• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50 
51 #ifndef HFI1_VERBS_H
52 #define HFI1_VERBS_H
53 
54 #include <linux/types.h>
55 #include <linux/seqlock.h>
56 #include <linux/kernel.h>
57 #include <linux/interrupt.h>
58 #include <linux/kref.h>
59 #include <linux/workqueue.h>
60 #include <linux/kthread.h>
61 #include <linux/completion.h>
62 #include <rdma/ib_pack.h>
63 #include <rdma/ib_user_verbs.h>
64 #include <rdma/ib_mad.h>
65 
66 struct hfi1_ctxtdata;
67 struct hfi1_pportdata;
68 struct hfi1_devdata;
69 struct hfi1_packet;
70 
71 #include "iowait.h"
72 
73 #define HFI1_MAX_RDMA_ATOMIC     16
74 #define HFI1_GUIDS_PER_PORT	5
75 
76 /*
77  * Increment this value if any changes that break userspace ABI
78  * compatibility are made.
79  */
80 #define HFI1_UVERBS_ABI_VERSION       2
81 
82 /*
83  * Define an ib_cq_notify value that is not valid so we know when CQ
84  * notifications are armed.
85  */
86 #define IB_CQ_NONE      (IB_CQ_NEXT_COMP + 1)
87 
88 #define IB_SEQ_NAK	(3 << 29)
89 
90 /* AETH NAK opcode values */
91 #define IB_RNR_NAK                      0x20
92 #define IB_NAK_PSN_ERROR                0x60
93 #define IB_NAK_INVALID_REQUEST          0x61
94 #define IB_NAK_REMOTE_ACCESS_ERROR      0x62
95 #define IB_NAK_REMOTE_OPERATIONAL_ERROR 0x63
96 #define IB_NAK_INVALID_RD_REQUEST       0x64
97 
98 /* Flags for checking QP state (see ib_hfi1_state_ops[]) */
99 #define HFI1_POST_SEND_OK                0x01
100 #define HFI1_POST_RECV_OK                0x02
101 #define HFI1_PROCESS_RECV_OK             0x04
102 #define HFI1_PROCESS_SEND_OK             0x08
103 #define HFI1_PROCESS_NEXT_SEND_OK        0x10
104 #define HFI1_FLUSH_SEND			0x20
105 #define HFI1_FLUSH_RECV			0x40
106 #define HFI1_PROCESS_OR_FLUSH_SEND \
107 	(HFI1_PROCESS_SEND_OK | HFI1_FLUSH_SEND)
108 
109 /* IB Performance Manager status values */
110 #define IB_PMA_SAMPLE_STATUS_DONE       0x00
111 #define IB_PMA_SAMPLE_STATUS_STARTED    0x01
112 #define IB_PMA_SAMPLE_STATUS_RUNNING    0x02
113 
114 /* Mandatory IB performance counter select values. */
115 #define IB_PMA_PORT_XMIT_DATA   cpu_to_be16(0x0001)
116 #define IB_PMA_PORT_RCV_DATA    cpu_to_be16(0x0002)
117 #define IB_PMA_PORT_XMIT_PKTS   cpu_to_be16(0x0003)
118 #define IB_PMA_PORT_RCV_PKTS    cpu_to_be16(0x0004)
119 #define IB_PMA_PORT_XMIT_WAIT   cpu_to_be16(0x0005)
120 
121 #define HFI1_VENDOR_IPG		cpu_to_be16(0xFFA0)
122 
123 #define IB_BTH_REQ_ACK		(1 << 31)
124 #define IB_BTH_SOLICITED	(1 << 23)
125 #define IB_BTH_MIG_REQ		(1 << 22)
126 
127 #define IB_GRH_VERSION		6
128 #define IB_GRH_VERSION_MASK	0xF
129 #define IB_GRH_VERSION_SHIFT	28
130 #define IB_GRH_TCLASS_MASK	0xFF
131 #define IB_GRH_TCLASS_SHIFT	20
132 #define IB_GRH_FLOW_MASK	0xFFFFF
133 #define IB_GRH_FLOW_SHIFT	0
134 #define IB_GRH_NEXT_HDR		0x1B
135 
136 #define IB_DEFAULT_GID_PREFIX	cpu_to_be64(0xfe80000000000000ULL)
137 
138 /* flags passed by hfi1_ib_rcv() */
139 enum {
140 	HFI1_HAS_GRH = (1 << 0),
141 };
142 
143 struct ib_reth {
144 	__be64 vaddr;
145 	__be32 rkey;
146 	__be32 length;
147 } __packed;
148 
149 struct ib_atomic_eth {
150 	__be32 vaddr[2];        /* unaligned so access as 2 32-bit words */
151 	__be32 rkey;
152 	__be64 swap_data;
153 	__be64 compare_data;
154 } __packed;
155 
156 union ib_ehdrs {
157 	struct {
158 		__be32 deth[2];
159 		__be32 imm_data;
160 	} ud;
161 	struct {
162 		struct ib_reth reth;
163 		__be32 imm_data;
164 	} rc;
165 	struct {
166 		__be32 aeth;
167 		__be32 atomic_ack_eth[2];
168 	} at;
169 	__be32 imm_data;
170 	__be32 aeth;
171 	struct ib_atomic_eth atomic_eth;
172 }  __packed;
173 
174 struct hfi1_other_headers {
175 	__be32 bth[3];
176 	union ib_ehdrs u;
177 } __packed;
178 
179 /*
180  * Note that UD packets with a GRH header are 8+40+12+8 = 68 bytes
181  * long (72 w/ imm_data).  Only the first 56 bytes of the IB header
182  * will be in the eager header buffer.  The remaining 12 or 16 bytes
183  * are in the data buffer.
184  */
185 struct hfi1_ib_header {
186 	__be16 lrh[4];
187 	union {
188 		struct {
189 			struct ib_grh grh;
190 			struct hfi1_other_headers oth;
191 		} l;
192 		struct hfi1_other_headers oth;
193 	} u;
194 } __packed;
195 
196 struct ahg_ib_header {
197 	struct sdma_engine *sde;
198 	u32 ahgdesc[2];
199 	u16 tx_flags;
200 	u8 ahgcount;
201 	u8 ahgidx;
202 	struct hfi1_ib_header ibh;
203 };
204 
205 struct hfi1_pio_header {
206 	__le64 pbc;
207 	struct hfi1_ib_header hdr;
208 } __packed;
209 
210 /*
211  * used for force cacheline alignment for AHG
212  */
213 struct tx_pio_header {
214 	struct hfi1_pio_header phdr;
215 } ____cacheline_aligned;
216 
217 /*
218  * There is one struct hfi1_mcast for each multicast GID.
219  * All attached QPs are then stored as a list of
220  * struct hfi1_mcast_qp.
221  */
222 struct hfi1_mcast_qp {
223 	struct list_head list;
224 	struct hfi1_qp *qp;
225 };
226 
227 struct hfi1_mcast {
228 	struct rb_node rb_node;
229 	union ib_gid mgid;
230 	struct list_head qp_list;
231 	wait_queue_head_t wait;
232 	atomic_t refcount;
233 	int n_attached;
234 };
235 
236 /* Protection domain */
237 struct hfi1_pd {
238 	struct ib_pd ibpd;
239 	int user;               /* non-zero if created from user space */
240 };
241 
242 /* Address Handle */
243 struct hfi1_ah {
244 	struct ib_ah ibah;
245 	struct ib_ah_attr attr;
246 	atomic_t refcount;
247 };
248 
249 /*
250  * This structure is used by hfi1_mmap() to validate an offset
251  * when an mmap() request is made.  The vm_area_struct then uses
252  * this as its vm_private_data.
253  */
254 struct hfi1_mmap_info {
255 	struct list_head pending_mmaps;
256 	struct ib_ucontext *context;
257 	void *obj;
258 	__u64 offset;
259 	struct kref ref;
260 	unsigned size;
261 };
262 
263 /*
264  * This structure is used to contain the head pointer, tail pointer,
265  * and completion queue entries as a single memory allocation so
266  * it can be mmap'ed into user space.
267  */
268 struct hfi1_cq_wc {
269 	u32 head;               /* index of next entry to fill */
270 	u32 tail;               /* index of next ib_poll_cq() entry */
271 	union {
272 		/* these are actually size ibcq.cqe + 1 */
273 		struct ib_uverbs_wc uqueue[0];
274 		struct ib_wc kqueue[0];
275 	};
276 };
277 
278 /*
279  * The completion queue structure.
280  */
281 struct hfi1_cq {
282 	struct ib_cq ibcq;
283 	struct kthread_work comptask;
284 	struct hfi1_devdata *dd;
285 	spinlock_t lock; /* protect changes in this struct */
286 	u8 notify;
287 	u8 triggered;
288 	struct hfi1_cq_wc *queue;
289 	struct hfi1_mmap_info *ip;
290 };
291 
292 /*
293  * A segment is a linear region of low physical memory.
294  * Used by the verbs layer.
295  */
296 struct hfi1_seg {
297 	void *vaddr;
298 	size_t length;
299 };
300 
301 /* The number of hfi1_segs that fit in a page. */
302 #define HFI1_SEGSZ     (PAGE_SIZE / sizeof(struct hfi1_seg))
303 
304 struct hfi1_segarray {
305 	struct hfi1_seg segs[HFI1_SEGSZ];
306 };
307 
308 struct hfi1_mregion {
309 	struct ib_pd *pd;       /* shares refcnt of ibmr.pd */
310 	u64 user_base;          /* User's address for this region */
311 	u64 iova;               /* IB start address of this region */
312 	size_t length;
313 	u32 lkey;
314 	u32 offset;             /* offset (bytes) to start of region */
315 	int access_flags;
316 	u32 max_segs;           /* number of hfi1_segs in all the arrays */
317 	u32 mapsz;              /* size of the map array */
318 	u8  page_shift;         /* 0 - non unform/non powerof2 sizes */
319 	u8  lkey_published;     /* in global table */
320 	struct completion comp; /* complete when refcount goes to zero */
321 	atomic_t refcount;
322 	struct hfi1_segarray *map[0];    /* the segments */
323 };
324 
325 /*
326  * These keep track of the copy progress within a memory region.
327  * Used by the verbs layer.
328  */
329 struct hfi1_sge {
330 	struct hfi1_mregion *mr;
331 	void *vaddr;            /* kernel virtual address of segment */
332 	u32 sge_length;         /* length of the SGE */
333 	u32 length;             /* remaining length of the segment */
334 	u16 m;                  /* current index: mr->map[m] */
335 	u16 n;                  /* current index: mr->map[m]->segs[n] */
336 };
337 
338 /* Memory region */
339 struct hfi1_mr {
340 	struct ib_mr ibmr;
341 	struct ib_umem *umem;
342 	struct hfi1_mregion mr;  /* must be last */
343 };
344 
345 /*
346  * Send work request queue entry.
347  * The size of the sg_list is determined when the QP is created and stored
348  * in qp->s_max_sge.
349  */
350 struct hfi1_swqe {
351 	union {
352 		struct ib_send_wr wr;   /* don't use wr.sg_list */
353 		struct ib_rdma_wr rdma_wr;
354 		struct ib_atomic_wr atomic_wr;
355 		struct ib_ud_wr ud_wr;
356 	};
357 	u32 psn;                /* first packet sequence number */
358 	u32 lpsn;               /* last packet sequence number */
359 	u32 ssn;                /* send sequence number */
360 	u32 length;             /* total length of data in sg_list */
361 	struct hfi1_sge sg_list[0];
362 };
363 
364 /*
365  * Receive work request queue entry.
366  * The size of the sg_list is determined when the QP (or SRQ) is created
367  * and stored in qp->r_rq.max_sge (or srq->rq.max_sge).
368  */
369 struct hfi1_rwqe {
370 	u64 wr_id;
371 	u8 num_sge;
372 	struct ib_sge sg_list[0];
373 };
374 
375 /*
376  * This structure is used to contain the head pointer, tail pointer,
377  * and receive work queue entries as a single memory allocation so
378  * it can be mmap'ed into user space.
379  * Note that the wq array elements are variable size so you can't
380  * just index into the array to get the N'th element;
381  * use get_rwqe_ptr() instead.
382  */
383 struct hfi1_rwq {
384 	u32 head;               /* new work requests posted to the head */
385 	u32 tail;               /* receives pull requests from here. */
386 	struct hfi1_rwqe wq[0];
387 };
388 
389 struct hfi1_rq {
390 	struct hfi1_rwq *wq;
391 	u32 size;               /* size of RWQE array */
392 	u8 max_sge;
393 	/* protect changes in this struct */
394 	spinlock_t lock ____cacheline_aligned_in_smp;
395 };
396 
397 struct hfi1_srq {
398 	struct ib_srq ibsrq;
399 	struct hfi1_rq rq;
400 	struct hfi1_mmap_info *ip;
401 	/* send signal when number of RWQEs < limit */
402 	u32 limit;
403 };
404 
405 struct hfi1_sge_state {
406 	struct hfi1_sge *sg_list;      /* next SGE to be used if any */
407 	struct hfi1_sge sge;   /* progress state for the current SGE */
408 	u32 total_len;
409 	u8 num_sge;
410 };
411 
412 /*
413  * This structure holds the information that the send tasklet needs
414  * to send a RDMA read response or atomic operation.
415  */
416 struct hfi1_ack_entry {
417 	u8 opcode;
418 	u8 sent;
419 	u32 psn;
420 	u32 lpsn;
421 	union {
422 		struct hfi1_sge rdma_sge;
423 		u64 atomic_data;
424 	};
425 };
426 
427 /*
428  * Variables prefixed with s_ are for the requester (sender).
429  * Variables prefixed with r_ are for the responder (receiver).
430  * Variables prefixed with ack_ are for responder replies.
431  *
432  * Common variables are protected by both r_rq.lock and s_lock in that order
433  * which only happens in modify_qp() or changing the QP 'state'.
434  */
435 struct hfi1_qp {
436 	struct ib_qp ibqp;
437 	/* read mostly fields above and below */
438 	struct ib_ah_attr remote_ah_attr;
439 	struct ib_ah_attr alt_ah_attr;
440 	struct hfi1_qp __rcu *next;           /* link list for QPN hash table */
441 	struct hfi1_swqe *s_wq;  /* send work queue */
442 	struct hfi1_mmap_info *ip;
443 	struct ahg_ib_header *s_hdr;     /* next packet header to send */
444 	u8 s_sc;			/* SC[0..4] for next packet */
445 	unsigned long timeout_jiffies;  /* computed from timeout */
446 
447 	enum ib_mtu path_mtu;
448 	int srate_mbps;		/* s_srate (below) converted to Mbit/s */
449 	u32 remote_qpn;
450 	u32 pmtu;		/* decoded from path_mtu */
451 	u32 qkey;               /* QKEY for this QP (for UD or RD) */
452 	u32 s_size;             /* send work queue size */
453 	u32 s_rnr_timeout;      /* number of milliseconds for RNR timeout */
454 	u32 s_ahgpsn;           /* set to the psn in the copy of the header */
455 
456 	u8 state;               /* QP state */
457 	u8 allowed_ops;		/* high order bits of allowed opcodes */
458 	u8 qp_access_flags;
459 	u8 alt_timeout;         /* Alternate path timeout for this QP */
460 	u8 timeout;             /* Timeout for this QP */
461 	u8 s_srate;
462 	u8 s_mig_state;
463 	u8 port_num;
464 	u8 s_pkey_index;        /* PKEY index to use */
465 	u8 s_alt_pkey_index;    /* Alternate path PKEY index to use */
466 	u8 r_max_rd_atomic;     /* max number of RDMA read/atomic to receive */
467 	u8 s_max_rd_atomic;     /* max number of RDMA read/atomic to send */
468 	u8 s_retry_cnt;         /* number of times to retry */
469 	u8 s_rnr_retry_cnt;
470 	u8 r_min_rnr_timer;     /* retry timeout value for RNR NAKs */
471 	u8 s_max_sge;           /* size of s_wq->sg_list */
472 	u8 s_draining;
473 
474 	/* start of read/write fields */
475 	atomic_t refcount ____cacheline_aligned_in_smp;
476 	wait_queue_head_t wait;
477 
478 
479 	struct hfi1_ack_entry s_ack_queue[HFI1_MAX_RDMA_ATOMIC + 1]
480 		____cacheline_aligned_in_smp;
481 	struct hfi1_sge_state s_rdma_read_sge;
482 
483 	spinlock_t r_lock ____cacheline_aligned_in_smp;      /* used for APM */
484 	unsigned long r_aflags;
485 	u64 r_wr_id;            /* ID for current receive WQE */
486 	u32 r_ack_psn;          /* PSN for next ACK or atomic ACK */
487 	u32 r_len;              /* total length of r_sge */
488 	u32 r_rcv_len;          /* receive data len processed */
489 	u32 r_psn;              /* expected rcv packet sequence number */
490 	u32 r_msn;              /* message sequence number */
491 
492 	u8 r_state;             /* opcode of last packet received */
493 	u8 r_flags;
494 	u8 r_head_ack_queue;    /* index into s_ack_queue[] */
495 
496 	struct list_head rspwait;       /* link for waiting to respond */
497 
498 	struct hfi1_sge_state r_sge;     /* current receive data */
499 	struct hfi1_rq r_rq;             /* receive work queue */
500 
501 	spinlock_t s_lock ____cacheline_aligned_in_smp;
502 	struct hfi1_sge_state *s_cur_sge;
503 	u32 s_flags;
504 	struct hfi1_swqe *s_wqe;
505 	struct hfi1_sge_state s_sge;     /* current send request data */
506 	struct hfi1_mregion *s_rdma_mr;
507 	struct sdma_engine *s_sde; /* current sde */
508 	u32 s_cur_size;         /* size of send packet in bytes */
509 	u32 s_len;              /* total length of s_sge */
510 	u32 s_rdma_read_len;    /* total length of s_rdma_read_sge */
511 	u32 s_next_psn;         /* PSN for next request */
512 	u32 s_last_psn;         /* last response PSN processed */
513 	u32 s_sending_psn;      /* lowest PSN that is being sent */
514 	u32 s_sending_hpsn;     /* highest PSN that is being sent */
515 	u32 s_psn;              /* current packet sequence number */
516 	u32 s_ack_rdma_psn;     /* PSN for sending RDMA read responses */
517 	u32 s_ack_psn;          /* PSN for acking sends and RDMA writes */
518 	u32 s_head;             /* new entries added here */
519 	u32 s_tail;             /* next entry to process */
520 	u32 s_cur;              /* current work queue entry */
521 	u32 s_acked;            /* last un-ACK'ed entry */
522 	u32 s_last;             /* last completed entry */
523 	u32 s_ssn;              /* SSN of tail entry */
524 	u32 s_lsn;              /* limit sequence number (credit) */
525 	u16 s_hdrwords;         /* size of s_hdr in 32 bit words */
526 	u16 s_rdma_ack_cnt;
527 	s8 s_ahgidx;
528 	u8 s_state;             /* opcode of last packet sent */
529 	u8 s_ack_state;         /* opcode of packet to ACK */
530 	u8 s_nak_state;         /* non-zero if NAK is pending */
531 	u8 r_nak_state;         /* non-zero if NAK is pending */
532 	u8 s_retry;             /* requester retry counter */
533 	u8 s_rnr_retry;         /* requester RNR retry counter */
534 	u8 s_num_rd_atomic;     /* number of RDMA read/atomic pending */
535 	u8 s_tail_ack_queue;    /* index into s_ack_queue[] */
536 
537 	struct hfi1_sge_state s_ack_rdma_sge;
538 	struct timer_list s_timer;
539 
540 	struct iowait s_iowait;
541 
542 	struct hfi1_sge r_sg_list[0] /* verified SGEs */
543 		____cacheline_aligned_in_smp;
544 };
545 
546 /*
547  * Atomic bit definitions for r_aflags.
548  */
549 #define HFI1_R_WRID_VALID        0
550 #define HFI1_R_REWIND_SGE        1
551 
552 /*
553  * Bit definitions for r_flags.
554  */
555 #define HFI1_R_REUSE_SGE 0x01
556 #define HFI1_R_RDMAR_SEQ 0x02
557 #define HFI1_R_RSP_NAK   0x04
558 #define HFI1_R_RSP_SEND  0x08
559 #define HFI1_R_COMM_EST  0x10
560 
561 /*
562  * Bit definitions for s_flags.
563  *
564  * HFI1_S_SIGNAL_REQ_WR - set if QP send WRs contain completion signaled
565  * HFI1_S_BUSY - send tasklet is processing the QP
566  * HFI1_S_TIMER - the RC retry timer is active
567  * HFI1_S_ACK_PENDING - an ACK is waiting to be sent after RDMA read/atomics
568  * HFI1_S_WAIT_FENCE - waiting for all prior RDMA read or atomic SWQEs
569  *                         before processing the next SWQE
570  * HFI1_S_WAIT_RDMAR - waiting for a RDMA read or atomic SWQE to complete
571  *                         before processing the next SWQE
572  * HFI1_S_WAIT_RNR - waiting for RNR timeout
573  * HFI1_S_WAIT_SSN_CREDIT - waiting for RC credits to process next SWQE
574  * HFI1_S_WAIT_DMA - waiting for send DMA queue to drain before generating
575  *                  next send completion entry not via send DMA
576  * HFI1_S_WAIT_PIO - waiting for a send buffer to be available
577  * HFI1_S_WAIT_TX - waiting for a struct verbs_txreq to be available
578  * HFI1_S_WAIT_DMA_DESC - waiting for DMA descriptors to be available
579  * HFI1_S_WAIT_KMEM - waiting for kernel memory to be available
580  * HFI1_S_WAIT_PSN - waiting for a packet to exit the send DMA queue
581  * HFI1_S_WAIT_ACK - waiting for an ACK packet before sending more requests
582  * HFI1_S_SEND_ONE - send one packet, request ACK, then wait for ACK
583  * HFI1_S_ECN - a BECN was queued to the send engine
584  */
585 #define HFI1_S_SIGNAL_REQ_WR	0x0001
586 #define HFI1_S_BUSY		0x0002
587 #define HFI1_S_TIMER		0x0004
588 #define HFI1_S_RESP_PENDING	0x0008
589 #define HFI1_S_ACK_PENDING	0x0010
590 #define HFI1_S_WAIT_FENCE	0x0020
591 #define HFI1_S_WAIT_RDMAR	0x0040
592 #define HFI1_S_WAIT_RNR		0x0080
593 #define HFI1_S_WAIT_SSN_CREDIT	0x0100
594 #define HFI1_S_WAIT_DMA		0x0200
595 #define HFI1_S_WAIT_PIO		0x0400
596 #define HFI1_S_WAIT_TX		0x0800
597 #define HFI1_S_WAIT_DMA_DESC	0x1000
598 #define HFI1_S_WAIT_KMEM		0x2000
599 #define HFI1_S_WAIT_PSN		0x4000
600 #define HFI1_S_WAIT_ACK		0x8000
601 #define HFI1_S_SEND_ONE		0x10000
602 #define HFI1_S_UNLIMITED_CREDIT	0x20000
603 #define HFI1_S_AHG_VALID		0x40000
604 #define HFI1_S_AHG_CLEAR		0x80000
605 #define HFI1_S_ECN		0x100000
606 
607 /*
608  * Wait flags that would prevent any packet type from being sent.
609  */
610 #define HFI1_S_ANY_WAIT_IO (HFI1_S_WAIT_PIO | HFI1_S_WAIT_TX | \
611 	HFI1_S_WAIT_DMA_DESC | HFI1_S_WAIT_KMEM)
612 
613 /*
614  * Wait flags that would prevent send work requests from making progress.
615  */
616 #define HFI1_S_ANY_WAIT_SEND (HFI1_S_WAIT_FENCE | HFI1_S_WAIT_RDMAR | \
617 	HFI1_S_WAIT_RNR | HFI1_S_WAIT_SSN_CREDIT | HFI1_S_WAIT_DMA | \
618 	HFI1_S_WAIT_PSN | HFI1_S_WAIT_ACK)
619 
620 #define HFI1_S_ANY_WAIT (HFI1_S_ANY_WAIT_IO | HFI1_S_ANY_WAIT_SEND)
621 
622 #define HFI1_PSN_CREDIT  16
623 
624 /*
625  * Since struct hfi1_swqe is not a fixed size, we can't simply index into
626  * struct hfi1_qp.s_wq.  This function does the array index computation.
627  */
get_swqe_ptr(struct hfi1_qp * qp,unsigned n)628 static inline struct hfi1_swqe *get_swqe_ptr(struct hfi1_qp *qp,
629 					     unsigned n)
630 {
631 	return (struct hfi1_swqe *)((char *)qp->s_wq +
632 				     (sizeof(struct hfi1_swqe) +
633 				      qp->s_max_sge *
634 				      sizeof(struct hfi1_sge)) * n);
635 }
636 
637 /*
638  * Since struct hfi1_rwqe is not a fixed size, we can't simply index into
639  * struct hfi1_rwq.wq.  This function does the array index computation.
640  */
get_rwqe_ptr(struct hfi1_rq * rq,unsigned n)641 static inline struct hfi1_rwqe *get_rwqe_ptr(struct hfi1_rq *rq, unsigned n)
642 {
643 	return (struct hfi1_rwqe *)
644 		((char *) rq->wq->wq +
645 		 (sizeof(struct hfi1_rwqe) +
646 		  rq->max_sge * sizeof(struct ib_sge)) * n);
647 }
648 
649 #define MAX_LKEY_TABLE_BITS 23
650 
651 struct hfi1_lkey_table {
652 	spinlock_t lock; /* protect changes in this struct */
653 	u32 next;               /* next unused index (speeds search) */
654 	u32 gen;                /* generation count */
655 	u32 max;                /* size of the table */
656 	struct hfi1_mregion __rcu **table;
657 };
658 
659 struct hfi1_opcode_stats {
660 	u64 n_packets;          /* number of packets */
661 	u64 n_bytes;            /* total number of bytes */
662 };
663 
664 struct hfi1_opcode_stats_perctx {
665 	struct hfi1_opcode_stats stats[256];
666 };
667 
inc_opstats(u32 tlen,struct hfi1_opcode_stats * stats)668 static inline void inc_opstats(
669 	u32 tlen,
670 	struct hfi1_opcode_stats *stats)
671 {
672 #ifdef CONFIG_DEBUG_FS
673 	stats->n_bytes += tlen;
674 	stats->n_packets++;
675 #endif
676 }
677 
678 struct hfi1_ibport {
679 	struct hfi1_qp __rcu *qp[2];
680 	struct ib_mad_agent *send_agent;	/* agent for SMI (traps) */
681 	struct hfi1_ah *sm_ah;
682 	struct hfi1_ah *smi_ah;
683 	struct rb_root mcast_tree;
684 	spinlock_t lock;		/* protect changes in this struct */
685 
686 	/* non-zero when timer is set */
687 	unsigned long mkey_lease_timeout;
688 	unsigned long trap_timeout;
689 	__be64 gid_prefix;      /* in network order */
690 	__be64 mkey;
691 	__be64 guids[HFI1_GUIDS_PER_PORT	- 1];	/* writable GUIDs */
692 	u64 tid;		/* TID for traps */
693 	u64 n_rc_resends;
694 	u64 n_seq_naks;
695 	u64 n_rdma_seq;
696 	u64 n_rnr_naks;
697 	u64 n_other_naks;
698 	u64 n_loop_pkts;
699 	u64 n_pkt_drops;
700 	u64 n_vl15_dropped;
701 	u64 n_rc_timeouts;
702 	u64 n_dmawait;
703 	u64 n_unaligned;
704 	u64 n_rc_dupreq;
705 	u64 n_rc_seqnak;
706 
707 	/* Hot-path per CPU counters to avoid cacheline trading to update */
708 	u64 z_rc_acks;
709 	u64 z_rc_qacks;
710 	u64 z_rc_delayed_comp;
711 	u64 __percpu *rc_acks;
712 	u64 __percpu *rc_qacks;
713 	u64 __percpu *rc_delayed_comp;
714 
715 	u32 port_cap_flags;
716 	u32 pma_sample_start;
717 	u32 pma_sample_interval;
718 	__be16 pma_counter_select[5];
719 	u16 pma_tag;
720 	u16 pkey_violations;
721 	u16 qkey_violations;
722 	u16 mkey_violations;
723 	u16 mkey_lease_period;
724 	u16 sm_lid;
725 	u16 repress_traps;
726 	u8 sm_sl;
727 	u8 mkeyprot;
728 	u8 subnet_timeout;
729 	u8 vl_high_limit;
730 	/* the first 16 entries are sl_to_vl for !OPA */
731 	u8 sl_to_sc[32];
732 	u8 sc_to_sl[32];
733 };
734 
735 
736 struct hfi1_qp_ibdev;
737 struct hfi1_ibdev {
738 	struct ib_device ibdev;
739 	struct list_head pending_mmaps;
740 	spinlock_t mmap_offset_lock; /* protect mmap_offset */
741 	u32 mmap_offset;
742 	struct hfi1_mregion __rcu *dma_mr;
743 
744 	struct hfi1_qp_ibdev *qp_dev;
745 
746 	/* QP numbers are shared by all IB ports */
747 	struct hfi1_lkey_table lk_table;
748 	/* protect wait lists */
749 	seqlock_t iowait_lock;
750 	struct list_head txwait;        /* list for wait verbs_txreq */
751 	struct list_head memwait;       /* list for wait kernel memory */
752 	struct list_head txreq_free;
753 	struct kmem_cache *verbs_txreq_cache;
754 	struct timer_list mem_timer;
755 
756 	/* other waiters */
757 	spinlock_t pending_lock;
758 
759 	u64 n_piowait;
760 	u64 n_txwait;
761 	u64 n_kmem_wait;
762 	u64 n_send_schedule;
763 
764 	u32 n_pds_allocated;    /* number of PDs allocated for device */
765 	spinlock_t n_pds_lock;
766 	u32 n_ahs_allocated;    /* number of AHs allocated for device */
767 	spinlock_t n_ahs_lock;
768 	u32 n_cqs_allocated;    /* number of CQs allocated for device */
769 	spinlock_t n_cqs_lock;
770 	u32 n_qps_allocated;    /* number of QPs allocated for device */
771 	spinlock_t n_qps_lock;
772 	u32 n_srqs_allocated;   /* number of SRQs allocated for device */
773 	spinlock_t n_srqs_lock;
774 	u32 n_mcast_grps_allocated; /* number of mcast groups allocated */
775 	spinlock_t n_mcast_grps_lock;
776 #ifdef CONFIG_DEBUG_FS
777 	/* per HFI debugfs */
778 	struct dentry *hfi1_ibdev_dbg;
779 	/* per HFI symlinks to above */
780 	struct dentry *hfi1_ibdev_link;
781 #endif
782 };
783 
784 struct hfi1_verbs_counters {
785 	u64 symbol_error_counter;
786 	u64 link_error_recovery_counter;
787 	u64 link_downed_counter;
788 	u64 port_rcv_errors;
789 	u64 port_rcv_remphys_errors;
790 	u64 port_xmit_discards;
791 	u64 port_xmit_data;
792 	u64 port_rcv_data;
793 	u64 port_xmit_packets;
794 	u64 port_rcv_packets;
795 	u32 local_link_integrity_errors;
796 	u32 excessive_buffer_overrun_errors;
797 	u32 vl15_dropped;
798 };
799 
to_imr(struct ib_mr * ibmr)800 static inline struct hfi1_mr *to_imr(struct ib_mr *ibmr)
801 {
802 	return container_of(ibmr, struct hfi1_mr, ibmr);
803 }
804 
to_ipd(struct ib_pd * ibpd)805 static inline struct hfi1_pd *to_ipd(struct ib_pd *ibpd)
806 {
807 	return container_of(ibpd, struct hfi1_pd, ibpd);
808 }
809 
to_iah(struct ib_ah * ibah)810 static inline struct hfi1_ah *to_iah(struct ib_ah *ibah)
811 {
812 	return container_of(ibah, struct hfi1_ah, ibah);
813 }
814 
to_icq(struct ib_cq * ibcq)815 static inline struct hfi1_cq *to_icq(struct ib_cq *ibcq)
816 {
817 	return container_of(ibcq, struct hfi1_cq, ibcq);
818 }
819 
to_isrq(struct ib_srq * ibsrq)820 static inline struct hfi1_srq *to_isrq(struct ib_srq *ibsrq)
821 {
822 	return container_of(ibsrq, struct hfi1_srq, ibsrq);
823 }
824 
to_iqp(struct ib_qp * ibqp)825 static inline struct hfi1_qp *to_iqp(struct ib_qp *ibqp)
826 {
827 	return container_of(ibqp, struct hfi1_qp, ibqp);
828 }
829 
to_idev(struct ib_device * ibdev)830 static inline struct hfi1_ibdev *to_idev(struct ib_device *ibdev)
831 {
832 	return container_of(ibdev, struct hfi1_ibdev, ibdev);
833 }
834 
835 /*
836  * Send if not busy or waiting for I/O and either
837  * a RC response is pending or we can process send work requests.
838  */
hfi1_send_ok(struct hfi1_qp * qp)839 static inline int hfi1_send_ok(struct hfi1_qp *qp)
840 {
841 	return !(qp->s_flags & (HFI1_S_BUSY | HFI1_S_ANY_WAIT_IO)) &&
842 		(qp->s_hdrwords || (qp->s_flags & HFI1_S_RESP_PENDING) ||
843 		 !(qp->s_flags & HFI1_S_ANY_WAIT_SEND));
844 }
845 
846 /*
847  * This must be called with s_lock held.
848  */
849 void hfi1_schedule_send(struct hfi1_qp *qp);
850 void hfi1_bad_pqkey(struct hfi1_ibport *ibp, __be16 trap_num, u32 key, u32 sl,
851 		    u32 qp1, u32 qp2, __be16 lid1, __be16 lid2);
852 void hfi1_cap_mask_chg(struct hfi1_ibport *ibp);
853 void hfi1_sys_guid_chg(struct hfi1_ibport *ibp);
854 void hfi1_node_desc_chg(struct hfi1_ibport *ibp);
855 int hfi1_process_mad(struct ib_device *ibdev, int mad_flags, u8 port,
856 		     const struct ib_wc *in_wc, const struct ib_grh *in_grh,
857 		     const struct ib_mad_hdr *in_mad, size_t in_mad_size,
858 		     struct ib_mad_hdr *out_mad, size_t *out_mad_size,
859 		     u16 *out_mad_pkey_index);
860 int hfi1_create_agents(struct hfi1_ibdev *dev);
861 void hfi1_free_agents(struct hfi1_ibdev *dev);
862 
863 /*
864  * The PSN_MASK and PSN_SHIFT allow for
865  * 1) comparing two PSNs
866  * 2) returning the PSN with any upper bits masked
867  * 3) returning the difference between to PSNs
868  *
869  * The number of significant bits in the PSN must
870  * necessarily be at least one bit less than
871  * the container holding the PSN.
872  */
873 #ifndef CONFIG_HFI1_VERBS_31BIT_PSN
874 #define PSN_MASK 0xFFFFFF
875 #define PSN_SHIFT 8
876 #else
877 #define PSN_MASK 0x7FFFFFFF
878 #define PSN_SHIFT 1
879 #endif
880 #define PSN_MODIFY_MASK 0xFFFFFF
881 
882 /* Number of bits to pay attention to in the opcode for checking qp type */
883 #define OPCODE_QP_MASK 0xE0
884 
885 /*
886  * Compare the lower 24 bits of the msn values.
887  * Returns an integer <, ==, or > than zero.
888  */
cmp_msn(u32 a,u32 b)889 static inline int cmp_msn(u32 a, u32 b)
890 {
891 	return (((int) a) - ((int) b)) << 8;
892 }
893 
894 /*
895  * Compare two PSNs
896  * Returns an integer <, ==, or > than zero.
897  */
cmp_psn(u32 a,u32 b)898 static inline int cmp_psn(u32 a, u32 b)
899 {
900 	return (((int) a) - ((int) b)) << PSN_SHIFT;
901 }
902 
903 /*
904  * Return masked PSN
905  */
mask_psn(u32 a)906 static inline u32 mask_psn(u32 a)
907 {
908 	return a & PSN_MASK;
909 }
910 
911 /*
912  * Return delta between two PSNs
913  */
delta_psn(u32 a,u32 b)914 static inline u32 delta_psn(u32 a, u32 b)
915 {
916 	return (((int)a - (int)b) << PSN_SHIFT) >> PSN_SHIFT;
917 }
918 
919 struct hfi1_mcast *hfi1_mcast_find(struct hfi1_ibport *ibp, union ib_gid *mgid);
920 
921 int hfi1_multicast_attach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid);
922 
923 int hfi1_multicast_detach(struct ib_qp *ibqp, union ib_gid *gid, u16 lid);
924 
925 int hfi1_mcast_tree_empty(struct hfi1_ibport *ibp);
926 
927 struct verbs_txreq;
928 void hfi1_put_txreq(struct verbs_txreq *tx);
929 
930 int hfi1_verbs_send(struct hfi1_qp *qp, struct ahg_ib_header *ahdr,
931 		    u32 hdrwords, struct hfi1_sge_state *ss, u32 len);
932 
933 void hfi1_copy_sge(struct hfi1_sge_state *ss, void *data, u32 length,
934 		   int release);
935 
936 void hfi1_skip_sge(struct hfi1_sge_state *ss, u32 length, int release);
937 
938 void hfi1_cnp_rcv(struct hfi1_packet *packet);
939 
940 void hfi1_uc_rcv(struct hfi1_packet *packet);
941 
942 void hfi1_rc_rcv(struct hfi1_packet *packet);
943 
944 void hfi1_rc_hdrerr(
945 	struct hfi1_ctxtdata *rcd,
946 	struct hfi1_ib_header *hdr,
947 	u32 rcv_flags,
948 	struct hfi1_qp *qp);
949 
950 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah_attr);
951 
952 int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr);
953 
954 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid);
955 
956 void hfi1_rc_rnr_retry(unsigned long arg);
957 
958 void hfi1_rc_send_complete(struct hfi1_qp *qp, struct hfi1_ib_header *hdr);
959 
960 void hfi1_rc_error(struct hfi1_qp *qp, enum ib_wc_status err);
961 
962 void hfi1_ud_rcv(struct hfi1_packet *packet);
963 
964 int hfi1_lookup_pkey_idx(struct hfi1_ibport *ibp, u16 pkey);
965 
966 int hfi1_alloc_lkey(struct hfi1_mregion *mr, int dma_region);
967 
968 void hfi1_free_lkey(struct hfi1_mregion *mr);
969 
970 int hfi1_lkey_ok(struct hfi1_lkey_table *rkt, struct hfi1_pd *pd,
971 		 struct hfi1_sge *isge, struct ib_sge *sge, int acc);
972 
973 int hfi1_rkey_ok(struct hfi1_qp *qp, struct hfi1_sge *sge,
974 		 u32 len, u64 vaddr, u32 rkey, int acc);
975 
976 int hfi1_post_srq_receive(struct ib_srq *ibsrq, struct ib_recv_wr *wr,
977 			  struct ib_recv_wr **bad_wr);
978 
979 struct ib_srq *hfi1_create_srq(struct ib_pd *ibpd,
980 			       struct ib_srq_init_attr *srq_init_attr,
981 			       struct ib_udata *udata);
982 
983 int hfi1_modify_srq(struct ib_srq *ibsrq, struct ib_srq_attr *attr,
984 		    enum ib_srq_attr_mask attr_mask,
985 		    struct ib_udata *udata);
986 
987 int hfi1_query_srq(struct ib_srq *ibsrq, struct ib_srq_attr *attr);
988 
989 int hfi1_destroy_srq(struct ib_srq *ibsrq);
990 
991 int hfi1_cq_init(struct hfi1_devdata *dd);
992 
993 void hfi1_cq_exit(struct hfi1_devdata *dd);
994 
995 void hfi1_cq_enter(struct hfi1_cq *cq, struct ib_wc *entry, int sig);
996 
997 int hfi1_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *entry);
998 
999 struct ib_cq *hfi1_create_cq(
1000 	struct ib_device *ibdev,
1001 	const struct ib_cq_init_attr *attr,
1002 	struct ib_ucontext *context,
1003 	struct ib_udata *udata);
1004 
1005 int hfi1_destroy_cq(struct ib_cq *ibcq);
1006 
1007 int hfi1_req_notify_cq(
1008 	struct ib_cq *ibcq,
1009 	enum ib_cq_notify_flags notify_flags);
1010 
1011 int hfi1_resize_cq(struct ib_cq *ibcq, int cqe, struct ib_udata *udata);
1012 
1013 struct ib_mr *hfi1_get_dma_mr(struct ib_pd *pd, int acc);
1014 
1015 struct ib_mr *hfi1_reg_phys_mr(struct ib_pd *pd,
1016 			       struct ib_phys_buf *buffer_list,
1017 			       int num_phys_buf, int acc, u64 *iova_start);
1018 
1019 struct ib_mr *hfi1_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1020 			       u64 virt_addr, int mr_access_flags,
1021 			       struct ib_udata *udata);
1022 
1023 int hfi1_dereg_mr(struct ib_mr *ibmr);
1024 
1025 struct ib_mr *hfi1_alloc_mr(struct ib_pd *pd,
1026 			    enum ib_mr_type mr_type,
1027 			    u32 max_entries);
1028 
1029 struct ib_fmr *hfi1_alloc_fmr(struct ib_pd *pd, int mr_access_flags,
1030 			      struct ib_fmr_attr *fmr_attr);
1031 
1032 int hfi1_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
1033 		      int list_len, u64 iova);
1034 
1035 int hfi1_unmap_fmr(struct list_head *fmr_list);
1036 
1037 int hfi1_dealloc_fmr(struct ib_fmr *ibfmr);
1038 
hfi1_get_mr(struct hfi1_mregion * mr)1039 static inline void hfi1_get_mr(struct hfi1_mregion *mr)
1040 {
1041 	atomic_inc(&mr->refcount);
1042 }
1043 
hfi1_put_mr(struct hfi1_mregion * mr)1044 static inline void hfi1_put_mr(struct hfi1_mregion *mr)
1045 {
1046 	if (unlikely(atomic_dec_and_test(&mr->refcount)))
1047 		complete(&mr->comp);
1048 }
1049 
hfi1_put_ss(struct hfi1_sge_state * ss)1050 static inline void hfi1_put_ss(struct hfi1_sge_state *ss)
1051 {
1052 	while (ss->num_sge) {
1053 		hfi1_put_mr(ss->sge.mr);
1054 		if (--ss->num_sge)
1055 			ss->sge = *ss->sg_list++;
1056 	}
1057 }
1058 
1059 void hfi1_release_mmap_info(struct kref *ref);
1060 
1061 struct hfi1_mmap_info *hfi1_create_mmap_info(struct hfi1_ibdev *dev, u32 size,
1062 					     struct ib_ucontext *context,
1063 					     void *obj);
1064 
1065 void hfi1_update_mmap_info(struct hfi1_ibdev *dev, struct hfi1_mmap_info *ip,
1066 			   u32 size, void *obj);
1067 
1068 int hfi1_mmap(struct ib_ucontext *context, struct vm_area_struct *vma);
1069 
1070 int hfi1_get_rwqe(struct hfi1_qp *qp, int wr_id_only);
1071 
1072 void hfi1_migrate_qp(struct hfi1_qp *qp);
1073 
1074 int hfi1_ruc_check_hdr(struct hfi1_ibport *ibp, struct hfi1_ib_header *hdr,
1075 		       int has_grh, struct hfi1_qp *qp, u32 bth0);
1076 
1077 u32 hfi1_make_grh(struct hfi1_ibport *ibp, struct ib_grh *hdr,
1078 		  struct ib_global_route *grh, u32 hwords, u32 nwords);
1079 
1080 void hfi1_make_ruc_header(struct hfi1_qp *qp, struct hfi1_other_headers *ohdr,
1081 			  u32 bth0, u32 bth2, int middle);
1082 
1083 void hfi1_do_send(struct work_struct *work);
1084 
1085 void hfi1_send_complete(struct hfi1_qp *qp, struct hfi1_swqe *wqe,
1086 			enum ib_wc_status status);
1087 
1088 void hfi1_send_rc_ack(struct hfi1_ctxtdata *, struct hfi1_qp *qp, int is_fecn);
1089 
1090 int hfi1_make_rc_req(struct hfi1_qp *qp);
1091 
1092 int hfi1_make_uc_req(struct hfi1_qp *qp);
1093 
1094 int hfi1_make_ud_req(struct hfi1_qp *qp);
1095 
1096 int hfi1_register_ib_device(struct hfi1_devdata *);
1097 
1098 void hfi1_unregister_ib_device(struct hfi1_devdata *);
1099 
1100 void hfi1_ib_rcv(struct hfi1_packet *packet);
1101 
1102 unsigned hfi1_get_npkeys(struct hfi1_devdata *);
1103 
1104 int hfi1_verbs_send_dma(struct hfi1_qp *qp, struct ahg_ib_header *hdr,
1105 			u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
1106 			u32 plen, u32 dwords, u64 pbc);
1107 
1108 int hfi1_verbs_send_pio(struct hfi1_qp *qp, struct ahg_ib_header *hdr,
1109 			u32 hdrwords, struct hfi1_sge_state *ss, u32 len,
1110 			u32 plen, u32 dwords, u64 pbc);
1111 
1112 struct send_context *qp_to_send_context(struct hfi1_qp *qp, u8 sc5);
1113 
1114 extern const enum ib_wc_opcode ib_hfi1_wc_opcode[];
1115 
1116 extern const u8 hdr_len_by_opcode[];
1117 
1118 extern const int ib_hfi1_state_ops[];
1119 
1120 extern __be64 ib_hfi1_sys_image_guid;    /* in network order */
1121 
1122 extern unsigned int hfi1_lkey_table_size;
1123 
1124 extern unsigned int hfi1_max_cqes;
1125 
1126 extern unsigned int hfi1_max_cqs;
1127 
1128 extern unsigned int hfi1_max_qp_wrs;
1129 
1130 extern unsigned int hfi1_max_qps;
1131 
1132 extern unsigned int hfi1_max_sges;
1133 
1134 extern unsigned int hfi1_max_mcast_grps;
1135 
1136 extern unsigned int hfi1_max_mcast_qp_attached;
1137 
1138 extern unsigned int hfi1_max_srqs;
1139 
1140 extern unsigned int hfi1_max_srq_sges;
1141 
1142 extern unsigned int hfi1_max_srq_wrs;
1143 
1144 extern const u32 ib_hfi1_rnr_table[];
1145 
1146 extern struct ib_dma_mapping_ops hfi1_dma_mapping_ops;
1147 
1148 #endif                          /* HFI1_VERBS_H */
1149