450 static inline void
rt_mutex_fastunlock(struct rt_mutex * lock,bool (* slowfn)(struct rt_mutex * lock,struct wake_q_head * wqh))1451 rt_mutex_fastunlock(struct rt_mutex *lock,
1452 		    bool (*slowfn)(struct rt_mutex *lock,
1453 				   struct wake_q_head *wqh))
1454 {
1455 	WAKE_Q(wake_q);
1456 	bool deboost;
1457 
1458 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1459 		return;
1460 
1461 	deboost = slowfn(lock, &wake_q);
1462 
1463 	wake_up_q(&wake_q);
1464 
1465 	/* Undo pi boosting if necessary: */
1466 	if (deboost)
1467 		rt_mutex_adjust_prio(current);
1468 }
1469 
1470 /**
1471  * rt_mutex_lock - lock a rt_mutex
1472  *
1473  * @lock: the rt_mutex to be locked
1474  */
rt_mutex_lock(struct rt_mutex * lock)1475 void __sched rt_mutex_lock(struct rt_mutex *lock)
1476 {
1477 	might_sleep();
1478 
1479 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1480 }
1481 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1482 
1483 /**
1484  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1485  *
1486  * @lock:		the rt_mutex to be locked
1487  *
1488  * Returns:
1489  *  0		on success
1490  * -EINTR	when interrupted by a signal
1491  */
rt_mutex_lock_interruptible(struct rt_mutex * lock)1492 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1493 {
1494 	might_sleep();
1495 
1496 	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1497 }
1498 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1499 
1500 /*
1501  * Futex variant, must not use fastpath.
1502  */
rt_mutex_futex_trylock(struct rt_mutex * lock)1503 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1504 {
1505 	return rt_mutex_slowtrylock(lock);
1506 }
1507 
__rt_mutex_futex_trylock(struct rt_mutex * lock)1508 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1509 {
1510 	return __rt_mutex_slowtrylock(lock);
1511 }
1512 
1513 /**
1514  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1515  *			the timeout structure is provided
1516  *			by the caller
1517  *
1518  * @lock:		the rt_mutex to be locked
1519  * @timeout:		timeout structure or NULL (no timeout)
1520  *
1521  * Returns:
1522  *  0		on success
1523  * -EINTR	when interrupted by a signal
1524  * -ETIMEDOUT	when the timeout expired
1525  */
1526 int
rt_mutex_timed_lock(struct rt_mutex * lock,struct hrtimer_sleeper * timeout)1527 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1528 {
1529 	might_sleep();
1530 
1531 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1532 				       RT_MUTEX_MIN_CHAINWALK,
1533 				       rt_mutex_slowlock);
1534 }
1535 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1536 
1537 /**
1538  * rt_mutex_trylock - try to lock a rt_mutex
1539  *
1540  * @lock:	the rt_mutex to be locked
1541  *
1542  * This function can only be called in thread context. It's safe to
1543  * call it from atomic regions, but not from hard interrupt or soft
1544  * interrupt context.
1545  *
1546  * Returns 1 on success and 0 on contention
1547  */
rt_mutex_trylock(struct rt_mutex * lock)1548 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1549 {
1550 	if (WARN_ON(in_irq() || in_nmi() || in_serving_softirq()))
1551 		return 0;
1552 
1553 	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1554 }
1555 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1556 
1557 /**
1558  * rt_mutex_unlock - unlock a rt_mutex
1559  *
1560  * @lock: the rt_mutex to be unlocked
1561  */
rt_mutex_unlock(struct rt_mutex * lock)1562 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1563 {
1564 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1565 }
1566 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1567 
1568 /**
1569  * Futex variant, that since futex variants do not use the fast-path, can be
1570  * simple and will not need to retry.
1571  */
__rt_mutex_futex_unlock(struct rt_mutex * lock,struct wake_q_head * wake_q)1572 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1573 				    struct wake_q_head *wake_q)
1574 {
1575 	lockdep_assert_held(&lock->wait_lock);
1576 
1577 	debug_rt_mutex_unlock(lock);
1578 
1579 	if (!rt_mutex_has_waiters(lock)) {
1580 		lock->owner = NULL;
1581 		return false; /* done */
1582 	}
1583 
1584 	mark_wakeup_next_waiter(wake_q, lock);
1585 	return true; /* deboost and wakeups */
1586 }
1587 
rt_mutex_futex_unlock(struct rt_mutex * lock)1588 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1589 {
1590 	WAKE_Q(wake_q);
1591 	bool deboost;
1592 
1593 	raw_spin_lock_irq(&lock->wait_lock);
1594 	deboost = __rt_mutex_futex_unlock(lock, &wake_q);
1595 	raw_spin_unlock_irq(&lock->wait_lock);
1596 
1597 	if (deboost) {
1598 		wake_up_q(&wake_q);
1599 		rt_mutex_adjust_prio(current);
1600 	}
1601 }
1602 
1603 /**
1604  * rt_mutex_destroy - mark a mutex unusable
1605  * @lock: the mutex to be destroyed
1606  *
1607  * This function marks the mutex uninitialized, and any subsequent
1608  * use of the mutex is forbidden. The mutex must not be locked when
1609  * this function is called.
1610  */
rt_mutex_destroy(struct rt_mutex * lock)1611 void rt_mutex_destroy(struct rt_mutex *lock)
1612 {
1613 	WARN_ON(rt_mutex_is_locked(lock));
1614 #ifdef CONFIG_DEBUG_RT_MUTEXES
1615 	lock->magic = NULL;
1616 #endif
1617 }
1618 
1619 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1620 
1621 /**
1622  * __rt_mutex_init - initialize the rt lock
1623  *
1624  * @lock: the rt lock to be initialized
1625  *
1626  * Initialize the rt lock to unlocked state.
1627  *
1628  * Initializing of a locked rt lock is not allowed
1629  */
__rt_mutex_init(struct rt_mutex * lock,const char * name)1630 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1631 {
1632 	lock->owner = NULL;
1633 	raw_spin_lock_init(&lock->wait_lock);
1634 	lock->waiters = RB_ROOT;
1635 	lock->waiters_leftmost = NULL;
1636 
1637 	debug_rt_mutex_init(lock, name);
1638 }
1639 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1640 
1641 /**
1642  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1643  *				proxy owner
1644  *
1645  * @lock: 	the rt_mutex to be locked
1646  * @proxy_owner:the task to set as owner
1647  *
1648  * No locking. Caller has to do serializing itself
1649  * Special API call for PI-futex support
1650  */
rt_mutex_init_proxy_locked(struct rt_mutex * lock,struct task_struct * proxy_owner)1651 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1652 				struct task_struct *proxy_owner)
1653 {
1654 	__rt_mutex_init(lock, NULL);
1655 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1656 	rt_mutex_set_owner(lock, proxy_owner);
1657 }
1658 
1659 /**
1660  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1661  *
1662  * @lock: 	the rt_mutex to be locked
1663  *
1664  * No locking. Caller has to do serializing itself
1665  * Special API call for PI-futex support
1666  */
rt_mutex_proxy_unlock(struct rt_mutex * lock)1667 void rt_mutex_proxy_unlock(struct rt_mutex *lock)
1668 {
1669 	debug_rt_mutex_proxy_unlock(lock);
1670 	rt_mutex_set_owner(lock, NULL);
1671 }
1672 
1673 /**
1674  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1675  * @lock:		the rt_mutex to take
1676  * @waiter:		the pre-initialized rt_mutex_waiter
1677  * @task:		the task to prepare
1678  *
1679  * Returns:
1680  *  0 - task blocked on lock
1681  *  1 - acquired the lock for task, caller should wake it up
1682  * <0 - error
1683  *
1684  * Special API call for FUTEX_REQUEUE_PI support.
1685  */
rt_mutex_start_proxy_lock(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task)1686 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1687 			      struct rt_mutex_waiter *waiter,
1688 			      struct task_struct *task)
1689 {
1690 	int ret;
1691 
1692 	raw_spin_lock_irq(&lock->wait_lock);
1693 
1694 	if (try_to_take_rt_mutex(lock, task, NULL)) {
1695 		raw_spin_unlock_irq(&lock->wait_lock);
1696 		return 1;
1697 	}
1698 
1699 	/* We enforce deadlock detection for futexes */
1700 	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1701 				      RT_MUTEX_FULL_CHAINWALK);
1702 
1703 	if (ret && !rt_mutex_owner(lock)) {
1704 		/*
1705 		 * Reset the return value. We might have
1706 		 * returned with -EDEADLK and the owner
1707 		 * released the lock while we were walking the
1708 		 * pi chain.  Let the waiter sort it out.
1709 		 */
1710 		ret = 0;
1711 	}
1712 
1713 	if (unlikely(ret))
1714 		remove_waiter(lock, waiter);
1715 
1716 	raw_spin_unlock_irq(&lock->wait_lock);
1717 
1718 	debug_rt_mutex_print_deadlock(waiter);
1719 
1720 	return ret;
1721 }
1722 
1723 /**
1724  * rt_mutex_next_owner - return the next owner of the lock
1725  *
1726  * @lock: the rt lock query
1727  *
1728  * Returns the next owner of the lock or NULL
1729  *
1730  * Caller has to serialize against other accessors to the lock
1731  * itself.
1732  *
1733  * Special API call for PI-futex support
1734  */
rt_mutex_next_owner(struct rt_mutex * lock)1735 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1736 {
1737 	if (!rt_mutex_has_waiters(lock))
1738 		return NULL;
1739 
1740 	return rt_mutex_top_waiter(lock)->task;
1741 }
1742 
1743 /**
1744  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1745  * @lock:		the rt_mutex we were woken on
1746  * @to:			the timeout, null if none. hrtimer should already have
1747  *			been started.
1748  * @waiter:		the pre-initialized rt_mutex_waiter
1749  *
1750  * Wait for the the lock acquisition started on our behalf by
1751  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1752  * rt_mutex_cleanup_proxy_lock().
1753  *
1754  * Returns:
1755  *  0 - success
1756  * <0 - error, one of -EINTR, -ETIMEDOUT
1757  *
1758  * Special API call for PI-futex support
1759  */
rt_mutex_wait_proxy_lock(struct rt_mutex * lock,struct hrtimer_sleeper * to,struct rt_mutex_waiter * waiter)1760 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1761 			       struct hrtimer_sleeper *to,
1762 			       struct rt_mutex_waiter *waiter)
1763 {
1764 	int ret;
1765 
1766 	raw_spin_lock_irq(&lock->wait_lock);
1767 	/* sleep on the mutex */
1768 	set_current_state(TASK_INTERRUPTIBLE);
1769 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1770 	/*
1771 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1772 	 * have to fix that up.
1773 	 */
1774 	fixup_rt_mutex_waiters(lock);
1775 	raw_spin_unlock_irq(&lock->wait_lock);
1776 
1777 	return ret;
1778 }
1779 
1780 /**
1781  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1782  * @lock:		the rt_mutex we were woken on
1783  * @waiter:		the pre-initialized rt_mutex_waiter
1784  *
1785  * Attempt to clean up after a failed rt_mutex_wait_proxy_lock().
1786  *
1787  * Unless we acquired the lock; we're still enqueued on the wait-list and can
1788  * in fact still be granted ownership until we're removed. Therefore we can
1789  * find we are in fact the owner and must disregard the
1790  * rt_mutex_wait_proxy_lock() failure.
1791  *
1792  * Returns:
1793  *  true  - did the cleanup, we done.
1794  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1795  *          caller should disregards its return value.
1796  *
1797  * Special API call for PI-futex support
1798  */
rt_mutex_cleanup_proxy_lock(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)1799 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1800 				 struct rt_mutex_waiter *waiter)
1801 {
1802 	bool cleanup = false;
1803 
1804 	raw_spin_lock_irq(&lock->wait_lock);
1805 	/*
1806 	 * Do an unconditional try-lock, this deals with the lock stealing
1807 	 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1808 	 * sets a NULL owner.
1809 	 *
1810 	 * We're not interested in the return value, because the subsequent
1811 	 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1812 	 * we will own the lock and it will have removed the waiter. If we
1813 	 * failed the trylock, we're still not owner and we need to remove
1814 	 * ourselves.
1815 	 */
1816 	try_to_take_rt_mutex(lock, current, waiter);
1817 	/*
1818 	 * Unless we're the owner; we're still enqueued on the wait_list.
1819 	 * So check if we became owner, if not, take us off the wait_list.
1820 	 */
1821 	if (rt_mutex_owner(lock) != current) {
1822 		remove_waiter(lock, waiter);
1823 		cleanup = true;
1824 	}
1825 	/*
1826 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1827 	 * have to fix that up.
1828 	 */
1829 	fixup_rt_mutex_waiters(lock);
1830 
1831 	raw_spin_unlock_irq(&lock->wait_lock);
1832 
1833 	return cleanup;
1834 }
1835