• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/sched/smt.h>
6 #include <linux/sched/deadline.h>
7 #include <linux/mutex.h>
8 #include <linux/spinlock.h>
9 #include <linux/stop_machine.h>
10 #include <linux/irq_work.h>
11 #include <linux/tick.h>
12 #include <linux/slab.h>
13 
14 #include "cpupri.h"
15 #include "cpudeadline.h"
16 #include "cpuacct.h"
17 
18 struct rq;
19 struct cpuidle_state;
20 
21 /* task_struct::on_rq states: */
22 #define TASK_ON_RQ_QUEUED	1
23 #define TASK_ON_RQ_MIGRATING	2
24 
25 extern __read_mostly int scheduler_running;
26 
27 extern unsigned long calc_load_update;
28 extern atomic_long_t calc_load_tasks;
29 
30 extern void calc_global_load_tick(struct rq *this_rq);
31 extern long calc_load_fold_active(struct rq *this_rq);
32 
33 #ifdef CONFIG_SMP
34 extern void update_cpu_load_active(struct rq *this_rq);
35 extern void check_for_migration(struct rq *rq, struct task_struct *p);
36 #else
update_cpu_load_active(struct rq * this_rq)37 static inline void update_cpu_load_active(struct rq *this_rq) { }
check_for_migration(struct rq * rq,struct task_struct * p)38 static inline void check_for_migration(struct rq *rq, struct task_struct *p) { }
39 #endif
40 
41 /*
42  * Helpers for converting nanosecond timing to jiffy resolution
43  */
44 #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
45 
46 /*
47  * Increase resolution of nice-level calculations for 64-bit architectures.
48  * The extra resolution improves shares distribution and load balancing of
49  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
50  * hierarchies, especially on larger systems. This is not a user-visible change
51  * and does not change the user-interface for setting shares/weights.
52  *
53  * We increase resolution only if we have enough bits to allow this increased
54  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
55  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
56  * increased costs.
57  */
58 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
59 # define SCHED_LOAD_RESOLUTION	10
60 # define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
61 # define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
62 #else
63 # define SCHED_LOAD_RESOLUTION	0
64 # define scale_load(w)		(w)
65 # define scale_load_down(w)	(w)
66 #endif
67 
68 #define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
69 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
70 
71 #define NICE_0_LOAD		SCHED_LOAD_SCALE
72 #define NICE_0_SHIFT		SCHED_LOAD_SHIFT
73 
74 /*
75  * Single value that decides SCHED_DEADLINE internal math precision.
76  * 10 -> just above 1us
77  * 9  -> just above 0.5us
78  */
79 #define DL_SCALE (10)
80 
81 /*
82  * These are the 'tuning knobs' of the scheduler:
83  */
84 
85 /*
86  * single value that denotes runtime == period, ie unlimited time.
87  */
88 #define RUNTIME_INF	((u64)~0ULL)
89 
idle_policy(int policy)90 static inline int idle_policy(int policy)
91 {
92 	return policy == SCHED_IDLE;
93 }
fair_policy(int policy)94 static inline int fair_policy(int policy)
95 {
96 	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
97 }
98 
rt_policy(int policy)99 static inline int rt_policy(int policy)
100 {
101 	return policy == SCHED_FIFO || policy == SCHED_RR;
102 }
103 
dl_policy(int policy)104 static inline int dl_policy(int policy)
105 {
106 	return policy == SCHED_DEADLINE;
107 }
valid_policy(int policy)108 static inline bool valid_policy(int policy)
109 {
110 	return idle_policy(policy) || fair_policy(policy) ||
111 		rt_policy(policy) || dl_policy(policy);
112 }
113 
task_has_rt_policy(struct task_struct * p)114 static inline int task_has_rt_policy(struct task_struct *p)
115 {
116 	return rt_policy(p->policy);
117 }
118 
task_has_dl_policy(struct task_struct * p)119 static inline int task_has_dl_policy(struct task_struct *p)
120 {
121 	return dl_policy(p->policy);
122 }
123 
124 /*
125  * Tells if entity @a should preempt entity @b.
126  */
127 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)128 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
129 {
130 	return dl_time_before(a->deadline, b->deadline);
131 }
132 
133 /*
134  * This is the priority-queue data structure of the RT scheduling class:
135  */
136 struct rt_prio_array {
137 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
138 	struct list_head queue[MAX_RT_PRIO];
139 };
140 
141 struct rt_bandwidth {
142 	/* nests inside the rq lock: */
143 	raw_spinlock_t		rt_runtime_lock;
144 	ktime_t			rt_period;
145 	u64			rt_runtime;
146 	struct hrtimer		rt_period_timer;
147 	unsigned int		rt_period_active;
148 };
149 
150 void __dl_clear_params(struct task_struct *p);
151 
152 /*
153  * To keep the bandwidth of -deadline tasks and groups under control
154  * we need some place where:
155  *  - store the maximum -deadline bandwidth of the system (the group);
156  *  - cache the fraction of that bandwidth that is currently allocated.
157  *
158  * This is all done in the data structure below. It is similar to the
159  * one used for RT-throttling (rt_bandwidth), with the main difference
160  * that, since here we are only interested in admission control, we
161  * do not decrease any runtime while the group "executes", neither we
162  * need a timer to replenish it.
163  *
164  * With respect to SMP, the bandwidth is given on a per-CPU basis,
165  * meaning that:
166  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
167  *  - dl_total_bw array contains, in the i-eth element, the currently
168  *    allocated bandwidth on the i-eth CPU.
169  * Moreover, groups consume bandwidth on each CPU, while tasks only
170  * consume bandwidth on the CPU they're running on.
171  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
172  * that will be shown the next time the proc or cgroup controls will
173  * be red. It on its turn can be changed by writing on its own
174  * control.
175  */
176 struct dl_bandwidth {
177 	raw_spinlock_t dl_runtime_lock;
178 	u64 dl_runtime;
179 	u64 dl_period;
180 };
181 
dl_bandwidth_enabled(void)182 static inline int dl_bandwidth_enabled(void)
183 {
184 	return sysctl_sched_rt_runtime >= 0;
185 }
186 
187 extern struct dl_bw *dl_bw_of(int i);
188 
189 struct dl_bw {
190 	raw_spinlock_t lock;
191 	u64 bw, total_bw;
192 };
193 
194 static inline
__dl_clear(struct dl_bw * dl_b,u64 tsk_bw)195 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
196 {
197 	dl_b->total_bw -= tsk_bw;
198 }
199 
200 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw)201 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
202 {
203 	dl_b->total_bw += tsk_bw;
204 }
205 
206 static inline
__dl_overflow(struct dl_bw * dl_b,int cpus,u64 old_bw,u64 new_bw)207 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
208 {
209 	return dl_b->bw != -1 &&
210 	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
211 }
212 
213 extern struct mutex sched_domains_mutex;
214 
215 #ifdef CONFIG_CGROUP_SCHED
216 
217 #include <linux/cgroup.h>
218 
219 struct cfs_rq;
220 struct rt_rq;
221 
222 extern struct list_head task_groups;
223 
224 struct cfs_bandwidth {
225 #ifdef CONFIG_CFS_BANDWIDTH
226 	raw_spinlock_t lock;
227 	ktime_t period;
228 	u64 quota, runtime;
229 	s64 hierarchical_quota;
230 	u64 runtime_expires;
231 
232 	int idle, period_active;
233 	struct hrtimer period_timer, slack_timer;
234 	struct list_head throttled_cfs_rq;
235 
236 	/* statistics */
237 	int nr_periods, nr_throttled;
238 	u64 throttled_time;
239 
240 	bool distribute_running;
241 #endif
242 };
243 
244 /* task group related information */
245 struct task_group {
246 	struct cgroup_subsys_state css;
247 
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 	/* schedulable entities of this group on each cpu */
250 	struct sched_entity **se;
251 	/* runqueue "owned" by this group on each cpu */
252 	struct cfs_rq **cfs_rq;
253 	unsigned long shares;
254 
255 #ifdef	CONFIG_SMP
256 	atomic_long_t load_avg;
257 #endif
258 #endif
259 
260 #ifdef CONFIG_RT_GROUP_SCHED
261 	struct sched_rt_entity **rt_se;
262 	struct rt_rq **rt_rq;
263 
264 	struct rt_bandwidth rt_bandwidth;
265 #endif
266 
267 	struct rcu_head rcu;
268 	struct list_head list;
269 
270 	struct task_group *parent;
271 	struct list_head siblings;
272 	struct list_head children;
273 
274 #ifdef CONFIG_SCHED_AUTOGROUP
275 	struct autogroup *autogroup;
276 #endif
277 
278 	struct cfs_bandwidth cfs_bandwidth;
279 };
280 
281 #ifdef CONFIG_FAIR_GROUP_SCHED
282 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
283 
284 /*
285  * A weight of 0 or 1 can cause arithmetics problems.
286  * A weight of a cfs_rq is the sum of weights of which entities
287  * are queued on this cfs_rq, so a weight of a entity should not be
288  * too large, so as the shares value of a task group.
289  * (The default weight is 1024 - so there's no practical
290  *  limitation from this.)
291  */
292 #define MIN_SHARES	(1UL <<  1)
293 #define MAX_SHARES	(1UL << 18)
294 #endif
295 
296 typedef int (*tg_visitor)(struct task_group *, void *);
297 
298 extern int walk_tg_tree_from(struct task_group *from,
299 			     tg_visitor down, tg_visitor up, void *data);
300 
301 /*
302  * Iterate the full tree, calling @down when first entering a node and @up when
303  * leaving it for the final time.
304  *
305  * Caller must hold rcu_lock or sufficient equivalent.
306  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)307 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
308 {
309 	return walk_tg_tree_from(&root_task_group, down, up, data);
310 }
311 
312 extern int tg_nop(struct task_group *tg, void *data);
313 
314 extern void free_fair_sched_group(struct task_group *tg);
315 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
316 extern void unregister_fair_sched_group(struct task_group *tg);
317 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
318 			struct sched_entity *se, int cpu,
319 			struct sched_entity *parent);
320 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
321 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
322 
323 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
324 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
325 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
326 
327 extern void free_rt_sched_group(struct task_group *tg);
328 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
329 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
330 		struct sched_rt_entity *rt_se, int cpu,
331 		struct sched_rt_entity *parent);
332 
333 extern struct task_group *sched_create_group(struct task_group *parent);
334 extern void sched_online_group(struct task_group *tg,
335 			       struct task_group *parent);
336 extern void sched_destroy_group(struct task_group *tg);
337 extern void sched_offline_group(struct task_group *tg);
338 
339 extern void sched_move_task(struct task_struct *tsk);
340 
341 #ifdef CONFIG_FAIR_GROUP_SCHED
342 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
343 
344 #ifdef CONFIG_SMP
345 extern void set_task_rq_fair(struct sched_entity *se,
346 			     struct cfs_rq *prev, struct cfs_rq *next);
347 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)348 static inline void set_task_rq_fair(struct sched_entity *se,
349 			     struct cfs_rq *prev, struct cfs_rq *next) { }
350 #endif /* CONFIG_SMP */
351 #endif /* CONFIG_FAIR_GROUP_SCHED */
352 
353 #else /* CONFIG_CGROUP_SCHED */
354 
355 struct cfs_bandwidth { };
356 
357 #endif	/* CONFIG_CGROUP_SCHED */
358 
359 /* CFS-related fields in a runqueue */
360 struct cfs_rq {
361 	struct load_weight load;
362 	unsigned int nr_running, h_nr_running;
363 
364 	u64 exec_clock;
365 	u64 min_vruntime;
366 #ifndef CONFIG_64BIT
367 	u64 min_vruntime_copy;
368 #endif
369 
370 	struct rb_root tasks_timeline;
371 	struct rb_node *rb_leftmost;
372 
373 	/*
374 	 * 'curr' points to currently running entity on this cfs_rq.
375 	 * It is set to NULL otherwise (i.e when none are currently running).
376 	 */
377 	struct sched_entity *curr, *next, *last, *skip;
378 
379 #ifdef	CONFIG_SCHED_DEBUG
380 	unsigned int nr_spread_over;
381 #endif
382 
383 #ifdef CONFIG_SMP
384 	/*
385 	 * CFS load tracking
386 	 */
387 	struct sched_avg avg;
388 	u64 runnable_load_sum;
389 	unsigned long runnable_load_avg;
390 #ifdef CONFIG_FAIR_GROUP_SCHED
391 	unsigned long tg_load_avg_contrib;
392 	unsigned long propagate_avg;
393 #endif
394 	atomic_long_t removed_load_avg, removed_util_avg;
395 #ifndef CONFIG_64BIT
396 	u64 load_last_update_time_copy;
397 #endif
398 
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400 	/*
401 	 *   h_load = weight * f(tg)
402 	 *
403 	 * Where f(tg) is the recursive weight fraction assigned to
404 	 * this group.
405 	 */
406 	unsigned long h_load;
407 	u64 last_h_load_update;
408 	struct sched_entity *h_load_next;
409 #endif /* CONFIG_FAIR_GROUP_SCHED */
410 #endif /* CONFIG_SMP */
411 
412 #ifdef CONFIG_FAIR_GROUP_SCHED
413 	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
414 
415 	/*
416 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
417 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 	 * (like users, containers etc.)
419 	 *
420 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 	 * list is used during load balance.
422 	 */
423 	int on_list;
424 	struct list_head leaf_cfs_rq_list;
425 	struct task_group *tg;	/* group that "owns" this runqueue */
426 
427 #ifdef CONFIG_SCHED_WALT
428 	u64 cumulative_runnable_avg;
429 #endif
430 
431 #ifdef CONFIG_CFS_BANDWIDTH
432 	int runtime_enabled;
433 	u64 runtime_expires;
434 	s64 runtime_remaining;
435 
436 	u64 throttled_clock, throttled_clock_task;
437 	u64 throttled_clock_task_time;
438 	int throttled, throttle_count, throttle_uptodate;
439 	struct list_head throttled_list;
440 #endif /* CONFIG_CFS_BANDWIDTH */
441 #endif /* CONFIG_FAIR_GROUP_SCHED */
442 };
443 
rt_bandwidth_enabled(void)444 static inline int rt_bandwidth_enabled(void)
445 {
446 	return sysctl_sched_rt_runtime >= 0;
447 }
448 
449 /* RT IPI pull logic requires IRQ_WORK */
450 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
451 # define HAVE_RT_PUSH_IPI
452 #endif
453 
454 /* Real-Time classes' related field in a runqueue: */
455 struct rt_rq {
456 	struct rt_prio_array active;
457 	unsigned int rt_nr_running;
458 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
459 	struct {
460 		int curr; /* highest queued rt task prio */
461 #ifdef CONFIG_SMP
462 		int next; /* next highest */
463 #endif
464 	} highest_prio;
465 #endif
466 #ifdef CONFIG_SMP
467 	unsigned long rt_nr_migratory;
468 	unsigned long rt_nr_total;
469 	int overloaded;
470 	struct plist_head pushable_tasks;
471 #endif /* CONFIG_SMP */
472 	int rt_queued;
473 
474 	int rt_throttled;
475 	u64 rt_time;
476 	u64 rt_runtime;
477 	/* Nests inside the rq lock: */
478 	raw_spinlock_t rt_runtime_lock;
479 
480 #ifdef CONFIG_RT_GROUP_SCHED
481 	unsigned long rt_nr_boosted;
482 
483 	struct rq *rq;
484 	struct task_group *tg;
485 #endif
486 };
487 
488 /* Deadline class' related fields in a runqueue */
489 struct dl_rq {
490 	/* runqueue is an rbtree, ordered by deadline */
491 	struct rb_root rb_root;
492 	struct rb_node *rb_leftmost;
493 
494 	unsigned long dl_nr_running;
495 
496 #ifdef CONFIG_SMP
497 	/*
498 	 * Deadline values of the currently executing and the
499 	 * earliest ready task on this rq. Caching these facilitates
500 	 * the decision wether or not a ready but not running task
501 	 * should migrate somewhere else.
502 	 */
503 	struct {
504 		u64 curr;
505 		u64 next;
506 	} earliest_dl;
507 
508 	unsigned long dl_nr_migratory;
509 	int overloaded;
510 
511 	/*
512 	 * Tasks on this rq that can be pushed away. They are kept in
513 	 * an rb-tree, ordered by tasks' deadlines, with caching
514 	 * of the leftmost (earliest deadline) element.
515 	 */
516 	struct rb_root pushable_dl_tasks_root;
517 	struct rb_node *pushable_dl_tasks_leftmost;
518 #else
519 	struct dl_bw dl_bw;
520 #endif
521 	/* This is the "average utilization" for this runqueue */
522 	s64 avg_bw;
523 };
524 
525 #ifdef CONFIG_SMP
526 
527 struct max_cpu_capacity {
528 	raw_spinlock_t lock;
529 	unsigned long val;
530 	int cpu;
531 };
532 
533 /*
534  * We add the notion of a root-domain which will be used to define per-domain
535  * variables. Each exclusive cpuset essentially defines an island domain by
536  * fully partitioning the member cpus from any other cpuset. Whenever a new
537  * exclusive cpuset is created, we also create and attach a new root-domain
538  * object.
539  *
540  */
541 struct root_domain {
542 	atomic_t refcount;
543 	atomic_t rto_count;
544 	struct rcu_head rcu;
545 	cpumask_var_t span;
546 	cpumask_var_t online;
547 
548 	/* Indicate more than one runnable task for any CPU */
549 	bool overload;
550 
551 	/* Indicate one or more cpus over-utilized (tipping point) */
552 	bool overutilized;
553 
554 	/*
555 	 * The bit corresponding to a CPU gets set here if such CPU has more
556 	 * than one runnable -deadline task (as it is below for RT tasks).
557 	 */
558 	cpumask_var_t dlo_mask;
559 	atomic_t dlo_count;
560 	struct dl_bw dl_bw;
561 	struct cpudl cpudl;
562 
563 #ifdef HAVE_RT_PUSH_IPI
564 	/*
565 	 * For IPI pull requests, loop across the rto_mask.
566 	 */
567 	struct irq_work rto_push_work;
568 	raw_spinlock_t rto_lock;
569 	/* These are only updated and read within rto_lock */
570 	int rto_loop;
571 	int rto_cpu;
572 	/* These atomics are updated outside of a lock */
573 	atomic_t rto_loop_next;
574 	atomic_t rto_loop_start;
575 #endif
576 	/*
577 	 * The "RT overload" flag: it gets set if a CPU has more than
578 	 * one runnable RT task.
579 	 */
580 	cpumask_var_t rto_mask;
581 	struct cpupri cpupri;
582 
583 	/* Maximum cpu capacity in the system. */
584 	struct max_cpu_capacity max_cpu_capacity;
585 
586 	/* First cpu with maximum and minimum original capacity */
587 	int max_cap_orig_cpu, min_cap_orig_cpu;
588 };
589 
590 extern struct root_domain def_root_domain;
591 extern void sched_get_rd(struct root_domain *rd);
592 extern void sched_put_rd(struct root_domain *rd);
593 
594 #ifdef HAVE_RT_PUSH_IPI
595 extern void rto_push_irq_work_func(struct irq_work *work);
596 #endif
597 #endif /* CONFIG_SMP */
598 
599 /*
600  * This is the main, per-CPU runqueue data structure.
601  *
602  * Locking rule: those places that want to lock multiple runqueues
603  * (such as the load balancing or the thread migration code), lock
604  * acquire operations must be ordered by ascending &runqueue.
605  */
606 struct rq {
607 	/* runqueue lock: */
608 	raw_spinlock_t lock;
609 
610 	/*
611 	 * nr_running and cpu_load should be in the same cacheline because
612 	 * remote CPUs use both these fields when doing load calculation.
613 	 */
614 	unsigned int nr_running;
615 #ifdef CONFIG_NUMA_BALANCING
616 	unsigned int nr_numa_running;
617 	unsigned int nr_preferred_running;
618 #endif
619 	#define CPU_LOAD_IDX_MAX 5
620 	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
621 	unsigned long last_load_update_tick;
622 	unsigned int misfit_task;
623 #ifdef CONFIG_NO_HZ_COMMON
624 	u64 nohz_stamp;
625 	unsigned long nohz_flags;
626 #endif
627 #ifdef CONFIG_NO_HZ_FULL
628 	unsigned long last_sched_tick;
629 #endif
630 
631 #ifdef CONFIG_CPU_QUIET
632 	/* time-based average load */
633 	u64 nr_last_stamp;
634 	u64 nr_running_integral;
635 	seqcount_t ave_seqcnt;
636 #endif
637 
638 	/* capture load from *all* tasks on this cpu: */
639 	struct load_weight load;
640 	unsigned long nr_load_updates;
641 	u64 nr_switches;
642 
643 	struct cfs_rq cfs;
644 	struct rt_rq rt;
645 	struct dl_rq dl;
646 
647 #ifdef CONFIG_FAIR_GROUP_SCHED
648 	/* list of leaf cfs_rq on this cpu: */
649 	struct list_head leaf_cfs_rq_list;
650 	struct list_head *tmp_alone_branch;
651 #endif /* CONFIG_FAIR_GROUP_SCHED */
652 
653 	/*
654 	 * This is part of a global counter where only the total sum
655 	 * over all CPUs matters. A task can increase this counter on
656 	 * one CPU and if it got migrated afterwards it may decrease
657 	 * it on another CPU. Always updated under the runqueue lock:
658 	 */
659 	unsigned long nr_uninterruptible;
660 
661 	struct task_struct *curr, *idle, *stop;
662 	unsigned long next_balance;
663 	struct mm_struct *prev_mm;
664 
665 	unsigned int clock_skip_update;
666 	u64 clock;
667 	u64 clock_task;
668 
669 	atomic_t nr_iowait;
670 
671 #ifdef CONFIG_SMP
672 	struct root_domain *rd;
673 	struct sched_domain *sd;
674 
675 	unsigned long cpu_capacity;
676 	unsigned long cpu_capacity_orig;
677 
678 	struct callback_head *balance_callback;
679 
680 	unsigned char idle_balance;
681 	/* For active balancing */
682 	int active_balance;
683 	int push_cpu;
684 	struct task_struct *push_task;
685 	struct cpu_stop_work active_balance_work;
686 	/* cpu of this runqueue: */
687 	int cpu;
688 	int online;
689 
690 	struct list_head cfs_tasks;
691 
692 	u64 rt_avg;
693 	u64 age_stamp;
694 	u64 idle_stamp;
695 	u64 avg_idle;
696 
697 	/* This is used to determine avg_idle's max value */
698 	u64 max_idle_balance_cost;
699 #endif
700 
701 #ifdef CONFIG_SCHED_WALT
702 	u64 cumulative_runnable_avg;
703 	u64 window_start;
704 	u64 curr_runnable_sum;
705 	u64 prev_runnable_sum;
706 	u64 nt_curr_runnable_sum;
707 	u64 nt_prev_runnable_sum;
708 	u64 cur_irqload;
709 	u64 avg_irqload;
710 	u64 irqload_ts;
711 	u64 cum_window_demand;
712 #endif /* CONFIG_SCHED_WALT */
713 
714 
715 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
716 	u64 prev_irq_time;
717 #endif
718 #ifdef CONFIG_PARAVIRT
719 	u64 prev_steal_time;
720 #endif
721 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
722 	u64 prev_steal_time_rq;
723 #endif
724 
725 	/* calc_load related fields */
726 	unsigned long calc_load_update;
727 	long calc_load_active;
728 
729 #ifdef CONFIG_SCHED_HRTICK
730 #ifdef CONFIG_SMP
731 	int hrtick_csd_pending;
732 	struct call_single_data hrtick_csd;
733 #endif
734 	struct hrtimer hrtick_timer;
735 #endif
736 
737 #ifdef CONFIG_SCHEDSTATS
738 	/* latency stats */
739 	struct sched_info rq_sched_info;
740 	unsigned long long rq_cpu_time;
741 	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
742 
743 	/* sys_sched_yield() stats */
744 	unsigned int yld_count;
745 
746 	/* schedule() stats */
747 	unsigned int sched_count;
748 	unsigned int sched_goidle;
749 
750 	/* try_to_wake_up() stats */
751 	unsigned int ttwu_count;
752 	unsigned int ttwu_local;
753 #ifdef CONFIG_SMP
754 	struct eas_stats eas_stats;
755 #endif
756 #endif
757 
758 #ifdef CONFIG_SMP
759 	struct llist_head wake_list;
760 #endif
761 
762 #ifdef CONFIG_CPU_IDLE
763 	/* Must be inspected within a rcu lock section */
764 	struct cpuidle_state *idle_state;
765 	int idle_state_idx;
766 #endif
767 };
768 
cpu_of(struct rq * rq)769 static inline int cpu_of(struct rq *rq)
770 {
771 #ifdef CONFIG_SMP
772 	return rq->cpu;
773 #else
774 	return 0;
775 #endif
776 }
777 
778 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
779 
780 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
781 #define this_rq()		this_cpu_ptr(&runqueues)
782 #define task_rq(p)		cpu_rq(task_cpu(p))
783 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
784 #define raw_rq()		raw_cpu_ptr(&runqueues)
785 
__rq_clock_broken(struct rq * rq)786 static inline u64 __rq_clock_broken(struct rq *rq)
787 {
788 	return READ_ONCE(rq->clock);
789 }
790 
rq_clock(struct rq * rq)791 static inline u64 rq_clock(struct rq *rq)
792 {
793 	lockdep_assert_held(&rq->lock);
794 	return rq->clock;
795 }
796 
rq_clock_task(struct rq * rq)797 static inline u64 rq_clock_task(struct rq *rq)
798 {
799 	lockdep_assert_held(&rq->lock);
800 	return rq->clock_task;
801 }
802 
803 #define RQCF_REQ_SKIP	0x01
804 #define RQCF_ACT_SKIP	0x02
805 
rq_clock_skip_update(struct rq * rq,bool skip)806 static inline void rq_clock_skip_update(struct rq *rq, bool skip)
807 {
808 	lockdep_assert_held(&rq->lock);
809 	if (skip)
810 		rq->clock_skip_update |= RQCF_REQ_SKIP;
811 	else
812 		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
813 }
814 
815 #ifdef CONFIG_NUMA
816 enum numa_topology_type {
817 	NUMA_DIRECT,
818 	NUMA_GLUELESS_MESH,
819 	NUMA_BACKPLANE,
820 };
821 extern enum numa_topology_type sched_numa_topology_type;
822 extern int sched_max_numa_distance;
823 extern bool find_numa_distance(int distance);
824 #endif
825 
826 #ifdef CONFIG_NUMA_BALANCING
827 /* The regions in numa_faults array from task_struct */
828 enum numa_faults_stats {
829 	NUMA_MEM = 0,
830 	NUMA_CPU,
831 	NUMA_MEMBUF,
832 	NUMA_CPUBUF
833 };
834 extern void sched_setnuma(struct task_struct *p, int node);
835 extern int migrate_task_to(struct task_struct *p, int cpu);
836 extern int migrate_swap(struct task_struct *, struct task_struct *);
837 #endif /* CONFIG_NUMA_BALANCING */
838 
839 #ifdef CONFIG_SMP
840 
841 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))842 queue_balance_callback(struct rq *rq,
843 		       struct callback_head *head,
844 		       void (*func)(struct rq *rq))
845 {
846 	lockdep_assert_held(&rq->lock);
847 
848 	if (unlikely(head->next))
849 		return;
850 
851 	head->func = (void (*)(struct callback_head *))func;
852 	head->next = rq->balance_callback;
853 	rq->balance_callback = head;
854 }
855 
856 extern void sched_ttwu_pending(void);
857 
858 #define rcu_dereference_check_sched_domain(p) \
859 	rcu_dereference_check((p), \
860 			      lockdep_is_held(&sched_domains_mutex))
861 
862 /*
863  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
864  * See detach_destroy_domains: synchronize_sched for details.
865  *
866  * The domain tree of any CPU may only be accessed from within
867  * preempt-disabled sections.
868  */
869 #define for_each_domain(cpu, __sd) \
870 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
871 			__sd; __sd = __sd->parent)
872 
873 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
874 
875 /**
876  * highest_flag_domain - Return highest sched_domain containing flag.
877  * @cpu:	The cpu whose highest level of sched domain is to
878  *		be returned.
879  * @flag:	The flag to check for the highest sched_domain
880  *		for the given cpu.
881  *
882  * Returns the highest sched_domain of a cpu which contains the given flag.
883  */
highest_flag_domain(int cpu,int flag)884 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
885 {
886 	struct sched_domain *sd, *hsd = NULL;
887 
888 	for_each_domain(cpu, sd) {
889 		if (!(sd->flags & flag))
890 			break;
891 		hsd = sd;
892 	}
893 
894 	return hsd;
895 }
896 
lowest_flag_domain(int cpu,int flag)897 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
898 {
899 	struct sched_domain *sd;
900 
901 	for_each_domain(cpu, sd) {
902 		if (sd->flags & flag)
903 			break;
904 	}
905 
906 	return sd;
907 }
908 
909 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
910 DECLARE_PER_CPU(int, sd_llc_size);
911 DECLARE_PER_CPU(int, sd_llc_id);
912 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
913 DECLARE_PER_CPU(struct sched_domain *, sd_busy);
914 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
915 DECLARE_PER_CPU(struct sched_domain *, sd_ea);
916 DECLARE_PER_CPU(struct sched_domain *, sd_scs);
917 
918 struct sched_group_capacity {
919 	atomic_t ref;
920 	/*
921 	 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
922 	 * for a single CPU.
923 	 */
924 	unsigned long capacity;
925 	unsigned long max_capacity; /* Max per-cpu capacity in group */
926 	unsigned long min_capacity; /* Min per-CPU capacity in group */
927 	unsigned long next_update;
928 	int imbalance; /* XXX unrelated to capacity but shared group state */
929 	/*
930 	 * Number of busy cpus in this group.
931 	 */
932 	atomic_t nr_busy_cpus;
933 
934 	unsigned long cpumask[0]; /* iteration mask */
935 };
936 
937 struct sched_group {
938 	struct sched_group *next;	/* Must be a circular list */
939 	atomic_t ref;
940 
941 	unsigned int group_weight;
942 	struct sched_group_capacity *sgc;
943 	const struct sched_group_energy *sge;
944 
945 	/*
946 	 * The CPUs this group covers.
947 	 *
948 	 * NOTE: this field is variable length. (Allocated dynamically
949 	 * by attaching extra space to the end of the structure,
950 	 * depending on how many CPUs the kernel has booted up with)
951 	 */
952 	unsigned long cpumask[0];
953 };
954 
sched_group_cpus(struct sched_group * sg)955 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
956 {
957 	return to_cpumask(sg->cpumask);
958 }
959 
960 /*
961  * cpumask masking which cpus in the group are allowed to iterate up the domain
962  * tree.
963  */
sched_group_mask(struct sched_group * sg)964 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
965 {
966 	return to_cpumask(sg->sgc->cpumask);
967 }
968 
969 /**
970  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
971  * @group: The group whose first cpu is to be returned.
972  */
group_first_cpu(struct sched_group * group)973 static inline unsigned int group_first_cpu(struct sched_group *group)
974 {
975 	return cpumask_first(sched_group_cpus(group));
976 }
977 
978 extern int group_balance_cpu(struct sched_group *sg);
979 
980 #else
981 
sched_ttwu_pending(void)982 static inline void sched_ttwu_pending(void) { }
983 
984 #endif /* CONFIG_SMP */
985 
986 #include "stats.h"
987 #include "auto_group.h"
988 
989 #ifdef CONFIG_CGROUP_SCHED
990 
991 /*
992  * Return the group to which this tasks belongs.
993  *
994  * We cannot use task_css() and friends because the cgroup subsystem
995  * changes that value before the cgroup_subsys::attach() method is called,
996  * therefore we cannot pin it and might observe the wrong value.
997  *
998  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
999  * core changes this before calling sched_move_task().
1000  *
1001  * Instead we use a 'copy' which is updated from sched_move_task() while
1002  * holding both task_struct::pi_lock and rq::lock.
1003  */
task_group(struct task_struct * p)1004 static inline struct task_group *task_group(struct task_struct *p)
1005 {
1006 	return p->sched_task_group;
1007 }
1008 
1009 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1010 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1011 {
1012 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1013 	struct task_group *tg = task_group(p);
1014 #endif
1015 
1016 #ifdef CONFIG_FAIR_GROUP_SCHED
1017 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1018 	p->se.cfs_rq = tg->cfs_rq[cpu];
1019 	p->se.parent = tg->se[cpu];
1020 #endif
1021 
1022 #ifdef CONFIG_RT_GROUP_SCHED
1023 	p->rt.rt_rq  = tg->rt_rq[cpu];
1024 	p->rt.parent = tg->rt_se[cpu];
1025 #endif
1026 }
1027 
1028 #else /* CONFIG_CGROUP_SCHED */
1029 
set_task_rq(struct task_struct * p,unsigned int cpu)1030 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1031 static inline struct task_group *task_group(struct task_struct *p)
1032 {
1033 	return NULL;
1034 }
1035 
1036 #endif /* CONFIG_CGROUP_SCHED */
1037 
__set_task_cpu(struct task_struct * p,unsigned int cpu)1038 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1039 {
1040 	set_task_rq(p, cpu);
1041 #ifdef CONFIG_SMP
1042 	/*
1043 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1044 	 * successfuly executed on another CPU. We must ensure that updates of
1045 	 * per-task data have been completed by this moment.
1046 	 */
1047 	smp_wmb();
1048 #ifdef CONFIG_THREAD_INFO_IN_TASK
1049 	p->cpu = cpu;
1050 #else
1051 	task_thread_info(p)->cpu = cpu;
1052 #endif
1053 	p->wake_cpu = cpu;
1054 #endif
1055 }
1056 
1057 /*
1058  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1059  */
1060 #ifdef CONFIG_SCHED_DEBUG
1061 # include <linux/static_key.h>
1062 # define const_debug __read_mostly
1063 #else
1064 # define const_debug const
1065 #endif
1066 
1067 extern const_debug unsigned int sysctl_sched_features;
1068 
1069 #define SCHED_FEAT(name, enabled)	\
1070 	__SCHED_FEAT_##name ,
1071 
1072 enum {
1073 #include "features.h"
1074 	__SCHED_FEAT_NR,
1075 };
1076 
1077 #undef SCHED_FEAT
1078 
1079 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1080 #define SCHED_FEAT(name, enabled)					\
1081 static __always_inline bool static_branch_##name(struct static_key *key) \
1082 {									\
1083 	return static_key_##enabled(key);				\
1084 }
1085 
1086 #include "features.h"
1087 
1088 #undef SCHED_FEAT
1089 
1090 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1091 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1092 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1093 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1094 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1095 
1096 extern struct static_key_false sched_numa_balancing;
1097 
global_rt_period(void)1098 static inline u64 global_rt_period(void)
1099 {
1100 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1101 }
1102 
global_rt_runtime(void)1103 static inline u64 global_rt_runtime(void)
1104 {
1105 	if (sysctl_sched_rt_runtime < 0)
1106 		return RUNTIME_INF;
1107 
1108 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1109 }
1110 
task_current(struct rq * rq,struct task_struct * p)1111 static inline int task_current(struct rq *rq, struct task_struct *p)
1112 {
1113 	return rq->curr == p;
1114 }
1115 
task_running(struct rq * rq,struct task_struct * p)1116 static inline int task_running(struct rq *rq, struct task_struct *p)
1117 {
1118 #ifdef CONFIG_SMP
1119 	return p->on_cpu;
1120 #else
1121 	return task_current(rq, p);
1122 #endif
1123 }
1124 
task_on_rq_queued(struct task_struct * p)1125 static inline int task_on_rq_queued(struct task_struct *p)
1126 {
1127 	return p->on_rq == TASK_ON_RQ_QUEUED;
1128 }
1129 
task_on_rq_migrating(struct task_struct * p)1130 static inline int task_on_rq_migrating(struct task_struct *p)
1131 {
1132 	return p->on_rq == TASK_ON_RQ_MIGRATING;
1133 }
1134 
1135 #ifndef prepare_arch_switch
1136 # define prepare_arch_switch(next)	do { } while (0)
1137 #endif
1138 #ifndef finish_arch_post_lock_switch
1139 # define finish_arch_post_lock_switch()	do { } while (0)
1140 #endif
1141 
prepare_lock_switch(struct rq * rq,struct task_struct * next)1142 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1143 {
1144 #ifdef CONFIG_SMP
1145 	/*
1146 	 * We can optimise this out completely for !SMP, because the
1147 	 * SMP rebalancing from interrupt is the only thing that cares
1148 	 * here.
1149 	 */
1150 	next->on_cpu = 1;
1151 #endif
1152 }
1153 
finish_lock_switch(struct rq * rq,struct task_struct * prev)1154 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1155 {
1156 #ifdef CONFIG_SMP
1157 	/*
1158 	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1159 	 * We must ensure this doesn't happen until the switch is completely
1160 	 * finished.
1161 	 *
1162 	 * In particular, the load of prev->state in finish_task_switch() must
1163 	 * happen before this.
1164 	 *
1165 	 * Pairs with the control dependency and rmb in try_to_wake_up().
1166 	 */
1167 	smp_store_release(&prev->on_cpu, 0);
1168 #endif
1169 #ifdef CONFIG_DEBUG_SPINLOCK
1170 	/* this is a valid case when another task releases the spinlock */
1171 	rq->lock.owner = current;
1172 #endif
1173 	/*
1174 	 * If we are tracking spinlock dependencies then we have to
1175 	 * fix up the runqueue lock - which gets 'carried over' from
1176 	 * prev into current:
1177 	 */
1178 	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1179 
1180 	raw_spin_unlock_irq(&rq->lock);
1181 }
1182 
1183 /*
1184  * wake flags
1185  */
1186 #define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1187 #define WF_FORK		0x02		/* child wakeup after fork */
1188 #define WF_MIGRATED	0x4		/* internal use, task got migrated */
1189 
1190 /*
1191  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1192  * of tasks with abnormal "nice" values across CPUs the contribution that
1193  * each task makes to its run queue's load is weighted according to its
1194  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1195  * scaled version of the new time slice allocation that they receive on time
1196  * slice expiry etc.
1197  */
1198 
1199 #define WEIGHT_IDLEPRIO                3
1200 #define WMULT_IDLEPRIO         1431655765
1201 
1202 /*
1203  * Nice levels are multiplicative, with a gentle 10% change for every
1204  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1205  * nice 1, it will get ~10% less CPU time than another CPU-bound task
1206  * that remained on nice 0.
1207  *
1208  * The "10% effect" is relative and cumulative: from _any_ nice level,
1209  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1210  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1211  * If a task goes up by ~10% and another task goes down by ~10% then
1212  * the relative distance between them is ~25%.)
1213  */
1214 static const int prio_to_weight[40] = {
1215  /* -20 */     88761,     71755,     56483,     46273,     36291,
1216  /* -15 */     29154,     23254,     18705,     14949,     11916,
1217  /* -10 */      9548,      7620,      6100,      4904,      3906,
1218  /*  -5 */      3121,      2501,      1991,      1586,      1277,
1219  /*   0 */      1024,       820,       655,       526,       423,
1220  /*   5 */       335,       272,       215,       172,       137,
1221  /*  10 */       110,        87,        70,        56,        45,
1222  /*  15 */        36,        29,        23,        18,        15,
1223 };
1224 
1225 /*
1226  * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1227  *
1228  * In cases where the weight does not change often, we can use the
1229  * precalculated inverse to speed up arithmetics by turning divisions
1230  * into multiplications:
1231  */
1232 static const u32 prio_to_wmult[40] = {
1233  /* -20 */     48388,     59856,     76040,     92818,    118348,
1234  /* -15 */    147320,    184698,    229616,    287308,    360437,
1235  /* -10 */    449829,    563644,    704093,    875809,   1099582,
1236  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
1237  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
1238  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
1239  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
1240  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1241 };
1242 
1243 #define ENQUEUE_WAKEUP		0x01
1244 #define ENQUEUE_HEAD		0x02
1245 #ifdef CONFIG_SMP
1246 #define ENQUEUE_WAKING		0x04	/* sched_class::task_waking was called */
1247 #else
1248 #define ENQUEUE_WAKING		0x00
1249 #endif
1250 #define ENQUEUE_REPLENISH	0x08
1251 #define ENQUEUE_RESTORE	0x10
1252 #define ENQUEUE_WAKEUP_NEW	0x20
1253 
1254 #define DEQUEUE_SLEEP		0x01
1255 #define DEQUEUE_SAVE		0x02
1256 
1257 #define RETRY_TASK		((void *)-1UL)
1258 
1259 struct sched_class {
1260 	const struct sched_class *next;
1261 
1262 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1263 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1264 	void (*yield_task) (struct rq *rq);
1265 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1266 
1267 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1268 
1269 	/*
1270 	 * It is the responsibility of the pick_next_task() method that will
1271 	 * return the next task to call put_prev_task() on the @prev task or
1272 	 * something equivalent.
1273 	 *
1274 	 * May return RETRY_TASK when it finds a higher prio class has runnable
1275 	 * tasks.
1276 	 */
1277 	struct task_struct * (*pick_next_task) (struct rq *rq,
1278 						struct task_struct *prev);
1279 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1280 
1281 #ifdef CONFIG_SMP
1282 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags,
1283 			       int subling_count_hint);
1284 	void (*migrate_task_rq)(struct task_struct *p);
1285 
1286 	void (*task_waking) (struct task_struct *task);
1287 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1288 
1289 	void (*set_cpus_allowed)(struct task_struct *p,
1290 				 const struct cpumask *newmask);
1291 
1292 	void (*rq_online)(struct rq *rq);
1293 	void (*rq_offline)(struct rq *rq);
1294 #endif
1295 
1296 	void (*set_curr_task) (struct rq *rq);
1297 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1298 	void (*task_fork) (struct task_struct *p);
1299 	void (*task_dead) (struct task_struct *p);
1300 
1301 	/*
1302 	 * The switched_from() call is allowed to drop rq->lock, therefore we
1303 	 * cannot assume the switched_from/switched_to pair is serliazed by
1304 	 * rq->lock. They are however serialized by p->pi_lock.
1305 	 */
1306 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1307 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1308 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1309 			     int oldprio);
1310 
1311 	unsigned int (*get_rr_interval) (struct rq *rq,
1312 					 struct task_struct *task);
1313 
1314 	void (*update_curr) (struct rq *rq);
1315 
1316 #define TASK_SET_GROUP  0
1317 #define TASK_MOVE_GROUP	1
1318 
1319 #ifdef CONFIG_FAIR_GROUP_SCHED
1320 	void (*task_change_group)(struct task_struct *p, int type);
1321 #endif
1322 };
1323 
put_prev_task(struct rq * rq,struct task_struct * prev)1324 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1325 {
1326 	prev->sched_class->put_prev_task(rq, prev);
1327 }
1328 
1329 #define sched_class_highest (&stop_sched_class)
1330 #define for_each_class(class) \
1331    for (class = sched_class_highest; class; class = class->next)
1332 
1333 extern const struct sched_class stop_sched_class;
1334 extern const struct sched_class dl_sched_class;
1335 extern const struct sched_class rt_sched_class;
1336 extern const struct sched_class fair_sched_class;
1337 extern const struct sched_class idle_sched_class;
1338 
1339 
1340 #ifdef CONFIG_SMP
1341 
1342 extern void init_max_cpu_capacity(struct max_cpu_capacity *mcc);
1343 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1344 
1345 extern void trigger_load_balance(struct rq *rq);
1346 
1347 extern void idle_enter_fair(struct rq *this_rq);
1348 extern void idle_exit_fair(struct rq *this_rq);
1349 
1350 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1351 
1352 #else
1353 
idle_enter_fair(struct rq * rq)1354 static inline void idle_enter_fair(struct rq *rq) { }
idle_exit_fair(struct rq * rq)1355 static inline void idle_exit_fair(struct rq *rq) { }
1356 
1357 #endif
1358 
1359 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1360 static inline void idle_set_state(struct rq *rq,
1361 				  struct cpuidle_state *idle_state)
1362 {
1363 	rq->idle_state = idle_state;
1364 }
1365 
idle_get_state(struct rq * rq)1366 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1367 {
1368 	WARN_ON(!rcu_read_lock_held());
1369 	return rq->idle_state;
1370 }
1371 
idle_set_state_idx(struct rq * rq,int idle_state_idx)1372 static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
1373 {
1374 	rq->idle_state_idx = idle_state_idx;
1375 }
1376 
idle_get_state_idx(struct rq * rq)1377 static inline int idle_get_state_idx(struct rq *rq)
1378 {
1379 	WARN_ON(!rcu_read_lock_held());
1380 	return rq->idle_state_idx;
1381 }
1382 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1383 static inline void idle_set_state(struct rq *rq,
1384 				  struct cpuidle_state *idle_state)
1385 {
1386 }
1387 
idle_get_state(struct rq * rq)1388 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1389 {
1390 	return NULL;
1391 }
1392 
idle_set_state_idx(struct rq * rq,int idle_state_idx)1393 static inline void idle_set_state_idx(struct rq *rq, int idle_state_idx)
1394 {
1395 }
1396 
idle_get_state_idx(struct rq * rq)1397 static inline int idle_get_state_idx(struct rq *rq)
1398 {
1399 	return -1;
1400 }
1401 #endif
1402 
1403 extern void sysrq_sched_debug_show(void);
1404 extern void sched_init_granularity(void);
1405 extern void update_max_interval(void);
1406 
1407 extern void init_sched_dl_class(void);
1408 extern void init_sched_rt_class(void);
1409 extern void init_sched_fair_class(void);
1410 
1411 extern void resched_curr(struct rq *rq);
1412 extern void resched_cpu(int cpu);
1413 
1414 extern struct rt_bandwidth def_rt_bandwidth;
1415 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1416 extern void init_rt_schedtune_timer(struct sched_rt_entity *rt_se);
1417 
1418 extern struct dl_bandwidth def_dl_bandwidth;
1419 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1420 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1421 
1422 unsigned long to_ratio(u64 period, u64 runtime);
1423 
1424 extern void init_entity_runnable_average(struct sched_entity *se);
1425 extern void post_init_entity_util_avg(struct sched_entity *se);
1426 
__add_nr_running(struct rq * rq,unsigned count)1427 static inline void __add_nr_running(struct rq *rq, unsigned count)
1428 {
1429 	unsigned prev_nr = rq->nr_running;
1430 
1431 	rq->nr_running = prev_nr + count;
1432 
1433 	if (prev_nr < 2 && rq->nr_running >= 2) {
1434 #ifdef CONFIG_SMP
1435 		if (!rq->rd->overload)
1436 			rq->rd->overload = true;
1437 #endif
1438 
1439 #ifdef CONFIG_NO_HZ_FULL
1440 		if (tick_nohz_full_cpu(rq->cpu)) {
1441 			/*
1442 			 * Tick is needed if more than one task runs on a CPU.
1443 			 * Send the target an IPI to kick it out of nohz mode.
1444 			 *
1445 			 * We assume that IPI implies full memory barrier and the
1446 			 * new value of rq->nr_running is visible on reception
1447 			 * from the target.
1448 			 */
1449 			tick_nohz_full_kick_cpu(rq->cpu);
1450 		}
1451 #endif
1452 	}
1453 }
1454 
__sub_nr_running(struct rq * rq,unsigned count)1455 static inline void __sub_nr_running(struct rq *rq, unsigned count)
1456 {
1457 	rq->nr_running -= count;
1458 }
1459 
1460 #ifdef CONFIG_CPU_QUIET
1461 #define NR_AVE_SCALE(x)		((x) << FSHIFT)
do_nr_running_integral(struct rq * rq)1462 static inline u64 do_nr_running_integral(struct rq *rq)
1463 {
1464 	s64 nr, deltax;
1465 	u64 nr_running_integral = rq->nr_running_integral;
1466 
1467 	deltax = rq->clock_task - rq->nr_last_stamp;
1468 	nr = NR_AVE_SCALE(rq->nr_running);
1469 
1470 	nr_running_integral += nr * deltax;
1471 
1472 	return nr_running_integral;
1473 }
1474 
add_nr_running(struct rq * rq,unsigned count)1475 static inline void add_nr_running(struct rq *rq, unsigned count)
1476 {
1477 	write_seqcount_begin(&rq->ave_seqcnt);
1478 	rq->nr_running_integral = do_nr_running_integral(rq);
1479 	rq->nr_last_stamp = rq->clock_task;
1480 	__add_nr_running(rq, count);
1481 	write_seqcount_end(&rq->ave_seqcnt);
1482 }
1483 
sub_nr_running(struct rq * rq,unsigned count)1484 static inline void sub_nr_running(struct rq *rq, unsigned count)
1485 {
1486 	write_seqcount_begin(&rq->ave_seqcnt);
1487 	rq->nr_running_integral = do_nr_running_integral(rq);
1488 	rq->nr_last_stamp = rq->clock_task;
1489 	__sub_nr_running(rq, count);
1490 	write_seqcount_end(&rq->ave_seqcnt);
1491 }
1492 #else
1493 #define add_nr_running __add_nr_running
1494 #define sub_nr_running __sub_nr_running
1495 #endif
1496 
rq_last_tick_reset(struct rq * rq)1497 static inline void rq_last_tick_reset(struct rq *rq)
1498 {
1499 #ifdef CONFIG_NO_HZ_FULL
1500 	rq->last_sched_tick = jiffies;
1501 #endif
1502 }
1503 
1504 extern void update_rq_clock(struct rq *rq);
1505 
1506 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1507 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1508 
1509 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1510 
1511 extern const_debug unsigned int sysctl_sched_time_avg;
1512 extern const_debug unsigned int sysctl_sched_nr_migrate;
1513 extern const_debug unsigned int sysctl_sched_migration_cost;
1514 
sched_avg_period(void)1515 static inline u64 sched_avg_period(void)
1516 {
1517 	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1518 }
1519 
1520 #ifdef CONFIG_SCHED_HRTICK
1521 
1522 /*
1523  * Use hrtick when:
1524  *  - enabled by features
1525  *  - hrtimer is actually high res
1526  */
hrtick_enabled(struct rq * rq)1527 static inline int hrtick_enabled(struct rq *rq)
1528 {
1529 	if (!sched_feat(HRTICK))
1530 		return 0;
1531 	if (!cpu_active(cpu_of(rq)))
1532 		return 0;
1533 	return hrtimer_is_hres_active(&rq->hrtick_timer);
1534 }
1535 
1536 void hrtick_start(struct rq *rq, u64 delay);
1537 
1538 #else
1539 
hrtick_enabled(struct rq * rq)1540 static inline int hrtick_enabled(struct rq *rq)
1541 {
1542 	return 0;
1543 }
1544 
1545 #endif /* CONFIG_SCHED_HRTICK */
1546 
1547 #ifdef CONFIG_SMP
1548 extern void sched_avg_update(struct rq *rq);
1549 
1550 #ifndef arch_scale_freq_capacity
1551 static __always_inline
arch_scale_freq_capacity(struct sched_domain * sd,int cpu)1552 unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1553 {
1554 	return SCHED_CAPACITY_SCALE;
1555 }
1556 #endif
1557 
1558 #ifndef arch_scale_cpu_capacity
1559 static __always_inline
arch_scale_cpu_capacity(struct sched_domain * sd,int cpu)1560 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1561 {
1562 	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1563 		return sd->smt_gain / sd->span_weight;
1564 
1565 	return SCHED_CAPACITY_SCALE;
1566 }
1567 #endif
1568 
1569 #ifdef CONFIG_SMP
capacity_of(int cpu)1570 static inline unsigned long capacity_of(int cpu)
1571 {
1572 	return cpu_rq(cpu)->cpu_capacity;
1573 }
1574 
capacity_orig_of(int cpu)1575 static inline unsigned long capacity_orig_of(int cpu)
1576 {
1577 	return cpu_rq(cpu)->cpu_capacity_orig;
1578 }
1579 
1580 extern unsigned int sysctl_sched_use_walt_cpu_util;
1581 extern unsigned int walt_ravg_window;
1582 extern bool walt_disabled;
1583 
1584 /*
1585  * cpu_util returns the amount of capacity of a CPU that is used by CFS
1586  * tasks. The unit of the return value must be the one of capacity so we can
1587  * compare the utilization with the capacity of the CPU that is available for
1588  * CFS task (ie cpu_capacity).
1589  *
1590  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
1591  * recent utilization of currently non-runnable tasks on a CPU. It represents
1592  * the amount of utilization of a CPU in the range [0..capacity_orig] where
1593  * capacity_orig is the cpu_capacity available at the highest frequency
1594  * (arch_scale_freq_capacity()).
1595  * The utilization of a CPU converges towards a sum equal to or less than the
1596  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
1597  * the running time on this CPU scaled by capacity_curr.
1598  *
1599  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
1600  * higher than capacity_orig because of unfortunate rounding in
1601  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
1602  * the average stabilizes with the new running time. We need to check that the
1603  * utilization stays within the range of [0..capacity_orig] and cap it if
1604  * necessary. Without utilization capping, a group could be seen as overloaded
1605  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
1606  * available capacity. We allow utilization to overshoot capacity_curr (but not
1607  * capacity_orig) as it useful for predicting the capacity required after task
1608  * migrations (scheduler-driven DVFS).
1609  */
__cpu_util(int cpu,int delta)1610 static inline unsigned long __cpu_util(int cpu, int delta)
1611 {
1612 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
1613 	unsigned long capacity = capacity_orig_of(cpu);
1614 
1615 #ifdef CONFIG_SCHED_WALT
1616 	if (!walt_disabled && sysctl_sched_use_walt_cpu_util)
1617 		util = div64_u64(cpu_rq(cpu)->cumulative_runnable_avg,
1618 				 walt_ravg_window >> SCHED_LOAD_SHIFT);
1619 #endif
1620 	delta += util;
1621 	if (delta < 0)
1622 		return 0;
1623 
1624 	return (delta >= capacity) ? capacity : delta;
1625 }
1626 
cpu_util(int cpu)1627 static inline unsigned long cpu_util(int cpu)
1628 {
1629 	return __cpu_util(cpu, 0);
1630 }
1631 
cpu_util_freq(int cpu)1632 static inline unsigned long cpu_util_freq(int cpu)
1633 {
1634 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
1635 	unsigned long capacity = capacity_orig_of(cpu);
1636 
1637 #ifdef CONFIG_SCHED_WALT
1638 	if (!walt_disabled && sysctl_sched_use_walt_cpu_util)
1639 		util = div64_u64(cpu_rq(cpu)->prev_runnable_sum,
1640 				 walt_ravg_window >> SCHED_LOAD_SHIFT);
1641 #endif
1642 	return (util >= capacity) ? capacity : util;
1643 }
1644 
1645 #endif
1646 
sched_rt_avg_update(struct rq * rq,u64 rt_delta)1647 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1648 {
1649 	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1650 }
1651 #else
sched_rt_avg_update(struct rq * rq,u64 rt_delta)1652 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
sched_avg_update(struct rq * rq)1653 static inline void sched_avg_update(struct rq *rq) { }
1654 #endif
1655 
1656 /*
1657  * __task_rq_lock - lock the rq @p resides on.
1658  */
__task_rq_lock(struct task_struct * p)1659 static inline struct rq *__task_rq_lock(struct task_struct *p)
1660 	__acquires(rq->lock)
1661 {
1662 	struct rq *rq;
1663 
1664 	lockdep_assert_held(&p->pi_lock);
1665 
1666 	for (;;) {
1667 		rq = task_rq(p);
1668 		raw_spin_lock(&rq->lock);
1669 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1670 			lockdep_pin_lock(&rq->lock);
1671 			return rq;
1672 		}
1673 		raw_spin_unlock(&rq->lock);
1674 
1675 		while (unlikely(task_on_rq_migrating(p)))
1676 			cpu_relax();
1677 	}
1678 }
1679 
1680 /*
1681  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1682  */
task_rq_lock(struct task_struct * p,unsigned long * flags)1683 static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1684 	__acquires(p->pi_lock)
1685 	__acquires(rq->lock)
1686 {
1687 	struct rq *rq;
1688 
1689 	for (;;) {
1690 		raw_spin_lock_irqsave(&p->pi_lock, *flags);
1691 		rq = task_rq(p);
1692 		raw_spin_lock(&rq->lock);
1693 		/*
1694 		 *	move_queued_task()		task_rq_lock()
1695 		 *
1696 		 *	ACQUIRE (rq->lock)
1697 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
1698 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
1699 		 *	[S] ->cpu = new_cpu		[L] task_rq()
1700 		 *					[L] ->on_rq
1701 		 *	RELEASE (rq->lock)
1702 		 *
1703 		 * If we observe the old cpu in task_rq_lock, the acquire of
1704 		 * the old rq->lock will fully serialize against the stores.
1705 		 *
1706 		 * If we observe the new cpu in task_rq_lock, the acquire will
1707 		 * pair with the WMB to ensure we must then also see migrating.
1708 		 */
1709 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1710 			lockdep_pin_lock(&rq->lock);
1711 			return rq;
1712 		}
1713 		raw_spin_unlock(&rq->lock);
1714 		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1715 
1716 		while (unlikely(task_on_rq_migrating(p)))
1717 			cpu_relax();
1718 	}
1719 }
1720 
__task_rq_unlock(struct rq * rq)1721 static inline void __task_rq_unlock(struct rq *rq)
1722 	__releases(rq->lock)
1723 {
1724 	lockdep_unpin_lock(&rq->lock);
1725 	raw_spin_unlock(&rq->lock);
1726 }
1727 
1728 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,unsigned long * flags)1729 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1730 	__releases(rq->lock)
1731 	__releases(p->pi_lock)
1732 {
1733 	lockdep_unpin_lock(&rq->lock);
1734 	raw_spin_unlock(&rq->lock);
1735 	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1736 }
1737 
1738 extern struct rq *lock_rq_of(struct task_struct *p, unsigned long *flags);
1739 extern void unlock_rq_of(struct rq *rq, struct task_struct *p, unsigned long *flags);
1740 
1741 #ifdef CONFIG_SMP
1742 #ifdef CONFIG_PREEMPT
1743 
1744 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1745 
1746 /*
1747  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1748  * way at the expense of forcing extra atomic operations in all
1749  * invocations.  This assures that the double_lock is acquired using the
1750  * same underlying policy as the spinlock_t on this architecture, which
1751  * reduces latency compared to the unfair variant below.  However, it
1752  * also adds more overhead and therefore may reduce throughput.
1753  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1754 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1755 	__releases(this_rq->lock)
1756 	__acquires(busiest->lock)
1757 	__acquires(this_rq->lock)
1758 {
1759 	raw_spin_unlock(&this_rq->lock);
1760 	double_rq_lock(this_rq, busiest);
1761 
1762 	return 1;
1763 }
1764 
1765 #else
1766 /*
1767  * Unfair double_lock_balance: Optimizes throughput at the expense of
1768  * latency by eliminating extra atomic operations when the locks are
1769  * already in proper order on entry.  This favors lower cpu-ids and will
1770  * grant the double lock to lower cpus over higher ids under contention,
1771  * regardless of entry order into the function.
1772  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)1773 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1774 	__releases(this_rq->lock)
1775 	__acquires(busiest->lock)
1776 	__acquires(this_rq->lock)
1777 {
1778 	int ret = 0;
1779 
1780 	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1781 		if (busiest < this_rq) {
1782 			raw_spin_unlock(&this_rq->lock);
1783 			raw_spin_lock(&busiest->lock);
1784 			raw_spin_lock_nested(&this_rq->lock,
1785 					      SINGLE_DEPTH_NESTING);
1786 			ret = 1;
1787 		} else
1788 			raw_spin_lock_nested(&busiest->lock,
1789 					      SINGLE_DEPTH_NESTING);
1790 	}
1791 	return ret;
1792 }
1793 
1794 #endif /* CONFIG_PREEMPT */
1795 
1796 /*
1797  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1798  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)1799 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1800 {
1801 	if (unlikely(!irqs_disabled())) {
1802 		/* printk() doesn't work good under rq->lock */
1803 		raw_spin_unlock(&this_rq->lock);
1804 		BUG_ON(1);
1805 	}
1806 
1807 	return _double_lock_balance(this_rq, busiest);
1808 }
1809 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)1810 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1811 	__releases(busiest->lock)
1812 {
1813 	if (this_rq != busiest)
1814 		raw_spin_unlock(&busiest->lock);
1815 	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1816 }
1817 
double_lock(spinlock_t * l1,spinlock_t * l2)1818 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1819 {
1820 	if (l1 > l2)
1821 		swap(l1, l2);
1822 
1823 	spin_lock(l1);
1824 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1825 }
1826 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)1827 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1828 {
1829 	if (l1 > l2)
1830 		swap(l1, l2);
1831 
1832 	spin_lock_irq(l1);
1833 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1834 }
1835 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)1836 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1837 {
1838 	if (l1 > l2)
1839 		swap(l1, l2);
1840 
1841 	raw_spin_lock(l1);
1842 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1843 }
1844 
1845 /*
1846  * double_rq_lock - safely lock two runqueues
1847  *
1848  * Note this does not disable interrupts like task_rq_lock,
1849  * you need to do so manually before calling.
1850  */
double_rq_lock(struct rq * rq1,struct rq * rq2)1851 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1852 	__acquires(rq1->lock)
1853 	__acquires(rq2->lock)
1854 {
1855 	BUG_ON(!irqs_disabled());
1856 	if (rq1 == rq2) {
1857 		raw_spin_lock(&rq1->lock);
1858 		__acquire(rq2->lock);	/* Fake it out ;) */
1859 	} else {
1860 		if (rq1 < rq2) {
1861 			raw_spin_lock(&rq1->lock);
1862 			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1863 		} else {
1864 			raw_spin_lock(&rq2->lock);
1865 			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1866 		}
1867 	}
1868 }
1869 
1870 /*
1871  * double_rq_unlock - safely unlock two runqueues
1872  *
1873  * Note this does not restore interrupts like task_rq_unlock,
1874  * you need to do so manually after calling.
1875  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)1876 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1877 	__releases(rq1->lock)
1878 	__releases(rq2->lock)
1879 {
1880 	raw_spin_unlock(&rq1->lock);
1881 	if (rq1 != rq2)
1882 		raw_spin_unlock(&rq2->lock);
1883 	else
1884 		__release(rq2->lock);
1885 }
1886 
1887 #else /* CONFIG_SMP */
1888 
1889 /*
1890  * double_rq_lock - safely lock two runqueues
1891  *
1892  * Note this does not disable interrupts like task_rq_lock,
1893  * you need to do so manually before calling.
1894  */
double_rq_lock(struct rq * rq1,struct rq * rq2)1895 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1896 	__acquires(rq1->lock)
1897 	__acquires(rq2->lock)
1898 {
1899 	BUG_ON(!irqs_disabled());
1900 	BUG_ON(rq1 != rq2);
1901 	raw_spin_lock(&rq1->lock);
1902 	__acquire(rq2->lock);	/* Fake it out ;) */
1903 }
1904 
1905 /*
1906  * double_rq_unlock - safely unlock two runqueues
1907  *
1908  * Note this does not restore interrupts like task_rq_unlock,
1909  * you need to do so manually after calling.
1910  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)1911 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1912 	__releases(rq1->lock)
1913 	__releases(rq2->lock)
1914 {
1915 	BUG_ON(rq1 != rq2);
1916 	raw_spin_unlock(&rq1->lock);
1917 	__release(rq2->lock);
1918 }
1919 
1920 #endif
1921 
1922 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1923 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1924 
1925 #ifdef	CONFIG_SCHED_DEBUG
1926 extern void print_cfs_stats(struct seq_file *m, int cpu);
1927 extern void print_rt_stats(struct seq_file *m, int cpu);
1928 extern void print_dl_stats(struct seq_file *m, int cpu);
1929 extern void
1930 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1931 
1932 #ifdef CONFIG_NUMA_BALANCING
1933 extern void
1934 show_numa_stats(struct task_struct *p, struct seq_file *m);
1935 extern void
1936 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1937 	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1938 #endif /* CONFIG_NUMA_BALANCING */
1939 #endif /* CONFIG_SCHED_DEBUG */
1940 
1941 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1942 extern void init_rt_rq(struct rt_rq *rt_rq);
1943 extern void init_dl_rq(struct dl_rq *dl_rq);
1944 
1945 extern void cfs_bandwidth_usage_inc(void);
1946 extern void cfs_bandwidth_usage_dec(void);
1947 
1948 #ifdef CONFIG_NO_HZ_COMMON
1949 enum rq_nohz_flag_bits {
1950 	NOHZ_TICK_STOPPED,
1951 	NOHZ_BALANCE_KICK,
1952 };
1953 
1954 #define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
1955 #endif
1956 
1957 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1958 
1959 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1960 DECLARE_PER_CPU(u64, cpu_softirq_time);
1961 
1962 #ifndef CONFIG_64BIT
1963 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1964 
irq_time_write_begin(void)1965 static inline void irq_time_write_begin(void)
1966 {
1967 	__this_cpu_inc(irq_time_seq.sequence);
1968 	smp_wmb();
1969 }
1970 
irq_time_write_end(void)1971 static inline void irq_time_write_end(void)
1972 {
1973 	smp_wmb();
1974 	__this_cpu_inc(irq_time_seq.sequence);
1975 }
1976 
irq_time_read(int cpu)1977 static inline u64 irq_time_read(int cpu)
1978 {
1979 	u64 irq_time;
1980 	unsigned seq;
1981 
1982 	do {
1983 		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1984 		irq_time = per_cpu(cpu_softirq_time, cpu) +
1985 			   per_cpu(cpu_hardirq_time, cpu);
1986 	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1987 
1988 	return irq_time;
1989 }
1990 #else /* CONFIG_64BIT */
irq_time_write_begin(void)1991 static inline void irq_time_write_begin(void)
1992 {
1993 }
1994 
irq_time_write_end(void)1995 static inline void irq_time_write_end(void)
1996 {
1997 }
1998 
irq_time_read(int cpu)1999 static inline u64 irq_time_read(int cpu)
2000 {
2001 	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2002 }
2003 #endif /* CONFIG_64BIT */
2004 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2005 
2006 #ifdef CONFIG_CPU_FREQ
2007 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2008 
2009 /**
2010  * cpufreq_update_util - Take a note about CPU utilization changes.
2011  * @rq: Runqueue to carry out the update for.
2012  * @flags: Update reason flags.
2013  *
2014  * This function is called by the scheduler on the CPU whose utilization is
2015  * being updated.
2016  *
2017  * It can only be called from RCU-sched read-side critical sections.
2018  *
2019  * The way cpufreq is currently arranged requires it to evaluate the CPU
2020  * performance state (frequency/voltage) on a regular basis to prevent it from
2021  * being stuck in a completely inadequate performance level for too long.
2022  * That is not guaranteed to happen if the updates are only triggered from CFS,
2023  * though, because they may not be coming in if RT or deadline tasks are active
2024  * all the time (or there are RT and DL tasks only).
2025  *
2026  * As a workaround for that issue, this function is called by the RT and DL
2027  * sched classes to trigger extra cpufreq updates to prevent it from stalling,
2028  * but that really is a band-aid.  Going forward it should be replaced with
2029  * solutions targeted more specifically at RT and DL tasks.
2030  */
cpufreq_update_util(struct rq * rq,unsigned int flags)2031 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2032 {
2033         struct update_util_data *data;
2034 
2035         data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
2036         if (data)
2037                 data->func(data, rq_clock(rq), flags);
2038 }
2039 
cpufreq_update_this_cpu(struct rq * rq,unsigned int flags)2040 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
2041 {
2042         if (cpu_of(rq) == smp_processor_id())
2043                 cpufreq_update_util(rq, flags);
2044 }
2045 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2046 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
cpufreq_update_this_cpu(struct rq * rq,unsigned int flags)2047 static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
2048 #endif /* CONFIG_CPU_FREQ */
2049 
2050 #ifdef CONFIG_SCHED_WALT
2051 
2052 static inline bool
walt_task_in_cum_window_demand(struct rq * rq,struct task_struct * p)2053 walt_task_in_cum_window_demand(struct rq *rq, struct task_struct *p)
2054 {
2055 	return cpu_of(rq) == task_cpu(p) &&
2056 	       (p->on_rq || p->last_sleep_ts >= rq->window_start);
2057 }
2058 
2059 #endif /* CONFIG_SCHED_WALT */
2060 
2061 #ifdef arch_scale_freq_capacity
2062 #ifndef arch_scale_freq_invariant
2063 #define arch_scale_freq_invariant()     (true)
2064 #endif
2065 #else /* arch_scale_freq_capacity */
2066 #define arch_scale_freq_invariant()     (false)
2067 #endif
2068