1 /*
2 * Copyright (C) 2006-2009 Freescale Semicondutor, Inc. All rights reserved.
3 *
4 * Author: Shlomi Gridish <gridish@freescale.com>
5 * Li Yang <leoli@freescale.com>
6 *
7 * Description:
8 * QE UCC Gigabit Ethernet Driver
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/stddef.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mm.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mii.h>
32 #include <linux/phy.h>
33 #include <linux/workqueue.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/of_platform.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/irq.h>
42 #include <asm/io.h>
43 #include <asm/immap_qe.h>
44 #include <asm/qe.h>
45 #include <asm/ucc.h>
46 #include <asm/ucc_fast.h>
47 #include <asm/machdep.h>
48 #include <net/sch_generic.h>
49
50 #include "ucc_geth.h"
51
52 #undef DEBUG
53
54 #define ugeth_printk(level, format, arg...) \
55 printk(level format "\n", ## arg)
56
57 #define ugeth_dbg(format, arg...) \
58 ugeth_printk(KERN_DEBUG , format , ## arg)
59
60 #ifdef UGETH_VERBOSE_DEBUG
61 #define ugeth_vdbg ugeth_dbg
62 #else
63 #define ugeth_vdbg(fmt, args...) do { } while (0)
64 #endif /* UGETH_VERBOSE_DEBUG */
65 #define UGETH_MSG_DEFAULT (NETIF_MSG_IFUP << 1 ) - 1
66
67
68 static DEFINE_SPINLOCK(ugeth_lock);
69
70 static struct {
71 u32 msg_enable;
72 } debug = { -1 };
73
74 module_param_named(debug, debug.msg_enable, int, 0);
75 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 0xffff=all)");
76
77 static struct ucc_geth_info ugeth_primary_info = {
78 .uf_info = {
79 .bd_mem_part = MEM_PART_SYSTEM,
80 .rtsm = UCC_FAST_SEND_IDLES_BETWEEN_FRAMES,
81 .max_rx_buf_length = 1536,
82 /* adjusted at startup if max-speed 1000 */
83 .urfs = UCC_GETH_URFS_INIT,
84 .urfet = UCC_GETH_URFET_INIT,
85 .urfset = UCC_GETH_URFSET_INIT,
86 .utfs = UCC_GETH_UTFS_INIT,
87 .utfet = UCC_GETH_UTFET_INIT,
88 .utftt = UCC_GETH_UTFTT_INIT,
89 .ufpt = 256,
90 .mode = UCC_FAST_PROTOCOL_MODE_ETHERNET,
91 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
92 .tenc = UCC_FAST_TX_ENCODING_NRZ,
93 .renc = UCC_FAST_RX_ENCODING_NRZ,
94 .tcrc = UCC_FAST_16_BIT_CRC,
95 .synl = UCC_FAST_SYNC_LEN_NOT_USED,
96 },
97 .numQueuesTx = 1,
98 .numQueuesRx = 1,
99 .extendedFilteringChainPointer = ((uint32_t) NULL),
100 .typeorlen = 3072 /*1536 */ ,
101 .nonBackToBackIfgPart1 = 0x40,
102 .nonBackToBackIfgPart2 = 0x60,
103 .miminumInterFrameGapEnforcement = 0x50,
104 .backToBackInterFrameGap = 0x60,
105 .mblinterval = 128,
106 .nortsrbytetime = 5,
107 .fracsiz = 1,
108 .strictpriorityq = 0xff,
109 .altBebTruncation = 0xa,
110 .excessDefer = 1,
111 .maxRetransmission = 0xf,
112 .collisionWindow = 0x37,
113 .receiveFlowControl = 1,
114 .transmitFlowControl = 1,
115 .maxGroupAddrInHash = 4,
116 .maxIndAddrInHash = 4,
117 .prel = 7,
118 .maxFrameLength = 1518+16, /* Add extra bytes for VLANs etc. */
119 .minFrameLength = 64,
120 .maxD1Length = 1520+16, /* Add extra bytes for VLANs etc. */
121 .maxD2Length = 1520+16, /* Add extra bytes for VLANs etc. */
122 .vlantype = 0x8100,
123 .ecamptr = ((uint32_t) NULL),
124 .eventRegMask = UCCE_OTHER,
125 .pausePeriod = 0xf000,
126 .interruptcoalescingmaxvalue = {1, 1, 1, 1, 1, 1, 1, 1},
127 .bdRingLenTx = {
128 TX_BD_RING_LEN,
129 TX_BD_RING_LEN,
130 TX_BD_RING_LEN,
131 TX_BD_RING_LEN,
132 TX_BD_RING_LEN,
133 TX_BD_RING_LEN,
134 TX_BD_RING_LEN,
135 TX_BD_RING_LEN},
136
137 .bdRingLenRx = {
138 RX_BD_RING_LEN,
139 RX_BD_RING_LEN,
140 RX_BD_RING_LEN,
141 RX_BD_RING_LEN,
142 RX_BD_RING_LEN,
143 RX_BD_RING_LEN,
144 RX_BD_RING_LEN,
145 RX_BD_RING_LEN},
146
147 .numStationAddresses = UCC_GETH_NUM_OF_STATION_ADDRESSES_1,
148 .largestexternallookupkeysize =
149 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE,
150 .statisticsMode = UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE |
151 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX |
152 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX,
153 .vlanOperationTagged = UCC_GETH_VLAN_OPERATION_TAGGED_NOP,
154 .vlanOperationNonTagged = UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP,
155 .rxQoSMode = UCC_GETH_QOS_MODE_DEFAULT,
156 .aufc = UPSMR_AUTOMATIC_FLOW_CONTROL_MODE_NONE,
157 .padAndCrc = MACCFG2_PAD_AND_CRC_MODE_PAD_AND_CRC,
158 .numThreadsTx = UCC_GETH_NUM_OF_THREADS_1,
159 .numThreadsRx = UCC_GETH_NUM_OF_THREADS_1,
160 .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
161 .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
162 };
163
164 static struct ucc_geth_info ugeth_info[8];
165
166 #ifdef DEBUG
mem_disp(u8 * addr,int size)167 static void mem_disp(u8 *addr, int size)
168 {
169 u8 *i;
170 int size16Aling = (size >> 4) << 4;
171 int size4Aling = (size >> 2) << 2;
172 int notAlign = 0;
173 if (size % 16)
174 notAlign = 1;
175
176 for (i = addr; (u32) i < (u32) addr + size16Aling; i += 16)
177 printk("0x%08x: %08x %08x %08x %08x\r\n",
178 (u32) i,
179 *((u32 *) (i)),
180 *((u32 *) (i + 4)),
181 *((u32 *) (i + 8)), *((u32 *) (i + 12)));
182 if (notAlign == 1)
183 printk("0x%08x: ", (u32) i);
184 for (; (u32) i < (u32) addr + size4Aling; i += 4)
185 printk("%08x ", *((u32 *) (i)));
186 for (; (u32) i < (u32) addr + size; i++)
187 printk("%02x", *((i)));
188 if (notAlign == 1)
189 printk("\r\n");
190 }
191 #endif /* DEBUG */
192
dequeue(struct list_head * lh)193 static struct list_head *dequeue(struct list_head *lh)
194 {
195 unsigned long flags;
196
197 spin_lock_irqsave(&ugeth_lock, flags);
198 if (!list_empty(lh)) {
199 struct list_head *node = lh->next;
200 list_del(node);
201 spin_unlock_irqrestore(&ugeth_lock, flags);
202 return node;
203 } else {
204 spin_unlock_irqrestore(&ugeth_lock, flags);
205 return NULL;
206 }
207 }
208
get_new_skb(struct ucc_geth_private * ugeth,u8 __iomem * bd)209 static struct sk_buff *get_new_skb(struct ucc_geth_private *ugeth,
210 u8 __iomem *bd)
211 {
212 struct sk_buff *skb;
213
214 skb = netdev_alloc_skb(ugeth->ndev,
215 ugeth->ug_info->uf_info.max_rx_buf_length +
216 UCC_GETH_RX_DATA_BUF_ALIGNMENT);
217 if (!skb)
218 return NULL;
219
220 /* We need the data buffer to be aligned properly. We will reserve
221 * as many bytes as needed to align the data properly
222 */
223 skb_reserve(skb,
224 UCC_GETH_RX_DATA_BUF_ALIGNMENT -
225 (((unsigned)skb->data) & (UCC_GETH_RX_DATA_BUF_ALIGNMENT -
226 1)));
227
228 out_be32(&((struct qe_bd __iomem *)bd)->buf,
229 dma_map_single(ugeth->dev,
230 skb->data,
231 ugeth->ug_info->uf_info.max_rx_buf_length +
232 UCC_GETH_RX_DATA_BUF_ALIGNMENT,
233 DMA_FROM_DEVICE));
234
235 out_be32((u32 __iomem *)bd,
236 (R_E | R_I | (in_be32((u32 __iomem*)bd) & R_W)));
237
238 return skb;
239 }
240
rx_bd_buffer_set(struct ucc_geth_private * ugeth,u8 rxQ)241 static int rx_bd_buffer_set(struct ucc_geth_private *ugeth, u8 rxQ)
242 {
243 u8 __iomem *bd;
244 u32 bd_status;
245 struct sk_buff *skb;
246 int i;
247
248 bd = ugeth->p_rx_bd_ring[rxQ];
249 i = 0;
250
251 do {
252 bd_status = in_be32((u32 __iomem *)bd);
253 skb = get_new_skb(ugeth, bd);
254
255 if (!skb) /* If can not allocate data buffer,
256 abort. Cleanup will be elsewhere */
257 return -ENOMEM;
258
259 ugeth->rx_skbuff[rxQ][i] = skb;
260
261 /* advance the BD pointer */
262 bd += sizeof(struct qe_bd);
263 i++;
264 } while (!(bd_status & R_W));
265
266 return 0;
267 }
268
fill_init_enet_entries(struct ucc_geth_private * ugeth,u32 * p_start,u8 num_entries,u32 thread_size,u32 thread_alignment,unsigned int risc,int skip_page_for_first_entry)269 static int fill_init_enet_entries(struct ucc_geth_private *ugeth,
270 u32 *p_start,
271 u8 num_entries,
272 u32 thread_size,
273 u32 thread_alignment,
274 unsigned int risc,
275 int skip_page_for_first_entry)
276 {
277 u32 init_enet_offset;
278 u8 i;
279 int snum;
280
281 for (i = 0; i < num_entries; i++) {
282 if ((snum = qe_get_snum()) < 0) {
283 if (netif_msg_ifup(ugeth))
284 pr_err("Can not get SNUM\n");
285 return snum;
286 }
287 if ((i == 0) && skip_page_for_first_entry)
288 /* First entry of Rx does not have page */
289 init_enet_offset = 0;
290 else {
291 init_enet_offset =
292 qe_muram_alloc(thread_size, thread_alignment);
293 if (IS_ERR_VALUE(init_enet_offset)) {
294 if (netif_msg_ifup(ugeth))
295 pr_err("Can not allocate DPRAM memory\n");
296 qe_put_snum((u8) snum);
297 return -ENOMEM;
298 }
299 }
300 *(p_start++) =
301 ((u8) snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset
302 | risc;
303 }
304
305 return 0;
306 }
307
return_init_enet_entries(struct ucc_geth_private * ugeth,u32 * p_start,u8 num_entries,unsigned int risc,int skip_page_for_first_entry)308 static int return_init_enet_entries(struct ucc_geth_private *ugeth,
309 u32 *p_start,
310 u8 num_entries,
311 unsigned int risc,
312 int skip_page_for_first_entry)
313 {
314 u32 init_enet_offset;
315 u8 i;
316 int snum;
317
318 for (i = 0; i < num_entries; i++) {
319 u32 val = *p_start;
320
321 /* Check that this entry was actually valid --
322 needed in case failed in allocations */
323 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
324 snum =
325 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
326 ENET_INIT_PARAM_SNUM_SHIFT;
327 qe_put_snum((u8) snum);
328 if (!((i == 0) && skip_page_for_first_entry)) {
329 /* First entry of Rx does not have page */
330 init_enet_offset =
331 (val & ENET_INIT_PARAM_PTR_MASK);
332 qe_muram_free(init_enet_offset);
333 }
334 *p_start++ = 0;
335 }
336 }
337
338 return 0;
339 }
340
341 #ifdef DEBUG
dump_init_enet_entries(struct ucc_geth_private * ugeth,u32 __iomem * p_start,u8 num_entries,u32 thread_size,unsigned int risc,int skip_page_for_first_entry)342 static int dump_init_enet_entries(struct ucc_geth_private *ugeth,
343 u32 __iomem *p_start,
344 u8 num_entries,
345 u32 thread_size,
346 unsigned int risc,
347 int skip_page_for_first_entry)
348 {
349 u32 init_enet_offset;
350 u8 i;
351 int snum;
352
353 for (i = 0; i < num_entries; i++) {
354 u32 val = in_be32(p_start);
355
356 /* Check that this entry was actually valid --
357 needed in case failed in allocations */
358 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
359 snum =
360 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
361 ENET_INIT_PARAM_SNUM_SHIFT;
362 qe_put_snum((u8) snum);
363 if (!((i == 0) && skip_page_for_first_entry)) {
364 /* First entry of Rx does not have page */
365 init_enet_offset =
366 (in_be32(p_start) &
367 ENET_INIT_PARAM_PTR_MASK);
368 pr_info("Init enet entry %d:\n", i);
369 pr_info("Base address: 0x%08x\n",
370 (u32)qe_muram_addr(init_enet_offset));
371 mem_disp(qe_muram_addr(init_enet_offset),
372 thread_size);
373 }
374 p_start++;
375 }
376 }
377
378 return 0;
379 }
380 #endif
381
put_enet_addr_container(struct enet_addr_container * enet_addr_cont)382 static void put_enet_addr_container(struct enet_addr_container *enet_addr_cont)
383 {
384 kfree(enet_addr_cont);
385 }
386
set_mac_addr(__be16 __iomem * reg,u8 * mac)387 static void set_mac_addr(__be16 __iomem *reg, u8 *mac)
388 {
389 out_be16(®[0], ((u16)mac[5] << 8) | mac[4]);
390 out_be16(®[1], ((u16)mac[3] << 8) | mac[2]);
391 out_be16(®[2], ((u16)mac[1] << 8) | mac[0]);
392 }
393
hw_clear_addr_in_paddr(struct ucc_geth_private * ugeth,u8 paddr_num)394 static int hw_clear_addr_in_paddr(struct ucc_geth_private *ugeth, u8 paddr_num)
395 {
396 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
397
398 if (paddr_num >= NUM_OF_PADDRS) {
399 pr_warn("%s: Invalid paddr_num: %u\n", __func__, paddr_num);
400 return -EINVAL;
401 }
402
403 p_82xx_addr_filt =
404 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
405 addressfiltering;
406
407 /* Writing address ff.ff.ff.ff.ff.ff disables address
408 recognition for this register */
409 out_be16(&p_82xx_addr_filt->paddr[paddr_num].h, 0xffff);
410 out_be16(&p_82xx_addr_filt->paddr[paddr_num].m, 0xffff);
411 out_be16(&p_82xx_addr_filt->paddr[paddr_num].l, 0xffff);
412
413 return 0;
414 }
415
hw_add_addr_in_hash(struct ucc_geth_private * ugeth,u8 * p_enet_addr)416 static void hw_add_addr_in_hash(struct ucc_geth_private *ugeth,
417 u8 *p_enet_addr)
418 {
419 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
420 u32 cecr_subblock;
421
422 p_82xx_addr_filt =
423 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
424 addressfiltering;
425
426 cecr_subblock =
427 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
428
429 /* Ethernet frames are defined in Little Endian mode,
430 therefore to insert */
431 /* the address to the hash (Big Endian mode), we reverse the bytes.*/
432
433 set_mac_addr(&p_82xx_addr_filt->taddr.h, p_enet_addr);
434
435 qe_issue_cmd(QE_SET_GROUP_ADDRESS, cecr_subblock,
436 QE_CR_PROTOCOL_ETHERNET, 0);
437 }
438
439 #ifdef DEBUG
get_statistics(struct ucc_geth_private * ugeth,struct ucc_geth_tx_firmware_statistics * tx_firmware_statistics,struct ucc_geth_rx_firmware_statistics * rx_firmware_statistics,struct ucc_geth_hardware_statistics * hardware_statistics)440 static void get_statistics(struct ucc_geth_private *ugeth,
441 struct ucc_geth_tx_firmware_statistics *
442 tx_firmware_statistics,
443 struct ucc_geth_rx_firmware_statistics *
444 rx_firmware_statistics,
445 struct ucc_geth_hardware_statistics *hardware_statistics)
446 {
447 struct ucc_fast __iomem *uf_regs;
448 struct ucc_geth __iomem *ug_regs;
449 struct ucc_geth_tx_firmware_statistics_pram *p_tx_fw_statistics_pram;
450 struct ucc_geth_rx_firmware_statistics_pram *p_rx_fw_statistics_pram;
451
452 ug_regs = ugeth->ug_regs;
453 uf_regs = (struct ucc_fast __iomem *) ug_regs;
454 p_tx_fw_statistics_pram = ugeth->p_tx_fw_statistics_pram;
455 p_rx_fw_statistics_pram = ugeth->p_rx_fw_statistics_pram;
456
457 /* Tx firmware only if user handed pointer and driver actually
458 gathers Tx firmware statistics */
459 if (tx_firmware_statistics && p_tx_fw_statistics_pram) {
460 tx_firmware_statistics->sicoltx =
461 in_be32(&p_tx_fw_statistics_pram->sicoltx);
462 tx_firmware_statistics->mulcoltx =
463 in_be32(&p_tx_fw_statistics_pram->mulcoltx);
464 tx_firmware_statistics->latecoltxfr =
465 in_be32(&p_tx_fw_statistics_pram->latecoltxfr);
466 tx_firmware_statistics->frabortduecol =
467 in_be32(&p_tx_fw_statistics_pram->frabortduecol);
468 tx_firmware_statistics->frlostinmactxer =
469 in_be32(&p_tx_fw_statistics_pram->frlostinmactxer);
470 tx_firmware_statistics->carriersenseertx =
471 in_be32(&p_tx_fw_statistics_pram->carriersenseertx);
472 tx_firmware_statistics->frtxok =
473 in_be32(&p_tx_fw_statistics_pram->frtxok);
474 tx_firmware_statistics->txfrexcessivedefer =
475 in_be32(&p_tx_fw_statistics_pram->txfrexcessivedefer);
476 tx_firmware_statistics->txpkts256 =
477 in_be32(&p_tx_fw_statistics_pram->txpkts256);
478 tx_firmware_statistics->txpkts512 =
479 in_be32(&p_tx_fw_statistics_pram->txpkts512);
480 tx_firmware_statistics->txpkts1024 =
481 in_be32(&p_tx_fw_statistics_pram->txpkts1024);
482 tx_firmware_statistics->txpktsjumbo =
483 in_be32(&p_tx_fw_statistics_pram->txpktsjumbo);
484 }
485
486 /* Rx firmware only if user handed pointer and driver actually
487 * gathers Rx firmware statistics */
488 if (rx_firmware_statistics && p_rx_fw_statistics_pram) {
489 int i;
490 rx_firmware_statistics->frrxfcser =
491 in_be32(&p_rx_fw_statistics_pram->frrxfcser);
492 rx_firmware_statistics->fraligner =
493 in_be32(&p_rx_fw_statistics_pram->fraligner);
494 rx_firmware_statistics->inrangelenrxer =
495 in_be32(&p_rx_fw_statistics_pram->inrangelenrxer);
496 rx_firmware_statistics->outrangelenrxer =
497 in_be32(&p_rx_fw_statistics_pram->outrangelenrxer);
498 rx_firmware_statistics->frtoolong =
499 in_be32(&p_rx_fw_statistics_pram->frtoolong);
500 rx_firmware_statistics->runt =
501 in_be32(&p_rx_fw_statistics_pram->runt);
502 rx_firmware_statistics->verylongevent =
503 in_be32(&p_rx_fw_statistics_pram->verylongevent);
504 rx_firmware_statistics->symbolerror =
505 in_be32(&p_rx_fw_statistics_pram->symbolerror);
506 rx_firmware_statistics->dropbsy =
507 in_be32(&p_rx_fw_statistics_pram->dropbsy);
508 for (i = 0; i < 0x8; i++)
509 rx_firmware_statistics->res0[i] =
510 p_rx_fw_statistics_pram->res0[i];
511 rx_firmware_statistics->mismatchdrop =
512 in_be32(&p_rx_fw_statistics_pram->mismatchdrop);
513 rx_firmware_statistics->underpkts =
514 in_be32(&p_rx_fw_statistics_pram->underpkts);
515 rx_firmware_statistics->pkts256 =
516 in_be32(&p_rx_fw_statistics_pram->pkts256);
517 rx_firmware_statistics->pkts512 =
518 in_be32(&p_rx_fw_statistics_pram->pkts512);
519 rx_firmware_statistics->pkts1024 =
520 in_be32(&p_rx_fw_statistics_pram->pkts1024);
521 rx_firmware_statistics->pktsjumbo =
522 in_be32(&p_rx_fw_statistics_pram->pktsjumbo);
523 rx_firmware_statistics->frlossinmacer =
524 in_be32(&p_rx_fw_statistics_pram->frlossinmacer);
525 rx_firmware_statistics->pausefr =
526 in_be32(&p_rx_fw_statistics_pram->pausefr);
527 for (i = 0; i < 0x4; i++)
528 rx_firmware_statistics->res1[i] =
529 p_rx_fw_statistics_pram->res1[i];
530 rx_firmware_statistics->removevlan =
531 in_be32(&p_rx_fw_statistics_pram->removevlan);
532 rx_firmware_statistics->replacevlan =
533 in_be32(&p_rx_fw_statistics_pram->replacevlan);
534 rx_firmware_statistics->insertvlan =
535 in_be32(&p_rx_fw_statistics_pram->insertvlan);
536 }
537
538 /* Hardware only if user handed pointer and driver actually
539 gathers hardware statistics */
540 if (hardware_statistics &&
541 (in_be32(&uf_regs->upsmr) & UCC_GETH_UPSMR_HSE)) {
542 hardware_statistics->tx64 = in_be32(&ug_regs->tx64);
543 hardware_statistics->tx127 = in_be32(&ug_regs->tx127);
544 hardware_statistics->tx255 = in_be32(&ug_regs->tx255);
545 hardware_statistics->rx64 = in_be32(&ug_regs->rx64);
546 hardware_statistics->rx127 = in_be32(&ug_regs->rx127);
547 hardware_statistics->rx255 = in_be32(&ug_regs->rx255);
548 hardware_statistics->txok = in_be32(&ug_regs->txok);
549 hardware_statistics->txcf = in_be16(&ug_regs->txcf);
550 hardware_statistics->tmca = in_be32(&ug_regs->tmca);
551 hardware_statistics->tbca = in_be32(&ug_regs->tbca);
552 hardware_statistics->rxfok = in_be32(&ug_regs->rxfok);
553 hardware_statistics->rxbok = in_be32(&ug_regs->rxbok);
554 hardware_statistics->rbyt = in_be32(&ug_regs->rbyt);
555 hardware_statistics->rmca = in_be32(&ug_regs->rmca);
556 hardware_statistics->rbca = in_be32(&ug_regs->rbca);
557 }
558 }
559
dump_bds(struct ucc_geth_private * ugeth)560 static void dump_bds(struct ucc_geth_private *ugeth)
561 {
562 int i;
563 int length;
564
565 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
566 if (ugeth->p_tx_bd_ring[i]) {
567 length =
568 (ugeth->ug_info->bdRingLenTx[i] *
569 sizeof(struct qe_bd));
570 pr_info("TX BDs[%d]\n", i);
571 mem_disp(ugeth->p_tx_bd_ring[i], length);
572 }
573 }
574 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
575 if (ugeth->p_rx_bd_ring[i]) {
576 length =
577 (ugeth->ug_info->bdRingLenRx[i] *
578 sizeof(struct qe_bd));
579 pr_info("RX BDs[%d]\n", i);
580 mem_disp(ugeth->p_rx_bd_ring[i], length);
581 }
582 }
583 }
584
dump_regs(struct ucc_geth_private * ugeth)585 static void dump_regs(struct ucc_geth_private *ugeth)
586 {
587 int i;
588
589 pr_info("UCC%d Geth registers:\n", ugeth->ug_info->uf_info.ucc_num + 1);
590 pr_info("Base address: 0x%08x\n", (u32)ugeth->ug_regs);
591
592 pr_info("maccfg1 : addr - 0x%08x, val - 0x%08x\n",
593 (u32)&ugeth->ug_regs->maccfg1,
594 in_be32(&ugeth->ug_regs->maccfg1));
595 pr_info("maccfg2 : addr - 0x%08x, val - 0x%08x\n",
596 (u32)&ugeth->ug_regs->maccfg2,
597 in_be32(&ugeth->ug_regs->maccfg2));
598 pr_info("ipgifg : addr - 0x%08x, val - 0x%08x\n",
599 (u32)&ugeth->ug_regs->ipgifg,
600 in_be32(&ugeth->ug_regs->ipgifg));
601 pr_info("hafdup : addr - 0x%08x, val - 0x%08x\n",
602 (u32)&ugeth->ug_regs->hafdup,
603 in_be32(&ugeth->ug_regs->hafdup));
604 pr_info("ifctl : addr - 0x%08x, val - 0x%08x\n",
605 (u32)&ugeth->ug_regs->ifctl,
606 in_be32(&ugeth->ug_regs->ifctl));
607 pr_info("ifstat : addr - 0x%08x, val - 0x%08x\n",
608 (u32)&ugeth->ug_regs->ifstat,
609 in_be32(&ugeth->ug_regs->ifstat));
610 pr_info("macstnaddr1: addr - 0x%08x, val - 0x%08x\n",
611 (u32)&ugeth->ug_regs->macstnaddr1,
612 in_be32(&ugeth->ug_regs->macstnaddr1));
613 pr_info("macstnaddr2: addr - 0x%08x, val - 0x%08x\n",
614 (u32)&ugeth->ug_regs->macstnaddr2,
615 in_be32(&ugeth->ug_regs->macstnaddr2));
616 pr_info("uempr : addr - 0x%08x, val - 0x%08x\n",
617 (u32)&ugeth->ug_regs->uempr,
618 in_be32(&ugeth->ug_regs->uempr));
619 pr_info("utbipar : addr - 0x%08x, val - 0x%08x\n",
620 (u32)&ugeth->ug_regs->utbipar,
621 in_be32(&ugeth->ug_regs->utbipar));
622 pr_info("uescr : addr - 0x%08x, val - 0x%04x\n",
623 (u32)&ugeth->ug_regs->uescr,
624 in_be16(&ugeth->ug_regs->uescr));
625 pr_info("tx64 : addr - 0x%08x, val - 0x%08x\n",
626 (u32)&ugeth->ug_regs->tx64,
627 in_be32(&ugeth->ug_regs->tx64));
628 pr_info("tx127 : addr - 0x%08x, val - 0x%08x\n",
629 (u32)&ugeth->ug_regs->tx127,
630 in_be32(&ugeth->ug_regs->tx127));
631 pr_info("tx255 : addr - 0x%08x, val - 0x%08x\n",
632 (u32)&ugeth->ug_regs->tx255,
633 in_be32(&ugeth->ug_regs->tx255));
634 pr_info("rx64 : addr - 0x%08x, val - 0x%08x\n",
635 (u32)&ugeth->ug_regs->rx64,
636 in_be32(&ugeth->ug_regs->rx64));
637 pr_info("rx127 : addr - 0x%08x, val - 0x%08x\n",
638 (u32)&ugeth->ug_regs->rx127,
639 in_be32(&ugeth->ug_regs->rx127));
640 pr_info("rx255 : addr - 0x%08x, val - 0x%08x\n",
641 (u32)&ugeth->ug_regs->rx255,
642 in_be32(&ugeth->ug_regs->rx255));
643 pr_info("txok : addr - 0x%08x, val - 0x%08x\n",
644 (u32)&ugeth->ug_regs->txok,
645 in_be32(&ugeth->ug_regs->txok));
646 pr_info("txcf : addr - 0x%08x, val - 0x%04x\n",
647 (u32)&ugeth->ug_regs->txcf,
648 in_be16(&ugeth->ug_regs->txcf));
649 pr_info("tmca : addr - 0x%08x, val - 0x%08x\n",
650 (u32)&ugeth->ug_regs->tmca,
651 in_be32(&ugeth->ug_regs->tmca));
652 pr_info("tbca : addr - 0x%08x, val - 0x%08x\n",
653 (u32)&ugeth->ug_regs->tbca,
654 in_be32(&ugeth->ug_regs->tbca));
655 pr_info("rxfok : addr - 0x%08x, val - 0x%08x\n",
656 (u32)&ugeth->ug_regs->rxfok,
657 in_be32(&ugeth->ug_regs->rxfok));
658 pr_info("rxbok : addr - 0x%08x, val - 0x%08x\n",
659 (u32)&ugeth->ug_regs->rxbok,
660 in_be32(&ugeth->ug_regs->rxbok));
661 pr_info("rbyt : addr - 0x%08x, val - 0x%08x\n",
662 (u32)&ugeth->ug_regs->rbyt,
663 in_be32(&ugeth->ug_regs->rbyt));
664 pr_info("rmca : addr - 0x%08x, val - 0x%08x\n",
665 (u32)&ugeth->ug_regs->rmca,
666 in_be32(&ugeth->ug_regs->rmca));
667 pr_info("rbca : addr - 0x%08x, val - 0x%08x\n",
668 (u32)&ugeth->ug_regs->rbca,
669 in_be32(&ugeth->ug_regs->rbca));
670 pr_info("scar : addr - 0x%08x, val - 0x%08x\n",
671 (u32)&ugeth->ug_regs->scar,
672 in_be32(&ugeth->ug_regs->scar));
673 pr_info("scam : addr - 0x%08x, val - 0x%08x\n",
674 (u32)&ugeth->ug_regs->scam,
675 in_be32(&ugeth->ug_regs->scam));
676
677 if (ugeth->p_thread_data_tx) {
678 int numThreadsTxNumerical;
679 switch (ugeth->ug_info->numThreadsTx) {
680 case UCC_GETH_NUM_OF_THREADS_1:
681 numThreadsTxNumerical = 1;
682 break;
683 case UCC_GETH_NUM_OF_THREADS_2:
684 numThreadsTxNumerical = 2;
685 break;
686 case UCC_GETH_NUM_OF_THREADS_4:
687 numThreadsTxNumerical = 4;
688 break;
689 case UCC_GETH_NUM_OF_THREADS_6:
690 numThreadsTxNumerical = 6;
691 break;
692 case UCC_GETH_NUM_OF_THREADS_8:
693 numThreadsTxNumerical = 8;
694 break;
695 default:
696 numThreadsTxNumerical = 0;
697 break;
698 }
699
700 pr_info("Thread data TXs:\n");
701 pr_info("Base address: 0x%08x\n",
702 (u32)ugeth->p_thread_data_tx);
703 for (i = 0; i < numThreadsTxNumerical; i++) {
704 pr_info("Thread data TX[%d]:\n", i);
705 pr_info("Base address: 0x%08x\n",
706 (u32)&ugeth->p_thread_data_tx[i]);
707 mem_disp((u8 *) & ugeth->p_thread_data_tx[i],
708 sizeof(struct ucc_geth_thread_data_tx));
709 }
710 }
711 if (ugeth->p_thread_data_rx) {
712 int numThreadsRxNumerical;
713 switch (ugeth->ug_info->numThreadsRx) {
714 case UCC_GETH_NUM_OF_THREADS_1:
715 numThreadsRxNumerical = 1;
716 break;
717 case UCC_GETH_NUM_OF_THREADS_2:
718 numThreadsRxNumerical = 2;
719 break;
720 case UCC_GETH_NUM_OF_THREADS_4:
721 numThreadsRxNumerical = 4;
722 break;
723 case UCC_GETH_NUM_OF_THREADS_6:
724 numThreadsRxNumerical = 6;
725 break;
726 case UCC_GETH_NUM_OF_THREADS_8:
727 numThreadsRxNumerical = 8;
728 break;
729 default:
730 numThreadsRxNumerical = 0;
731 break;
732 }
733
734 pr_info("Thread data RX:\n");
735 pr_info("Base address: 0x%08x\n",
736 (u32)ugeth->p_thread_data_rx);
737 for (i = 0; i < numThreadsRxNumerical; i++) {
738 pr_info("Thread data RX[%d]:\n", i);
739 pr_info("Base address: 0x%08x\n",
740 (u32)&ugeth->p_thread_data_rx[i]);
741 mem_disp((u8 *) & ugeth->p_thread_data_rx[i],
742 sizeof(struct ucc_geth_thread_data_rx));
743 }
744 }
745 if (ugeth->p_exf_glbl_param) {
746 pr_info("EXF global param:\n");
747 pr_info("Base address: 0x%08x\n",
748 (u32)ugeth->p_exf_glbl_param);
749 mem_disp((u8 *) ugeth->p_exf_glbl_param,
750 sizeof(*ugeth->p_exf_glbl_param));
751 }
752 if (ugeth->p_tx_glbl_pram) {
753 pr_info("TX global param:\n");
754 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_tx_glbl_pram);
755 pr_info("temoder : addr - 0x%08x, val - 0x%04x\n",
756 (u32)&ugeth->p_tx_glbl_pram->temoder,
757 in_be16(&ugeth->p_tx_glbl_pram->temoder));
758 pr_info("sqptr : addr - 0x%08x, val - 0x%08x\n",
759 (u32)&ugeth->p_tx_glbl_pram->sqptr,
760 in_be32(&ugeth->p_tx_glbl_pram->sqptr));
761 pr_info("schedulerbasepointer: addr - 0x%08x, val - 0x%08x\n",
762 (u32)&ugeth->p_tx_glbl_pram->schedulerbasepointer,
763 in_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer));
764 pr_info("txrmonbaseptr: addr - 0x%08x, val - 0x%08x\n",
765 (u32)&ugeth->p_tx_glbl_pram->txrmonbaseptr,
766 in_be32(&ugeth->p_tx_glbl_pram->txrmonbaseptr));
767 pr_info("tstate : addr - 0x%08x, val - 0x%08x\n",
768 (u32)&ugeth->p_tx_glbl_pram->tstate,
769 in_be32(&ugeth->p_tx_glbl_pram->tstate));
770 pr_info("iphoffset[0] : addr - 0x%08x, val - 0x%02x\n",
771 (u32)&ugeth->p_tx_glbl_pram->iphoffset[0],
772 ugeth->p_tx_glbl_pram->iphoffset[0]);
773 pr_info("iphoffset[1] : addr - 0x%08x, val - 0x%02x\n",
774 (u32)&ugeth->p_tx_glbl_pram->iphoffset[1],
775 ugeth->p_tx_glbl_pram->iphoffset[1]);
776 pr_info("iphoffset[2] : addr - 0x%08x, val - 0x%02x\n",
777 (u32)&ugeth->p_tx_glbl_pram->iphoffset[2],
778 ugeth->p_tx_glbl_pram->iphoffset[2]);
779 pr_info("iphoffset[3] : addr - 0x%08x, val - 0x%02x\n",
780 (u32)&ugeth->p_tx_glbl_pram->iphoffset[3],
781 ugeth->p_tx_glbl_pram->iphoffset[3]);
782 pr_info("iphoffset[4] : addr - 0x%08x, val - 0x%02x\n",
783 (u32)&ugeth->p_tx_glbl_pram->iphoffset[4],
784 ugeth->p_tx_glbl_pram->iphoffset[4]);
785 pr_info("iphoffset[5] : addr - 0x%08x, val - 0x%02x\n",
786 (u32)&ugeth->p_tx_glbl_pram->iphoffset[5],
787 ugeth->p_tx_glbl_pram->iphoffset[5]);
788 pr_info("iphoffset[6] : addr - 0x%08x, val - 0x%02x\n",
789 (u32)&ugeth->p_tx_glbl_pram->iphoffset[6],
790 ugeth->p_tx_glbl_pram->iphoffset[6]);
791 pr_info("iphoffset[7] : addr - 0x%08x, val - 0x%02x\n",
792 (u32)&ugeth->p_tx_glbl_pram->iphoffset[7],
793 ugeth->p_tx_glbl_pram->iphoffset[7]);
794 pr_info("vtagtable[0] : addr - 0x%08x, val - 0x%08x\n",
795 (u32)&ugeth->p_tx_glbl_pram->vtagtable[0],
796 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[0]));
797 pr_info("vtagtable[1] : addr - 0x%08x, val - 0x%08x\n",
798 (u32)&ugeth->p_tx_glbl_pram->vtagtable[1],
799 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[1]));
800 pr_info("vtagtable[2] : addr - 0x%08x, val - 0x%08x\n",
801 (u32)&ugeth->p_tx_glbl_pram->vtagtable[2],
802 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[2]));
803 pr_info("vtagtable[3] : addr - 0x%08x, val - 0x%08x\n",
804 (u32)&ugeth->p_tx_glbl_pram->vtagtable[3],
805 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[3]));
806 pr_info("vtagtable[4] : addr - 0x%08x, val - 0x%08x\n",
807 (u32)&ugeth->p_tx_glbl_pram->vtagtable[4],
808 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[4]));
809 pr_info("vtagtable[5] : addr - 0x%08x, val - 0x%08x\n",
810 (u32)&ugeth->p_tx_glbl_pram->vtagtable[5],
811 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[5]));
812 pr_info("vtagtable[6] : addr - 0x%08x, val - 0x%08x\n",
813 (u32)&ugeth->p_tx_glbl_pram->vtagtable[6],
814 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[6]));
815 pr_info("vtagtable[7] : addr - 0x%08x, val - 0x%08x\n",
816 (u32)&ugeth->p_tx_glbl_pram->vtagtable[7],
817 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[7]));
818 pr_info("tqptr : addr - 0x%08x, val - 0x%08x\n",
819 (u32)&ugeth->p_tx_glbl_pram->tqptr,
820 in_be32(&ugeth->p_tx_glbl_pram->tqptr));
821 }
822 if (ugeth->p_rx_glbl_pram) {
823 pr_info("RX global param:\n");
824 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_glbl_pram);
825 pr_info("remoder : addr - 0x%08x, val - 0x%08x\n",
826 (u32)&ugeth->p_rx_glbl_pram->remoder,
827 in_be32(&ugeth->p_rx_glbl_pram->remoder));
828 pr_info("rqptr : addr - 0x%08x, val - 0x%08x\n",
829 (u32)&ugeth->p_rx_glbl_pram->rqptr,
830 in_be32(&ugeth->p_rx_glbl_pram->rqptr));
831 pr_info("typeorlen : addr - 0x%08x, val - 0x%04x\n",
832 (u32)&ugeth->p_rx_glbl_pram->typeorlen,
833 in_be16(&ugeth->p_rx_glbl_pram->typeorlen));
834 pr_info("rxgstpack : addr - 0x%08x, val - 0x%02x\n",
835 (u32)&ugeth->p_rx_glbl_pram->rxgstpack,
836 ugeth->p_rx_glbl_pram->rxgstpack);
837 pr_info("rxrmonbaseptr : addr - 0x%08x, val - 0x%08x\n",
838 (u32)&ugeth->p_rx_glbl_pram->rxrmonbaseptr,
839 in_be32(&ugeth->p_rx_glbl_pram->rxrmonbaseptr));
840 pr_info("intcoalescingptr: addr - 0x%08x, val - 0x%08x\n",
841 (u32)&ugeth->p_rx_glbl_pram->intcoalescingptr,
842 in_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr));
843 pr_info("rstate : addr - 0x%08x, val - 0x%02x\n",
844 (u32)&ugeth->p_rx_glbl_pram->rstate,
845 ugeth->p_rx_glbl_pram->rstate);
846 pr_info("mrblr : addr - 0x%08x, val - 0x%04x\n",
847 (u32)&ugeth->p_rx_glbl_pram->mrblr,
848 in_be16(&ugeth->p_rx_glbl_pram->mrblr));
849 pr_info("rbdqptr : addr - 0x%08x, val - 0x%08x\n",
850 (u32)&ugeth->p_rx_glbl_pram->rbdqptr,
851 in_be32(&ugeth->p_rx_glbl_pram->rbdqptr));
852 pr_info("mflr : addr - 0x%08x, val - 0x%04x\n",
853 (u32)&ugeth->p_rx_glbl_pram->mflr,
854 in_be16(&ugeth->p_rx_glbl_pram->mflr));
855 pr_info("minflr : addr - 0x%08x, val - 0x%04x\n",
856 (u32)&ugeth->p_rx_glbl_pram->minflr,
857 in_be16(&ugeth->p_rx_glbl_pram->minflr));
858 pr_info("maxd1 : addr - 0x%08x, val - 0x%04x\n",
859 (u32)&ugeth->p_rx_glbl_pram->maxd1,
860 in_be16(&ugeth->p_rx_glbl_pram->maxd1));
861 pr_info("maxd2 : addr - 0x%08x, val - 0x%04x\n",
862 (u32)&ugeth->p_rx_glbl_pram->maxd2,
863 in_be16(&ugeth->p_rx_glbl_pram->maxd2));
864 pr_info("ecamptr : addr - 0x%08x, val - 0x%08x\n",
865 (u32)&ugeth->p_rx_glbl_pram->ecamptr,
866 in_be32(&ugeth->p_rx_glbl_pram->ecamptr));
867 pr_info("l2qt : addr - 0x%08x, val - 0x%08x\n",
868 (u32)&ugeth->p_rx_glbl_pram->l2qt,
869 in_be32(&ugeth->p_rx_glbl_pram->l2qt));
870 pr_info("l3qt[0] : addr - 0x%08x, val - 0x%08x\n",
871 (u32)&ugeth->p_rx_glbl_pram->l3qt[0],
872 in_be32(&ugeth->p_rx_glbl_pram->l3qt[0]));
873 pr_info("l3qt[1] : addr - 0x%08x, val - 0x%08x\n",
874 (u32)&ugeth->p_rx_glbl_pram->l3qt[1],
875 in_be32(&ugeth->p_rx_glbl_pram->l3qt[1]));
876 pr_info("l3qt[2] : addr - 0x%08x, val - 0x%08x\n",
877 (u32)&ugeth->p_rx_glbl_pram->l3qt[2],
878 in_be32(&ugeth->p_rx_glbl_pram->l3qt[2]));
879 pr_info("l3qt[3] : addr - 0x%08x, val - 0x%08x\n",
880 (u32)&ugeth->p_rx_glbl_pram->l3qt[3],
881 in_be32(&ugeth->p_rx_glbl_pram->l3qt[3]));
882 pr_info("l3qt[4] : addr - 0x%08x, val - 0x%08x\n",
883 (u32)&ugeth->p_rx_glbl_pram->l3qt[4],
884 in_be32(&ugeth->p_rx_glbl_pram->l3qt[4]));
885 pr_info("l3qt[5] : addr - 0x%08x, val - 0x%08x\n",
886 (u32)&ugeth->p_rx_glbl_pram->l3qt[5],
887 in_be32(&ugeth->p_rx_glbl_pram->l3qt[5]));
888 pr_info("l3qt[6] : addr - 0x%08x, val - 0x%08x\n",
889 (u32)&ugeth->p_rx_glbl_pram->l3qt[6],
890 in_be32(&ugeth->p_rx_glbl_pram->l3qt[6]));
891 pr_info("l3qt[7] : addr - 0x%08x, val - 0x%08x\n",
892 (u32)&ugeth->p_rx_glbl_pram->l3qt[7],
893 in_be32(&ugeth->p_rx_glbl_pram->l3qt[7]));
894 pr_info("vlantype : addr - 0x%08x, val - 0x%04x\n",
895 (u32)&ugeth->p_rx_glbl_pram->vlantype,
896 in_be16(&ugeth->p_rx_glbl_pram->vlantype));
897 pr_info("vlantci : addr - 0x%08x, val - 0x%04x\n",
898 (u32)&ugeth->p_rx_glbl_pram->vlantci,
899 in_be16(&ugeth->p_rx_glbl_pram->vlantci));
900 for (i = 0; i < 64; i++)
901 pr_info("addressfiltering[%d]: addr - 0x%08x, val - 0x%02x\n",
902 i,
903 (u32)&ugeth->p_rx_glbl_pram->addressfiltering[i],
904 ugeth->p_rx_glbl_pram->addressfiltering[i]);
905 pr_info("exfGlobalParam : addr - 0x%08x, val - 0x%08x\n",
906 (u32)&ugeth->p_rx_glbl_pram->exfGlobalParam,
907 in_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam));
908 }
909 if (ugeth->p_send_q_mem_reg) {
910 pr_info("Send Q memory registers:\n");
911 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_send_q_mem_reg);
912 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
913 pr_info("SQQD[%d]:\n", i);
914 pr_info("Base address: 0x%08x\n",
915 (u32)&ugeth->p_send_q_mem_reg->sqqd[i]);
916 mem_disp((u8 *) & ugeth->p_send_q_mem_reg->sqqd[i],
917 sizeof(struct ucc_geth_send_queue_qd));
918 }
919 }
920 if (ugeth->p_scheduler) {
921 pr_info("Scheduler:\n");
922 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_scheduler);
923 mem_disp((u8 *) ugeth->p_scheduler,
924 sizeof(*ugeth->p_scheduler));
925 }
926 if (ugeth->p_tx_fw_statistics_pram) {
927 pr_info("TX FW statistics pram:\n");
928 pr_info("Base address: 0x%08x\n",
929 (u32)ugeth->p_tx_fw_statistics_pram);
930 mem_disp((u8 *) ugeth->p_tx_fw_statistics_pram,
931 sizeof(*ugeth->p_tx_fw_statistics_pram));
932 }
933 if (ugeth->p_rx_fw_statistics_pram) {
934 pr_info("RX FW statistics pram:\n");
935 pr_info("Base address: 0x%08x\n",
936 (u32)ugeth->p_rx_fw_statistics_pram);
937 mem_disp((u8 *) ugeth->p_rx_fw_statistics_pram,
938 sizeof(*ugeth->p_rx_fw_statistics_pram));
939 }
940 if (ugeth->p_rx_irq_coalescing_tbl) {
941 pr_info("RX IRQ coalescing tables:\n");
942 pr_info("Base address: 0x%08x\n",
943 (u32)ugeth->p_rx_irq_coalescing_tbl);
944 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
945 pr_info("RX IRQ coalescing table entry[%d]:\n", i);
946 pr_info("Base address: 0x%08x\n",
947 (u32)&ugeth->p_rx_irq_coalescing_tbl->
948 coalescingentry[i]);
949 pr_info("interruptcoalescingmaxvalue: addr - 0x%08x, val - 0x%08x\n",
950 (u32)&ugeth->p_rx_irq_coalescing_tbl->
951 coalescingentry[i].interruptcoalescingmaxvalue,
952 in_be32(&ugeth->p_rx_irq_coalescing_tbl->
953 coalescingentry[i].
954 interruptcoalescingmaxvalue));
955 pr_info("interruptcoalescingcounter : addr - 0x%08x, val - 0x%08x\n",
956 (u32)&ugeth->p_rx_irq_coalescing_tbl->
957 coalescingentry[i].interruptcoalescingcounter,
958 in_be32(&ugeth->p_rx_irq_coalescing_tbl->
959 coalescingentry[i].
960 interruptcoalescingcounter));
961 }
962 }
963 if (ugeth->p_rx_bd_qs_tbl) {
964 pr_info("RX BD QS tables:\n");
965 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_bd_qs_tbl);
966 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
967 pr_info("RX BD QS table[%d]:\n", i);
968 pr_info("Base address: 0x%08x\n",
969 (u32)&ugeth->p_rx_bd_qs_tbl[i]);
970 pr_info("bdbaseptr : addr - 0x%08x, val - 0x%08x\n",
971 (u32)&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr,
972 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr));
973 pr_info("bdptr : addr - 0x%08x, val - 0x%08x\n",
974 (u32)&ugeth->p_rx_bd_qs_tbl[i].bdptr,
975 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdptr));
976 pr_info("externalbdbaseptr: addr - 0x%08x, val - 0x%08x\n",
977 (u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
978 in_be32(&ugeth->p_rx_bd_qs_tbl[i].
979 externalbdbaseptr));
980 pr_info("externalbdptr : addr - 0x%08x, val - 0x%08x\n",
981 (u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdptr,
982 in_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdptr));
983 pr_info("ucode RX Prefetched BDs:\n");
984 pr_info("Base address: 0x%08x\n",
985 (u32)qe_muram_addr(in_be32
986 (&ugeth->p_rx_bd_qs_tbl[i].
987 bdbaseptr)));
988 mem_disp((u8 *)
989 qe_muram_addr(in_be32
990 (&ugeth->p_rx_bd_qs_tbl[i].
991 bdbaseptr)),
992 sizeof(struct ucc_geth_rx_prefetched_bds));
993 }
994 }
995 if (ugeth->p_init_enet_param_shadow) {
996 int size;
997 pr_info("Init enet param shadow:\n");
998 pr_info("Base address: 0x%08x\n",
999 (u32) ugeth->p_init_enet_param_shadow);
1000 mem_disp((u8 *) ugeth->p_init_enet_param_shadow,
1001 sizeof(*ugeth->p_init_enet_param_shadow));
1002
1003 size = sizeof(struct ucc_geth_thread_rx_pram);
1004 if (ugeth->ug_info->rxExtendedFiltering) {
1005 size +=
1006 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
1007 if (ugeth->ug_info->largestexternallookupkeysize ==
1008 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
1009 size +=
1010 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
1011 if (ugeth->ug_info->largestexternallookupkeysize ==
1012 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
1013 size +=
1014 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
1015 }
1016
1017 dump_init_enet_entries(ugeth,
1018 &(ugeth->p_init_enet_param_shadow->
1019 txthread[0]),
1020 ENET_INIT_PARAM_MAX_ENTRIES_TX,
1021 sizeof(struct ucc_geth_thread_tx_pram),
1022 ugeth->ug_info->riscTx, 0);
1023 dump_init_enet_entries(ugeth,
1024 &(ugeth->p_init_enet_param_shadow->
1025 rxthread[0]),
1026 ENET_INIT_PARAM_MAX_ENTRIES_RX, size,
1027 ugeth->ug_info->riscRx, 1);
1028 }
1029 }
1030 #endif /* DEBUG */
1031
init_default_reg_vals(u32 __iomem * upsmr_register,u32 __iomem * maccfg1_register,u32 __iomem * maccfg2_register)1032 static void init_default_reg_vals(u32 __iomem *upsmr_register,
1033 u32 __iomem *maccfg1_register,
1034 u32 __iomem *maccfg2_register)
1035 {
1036 out_be32(upsmr_register, UCC_GETH_UPSMR_INIT);
1037 out_be32(maccfg1_register, UCC_GETH_MACCFG1_INIT);
1038 out_be32(maccfg2_register, UCC_GETH_MACCFG2_INIT);
1039 }
1040
init_half_duplex_params(int alt_beb,int back_pressure_no_backoff,int no_backoff,int excess_defer,u8 alt_beb_truncation,u8 max_retransmissions,u8 collision_window,u32 __iomem * hafdup_register)1041 static int init_half_duplex_params(int alt_beb,
1042 int back_pressure_no_backoff,
1043 int no_backoff,
1044 int excess_defer,
1045 u8 alt_beb_truncation,
1046 u8 max_retransmissions,
1047 u8 collision_window,
1048 u32 __iomem *hafdup_register)
1049 {
1050 u32 value = 0;
1051
1052 if ((alt_beb_truncation > HALFDUP_ALT_BEB_TRUNCATION_MAX) ||
1053 (max_retransmissions > HALFDUP_MAX_RETRANSMISSION_MAX) ||
1054 (collision_window > HALFDUP_COLLISION_WINDOW_MAX))
1055 return -EINVAL;
1056
1057 value = (u32) (alt_beb_truncation << HALFDUP_ALT_BEB_TRUNCATION_SHIFT);
1058
1059 if (alt_beb)
1060 value |= HALFDUP_ALT_BEB;
1061 if (back_pressure_no_backoff)
1062 value |= HALFDUP_BACK_PRESSURE_NO_BACKOFF;
1063 if (no_backoff)
1064 value |= HALFDUP_NO_BACKOFF;
1065 if (excess_defer)
1066 value |= HALFDUP_EXCESSIVE_DEFER;
1067
1068 value |= (max_retransmissions << HALFDUP_MAX_RETRANSMISSION_SHIFT);
1069
1070 value |= collision_window;
1071
1072 out_be32(hafdup_register, value);
1073 return 0;
1074 }
1075
init_inter_frame_gap_params(u8 non_btb_cs_ipg,u8 non_btb_ipg,u8 min_ifg,u8 btb_ipg,u32 __iomem * ipgifg_register)1076 static int init_inter_frame_gap_params(u8 non_btb_cs_ipg,
1077 u8 non_btb_ipg,
1078 u8 min_ifg,
1079 u8 btb_ipg,
1080 u32 __iomem *ipgifg_register)
1081 {
1082 u32 value = 0;
1083
1084 /* Non-Back-to-back IPG part 1 should be <= Non-Back-to-back
1085 IPG part 2 */
1086 if (non_btb_cs_ipg > non_btb_ipg)
1087 return -EINVAL;
1088
1089 if ((non_btb_cs_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART1_MAX) ||
1090 (non_btb_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART2_MAX) ||
1091 /*(min_ifg > IPGIFG_MINIMUM_IFG_ENFORCEMENT_MAX) || */
1092 (btb_ipg > IPGIFG_BACK_TO_BACK_IFG_MAX))
1093 return -EINVAL;
1094
1095 value |=
1096 ((non_btb_cs_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART1_SHIFT) &
1097 IPGIFG_NBTB_CS_IPG_MASK);
1098 value |=
1099 ((non_btb_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART2_SHIFT) &
1100 IPGIFG_NBTB_IPG_MASK);
1101 value |=
1102 ((min_ifg << IPGIFG_MINIMUM_IFG_ENFORCEMENT_SHIFT) &
1103 IPGIFG_MIN_IFG_MASK);
1104 value |= (btb_ipg & IPGIFG_BTB_IPG_MASK);
1105
1106 out_be32(ipgifg_register, value);
1107 return 0;
1108 }
1109
init_flow_control_params(u32 automatic_flow_control_mode,int rx_flow_control_enable,int tx_flow_control_enable,u16 pause_period,u16 extension_field,u32 __iomem * upsmr_register,u32 __iomem * uempr_register,u32 __iomem * maccfg1_register)1110 int init_flow_control_params(u32 automatic_flow_control_mode,
1111 int rx_flow_control_enable,
1112 int tx_flow_control_enable,
1113 u16 pause_period,
1114 u16 extension_field,
1115 u32 __iomem *upsmr_register,
1116 u32 __iomem *uempr_register,
1117 u32 __iomem *maccfg1_register)
1118 {
1119 u32 value = 0;
1120
1121 /* Set UEMPR register */
1122 value = (u32) pause_period << UEMPR_PAUSE_TIME_VALUE_SHIFT;
1123 value |= (u32) extension_field << UEMPR_EXTENDED_PAUSE_TIME_VALUE_SHIFT;
1124 out_be32(uempr_register, value);
1125
1126 /* Set UPSMR register */
1127 setbits32(upsmr_register, automatic_flow_control_mode);
1128
1129 value = in_be32(maccfg1_register);
1130 if (rx_flow_control_enable)
1131 value |= MACCFG1_FLOW_RX;
1132 if (tx_flow_control_enable)
1133 value |= MACCFG1_FLOW_TX;
1134 out_be32(maccfg1_register, value);
1135
1136 return 0;
1137 }
1138
init_hw_statistics_gathering_mode(int enable_hardware_statistics,int auto_zero_hardware_statistics,u32 __iomem * upsmr_register,u16 __iomem * uescr_register)1139 static int init_hw_statistics_gathering_mode(int enable_hardware_statistics,
1140 int auto_zero_hardware_statistics,
1141 u32 __iomem *upsmr_register,
1142 u16 __iomem *uescr_register)
1143 {
1144 u16 uescr_value = 0;
1145
1146 /* Enable hardware statistics gathering if requested */
1147 if (enable_hardware_statistics)
1148 setbits32(upsmr_register, UCC_GETH_UPSMR_HSE);
1149
1150 /* Clear hardware statistics counters */
1151 uescr_value = in_be16(uescr_register);
1152 uescr_value |= UESCR_CLRCNT;
1153 /* Automatically zero hardware statistics counters on read,
1154 if requested */
1155 if (auto_zero_hardware_statistics)
1156 uescr_value |= UESCR_AUTOZ;
1157 out_be16(uescr_register, uescr_value);
1158
1159 return 0;
1160 }
1161
init_firmware_statistics_gathering_mode(int enable_tx_firmware_statistics,int enable_rx_firmware_statistics,u32 __iomem * tx_rmon_base_ptr,u32 tx_firmware_statistics_structure_address,u32 __iomem * rx_rmon_base_ptr,u32 rx_firmware_statistics_structure_address,u16 __iomem * temoder_register,u32 __iomem * remoder_register)1162 static int init_firmware_statistics_gathering_mode(int
1163 enable_tx_firmware_statistics,
1164 int enable_rx_firmware_statistics,
1165 u32 __iomem *tx_rmon_base_ptr,
1166 u32 tx_firmware_statistics_structure_address,
1167 u32 __iomem *rx_rmon_base_ptr,
1168 u32 rx_firmware_statistics_structure_address,
1169 u16 __iomem *temoder_register,
1170 u32 __iomem *remoder_register)
1171 {
1172 /* Note: this function does not check if */
1173 /* the parameters it receives are NULL */
1174
1175 if (enable_tx_firmware_statistics) {
1176 out_be32(tx_rmon_base_ptr,
1177 tx_firmware_statistics_structure_address);
1178 setbits16(temoder_register, TEMODER_TX_RMON_STATISTICS_ENABLE);
1179 }
1180
1181 if (enable_rx_firmware_statistics) {
1182 out_be32(rx_rmon_base_ptr,
1183 rx_firmware_statistics_structure_address);
1184 setbits32(remoder_register, REMODER_RX_RMON_STATISTICS_ENABLE);
1185 }
1186
1187 return 0;
1188 }
1189
init_mac_station_addr_regs(u8 address_byte_0,u8 address_byte_1,u8 address_byte_2,u8 address_byte_3,u8 address_byte_4,u8 address_byte_5,u32 __iomem * macstnaddr1_register,u32 __iomem * macstnaddr2_register)1190 static int init_mac_station_addr_regs(u8 address_byte_0,
1191 u8 address_byte_1,
1192 u8 address_byte_2,
1193 u8 address_byte_3,
1194 u8 address_byte_4,
1195 u8 address_byte_5,
1196 u32 __iomem *macstnaddr1_register,
1197 u32 __iomem *macstnaddr2_register)
1198 {
1199 u32 value = 0;
1200
1201 /* Example: for a station address of 0x12345678ABCD, */
1202 /* 0x12 is byte 0, 0x34 is byte 1 and so on and 0xCD is byte 5 */
1203
1204 /* MACSTNADDR1 Register: */
1205
1206 /* 0 7 8 15 */
1207 /* station address byte 5 station address byte 4 */
1208 /* 16 23 24 31 */
1209 /* station address byte 3 station address byte 2 */
1210 value |= (u32) ((address_byte_2 << 0) & 0x000000FF);
1211 value |= (u32) ((address_byte_3 << 8) & 0x0000FF00);
1212 value |= (u32) ((address_byte_4 << 16) & 0x00FF0000);
1213 value |= (u32) ((address_byte_5 << 24) & 0xFF000000);
1214
1215 out_be32(macstnaddr1_register, value);
1216
1217 /* MACSTNADDR2 Register: */
1218
1219 /* 0 7 8 15 */
1220 /* station address byte 1 station address byte 0 */
1221 /* 16 23 24 31 */
1222 /* reserved reserved */
1223 value = 0;
1224 value |= (u32) ((address_byte_0 << 16) & 0x00FF0000);
1225 value |= (u32) ((address_byte_1 << 24) & 0xFF000000);
1226
1227 out_be32(macstnaddr2_register, value);
1228
1229 return 0;
1230 }
1231
init_check_frame_length_mode(int length_check,u32 __iomem * maccfg2_register)1232 static int init_check_frame_length_mode(int length_check,
1233 u32 __iomem *maccfg2_register)
1234 {
1235 u32 value = 0;
1236
1237 value = in_be32(maccfg2_register);
1238
1239 if (length_check)
1240 value |= MACCFG2_LC;
1241 else
1242 value &= ~MACCFG2_LC;
1243
1244 out_be32(maccfg2_register, value);
1245 return 0;
1246 }
1247
init_preamble_length(u8 preamble_length,u32 __iomem * maccfg2_register)1248 static int init_preamble_length(u8 preamble_length,
1249 u32 __iomem *maccfg2_register)
1250 {
1251 if ((preamble_length < 3) || (preamble_length > 7))
1252 return -EINVAL;
1253
1254 clrsetbits_be32(maccfg2_register, MACCFG2_PREL_MASK,
1255 preamble_length << MACCFG2_PREL_SHIFT);
1256
1257 return 0;
1258 }
1259
init_rx_parameters(int reject_broadcast,int receive_short_frames,int promiscuous,u32 __iomem * upsmr_register)1260 static int init_rx_parameters(int reject_broadcast,
1261 int receive_short_frames,
1262 int promiscuous, u32 __iomem *upsmr_register)
1263 {
1264 u32 value = 0;
1265
1266 value = in_be32(upsmr_register);
1267
1268 if (reject_broadcast)
1269 value |= UCC_GETH_UPSMR_BRO;
1270 else
1271 value &= ~UCC_GETH_UPSMR_BRO;
1272
1273 if (receive_short_frames)
1274 value |= UCC_GETH_UPSMR_RSH;
1275 else
1276 value &= ~UCC_GETH_UPSMR_RSH;
1277
1278 if (promiscuous)
1279 value |= UCC_GETH_UPSMR_PRO;
1280 else
1281 value &= ~UCC_GETH_UPSMR_PRO;
1282
1283 out_be32(upsmr_register, value);
1284
1285 return 0;
1286 }
1287
init_max_rx_buff_len(u16 max_rx_buf_len,u16 __iomem * mrblr_register)1288 static int init_max_rx_buff_len(u16 max_rx_buf_len,
1289 u16 __iomem *mrblr_register)
1290 {
1291 /* max_rx_buf_len value must be a multiple of 128 */
1292 if ((max_rx_buf_len == 0) ||
1293 (max_rx_buf_len % UCC_GETH_MRBLR_ALIGNMENT))
1294 return -EINVAL;
1295
1296 out_be16(mrblr_register, max_rx_buf_len);
1297 return 0;
1298 }
1299
init_min_frame_len(u16 min_frame_length,u16 __iomem * minflr_register,u16 __iomem * mrblr_register)1300 static int init_min_frame_len(u16 min_frame_length,
1301 u16 __iomem *minflr_register,
1302 u16 __iomem *mrblr_register)
1303 {
1304 u16 mrblr_value = 0;
1305
1306 mrblr_value = in_be16(mrblr_register);
1307 if (min_frame_length >= (mrblr_value - 4))
1308 return -EINVAL;
1309
1310 out_be16(minflr_register, min_frame_length);
1311 return 0;
1312 }
1313
adjust_enet_interface(struct ucc_geth_private * ugeth)1314 static int adjust_enet_interface(struct ucc_geth_private *ugeth)
1315 {
1316 struct ucc_geth_info *ug_info;
1317 struct ucc_geth __iomem *ug_regs;
1318 struct ucc_fast __iomem *uf_regs;
1319 int ret_val;
1320 u32 upsmr, maccfg2;
1321 u16 value;
1322
1323 ugeth_vdbg("%s: IN", __func__);
1324
1325 ug_info = ugeth->ug_info;
1326 ug_regs = ugeth->ug_regs;
1327 uf_regs = ugeth->uccf->uf_regs;
1328
1329 /* Set MACCFG2 */
1330 maccfg2 = in_be32(&ug_regs->maccfg2);
1331 maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
1332 if ((ugeth->max_speed == SPEED_10) ||
1333 (ugeth->max_speed == SPEED_100))
1334 maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
1335 else if (ugeth->max_speed == SPEED_1000)
1336 maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
1337 maccfg2 |= ug_info->padAndCrc;
1338 out_be32(&ug_regs->maccfg2, maccfg2);
1339
1340 /* Set UPSMR */
1341 upsmr = in_be32(&uf_regs->upsmr);
1342 upsmr &= ~(UCC_GETH_UPSMR_RPM | UCC_GETH_UPSMR_R10M |
1343 UCC_GETH_UPSMR_TBIM | UCC_GETH_UPSMR_RMM);
1344 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1345 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1346 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1347 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1348 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1349 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1350 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RMII)
1351 upsmr |= UCC_GETH_UPSMR_RPM;
1352 switch (ugeth->max_speed) {
1353 case SPEED_10:
1354 upsmr |= UCC_GETH_UPSMR_R10M;
1355 /* FALLTHROUGH */
1356 case SPEED_100:
1357 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RTBI)
1358 upsmr |= UCC_GETH_UPSMR_RMM;
1359 }
1360 }
1361 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1362 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1363 upsmr |= UCC_GETH_UPSMR_TBIM;
1364 }
1365 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_SGMII))
1366 upsmr |= UCC_GETH_UPSMR_SGMM;
1367
1368 out_be32(&uf_regs->upsmr, upsmr);
1369
1370 /* Disable autonegotiation in tbi mode, because by default it
1371 comes up in autonegotiation mode. */
1372 /* Note that this depends on proper setting in utbipar register. */
1373 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1374 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1375 struct ucc_geth_info *ug_info = ugeth->ug_info;
1376 struct phy_device *tbiphy;
1377
1378 if (!ug_info->tbi_node)
1379 pr_warn("TBI mode requires that the device tree specify a tbi-handle\n");
1380
1381 tbiphy = of_phy_find_device(ug_info->tbi_node);
1382 if (!tbiphy)
1383 pr_warn("Could not get TBI device\n");
1384
1385 value = phy_read(tbiphy, ENET_TBI_MII_CR);
1386 value &= ~0x1000; /* Turn off autonegotiation */
1387 phy_write(tbiphy, ENET_TBI_MII_CR, value);
1388
1389 put_device(&tbiphy->dev);
1390 }
1391
1392 init_check_frame_length_mode(ug_info->lengthCheckRx, &ug_regs->maccfg2);
1393
1394 ret_val = init_preamble_length(ug_info->prel, &ug_regs->maccfg2);
1395 if (ret_val != 0) {
1396 if (netif_msg_probe(ugeth))
1397 pr_err("Preamble length must be between 3 and 7 inclusive\n");
1398 return ret_val;
1399 }
1400
1401 return 0;
1402 }
1403
ugeth_graceful_stop_tx(struct ucc_geth_private * ugeth)1404 static int ugeth_graceful_stop_tx(struct ucc_geth_private *ugeth)
1405 {
1406 struct ucc_fast_private *uccf;
1407 u32 cecr_subblock;
1408 u32 temp;
1409 int i = 10;
1410
1411 uccf = ugeth->uccf;
1412
1413 /* Mask GRACEFUL STOP TX interrupt bit and clear it */
1414 clrbits32(uccf->p_uccm, UCC_GETH_UCCE_GRA);
1415 out_be32(uccf->p_ucce, UCC_GETH_UCCE_GRA); /* clear by writing 1 */
1416
1417 /* Issue host command */
1418 cecr_subblock =
1419 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1420 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
1421 QE_CR_PROTOCOL_ETHERNET, 0);
1422
1423 /* Wait for command to complete */
1424 do {
1425 msleep(10);
1426 temp = in_be32(uccf->p_ucce);
1427 } while (!(temp & UCC_GETH_UCCE_GRA) && --i);
1428
1429 uccf->stopped_tx = 1;
1430
1431 return 0;
1432 }
1433
ugeth_graceful_stop_rx(struct ucc_geth_private * ugeth)1434 static int ugeth_graceful_stop_rx(struct ucc_geth_private *ugeth)
1435 {
1436 struct ucc_fast_private *uccf;
1437 u32 cecr_subblock;
1438 u8 temp;
1439 int i = 10;
1440
1441 uccf = ugeth->uccf;
1442
1443 /* Clear acknowledge bit */
1444 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1445 temp &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
1446 out_8(&ugeth->p_rx_glbl_pram->rxgstpack, temp);
1447
1448 /* Keep issuing command and checking acknowledge bit until
1449 it is asserted, according to spec */
1450 do {
1451 /* Issue host command */
1452 cecr_subblock =
1453 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.
1454 ucc_num);
1455 qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
1456 QE_CR_PROTOCOL_ETHERNET, 0);
1457 msleep(10);
1458 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1459 } while (!(temp & GRACEFUL_STOP_ACKNOWLEDGE_RX) && --i);
1460
1461 uccf->stopped_rx = 1;
1462
1463 return 0;
1464 }
1465
ugeth_restart_tx(struct ucc_geth_private * ugeth)1466 static int ugeth_restart_tx(struct ucc_geth_private *ugeth)
1467 {
1468 struct ucc_fast_private *uccf;
1469 u32 cecr_subblock;
1470
1471 uccf = ugeth->uccf;
1472
1473 cecr_subblock =
1474 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1475 qe_issue_cmd(QE_RESTART_TX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 0);
1476 uccf->stopped_tx = 0;
1477
1478 return 0;
1479 }
1480
ugeth_restart_rx(struct ucc_geth_private * ugeth)1481 static int ugeth_restart_rx(struct ucc_geth_private *ugeth)
1482 {
1483 struct ucc_fast_private *uccf;
1484 u32 cecr_subblock;
1485
1486 uccf = ugeth->uccf;
1487
1488 cecr_subblock =
1489 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1490 qe_issue_cmd(QE_RESTART_RX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
1491 0);
1492 uccf->stopped_rx = 0;
1493
1494 return 0;
1495 }
1496
ugeth_enable(struct ucc_geth_private * ugeth,enum comm_dir mode)1497 static int ugeth_enable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1498 {
1499 struct ucc_fast_private *uccf;
1500 int enabled_tx, enabled_rx;
1501
1502 uccf = ugeth->uccf;
1503
1504 /* check if the UCC number is in range. */
1505 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1506 if (netif_msg_probe(ugeth))
1507 pr_err("ucc_num out of range\n");
1508 return -EINVAL;
1509 }
1510
1511 enabled_tx = uccf->enabled_tx;
1512 enabled_rx = uccf->enabled_rx;
1513
1514 /* Get Tx and Rx going again, in case this channel was actively
1515 disabled. */
1516 if ((mode & COMM_DIR_TX) && (!enabled_tx) && uccf->stopped_tx)
1517 ugeth_restart_tx(ugeth);
1518 if ((mode & COMM_DIR_RX) && (!enabled_rx) && uccf->stopped_rx)
1519 ugeth_restart_rx(ugeth);
1520
1521 ucc_fast_enable(uccf, mode); /* OK to do even if not disabled */
1522
1523 return 0;
1524
1525 }
1526
ugeth_disable(struct ucc_geth_private * ugeth,enum comm_dir mode)1527 static int ugeth_disable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1528 {
1529 struct ucc_fast_private *uccf;
1530
1531 uccf = ugeth->uccf;
1532
1533 /* check if the UCC number is in range. */
1534 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1535 if (netif_msg_probe(ugeth))
1536 pr_err("ucc_num out of range\n");
1537 return -EINVAL;
1538 }
1539
1540 /* Stop any transmissions */
1541 if ((mode & COMM_DIR_TX) && uccf->enabled_tx && !uccf->stopped_tx)
1542 ugeth_graceful_stop_tx(ugeth);
1543
1544 /* Stop any receptions */
1545 if ((mode & COMM_DIR_RX) && uccf->enabled_rx && !uccf->stopped_rx)
1546 ugeth_graceful_stop_rx(ugeth);
1547
1548 ucc_fast_disable(ugeth->uccf, mode); /* OK to do even if not enabled */
1549
1550 return 0;
1551 }
1552
ugeth_quiesce(struct ucc_geth_private * ugeth)1553 static void ugeth_quiesce(struct ucc_geth_private *ugeth)
1554 {
1555 /* Prevent any further xmits */
1556 netif_tx_stop_all_queues(ugeth->ndev);
1557
1558 /* Disable the interrupt to avoid NAPI rescheduling. */
1559 disable_irq(ugeth->ug_info->uf_info.irq);
1560
1561 /* Stop NAPI, and possibly wait for its completion. */
1562 napi_disable(&ugeth->napi);
1563 }
1564
ugeth_activate(struct ucc_geth_private * ugeth)1565 static void ugeth_activate(struct ucc_geth_private *ugeth)
1566 {
1567 napi_enable(&ugeth->napi);
1568 enable_irq(ugeth->ug_info->uf_info.irq);
1569
1570 /* allow to xmit again */
1571 netif_tx_wake_all_queues(ugeth->ndev);
1572 __netdev_watchdog_up(ugeth->ndev);
1573 }
1574
1575 /* Called every time the controller might need to be made
1576 * aware of new link state. The PHY code conveys this
1577 * information through variables in the ugeth structure, and this
1578 * function converts those variables into the appropriate
1579 * register values, and can bring down the device if needed.
1580 */
1581
adjust_link(struct net_device * dev)1582 static void adjust_link(struct net_device *dev)
1583 {
1584 struct ucc_geth_private *ugeth = netdev_priv(dev);
1585 struct ucc_geth __iomem *ug_regs;
1586 struct ucc_fast __iomem *uf_regs;
1587 struct phy_device *phydev = ugeth->phydev;
1588 int new_state = 0;
1589
1590 ug_regs = ugeth->ug_regs;
1591 uf_regs = ugeth->uccf->uf_regs;
1592
1593 if (phydev->link) {
1594 u32 tempval = in_be32(&ug_regs->maccfg2);
1595 u32 upsmr = in_be32(&uf_regs->upsmr);
1596 /* Now we make sure that we can be in full duplex mode.
1597 * If not, we operate in half-duplex mode. */
1598 if (phydev->duplex != ugeth->oldduplex) {
1599 new_state = 1;
1600 if (!(phydev->duplex))
1601 tempval &= ~(MACCFG2_FDX);
1602 else
1603 tempval |= MACCFG2_FDX;
1604 ugeth->oldduplex = phydev->duplex;
1605 }
1606
1607 if (phydev->speed != ugeth->oldspeed) {
1608 new_state = 1;
1609 switch (phydev->speed) {
1610 case SPEED_1000:
1611 tempval = ((tempval &
1612 ~(MACCFG2_INTERFACE_MODE_MASK)) |
1613 MACCFG2_INTERFACE_MODE_BYTE);
1614 break;
1615 case SPEED_100:
1616 case SPEED_10:
1617 tempval = ((tempval &
1618 ~(MACCFG2_INTERFACE_MODE_MASK)) |
1619 MACCFG2_INTERFACE_MODE_NIBBLE);
1620 /* if reduced mode, re-set UPSMR.R10M */
1621 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1622 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1623 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1624 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1625 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1626 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1627 if (phydev->speed == SPEED_10)
1628 upsmr |= UCC_GETH_UPSMR_R10M;
1629 else
1630 upsmr &= ~UCC_GETH_UPSMR_R10M;
1631 }
1632 break;
1633 default:
1634 if (netif_msg_link(ugeth))
1635 pr_warn(
1636 "%s: Ack! Speed (%d) is not 10/100/1000!",
1637 dev->name, phydev->speed);
1638 break;
1639 }
1640 ugeth->oldspeed = phydev->speed;
1641 }
1642
1643 if (!ugeth->oldlink) {
1644 new_state = 1;
1645 ugeth->oldlink = 1;
1646 }
1647
1648 if (new_state) {
1649 /*
1650 * To change the MAC configuration we need to disable
1651 * the controller. To do so, we have to either grab
1652 * ugeth->lock, which is a bad idea since 'graceful
1653 * stop' commands might take quite a while, or we can
1654 * quiesce driver's activity.
1655 */
1656 ugeth_quiesce(ugeth);
1657 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
1658
1659 out_be32(&ug_regs->maccfg2, tempval);
1660 out_be32(&uf_regs->upsmr, upsmr);
1661
1662 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
1663 ugeth_activate(ugeth);
1664 }
1665 } else if (ugeth->oldlink) {
1666 new_state = 1;
1667 ugeth->oldlink = 0;
1668 ugeth->oldspeed = 0;
1669 ugeth->oldduplex = -1;
1670 }
1671
1672 if (new_state && netif_msg_link(ugeth))
1673 phy_print_status(phydev);
1674 }
1675
1676 /* Initialize TBI PHY interface for communicating with the
1677 * SERDES lynx PHY on the chip. We communicate with this PHY
1678 * through the MDIO bus on each controller, treating it as a
1679 * "normal" PHY at the address found in the UTBIPA register. We assume
1680 * that the UTBIPA register is valid. Either the MDIO bus code will set
1681 * it to a value that doesn't conflict with other PHYs on the bus, or the
1682 * value doesn't matter, as there are no other PHYs on the bus.
1683 */
uec_configure_serdes(struct net_device * dev)1684 static void uec_configure_serdes(struct net_device *dev)
1685 {
1686 struct ucc_geth_private *ugeth = netdev_priv(dev);
1687 struct ucc_geth_info *ug_info = ugeth->ug_info;
1688 struct phy_device *tbiphy;
1689
1690 if (!ug_info->tbi_node) {
1691 dev_warn(&dev->dev, "SGMII mode requires that the device "
1692 "tree specify a tbi-handle\n");
1693 return;
1694 }
1695
1696 tbiphy = of_phy_find_device(ug_info->tbi_node);
1697 if (!tbiphy) {
1698 dev_err(&dev->dev, "error: Could not get TBI device\n");
1699 return;
1700 }
1701
1702 /*
1703 * If the link is already up, we must already be ok, and don't need to
1704 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1705 * everything for us? Resetting it takes the link down and requires
1706 * several seconds for it to come back.
1707 */
1708 if (phy_read(tbiphy, ENET_TBI_MII_SR) & TBISR_LSTATUS) {
1709 put_device(&tbiphy->dev);
1710 return;
1711 }
1712
1713 /* Single clk mode, mii mode off(for serdes communication) */
1714 phy_write(tbiphy, ENET_TBI_MII_ANA, TBIANA_SETTINGS);
1715
1716 phy_write(tbiphy, ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
1717
1718 phy_write(tbiphy, ENET_TBI_MII_CR, TBICR_SETTINGS);
1719
1720 put_device(&tbiphy->dev);
1721 }
1722
1723 /* Configure the PHY for dev.
1724 * returns 0 if success. -1 if failure
1725 */
init_phy(struct net_device * dev)1726 static int init_phy(struct net_device *dev)
1727 {
1728 struct ucc_geth_private *priv = netdev_priv(dev);
1729 struct ucc_geth_info *ug_info = priv->ug_info;
1730 struct phy_device *phydev;
1731
1732 priv->oldlink = 0;
1733 priv->oldspeed = 0;
1734 priv->oldduplex = -1;
1735
1736 phydev = of_phy_connect(dev, ug_info->phy_node, &adjust_link, 0,
1737 priv->phy_interface);
1738 if (!phydev) {
1739 dev_err(&dev->dev, "Could not attach to PHY\n");
1740 return -ENODEV;
1741 }
1742
1743 if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII)
1744 uec_configure_serdes(dev);
1745
1746 phydev->supported &= (SUPPORTED_MII |
1747 SUPPORTED_Autoneg |
1748 ADVERTISED_10baseT_Half |
1749 ADVERTISED_10baseT_Full |
1750 ADVERTISED_100baseT_Half |
1751 ADVERTISED_100baseT_Full);
1752
1753 if (priv->max_speed == SPEED_1000)
1754 phydev->supported |= ADVERTISED_1000baseT_Full;
1755
1756 phydev->advertising = phydev->supported;
1757
1758 priv->phydev = phydev;
1759
1760 return 0;
1761 }
1762
ugeth_dump_regs(struct ucc_geth_private * ugeth)1763 static void ugeth_dump_regs(struct ucc_geth_private *ugeth)
1764 {
1765 #ifdef DEBUG
1766 ucc_fast_dump_regs(ugeth->uccf);
1767 dump_regs(ugeth);
1768 dump_bds(ugeth);
1769 #endif
1770 }
1771
ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private * ugeth,enum enet_addr_type enet_addr_type)1772 static int ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private *
1773 ugeth,
1774 enum enet_addr_type
1775 enet_addr_type)
1776 {
1777 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
1778 struct ucc_fast_private *uccf;
1779 enum comm_dir comm_dir;
1780 struct list_head *p_lh;
1781 u16 i, num;
1782 u32 __iomem *addr_h;
1783 u32 __iomem *addr_l;
1784 u8 *p_counter;
1785
1786 uccf = ugeth->uccf;
1787
1788 p_82xx_addr_filt =
1789 (struct ucc_geth_82xx_address_filtering_pram __iomem *)
1790 ugeth->p_rx_glbl_pram->addressfiltering;
1791
1792 if (enet_addr_type == ENET_ADDR_TYPE_GROUP) {
1793 addr_h = &(p_82xx_addr_filt->gaddr_h);
1794 addr_l = &(p_82xx_addr_filt->gaddr_l);
1795 p_lh = &ugeth->group_hash_q;
1796 p_counter = &(ugeth->numGroupAddrInHash);
1797 } else if (enet_addr_type == ENET_ADDR_TYPE_INDIVIDUAL) {
1798 addr_h = &(p_82xx_addr_filt->iaddr_h);
1799 addr_l = &(p_82xx_addr_filt->iaddr_l);
1800 p_lh = &ugeth->ind_hash_q;
1801 p_counter = &(ugeth->numIndAddrInHash);
1802 } else
1803 return -EINVAL;
1804
1805 comm_dir = 0;
1806 if (uccf->enabled_tx)
1807 comm_dir |= COMM_DIR_TX;
1808 if (uccf->enabled_rx)
1809 comm_dir |= COMM_DIR_RX;
1810 if (comm_dir)
1811 ugeth_disable(ugeth, comm_dir);
1812
1813 /* Clear the hash table. */
1814 out_be32(addr_h, 0x00000000);
1815 out_be32(addr_l, 0x00000000);
1816
1817 if (!p_lh)
1818 return 0;
1819
1820 num = *p_counter;
1821
1822 /* Delete all remaining CQ elements */
1823 for (i = 0; i < num; i++)
1824 put_enet_addr_container(ENET_ADDR_CONT_ENTRY(dequeue(p_lh)));
1825
1826 *p_counter = 0;
1827
1828 if (comm_dir)
1829 ugeth_enable(ugeth, comm_dir);
1830
1831 return 0;
1832 }
1833
ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private * ugeth,u8 paddr_num)1834 static int ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private *ugeth,
1835 u8 paddr_num)
1836 {
1837 ugeth->indAddrRegUsed[paddr_num] = 0; /* mark this paddr as not used */
1838 return hw_clear_addr_in_paddr(ugeth, paddr_num);/* clear in hardware */
1839 }
1840
ucc_geth_free_rx(struct ucc_geth_private * ugeth)1841 static void ucc_geth_free_rx(struct ucc_geth_private *ugeth)
1842 {
1843 struct ucc_geth_info *ug_info;
1844 struct ucc_fast_info *uf_info;
1845 u16 i, j;
1846 u8 __iomem *bd;
1847
1848
1849 ug_info = ugeth->ug_info;
1850 uf_info = &ug_info->uf_info;
1851
1852 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
1853 if (ugeth->p_rx_bd_ring[i]) {
1854 /* Return existing data buffers in ring */
1855 bd = ugeth->p_rx_bd_ring[i];
1856 for (j = 0; j < ugeth->ug_info->bdRingLenRx[i]; j++) {
1857 if (ugeth->rx_skbuff[i][j]) {
1858 dma_unmap_single(ugeth->dev,
1859 in_be32(&((struct qe_bd __iomem *)bd)->buf),
1860 ugeth->ug_info->
1861 uf_info.max_rx_buf_length +
1862 UCC_GETH_RX_DATA_BUF_ALIGNMENT,
1863 DMA_FROM_DEVICE);
1864 dev_kfree_skb_any(
1865 ugeth->rx_skbuff[i][j]);
1866 ugeth->rx_skbuff[i][j] = NULL;
1867 }
1868 bd += sizeof(struct qe_bd);
1869 }
1870
1871 kfree(ugeth->rx_skbuff[i]);
1872
1873 if (ugeth->ug_info->uf_info.bd_mem_part ==
1874 MEM_PART_SYSTEM)
1875 kfree((void *)ugeth->rx_bd_ring_offset[i]);
1876 else if (ugeth->ug_info->uf_info.bd_mem_part ==
1877 MEM_PART_MURAM)
1878 qe_muram_free(ugeth->rx_bd_ring_offset[i]);
1879 ugeth->p_rx_bd_ring[i] = NULL;
1880 }
1881 }
1882
1883 }
1884
ucc_geth_free_tx(struct ucc_geth_private * ugeth)1885 static void ucc_geth_free_tx(struct ucc_geth_private *ugeth)
1886 {
1887 struct ucc_geth_info *ug_info;
1888 struct ucc_fast_info *uf_info;
1889 u16 i, j;
1890 u8 __iomem *bd;
1891
1892 netdev_reset_queue(ugeth->ndev);
1893
1894 ug_info = ugeth->ug_info;
1895 uf_info = &ug_info->uf_info;
1896
1897 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
1898 bd = ugeth->p_tx_bd_ring[i];
1899 if (!bd)
1900 continue;
1901 for (j = 0; j < ugeth->ug_info->bdRingLenTx[i]; j++) {
1902 if (ugeth->tx_skbuff[i][j]) {
1903 dma_unmap_single(ugeth->dev,
1904 in_be32(&((struct qe_bd __iomem *)bd)->buf),
1905 (in_be32((u32 __iomem *)bd) &
1906 BD_LENGTH_MASK),
1907 DMA_TO_DEVICE);
1908 dev_kfree_skb_any(ugeth->tx_skbuff[i][j]);
1909 ugeth->tx_skbuff[i][j] = NULL;
1910 }
1911 }
1912
1913 kfree(ugeth->tx_skbuff[i]);
1914
1915 if (ugeth->p_tx_bd_ring[i]) {
1916 if (ugeth->ug_info->uf_info.bd_mem_part ==
1917 MEM_PART_SYSTEM)
1918 kfree((void *)ugeth->tx_bd_ring_offset[i]);
1919 else if (ugeth->ug_info->uf_info.bd_mem_part ==
1920 MEM_PART_MURAM)
1921 qe_muram_free(ugeth->tx_bd_ring_offset[i]);
1922 ugeth->p_tx_bd_ring[i] = NULL;
1923 }
1924 }
1925
1926 }
1927
ucc_geth_memclean(struct ucc_geth_private * ugeth)1928 static void ucc_geth_memclean(struct ucc_geth_private *ugeth)
1929 {
1930 if (!ugeth)
1931 return;
1932
1933 if (ugeth->uccf) {
1934 ucc_fast_free(ugeth->uccf);
1935 ugeth->uccf = NULL;
1936 }
1937
1938 if (ugeth->p_thread_data_tx) {
1939 qe_muram_free(ugeth->thread_dat_tx_offset);
1940 ugeth->p_thread_data_tx = NULL;
1941 }
1942 if (ugeth->p_thread_data_rx) {
1943 qe_muram_free(ugeth->thread_dat_rx_offset);
1944 ugeth->p_thread_data_rx = NULL;
1945 }
1946 if (ugeth->p_exf_glbl_param) {
1947 qe_muram_free(ugeth->exf_glbl_param_offset);
1948 ugeth->p_exf_glbl_param = NULL;
1949 }
1950 if (ugeth->p_rx_glbl_pram) {
1951 qe_muram_free(ugeth->rx_glbl_pram_offset);
1952 ugeth->p_rx_glbl_pram = NULL;
1953 }
1954 if (ugeth->p_tx_glbl_pram) {
1955 qe_muram_free(ugeth->tx_glbl_pram_offset);
1956 ugeth->p_tx_glbl_pram = NULL;
1957 }
1958 if (ugeth->p_send_q_mem_reg) {
1959 qe_muram_free(ugeth->send_q_mem_reg_offset);
1960 ugeth->p_send_q_mem_reg = NULL;
1961 }
1962 if (ugeth->p_scheduler) {
1963 qe_muram_free(ugeth->scheduler_offset);
1964 ugeth->p_scheduler = NULL;
1965 }
1966 if (ugeth->p_tx_fw_statistics_pram) {
1967 qe_muram_free(ugeth->tx_fw_statistics_pram_offset);
1968 ugeth->p_tx_fw_statistics_pram = NULL;
1969 }
1970 if (ugeth->p_rx_fw_statistics_pram) {
1971 qe_muram_free(ugeth->rx_fw_statistics_pram_offset);
1972 ugeth->p_rx_fw_statistics_pram = NULL;
1973 }
1974 if (ugeth->p_rx_irq_coalescing_tbl) {
1975 qe_muram_free(ugeth->rx_irq_coalescing_tbl_offset);
1976 ugeth->p_rx_irq_coalescing_tbl = NULL;
1977 }
1978 if (ugeth->p_rx_bd_qs_tbl) {
1979 qe_muram_free(ugeth->rx_bd_qs_tbl_offset);
1980 ugeth->p_rx_bd_qs_tbl = NULL;
1981 }
1982 if (ugeth->p_init_enet_param_shadow) {
1983 return_init_enet_entries(ugeth,
1984 &(ugeth->p_init_enet_param_shadow->
1985 rxthread[0]),
1986 ENET_INIT_PARAM_MAX_ENTRIES_RX,
1987 ugeth->ug_info->riscRx, 1);
1988 return_init_enet_entries(ugeth,
1989 &(ugeth->p_init_enet_param_shadow->
1990 txthread[0]),
1991 ENET_INIT_PARAM_MAX_ENTRIES_TX,
1992 ugeth->ug_info->riscTx, 0);
1993 kfree(ugeth->p_init_enet_param_shadow);
1994 ugeth->p_init_enet_param_shadow = NULL;
1995 }
1996 ucc_geth_free_tx(ugeth);
1997 ucc_geth_free_rx(ugeth);
1998 while (!list_empty(&ugeth->group_hash_q))
1999 put_enet_addr_container(ENET_ADDR_CONT_ENTRY
2000 (dequeue(&ugeth->group_hash_q)));
2001 while (!list_empty(&ugeth->ind_hash_q))
2002 put_enet_addr_container(ENET_ADDR_CONT_ENTRY
2003 (dequeue(&ugeth->ind_hash_q)));
2004 if (ugeth->ug_regs) {
2005 iounmap(ugeth->ug_regs);
2006 ugeth->ug_regs = NULL;
2007 }
2008 }
2009
ucc_geth_set_multi(struct net_device * dev)2010 static void ucc_geth_set_multi(struct net_device *dev)
2011 {
2012 struct ucc_geth_private *ugeth;
2013 struct netdev_hw_addr *ha;
2014 struct ucc_fast __iomem *uf_regs;
2015 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2016
2017 ugeth = netdev_priv(dev);
2018
2019 uf_regs = ugeth->uccf->uf_regs;
2020
2021 if (dev->flags & IFF_PROMISC) {
2022 setbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2023 } else {
2024 clrbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2025
2026 p_82xx_addr_filt =
2027 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2028 p_rx_glbl_pram->addressfiltering;
2029
2030 if (dev->flags & IFF_ALLMULTI) {
2031 /* Catch all multicast addresses, so set the
2032 * filter to all 1's.
2033 */
2034 out_be32(&p_82xx_addr_filt->gaddr_h, 0xffffffff);
2035 out_be32(&p_82xx_addr_filt->gaddr_l, 0xffffffff);
2036 } else {
2037 /* Clear filter and add the addresses in the list.
2038 */
2039 out_be32(&p_82xx_addr_filt->gaddr_h, 0x0);
2040 out_be32(&p_82xx_addr_filt->gaddr_l, 0x0);
2041
2042 netdev_for_each_mc_addr(ha, dev) {
2043 /* Ask CPM to run CRC and set bit in
2044 * filter mask.
2045 */
2046 hw_add_addr_in_hash(ugeth, ha->addr);
2047 }
2048 }
2049 }
2050 }
2051
ucc_geth_stop(struct ucc_geth_private * ugeth)2052 static void ucc_geth_stop(struct ucc_geth_private *ugeth)
2053 {
2054 struct ucc_geth __iomem *ug_regs = ugeth->ug_regs;
2055 struct phy_device *phydev = ugeth->phydev;
2056
2057 ugeth_vdbg("%s: IN", __func__);
2058
2059 /*
2060 * Tell the kernel the link is down.
2061 * Must be done before disabling the controller
2062 * or deadlock may happen.
2063 */
2064 phy_stop(phydev);
2065
2066 /* Disable the controller */
2067 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
2068
2069 /* Mask all interrupts */
2070 out_be32(ugeth->uccf->p_uccm, 0x00000000);
2071
2072 /* Clear all interrupts */
2073 out_be32(ugeth->uccf->p_ucce, 0xffffffff);
2074
2075 /* Disable Rx and Tx */
2076 clrbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2077
2078 ucc_geth_memclean(ugeth);
2079 }
2080
ucc_struct_init(struct ucc_geth_private * ugeth)2081 static int ucc_struct_init(struct ucc_geth_private *ugeth)
2082 {
2083 struct ucc_geth_info *ug_info;
2084 struct ucc_fast_info *uf_info;
2085 int i;
2086
2087 ug_info = ugeth->ug_info;
2088 uf_info = &ug_info->uf_info;
2089
2090 if (!((uf_info->bd_mem_part == MEM_PART_SYSTEM) ||
2091 (uf_info->bd_mem_part == MEM_PART_MURAM))) {
2092 if (netif_msg_probe(ugeth))
2093 pr_err("Bad memory partition value\n");
2094 return -EINVAL;
2095 }
2096
2097 /* Rx BD lengths */
2098 for (i = 0; i < ug_info->numQueuesRx; i++) {
2099 if ((ug_info->bdRingLenRx[i] < UCC_GETH_RX_BD_RING_SIZE_MIN) ||
2100 (ug_info->bdRingLenRx[i] %
2101 UCC_GETH_RX_BD_RING_SIZE_ALIGNMENT)) {
2102 if (netif_msg_probe(ugeth))
2103 pr_err("Rx BD ring length must be multiple of 4, no smaller than 8\n");
2104 return -EINVAL;
2105 }
2106 }
2107
2108 /* Tx BD lengths */
2109 for (i = 0; i < ug_info->numQueuesTx; i++) {
2110 if (ug_info->bdRingLenTx[i] < UCC_GETH_TX_BD_RING_SIZE_MIN) {
2111 if (netif_msg_probe(ugeth))
2112 pr_err("Tx BD ring length must be no smaller than 2\n");
2113 return -EINVAL;
2114 }
2115 }
2116
2117 /* mrblr */
2118 if ((uf_info->max_rx_buf_length == 0) ||
2119 (uf_info->max_rx_buf_length % UCC_GETH_MRBLR_ALIGNMENT)) {
2120 if (netif_msg_probe(ugeth))
2121 pr_err("max_rx_buf_length must be non-zero multiple of 128\n");
2122 return -EINVAL;
2123 }
2124
2125 /* num Tx queues */
2126 if (ug_info->numQueuesTx > NUM_TX_QUEUES) {
2127 if (netif_msg_probe(ugeth))
2128 pr_err("number of tx queues too large\n");
2129 return -EINVAL;
2130 }
2131
2132 /* num Rx queues */
2133 if (ug_info->numQueuesRx > NUM_RX_QUEUES) {
2134 if (netif_msg_probe(ugeth))
2135 pr_err("number of rx queues too large\n");
2136 return -EINVAL;
2137 }
2138
2139 /* l2qt */
2140 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) {
2141 if (ug_info->l2qt[i] >= ug_info->numQueuesRx) {
2142 if (netif_msg_probe(ugeth))
2143 pr_err("VLAN priority table entry must not be larger than number of Rx queues\n");
2144 return -EINVAL;
2145 }
2146 }
2147
2148 /* l3qt */
2149 for (i = 0; i < UCC_GETH_IP_PRIORITY_MAX; i++) {
2150 if (ug_info->l3qt[i] >= ug_info->numQueuesRx) {
2151 if (netif_msg_probe(ugeth))
2152 pr_err("IP priority table entry must not be larger than number of Rx queues\n");
2153 return -EINVAL;
2154 }
2155 }
2156
2157 if (ug_info->cam && !ug_info->ecamptr) {
2158 if (netif_msg_probe(ugeth))
2159 pr_err("If cam mode is chosen, must supply cam ptr\n");
2160 return -EINVAL;
2161 }
2162
2163 if ((ug_info->numStationAddresses !=
2164 UCC_GETH_NUM_OF_STATION_ADDRESSES_1) &&
2165 ug_info->rxExtendedFiltering) {
2166 if (netif_msg_probe(ugeth))
2167 pr_err("Number of station addresses greater than 1 not allowed in extended parsing mode\n");
2168 return -EINVAL;
2169 }
2170
2171 /* Generate uccm_mask for receive */
2172 uf_info->uccm_mask = ug_info->eventRegMask & UCCE_OTHER;/* Errors */
2173 for (i = 0; i < ug_info->numQueuesRx; i++)
2174 uf_info->uccm_mask |= (UCC_GETH_UCCE_RXF0 << i);
2175
2176 for (i = 0; i < ug_info->numQueuesTx; i++)
2177 uf_info->uccm_mask |= (UCC_GETH_UCCE_TXB0 << i);
2178 /* Initialize the general fast UCC block. */
2179 if (ucc_fast_init(uf_info, &ugeth->uccf)) {
2180 if (netif_msg_probe(ugeth))
2181 pr_err("Failed to init uccf\n");
2182 return -ENOMEM;
2183 }
2184
2185 /* read the number of risc engines, update the riscTx and riscRx
2186 * if there are 4 riscs in QE
2187 */
2188 if (qe_get_num_of_risc() == 4) {
2189 ug_info->riscTx = QE_RISC_ALLOCATION_FOUR_RISCS;
2190 ug_info->riscRx = QE_RISC_ALLOCATION_FOUR_RISCS;
2191 }
2192
2193 ugeth->ug_regs = ioremap(uf_info->regs, sizeof(*ugeth->ug_regs));
2194 if (!ugeth->ug_regs) {
2195 if (netif_msg_probe(ugeth))
2196 pr_err("Failed to ioremap regs\n");
2197 return -ENOMEM;
2198 }
2199
2200 return 0;
2201 }
2202
ucc_geth_alloc_tx(struct ucc_geth_private * ugeth)2203 static int ucc_geth_alloc_tx(struct ucc_geth_private *ugeth)
2204 {
2205 struct ucc_geth_info *ug_info;
2206 struct ucc_fast_info *uf_info;
2207 int length;
2208 u16 i, j;
2209 u8 __iomem *bd;
2210
2211 ug_info = ugeth->ug_info;
2212 uf_info = &ug_info->uf_info;
2213
2214 /* Allocate Tx bds */
2215 for (j = 0; j < ug_info->numQueuesTx; j++) {
2216 /* Allocate in multiple of
2217 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT,
2218 according to spec */
2219 length = ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd))
2220 / UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2221 * UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2222 if ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) %
2223 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2224 length += UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2225 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2226 u32 align = 4;
2227 if (UCC_GETH_TX_BD_RING_ALIGNMENT > 4)
2228 align = UCC_GETH_TX_BD_RING_ALIGNMENT;
2229 ugeth->tx_bd_ring_offset[j] =
2230 (u32) kmalloc((u32) (length + align), GFP_KERNEL);
2231
2232 if (ugeth->tx_bd_ring_offset[j] != 0)
2233 ugeth->p_tx_bd_ring[j] =
2234 (u8 __iomem *)((ugeth->tx_bd_ring_offset[j] +
2235 align) & ~(align - 1));
2236 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2237 ugeth->tx_bd_ring_offset[j] =
2238 qe_muram_alloc(length,
2239 UCC_GETH_TX_BD_RING_ALIGNMENT);
2240 if (!IS_ERR_VALUE(ugeth->tx_bd_ring_offset[j]))
2241 ugeth->p_tx_bd_ring[j] =
2242 (u8 __iomem *) qe_muram_addr(ugeth->
2243 tx_bd_ring_offset[j]);
2244 }
2245 if (!ugeth->p_tx_bd_ring[j]) {
2246 if (netif_msg_ifup(ugeth))
2247 pr_err("Can not allocate memory for Tx bd rings\n");
2248 return -ENOMEM;
2249 }
2250 /* Zero unused end of bd ring, according to spec */
2251 memset_io((void __iomem *)(ugeth->p_tx_bd_ring[j] +
2252 ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)), 0,
2253 length - ug_info->bdRingLenTx[j] * sizeof(struct qe_bd));
2254 }
2255
2256 /* Init Tx bds */
2257 for (j = 0; j < ug_info->numQueuesTx; j++) {
2258 /* Setup the skbuff rings */
2259 ugeth->tx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2260 ugeth->ug_info->bdRingLenTx[j],
2261 GFP_KERNEL);
2262
2263 if (ugeth->tx_skbuff[j] == NULL) {
2264 if (netif_msg_ifup(ugeth))
2265 pr_err("Could not allocate tx_skbuff\n");
2266 return -ENOMEM;
2267 }
2268
2269 for (i = 0; i < ugeth->ug_info->bdRingLenTx[j]; i++)
2270 ugeth->tx_skbuff[j][i] = NULL;
2271
2272 ugeth->skb_curtx[j] = ugeth->skb_dirtytx[j] = 0;
2273 bd = ugeth->confBd[j] = ugeth->txBd[j] = ugeth->p_tx_bd_ring[j];
2274 for (i = 0; i < ug_info->bdRingLenTx[j]; i++) {
2275 /* clear bd buffer */
2276 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2277 /* set bd status and length */
2278 out_be32((u32 __iomem *)bd, 0);
2279 bd += sizeof(struct qe_bd);
2280 }
2281 bd -= sizeof(struct qe_bd);
2282 /* set bd status and length */
2283 out_be32((u32 __iomem *)bd, T_W); /* for last BD set Wrap bit */
2284 }
2285
2286 return 0;
2287 }
2288
ucc_geth_alloc_rx(struct ucc_geth_private * ugeth)2289 static int ucc_geth_alloc_rx(struct ucc_geth_private *ugeth)
2290 {
2291 struct ucc_geth_info *ug_info;
2292 struct ucc_fast_info *uf_info;
2293 int length;
2294 u16 i, j;
2295 u8 __iomem *bd;
2296
2297 ug_info = ugeth->ug_info;
2298 uf_info = &ug_info->uf_info;
2299
2300 /* Allocate Rx bds */
2301 for (j = 0; j < ug_info->numQueuesRx; j++) {
2302 length = ug_info->bdRingLenRx[j] * sizeof(struct qe_bd);
2303 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2304 u32 align = 4;
2305 if (UCC_GETH_RX_BD_RING_ALIGNMENT > 4)
2306 align = UCC_GETH_RX_BD_RING_ALIGNMENT;
2307 ugeth->rx_bd_ring_offset[j] =
2308 (u32) kmalloc((u32) (length + align), GFP_KERNEL);
2309 if (ugeth->rx_bd_ring_offset[j] != 0)
2310 ugeth->p_rx_bd_ring[j] =
2311 (u8 __iomem *)((ugeth->rx_bd_ring_offset[j] +
2312 align) & ~(align - 1));
2313 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2314 ugeth->rx_bd_ring_offset[j] =
2315 qe_muram_alloc(length,
2316 UCC_GETH_RX_BD_RING_ALIGNMENT);
2317 if (!IS_ERR_VALUE(ugeth->rx_bd_ring_offset[j]))
2318 ugeth->p_rx_bd_ring[j] =
2319 (u8 __iomem *) qe_muram_addr(ugeth->
2320 rx_bd_ring_offset[j]);
2321 }
2322 if (!ugeth->p_rx_bd_ring[j]) {
2323 if (netif_msg_ifup(ugeth))
2324 pr_err("Can not allocate memory for Rx bd rings\n");
2325 return -ENOMEM;
2326 }
2327 }
2328
2329 /* Init Rx bds */
2330 for (j = 0; j < ug_info->numQueuesRx; j++) {
2331 /* Setup the skbuff rings */
2332 ugeth->rx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2333 ugeth->ug_info->bdRingLenRx[j],
2334 GFP_KERNEL);
2335
2336 if (ugeth->rx_skbuff[j] == NULL) {
2337 if (netif_msg_ifup(ugeth))
2338 pr_err("Could not allocate rx_skbuff\n");
2339 return -ENOMEM;
2340 }
2341
2342 for (i = 0; i < ugeth->ug_info->bdRingLenRx[j]; i++)
2343 ugeth->rx_skbuff[j][i] = NULL;
2344
2345 ugeth->skb_currx[j] = 0;
2346 bd = ugeth->rxBd[j] = ugeth->p_rx_bd_ring[j];
2347 for (i = 0; i < ug_info->bdRingLenRx[j]; i++) {
2348 /* set bd status and length */
2349 out_be32((u32 __iomem *)bd, R_I);
2350 /* clear bd buffer */
2351 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2352 bd += sizeof(struct qe_bd);
2353 }
2354 bd -= sizeof(struct qe_bd);
2355 /* set bd status and length */
2356 out_be32((u32 __iomem *)bd, R_W); /* for last BD set Wrap bit */
2357 }
2358
2359 return 0;
2360 }
2361
ucc_geth_startup(struct ucc_geth_private * ugeth)2362 static int ucc_geth_startup(struct ucc_geth_private *ugeth)
2363 {
2364 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2365 struct ucc_geth_init_pram __iomem *p_init_enet_pram;
2366 struct ucc_fast_private *uccf;
2367 struct ucc_geth_info *ug_info;
2368 struct ucc_fast_info *uf_info;
2369 struct ucc_fast __iomem *uf_regs;
2370 struct ucc_geth __iomem *ug_regs;
2371 int ret_val = -EINVAL;
2372 u32 remoder = UCC_GETH_REMODER_INIT;
2373 u32 init_enet_pram_offset, cecr_subblock, command;
2374 u32 ifstat, i, j, size, l2qt, l3qt;
2375 u16 temoder = UCC_GETH_TEMODER_INIT;
2376 u16 test;
2377 u8 function_code = 0;
2378 u8 __iomem *endOfRing;
2379 u8 numThreadsRxNumerical, numThreadsTxNumerical;
2380
2381 ugeth_vdbg("%s: IN", __func__);
2382 uccf = ugeth->uccf;
2383 ug_info = ugeth->ug_info;
2384 uf_info = &ug_info->uf_info;
2385 uf_regs = uccf->uf_regs;
2386 ug_regs = ugeth->ug_regs;
2387
2388 switch (ug_info->numThreadsRx) {
2389 case UCC_GETH_NUM_OF_THREADS_1:
2390 numThreadsRxNumerical = 1;
2391 break;
2392 case UCC_GETH_NUM_OF_THREADS_2:
2393 numThreadsRxNumerical = 2;
2394 break;
2395 case UCC_GETH_NUM_OF_THREADS_4:
2396 numThreadsRxNumerical = 4;
2397 break;
2398 case UCC_GETH_NUM_OF_THREADS_6:
2399 numThreadsRxNumerical = 6;
2400 break;
2401 case UCC_GETH_NUM_OF_THREADS_8:
2402 numThreadsRxNumerical = 8;
2403 break;
2404 default:
2405 if (netif_msg_ifup(ugeth))
2406 pr_err("Bad number of Rx threads value\n");
2407 return -EINVAL;
2408 }
2409
2410 switch (ug_info->numThreadsTx) {
2411 case UCC_GETH_NUM_OF_THREADS_1:
2412 numThreadsTxNumerical = 1;
2413 break;
2414 case UCC_GETH_NUM_OF_THREADS_2:
2415 numThreadsTxNumerical = 2;
2416 break;
2417 case UCC_GETH_NUM_OF_THREADS_4:
2418 numThreadsTxNumerical = 4;
2419 break;
2420 case UCC_GETH_NUM_OF_THREADS_6:
2421 numThreadsTxNumerical = 6;
2422 break;
2423 case UCC_GETH_NUM_OF_THREADS_8:
2424 numThreadsTxNumerical = 8;
2425 break;
2426 default:
2427 if (netif_msg_ifup(ugeth))
2428 pr_err("Bad number of Tx threads value\n");
2429 return -EINVAL;
2430 }
2431
2432 /* Calculate rx_extended_features */
2433 ugeth->rx_non_dynamic_extended_features = ug_info->ipCheckSumCheck ||
2434 ug_info->ipAddressAlignment ||
2435 (ug_info->numStationAddresses !=
2436 UCC_GETH_NUM_OF_STATION_ADDRESSES_1);
2437
2438 ugeth->rx_extended_features = ugeth->rx_non_dynamic_extended_features ||
2439 (ug_info->vlanOperationTagged != UCC_GETH_VLAN_OPERATION_TAGGED_NOP) ||
2440 (ug_info->vlanOperationNonTagged !=
2441 UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP);
2442
2443 init_default_reg_vals(&uf_regs->upsmr,
2444 &ug_regs->maccfg1, &ug_regs->maccfg2);
2445
2446 /* Set UPSMR */
2447 /* For more details see the hardware spec. */
2448 init_rx_parameters(ug_info->bro,
2449 ug_info->rsh, ug_info->pro, &uf_regs->upsmr);
2450
2451 /* We're going to ignore other registers for now, */
2452 /* except as needed to get up and running */
2453
2454 /* Set MACCFG1 */
2455 /* For more details see the hardware spec. */
2456 init_flow_control_params(ug_info->aufc,
2457 ug_info->receiveFlowControl,
2458 ug_info->transmitFlowControl,
2459 ug_info->pausePeriod,
2460 ug_info->extensionField,
2461 &uf_regs->upsmr,
2462 &ug_regs->uempr, &ug_regs->maccfg1);
2463
2464 setbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2465
2466 /* Set IPGIFG */
2467 /* For more details see the hardware spec. */
2468 ret_val = init_inter_frame_gap_params(ug_info->nonBackToBackIfgPart1,
2469 ug_info->nonBackToBackIfgPart2,
2470 ug_info->
2471 miminumInterFrameGapEnforcement,
2472 ug_info->backToBackInterFrameGap,
2473 &ug_regs->ipgifg);
2474 if (ret_val != 0) {
2475 if (netif_msg_ifup(ugeth))
2476 pr_err("IPGIFG initialization parameter too large\n");
2477 return ret_val;
2478 }
2479
2480 /* Set HAFDUP */
2481 /* For more details see the hardware spec. */
2482 ret_val = init_half_duplex_params(ug_info->altBeb,
2483 ug_info->backPressureNoBackoff,
2484 ug_info->noBackoff,
2485 ug_info->excessDefer,
2486 ug_info->altBebTruncation,
2487 ug_info->maxRetransmission,
2488 ug_info->collisionWindow,
2489 &ug_regs->hafdup);
2490 if (ret_val != 0) {
2491 if (netif_msg_ifup(ugeth))
2492 pr_err("Half Duplex initialization parameter too large\n");
2493 return ret_val;
2494 }
2495
2496 /* Set IFSTAT */
2497 /* For more details see the hardware spec. */
2498 /* Read only - resets upon read */
2499 ifstat = in_be32(&ug_regs->ifstat);
2500
2501 /* Clear UEMPR */
2502 /* For more details see the hardware spec. */
2503 out_be32(&ug_regs->uempr, 0);
2504
2505 /* Set UESCR */
2506 /* For more details see the hardware spec. */
2507 init_hw_statistics_gathering_mode((ug_info->statisticsMode &
2508 UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE),
2509 0, &uf_regs->upsmr, &ug_regs->uescr);
2510
2511 ret_val = ucc_geth_alloc_tx(ugeth);
2512 if (ret_val != 0)
2513 return ret_val;
2514
2515 ret_val = ucc_geth_alloc_rx(ugeth);
2516 if (ret_val != 0)
2517 return ret_val;
2518
2519 /*
2520 * Global PRAM
2521 */
2522 /* Tx global PRAM */
2523 /* Allocate global tx parameter RAM page */
2524 ugeth->tx_glbl_pram_offset =
2525 qe_muram_alloc(sizeof(struct ucc_geth_tx_global_pram),
2526 UCC_GETH_TX_GLOBAL_PRAM_ALIGNMENT);
2527 if (IS_ERR_VALUE(ugeth->tx_glbl_pram_offset)) {
2528 if (netif_msg_ifup(ugeth))
2529 pr_err("Can not allocate DPRAM memory for p_tx_glbl_pram\n");
2530 return -ENOMEM;
2531 }
2532 ugeth->p_tx_glbl_pram =
2533 (struct ucc_geth_tx_global_pram __iomem *) qe_muram_addr(ugeth->
2534 tx_glbl_pram_offset);
2535 /* Zero out p_tx_glbl_pram */
2536 memset_io((void __iomem *)ugeth->p_tx_glbl_pram, 0, sizeof(struct ucc_geth_tx_global_pram));
2537
2538 /* Fill global PRAM */
2539
2540 /* TQPTR */
2541 /* Size varies with number of Tx threads */
2542 ugeth->thread_dat_tx_offset =
2543 qe_muram_alloc(numThreadsTxNumerical *
2544 sizeof(struct ucc_geth_thread_data_tx) +
2545 32 * (numThreadsTxNumerical == 1),
2546 UCC_GETH_THREAD_DATA_ALIGNMENT);
2547 if (IS_ERR_VALUE(ugeth->thread_dat_tx_offset)) {
2548 if (netif_msg_ifup(ugeth))
2549 pr_err("Can not allocate DPRAM memory for p_thread_data_tx\n");
2550 return -ENOMEM;
2551 }
2552
2553 ugeth->p_thread_data_tx =
2554 (struct ucc_geth_thread_data_tx __iomem *) qe_muram_addr(ugeth->
2555 thread_dat_tx_offset);
2556 out_be32(&ugeth->p_tx_glbl_pram->tqptr, ugeth->thread_dat_tx_offset);
2557
2558 /* vtagtable */
2559 for (i = 0; i < UCC_GETH_TX_VTAG_TABLE_ENTRY_MAX; i++)
2560 out_be32(&ugeth->p_tx_glbl_pram->vtagtable[i],
2561 ug_info->vtagtable[i]);
2562
2563 /* iphoffset */
2564 for (i = 0; i < TX_IP_OFFSET_ENTRY_MAX; i++)
2565 out_8(&ugeth->p_tx_glbl_pram->iphoffset[i],
2566 ug_info->iphoffset[i]);
2567
2568 /* SQPTR */
2569 /* Size varies with number of Tx queues */
2570 ugeth->send_q_mem_reg_offset =
2571 qe_muram_alloc(ug_info->numQueuesTx *
2572 sizeof(struct ucc_geth_send_queue_qd),
2573 UCC_GETH_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
2574 if (IS_ERR_VALUE(ugeth->send_q_mem_reg_offset)) {
2575 if (netif_msg_ifup(ugeth))
2576 pr_err("Can not allocate DPRAM memory for p_send_q_mem_reg\n");
2577 return -ENOMEM;
2578 }
2579
2580 ugeth->p_send_q_mem_reg =
2581 (struct ucc_geth_send_queue_mem_region __iomem *) qe_muram_addr(ugeth->
2582 send_q_mem_reg_offset);
2583 out_be32(&ugeth->p_tx_glbl_pram->sqptr, ugeth->send_q_mem_reg_offset);
2584
2585 /* Setup the table */
2586 /* Assume BD rings are already established */
2587 for (i = 0; i < ug_info->numQueuesTx; i++) {
2588 endOfRing =
2589 ugeth->p_tx_bd_ring[i] + (ug_info->bdRingLenTx[i] -
2590 1) * sizeof(struct qe_bd);
2591 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2592 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2593 (u32) virt_to_phys(ugeth->p_tx_bd_ring[i]));
2594 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2595 last_bd_completed_address,
2596 (u32) virt_to_phys(endOfRing));
2597 } else if (ugeth->ug_info->uf_info.bd_mem_part ==
2598 MEM_PART_MURAM) {
2599 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2600 (u32) immrbar_virt_to_phys(ugeth->
2601 p_tx_bd_ring[i]));
2602 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2603 last_bd_completed_address,
2604 (u32) immrbar_virt_to_phys(endOfRing));
2605 }
2606 }
2607
2608 /* schedulerbasepointer */
2609
2610 if (ug_info->numQueuesTx > 1) {
2611 /* scheduler exists only if more than 1 tx queue */
2612 ugeth->scheduler_offset =
2613 qe_muram_alloc(sizeof(struct ucc_geth_scheduler),
2614 UCC_GETH_SCHEDULER_ALIGNMENT);
2615 if (IS_ERR_VALUE(ugeth->scheduler_offset)) {
2616 if (netif_msg_ifup(ugeth))
2617 pr_err("Can not allocate DPRAM memory for p_scheduler\n");
2618 return -ENOMEM;
2619 }
2620
2621 ugeth->p_scheduler =
2622 (struct ucc_geth_scheduler __iomem *) qe_muram_addr(ugeth->
2623 scheduler_offset);
2624 out_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer,
2625 ugeth->scheduler_offset);
2626 /* Zero out p_scheduler */
2627 memset_io((void __iomem *)ugeth->p_scheduler, 0, sizeof(struct ucc_geth_scheduler));
2628
2629 /* Set values in scheduler */
2630 out_be32(&ugeth->p_scheduler->mblinterval,
2631 ug_info->mblinterval);
2632 out_be16(&ugeth->p_scheduler->nortsrbytetime,
2633 ug_info->nortsrbytetime);
2634 out_8(&ugeth->p_scheduler->fracsiz, ug_info->fracsiz);
2635 out_8(&ugeth->p_scheduler->strictpriorityq,
2636 ug_info->strictpriorityq);
2637 out_8(&ugeth->p_scheduler->txasap, ug_info->txasap);
2638 out_8(&ugeth->p_scheduler->extrabw, ug_info->extrabw);
2639 for (i = 0; i < NUM_TX_QUEUES; i++)
2640 out_8(&ugeth->p_scheduler->weightfactor[i],
2641 ug_info->weightfactor[i]);
2642
2643 /* Set pointers to cpucount registers in scheduler */
2644 ugeth->p_cpucount[0] = &(ugeth->p_scheduler->cpucount0);
2645 ugeth->p_cpucount[1] = &(ugeth->p_scheduler->cpucount1);
2646 ugeth->p_cpucount[2] = &(ugeth->p_scheduler->cpucount2);
2647 ugeth->p_cpucount[3] = &(ugeth->p_scheduler->cpucount3);
2648 ugeth->p_cpucount[4] = &(ugeth->p_scheduler->cpucount4);
2649 ugeth->p_cpucount[5] = &(ugeth->p_scheduler->cpucount5);
2650 ugeth->p_cpucount[6] = &(ugeth->p_scheduler->cpucount6);
2651 ugeth->p_cpucount[7] = &(ugeth->p_scheduler->cpucount7);
2652 }
2653
2654 /* schedulerbasepointer */
2655 /* TxRMON_PTR (statistics) */
2656 if (ug_info->
2657 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX) {
2658 ugeth->tx_fw_statistics_pram_offset =
2659 qe_muram_alloc(sizeof
2660 (struct ucc_geth_tx_firmware_statistics_pram),
2661 UCC_GETH_TX_STATISTICS_ALIGNMENT);
2662 if (IS_ERR_VALUE(ugeth->tx_fw_statistics_pram_offset)) {
2663 if (netif_msg_ifup(ugeth))
2664 pr_err("Can not allocate DPRAM memory for p_tx_fw_statistics_pram\n");
2665 return -ENOMEM;
2666 }
2667 ugeth->p_tx_fw_statistics_pram =
2668 (struct ucc_geth_tx_firmware_statistics_pram __iomem *)
2669 qe_muram_addr(ugeth->tx_fw_statistics_pram_offset);
2670 /* Zero out p_tx_fw_statistics_pram */
2671 memset_io((void __iomem *)ugeth->p_tx_fw_statistics_pram,
2672 0, sizeof(struct ucc_geth_tx_firmware_statistics_pram));
2673 }
2674
2675 /* temoder */
2676 /* Already has speed set */
2677
2678 if (ug_info->numQueuesTx > 1)
2679 temoder |= TEMODER_SCHEDULER_ENABLE;
2680 if (ug_info->ipCheckSumGenerate)
2681 temoder |= TEMODER_IP_CHECKSUM_GENERATE;
2682 temoder |= ((ug_info->numQueuesTx - 1) << TEMODER_NUM_OF_QUEUES_SHIFT);
2683 out_be16(&ugeth->p_tx_glbl_pram->temoder, temoder);
2684
2685 test = in_be16(&ugeth->p_tx_glbl_pram->temoder);
2686
2687 /* Function code register value to be used later */
2688 function_code = UCC_BMR_BO_BE | UCC_BMR_GBL;
2689 /* Required for QE */
2690
2691 /* function code register */
2692 out_be32(&ugeth->p_tx_glbl_pram->tstate, ((u32) function_code) << 24);
2693
2694 /* Rx global PRAM */
2695 /* Allocate global rx parameter RAM page */
2696 ugeth->rx_glbl_pram_offset =
2697 qe_muram_alloc(sizeof(struct ucc_geth_rx_global_pram),
2698 UCC_GETH_RX_GLOBAL_PRAM_ALIGNMENT);
2699 if (IS_ERR_VALUE(ugeth->rx_glbl_pram_offset)) {
2700 if (netif_msg_ifup(ugeth))
2701 pr_err("Can not allocate DPRAM memory for p_rx_glbl_pram\n");
2702 return -ENOMEM;
2703 }
2704 ugeth->p_rx_glbl_pram =
2705 (struct ucc_geth_rx_global_pram __iomem *) qe_muram_addr(ugeth->
2706 rx_glbl_pram_offset);
2707 /* Zero out p_rx_glbl_pram */
2708 memset_io((void __iomem *)ugeth->p_rx_glbl_pram, 0, sizeof(struct ucc_geth_rx_global_pram));
2709
2710 /* Fill global PRAM */
2711
2712 /* RQPTR */
2713 /* Size varies with number of Rx threads */
2714 ugeth->thread_dat_rx_offset =
2715 qe_muram_alloc(numThreadsRxNumerical *
2716 sizeof(struct ucc_geth_thread_data_rx),
2717 UCC_GETH_THREAD_DATA_ALIGNMENT);
2718 if (IS_ERR_VALUE(ugeth->thread_dat_rx_offset)) {
2719 if (netif_msg_ifup(ugeth))
2720 pr_err("Can not allocate DPRAM memory for p_thread_data_rx\n");
2721 return -ENOMEM;
2722 }
2723
2724 ugeth->p_thread_data_rx =
2725 (struct ucc_geth_thread_data_rx __iomem *) qe_muram_addr(ugeth->
2726 thread_dat_rx_offset);
2727 out_be32(&ugeth->p_rx_glbl_pram->rqptr, ugeth->thread_dat_rx_offset);
2728
2729 /* typeorlen */
2730 out_be16(&ugeth->p_rx_glbl_pram->typeorlen, ug_info->typeorlen);
2731
2732 /* rxrmonbaseptr (statistics) */
2733 if (ug_info->
2734 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX) {
2735 ugeth->rx_fw_statistics_pram_offset =
2736 qe_muram_alloc(sizeof
2737 (struct ucc_geth_rx_firmware_statistics_pram),
2738 UCC_GETH_RX_STATISTICS_ALIGNMENT);
2739 if (IS_ERR_VALUE(ugeth->rx_fw_statistics_pram_offset)) {
2740 if (netif_msg_ifup(ugeth))
2741 pr_err("Can not allocate DPRAM memory for p_rx_fw_statistics_pram\n");
2742 return -ENOMEM;
2743 }
2744 ugeth->p_rx_fw_statistics_pram =
2745 (struct ucc_geth_rx_firmware_statistics_pram __iomem *)
2746 qe_muram_addr(ugeth->rx_fw_statistics_pram_offset);
2747 /* Zero out p_rx_fw_statistics_pram */
2748 memset_io((void __iomem *)ugeth->p_rx_fw_statistics_pram, 0,
2749 sizeof(struct ucc_geth_rx_firmware_statistics_pram));
2750 }
2751
2752 /* intCoalescingPtr */
2753
2754 /* Size varies with number of Rx queues */
2755 ugeth->rx_irq_coalescing_tbl_offset =
2756 qe_muram_alloc(ug_info->numQueuesRx *
2757 sizeof(struct ucc_geth_rx_interrupt_coalescing_entry)
2758 + 4, UCC_GETH_RX_INTERRUPT_COALESCING_ALIGNMENT);
2759 if (IS_ERR_VALUE(ugeth->rx_irq_coalescing_tbl_offset)) {
2760 if (netif_msg_ifup(ugeth))
2761 pr_err("Can not allocate DPRAM memory for p_rx_irq_coalescing_tbl\n");
2762 return -ENOMEM;
2763 }
2764
2765 ugeth->p_rx_irq_coalescing_tbl =
2766 (struct ucc_geth_rx_interrupt_coalescing_table __iomem *)
2767 qe_muram_addr(ugeth->rx_irq_coalescing_tbl_offset);
2768 out_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr,
2769 ugeth->rx_irq_coalescing_tbl_offset);
2770
2771 /* Fill interrupt coalescing table */
2772 for (i = 0; i < ug_info->numQueuesRx; i++) {
2773 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2774 interruptcoalescingmaxvalue,
2775 ug_info->interruptcoalescingmaxvalue[i]);
2776 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2777 interruptcoalescingcounter,
2778 ug_info->interruptcoalescingmaxvalue[i]);
2779 }
2780
2781 /* MRBLR */
2782 init_max_rx_buff_len(uf_info->max_rx_buf_length,
2783 &ugeth->p_rx_glbl_pram->mrblr);
2784 /* MFLR */
2785 out_be16(&ugeth->p_rx_glbl_pram->mflr, ug_info->maxFrameLength);
2786 /* MINFLR */
2787 init_min_frame_len(ug_info->minFrameLength,
2788 &ugeth->p_rx_glbl_pram->minflr,
2789 &ugeth->p_rx_glbl_pram->mrblr);
2790 /* MAXD1 */
2791 out_be16(&ugeth->p_rx_glbl_pram->maxd1, ug_info->maxD1Length);
2792 /* MAXD2 */
2793 out_be16(&ugeth->p_rx_glbl_pram->maxd2, ug_info->maxD2Length);
2794
2795 /* l2qt */
2796 l2qt = 0;
2797 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++)
2798 l2qt |= (ug_info->l2qt[i] << (28 - 4 * i));
2799 out_be32(&ugeth->p_rx_glbl_pram->l2qt, l2qt);
2800
2801 /* l3qt */
2802 for (j = 0; j < UCC_GETH_IP_PRIORITY_MAX; j += 8) {
2803 l3qt = 0;
2804 for (i = 0; i < 8; i++)
2805 l3qt |= (ug_info->l3qt[j + i] << (28 - 4 * i));
2806 out_be32(&ugeth->p_rx_glbl_pram->l3qt[j/8], l3qt);
2807 }
2808
2809 /* vlantype */
2810 out_be16(&ugeth->p_rx_glbl_pram->vlantype, ug_info->vlantype);
2811
2812 /* vlantci */
2813 out_be16(&ugeth->p_rx_glbl_pram->vlantci, ug_info->vlantci);
2814
2815 /* ecamptr */
2816 out_be32(&ugeth->p_rx_glbl_pram->ecamptr, ug_info->ecamptr);
2817
2818 /* RBDQPTR */
2819 /* Size varies with number of Rx queues */
2820 ugeth->rx_bd_qs_tbl_offset =
2821 qe_muram_alloc(ug_info->numQueuesRx *
2822 (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2823 sizeof(struct ucc_geth_rx_prefetched_bds)),
2824 UCC_GETH_RX_BD_QUEUES_ALIGNMENT);
2825 if (IS_ERR_VALUE(ugeth->rx_bd_qs_tbl_offset)) {
2826 if (netif_msg_ifup(ugeth))
2827 pr_err("Can not allocate DPRAM memory for p_rx_bd_qs_tbl\n");
2828 return -ENOMEM;
2829 }
2830
2831 ugeth->p_rx_bd_qs_tbl =
2832 (struct ucc_geth_rx_bd_queues_entry __iomem *) qe_muram_addr(ugeth->
2833 rx_bd_qs_tbl_offset);
2834 out_be32(&ugeth->p_rx_glbl_pram->rbdqptr, ugeth->rx_bd_qs_tbl_offset);
2835 /* Zero out p_rx_bd_qs_tbl */
2836 memset_io((void __iomem *)ugeth->p_rx_bd_qs_tbl,
2837 0,
2838 ug_info->numQueuesRx * (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2839 sizeof(struct ucc_geth_rx_prefetched_bds)));
2840
2841 /* Setup the table */
2842 /* Assume BD rings are already established */
2843 for (i = 0; i < ug_info->numQueuesRx; i++) {
2844 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2845 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2846 (u32) virt_to_phys(ugeth->p_rx_bd_ring[i]));
2847 } else if (ugeth->ug_info->uf_info.bd_mem_part ==
2848 MEM_PART_MURAM) {
2849 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2850 (u32) immrbar_virt_to_phys(ugeth->
2851 p_rx_bd_ring[i]));
2852 }
2853 /* rest of fields handled by QE */
2854 }
2855
2856 /* remoder */
2857 /* Already has speed set */
2858
2859 if (ugeth->rx_extended_features)
2860 remoder |= REMODER_RX_EXTENDED_FEATURES;
2861 if (ug_info->rxExtendedFiltering)
2862 remoder |= REMODER_RX_EXTENDED_FILTERING;
2863 if (ug_info->dynamicMaxFrameLength)
2864 remoder |= REMODER_DYNAMIC_MAX_FRAME_LENGTH;
2865 if (ug_info->dynamicMinFrameLength)
2866 remoder |= REMODER_DYNAMIC_MIN_FRAME_LENGTH;
2867 remoder |=
2868 ug_info->vlanOperationTagged << REMODER_VLAN_OPERATION_TAGGED_SHIFT;
2869 remoder |=
2870 ug_info->
2871 vlanOperationNonTagged << REMODER_VLAN_OPERATION_NON_TAGGED_SHIFT;
2872 remoder |= ug_info->rxQoSMode << REMODER_RX_QOS_MODE_SHIFT;
2873 remoder |= ((ug_info->numQueuesRx - 1) << REMODER_NUM_OF_QUEUES_SHIFT);
2874 if (ug_info->ipCheckSumCheck)
2875 remoder |= REMODER_IP_CHECKSUM_CHECK;
2876 if (ug_info->ipAddressAlignment)
2877 remoder |= REMODER_IP_ADDRESS_ALIGNMENT;
2878 out_be32(&ugeth->p_rx_glbl_pram->remoder, remoder);
2879
2880 /* Note that this function must be called */
2881 /* ONLY AFTER p_tx_fw_statistics_pram */
2882 /* andp_UccGethRxFirmwareStatisticsPram are allocated ! */
2883 init_firmware_statistics_gathering_mode((ug_info->
2884 statisticsMode &
2885 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX),
2886 (ug_info->statisticsMode &
2887 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX),
2888 &ugeth->p_tx_glbl_pram->txrmonbaseptr,
2889 ugeth->tx_fw_statistics_pram_offset,
2890 &ugeth->p_rx_glbl_pram->rxrmonbaseptr,
2891 ugeth->rx_fw_statistics_pram_offset,
2892 &ugeth->p_tx_glbl_pram->temoder,
2893 &ugeth->p_rx_glbl_pram->remoder);
2894
2895 /* function code register */
2896 out_8(&ugeth->p_rx_glbl_pram->rstate, function_code);
2897
2898 /* initialize extended filtering */
2899 if (ug_info->rxExtendedFiltering) {
2900 if (!ug_info->extendedFilteringChainPointer) {
2901 if (netif_msg_ifup(ugeth))
2902 pr_err("Null Extended Filtering Chain Pointer\n");
2903 return -EINVAL;
2904 }
2905
2906 /* Allocate memory for extended filtering Mode Global
2907 Parameters */
2908 ugeth->exf_glbl_param_offset =
2909 qe_muram_alloc(sizeof(struct ucc_geth_exf_global_pram),
2910 UCC_GETH_RX_EXTENDED_FILTERING_GLOBAL_PARAMETERS_ALIGNMENT);
2911 if (IS_ERR_VALUE(ugeth->exf_glbl_param_offset)) {
2912 if (netif_msg_ifup(ugeth))
2913 pr_err("Can not allocate DPRAM memory for p_exf_glbl_param\n");
2914 return -ENOMEM;
2915 }
2916
2917 ugeth->p_exf_glbl_param =
2918 (struct ucc_geth_exf_global_pram __iomem *) qe_muram_addr(ugeth->
2919 exf_glbl_param_offset);
2920 out_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam,
2921 ugeth->exf_glbl_param_offset);
2922 out_be32(&ugeth->p_exf_glbl_param->l2pcdptr,
2923 (u32) ug_info->extendedFilteringChainPointer);
2924
2925 } else { /* initialize 82xx style address filtering */
2926
2927 /* Init individual address recognition registers to disabled */
2928
2929 for (j = 0; j < NUM_OF_PADDRS; j++)
2930 ugeth_82xx_filtering_clear_addr_in_paddr(ugeth, (u8) j);
2931
2932 p_82xx_addr_filt =
2933 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2934 p_rx_glbl_pram->addressfiltering;
2935
2936 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2937 ENET_ADDR_TYPE_GROUP);
2938 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2939 ENET_ADDR_TYPE_INDIVIDUAL);
2940 }
2941
2942 /*
2943 * Initialize UCC at QE level
2944 */
2945
2946 command = QE_INIT_TX_RX;
2947
2948 /* Allocate shadow InitEnet command parameter structure.
2949 * This is needed because after the InitEnet command is executed,
2950 * the structure in DPRAM is released, because DPRAM is a premium
2951 * resource.
2952 * This shadow structure keeps a copy of what was done so that the
2953 * allocated resources can be released when the channel is freed.
2954 */
2955 if (!(ugeth->p_init_enet_param_shadow =
2956 kmalloc(sizeof(struct ucc_geth_init_pram), GFP_KERNEL))) {
2957 if (netif_msg_ifup(ugeth))
2958 pr_err("Can not allocate memory for p_UccInitEnetParamShadows\n");
2959 return -ENOMEM;
2960 }
2961 /* Zero out *p_init_enet_param_shadow */
2962 memset((char *)ugeth->p_init_enet_param_shadow,
2963 0, sizeof(struct ucc_geth_init_pram));
2964
2965 /* Fill shadow InitEnet command parameter structure */
2966
2967 ugeth->p_init_enet_param_shadow->resinit1 =
2968 ENET_INIT_PARAM_MAGIC_RES_INIT1;
2969 ugeth->p_init_enet_param_shadow->resinit2 =
2970 ENET_INIT_PARAM_MAGIC_RES_INIT2;
2971 ugeth->p_init_enet_param_shadow->resinit3 =
2972 ENET_INIT_PARAM_MAGIC_RES_INIT3;
2973 ugeth->p_init_enet_param_shadow->resinit4 =
2974 ENET_INIT_PARAM_MAGIC_RES_INIT4;
2975 ugeth->p_init_enet_param_shadow->resinit5 =
2976 ENET_INIT_PARAM_MAGIC_RES_INIT5;
2977 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2978 ((u32) ug_info->numThreadsRx) << ENET_INIT_PARAM_RGF_SHIFT;
2979 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2980 ((u32) ug_info->numThreadsTx) << ENET_INIT_PARAM_TGF_SHIFT;
2981
2982 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2983 ugeth->rx_glbl_pram_offset | ug_info->riscRx;
2984 if ((ug_info->largestexternallookupkeysize !=
2985 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE) &&
2986 (ug_info->largestexternallookupkeysize !=
2987 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) &&
2988 (ug_info->largestexternallookupkeysize !=
2989 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)) {
2990 if (netif_msg_ifup(ugeth))
2991 pr_err("Invalid largest External Lookup Key Size\n");
2992 return -EINVAL;
2993 }
2994 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize =
2995 ug_info->largestexternallookupkeysize;
2996 size = sizeof(struct ucc_geth_thread_rx_pram);
2997 if (ug_info->rxExtendedFiltering) {
2998 size += THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
2999 if (ug_info->largestexternallookupkeysize ==
3000 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
3001 size +=
3002 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
3003 if (ug_info->largestexternallookupkeysize ==
3004 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
3005 size +=
3006 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
3007 }
3008
3009 if ((ret_val = fill_init_enet_entries(ugeth, &(ugeth->
3010 p_init_enet_param_shadow->rxthread[0]),
3011 (u8) (numThreadsRxNumerical + 1)
3012 /* Rx needs one extra for terminator */
3013 , size, UCC_GETH_THREAD_RX_PRAM_ALIGNMENT,
3014 ug_info->riscRx, 1)) != 0) {
3015 if (netif_msg_ifup(ugeth))
3016 pr_err("Can not fill p_init_enet_param_shadow\n");
3017 return ret_val;
3018 }
3019
3020 ugeth->p_init_enet_param_shadow->txglobal =
3021 ugeth->tx_glbl_pram_offset | ug_info->riscTx;
3022 if ((ret_val =
3023 fill_init_enet_entries(ugeth,
3024 &(ugeth->p_init_enet_param_shadow->
3025 txthread[0]), numThreadsTxNumerical,
3026 sizeof(struct ucc_geth_thread_tx_pram),
3027 UCC_GETH_THREAD_TX_PRAM_ALIGNMENT,
3028 ug_info->riscTx, 0)) != 0) {
3029 if (netif_msg_ifup(ugeth))
3030 pr_err("Can not fill p_init_enet_param_shadow\n");
3031 return ret_val;
3032 }
3033
3034 /* Load Rx bds with buffers */
3035 for (i = 0; i < ug_info->numQueuesRx; i++) {
3036 if ((ret_val = rx_bd_buffer_set(ugeth, (u8) i)) != 0) {
3037 if (netif_msg_ifup(ugeth))
3038 pr_err("Can not fill Rx bds with buffers\n");
3039 return ret_val;
3040 }
3041 }
3042
3043 /* Allocate InitEnet command parameter structure */
3044 init_enet_pram_offset = qe_muram_alloc(sizeof(struct ucc_geth_init_pram), 4);
3045 if (IS_ERR_VALUE(init_enet_pram_offset)) {
3046 if (netif_msg_ifup(ugeth))
3047 pr_err("Can not allocate DPRAM memory for p_init_enet_pram\n");
3048 return -ENOMEM;
3049 }
3050 p_init_enet_pram =
3051 (struct ucc_geth_init_pram __iomem *) qe_muram_addr(init_enet_pram_offset);
3052
3053 /* Copy shadow InitEnet command parameter structure into PRAM */
3054 out_8(&p_init_enet_pram->resinit1,
3055 ugeth->p_init_enet_param_shadow->resinit1);
3056 out_8(&p_init_enet_pram->resinit2,
3057 ugeth->p_init_enet_param_shadow->resinit2);
3058 out_8(&p_init_enet_pram->resinit3,
3059 ugeth->p_init_enet_param_shadow->resinit3);
3060 out_8(&p_init_enet_pram->resinit4,
3061 ugeth->p_init_enet_param_shadow->resinit4);
3062 out_be16(&p_init_enet_pram->resinit5,
3063 ugeth->p_init_enet_param_shadow->resinit5);
3064 out_8(&p_init_enet_pram->largestexternallookupkeysize,
3065 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize);
3066 out_be32(&p_init_enet_pram->rgftgfrxglobal,
3067 ugeth->p_init_enet_param_shadow->rgftgfrxglobal);
3068 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_RX; i++)
3069 out_be32(&p_init_enet_pram->rxthread[i],
3070 ugeth->p_init_enet_param_shadow->rxthread[i]);
3071 out_be32(&p_init_enet_pram->txglobal,
3072 ugeth->p_init_enet_param_shadow->txglobal);
3073 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_TX; i++)
3074 out_be32(&p_init_enet_pram->txthread[i],
3075 ugeth->p_init_enet_param_shadow->txthread[i]);
3076
3077 /* Issue QE command */
3078 cecr_subblock =
3079 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
3080 qe_issue_cmd(command, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
3081 init_enet_pram_offset);
3082
3083 /* Free InitEnet command parameter */
3084 qe_muram_free(init_enet_pram_offset);
3085
3086 return 0;
3087 }
3088
3089 /* This is called by the kernel when a frame is ready for transmission. */
3090 /* It is pointed to by the dev->hard_start_xmit function pointer */
ucc_geth_start_xmit(struct sk_buff * skb,struct net_device * dev)3091 static int ucc_geth_start_xmit(struct sk_buff *skb, struct net_device *dev)
3092 {
3093 struct ucc_geth_private *ugeth = netdev_priv(dev);
3094 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3095 struct ucc_fast_private *uccf;
3096 #endif
3097 u8 __iomem *bd; /* BD pointer */
3098 u32 bd_status;
3099 u8 txQ = 0;
3100 unsigned long flags;
3101
3102 ugeth_vdbg("%s: IN", __func__);
3103
3104 spin_lock_irqsave(&ugeth->lock, flags);
3105
3106 dev->stats.tx_bytes += skb->len;
3107
3108 /* Start from the next BD that should be filled */
3109 bd = ugeth->txBd[txQ];
3110 bd_status = in_be32((u32 __iomem *)bd);
3111 /* Save the skb pointer so we can free it later */
3112 ugeth->tx_skbuff[txQ][ugeth->skb_curtx[txQ]] = skb;
3113
3114 /* Update the current skb pointer (wrapping if this was the last) */
3115 ugeth->skb_curtx[txQ] =
3116 (ugeth->skb_curtx[txQ] +
3117 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3118
3119 /* set up the buffer descriptor */
3120 out_be32(&((struct qe_bd __iomem *)bd)->buf,
3121 dma_map_single(ugeth->dev, skb->data,
3122 skb->len, DMA_TO_DEVICE));
3123
3124 /* printk(KERN_DEBUG"skb->data is 0x%x\n",skb->data); */
3125
3126 bd_status = (bd_status & T_W) | T_R | T_I | T_L | skb->len;
3127
3128 /* set bd status and length */
3129 out_be32((u32 __iomem *)bd, bd_status);
3130
3131 /* Move to next BD in the ring */
3132 if (!(bd_status & T_W))
3133 bd += sizeof(struct qe_bd);
3134 else
3135 bd = ugeth->p_tx_bd_ring[txQ];
3136
3137 /* If the next BD still needs to be cleaned up, then the bds
3138 are full. We need to tell the kernel to stop sending us stuff. */
3139 if (bd == ugeth->confBd[txQ]) {
3140 if (!netif_queue_stopped(dev))
3141 netif_stop_queue(dev);
3142 }
3143
3144 ugeth->txBd[txQ] = bd;
3145
3146 skb_tx_timestamp(skb);
3147
3148 if (ugeth->p_scheduler) {
3149 ugeth->cpucount[txQ]++;
3150 /* Indicate to QE that there are more Tx bds ready for
3151 transmission */
3152 /* This is done by writing a running counter of the bd
3153 count to the scheduler PRAM. */
3154 out_be16(ugeth->p_cpucount[txQ], ugeth->cpucount[txQ]);
3155 }
3156
3157 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3158 uccf = ugeth->uccf;
3159 out_be16(uccf->p_utodr, UCC_FAST_TOD);
3160 #endif
3161 spin_unlock_irqrestore(&ugeth->lock, flags);
3162
3163 return NETDEV_TX_OK;
3164 }
3165
ucc_geth_rx(struct ucc_geth_private * ugeth,u8 rxQ,int rx_work_limit)3166 static int ucc_geth_rx(struct ucc_geth_private *ugeth, u8 rxQ, int rx_work_limit)
3167 {
3168 struct sk_buff *skb;
3169 u8 __iomem *bd;
3170 u16 length, howmany = 0;
3171 u32 bd_status;
3172 u8 *bdBuffer;
3173 struct net_device *dev;
3174
3175 ugeth_vdbg("%s: IN", __func__);
3176
3177 dev = ugeth->ndev;
3178
3179 /* collect received buffers */
3180 bd = ugeth->rxBd[rxQ];
3181
3182 bd_status = in_be32((u32 __iomem *)bd);
3183
3184 /* while there are received buffers and BD is full (~R_E) */
3185 while (!((bd_status & (R_E)) || (--rx_work_limit < 0))) {
3186 bdBuffer = (u8 *) in_be32(&((struct qe_bd __iomem *)bd)->buf);
3187 length = (u16) ((bd_status & BD_LENGTH_MASK) - 4);
3188 skb = ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]];
3189
3190 /* determine whether buffer is first, last, first and last
3191 (single buffer frame) or middle (not first and not last) */
3192 if (!skb ||
3193 (!(bd_status & (R_F | R_L))) ||
3194 (bd_status & R_ERRORS_FATAL)) {
3195 if (netif_msg_rx_err(ugeth))
3196 pr_err("%d: ERROR!!! skb - 0x%08x\n",
3197 __LINE__, (u32)skb);
3198 dev_kfree_skb(skb);
3199
3200 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = NULL;
3201 dev->stats.rx_dropped++;
3202 } else {
3203 dev->stats.rx_packets++;
3204 howmany++;
3205
3206 /* Prep the skb for the packet */
3207 skb_put(skb, length);
3208
3209 /* Tell the skb what kind of packet this is */
3210 skb->protocol = eth_type_trans(skb, ugeth->ndev);
3211
3212 dev->stats.rx_bytes += length;
3213 /* Send the packet up the stack */
3214 netif_receive_skb(skb);
3215 }
3216
3217 skb = get_new_skb(ugeth, bd);
3218 if (!skb) {
3219 if (netif_msg_rx_err(ugeth))
3220 pr_warn("No Rx Data Buffer\n");
3221 dev->stats.rx_dropped++;
3222 break;
3223 }
3224
3225 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = skb;
3226
3227 /* update to point at the next skb */
3228 ugeth->skb_currx[rxQ] =
3229 (ugeth->skb_currx[rxQ] +
3230 1) & RX_RING_MOD_MASK(ugeth->ug_info->bdRingLenRx[rxQ]);
3231
3232 if (bd_status & R_W)
3233 bd = ugeth->p_rx_bd_ring[rxQ];
3234 else
3235 bd += sizeof(struct qe_bd);
3236
3237 bd_status = in_be32((u32 __iomem *)bd);
3238 }
3239
3240 ugeth->rxBd[rxQ] = bd;
3241 return howmany;
3242 }
3243
ucc_geth_tx(struct net_device * dev,u8 txQ)3244 static int ucc_geth_tx(struct net_device *dev, u8 txQ)
3245 {
3246 /* Start from the next BD that should be filled */
3247 struct ucc_geth_private *ugeth = netdev_priv(dev);
3248 u8 __iomem *bd; /* BD pointer */
3249 u32 bd_status;
3250
3251 bd = ugeth->confBd[txQ];
3252 bd_status = in_be32((u32 __iomem *)bd);
3253
3254 /* Normal processing. */
3255 while ((bd_status & T_R) == 0) {
3256 struct sk_buff *skb;
3257
3258 /* BD contains already transmitted buffer. */
3259 /* Handle the transmitted buffer and release */
3260 /* the BD to be used with the current frame */
3261
3262 skb = ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]];
3263 if (!skb)
3264 break;
3265
3266 dev->stats.tx_packets++;
3267
3268 dev_consume_skb_any(skb);
3269
3270 ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]] = NULL;
3271 ugeth->skb_dirtytx[txQ] =
3272 (ugeth->skb_dirtytx[txQ] +
3273 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3274
3275 /* We freed a buffer, so now we can restart transmission */
3276 if (netif_queue_stopped(dev))
3277 netif_wake_queue(dev);
3278
3279 /* Advance the confirmation BD pointer */
3280 if (!(bd_status & T_W))
3281 bd += sizeof(struct qe_bd);
3282 else
3283 bd = ugeth->p_tx_bd_ring[txQ];
3284 bd_status = in_be32((u32 __iomem *)bd);
3285 }
3286 ugeth->confBd[txQ] = bd;
3287 return 0;
3288 }
3289
ucc_geth_poll(struct napi_struct * napi,int budget)3290 static int ucc_geth_poll(struct napi_struct *napi, int budget)
3291 {
3292 struct ucc_geth_private *ugeth = container_of(napi, struct ucc_geth_private, napi);
3293 struct ucc_geth_info *ug_info;
3294 int howmany, i;
3295
3296 ug_info = ugeth->ug_info;
3297
3298 /* Tx event processing */
3299 spin_lock(&ugeth->lock);
3300 for (i = 0; i < ug_info->numQueuesTx; i++)
3301 ucc_geth_tx(ugeth->ndev, i);
3302 spin_unlock(&ugeth->lock);
3303
3304 howmany = 0;
3305 for (i = 0; i < ug_info->numQueuesRx; i++)
3306 howmany += ucc_geth_rx(ugeth, i, budget - howmany);
3307
3308 if (howmany < budget) {
3309 napi_complete(napi);
3310 setbits32(ugeth->uccf->p_uccm, UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3311 }
3312
3313 return howmany;
3314 }
3315
ucc_geth_irq_handler(int irq,void * info)3316 static irqreturn_t ucc_geth_irq_handler(int irq, void *info)
3317 {
3318 struct net_device *dev = info;
3319 struct ucc_geth_private *ugeth = netdev_priv(dev);
3320 struct ucc_fast_private *uccf;
3321 struct ucc_geth_info *ug_info;
3322 register u32 ucce;
3323 register u32 uccm;
3324
3325 ugeth_vdbg("%s: IN", __func__);
3326
3327 uccf = ugeth->uccf;
3328 ug_info = ugeth->ug_info;
3329
3330 /* read and clear events */
3331 ucce = (u32) in_be32(uccf->p_ucce);
3332 uccm = (u32) in_be32(uccf->p_uccm);
3333 ucce &= uccm;
3334 out_be32(uccf->p_ucce, ucce);
3335
3336 /* check for receive events that require processing */
3337 if (ucce & (UCCE_RX_EVENTS | UCCE_TX_EVENTS)) {
3338 if (napi_schedule_prep(&ugeth->napi)) {
3339 uccm &= ~(UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3340 out_be32(uccf->p_uccm, uccm);
3341 __napi_schedule(&ugeth->napi);
3342 }
3343 }
3344
3345 /* Errors and other events */
3346 if (ucce & UCCE_OTHER) {
3347 if (ucce & UCC_GETH_UCCE_BSY)
3348 dev->stats.rx_errors++;
3349 if (ucce & UCC_GETH_UCCE_TXE)
3350 dev->stats.tx_errors++;
3351 }
3352
3353 return IRQ_HANDLED;
3354 }
3355
3356 #ifdef CONFIG_NET_POLL_CONTROLLER
3357 /*
3358 * Polling 'interrupt' - used by things like netconsole to send skbs
3359 * without having to re-enable interrupts. It's not called while
3360 * the interrupt routine is executing.
3361 */
ucc_netpoll(struct net_device * dev)3362 static void ucc_netpoll(struct net_device *dev)
3363 {
3364 struct ucc_geth_private *ugeth = netdev_priv(dev);
3365 int irq = ugeth->ug_info->uf_info.irq;
3366
3367 disable_irq(irq);
3368 ucc_geth_irq_handler(irq, dev);
3369 enable_irq(irq);
3370 }
3371 #endif /* CONFIG_NET_POLL_CONTROLLER */
3372
ucc_geth_set_mac_addr(struct net_device * dev,void * p)3373 static int ucc_geth_set_mac_addr(struct net_device *dev, void *p)
3374 {
3375 struct ucc_geth_private *ugeth = netdev_priv(dev);
3376 struct sockaddr *addr = p;
3377
3378 if (!is_valid_ether_addr(addr->sa_data))
3379 return -EADDRNOTAVAIL;
3380
3381 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3382
3383 /*
3384 * If device is not running, we will set mac addr register
3385 * when opening the device.
3386 */
3387 if (!netif_running(dev))
3388 return 0;
3389
3390 spin_lock_irq(&ugeth->lock);
3391 init_mac_station_addr_regs(dev->dev_addr[0],
3392 dev->dev_addr[1],
3393 dev->dev_addr[2],
3394 dev->dev_addr[3],
3395 dev->dev_addr[4],
3396 dev->dev_addr[5],
3397 &ugeth->ug_regs->macstnaddr1,
3398 &ugeth->ug_regs->macstnaddr2);
3399 spin_unlock_irq(&ugeth->lock);
3400
3401 return 0;
3402 }
3403
ucc_geth_init_mac(struct ucc_geth_private * ugeth)3404 static int ucc_geth_init_mac(struct ucc_geth_private *ugeth)
3405 {
3406 struct net_device *dev = ugeth->ndev;
3407 int err;
3408
3409 err = ucc_struct_init(ugeth);
3410 if (err) {
3411 netif_err(ugeth, ifup, dev, "Cannot configure internal struct, aborting\n");
3412 goto err;
3413 }
3414
3415 err = ucc_geth_startup(ugeth);
3416 if (err) {
3417 netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3418 goto err;
3419 }
3420
3421 err = adjust_enet_interface(ugeth);
3422 if (err) {
3423 netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3424 goto err;
3425 }
3426
3427 /* Set MACSTNADDR1, MACSTNADDR2 */
3428 /* For more details see the hardware spec. */
3429 init_mac_station_addr_regs(dev->dev_addr[0],
3430 dev->dev_addr[1],
3431 dev->dev_addr[2],
3432 dev->dev_addr[3],
3433 dev->dev_addr[4],
3434 dev->dev_addr[5],
3435 &ugeth->ug_regs->macstnaddr1,
3436 &ugeth->ug_regs->macstnaddr2);
3437
3438 err = ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3439 if (err) {
3440 netif_err(ugeth, ifup, dev, "Cannot enable net device, aborting\n");
3441 goto err;
3442 }
3443
3444 return 0;
3445 err:
3446 ucc_geth_stop(ugeth);
3447 return err;
3448 }
3449
3450 /* Called when something needs to use the ethernet device */
3451 /* Returns 0 for success. */
ucc_geth_open(struct net_device * dev)3452 static int ucc_geth_open(struct net_device *dev)
3453 {
3454 struct ucc_geth_private *ugeth = netdev_priv(dev);
3455 int err;
3456
3457 ugeth_vdbg("%s: IN", __func__);
3458
3459 /* Test station address */
3460 if (dev->dev_addr[0] & ENET_GROUP_ADDR) {
3461 netif_err(ugeth, ifup, dev,
3462 "Multicast address used for station address - is this what you wanted?\n");
3463 return -EINVAL;
3464 }
3465
3466 err = init_phy(dev);
3467 if (err) {
3468 netif_err(ugeth, ifup, dev, "Cannot initialize PHY, aborting\n");
3469 return err;
3470 }
3471
3472 err = ucc_geth_init_mac(ugeth);
3473 if (err) {
3474 netif_err(ugeth, ifup, dev, "Cannot initialize MAC, aborting\n");
3475 goto err;
3476 }
3477
3478 err = request_irq(ugeth->ug_info->uf_info.irq, ucc_geth_irq_handler,
3479 0, "UCC Geth", dev);
3480 if (err) {
3481 netif_err(ugeth, ifup, dev, "Cannot get IRQ for net device, aborting\n");
3482 goto err;
3483 }
3484
3485 phy_start(ugeth->phydev);
3486 napi_enable(&ugeth->napi);
3487 netif_start_queue(dev);
3488
3489 device_set_wakeup_capable(&dev->dev,
3490 qe_alive_during_sleep() || ugeth->phydev->irq);
3491 device_set_wakeup_enable(&dev->dev, ugeth->wol_en);
3492
3493 return err;
3494
3495 err:
3496 ucc_geth_stop(ugeth);
3497 return err;
3498 }
3499
3500 /* Stops the kernel queue, and halts the controller */
ucc_geth_close(struct net_device * dev)3501 static int ucc_geth_close(struct net_device *dev)
3502 {
3503 struct ucc_geth_private *ugeth = netdev_priv(dev);
3504
3505 ugeth_vdbg("%s: IN", __func__);
3506
3507 napi_disable(&ugeth->napi);
3508
3509 cancel_work_sync(&ugeth->timeout_work);
3510 ucc_geth_stop(ugeth);
3511 phy_disconnect(ugeth->phydev);
3512 ugeth->phydev = NULL;
3513
3514 free_irq(ugeth->ug_info->uf_info.irq, ugeth->ndev);
3515
3516 netif_stop_queue(dev);
3517
3518 return 0;
3519 }
3520
3521 /* Reopen device. This will reset the MAC and PHY. */
ucc_geth_timeout_work(struct work_struct * work)3522 static void ucc_geth_timeout_work(struct work_struct *work)
3523 {
3524 struct ucc_geth_private *ugeth;
3525 struct net_device *dev;
3526
3527 ugeth = container_of(work, struct ucc_geth_private, timeout_work);
3528 dev = ugeth->ndev;
3529
3530 ugeth_vdbg("%s: IN", __func__);
3531
3532 dev->stats.tx_errors++;
3533
3534 ugeth_dump_regs(ugeth);
3535
3536 if (dev->flags & IFF_UP) {
3537 /*
3538 * Must reset MAC *and* PHY. This is done by reopening
3539 * the device.
3540 */
3541 netif_tx_stop_all_queues(dev);
3542 ucc_geth_stop(ugeth);
3543 ucc_geth_init_mac(ugeth);
3544 /* Must start PHY here */
3545 phy_start(ugeth->phydev);
3546 netif_tx_start_all_queues(dev);
3547 }
3548
3549 netif_tx_schedule_all(dev);
3550 }
3551
3552 /*
3553 * ucc_geth_timeout gets called when a packet has not been
3554 * transmitted after a set amount of time.
3555 */
ucc_geth_timeout(struct net_device * dev)3556 static void ucc_geth_timeout(struct net_device *dev)
3557 {
3558 struct ucc_geth_private *ugeth = netdev_priv(dev);
3559
3560 schedule_work(&ugeth->timeout_work);
3561 }
3562
3563
3564 #ifdef CONFIG_PM
3565
ucc_geth_suspend(struct platform_device * ofdev,pm_message_t state)3566 static int ucc_geth_suspend(struct platform_device *ofdev, pm_message_t state)
3567 {
3568 struct net_device *ndev = platform_get_drvdata(ofdev);
3569 struct ucc_geth_private *ugeth = netdev_priv(ndev);
3570
3571 if (!netif_running(ndev))
3572 return 0;
3573
3574 netif_device_detach(ndev);
3575 napi_disable(&ugeth->napi);
3576
3577 /*
3578 * Disable the controller, otherwise we'll wakeup on any network
3579 * activity.
3580 */
3581 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
3582
3583 if (ugeth->wol_en & WAKE_MAGIC) {
3584 setbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3585 setbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3586 ucc_fast_enable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3587 } else if (!(ugeth->wol_en & WAKE_PHY)) {
3588 phy_stop(ugeth->phydev);
3589 }
3590
3591 return 0;
3592 }
3593
ucc_geth_resume(struct platform_device * ofdev)3594 static int ucc_geth_resume(struct platform_device *ofdev)
3595 {
3596 struct net_device *ndev = platform_get_drvdata(ofdev);
3597 struct ucc_geth_private *ugeth = netdev_priv(ndev);
3598 int err;
3599
3600 if (!netif_running(ndev))
3601 return 0;
3602
3603 if (qe_alive_during_sleep()) {
3604 if (ugeth->wol_en & WAKE_MAGIC) {
3605 ucc_fast_disable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3606 clrbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3607 clrbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3608 }
3609 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3610 } else {
3611 /*
3612 * Full reinitialization is required if QE shuts down
3613 * during sleep.
3614 */
3615 ucc_geth_memclean(ugeth);
3616
3617 err = ucc_geth_init_mac(ugeth);
3618 if (err) {
3619 netdev_err(ndev, "Cannot initialize MAC, aborting\n");
3620 return err;
3621 }
3622 }
3623
3624 ugeth->oldlink = 0;
3625 ugeth->oldspeed = 0;
3626 ugeth->oldduplex = -1;
3627
3628 phy_stop(ugeth->phydev);
3629 phy_start(ugeth->phydev);
3630
3631 napi_enable(&ugeth->napi);
3632 netif_device_attach(ndev);
3633
3634 return 0;
3635 }
3636
3637 #else
3638 #define ucc_geth_suspend NULL
3639 #define ucc_geth_resume NULL
3640 #endif
3641
to_phy_interface(const char * phy_connection_type)3642 static phy_interface_t to_phy_interface(const char *phy_connection_type)
3643 {
3644 if (strcasecmp(phy_connection_type, "mii") == 0)
3645 return PHY_INTERFACE_MODE_MII;
3646 if (strcasecmp(phy_connection_type, "gmii") == 0)
3647 return PHY_INTERFACE_MODE_GMII;
3648 if (strcasecmp(phy_connection_type, "tbi") == 0)
3649 return PHY_INTERFACE_MODE_TBI;
3650 if (strcasecmp(phy_connection_type, "rmii") == 0)
3651 return PHY_INTERFACE_MODE_RMII;
3652 if (strcasecmp(phy_connection_type, "rgmii") == 0)
3653 return PHY_INTERFACE_MODE_RGMII;
3654 if (strcasecmp(phy_connection_type, "rgmii-id") == 0)
3655 return PHY_INTERFACE_MODE_RGMII_ID;
3656 if (strcasecmp(phy_connection_type, "rgmii-txid") == 0)
3657 return PHY_INTERFACE_MODE_RGMII_TXID;
3658 if (strcasecmp(phy_connection_type, "rgmii-rxid") == 0)
3659 return PHY_INTERFACE_MODE_RGMII_RXID;
3660 if (strcasecmp(phy_connection_type, "rtbi") == 0)
3661 return PHY_INTERFACE_MODE_RTBI;
3662 if (strcasecmp(phy_connection_type, "sgmii") == 0)
3663 return PHY_INTERFACE_MODE_SGMII;
3664
3665 return PHY_INTERFACE_MODE_MII;
3666 }
3667
ucc_geth_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3668 static int ucc_geth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3669 {
3670 struct ucc_geth_private *ugeth = netdev_priv(dev);
3671
3672 if (!netif_running(dev))
3673 return -EINVAL;
3674
3675 if (!ugeth->phydev)
3676 return -ENODEV;
3677
3678 return phy_mii_ioctl(ugeth->phydev, rq, cmd);
3679 }
3680
3681 static const struct net_device_ops ucc_geth_netdev_ops = {
3682 .ndo_open = ucc_geth_open,
3683 .ndo_stop = ucc_geth_close,
3684 .ndo_start_xmit = ucc_geth_start_xmit,
3685 .ndo_validate_addr = eth_validate_addr,
3686 .ndo_set_mac_address = ucc_geth_set_mac_addr,
3687 .ndo_change_mtu = eth_change_mtu,
3688 .ndo_set_rx_mode = ucc_geth_set_multi,
3689 .ndo_tx_timeout = ucc_geth_timeout,
3690 .ndo_do_ioctl = ucc_geth_ioctl,
3691 #ifdef CONFIG_NET_POLL_CONTROLLER
3692 .ndo_poll_controller = ucc_netpoll,
3693 #endif
3694 };
3695
ucc_geth_probe(struct platform_device * ofdev)3696 static int ucc_geth_probe(struct platform_device* ofdev)
3697 {
3698 struct device *device = &ofdev->dev;
3699 struct device_node *np = ofdev->dev.of_node;
3700 struct net_device *dev = NULL;
3701 struct ucc_geth_private *ugeth = NULL;
3702 struct ucc_geth_info *ug_info;
3703 struct resource res;
3704 int err, ucc_num, max_speed = 0;
3705 const unsigned int *prop;
3706 const char *sprop;
3707 const void *mac_addr;
3708 phy_interface_t phy_interface;
3709 static const int enet_to_speed[] = {
3710 SPEED_10, SPEED_10, SPEED_10,
3711 SPEED_100, SPEED_100, SPEED_100,
3712 SPEED_1000, SPEED_1000, SPEED_1000, SPEED_1000,
3713 };
3714 static const phy_interface_t enet_to_phy_interface[] = {
3715 PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_RMII,
3716 PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_MII,
3717 PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII,
3718 PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_RGMII,
3719 PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_RTBI,
3720 PHY_INTERFACE_MODE_SGMII,
3721 };
3722
3723 ugeth_vdbg("%s: IN", __func__);
3724
3725 prop = of_get_property(np, "cell-index", NULL);
3726 if (!prop) {
3727 prop = of_get_property(np, "device-id", NULL);
3728 if (!prop)
3729 return -ENODEV;
3730 }
3731
3732 ucc_num = *prop - 1;
3733 if ((ucc_num < 0) || (ucc_num > 7))
3734 return -ENODEV;
3735
3736 ug_info = &ugeth_info[ucc_num];
3737 if (ug_info == NULL) {
3738 if (netif_msg_probe(&debug))
3739 pr_err("[%d] Missing additional data!\n", ucc_num);
3740 return -ENODEV;
3741 }
3742
3743 ug_info->uf_info.ucc_num = ucc_num;
3744
3745 sprop = of_get_property(np, "rx-clock-name", NULL);
3746 if (sprop) {
3747 ug_info->uf_info.rx_clock = qe_clock_source(sprop);
3748 if ((ug_info->uf_info.rx_clock < QE_CLK_NONE) ||
3749 (ug_info->uf_info.rx_clock > QE_CLK24)) {
3750 pr_err("invalid rx-clock-name property\n");
3751 return -EINVAL;
3752 }
3753 } else {
3754 prop = of_get_property(np, "rx-clock", NULL);
3755 if (!prop) {
3756 /* If both rx-clock-name and rx-clock are missing,
3757 we want to tell people to use rx-clock-name. */
3758 pr_err("missing rx-clock-name property\n");
3759 return -EINVAL;
3760 }
3761 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3762 pr_err("invalid rx-clock propperty\n");
3763 return -EINVAL;
3764 }
3765 ug_info->uf_info.rx_clock = *prop;
3766 }
3767
3768 sprop = of_get_property(np, "tx-clock-name", NULL);
3769 if (sprop) {
3770 ug_info->uf_info.tx_clock = qe_clock_source(sprop);
3771 if ((ug_info->uf_info.tx_clock < QE_CLK_NONE) ||
3772 (ug_info->uf_info.tx_clock > QE_CLK24)) {
3773 pr_err("invalid tx-clock-name property\n");
3774 return -EINVAL;
3775 }
3776 } else {
3777 prop = of_get_property(np, "tx-clock", NULL);
3778 if (!prop) {
3779 pr_err("missing tx-clock-name property\n");
3780 return -EINVAL;
3781 }
3782 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3783 pr_err("invalid tx-clock property\n");
3784 return -EINVAL;
3785 }
3786 ug_info->uf_info.tx_clock = *prop;
3787 }
3788
3789 err = of_address_to_resource(np, 0, &res);
3790 if (err)
3791 return -EINVAL;
3792
3793 ug_info->uf_info.regs = res.start;
3794 ug_info->uf_info.irq = irq_of_parse_and_map(np, 0);
3795
3796 ug_info->phy_node = of_parse_phandle(np, "phy-handle", 0);
3797 if (!ug_info->phy_node && of_phy_is_fixed_link(np)) {
3798 /*
3799 * In the case of a fixed PHY, the DT node associated
3800 * to the PHY is the Ethernet MAC DT node.
3801 */
3802 err = of_phy_register_fixed_link(np);
3803 if (err)
3804 return err;
3805 ug_info->phy_node = of_node_get(np);
3806 }
3807
3808 /* Find the TBI PHY node. If it's not there, we don't support SGMII */
3809 ug_info->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
3810
3811 /* get the phy interface type, or default to MII */
3812 prop = of_get_property(np, "phy-connection-type", NULL);
3813 if (!prop) {
3814 /* handle interface property present in old trees */
3815 prop = of_get_property(ug_info->phy_node, "interface", NULL);
3816 if (prop != NULL) {
3817 phy_interface = enet_to_phy_interface[*prop];
3818 max_speed = enet_to_speed[*prop];
3819 } else
3820 phy_interface = PHY_INTERFACE_MODE_MII;
3821 } else {
3822 phy_interface = to_phy_interface((const char *)prop);
3823 }
3824
3825 /* get speed, or derive from PHY interface */
3826 if (max_speed == 0)
3827 switch (phy_interface) {
3828 case PHY_INTERFACE_MODE_GMII:
3829 case PHY_INTERFACE_MODE_RGMII:
3830 case PHY_INTERFACE_MODE_RGMII_ID:
3831 case PHY_INTERFACE_MODE_RGMII_RXID:
3832 case PHY_INTERFACE_MODE_RGMII_TXID:
3833 case PHY_INTERFACE_MODE_TBI:
3834 case PHY_INTERFACE_MODE_RTBI:
3835 case PHY_INTERFACE_MODE_SGMII:
3836 max_speed = SPEED_1000;
3837 break;
3838 default:
3839 max_speed = SPEED_100;
3840 break;
3841 }
3842
3843 if (max_speed == SPEED_1000) {
3844 unsigned int snums = qe_get_num_of_snums();
3845
3846 /* configure muram FIFOs for gigabit operation */
3847 ug_info->uf_info.urfs = UCC_GETH_URFS_GIGA_INIT;
3848 ug_info->uf_info.urfet = UCC_GETH_URFET_GIGA_INIT;
3849 ug_info->uf_info.urfset = UCC_GETH_URFSET_GIGA_INIT;
3850 ug_info->uf_info.utfs = UCC_GETH_UTFS_GIGA_INIT;
3851 ug_info->uf_info.utfet = UCC_GETH_UTFET_GIGA_INIT;
3852 ug_info->uf_info.utftt = UCC_GETH_UTFTT_GIGA_INIT;
3853 ug_info->numThreadsTx = UCC_GETH_NUM_OF_THREADS_4;
3854
3855 /* If QE's snum number is 46/76 which means we need to support
3856 * 4 UECs at 1000Base-T simultaneously, we need to allocate
3857 * more Threads to Rx.
3858 */
3859 if ((snums == 76) || (snums == 46))
3860 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_6;
3861 else
3862 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_4;
3863 }
3864
3865 if (netif_msg_probe(&debug))
3866 pr_info("UCC%1d at 0x%8x (irq = %d)\n",
3867 ug_info->uf_info.ucc_num + 1, ug_info->uf_info.regs,
3868 ug_info->uf_info.irq);
3869
3870 /* Create an ethernet device instance */
3871 dev = alloc_etherdev(sizeof(*ugeth));
3872
3873 if (dev == NULL) {
3874 of_node_put(ug_info->tbi_node);
3875 of_node_put(ug_info->phy_node);
3876 return -ENOMEM;
3877 }
3878
3879 ugeth = netdev_priv(dev);
3880 spin_lock_init(&ugeth->lock);
3881
3882 /* Create CQs for hash tables */
3883 INIT_LIST_HEAD(&ugeth->group_hash_q);
3884 INIT_LIST_HEAD(&ugeth->ind_hash_q);
3885
3886 dev_set_drvdata(device, dev);
3887
3888 /* Set the dev->base_addr to the gfar reg region */
3889 dev->base_addr = (unsigned long)(ug_info->uf_info.regs);
3890
3891 SET_NETDEV_DEV(dev, device);
3892
3893 /* Fill in the dev structure */
3894 uec_set_ethtool_ops(dev);
3895 dev->netdev_ops = &ucc_geth_netdev_ops;
3896 dev->watchdog_timeo = TX_TIMEOUT;
3897 INIT_WORK(&ugeth->timeout_work, ucc_geth_timeout_work);
3898 netif_napi_add(dev, &ugeth->napi, ucc_geth_poll, 64);
3899 dev->mtu = 1500;
3900
3901 ugeth->msg_enable = netif_msg_init(debug.msg_enable, UGETH_MSG_DEFAULT);
3902 ugeth->phy_interface = phy_interface;
3903 ugeth->max_speed = max_speed;
3904
3905 /* Carrier starts down, phylib will bring it up */
3906 netif_carrier_off(dev);
3907
3908 err = register_netdev(dev);
3909 if (err) {
3910 if (netif_msg_probe(ugeth))
3911 pr_err("%s: Cannot register net device, aborting\n",
3912 dev->name);
3913 free_netdev(dev);
3914 of_node_put(ug_info->tbi_node);
3915 of_node_put(ug_info->phy_node);
3916 return err;
3917 }
3918
3919 mac_addr = of_get_mac_address(np);
3920 if (mac_addr)
3921 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
3922
3923 ugeth->ug_info = ug_info;
3924 ugeth->dev = device;
3925 ugeth->ndev = dev;
3926 ugeth->node = np;
3927
3928 return 0;
3929 }
3930
ucc_geth_remove(struct platform_device * ofdev)3931 static int ucc_geth_remove(struct platform_device* ofdev)
3932 {
3933 struct net_device *dev = platform_get_drvdata(ofdev);
3934 struct ucc_geth_private *ugeth = netdev_priv(dev);
3935
3936 unregister_netdev(dev);
3937 ucc_geth_memclean(ugeth);
3938 of_node_put(ugeth->ug_info->tbi_node);
3939 of_node_put(ugeth->ug_info->phy_node);
3940 free_netdev(dev);
3941
3942 return 0;
3943 }
3944
3945 static const struct of_device_id ucc_geth_match[] = {
3946 {
3947 .type = "network",
3948 .compatible = "ucc_geth",
3949 },
3950 {},
3951 };
3952
3953 MODULE_DEVICE_TABLE(of, ucc_geth_match);
3954
3955 static struct platform_driver ucc_geth_driver = {
3956 .driver = {
3957 .name = DRV_NAME,
3958 .of_match_table = ucc_geth_match,
3959 },
3960 .probe = ucc_geth_probe,
3961 .remove = ucc_geth_remove,
3962 .suspend = ucc_geth_suspend,
3963 .resume = ucc_geth_resume,
3964 };
3965
ucc_geth_init(void)3966 static int __init ucc_geth_init(void)
3967 {
3968 int i, ret;
3969
3970 if (netif_msg_drv(&debug))
3971 pr_info(DRV_DESC "\n");
3972 for (i = 0; i < 8; i++)
3973 memcpy(&(ugeth_info[i]), &ugeth_primary_info,
3974 sizeof(ugeth_primary_info));
3975
3976 ret = platform_driver_register(&ucc_geth_driver);
3977
3978 return ret;
3979 }
3980
ucc_geth_exit(void)3981 static void __exit ucc_geth_exit(void)
3982 {
3983 platform_driver_unregister(&ucc_geth_driver);
3984 }
3985
3986 module_init(ucc_geth_init);
3987 module_exit(ucc_geth_exit);
3988
3989 MODULE_AUTHOR("Freescale Semiconductor, Inc");
3990 MODULE_DESCRIPTION(DRV_DESC);
3991 MODULE_VERSION(DRV_VERSION);
3992 MODULE_LICENSE("GPL");
3993