1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/trace_events.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include <linux/nospec.h>
36 #include "kvm_cache_regs.h"
37 #include "x86.h"
38
39 #include <asm/cpu.h>
40 #include <asm/io.h>
41 #include <asm/desc.h>
42 #include <asm/vmx.h>
43 #include <asm/virtext.h>
44 #include <asm/mce.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/perf_event.h>
47 #include <asm/debugreg.h>
48 #include <asm/kexec.h>
49 #include <asm/apic.h>
50 #include <asm/irq_remapping.h>
51 #include <asm/microcode.h>
52 #include <asm/spec-ctrl.h>
53
54 #include "trace.h"
55 #include "pmu.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65 X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 {}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72
73 static bool __read_mostly flexpriority_enabled = 1;
74 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
75
76 static bool __read_mostly enable_ept = 1;
77 module_param_named(ept, enable_ept, bool, S_IRUGO);
78
79 static bool __read_mostly enable_unrestricted_guest = 1;
80 module_param_named(unrestricted_guest,
81 enable_unrestricted_guest, bool, S_IRUGO);
82
83 static bool __read_mostly enable_ept_ad_bits = 1;
84 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
86 static bool __read_mostly emulate_invalid_guest_state = true;
87 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
88
89 static bool __read_mostly vmm_exclusive = 1;
90 module_param(vmm_exclusive, bool, S_IRUGO);
91
92 static bool __read_mostly fasteoi = 1;
93 module_param(fasteoi, bool, S_IRUGO);
94
95 static bool __read_mostly enable_apicv = 1;
96 module_param(enable_apicv, bool, S_IRUGO);
97
98 static bool __read_mostly enable_shadow_vmcs = 1;
99 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
100 /*
101 * If nested=1, nested virtualization is supported, i.e., guests may use
102 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
103 * use VMX instructions.
104 */
105 static bool __read_mostly nested = 0;
106 module_param(nested, bool, S_IRUGO);
107
108 static u64 __read_mostly host_xss;
109
110 static bool __read_mostly enable_pml = 1;
111 module_param_named(pml, enable_pml, bool, S_IRUGO);
112
113 #define MSR_TYPE_R 1
114 #define MSR_TYPE_W 2
115 #define MSR_TYPE_RW 3
116
117 #define MSR_BITMAP_MODE_X2APIC 1
118 #define MSR_BITMAP_MODE_X2APIC_APICV 2
119 #define MSR_BITMAP_MODE_LM 4
120
121 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
122
123 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
124 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
125 #define KVM_VM_CR0_ALWAYS_ON \
126 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
127 #define KVM_CR4_GUEST_OWNED_BITS \
128 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
129 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
130
131 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
132 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
133
134 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
135
136 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
137
138 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
139 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
140 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
141 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
142 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
144 /*
145 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146 * ple_gap: upper bound on the amount of time between two successive
147 * executions of PAUSE in a loop. Also indicate if ple enabled.
148 * According to test, this time is usually smaller than 128 cycles.
149 * ple_window: upper bound on the amount of time a guest is allowed to execute
150 * in a PAUSE loop. Tests indicate that most spinlocks are held for
151 * less than 2^12 cycles
152 * Time is measured based on a counter that runs at the same rate as the TSC,
153 * refer SDM volume 3b section 21.6.13 & 22.1.3.
154 */
155 #define KVM_VMX_DEFAULT_PLE_GAP 128
156 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
160 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
162 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163 module_param(ple_gap, int, S_IRUGO);
164
165 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166 module_param(ple_window, int, S_IRUGO);
167
168 /* Default doubles per-vcpu window every exit. */
169 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170 module_param(ple_window_grow, int, S_IRUGO);
171
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174 module_param(ple_window_shrink, int, S_IRUGO);
175
176 /* Default is to compute the maximum so we can never overflow. */
177 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, int, S_IRUGO);
180
181 extern const ulong vmx_return;
182
183 #define NR_AUTOLOAD_MSRS 8
184
185 struct vmcs {
186 u32 revision_id;
187 u32 abort;
188 char data[0];
189 };
190
191 /*
192 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
193 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
194 * loaded on this CPU (so we can clear them if the CPU goes down).
195 */
196 struct loaded_vmcs {
197 struct vmcs *vmcs;
198 int cpu;
199 int launched;
200 unsigned long *msr_bitmap;
201 struct list_head loaded_vmcss_on_cpu_link;
202 };
203
204 struct shared_msr_entry {
205 unsigned index;
206 u64 data;
207 u64 mask;
208 };
209
210 /*
211 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
212 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
213 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
214 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
215 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
216 * More than one of these structures may exist, if L1 runs multiple L2 guests.
217 * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
218 * underlying hardware which will be used to run L2.
219 * This structure is packed to ensure that its layout is identical across
220 * machines (necessary for live migration).
221 * If there are changes in this struct, VMCS12_REVISION must be changed.
222 */
223 typedef u64 natural_width;
224 struct __packed vmcs12 {
225 /* According to the Intel spec, a VMCS region must start with the
226 * following two fields. Then follow implementation-specific data.
227 */
228 u32 revision_id;
229 u32 abort;
230
231 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
232 u32 padding[7]; /* room for future expansion */
233
234 u64 io_bitmap_a;
235 u64 io_bitmap_b;
236 u64 msr_bitmap;
237 u64 vm_exit_msr_store_addr;
238 u64 vm_exit_msr_load_addr;
239 u64 vm_entry_msr_load_addr;
240 u64 tsc_offset;
241 u64 virtual_apic_page_addr;
242 u64 apic_access_addr;
243 u64 posted_intr_desc_addr;
244 u64 ept_pointer;
245 u64 eoi_exit_bitmap0;
246 u64 eoi_exit_bitmap1;
247 u64 eoi_exit_bitmap2;
248 u64 eoi_exit_bitmap3;
249 u64 xss_exit_bitmap;
250 u64 guest_physical_address;
251 u64 vmcs_link_pointer;
252 u64 guest_ia32_debugctl;
253 u64 guest_ia32_pat;
254 u64 guest_ia32_efer;
255 u64 guest_ia32_perf_global_ctrl;
256 u64 guest_pdptr0;
257 u64 guest_pdptr1;
258 u64 guest_pdptr2;
259 u64 guest_pdptr3;
260 u64 guest_bndcfgs;
261 u64 host_ia32_pat;
262 u64 host_ia32_efer;
263 u64 host_ia32_perf_global_ctrl;
264 u64 padding64[8]; /* room for future expansion */
265 /*
266 * To allow migration of L1 (complete with its L2 guests) between
267 * machines of different natural widths (32 or 64 bit), we cannot have
268 * unsigned long fields with no explict size. We use u64 (aliased
269 * natural_width) instead. Luckily, x86 is little-endian.
270 */
271 natural_width cr0_guest_host_mask;
272 natural_width cr4_guest_host_mask;
273 natural_width cr0_read_shadow;
274 natural_width cr4_read_shadow;
275 natural_width cr3_target_value0;
276 natural_width cr3_target_value1;
277 natural_width cr3_target_value2;
278 natural_width cr3_target_value3;
279 natural_width exit_qualification;
280 natural_width guest_linear_address;
281 natural_width guest_cr0;
282 natural_width guest_cr3;
283 natural_width guest_cr4;
284 natural_width guest_es_base;
285 natural_width guest_cs_base;
286 natural_width guest_ss_base;
287 natural_width guest_ds_base;
288 natural_width guest_fs_base;
289 natural_width guest_gs_base;
290 natural_width guest_ldtr_base;
291 natural_width guest_tr_base;
292 natural_width guest_gdtr_base;
293 natural_width guest_idtr_base;
294 natural_width guest_dr7;
295 natural_width guest_rsp;
296 natural_width guest_rip;
297 natural_width guest_rflags;
298 natural_width guest_pending_dbg_exceptions;
299 natural_width guest_sysenter_esp;
300 natural_width guest_sysenter_eip;
301 natural_width host_cr0;
302 natural_width host_cr3;
303 natural_width host_cr4;
304 natural_width host_fs_base;
305 natural_width host_gs_base;
306 natural_width host_tr_base;
307 natural_width host_gdtr_base;
308 natural_width host_idtr_base;
309 natural_width host_ia32_sysenter_esp;
310 natural_width host_ia32_sysenter_eip;
311 natural_width host_rsp;
312 natural_width host_rip;
313 natural_width paddingl[8]; /* room for future expansion */
314 u32 pin_based_vm_exec_control;
315 u32 cpu_based_vm_exec_control;
316 u32 exception_bitmap;
317 u32 page_fault_error_code_mask;
318 u32 page_fault_error_code_match;
319 u32 cr3_target_count;
320 u32 vm_exit_controls;
321 u32 vm_exit_msr_store_count;
322 u32 vm_exit_msr_load_count;
323 u32 vm_entry_controls;
324 u32 vm_entry_msr_load_count;
325 u32 vm_entry_intr_info_field;
326 u32 vm_entry_exception_error_code;
327 u32 vm_entry_instruction_len;
328 u32 tpr_threshold;
329 u32 secondary_vm_exec_control;
330 u32 vm_instruction_error;
331 u32 vm_exit_reason;
332 u32 vm_exit_intr_info;
333 u32 vm_exit_intr_error_code;
334 u32 idt_vectoring_info_field;
335 u32 idt_vectoring_error_code;
336 u32 vm_exit_instruction_len;
337 u32 vmx_instruction_info;
338 u32 guest_es_limit;
339 u32 guest_cs_limit;
340 u32 guest_ss_limit;
341 u32 guest_ds_limit;
342 u32 guest_fs_limit;
343 u32 guest_gs_limit;
344 u32 guest_ldtr_limit;
345 u32 guest_tr_limit;
346 u32 guest_gdtr_limit;
347 u32 guest_idtr_limit;
348 u32 guest_es_ar_bytes;
349 u32 guest_cs_ar_bytes;
350 u32 guest_ss_ar_bytes;
351 u32 guest_ds_ar_bytes;
352 u32 guest_fs_ar_bytes;
353 u32 guest_gs_ar_bytes;
354 u32 guest_ldtr_ar_bytes;
355 u32 guest_tr_ar_bytes;
356 u32 guest_interruptibility_info;
357 u32 guest_activity_state;
358 u32 guest_sysenter_cs;
359 u32 host_ia32_sysenter_cs;
360 u32 vmx_preemption_timer_value;
361 u32 padding32[7]; /* room for future expansion */
362 u16 virtual_processor_id;
363 u16 posted_intr_nv;
364 u16 guest_es_selector;
365 u16 guest_cs_selector;
366 u16 guest_ss_selector;
367 u16 guest_ds_selector;
368 u16 guest_fs_selector;
369 u16 guest_gs_selector;
370 u16 guest_ldtr_selector;
371 u16 guest_tr_selector;
372 u16 guest_intr_status;
373 u16 host_es_selector;
374 u16 host_cs_selector;
375 u16 host_ss_selector;
376 u16 host_ds_selector;
377 u16 host_fs_selector;
378 u16 host_gs_selector;
379 u16 host_tr_selector;
380 };
381
382 /*
383 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
384 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
385 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
386 */
387 #define VMCS12_REVISION 0x11e57ed0
388
389 /*
390 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
391 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
392 * current implementation, 4K are reserved to avoid future complications.
393 */
394 #define VMCS12_SIZE 0x1000
395
396 /*
397 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
398 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
399 */
400 struct nested_vmx {
401 /* Has the level1 guest done vmxon? */
402 bool vmxon;
403 gpa_t vmxon_ptr;
404
405 /* The guest-physical address of the current VMCS L1 keeps for L2 */
406 gpa_t current_vmptr;
407 /* The host-usable pointer to the above */
408 struct page *current_vmcs12_page;
409 struct vmcs12 *current_vmcs12;
410 struct vmcs *current_shadow_vmcs;
411 /*
412 * Indicates if the shadow vmcs must be updated with the
413 * data hold by vmcs12
414 */
415 bool sync_shadow_vmcs;
416
417 u64 vmcs01_tsc_offset;
418 bool change_vmcs01_virtual_x2apic_mode;
419 /* L2 must run next, and mustn't decide to exit to L1. */
420 bool nested_run_pending;
421
422 struct loaded_vmcs vmcs02;
423
424 /*
425 * Guest pages referred to in the vmcs02 with host-physical
426 * pointers, so we must keep them pinned while L2 runs.
427 */
428 struct page *apic_access_page;
429 struct page *virtual_apic_page;
430 struct page *pi_desc_page;
431 struct pi_desc *pi_desc;
432 bool pi_pending;
433 u16 posted_intr_nv;
434 u64 msr_ia32_feature_control;
435
436 struct hrtimer preemption_timer;
437 bool preemption_timer_expired;
438
439 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
440 u64 vmcs01_debugctl;
441
442 u16 vpid02;
443 u16 last_vpid;
444
445 u32 nested_vmx_procbased_ctls_low;
446 u32 nested_vmx_procbased_ctls_high;
447 u32 nested_vmx_true_procbased_ctls_low;
448 u32 nested_vmx_secondary_ctls_low;
449 u32 nested_vmx_secondary_ctls_high;
450 u32 nested_vmx_pinbased_ctls_low;
451 u32 nested_vmx_pinbased_ctls_high;
452 u32 nested_vmx_exit_ctls_low;
453 u32 nested_vmx_exit_ctls_high;
454 u32 nested_vmx_true_exit_ctls_low;
455 u32 nested_vmx_entry_ctls_low;
456 u32 nested_vmx_entry_ctls_high;
457 u32 nested_vmx_true_entry_ctls_low;
458 u32 nested_vmx_misc_low;
459 u32 nested_vmx_misc_high;
460 u32 nested_vmx_ept_caps;
461 u32 nested_vmx_vpid_caps;
462 };
463
464 #define POSTED_INTR_ON 0
465 #define POSTED_INTR_SN 1
466
467 /* Posted-Interrupt Descriptor */
468 struct pi_desc {
469 u32 pir[8]; /* Posted interrupt requested */
470 union {
471 struct {
472 /* bit 256 - Outstanding Notification */
473 u16 on : 1,
474 /* bit 257 - Suppress Notification */
475 sn : 1,
476 /* bit 271:258 - Reserved */
477 rsvd_1 : 14;
478 /* bit 279:272 - Notification Vector */
479 u8 nv;
480 /* bit 287:280 - Reserved */
481 u8 rsvd_2;
482 /* bit 319:288 - Notification Destination */
483 u32 ndst;
484 };
485 u64 control;
486 };
487 u32 rsvd[6];
488 } __aligned(64);
489
pi_test_and_set_on(struct pi_desc * pi_desc)490 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
491 {
492 return test_and_set_bit(POSTED_INTR_ON,
493 (unsigned long *)&pi_desc->control);
494 }
495
pi_test_and_clear_on(struct pi_desc * pi_desc)496 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
497 {
498 return test_and_clear_bit(POSTED_INTR_ON,
499 (unsigned long *)&pi_desc->control);
500 }
501
pi_test_and_set_pir(int vector,struct pi_desc * pi_desc)502 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
503 {
504 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
505 }
506
pi_clear_sn(struct pi_desc * pi_desc)507 static inline void pi_clear_sn(struct pi_desc *pi_desc)
508 {
509 return clear_bit(POSTED_INTR_SN,
510 (unsigned long *)&pi_desc->control);
511 }
512
pi_set_sn(struct pi_desc * pi_desc)513 static inline void pi_set_sn(struct pi_desc *pi_desc)
514 {
515 return set_bit(POSTED_INTR_SN,
516 (unsigned long *)&pi_desc->control);
517 }
518
pi_test_on(struct pi_desc * pi_desc)519 static inline int pi_test_on(struct pi_desc *pi_desc)
520 {
521 return test_bit(POSTED_INTR_ON,
522 (unsigned long *)&pi_desc->control);
523 }
524
pi_test_sn(struct pi_desc * pi_desc)525 static inline int pi_test_sn(struct pi_desc *pi_desc)
526 {
527 return test_bit(POSTED_INTR_SN,
528 (unsigned long *)&pi_desc->control);
529 }
530
531 struct vcpu_vmx {
532 struct kvm_vcpu vcpu;
533 unsigned long host_rsp;
534 u8 fail;
535 bool nmi_known_unmasked;
536 u8 msr_bitmap_mode;
537 u32 exit_intr_info;
538 u32 idt_vectoring_info;
539 ulong rflags;
540 struct shared_msr_entry *guest_msrs;
541 int nmsrs;
542 int save_nmsrs;
543 unsigned long host_idt_base;
544 #ifdef CONFIG_X86_64
545 u64 msr_host_kernel_gs_base;
546 u64 msr_guest_kernel_gs_base;
547 #endif
548
549 u64 spec_ctrl;
550
551 u32 vm_entry_controls_shadow;
552 u32 vm_exit_controls_shadow;
553 /*
554 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
555 * non-nested (L1) guest, it always points to vmcs01. For a nested
556 * guest (L2), it points to a different VMCS.
557 */
558 struct loaded_vmcs vmcs01;
559 struct loaded_vmcs *loaded_vmcs;
560 bool __launched; /* temporary, used in vmx_vcpu_run */
561 struct msr_autoload {
562 unsigned nr;
563 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
564 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
565 } msr_autoload;
566 struct {
567 int loaded;
568 u16 fs_sel, gs_sel, ldt_sel;
569 #ifdef CONFIG_X86_64
570 u16 ds_sel, es_sel;
571 #endif
572 int gs_ldt_reload_needed;
573 int fs_reload_needed;
574 u64 msr_host_bndcfgs;
575 unsigned long vmcs_host_cr4; /* May not match real cr4 */
576 } host_state;
577 struct {
578 int vm86_active;
579 ulong save_rflags;
580 struct kvm_segment segs[8];
581 } rmode;
582 struct {
583 u32 bitmask; /* 4 bits per segment (1 bit per field) */
584 struct kvm_save_segment {
585 u16 selector;
586 unsigned long base;
587 u32 limit;
588 u32 ar;
589 } seg[8];
590 } segment_cache;
591 int vpid;
592 bool emulation_required;
593
594 /* Support for vnmi-less CPUs */
595 int soft_vnmi_blocked;
596 ktime_t entry_time;
597 s64 vnmi_blocked_time;
598 u32 exit_reason;
599
600 /* Posted interrupt descriptor */
601 struct pi_desc pi_desc;
602
603 /* Support for a guest hypervisor (nested VMX) */
604 struct nested_vmx nested;
605
606 /* Dynamic PLE window. */
607 int ple_window;
608 bool ple_window_dirty;
609
610 /* Support for PML */
611 #define PML_ENTITY_NUM 512
612 struct page *pml_pg;
613
614 u64 current_tsc_ratio;
615 };
616
617 enum segment_cache_field {
618 SEG_FIELD_SEL = 0,
619 SEG_FIELD_BASE = 1,
620 SEG_FIELD_LIMIT = 2,
621 SEG_FIELD_AR = 3,
622
623 SEG_FIELD_NR = 4
624 };
625
to_vmx(struct kvm_vcpu * vcpu)626 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
627 {
628 return container_of(vcpu, struct vcpu_vmx, vcpu);
629 }
630
vcpu_to_pi_desc(struct kvm_vcpu * vcpu)631 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
632 {
633 return &(to_vmx(vcpu)->pi_desc);
634 }
635
636 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
637 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
638 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
639 [number##_HIGH] = VMCS12_OFFSET(name)+4
640
641
642 static unsigned long shadow_read_only_fields[] = {
643 /*
644 * We do NOT shadow fields that are modified when L0
645 * traps and emulates any vmx instruction (e.g. VMPTRLD,
646 * VMXON...) executed by L1.
647 * For example, VM_INSTRUCTION_ERROR is read
648 * by L1 if a vmx instruction fails (part of the error path).
649 * Note the code assumes this logic. If for some reason
650 * we start shadowing these fields then we need to
651 * force a shadow sync when L0 emulates vmx instructions
652 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
653 * by nested_vmx_failValid)
654 */
655 VM_EXIT_REASON,
656 VM_EXIT_INTR_INFO,
657 VM_EXIT_INSTRUCTION_LEN,
658 IDT_VECTORING_INFO_FIELD,
659 IDT_VECTORING_ERROR_CODE,
660 VM_EXIT_INTR_ERROR_CODE,
661 EXIT_QUALIFICATION,
662 GUEST_LINEAR_ADDRESS,
663 GUEST_PHYSICAL_ADDRESS
664 };
665 static int max_shadow_read_only_fields =
666 ARRAY_SIZE(shadow_read_only_fields);
667
668 static unsigned long shadow_read_write_fields[] = {
669 TPR_THRESHOLD,
670 GUEST_RIP,
671 GUEST_RSP,
672 GUEST_CR0,
673 GUEST_CR3,
674 GUEST_CR4,
675 GUEST_INTERRUPTIBILITY_INFO,
676 GUEST_RFLAGS,
677 GUEST_CS_SELECTOR,
678 GUEST_CS_AR_BYTES,
679 GUEST_CS_LIMIT,
680 GUEST_CS_BASE,
681 GUEST_ES_BASE,
682 GUEST_BNDCFGS,
683 CR0_GUEST_HOST_MASK,
684 CR0_READ_SHADOW,
685 CR4_READ_SHADOW,
686 TSC_OFFSET,
687 EXCEPTION_BITMAP,
688 CPU_BASED_VM_EXEC_CONTROL,
689 VM_ENTRY_EXCEPTION_ERROR_CODE,
690 VM_ENTRY_INTR_INFO_FIELD,
691 VM_ENTRY_INSTRUCTION_LEN,
692 VM_ENTRY_EXCEPTION_ERROR_CODE,
693 HOST_FS_BASE,
694 HOST_GS_BASE,
695 HOST_FS_SELECTOR,
696 HOST_GS_SELECTOR
697 };
698 static int max_shadow_read_write_fields =
699 ARRAY_SIZE(shadow_read_write_fields);
700
701 static const unsigned short vmcs_field_to_offset_table[] = {
702 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
703 FIELD(POSTED_INTR_NV, posted_intr_nv),
704 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
705 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
706 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
707 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
708 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
709 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
710 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
711 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
712 FIELD(GUEST_INTR_STATUS, guest_intr_status),
713 FIELD(HOST_ES_SELECTOR, host_es_selector),
714 FIELD(HOST_CS_SELECTOR, host_cs_selector),
715 FIELD(HOST_SS_SELECTOR, host_ss_selector),
716 FIELD(HOST_DS_SELECTOR, host_ds_selector),
717 FIELD(HOST_FS_SELECTOR, host_fs_selector),
718 FIELD(HOST_GS_SELECTOR, host_gs_selector),
719 FIELD(HOST_TR_SELECTOR, host_tr_selector),
720 FIELD64(IO_BITMAP_A, io_bitmap_a),
721 FIELD64(IO_BITMAP_B, io_bitmap_b),
722 FIELD64(MSR_BITMAP, msr_bitmap),
723 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
724 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
725 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
726 FIELD64(TSC_OFFSET, tsc_offset),
727 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
728 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
729 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
730 FIELD64(EPT_POINTER, ept_pointer),
731 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
732 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
733 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
734 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
735 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
736 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
737 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
738 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
739 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
740 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
741 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
742 FIELD64(GUEST_PDPTR0, guest_pdptr0),
743 FIELD64(GUEST_PDPTR1, guest_pdptr1),
744 FIELD64(GUEST_PDPTR2, guest_pdptr2),
745 FIELD64(GUEST_PDPTR3, guest_pdptr3),
746 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
747 FIELD64(HOST_IA32_PAT, host_ia32_pat),
748 FIELD64(HOST_IA32_EFER, host_ia32_efer),
749 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
750 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
751 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
752 FIELD(EXCEPTION_BITMAP, exception_bitmap),
753 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
754 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
755 FIELD(CR3_TARGET_COUNT, cr3_target_count),
756 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
757 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
758 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
759 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
760 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
761 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
762 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
763 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
764 FIELD(TPR_THRESHOLD, tpr_threshold),
765 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
766 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
767 FIELD(VM_EXIT_REASON, vm_exit_reason),
768 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
769 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
770 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
771 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
772 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
773 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
774 FIELD(GUEST_ES_LIMIT, guest_es_limit),
775 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
776 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
777 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
778 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
779 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
780 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
781 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
782 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
783 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
784 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
785 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
786 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
787 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
788 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
789 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
790 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
791 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
792 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
793 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
794 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
795 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
796 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
797 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
798 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
799 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
800 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
801 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
802 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
803 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
804 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
805 FIELD(EXIT_QUALIFICATION, exit_qualification),
806 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
807 FIELD(GUEST_CR0, guest_cr0),
808 FIELD(GUEST_CR3, guest_cr3),
809 FIELD(GUEST_CR4, guest_cr4),
810 FIELD(GUEST_ES_BASE, guest_es_base),
811 FIELD(GUEST_CS_BASE, guest_cs_base),
812 FIELD(GUEST_SS_BASE, guest_ss_base),
813 FIELD(GUEST_DS_BASE, guest_ds_base),
814 FIELD(GUEST_FS_BASE, guest_fs_base),
815 FIELD(GUEST_GS_BASE, guest_gs_base),
816 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
817 FIELD(GUEST_TR_BASE, guest_tr_base),
818 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
819 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
820 FIELD(GUEST_DR7, guest_dr7),
821 FIELD(GUEST_RSP, guest_rsp),
822 FIELD(GUEST_RIP, guest_rip),
823 FIELD(GUEST_RFLAGS, guest_rflags),
824 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
825 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
826 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
827 FIELD(HOST_CR0, host_cr0),
828 FIELD(HOST_CR3, host_cr3),
829 FIELD(HOST_CR4, host_cr4),
830 FIELD(HOST_FS_BASE, host_fs_base),
831 FIELD(HOST_GS_BASE, host_gs_base),
832 FIELD(HOST_TR_BASE, host_tr_base),
833 FIELD(HOST_GDTR_BASE, host_gdtr_base),
834 FIELD(HOST_IDTR_BASE, host_idtr_base),
835 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
836 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
837 FIELD(HOST_RSP, host_rsp),
838 FIELD(HOST_RIP, host_rip),
839 };
840
vmcs_field_to_offset(unsigned long field)841 static inline short vmcs_field_to_offset(unsigned long field)
842 {
843 const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
844 unsigned short offset;
845
846 BUILD_BUG_ON(size > SHRT_MAX);
847 if (field >= size)
848 return -ENOENT;
849
850 field = array_index_nospec(field, size);
851 offset = vmcs_field_to_offset_table[field];
852 if (offset == 0)
853 return -ENOENT;
854 return offset;
855 }
856
get_vmcs12(struct kvm_vcpu * vcpu)857 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
858 {
859 return to_vmx(vcpu)->nested.current_vmcs12;
860 }
861
nested_get_page(struct kvm_vcpu * vcpu,gpa_t addr)862 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
863 {
864 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
865 if (is_error_page(page))
866 return NULL;
867
868 return page;
869 }
870
nested_release_page(struct page * page)871 static void nested_release_page(struct page *page)
872 {
873 kvm_release_page_dirty(page);
874 }
875
nested_release_page_clean(struct page * page)876 static void nested_release_page_clean(struct page *page)
877 {
878 kvm_release_page_clean(page);
879 }
880
881 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
882 static u64 construct_eptp(unsigned long root_hpa);
883 static void kvm_cpu_vmxon(u64 addr);
884 static void kvm_cpu_vmxoff(void);
885 static bool vmx_xsaves_supported(void);
886 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu);
887 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
888 static void vmx_set_segment(struct kvm_vcpu *vcpu,
889 struct kvm_segment *var, int seg);
890 static void vmx_get_segment(struct kvm_vcpu *vcpu,
891 struct kvm_segment *var, int seg);
892 static bool guest_state_valid(struct kvm_vcpu *vcpu);
893 static u32 vmx_segment_access_rights(struct kvm_segment *var);
894 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
895 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
896 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
897 static int alloc_identity_pagetable(struct kvm *kvm);
898 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
899 static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
900 u32 msr, int type);
901
902 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
903 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
904 /*
905 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
906 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
907 */
908 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
909 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
910
911 /*
912 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
913 * can find which vCPU should be waken up.
914 */
915 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
916 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
917
918 static unsigned long *vmx_io_bitmap_a;
919 static unsigned long *vmx_io_bitmap_b;
920 static unsigned long *vmx_vmread_bitmap;
921 static unsigned long *vmx_vmwrite_bitmap;
922
923 static bool cpu_has_load_ia32_efer;
924 static bool cpu_has_load_perf_global_ctrl;
925
926 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
927 static DEFINE_SPINLOCK(vmx_vpid_lock);
928
929 static struct vmcs_config {
930 int size;
931 int order;
932 u32 revision_id;
933 u32 pin_based_exec_ctrl;
934 u32 cpu_based_exec_ctrl;
935 u32 cpu_based_2nd_exec_ctrl;
936 u32 vmexit_ctrl;
937 u32 vmentry_ctrl;
938 } vmcs_config;
939
940 static struct vmx_capability {
941 u32 ept;
942 u32 vpid;
943 } vmx_capability;
944
945 #define VMX_SEGMENT_FIELD(seg) \
946 [VCPU_SREG_##seg] = { \
947 .selector = GUEST_##seg##_SELECTOR, \
948 .base = GUEST_##seg##_BASE, \
949 .limit = GUEST_##seg##_LIMIT, \
950 .ar_bytes = GUEST_##seg##_AR_BYTES, \
951 }
952
953 static const struct kvm_vmx_segment_field {
954 unsigned selector;
955 unsigned base;
956 unsigned limit;
957 unsigned ar_bytes;
958 } kvm_vmx_segment_fields[] = {
959 VMX_SEGMENT_FIELD(CS),
960 VMX_SEGMENT_FIELD(DS),
961 VMX_SEGMENT_FIELD(ES),
962 VMX_SEGMENT_FIELD(FS),
963 VMX_SEGMENT_FIELD(GS),
964 VMX_SEGMENT_FIELD(SS),
965 VMX_SEGMENT_FIELD(TR),
966 VMX_SEGMENT_FIELD(LDTR),
967 };
968
969 static u64 host_efer;
970
971 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
972
973 /*
974 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
975 * away by decrementing the array size.
976 */
977 static const u32 vmx_msr_index[] = {
978 #ifdef CONFIG_X86_64
979 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
980 #endif
981 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
982 };
983
is_page_fault(u32 intr_info)984 static inline bool is_page_fault(u32 intr_info)
985 {
986 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
987 INTR_INFO_VALID_MASK)) ==
988 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
989 }
990
is_no_device(u32 intr_info)991 static inline bool is_no_device(u32 intr_info)
992 {
993 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
994 INTR_INFO_VALID_MASK)) ==
995 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
996 }
997
is_invalid_opcode(u32 intr_info)998 static inline bool is_invalid_opcode(u32 intr_info)
999 {
1000 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1001 INTR_INFO_VALID_MASK)) ==
1002 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
1003 }
1004
is_external_interrupt(u32 intr_info)1005 static inline bool is_external_interrupt(u32 intr_info)
1006 {
1007 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1008 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1009 }
1010
is_machine_check(u32 intr_info)1011 static inline bool is_machine_check(u32 intr_info)
1012 {
1013 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1014 INTR_INFO_VALID_MASK)) ==
1015 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1016 }
1017
1018 /* Undocumented: icebp/int1 */
is_icebp(u32 intr_info)1019 static inline bool is_icebp(u32 intr_info)
1020 {
1021 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1022 == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
1023 }
1024
cpu_has_vmx_msr_bitmap(void)1025 static inline bool cpu_has_vmx_msr_bitmap(void)
1026 {
1027 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1028 }
1029
cpu_has_vmx_tpr_shadow(void)1030 static inline bool cpu_has_vmx_tpr_shadow(void)
1031 {
1032 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1033 }
1034
cpu_need_tpr_shadow(struct kvm_vcpu * vcpu)1035 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1036 {
1037 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1038 }
1039
cpu_has_secondary_exec_ctrls(void)1040 static inline bool cpu_has_secondary_exec_ctrls(void)
1041 {
1042 return vmcs_config.cpu_based_exec_ctrl &
1043 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1044 }
1045
cpu_has_vmx_virtualize_apic_accesses(void)1046 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1047 {
1048 return vmcs_config.cpu_based_2nd_exec_ctrl &
1049 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1050 }
1051
cpu_has_vmx_virtualize_x2apic_mode(void)1052 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1053 {
1054 return vmcs_config.cpu_based_2nd_exec_ctrl &
1055 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1056 }
1057
cpu_has_vmx_apic_register_virt(void)1058 static inline bool cpu_has_vmx_apic_register_virt(void)
1059 {
1060 return vmcs_config.cpu_based_2nd_exec_ctrl &
1061 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1062 }
1063
cpu_has_vmx_virtual_intr_delivery(void)1064 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1065 {
1066 return vmcs_config.cpu_based_2nd_exec_ctrl &
1067 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1068 }
1069
cpu_has_vmx_posted_intr(void)1070 static inline bool cpu_has_vmx_posted_intr(void)
1071 {
1072 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1073 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1074 }
1075
cpu_has_vmx_apicv(void)1076 static inline bool cpu_has_vmx_apicv(void)
1077 {
1078 return cpu_has_vmx_apic_register_virt() &&
1079 cpu_has_vmx_virtual_intr_delivery() &&
1080 cpu_has_vmx_posted_intr();
1081 }
1082
cpu_has_vmx_flexpriority(void)1083 static inline bool cpu_has_vmx_flexpriority(void)
1084 {
1085 return cpu_has_vmx_tpr_shadow() &&
1086 cpu_has_vmx_virtualize_apic_accesses();
1087 }
1088
cpu_has_vmx_ept_execute_only(void)1089 static inline bool cpu_has_vmx_ept_execute_only(void)
1090 {
1091 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1092 }
1093
cpu_has_vmx_ept_2m_page(void)1094 static inline bool cpu_has_vmx_ept_2m_page(void)
1095 {
1096 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1097 }
1098
cpu_has_vmx_ept_1g_page(void)1099 static inline bool cpu_has_vmx_ept_1g_page(void)
1100 {
1101 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1102 }
1103
cpu_has_vmx_ept_4levels(void)1104 static inline bool cpu_has_vmx_ept_4levels(void)
1105 {
1106 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1107 }
1108
cpu_has_vmx_ept_ad_bits(void)1109 static inline bool cpu_has_vmx_ept_ad_bits(void)
1110 {
1111 return vmx_capability.ept & VMX_EPT_AD_BIT;
1112 }
1113
cpu_has_vmx_invept_context(void)1114 static inline bool cpu_has_vmx_invept_context(void)
1115 {
1116 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1117 }
1118
cpu_has_vmx_invept_global(void)1119 static inline bool cpu_has_vmx_invept_global(void)
1120 {
1121 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1122 }
1123
cpu_has_vmx_invvpid_single(void)1124 static inline bool cpu_has_vmx_invvpid_single(void)
1125 {
1126 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1127 }
1128
cpu_has_vmx_invvpid_global(void)1129 static inline bool cpu_has_vmx_invvpid_global(void)
1130 {
1131 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1132 }
1133
cpu_has_vmx_invvpid(void)1134 static inline bool cpu_has_vmx_invvpid(void)
1135 {
1136 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1137 }
1138
cpu_has_vmx_ept(void)1139 static inline bool cpu_has_vmx_ept(void)
1140 {
1141 return vmcs_config.cpu_based_2nd_exec_ctrl &
1142 SECONDARY_EXEC_ENABLE_EPT;
1143 }
1144
cpu_has_vmx_unrestricted_guest(void)1145 static inline bool cpu_has_vmx_unrestricted_guest(void)
1146 {
1147 return vmcs_config.cpu_based_2nd_exec_ctrl &
1148 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1149 }
1150
cpu_has_vmx_ple(void)1151 static inline bool cpu_has_vmx_ple(void)
1152 {
1153 return vmcs_config.cpu_based_2nd_exec_ctrl &
1154 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1155 }
1156
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)1157 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1158 {
1159 return flexpriority_enabled && lapic_in_kernel(vcpu);
1160 }
1161
cpu_has_vmx_vpid(void)1162 static inline bool cpu_has_vmx_vpid(void)
1163 {
1164 return vmcs_config.cpu_based_2nd_exec_ctrl &
1165 SECONDARY_EXEC_ENABLE_VPID;
1166 }
1167
cpu_has_vmx_rdtscp(void)1168 static inline bool cpu_has_vmx_rdtscp(void)
1169 {
1170 return vmcs_config.cpu_based_2nd_exec_ctrl &
1171 SECONDARY_EXEC_RDTSCP;
1172 }
1173
cpu_has_vmx_invpcid(void)1174 static inline bool cpu_has_vmx_invpcid(void)
1175 {
1176 return vmcs_config.cpu_based_2nd_exec_ctrl &
1177 SECONDARY_EXEC_ENABLE_INVPCID;
1178 }
1179
cpu_has_virtual_nmis(void)1180 static inline bool cpu_has_virtual_nmis(void)
1181 {
1182 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1183 }
1184
cpu_has_vmx_wbinvd_exit(void)1185 static inline bool cpu_has_vmx_wbinvd_exit(void)
1186 {
1187 return vmcs_config.cpu_based_2nd_exec_ctrl &
1188 SECONDARY_EXEC_WBINVD_EXITING;
1189 }
1190
cpu_has_vmx_shadow_vmcs(void)1191 static inline bool cpu_has_vmx_shadow_vmcs(void)
1192 {
1193 u64 vmx_msr;
1194 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1195 /* check if the cpu supports writing r/o exit information fields */
1196 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1197 return false;
1198
1199 return vmcs_config.cpu_based_2nd_exec_ctrl &
1200 SECONDARY_EXEC_SHADOW_VMCS;
1201 }
1202
cpu_has_vmx_pml(void)1203 static inline bool cpu_has_vmx_pml(void)
1204 {
1205 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1206 }
1207
cpu_has_vmx_tsc_scaling(void)1208 static inline bool cpu_has_vmx_tsc_scaling(void)
1209 {
1210 return vmcs_config.cpu_based_2nd_exec_ctrl &
1211 SECONDARY_EXEC_TSC_SCALING;
1212 }
1213
report_flexpriority(void)1214 static inline bool report_flexpriority(void)
1215 {
1216 return flexpriority_enabled;
1217 }
1218
nested_cpu_has(struct vmcs12 * vmcs12,u32 bit)1219 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1220 {
1221 return vmcs12->cpu_based_vm_exec_control & bit;
1222 }
1223
nested_cpu_has2(struct vmcs12 * vmcs12,u32 bit)1224 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1225 {
1226 return (vmcs12->cpu_based_vm_exec_control &
1227 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1228 (vmcs12->secondary_vm_exec_control & bit);
1229 }
1230
nested_cpu_has_virtual_nmis(struct vmcs12 * vmcs12)1231 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1232 {
1233 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1234 }
1235
nested_cpu_has_preemption_timer(struct vmcs12 * vmcs12)1236 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1237 {
1238 return vmcs12->pin_based_vm_exec_control &
1239 PIN_BASED_VMX_PREEMPTION_TIMER;
1240 }
1241
nested_cpu_has_ept(struct vmcs12 * vmcs12)1242 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1243 {
1244 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1245 }
1246
nested_cpu_has_xsaves(struct vmcs12 * vmcs12)1247 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1248 {
1249 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1250 vmx_xsaves_supported();
1251 }
1252
nested_cpu_has_virt_x2apic_mode(struct vmcs12 * vmcs12)1253 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1254 {
1255 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1256 }
1257
nested_cpu_has_vpid(struct vmcs12 * vmcs12)1258 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1259 {
1260 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1261 }
1262
nested_cpu_has_apic_reg_virt(struct vmcs12 * vmcs12)1263 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1264 {
1265 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1266 }
1267
nested_cpu_has_vid(struct vmcs12 * vmcs12)1268 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1269 {
1270 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1271 }
1272
nested_cpu_has_posted_intr(struct vmcs12 * vmcs12)1273 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1274 {
1275 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1276 }
1277
is_nmi(u32 intr_info)1278 static inline bool is_nmi(u32 intr_info)
1279 {
1280 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1281 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1282 }
1283
1284 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1285 u32 exit_intr_info,
1286 unsigned long exit_qualification);
1287 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1288 struct vmcs12 *vmcs12,
1289 u32 reason, unsigned long qualification);
1290
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)1291 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1292 {
1293 int i;
1294
1295 for (i = 0; i < vmx->nmsrs; ++i)
1296 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1297 return i;
1298 return -1;
1299 }
1300
__invvpid(unsigned long ext,u16 vpid,gva_t gva)1301 static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva)
1302 {
1303 struct {
1304 u64 vpid : 16;
1305 u64 rsvd : 48;
1306 u64 gva;
1307 } operand = { vpid, 0, gva };
1308
1309 asm volatile (__ex(ASM_VMX_INVVPID)
1310 /* CF==1 or ZF==1 --> rc = -1 */
1311 "; ja 1f ; ud2 ; 1:"
1312 : : "a"(&operand), "c"(ext) : "cc", "memory");
1313 }
1314
__invept(unsigned long ext,u64 eptp,gpa_t gpa)1315 static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa)
1316 {
1317 struct {
1318 u64 eptp, gpa;
1319 } operand = {eptp, gpa};
1320
1321 asm volatile (__ex(ASM_VMX_INVEPT)
1322 /* CF==1 or ZF==1 --> rc = -1 */
1323 "; ja 1f ; ud2 ; 1:\n"
1324 : : "a" (&operand), "c" (ext) : "cc", "memory");
1325 }
1326
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)1327 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1328 {
1329 int i;
1330
1331 i = __find_msr_index(vmx, msr);
1332 if (i >= 0)
1333 return &vmx->guest_msrs[i];
1334 return NULL;
1335 }
1336
vmcs_clear(struct vmcs * vmcs)1337 static void vmcs_clear(struct vmcs *vmcs)
1338 {
1339 u64 phys_addr = __pa(vmcs);
1340 u8 error;
1341
1342 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1343 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1344 : "cc", "memory");
1345 if (error)
1346 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1347 vmcs, phys_addr);
1348 }
1349
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)1350 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1351 {
1352 vmcs_clear(loaded_vmcs->vmcs);
1353 loaded_vmcs->cpu = -1;
1354 loaded_vmcs->launched = 0;
1355 }
1356
vmcs_load(struct vmcs * vmcs)1357 static void vmcs_load(struct vmcs *vmcs)
1358 {
1359 u64 phys_addr = __pa(vmcs);
1360 u8 error;
1361
1362 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1363 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1364 : "cc", "memory");
1365 if (error)
1366 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1367 vmcs, phys_addr);
1368 }
1369
1370 #ifdef CONFIG_KEXEC_CORE
1371 /*
1372 * This bitmap is used to indicate whether the vmclear
1373 * operation is enabled on all cpus. All disabled by
1374 * default.
1375 */
1376 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1377
crash_enable_local_vmclear(int cpu)1378 static inline void crash_enable_local_vmclear(int cpu)
1379 {
1380 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1381 }
1382
crash_disable_local_vmclear(int cpu)1383 static inline void crash_disable_local_vmclear(int cpu)
1384 {
1385 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1386 }
1387
crash_local_vmclear_enabled(int cpu)1388 static inline int crash_local_vmclear_enabled(int cpu)
1389 {
1390 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1391 }
1392
crash_vmclear_local_loaded_vmcss(void)1393 static void crash_vmclear_local_loaded_vmcss(void)
1394 {
1395 int cpu = raw_smp_processor_id();
1396 struct loaded_vmcs *v;
1397
1398 if (!crash_local_vmclear_enabled(cpu))
1399 return;
1400
1401 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1402 loaded_vmcss_on_cpu_link)
1403 vmcs_clear(v->vmcs);
1404 }
1405 #else
crash_enable_local_vmclear(int cpu)1406 static inline void crash_enable_local_vmclear(int cpu) { }
crash_disable_local_vmclear(int cpu)1407 static inline void crash_disable_local_vmclear(int cpu) { }
1408 #endif /* CONFIG_KEXEC_CORE */
1409
__loaded_vmcs_clear(void * arg)1410 static void __loaded_vmcs_clear(void *arg)
1411 {
1412 struct loaded_vmcs *loaded_vmcs = arg;
1413 int cpu = raw_smp_processor_id();
1414
1415 if (loaded_vmcs->cpu != cpu)
1416 return; /* vcpu migration can race with cpu offline */
1417 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1418 per_cpu(current_vmcs, cpu) = NULL;
1419 crash_disable_local_vmclear(cpu);
1420 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1421
1422 /*
1423 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1424 * is before setting loaded_vmcs->vcpu to -1 which is done in
1425 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1426 * then adds the vmcs into percpu list before it is deleted.
1427 */
1428 smp_wmb();
1429
1430 loaded_vmcs_init(loaded_vmcs);
1431 crash_enable_local_vmclear(cpu);
1432 }
1433
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)1434 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1435 {
1436 int cpu = loaded_vmcs->cpu;
1437
1438 if (cpu != -1)
1439 smp_call_function_single(cpu,
1440 __loaded_vmcs_clear, loaded_vmcs, 1);
1441 }
1442
vpid_sync_vcpu_single(int vpid)1443 static inline void vpid_sync_vcpu_single(int vpid)
1444 {
1445 if (vpid == 0)
1446 return;
1447
1448 if (cpu_has_vmx_invvpid_single())
1449 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1450 }
1451
vpid_sync_vcpu_global(void)1452 static inline void vpid_sync_vcpu_global(void)
1453 {
1454 if (cpu_has_vmx_invvpid_global())
1455 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1456 }
1457
vpid_sync_context(int vpid)1458 static inline void vpid_sync_context(int vpid)
1459 {
1460 if (cpu_has_vmx_invvpid_single())
1461 vpid_sync_vcpu_single(vpid);
1462 else
1463 vpid_sync_vcpu_global();
1464 }
1465
ept_sync_global(void)1466 static inline void ept_sync_global(void)
1467 {
1468 if (cpu_has_vmx_invept_global())
1469 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1470 }
1471
ept_sync_context(u64 eptp)1472 static inline void ept_sync_context(u64 eptp)
1473 {
1474 if (enable_ept) {
1475 if (cpu_has_vmx_invept_context())
1476 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1477 else
1478 ept_sync_global();
1479 }
1480 }
1481
vmcs_readl(unsigned long field)1482 static __always_inline unsigned long vmcs_readl(unsigned long field)
1483 {
1484 unsigned long value;
1485
1486 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1487 : "=a"(value) : "d"(field) : "cc");
1488 return value;
1489 }
1490
vmcs_read16(unsigned long field)1491 static __always_inline u16 vmcs_read16(unsigned long field)
1492 {
1493 return vmcs_readl(field);
1494 }
1495
vmcs_read32(unsigned long field)1496 static __always_inline u32 vmcs_read32(unsigned long field)
1497 {
1498 return vmcs_readl(field);
1499 }
1500
vmcs_read64(unsigned long field)1501 static __always_inline u64 vmcs_read64(unsigned long field)
1502 {
1503 #ifdef CONFIG_X86_64
1504 return vmcs_readl(field);
1505 #else
1506 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1507 #endif
1508 }
1509
vmwrite_error(unsigned long field,unsigned long value)1510 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1511 {
1512 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1513 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1514 dump_stack();
1515 }
1516
vmcs_writel(unsigned long field,unsigned long value)1517 static void vmcs_writel(unsigned long field, unsigned long value)
1518 {
1519 u8 error;
1520
1521 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1522 : "=q"(error) : "a"(value), "d"(field) : "cc");
1523 if (unlikely(error))
1524 vmwrite_error(field, value);
1525 }
1526
vmcs_write16(unsigned long field,u16 value)1527 static void vmcs_write16(unsigned long field, u16 value)
1528 {
1529 vmcs_writel(field, value);
1530 }
1531
vmcs_write32(unsigned long field,u32 value)1532 static void vmcs_write32(unsigned long field, u32 value)
1533 {
1534 vmcs_writel(field, value);
1535 }
1536
vmcs_write64(unsigned long field,u64 value)1537 static void vmcs_write64(unsigned long field, u64 value)
1538 {
1539 vmcs_writel(field, value);
1540 #ifndef CONFIG_X86_64
1541 asm volatile ("");
1542 vmcs_writel(field+1, value >> 32);
1543 #endif
1544 }
1545
vmcs_clear_bits(unsigned long field,u32 mask)1546 static void vmcs_clear_bits(unsigned long field, u32 mask)
1547 {
1548 vmcs_writel(field, vmcs_readl(field) & ~mask);
1549 }
1550
vmcs_set_bits(unsigned long field,u32 mask)1551 static void vmcs_set_bits(unsigned long field, u32 mask)
1552 {
1553 vmcs_writel(field, vmcs_readl(field) | mask);
1554 }
1555
vm_entry_controls_init(struct vcpu_vmx * vmx,u32 val)1556 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1557 {
1558 vmcs_write32(VM_ENTRY_CONTROLS, val);
1559 vmx->vm_entry_controls_shadow = val;
1560 }
1561
vm_entry_controls_set(struct vcpu_vmx * vmx,u32 val)1562 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1563 {
1564 if (vmx->vm_entry_controls_shadow != val)
1565 vm_entry_controls_init(vmx, val);
1566 }
1567
vm_entry_controls_get(struct vcpu_vmx * vmx)1568 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1569 {
1570 return vmx->vm_entry_controls_shadow;
1571 }
1572
1573
vm_entry_controls_setbit(struct vcpu_vmx * vmx,u32 val)1574 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1575 {
1576 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1577 }
1578
vm_entry_controls_clearbit(struct vcpu_vmx * vmx,u32 val)1579 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1580 {
1581 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1582 }
1583
vm_exit_controls_init(struct vcpu_vmx * vmx,u32 val)1584 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1585 {
1586 vmcs_write32(VM_EXIT_CONTROLS, val);
1587 vmx->vm_exit_controls_shadow = val;
1588 }
1589
vm_exit_controls_set(struct vcpu_vmx * vmx,u32 val)1590 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1591 {
1592 if (vmx->vm_exit_controls_shadow != val)
1593 vm_exit_controls_init(vmx, val);
1594 }
1595
vm_exit_controls_get(struct vcpu_vmx * vmx)1596 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1597 {
1598 return vmx->vm_exit_controls_shadow;
1599 }
1600
1601
vm_exit_controls_setbit(struct vcpu_vmx * vmx,u32 val)1602 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1603 {
1604 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1605 }
1606
vm_exit_controls_clearbit(struct vcpu_vmx * vmx,u32 val)1607 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1608 {
1609 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1610 }
1611
vmx_segment_cache_clear(struct vcpu_vmx * vmx)1612 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1613 {
1614 vmx->segment_cache.bitmask = 0;
1615 }
1616
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)1617 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1618 unsigned field)
1619 {
1620 bool ret;
1621 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1622
1623 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1624 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1625 vmx->segment_cache.bitmask = 0;
1626 }
1627 ret = vmx->segment_cache.bitmask & mask;
1628 vmx->segment_cache.bitmask |= mask;
1629 return ret;
1630 }
1631
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)1632 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1633 {
1634 u16 *p = &vmx->segment_cache.seg[seg].selector;
1635
1636 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1637 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1638 return *p;
1639 }
1640
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)1641 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1642 {
1643 ulong *p = &vmx->segment_cache.seg[seg].base;
1644
1645 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1646 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1647 return *p;
1648 }
1649
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)1650 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1651 {
1652 u32 *p = &vmx->segment_cache.seg[seg].limit;
1653
1654 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1655 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1656 return *p;
1657 }
1658
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)1659 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1660 {
1661 u32 *p = &vmx->segment_cache.seg[seg].ar;
1662
1663 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1664 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1665 return *p;
1666 }
1667
update_exception_bitmap(struct kvm_vcpu * vcpu)1668 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1669 {
1670 u32 eb;
1671
1672 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1673 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1674 if ((vcpu->guest_debug &
1675 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1676 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1677 eb |= 1u << BP_VECTOR;
1678 if (to_vmx(vcpu)->rmode.vm86_active)
1679 eb = ~0;
1680 if (enable_ept)
1681 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1682 if (vcpu->fpu_active)
1683 eb &= ~(1u << NM_VECTOR);
1684
1685 /* When we are running a nested L2 guest and L1 specified for it a
1686 * certain exception bitmap, we must trap the same exceptions and pass
1687 * them to L1. When running L2, we will only handle the exceptions
1688 * specified above if L1 did not want them.
1689 */
1690 if (is_guest_mode(vcpu))
1691 eb |= get_vmcs12(vcpu)->exception_bitmap;
1692
1693 vmcs_write32(EXCEPTION_BITMAP, eb);
1694 }
1695
1696 /*
1697 * Check if MSR is intercepted for currently loaded MSR bitmap.
1698 */
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)1699 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
1700 {
1701 unsigned long *msr_bitmap;
1702 int f = sizeof(unsigned long);
1703
1704 if (!cpu_has_vmx_msr_bitmap())
1705 return true;
1706
1707 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
1708
1709 if (msr <= 0x1fff) {
1710 return !!test_bit(msr, msr_bitmap + 0x800 / f);
1711 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1712 msr &= 0x1fff;
1713 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
1714 }
1715
1716 return true;
1717 }
1718
1719 /*
1720 * Check if MSR is intercepted for L01 MSR bitmap.
1721 */
msr_write_intercepted_l01(struct kvm_vcpu * vcpu,u32 msr)1722 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
1723 {
1724 unsigned long *msr_bitmap;
1725 int f = sizeof(unsigned long);
1726
1727 if (!cpu_has_vmx_msr_bitmap())
1728 return true;
1729
1730 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
1731
1732 if (msr <= 0x1fff) {
1733 return !!test_bit(msr, msr_bitmap + 0x800 / f);
1734 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1735 msr &= 0x1fff;
1736 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
1737 }
1738
1739 return true;
1740 }
1741
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)1742 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1743 unsigned long entry, unsigned long exit)
1744 {
1745 vm_entry_controls_clearbit(vmx, entry);
1746 vm_exit_controls_clearbit(vmx, exit);
1747 }
1748
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)1749 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1750 {
1751 unsigned i;
1752 struct msr_autoload *m = &vmx->msr_autoload;
1753
1754 switch (msr) {
1755 case MSR_EFER:
1756 if (cpu_has_load_ia32_efer) {
1757 clear_atomic_switch_msr_special(vmx,
1758 VM_ENTRY_LOAD_IA32_EFER,
1759 VM_EXIT_LOAD_IA32_EFER);
1760 return;
1761 }
1762 break;
1763 case MSR_CORE_PERF_GLOBAL_CTRL:
1764 if (cpu_has_load_perf_global_ctrl) {
1765 clear_atomic_switch_msr_special(vmx,
1766 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1767 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1768 return;
1769 }
1770 break;
1771 }
1772
1773 for (i = 0; i < m->nr; ++i)
1774 if (m->guest[i].index == msr)
1775 break;
1776
1777 if (i == m->nr)
1778 return;
1779 --m->nr;
1780 m->guest[i] = m->guest[m->nr];
1781 m->host[i] = m->host[m->nr];
1782 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1783 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1784 }
1785
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1786 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1787 unsigned long entry, unsigned long exit,
1788 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1789 u64 guest_val, u64 host_val)
1790 {
1791 vmcs_write64(guest_val_vmcs, guest_val);
1792 vmcs_write64(host_val_vmcs, host_val);
1793 vm_entry_controls_setbit(vmx, entry);
1794 vm_exit_controls_setbit(vmx, exit);
1795 }
1796
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val)1797 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1798 u64 guest_val, u64 host_val)
1799 {
1800 unsigned i;
1801 struct msr_autoload *m = &vmx->msr_autoload;
1802
1803 switch (msr) {
1804 case MSR_EFER:
1805 if (cpu_has_load_ia32_efer) {
1806 add_atomic_switch_msr_special(vmx,
1807 VM_ENTRY_LOAD_IA32_EFER,
1808 VM_EXIT_LOAD_IA32_EFER,
1809 GUEST_IA32_EFER,
1810 HOST_IA32_EFER,
1811 guest_val, host_val);
1812 return;
1813 }
1814 break;
1815 case MSR_CORE_PERF_GLOBAL_CTRL:
1816 if (cpu_has_load_perf_global_ctrl) {
1817 add_atomic_switch_msr_special(vmx,
1818 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1819 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1820 GUEST_IA32_PERF_GLOBAL_CTRL,
1821 HOST_IA32_PERF_GLOBAL_CTRL,
1822 guest_val, host_val);
1823 return;
1824 }
1825 break;
1826 case MSR_IA32_PEBS_ENABLE:
1827 /* PEBS needs a quiescent period after being disabled (to write
1828 * a record). Disabling PEBS through VMX MSR swapping doesn't
1829 * provide that period, so a CPU could write host's record into
1830 * guest's memory.
1831 */
1832 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1833 }
1834
1835 for (i = 0; i < m->nr; ++i)
1836 if (m->guest[i].index == msr)
1837 break;
1838
1839 if (i == NR_AUTOLOAD_MSRS) {
1840 printk_once(KERN_WARNING "Not enough msr switch entries. "
1841 "Can't add msr %x\n", msr);
1842 return;
1843 } else if (i == m->nr) {
1844 ++m->nr;
1845 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1846 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1847 }
1848
1849 m->guest[i].index = msr;
1850 m->guest[i].value = guest_val;
1851 m->host[i].index = msr;
1852 m->host[i].value = host_val;
1853 }
1854
reload_tss(void)1855 static void reload_tss(void)
1856 {
1857 /*
1858 * VT restores TR but not its size. Useless.
1859 */
1860 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1861 struct desc_struct *descs;
1862
1863 descs = (void *)gdt->address;
1864 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1865 load_TR_desc();
1866 }
1867
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)1868 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1869 {
1870 u64 guest_efer = vmx->vcpu.arch.efer;
1871 u64 ignore_bits = 0;
1872
1873 if (!enable_ept) {
1874 /*
1875 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1876 * host CPUID is more efficient than testing guest CPUID
1877 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1878 */
1879 if (boot_cpu_has(X86_FEATURE_SMEP))
1880 guest_efer |= EFER_NX;
1881 else if (!(guest_efer & EFER_NX))
1882 ignore_bits |= EFER_NX;
1883 }
1884
1885 /*
1886 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1887 */
1888 ignore_bits |= EFER_SCE;
1889 #ifdef CONFIG_X86_64
1890 ignore_bits |= EFER_LMA | EFER_LME;
1891 /* SCE is meaningful only in long mode on Intel */
1892 if (guest_efer & EFER_LMA)
1893 ignore_bits &= ~(u64)EFER_SCE;
1894 #endif
1895
1896 clear_atomic_switch_msr(vmx, MSR_EFER);
1897
1898 /*
1899 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1900 * On CPUs that support "load IA32_EFER", always switch EFER
1901 * atomically, since it's faster than switching it manually.
1902 */
1903 if (cpu_has_load_ia32_efer ||
1904 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1905 if (!(guest_efer & EFER_LMA))
1906 guest_efer &= ~EFER_LME;
1907 if (guest_efer != host_efer)
1908 add_atomic_switch_msr(vmx, MSR_EFER,
1909 guest_efer, host_efer);
1910 return false;
1911 } else {
1912 guest_efer &= ~ignore_bits;
1913 guest_efer |= host_efer & ignore_bits;
1914
1915 vmx->guest_msrs[efer_offset].data = guest_efer;
1916 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1917
1918 return true;
1919 }
1920 }
1921
segment_base(u16 selector)1922 static unsigned long segment_base(u16 selector)
1923 {
1924 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1925 struct desc_struct *d;
1926 unsigned long table_base;
1927 unsigned long v;
1928
1929 if (!(selector & ~3))
1930 return 0;
1931
1932 table_base = gdt->address;
1933
1934 if (selector & 4) { /* from ldt */
1935 u16 ldt_selector = kvm_read_ldt();
1936
1937 if (!(ldt_selector & ~3))
1938 return 0;
1939
1940 table_base = segment_base(ldt_selector);
1941 }
1942 d = (struct desc_struct *)(table_base + (selector & ~7));
1943 v = get_desc_base(d);
1944 #ifdef CONFIG_X86_64
1945 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1946 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1947 #endif
1948 return v;
1949 }
1950
kvm_read_tr_base(void)1951 static inline unsigned long kvm_read_tr_base(void)
1952 {
1953 u16 tr;
1954 asm("str %0" : "=g"(tr));
1955 return segment_base(tr);
1956 }
1957
vmx_save_host_state(struct kvm_vcpu * vcpu)1958 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1959 {
1960 struct vcpu_vmx *vmx = to_vmx(vcpu);
1961 int i;
1962
1963 if (vmx->host_state.loaded)
1964 return;
1965
1966 vmx->host_state.loaded = 1;
1967 /*
1968 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1969 * allow segment selectors with cpl > 0 or ti == 1.
1970 */
1971 vmx->host_state.ldt_sel = kvm_read_ldt();
1972 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1973 savesegment(fs, vmx->host_state.fs_sel);
1974 if (!(vmx->host_state.fs_sel & 7)) {
1975 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1976 vmx->host_state.fs_reload_needed = 0;
1977 } else {
1978 vmcs_write16(HOST_FS_SELECTOR, 0);
1979 vmx->host_state.fs_reload_needed = 1;
1980 }
1981 savesegment(gs, vmx->host_state.gs_sel);
1982 if (!(vmx->host_state.gs_sel & 7))
1983 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1984 else {
1985 vmcs_write16(HOST_GS_SELECTOR, 0);
1986 vmx->host_state.gs_ldt_reload_needed = 1;
1987 }
1988
1989 #ifdef CONFIG_X86_64
1990 savesegment(ds, vmx->host_state.ds_sel);
1991 savesegment(es, vmx->host_state.es_sel);
1992 #endif
1993
1994 #ifdef CONFIG_X86_64
1995 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1996 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1997 #else
1998 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1999 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2000 #endif
2001
2002 #ifdef CONFIG_X86_64
2003 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2004 if (is_long_mode(&vmx->vcpu))
2005 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2006 #endif
2007 if (boot_cpu_has(X86_FEATURE_MPX))
2008 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2009 for (i = 0; i < vmx->save_nmsrs; ++i)
2010 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2011 vmx->guest_msrs[i].data,
2012 vmx->guest_msrs[i].mask);
2013 }
2014
__vmx_load_host_state(struct vcpu_vmx * vmx)2015 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2016 {
2017 if (!vmx->host_state.loaded)
2018 return;
2019
2020 ++vmx->vcpu.stat.host_state_reload;
2021 vmx->host_state.loaded = 0;
2022 #ifdef CONFIG_X86_64
2023 if (is_long_mode(&vmx->vcpu))
2024 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2025 #endif
2026 if (vmx->host_state.gs_ldt_reload_needed) {
2027 kvm_load_ldt(vmx->host_state.ldt_sel);
2028 #ifdef CONFIG_X86_64
2029 load_gs_index(vmx->host_state.gs_sel);
2030 #else
2031 loadsegment(gs, vmx->host_state.gs_sel);
2032 #endif
2033 }
2034 if (vmx->host_state.fs_reload_needed)
2035 loadsegment(fs, vmx->host_state.fs_sel);
2036 #ifdef CONFIG_X86_64
2037 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2038 loadsegment(ds, vmx->host_state.ds_sel);
2039 loadsegment(es, vmx->host_state.es_sel);
2040 }
2041 #endif
2042 reload_tss();
2043 #ifdef CONFIG_X86_64
2044 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2045 #endif
2046 if (vmx->host_state.msr_host_bndcfgs)
2047 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2048 /*
2049 * If the FPU is not active (through the host task or
2050 * the guest vcpu), then restore the cr0.TS bit.
2051 */
2052 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
2053 stts();
2054 load_gdt(this_cpu_ptr(&host_gdt));
2055 }
2056
vmx_load_host_state(struct vcpu_vmx * vmx)2057 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2058 {
2059 preempt_disable();
2060 __vmx_load_host_state(vmx);
2061 preempt_enable();
2062 }
2063
vmx_vcpu_pi_load(struct kvm_vcpu * vcpu,int cpu)2064 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2065 {
2066 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2067 struct pi_desc old, new;
2068 unsigned int dest;
2069
2070 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2071 !irq_remapping_cap(IRQ_POSTING_CAP))
2072 return;
2073
2074 do {
2075 old.control = new.control = pi_desc->control;
2076
2077 /*
2078 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2079 * are two possible cases:
2080 * 1. After running 'pre_block', context switch
2081 * happened. For this case, 'sn' was set in
2082 * vmx_vcpu_put(), so we need to clear it here.
2083 * 2. After running 'pre_block', we were blocked,
2084 * and woken up by some other guy. For this case,
2085 * we don't need to do anything, 'pi_post_block'
2086 * will do everything for us. However, we cannot
2087 * check whether it is case #1 or case #2 here
2088 * (maybe, not needed), so we also clear sn here,
2089 * I think it is not a big deal.
2090 */
2091 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2092 if (vcpu->cpu != cpu) {
2093 dest = cpu_physical_id(cpu);
2094
2095 if (x2apic_enabled())
2096 new.ndst = dest;
2097 else
2098 new.ndst = (dest << 8) & 0xFF00;
2099 }
2100
2101 /* set 'NV' to 'notification vector' */
2102 new.nv = POSTED_INTR_VECTOR;
2103 }
2104
2105 /* Allow posting non-urgent interrupts */
2106 new.sn = 0;
2107 } while (cmpxchg64(&pi_desc->control, old.control,
2108 new.control) != old.control);
2109 }
2110 /*
2111 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2112 * vcpu mutex is already taken.
2113 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2114 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2115 {
2116 struct vcpu_vmx *vmx = to_vmx(vcpu);
2117 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2118
2119 if (!vmm_exclusive)
2120 kvm_cpu_vmxon(phys_addr);
2121 else if (vmx->loaded_vmcs->cpu != cpu)
2122 loaded_vmcs_clear(vmx->loaded_vmcs);
2123
2124 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2125 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2126 vmcs_load(vmx->loaded_vmcs->vmcs);
2127 indirect_branch_prediction_barrier();
2128 }
2129
2130 if (vmx->loaded_vmcs->cpu != cpu) {
2131 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2132 unsigned long sysenter_esp;
2133
2134 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2135 local_irq_disable();
2136 crash_disable_local_vmclear(cpu);
2137
2138 /*
2139 * Read loaded_vmcs->cpu should be before fetching
2140 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2141 * See the comments in __loaded_vmcs_clear().
2142 */
2143 smp_rmb();
2144
2145 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2146 &per_cpu(loaded_vmcss_on_cpu, cpu));
2147 crash_enable_local_vmclear(cpu);
2148 local_irq_enable();
2149
2150 /*
2151 * Linux uses per-cpu TSS and GDT, so set these when switching
2152 * processors.
2153 */
2154 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2155 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
2156
2157 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2158 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2159
2160 vmx->loaded_vmcs->cpu = cpu;
2161 }
2162
2163 /* Setup TSC multiplier */
2164 if (kvm_has_tsc_control &&
2165 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) {
2166 vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2167 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2168 }
2169
2170 vmx_vcpu_pi_load(vcpu, cpu);
2171 }
2172
vmx_vcpu_pi_put(struct kvm_vcpu * vcpu)2173 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2174 {
2175 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2176
2177 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2178 !irq_remapping_cap(IRQ_POSTING_CAP))
2179 return;
2180
2181 /* Set SN when the vCPU is preempted */
2182 if (vcpu->preempted)
2183 pi_set_sn(pi_desc);
2184 }
2185
vmx_vcpu_put(struct kvm_vcpu * vcpu)2186 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2187 {
2188 vmx_vcpu_pi_put(vcpu);
2189
2190 __vmx_load_host_state(to_vmx(vcpu));
2191 if (!vmm_exclusive) {
2192 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2193 vcpu->cpu = -1;
2194 kvm_cpu_vmxoff();
2195 }
2196 }
2197
vmx_fpu_activate(struct kvm_vcpu * vcpu)2198 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2199 {
2200 ulong cr0;
2201
2202 if (vcpu->fpu_active)
2203 return;
2204 vcpu->fpu_active = 1;
2205 cr0 = vmcs_readl(GUEST_CR0);
2206 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2207 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2208 vmcs_writel(GUEST_CR0, cr0);
2209 update_exception_bitmap(vcpu);
2210 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2211 if (is_guest_mode(vcpu))
2212 vcpu->arch.cr0_guest_owned_bits &=
2213 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2214 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2215 }
2216
2217 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2218
2219 /*
2220 * Return the cr0 value that a nested guest would read. This is a combination
2221 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2222 * its hypervisor (cr0_read_shadow).
2223 */
nested_read_cr0(struct vmcs12 * fields)2224 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2225 {
2226 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2227 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2228 }
nested_read_cr4(struct vmcs12 * fields)2229 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2230 {
2231 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2232 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2233 }
2234
vmx_fpu_deactivate(struct kvm_vcpu * vcpu)2235 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2236 {
2237 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2238 * set this *before* calling this function.
2239 */
2240 vmx_decache_cr0_guest_bits(vcpu);
2241 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2242 update_exception_bitmap(vcpu);
2243 vcpu->arch.cr0_guest_owned_bits = 0;
2244 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2245 if (is_guest_mode(vcpu)) {
2246 /*
2247 * L1's specified read shadow might not contain the TS bit,
2248 * so now that we turned on shadowing of this bit, we need to
2249 * set this bit of the shadow. Like in nested_vmx_run we need
2250 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2251 * up-to-date here because we just decached cr0.TS (and we'll
2252 * only update vmcs12->guest_cr0 on nested exit).
2253 */
2254 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2255 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2256 (vcpu->arch.cr0 & X86_CR0_TS);
2257 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2258 } else
2259 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2260 }
2261
vmx_get_rflags(struct kvm_vcpu * vcpu)2262 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2263 {
2264 unsigned long rflags, save_rflags;
2265
2266 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2267 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2268 rflags = vmcs_readl(GUEST_RFLAGS);
2269 if (to_vmx(vcpu)->rmode.vm86_active) {
2270 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2271 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2272 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2273 }
2274 to_vmx(vcpu)->rflags = rflags;
2275 }
2276 return to_vmx(vcpu)->rflags;
2277 }
2278
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)2279 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2280 {
2281 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2282 to_vmx(vcpu)->rflags = rflags;
2283 if (to_vmx(vcpu)->rmode.vm86_active) {
2284 to_vmx(vcpu)->rmode.save_rflags = rflags;
2285 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2286 }
2287 vmcs_writel(GUEST_RFLAGS, rflags);
2288 }
2289
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)2290 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2291 {
2292 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2293 int ret = 0;
2294
2295 if (interruptibility & GUEST_INTR_STATE_STI)
2296 ret |= KVM_X86_SHADOW_INT_STI;
2297 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2298 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2299
2300 return ret;
2301 }
2302
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)2303 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2304 {
2305 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2306 u32 interruptibility = interruptibility_old;
2307
2308 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2309
2310 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2311 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2312 else if (mask & KVM_X86_SHADOW_INT_STI)
2313 interruptibility |= GUEST_INTR_STATE_STI;
2314
2315 if ((interruptibility != interruptibility_old))
2316 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2317 }
2318
skip_emulated_instruction(struct kvm_vcpu * vcpu)2319 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2320 {
2321 unsigned long rip;
2322
2323 rip = kvm_rip_read(vcpu);
2324 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2325 kvm_rip_write(vcpu, rip);
2326
2327 /* skipping an emulated instruction also counts */
2328 vmx_set_interrupt_shadow(vcpu, 0);
2329 }
2330
2331 /*
2332 * KVM wants to inject page-faults which it got to the guest. This function
2333 * checks whether in a nested guest, we need to inject them to L1 or L2.
2334 */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned nr)2335 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2336 {
2337 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2338
2339 if (!(vmcs12->exception_bitmap & (1u << nr)))
2340 return 0;
2341
2342 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2343 vmcs_read32(VM_EXIT_INTR_INFO),
2344 vmcs_readl(EXIT_QUALIFICATION));
2345 return 1;
2346 }
2347
vmx_queue_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error_code,u32 error_code,bool reinject)2348 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2349 bool has_error_code, u32 error_code,
2350 bool reinject)
2351 {
2352 struct vcpu_vmx *vmx = to_vmx(vcpu);
2353 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2354
2355 if (!reinject && is_guest_mode(vcpu) &&
2356 nested_vmx_check_exception(vcpu, nr))
2357 return;
2358
2359 if (has_error_code) {
2360 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2361 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2362 }
2363
2364 if (vmx->rmode.vm86_active) {
2365 int inc_eip = 0;
2366 if (kvm_exception_is_soft(nr))
2367 inc_eip = vcpu->arch.event_exit_inst_len;
2368 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2369 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2370 return;
2371 }
2372
2373 WARN_ON_ONCE(vmx->emulation_required);
2374
2375 if (kvm_exception_is_soft(nr)) {
2376 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2377 vmx->vcpu.arch.event_exit_inst_len);
2378 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2379 } else
2380 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2381
2382 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2383 }
2384
vmx_rdtscp_supported(void)2385 static bool vmx_rdtscp_supported(void)
2386 {
2387 return cpu_has_vmx_rdtscp();
2388 }
2389
vmx_invpcid_supported(void)2390 static bool vmx_invpcid_supported(void)
2391 {
2392 return cpu_has_vmx_invpcid() && enable_ept;
2393 }
2394
2395 /*
2396 * Swap MSR entry in host/guest MSR entry array.
2397 */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)2398 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2399 {
2400 struct shared_msr_entry tmp;
2401
2402 tmp = vmx->guest_msrs[to];
2403 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2404 vmx->guest_msrs[from] = tmp;
2405 }
2406
2407 /*
2408 * Set up the vmcs to automatically save and restore system
2409 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2410 * mode, as fiddling with msrs is very expensive.
2411 */
setup_msrs(struct vcpu_vmx * vmx)2412 static void setup_msrs(struct vcpu_vmx *vmx)
2413 {
2414 int save_nmsrs, index;
2415
2416 save_nmsrs = 0;
2417 #ifdef CONFIG_X86_64
2418 if (is_long_mode(&vmx->vcpu)) {
2419 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2420 if (index >= 0)
2421 move_msr_up(vmx, index, save_nmsrs++);
2422 index = __find_msr_index(vmx, MSR_LSTAR);
2423 if (index >= 0)
2424 move_msr_up(vmx, index, save_nmsrs++);
2425 index = __find_msr_index(vmx, MSR_CSTAR);
2426 if (index >= 0)
2427 move_msr_up(vmx, index, save_nmsrs++);
2428 index = __find_msr_index(vmx, MSR_TSC_AUX);
2429 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2430 move_msr_up(vmx, index, save_nmsrs++);
2431 /*
2432 * MSR_STAR is only needed on long mode guests, and only
2433 * if efer.sce is enabled.
2434 */
2435 index = __find_msr_index(vmx, MSR_STAR);
2436 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2437 move_msr_up(vmx, index, save_nmsrs++);
2438 }
2439 #endif
2440 index = __find_msr_index(vmx, MSR_EFER);
2441 if (index >= 0 && update_transition_efer(vmx, index))
2442 move_msr_up(vmx, index, save_nmsrs++);
2443
2444 vmx->save_nmsrs = save_nmsrs;
2445
2446 if (cpu_has_vmx_msr_bitmap())
2447 vmx_update_msr_bitmap(&vmx->vcpu);
2448 }
2449
2450 /*
2451 * reads and returns guest's timestamp counter "register"
2452 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2453 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2454 */
guest_read_tsc(struct kvm_vcpu * vcpu)2455 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2456 {
2457 u64 host_tsc, tsc_offset;
2458
2459 host_tsc = rdtsc();
2460 tsc_offset = vmcs_read64(TSC_OFFSET);
2461 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2462 }
2463
2464 /*
2465 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2466 * counter, even if a nested guest (L2) is currently running.
2467 */
vmx_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2468 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2469 {
2470 u64 tsc_offset;
2471
2472 tsc_offset = is_guest_mode(vcpu) ?
2473 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2474 vmcs_read64(TSC_OFFSET);
2475 return host_tsc + tsc_offset;
2476 }
2477
vmx_read_tsc_offset(struct kvm_vcpu * vcpu)2478 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2479 {
2480 return vmcs_read64(TSC_OFFSET);
2481 }
2482
2483 /*
2484 * writes 'offset' into guest's timestamp counter offset register
2485 */
vmx_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)2486 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2487 {
2488 if (is_guest_mode(vcpu)) {
2489 /*
2490 * We're here if L1 chose not to trap WRMSR to TSC. According
2491 * to the spec, this should set L1's TSC; The offset that L1
2492 * set for L2 remains unchanged, and still needs to be added
2493 * to the newly set TSC to get L2's TSC.
2494 */
2495 struct vmcs12 *vmcs12;
2496 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2497 /* recalculate vmcs02.TSC_OFFSET: */
2498 vmcs12 = get_vmcs12(vcpu);
2499 vmcs_write64(TSC_OFFSET, offset +
2500 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2501 vmcs12->tsc_offset : 0));
2502 } else {
2503 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2504 vmcs_read64(TSC_OFFSET), offset);
2505 vmcs_write64(TSC_OFFSET, offset);
2506 }
2507 }
2508
vmx_adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2509 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
2510 {
2511 u64 offset = vmcs_read64(TSC_OFFSET);
2512
2513 vmcs_write64(TSC_OFFSET, offset + adjustment);
2514 if (is_guest_mode(vcpu)) {
2515 /* Even when running L2, the adjustment needs to apply to L1 */
2516 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2517 } else
2518 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2519 offset + adjustment);
2520 }
2521
guest_cpuid_has_vmx(struct kvm_vcpu * vcpu)2522 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2523 {
2524 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2525 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2526 }
2527
2528 /*
2529 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2530 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2531 * all guests if the "nested" module option is off, and can also be disabled
2532 * for a single guest by disabling its VMX cpuid bit.
2533 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)2534 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2535 {
2536 return nested && guest_cpuid_has_vmx(vcpu);
2537 }
2538
2539 /*
2540 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2541 * returned for the various VMX controls MSRs when nested VMX is enabled.
2542 * The same values should also be used to verify that vmcs12 control fields are
2543 * valid during nested entry from L1 to L2.
2544 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2545 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2546 * bit in the high half is on if the corresponding bit in the control field
2547 * may be on. See also vmx_control_verify().
2548 */
nested_vmx_setup_ctls_msrs(struct vcpu_vmx * vmx)2549 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2550 {
2551 /*
2552 * Note that as a general rule, the high half of the MSRs (bits in
2553 * the control fields which may be 1) should be initialized by the
2554 * intersection of the underlying hardware's MSR (i.e., features which
2555 * can be supported) and the list of features we want to expose -
2556 * because they are known to be properly supported in our code.
2557 * Also, usually, the low half of the MSRs (bits which must be 1) can
2558 * be set to 0, meaning that L1 may turn off any of these bits. The
2559 * reason is that if one of these bits is necessary, it will appear
2560 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2561 * fields of vmcs01 and vmcs02, will turn these bits off - and
2562 * nested_vmx_exit_handled() will not pass related exits to L1.
2563 * These rules have exceptions below.
2564 */
2565
2566 /* pin-based controls */
2567 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2568 vmx->nested.nested_vmx_pinbased_ctls_low,
2569 vmx->nested.nested_vmx_pinbased_ctls_high);
2570 vmx->nested.nested_vmx_pinbased_ctls_low |=
2571 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2572 vmx->nested.nested_vmx_pinbased_ctls_high &=
2573 PIN_BASED_EXT_INTR_MASK |
2574 PIN_BASED_NMI_EXITING |
2575 PIN_BASED_VIRTUAL_NMIS;
2576 vmx->nested.nested_vmx_pinbased_ctls_high |=
2577 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2578 PIN_BASED_VMX_PREEMPTION_TIMER;
2579 if (vmx_cpu_uses_apicv(&vmx->vcpu))
2580 vmx->nested.nested_vmx_pinbased_ctls_high |=
2581 PIN_BASED_POSTED_INTR;
2582
2583 /* exit controls */
2584 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2585 vmx->nested.nested_vmx_exit_ctls_low,
2586 vmx->nested.nested_vmx_exit_ctls_high);
2587 vmx->nested.nested_vmx_exit_ctls_low =
2588 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2589
2590 vmx->nested.nested_vmx_exit_ctls_high &=
2591 #ifdef CONFIG_X86_64
2592 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2593 #endif
2594 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2595 vmx->nested.nested_vmx_exit_ctls_high |=
2596 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2597 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2598 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2599
2600 if (kvm_mpx_supported())
2601 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2602
2603 /* We support free control of debug control saving. */
2604 vmx->nested.nested_vmx_true_exit_ctls_low =
2605 vmx->nested.nested_vmx_exit_ctls_low &
2606 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2607
2608 /* entry controls */
2609 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2610 vmx->nested.nested_vmx_entry_ctls_low,
2611 vmx->nested.nested_vmx_entry_ctls_high);
2612 vmx->nested.nested_vmx_entry_ctls_low =
2613 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2614 vmx->nested.nested_vmx_entry_ctls_high &=
2615 #ifdef CONFIG_X86_64
2616 VM_ENTRY_IA32E_MODE |
2617 #endif
2618 VM_ENTRY_LOAD_IA32_PAT;
2619 vmx->nested.nested_vmx_entry_ctls_high |=
2620 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2621 if (kvm_mpx_supported())
2622 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2623
2624 /* We support free control of debug control loading. */
2625 vmx->nested.nested_vmx_true_entry_ctls_low =
2626 vmx->nested.nested_vmx_entry_ctls_low &
2627 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2628
2629 /* cpu-based controls */
2630 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2631 vmx->nested.nested_vmx_procbased_ctls_low,
2632 vmx->nested.nested_vmx_procbased_ctls_high);
2633 vmx->nested.nested_vmx_procbased_ctls_low =
2634 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2635 vmx->nested.nested_vmx_procbased_ctls_high &=
2636 CPU_BASED_VIRTUAL_INTR_PENDING |
2637 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2638 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2639 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2640 CPU_BASED_CR3_STORE_EXITING |
2641 #ifdef CONFIG_X86_64
2642 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2643 #endif
2644 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2645 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2646 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2647 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2648 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2649 /*
2650 * We can allow some features even when not supported by the
2651 * hardware. For example, L1 can specify an MSR bitmap - and we
2652 * can use it to avoid exits to L1 - even when L0 runs L2
2653 * without MSR bitmaps.
2654 */
2655 vmx->nested.nested_vmx_procbased_ctls_high |=
2656 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2657 CPU_BASED_USE_MSR_BITMAPS;
2658
2659 /* We support free control of CR3 access interception. */
2660 vmx->nested.nested_vmx_true_procbased_ctls_low =
2661 vmx->nested.nested_vmx_procbased_ctls_low &
2662 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2663
2664 /* secondary cpu-based controls */
2665 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2666 vmx->nested.nested_vmx_secondary_ctls_low,
2667 vmx->nested.nested_vmx_secondary_ctls_high);
2668 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2669 vmx->nested.nested_vmx_secondary_ctls_high &=
2670 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2671 SECONDARY_EXEC_RDTSCP |
2672 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2673 SECONDARY_EXEC_ENABLE_VPID |
2674 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2675 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2676 SECONDARY_EXEC_WBINVD_EXITING |
2677 SECONDARY_EXEC_XSAVES |
2678 SECONDARY_EXEC_PCOMMIT;
2679
2680 if (enable_ept) {
2681 /* nested EPT: emulate EPT also to L1 */
2682 vmx->nested.nested_vmx_secondary_ctls_high |=
2683 SECONDARY_EXEC_ENABLE_EPT;
2684 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2685 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2686 VMX_EPT_INVEPT_BIT;
2687 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2688 /*
2689 * For nested guests, we don't do anything specific
2690 * for single context invalidation. Hence, only advertise
2691 * support for global context invalidation.
2692 */
2693 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2694 } else
2695 vmx->nested.nested_vmx_ept_caps = 0;
2696
2697 /*
2698 * Old versions of KVM use the single-context version without
2699 * checking for support, so declare that it is supported even
2700 * though it is treated as global context. The alternative is
2701 * not failing the single-context invvpid, and it is worse.
2702 */
2703 if (enable_vpid)
2704 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2705 VMX_VPID_EXTENT_SUPPORTED_MASK;
2706 else
2707 vmx->nested.nested_vmx_vpid_caps = 0;
2708
2709 if (enable_unrestricted_guest)
2710 vmx->nested.nested_vmx_secondary_ctls_high |=
2711 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2712
2713 /* miscellaneous data */
2714 rdmsr(MSR_IA32_VMX_MISC,
2715 vmx->nested.nested_vmx_misc_low,
2716 vmx->nested.nested_vmx_misc_high);
2717 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2718 vmx->nested.nested_vmx_misc_low |=
2719 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2720 VMX_MISC_ACTIVITY_HLT;
2721 vmx->nested.nested_vmx_misc_high = 0;
2722 }
2723
vmx_control_verify(u32 control,u32 low,u32 high)2724 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2725 {
2726 /*
2727 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2728 */
2729 return ((control & high) | low) == control;
2730 }
2731
vmx_control_msr(u32 low,u32 high)2732 static inline u64 vmx_control_msr(u32 low, u32 high)
2733 {
2734 return low | ((u64)high << 32);
2735 }
2736
2737 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)2738 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2739 {
2740 struct vcpu_vmx *vmx = to_vmx(vcpu);
2741
2742 switch (msr_index) {
2743 case MSR_IA32_VMX_BASIC:
2744 /*
2745 * This MSR reports some information about VMX support. We
2746 * should return information about the VMX we emulate for the
2747 * guest, and the VMCS structure we give it - not about the
2748 * VMX support of the underlying hardware.
2749 */
2750 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2751 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2752 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2753 break;
2754 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2755 case MSR_IA32_VMX_PINBASED_CTLS:
2756 *pdata = vmx_control_msr(
2757 vmx->nested.nested_vmx_pinbased_ctls_low,
2758 vmx->nested.nested_vmx_pinbased_ctls_high);
2759 break;
2760 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2761 *pdata = vmx_control_msr(
2762 vmx->nested.nested_vmx_true_procbased_ctls_low,
2763 vmx->nested.nested_vmx_procbased_ctls_high);
2764 break;
2765 case MSR_IA32_VMX_PROCBASED_CTLS:
2766 *pdata = vmx_control_msr(
2767 vmx->nested.nested_vmx_procbased_ctls_low,
2768 vmx->nested.nested_vmx_procbased_ctls_high);
2769 break;
2770 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2771 *pdata = vmx_control_msr(
2772 vmx->nested.nested_vmx_true_exit_ctls_low,
2773 vmx->nested.nested_vmx_exit_ctls_high);
2774 break;
2775 case MSR_IA32_VMX_EXIT_CTLS:
2776 *pdata = vmx_control_msr(
2777 vmx->nested.nested_vmx_exit_ctls_low,
2778 vmx->nested.nested_vmx_exit_ctls_high);
2779 break;
2780 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2781 *pdata = vmx_control_msr(
2782 vmx->nested.nested_vmx_true_entry_ctls_low,
2783 vmx->nested.nested_vmx_entry_ctls_high);
2784 break;
2785 case MSR_IA32_VMX_ENTRY_CTLS:
2786 *pdata = vmx_control_msr(
2787 vmx->nested.nested_vmx_entry_ctls_low,
2788 vmx->nested.nested_vmx_entry_ctls_high);
2789 break;
2790 case MSR_IA32_VMX_MISC:
2791 *pdata = vmx_control_msr(
2792 vmx->nested.nested_vmx_misc_low,
2793 vmx->nested.nested_vmx_misc_high);
2794 break;
2795 /*
2796 * These MSRs specify bits which the guest must keep fixed (on or off)
2797 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2798 * We picked the standard core2 setting.
2799 */
2800 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2801 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2802 case MSR_IA32_VMX_CR0_FIXED0:
2803 *pdata = VMXON_CR0_ALWAYSON;
2804 break;
2805 case MSR_IA32_VMX_CR0_FIXED1:
2806 *pdata = -1ULL;
2807 break;
2808 case MSR_IA32_VMX_CR4_FIXED0:
2809 *pdata = VMXON_CR4_ALWAYSON;
2810 break;
2811 case MSR_IA32_VMX_CR4_FIXED1:
2812 *pdata = -1ULL;
2813 break;
2814 case MSR_IA32_VMX_VMCS_ENUM:
2815 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2816 break;
2817 case MSR_IA32_VMX_PROCBASED_CTLS2:
2818 *pdata = vmx_control_msr(
2819 vmx->nested.nested_vmx_secondary_ctls_low,
2820 vmx->nested.nested_vmx_secondary_ctls_high);
2821 break;
2822 case MSR_IA32_VMX_EPT_VPID_CAP:
2823 /* Currently, no nested vpid support */
2824 *pdata = vmx->nested.nested_vmx_ept_caps |
2825 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2826 break;
2827 default:
2828 return 1;
2829 }
2830
2831 return 0;
2832 }
2833
2834 /*
2835 * Reads an msr value (of 'msr_index') into 'pdata'.
2836 * Returns 0 on success, non-0 otherwise.
2837 * Assumes vcpu_load() was already called.
2838 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2839 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2840 {
2841 struct shared_msr_entry *msr;
2842
2843 switch (msr_info->index) {
2844 #ifdef CONFIG_X86_64
2845 case MSR_FS_BASE:
2846 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2847 break;
2848 case MSR_GS_BASE:
2849 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2850 break;
2851 case MSR_KERNEL_GS_BASE:
2852 vmx_load_host_state(to_vmx(vcpu));
2853 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2854 break;
2855 #endif
2856 case MSR_EFER:
2857 return kvm_get_msr_common(vcpu, msr_info);
2858 case MSR_IA32_TSC:
2859 msr_info->data = guest_read_tsc(vcpu);
2860 break;
2861 case MSR_IA32_SPEC_CTRL:
2862 if (!msr_info->host_initiated &&
2863 !guest_cpuid_has_spec_ctrl(vcpu))
2864 return 1;
2865
2866 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2867 break;
2868 case MSR_IA32_SYSENTER_CS:
2869 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2870 break;
2871 case MSR_IA32_SYSENTER_EIP:
2872 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2873 break;
2874 case MSR_IA32_SYSENTER_ESP:
2875 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2876 break;
2877 case MSR_IA32_BNDCFGS:
2878 if (!kvm_mpx_supported() ||
2879 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
2880 return 1;
2881 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2882 break;
2883 case MSR_IA32_FEATURE_CONTROL:
2884 if (!nested_vmx_allowed(vcpu))
2885 return 1;
2886 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2887 break;
2888 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2889 if (!nested_vmx_allowed(vcpu))
2890 return 1;
2891 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2892 case MSR_IA32_XSS:
2893 if (!vmx_xsaves_supported())
2894 return 1;
2895 msr_info->data = vcpu->arch.ia32_xss;
2896 break;
2897 case MSR_TSC_AUX:
2898 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2899 return 1;
2900 /* Otherwise falls through */
2901 default:
2902 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2903 if (msr) {
2904 msr_info->data = msr->data;
2905 break;
2906 }
2907 return kvm_get_msr_common(vcpu, msr_info);
2908 }
2909
2910 return 0;
2911 }
2912
2913 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2914
2915 /*
2916 * Writes msr value into into the appropriate "register".
2917 * Returns 0 on success, non-0 otherwise.
2918 * Assumes vcpu_load() was already called.
2919 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2920 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2921 {
2922 struct vcpu_vmx *vmx = to_vmx(vcpu);
2923 struct shared_msr_entry *msr;
2924 int ret = 0;
2925 u32 msr_index = msr_info->index;
2926 u64 data = msr_info->data;
2927
2928 switch (msr_index) {
2929 case MSR_EFER:
2930 ret = kvm_set_msr_common(vcpu, msr_info);
2931 break;
2932 #ifdef CONFIG_X86_64
2933 case MSR_FS_BASE:
2934 vmx_segment_cache_clear(vmx);
2935 vmcs_writel(GUEST_FS_BASE, data);
2936 break;
2937 case MSR_GS_BASE:
2938 vmx_segment_cache_clear(vmx);
2939 vmcs_writel(GUEST_GS_BASE, data);
2940 break;
2941 case MSR_KERNEL_GS_BASE:
2942 vmx_load_host_state(vmx);
2943 vmx->msr_guest_kernel_gs_base = data;
2944 break;
2945 #endif
2946 case MSR_IA32_SYSENTER_CS:
2947 vmcs_write32(GUEST_SYSENTER_CS, data);
2948 break;
2949 case MSR_IA32_SYSENTER_EIP:
2950 vmcs_writel(GUEST_SYSENTER_EIP, data);
2951 break;
2952 case MSR_IA32_SYSENTER_ESP:
2953 vmcs_writel(GUEST_SYSENTER_ESP, data);
2954 break;
2955 case MSR_IA32_BNDCFGS:
2956 if (!kvm_mpx_supported() ||
2957 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
2958 return 1;
2959 if (is_noncanonical_address(data & PAGE_MASK) ||
2960 (data & MSR_IA32_BNDCFGS_RSVD))
2961 return 1;
2962 vmcs_write64(GUEST_BNDCFGS, data);
2963 break;
2964 case MSR_IA32_TSC:
2965 kvm_write_tsc(vcpu, msr_info);
2966 break;
2967 case MSR_IA32_SPEC_CTRL:
2968 if (!msr_info->host_initiated &&
2969 !guest_cpuid_has_spec_ctrl(vcpu))
2970 return 1;
2971
2972 /* The STIBP bit doesn't fault even if it's not advertised */
2973 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
2974 return 1;
2975
2976 vmx->spec_ctrl = data;
2977
2978 if (!data)
2979 break;
2980
2981 /*
2982 * For non-nested:
2983 * When it's written (to non-zero) for the first time, pass
2984 * it through.
2985 *
2986 * For nested:
2987 * The handling of the MSR bitmap for L2 guests is done in
2988 * nested_vmx_merge_msr_bitmap. We should not touch the
2989 * vmcs02.msr_bitmap here since it gets completely overwritten
2990 * in the merging. We update the vmcs01 here for L1 as well
2991 * since it will end up touching the MSR anyway now.
2992 */
2993 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2994 MSR_IA32_SPEC_CTRL,
2995 MSR_TYPE_RW);
2996 break;
2997 case MSR_IA32_PRED_CMD:
2998 if (!msr_info->host_initiated &&
2999 !guest_cpuid_has_ibpb(vcpu))
3000 return 1;
3001
3002 if (data & ~PRED_CMD_IBPB)
3003 return 1;
3004
3005 if (!data)
3006 break;
3007
3008 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3009
3010 /*
3011 * For non-nested:
3012 * When it's written (to non-zero) for the first time, pass
3013 * it through.
3014 *
3015 * For nested:
3016 * The handling of the MSR bitmap for L2 guests is done in
3017 * nested_vmx_merge_msr_bitmap. We should not touch the
3018 * vmcs02.msr_bitmap here since it gets completely overwritten
3019 * in the merging.
3020 */
3021 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
3022 MSR_TYPE_W);
3023 break;
3024 case MSR_IA32_CR_PAT:
3025 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3026 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3027 return 1;
3028 vmcs_write64(GUEST_IA32_PAT, data);
3029 vcpu->arch.pat = data;
3030 break;
3031 }
3032 ret = kvm_set_msr_common(vcpu, msr_info);
3033 break;
3034 case MSR_IA32_TSC_ADJUST:
3035 ret = kvm_set_msr_common(vcpu, msr_info);
3036 break;
3037 case MSR_IA32_FEATURE_CONTROL:
3038 if (!nested_vmx_allowed(vcpu) ||
3039 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
3040 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3041 return 1;
3042 vmx->nested.msr_ia32_feature_control = data;
3043 if (msr_info->host_initiated && data == 0)
3044 vmx_leave_nested(vcpu);
3045 break;
3046 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3047 return 1; /* they are read-only */
3048 case MSR_IA32_XSS:
3049 if (!vmx_xsaves_supported())
3050 return 1;
3051 /*
3052 * The only supported bit as of Skylake is bit 8, but
3053 * it is not supported on KVM.
3054 */
3055 if (data != 0)
3056 return 1;
3057 vcpu->arch.ia32_xss = data;
3058 if (vcpu->arch.ia32_xss != host_xss)
3059 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3060 vcpu->arch.ia32_xss, host_xss);
3061 else
3062 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3063 break;
3064 case MSR_TSC_AUX:
3065 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3066 return 1;
3067 /* Check reserved bit, higher 32 bits should be zero */
3068 if ((data >> 32) != 0)
3069 return 1;
3070 /* Otherwise falls through */
3071 default:
3072 msr = find_msr_entry(vmx, msr_index);
3073 if (msr) {
3074 u64 old_msr_data = msr->data;
3075 msr->data = data;
3076 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3077 preempt_disable();
3078 ret = kvm_set_shared_msr(msr->index, msr->data,
3079 msr->mask);
3080 preempt_enable();
3081 if (ret)
3082 msr->data = old_msr_data;
3083 }
3084 break;
3085 }
3086 ret = kvm_set_msr_common(vcpu, msr_info);
3087 }
3088
3089 return ret;
3090 }
3091
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)3092 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3093 {
3094 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3095 switch (reg) {
3096 case VCPU_REGS_RSP:
3097 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3098 break;
3099 case VCPU_REGS_RIP:
3100 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3101 break;
3102 case VCPU_EXREG_PDPTR:
3103 if (enable_ept)
3104 ept_save_pdptrs(vcpu);
3105 break;
3106 default:
3107 break;
3108 }
3109 }
3110
cpu_has_kvm_support(void)3111 static __init int cpu_has_kvm_support(void)
3112 {
3113 return cpu_has_vmx();
3114 }
3115
vmx_disabled_by_bios(void)3116 static __init int vmx_disabled_by_bios(void)
3117 {
3118 u64 msr;
3119
3120 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3121 if (msr & FEATURE_CONTROL_LOCKED) {
3122 /* launched w/ TXT and VMX disabled */
3123 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3124 && tboot_enabled())
3125 return 1;
3126 /* launched w/o TXT and VMX only enabled w/ TXT */
3127 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3128 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3129 && !tboot_enabled()) {
3130 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3131 "activate TXT before enabling KVM\n");
3132 return 1;
3133 }
3134 /* launched w/o TXT and VMX disabled */
3135 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3136 && !tboot_enabled())
3137 return 1;
3138 }
3139
3140 return 0;
3141 }
3142
kvm_cpu_vmxon(u64 addr)3143 static void kvm_cpu_vmxon(u64 addr)
3144 {
3145 asm volatile (ASM_VMX_VMXON_RAX
3146 : : "a"(&addr), "m"(addr)
3147 : "memory", "cc");
3148 }
3149
hardware_enable(void)3150 static int hardware_enable(void)
3151 {
3152 int cpu = raw_smp_processor_id();
3153 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3154 u64 old, test_bits;
3155
3156 if (cr4_read_shadow() & X86_CR4_VMXE)
3157 return -EBUSY;
3158
3159 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3160 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3161 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3162
3163 /*
3164 * Now we can enable the vmclear operation in kdump
3165 * since the loaded_vmcss_on_cpu list on this cpu
3166 * has been initialized.
3167 *
3168 * Though the cpu is not in VMX operation now, there
3169 * is no problem to enable the vmclear operation
3170 * for the loaded_vmcss_on_cpu list is empty!
3171 */
3172 crash_enable_local_vmclear(cpu);
3173
3174 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3175
3176 test_bits = FEATURE_CONTROL_LOCKED;
3177 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3178 if (tboot_enabled())
3179 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3180
3181 if ((old & test_bits) != test_bits) {
3182 /* enable and lock */
3183 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3184 }
3185 cr4_set_bits(X86_CR4_VMXE);
3186
3187 if (vmm_exclusive) {
3188 kvm_cpu_vmxon(phys_addr);
3189 ept_sync_global();
3190 }
3191
3192 native_store_gdt(this_cpu_ptr(&host_gdt));
3193
3194 return 0;
3195 }
3196
vmclear_local_loaded_vmcss(void)3197 static void vmclear_local_loaded_vmcss(void)
3198 {
3199 int cpu = raw_smp_processor_id();
3200 struct loaded_vmcs *v, *n;
3201
3202 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3203 loaded_vmcss_on_cpu_link)
3204 __loaded_vmcs_clear(v);
3205 }
3206
3207
3208 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3209 * tricks.
3210 */
kvm_cpu_vmxoff(void)3211 static void kvm_cpu_vmxoff(void)
3212 {
3213 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3214 }
3215
hardware_disable(void)3216 static void hardware_disable(void)
3217 {
3218 if (vmm_exclusive) {
3219 vmclear_local_loaded_vmcss();
3220 kvm_cpu_vmxoff();
3221 }
3222 cr4_clear_bits(X86_CR4_VMXE);
3223 }
3224
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)3225 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3226 u32 msr, u32 *result)
3227 {
3228 u32 vmx_msr_low, vmx_msr_high;
3229 u32 ctl = ctl_min | ctl_opt;
3230
3231 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3232
3233 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3234 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3235
3236 /* Ensure minimum (required) set of control bits are supported. */
3237 if (ctl_min & ~ctl)
3238 return -EIO;
3239
3240 *result = ctl;
3241 return 0;
3242 }
3243
allow_1_setting(u32 msr,u32 ctl)3244 static __init bool allow_1_setting(u32 msr, u32 ctl)
3245 {
3246 u32 vmx_msr_low, vmx_msr_high;
3247
3248 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3249 return vmx_msr_high & ctl;
3250 }
3251
setup_vmcs_config(struct vmcs_config * vmcs_conf)3252 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3253 {
3254 u32 vmx_msr_low, vmx_msr_high;
3255 u32 min, opt, min2, opt2;
3256 u32 _pin_based_exec_control = 0;
3257 u32 _cpu_based_exec_control = 0;
3258 u32 _cpu_based_2nd_exec_control = 0;
3259 u32 _vmexit_control = 0;
3260 u32 _vmentry_control = 0;
3261
3262 min = CPU_BASED_HLT_EXITING |
3263 #ifdef CONFIG_X86_64
3264 CPU_BASED_CR8_LOAD_EXITING |
3265 CPU_BASED_CR8_STORE_EXITING |
3266 #endif
3267 CPU_BASED_CR3_LOAD_EXITING |
3268 CPU_BASED_CR3_STORE_EXITING |
3269 CPU_BASED_USE_IO_BITMAPS |
3270 CPU_BASED_MOV_DR_EXITING |
3271 CPU_BASED_USE_TSC_OFFSETING |
3272 CPU_BASED_MWAIT_EXITING |
3273 CPU_BASED_MONITOR_EXITING |
3274 CPU_BASED_INVLPG_EXITING |
3275 CPU_BASED_RDPMC_EXITING;
3276
3277 opt = CPU_BASED_TPR_SHADOW |
3278 CPU_BASED_USE_MSR_BITMAPS |
3279 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3280 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3281 &_cpu_based_exec_control) < 0)
3282 return -EIO;
3283 #ifdef CONFIG_X86_64
3284 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3285 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3286 ~CPU_BASED_CR8_STORE_EXITING;
3287 #endif
3288 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3289 min2 = 0;
3290 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3291 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3292 SECONDARY_EXEC_WBINVD_EXITING |
3293 SECONDARY_EXEC_ENABLE_VPID |
3294 SECONDARY_EXEC_ENABLE_EPT |
3295 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3296 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3297 SECONDARY_EXEC_RDTSCP |
3298 SECONDARY_EXEC_ENABLE_INVPCID |
3299 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3300 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3301 SECONDARY_EXEC_SHADOW_VMCS |
3302 SECONDARY_EXEC_XSAVES |
3303 SECONDARY_EXEC_ENABLE_PML |
3304 SECONDARY_EXEC_PCOMMIT |
3305 SECONDARY_EXEC_TSC_SCALING;
3306 if (adjust_vmx_controls(min2, opt2,
3307 MSR_IA32_VMX_PROCBASED_CTLS2,
3308 &_cpu_based_2nd_exec_control) < 0)
3309 return -EIO;
3310 }
3311 #ifndef CONFIG_X86_64
3312 if (!(_cpu_based_2nd_exec_control &
3313 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3314 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3315 #endif
3316
3317 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3318 _cpu_based_2nd_exec_control &= ~(
3319 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3320 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3321 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3322
3323 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3324 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3325 enabled */
3326 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3327 CPU_BASED_CR3_STORE_EXITING |
3328 CPU_BASED_INVLPG_EXITING);
3329 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3330 vmx_capability.ept, vmx_capability.vpid);
3331 }
3332
3333 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3334 #ifdef CONFIG_X86_64
3335 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3336 #endif
3337 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3338 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3339 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3340 &_vmexit_control) < 0)
3341 return -EIO;
3342
3343 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3344 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3345 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3346 &_pin_based_exec_control) < 0)
3347 return -EIO;
3348
3349 if (!(_cpu_based_2nd_exec_control &
3350 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3351 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3352 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3353
3354 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3355 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3356 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3357 &_vmentry_control) < 0)
3358 return -EIO;
3359
3360 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3361
3362 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3363 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3364 return -EIO;
3365
3366 #ifdef CONFIG_X86_64
3367 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3368 if (vmx_msr_high & (1u<<16))
3369 return -EIO;
3370 #endif
3371
3372 /* Require Write-Back (WB) memory type for VMCS accesses. */
3373 if (((vmx_msr_high >> 18) & 15) != 6)
3374 return -EIO;
3375
3376 vmcs_conf->size = vmx_msr_high & 0x1fff;
3377 vmcs_conf->order = get_order(vmcs_config.size);
3378 vmcs_conf->revision_id = vmx_msr_low;
3379
3380 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3381 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3382 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3383 vmcs_conf->vmexit_ctrl = _vmexit_control;
3384 vmcs_conf->vmentry_ctrl = _vmentry_control;
3385
3386 cpu_has_load_ia32_efer =
3387 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3388 VM_ENTRY_LOAD_IA32_EFER)
3389 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3390 VM_EXIT_LOAD_IA32_EFER);
3391
3392 cpu_has_load_perf_global_ctrl =
3393 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3394 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3395 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3396 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3397
3398 /*
3399 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3400 * but due to arrata below it can't be used. Workaround is to use
3401 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3402 *
3403 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3404 *
3405 * AAK155 (model 26)
3406 * AAP115 (model 30)
3407 * AAT100 (model 37)
3408 * BC86,AAY89,BD102 (model 44)
3409 * BA97 (model 46)
3410 *
3411 */
3412 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3413 switch (boot_cpu_data.x86_model) {
3414 case 26:
3415 case 30:
3416 case 37:
3417 case 44:
3418 case 46:
3419 cpu_has_load_perf_global_ctrl = false;
3420 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3421 "does not work properly. Using workaround\n");
3422 break;
3423 default:
3424 break;
3425 }
3426 }
3427
3428 if (cpu_has_xsaves)
3429 rdmsrl(MSR_IA32_XSS, host_xss);
3430
3431 return 0;
3432 }
3433
alloc_vmcs_cpu(int cpu)3434 static struct vmcs *alloc_vmcs_cpu(int cpu)
3435 {
3436 int node = cpu_to_node(cpu);
3437 struct page *pages;
3438 struct vmcs *vmcs;
3439
3440 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3441 if (!pages)
3442 return NULL;
3443 vmcs = page_address(pages);
3444 memset(vmcs, 0, vmcs_config.size);
3445 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3446 return vmcs;
3447 }
3448
free_vmcs(struct vmcs * vmcs)3449 static void free_vmcs(struct vmcs *vmcs)
3450 {
3451 free_pages((unsigned long)vmcs, vmcs_config.order);
3452 }
3453
3454 /*
3455 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3456 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)3457 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3458 {
3459 if (!loaded_vmcs->vmcs)
3460 return;
3461 loaded_vmcs_clear(loaded_vmcs);
3462 free_vmcs(loaded_vmcs->vmcs);
3463 loaded_vmcs->vmcs = NULL;
3464 if (loaded_vmcs->msr_bitmap)
3465 free_page((unsigned long)loaded_vmcs->msr_bitmap);
3466 }
3467
alloc_vmcs(void)3468 static struct vmcs *alloc_vmcs(void)
3469 {
3470 return alloc_vmcs_cpu(raw_smp_processor_id());
3471 }
3472
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)3473 static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3474 {
3475 loaded_vmcs->vmcs = alloc_vmcs();
3476 if (!loaded_vmcs->vmcs)
3477 return -ENOMEM;
3478
3479 loaded_vmcs_init(loaded_vmcs);
3480
3481 if (cpu_has_vmx_msr_bitmap()) {
3482 loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
3483 if (!loaded_vmcs->msr_bitmap)
3484 goto out_vmcs;
3485 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
3486 }
3487 return 0;
3488
3489 out_vmcs:
3490 free_loaded_vmcs(loaded_vmcs);
3491 return -ENOMEM;
3492 }
3493
free_kvm_area(void)3494 static void free_kvm_area(void)
3495 {
3496 int cpu;
3497
3498 for_each_possible_cpu(cpu) {
3499 free_vmcs(per_cpu(vmxarea, cpu));
3500 per_cpu(vmxarea, cpu) = NULL;
3501 }
3502 }
3503
init_vmcs_shadow_fields(void)3504 static void init_vmcs_shadow_fields(void)
3505 {
3506 int i, j;
3507
3508 /* No checks for read only fields yet */
3509
3510 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3511 switch (shadow_read_write_fields[i]) {
3512 case GUEST_BNDCFGS:
3513 if (!kvm_mpx_supported())
3514 continue;
3515 break;
3516 default:
3517 break;
3518 }
3519
3520 if (j < i)
3521 shadow_read_write_fields[j] =
3522 shadow_read_write_fields[i];
3523 j++;
3524 }
3525 max_shadow_read_write_fields = j;
3526
3527 /* shadowed fields guest access without vmexit */
3528 for (i = 0; i < max_shadow_read_write_fields; i++) {
3529 clear_bit(shadow_read_write_fields[i],
3530 vmx_vmwrite_bitmap);
3531 clear_bit(shadow_read_write_fields[i],
3532 vmx_vmread_bitmap);
3533 }
3534 for (i = 0; i < max_shadow_read_only_fields; i++)
3535 clear_bit(shadow_read_only_fields[i],
3536 vmx_vmread_bitmap);
3537 }
3538
alloc_kvm_area(void)3539 static __init int alloc_kvm_area(void)
3540 {
3541 int cpu;
3542
3543 for_each_possible_cpu(cpu) {
3544 struct vmcs *vmcs;
3545
3546 vmcs = alloc_vmcs_cpu(cpu);
3547 if (!vmcs) {
3548 free_kvm_area();
3549 return -ENOMEM;
3550 }
3551
3552 per_cpu(vmxarea, cpu) = vmcs;
3553 }
3554 return 0;
3555 }
3556
emulation_required(struct kvm_vcpu * vcpu)3557 static bool emulation_required(struct kvm_vcpu *vcpu)
3558 {
3559 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3560 }
3561
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)3562 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3563 struct kvm_segment *save)
3564 {
3565 if (!emulate_invalid_guest_state) {
3566 /*
3567 * CS and SS RPL should be equal during guest entry according
3568 * to VMX spec, but in reality it is not always so. Since vcpu
3569 * is in the middle of the transition from real mode to
3570 * protected mode it is safe to assume that RPL 0 is a good
3571 * default value.
3572 */
3573 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3574 save->selector &= ~SEGMENT_RPL_MASK;
3575 save->dpl = save->selector & SEGMENT_RPL_MASK;
3576 save->s = 1;
3577 }
3578 vmx_set_segment(vcpu, save, seg);
3579 }
3580
enter_pmode(struct kvm_vcpu * vcpu)3581 static void enter_pmode(struct kvm_vcpu *vcpu)
3582 {
3583 unsigned long flags;
3584 struct vcpu_vmx *vmx = to_vmx(vcpu);
3585
3586 /*
3587 * Update real mode segment cache. It may be not up-to-date if sement
3588 * register was written while vcpu was in a guest mode.
3589 */
3590 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3591 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3592 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3593 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3594 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3595 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3596
3597 vmx->rmode.vm86_active = 0;
3598
3599 vmx_segment_cache_clear(vmx);
3600
3601 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3602
3603 flags = vmcs_readl(GUEST_RFLAGS);
3604 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3605 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3606 vmcs_writel(GUEST_RFLAGS, flags);
3607
3608 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3609 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3610
3611 update_exception_bitmap(vcpu);
3612
3613 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3614 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3615 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3616 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3617 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3618 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3619 }
3620
fix_rmode_seg(int seg,struct kvm_segment * save)3621 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3622 {
3623 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3624 struct kvm_segment var = *save;
3625
3626 var.dpl = 0x3;
3627 if (seg == VCPU_SREG_CS)
3628 var.type = 0x3;
3629
3630 if (!emulate_invalid_guest_state) {
3631 var.selector = var.base >> 4;
3632 var.base = var.base & 0xffff0;
3633 var.limit = 0xffff;
3634 var.g = 0;
3635 var.db = 0;
3636 var.present = 1;
3637 var.s = 1;
3638 var.l = 0;
3639 var.unusable = 0;
3640 var.type = 0x3;
3641 var.avl = 0;
3642 if (save->base & 0xf)
3643 printk_once(KERN_WARNING "kvm: segment base is not "
3644 "paragraph aligned when entering "
3645 "protected mode (seg=%d)", seg);
3646 }
3647
3648 vmcs_write16(sf->selector, var.selector);
3649 vmcs_writel(sf->base, var.base);
3650 vmcs_write32(sf->limit, var.limit);
3651 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3652 }
3653
enter_rmode(struct kvm_vcpu * vcpu)3654 static void enter_rmode(struct kvm_vcpu *vcpu)
3655 {
3656 unsigned long flags;
3657 struct vcpu_vmx *vmx = to_vmx(vcpu);
3658
3659 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3660 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3661 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3662 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3663 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3664 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3665 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3666
3667 vmx->rmode.vm86_active = 1;
3668
3669 /*
3670 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3671 * vcpu. Warn the user that an update is overdue.
3672 */
3673 if (!vcpu->kvm->arch.tss_addr)
3674 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3675 "called before entering vcpu\n");
3676
3677 vmx_segment_cache_clear(vmx);
3678
3679 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3680 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3681 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3682
3683 flags = vmcs_readl(GUEST_RFLAGS);
3684 vmx->rmode.save_rflags = flags;
3685
3686 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3687
3688 vmcs_writel(GUEST_RFLAGS, flags);
3689 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3690 update_exception_bitmap(vcpu);
3691
3692 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3693 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3694 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3695 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3696 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3697 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3698
3699 kvm_mmu_reset_context(vcpu);
3700 }
3701
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3702 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3703 {
3704 struct vcpu_vmx *vmx = to_vmx(vcpu);
3705 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3706
3707 if (!msr)
3708 return;
3709
3710 /*
3711 * Force kernel_gs_base reloading before EFER changes, as control
3712 * of this msr depends on is_long_mode().
3713 */
3714 vmx_load_host_state(to_vmx(vcpu));
3715 vcpu->arch.efer = efer;
3716 if (efer & EFER_LMA) {
3717 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3718 msr->data = efer;
3719 } else {
3720 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3721
3722 msr->data = efer & ~EFER_LME;
3723 }
3724 setup_msrs(vmx);
3725 }
3726
3727 #ifdef CONFIG_X86_64
3728
enter_lmode(struct kvm_vcpu * vcpu)3729 static void enter_lmode(struct kvm_vcpu *vcpu)
3730 {
3731 u32 guest_tr_ar;
3732
3733 vmx_segment_cache_clear(to_vmx(vcpu));
3734
3735 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3736 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3737 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3738 __func__);
3739 vmcs_write32(GUEST_TR_AR_BYTES,
3740 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3741 | VMX_AR_TYPE_BUSY_64_TSS);
3742 }
3743 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3744 }
3745
exit_lmode(struct kvm_vcpu * vcpu)3746 static void exit_lmode(struct kvm_vcpu *vcpu)
3747 {
3748 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3749 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3750 }
3751
3752 #endif
3753
__vmx_flush_tlb(struct kvm_vcpu * vcpu,int vpid)3754 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3755 {
3756 vpid_sync_context(vpid);
3757 if (enable_ept) {
3758 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3759 return;
3760 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3761 }
3762 }
3763
vmx_flush_tlb(struct kvm_vcpu * vcpu)3764 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3765 {
3766 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3767 }
3768
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)3769 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3770 {
3771 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3772
3773 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3774 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3775 }
3776
vmx_decache_cr3(struct kvm_vcpu * vcpu)3777 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3778 {
3779 if (enable_ept && is_paging(vcpu))
3780 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3781 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3782 }
3783
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)3784 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3785 {
3786 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3787
3788 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3789 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3790 }
3791
ept_load_pdptrs(struct kvm_vcpu * vcpu)3792 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3793 {
3794 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3795
3796 if (!test_bit(VCPU_EXREG_PDPTR,
3797 (unsigned long *)&vcpu->arch.regs_dirty))
3798 return;
3799
3800 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3801 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3802 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3803 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3804 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3805 }
3806 }
3807
ept_save_pdptrs(struct kvm_vcpu * vcpu)3808 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3809 {
3810 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3811
3812 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3813 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3814 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3815 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3816 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3817 }
3818
3819 __set_bit(VCPU_EXREG_PDPTR,
3820 (unsigned long *)&vcpu->arch.regs_avail);
3821 __set_bit(VCPU_EXREG_PDPTR,
3822 (unsigned long *)&vcpu->arch.regs_dirty);
3823 }
3824
3825 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3826
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)3827 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3828 unsigned long cr0,
3829 struct kvm_vcpu *vcpu)
3830 {
3831 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3832 vmx_decache_cr3(vcpu);
3833 if (!(cr0 & X86_CR0_PG)) {
3834 /* From paging/starting to nonpaging */
3835 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3836 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3837 (CPU_BASED_CR3_LOAD_EXITING |
3838 CPU_BASED_CR3_STORE_EXITING));
3839 vcpu->arch.cr0 = cr0;
3840 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3841 } else if (!is_paging(vcpu)) {
3842 /* From nonpaging to paging */
3843 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3844 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3845 ~(CPU_BASED_CR3_LOAD_EXITING |
3846 CPU_BASED_CR3_STORE_EXITING));
3847 vcpu->arch.cr0 = cr0;
3848 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3849 }
3850
3851 if (!(cr0 & X86_CR0_WP))
3852 *hw_cr0 &= ~X86_CR0_WP;
3853 }
3854
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3855 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3856 {
3857 struct vcpu_vmx *vmx = to_vmx(vcpu);
3858 unsigned long hw_cr0;
3859
3860 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3861 if (enable_unrestricted_guest)
3862 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3863 else {
3864 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3865
3866 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3867 enter_pmode(vcpu);
3868
3869 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3870 enter_rmode(vcpu);
3871 }
3872
3873 #ifdef CONFIG_X86_64
3874 if (vcpu->arch.efer & EFER_LME) {
3875 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3876 enter_lmode(vcpu);
3877 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3878 exit_lmode(vcpu);
3879 }
3880 #endif
3881
3882 if (enable_ept)
3883 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3884
3885 if (!vcpu->fpu_active)
3886 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3887
3888 vmcs_writel(CR0_READ_SHADOW, cr0);
3889 vmcs_writel(GUEST_CR0, hw_cr0);
3890 vcpu->arch.cr0 = cr0;
3891
3892 /* depends on vcpu->arch.cr0 to be set to a new value */
3893 vmx->emulation_required = emulation_required(vcpu);
3894 }
3895
construct_eptp(unsigned long root_hpa)3896 static u64 construct_eptp(unsigned long root_hpa)
3897 {
3898 u64 eptp;
3899
3900 /* TODO write the value reading from MSR */
3901 eptp = VMX_EPT_DEFAULT_MT |
3902 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3903 if (enable_ept_ad_bits)
3904 eptp |= VMX_EPT_AD_ENABLE_BIT;
3905 eptp |= (root_hpa & PAGE_MASK);
3906
3907 return eptp;
3908 }
3909
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)3910 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3911 {
3912 unsigned long guest_cr3;
3913 u64 eptp;
3914
3915 guest_cr3 = cr3;
3916 if (enable_ept) {
3917 eptp = construct_eptp(cr3);
3918 vmcs_write64(EPT_POINTER, eptp);
3919 if (is_paging(vcpu) || is_guest_mode(vcpu))
3920 guest_cr3 = kvm_read_cr3(vcpu);
3921 else
3922 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3923 ept_load_pdptrs(vcpu);
3924 }
3925
3926 vmx_flush_tlb(vcpu);
3927 vmcs_writel(GUEST_CR3, guest_cr3);
3928 }
3929
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3930 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3931 {
3932 /*
3933 * Pass through host's Machine Check Enable value to hw_cr4, which
3934 * is in force while we are in guest mode. Do not let guests control
3935 * this bit, even if host CR4.MCE == 0.
3936 */
3937 unsigned long hw_cr4 =
3938 (cr4_read_shadow() & X86_CR4_MCE) |
3939 (cr4 & ~X86_CR4_MCE) |
3940 (to_vmx(vcpu)->rmode.vm86_active ?
3941 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3942
3943 if (cr4 & X86_CR4_VMXE) {
3944 /*
3945 * To use VMXON (and later other VMX instructions), a guest
3946 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3947 * So basically the check on whether to allow nested VMX
3948 * is here.
3949 */
3950 if (!nested_vmx_allowed(vcpu))
3951 return 1;
3952 }
3953 if (to_vmx(vcpu)->nested.vmxon &&
3954 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3955 return 1;
3956
3957 vcpu->arch.cr4 = cr4;
3958 if (enable_ept) {
3959 if (!is_paging(vcpu)) {
3960 hw_cr4 &= ~X86_CR4_PAE;
3961 hw_cr4 |= X86_CR4_PSE;
3962 } else if (!(cr4 & X86_CR4_PAE)) {
3963 hw_cr4 &= ~X86_CR4_PAE;
3964 }
3965 }
3966
3967 if (!enable_unrestricted_guest && !is_paging(vcpu))
3968 /*
3969 * SMEP/SMAP is disabled if CPU is in non-paging mode in
3970 * hardware. However KVM always uses paging mode without
3971 * unrestricted guest.
3972 * To emulate this behavior, SMEP/SMAP needs to be manually
3973 * disabled when guest switches to non-paging mode.
3974 */
3975 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3976
3977 vmcs_writel(CR4_READ_SHADOW, cr4);
3978 vmcs_writel(GUEST_CR4, hw_cr4);
3979 return 0;
3980 }
3981
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3982 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3983 struct kvm_segment *var, int seg)
3984 {
3985 struct vcpu_vmx *vmx = to_vmx(vcpu);
3986 u32 ar;
3987
3988 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3989 *var = vmx->rmode.segs[seg];
3990 if (seg == VCPU_SREG_TR
3991 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3992 return;
3993 var->base = vmx_read_guest_seg_base(vmx, seg);
3994 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3995 return;
3996 }
3997 var->base = vmx_read_guest_seg_base(vmx, seg);
3998 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3999 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4000 ar = vmx_read_guest_seg_ar(vmx, seg);
4001 var->unusable = (ar >> 16) & 1;
4002 var->type = ar & 15;
4003 var->s = (ar >> 4) & 1;
4004 var->dpl = (ar >> 5) & 3;
4005 /*
4006 * Some userspaces do not preserve unusable property. Since usable
4007 * segment has to be present according to VMX spec we can use present
4008 * property to amend userspace bug by making unusable segment always
4009 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4010 * segment as unusable.
4011 */
4012 var->present = !var->unusable;
4013 var->avl = (ar >> 12) & 1;
4014 var->l = (ar >> 13) & 1;
4015 var->db = (ar >> 14) & 1;
4016 var->g = (ar >> 15) & 1;
4017 }
4018
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)4019 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4020 {
4021 struct kvm_segment s;
4022
4023 if (to_vmx(vcpu)->rmode.vm86_active) {
4024 vmx_get_segment(vcpu, &s, seg);
4025 return s.base;
4026 }
4027 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4028 }
4029
vmx_get_cpl(struct kvm_vcpu * vcpu)4030 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4031 {
4032 struct vcpu_vmx *vmx = to_vmx(vcpu);
4033
4034 if (unlikely(vmx->rmode.vm86_active))
4035 return 0;
4036 else {
4037 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4038 return VMX_AR_DPL(ar);
4039 }
4040 }
4041
vmx_segment_access_rights(struct kvm_segment * var)4042 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4043 {
4044 u32 ar;
4045
4046 if (var->unusable || !var->present)
4047 ar = 1 << 16;
4048 else {
4049 ar = var->type & 15;
4050 ar |= (var->s & 1) << 4;
4051 ar |= (var->dpl & 3) << 5;
4052 ar |= (var->present & 1) << 7;
4053 ar |= (var->avl & 1) << 12;
4054 ar |= (var->l & 1) << 13;
4055 ar |= (var->db & 1) << 14;
4056 ar |= (var->g & 1) << 15;
4057 }
4058
4059 return ar;
4060 }
4061
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4062 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4063 struct kvm_segment *var, int seg)
4064 {
4065 struct vcpu_vmx *vmx = to_vmx(vcpu);
4066 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4067
4068 vmx_segment_cache_clear(vmx);
4069
4070 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4071 vmx->rmode.segs[seg] = *var;
4072 if (seg == VCPU_SREG_TR)
4073 vmcs_write16(sf->selector, var->selector);
4074 else if (var->s)
4075 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4076 goto out;
4077 }
4078
4079 vmcs_writel(sf->base, var->base);
4080 vmcs_write32(sf->limit, var->limit);
4081 vmcs_write16(sf->selector, var->selector);
4082
4083 /*
4084 * Fix the "Accessed" bit in AR field of segment registers for older
4085 * qemu binaries.
4086 * IA32 arch specifies that at the time of processor reset the
4087 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4088 * is setting it to 0 in the userland code. This causes invalid guest
4089 * state vmexit when "unrestricted guest" mode is turned on.
4090 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4091 * tree. Newer qemu binaries with that qemu fix would not need this
4092 * kvm hack.
4093 */
4094 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4095 var->type |= 0x1; /* Accessed */
4096
4097 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4098
4099 out:
4100 vmx->emulation_required = emulation_required(vcpu);
4101 }
4102
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)4103 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4104 {
4105 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4106
4107 *db = (ar >> 14) & 1;
4108 *l = (ar >> 13) & 1;
4109 }
4110
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4111 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4112 {
4113 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4114 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4115 }
4116
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4117 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4118 {
4119 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4120 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4121 }
4122
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4123 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4124 {
4125 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4126 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4127 }
4128
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4129 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4130 {
4131 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4132 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4133 }
4134
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)4135 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4136 {
4137 struct kvm_segment var;
4138 u32 ar;
4139
4140 vmx_get_segment(vcpu, &var, seg);
4141 var.dpl = 0x3;
4142 if (seg == VCPU_SREG_CS)
4143 var.type = 0x3;
4144 ar = vmx_segment_access_rights(&var);
4145
4146 if (var.base != (var.selector << 4))
4147 return false;
4148 if (var.limit != 0xffff)
4149 return false;
4150 if (ar != 0xf3)
4151 return false;
4152
4153 return true;
4154 }
4155
code_segment_valid(struct kvm_vcpu * vcpu)4156 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4157 {
4158 struct kvm_segment cs;
4159 unsigned int cs_rpl;
4160
4161 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4162 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4163
4164 if (cs.unusable)
4165 return false;
4166 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4167 return false;
4168 if (!cs.s)
4169 return false;
4170 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4171 if (cs.dpl > cs_rpl)
4172 return false;
4173 } else {
4174 if (cs.dpl != cs_rpl)
4175 return false;
4176 }
4177 if (!cs.present)
4178 return false;
4179
4180 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4181 return true;
4182 }
4183
stack_segment_valid(struct kvm_vcpu * vcpu)4184 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4185 {
4186 struct kvm_segment ss;
4187 unsigned int ss_rpl;
4188
4189 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4190 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4191
4192 if (ss.unusable)
4193 return true;
4194 if (ss.type != 3 && ss.type != 7)
4195 return false;
4196 if (!ss.s)
4197 return false;
4198 if (ss.dpl != ss_rpl) /* DPL != RPL */
4199 return false;
4200 if (!ss.present)
4201 return false;
4202
4203 return true;
4204 }
4205
data_segment_valid(struct kvm_vcpu * vcpu,int seg)4206 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4207 {
4208 struct kvm_segment var;
4209 unsigned int rpl;
4210
4211 vmx_get_segment(vcpu, &var, seg);
4212 rpl = var.selector & SEGMENT_RPL_MASK;
4213
4214 if (var.unusable)
4215 return true;
4216 if (!var.s)
4217 return false;
4218 if (!var.present)
4219 return false;
4220 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4221 if (var.dpl < rpl) /* DPL < RPL */
4222 return false;
4223 }
4224
4225 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4226 * rights flags
4227 */
4228 return true;
4229 }
4230
tr_valid(struct kvm_vcpu * vcpu)4231 static bool tr_valid(struct kvm_vcpu *vcpu)
4232 {
4233 struct kvm_segment tr;
4234
4235 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4236
4237 if (tr.unusable)
4238 return false;
4239 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4240 return false;
4241 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4242 return false;
4243 if (!tr.present)
4244 return false;
4245
4246 return true;
4247 }
4248
ldtr_valid(struct kvm_vcpu * vcpu)4249 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4250 {
4251 struct kvm_segment ldtr;
4252
4253 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4254
4255 if (ldtr.unusable)
4256 return true;
4257 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4258 return false;
4259 if (ldtr.type != 2)
4260 return false;
4261 if (!ldtr.present)
4262 return false;
4263
4264 return true;
4265 }
4266
cs_ss_rpl_check(struct kvm_vcpu * vcpu)4267 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4268 {
4269 struct kvm_segment cs, ss;
4270
4271 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4272 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4273
4274 return ((cs.selector & SEGMENT_RPL_MASK) ==
4275 (ss.selector & SEGMENT_RPL_MASK));
4276 }
4277
4278 static bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu,
4279 unsigned int port, int size);
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4280 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4281 struct vmcs12 *vmcs12)
4282 {
4283 unsigned long exit_qualification;
4284 unsigned short port;
4285 int size;
4286
4287 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
4288 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
4289
4290 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4291
4292 port = exit_qualification >> 16;
4293 size = (exit_qualification & 7) + 1;
4294
4295 return nested_vmx_check_io_bitmaps(vcpu, port, size);
4296 }
4297
4298 /*
4299 * Check if guest state is valid. Returns true if valid, false if
4300 * not.
4301 * We assume that registers are always usable
4302 */
guest_state_valid(struct kvm_vcpu * vcpu)4303 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4304 {
4305 if (enable_unrestricted_guest)
4306 return true;
4307
4308 /* real mode guest state checks */
4309 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4310 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4311 return false;
4312 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4313 return false;
4314 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4315 return false;
4316 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4317 return false;
4318 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4319 return false;
4320 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4321 return false;
4322 } else {
4323 /* protected mode guest state checks */
4324 if (!cs_ss_rpl_check(vcpu))
4325 return false;
4326 if (!code_segment_valid(vcpu))
4327 return false;
4328 if (!stack_segment_valid(vcpu))
4329 return false;
4330 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4331 return false;
4332 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4333 return false;
4334 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4335 return false;
4336 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4337 return false;
4338 if (!tr_valid(vcpu))
4339 return false;
4340 if (!ldtr_valid(vcpu))
4341 return false;
4342 }
4343 /* TODO:
4344 * - Add checks on RIP
4345 * - Add checks on RFLAGS
4346 */
4347
4348 return true;
4349 }
4350
init_rmode_tss(struct kvm * kvm)4351 static int init_rmode_tss(struct kvm *kvm)
4352 {
4353 gfn_t fn;
4354 u16 data = 0;
4355 int idx, r;
4356
4357 idx = srcu_read_lock(&kvm->srcu);
4358 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4359 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4360 if (r < 0)
4361 goto out;
4362 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4363 r = kvm_write_guest_page(kvm, fn++, &data,
4364 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4365 if (r < 0)
4366 goto out;
4367 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4368 if (r < 0)
4369 goto out;
4370 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4371 if (r < 0)
4372 goto out;
4373 data = ~0;
4374 r = kvm_write_guest_page(kvm, fn, &data,
4375 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4376 sizeof(u8));
4377 out:
4378 srcu_read_unlock(&kvm->srcu, idx);
4379 return r;
4380 }
4381
init_rmode_identity_map(struct kvm * kvm)4382 static int init_rmode_identity_map(struct kvm *kvm)
4383 {
4384 int i, idx, r = 0;
4385 pfn_t identity_map_pfn;
4386 u32 tmp;
4387
4388 if (!enable_ept)
4389 return 0;
4390
4391 /* Protect kvm->arch.ept_identity_pagetable_done. */
4392 mutex_lock(&kvm->slots_lock);
4393
4394 if (likely(kvm->arch.ept_identity_pagetable_done))
4395 goto out2;
4396
4397 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4398
4399 r = alloc_identity_pagetable(kvm);
4400 if (r < 0)
4401 goto out2;
4402
4403 idx = srcu_read_lock(&kvm->srcu);
4404 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4405 if (r < 0)
4406 goto out;
4407 /* Set up identity-mapping pagetable for EPT in real mode */
4408 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4409 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4410 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4411 r = kvm_write_guest_page(kvm, identity_map_pfn,
4412 &tmp, i * sizeof(tmp), sizeof(tmp));
4413 if (r < 0)
4414 goto out;
4415 }
4416 kvm->arch.ept_identity_pagetable_done = true;
4417
4418 out:
4419 srcu_read_unlock(&kvm->srcu, idx);
4420
4421 out2:
4422 mutex_unlock(&kvm->slots_lock);
4423 return r;
4424 }
4425
seg_setup(int seg)4426 static void seg_setup(int seg)
4427 {
4428 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4429 unsigned int ar;
4430
4431 vmcs_write16(sf->selector, 0);
4432 vmcs_writel(sf->base, 0);
4433 vmcs_write32(sf->limit, 0xffff);
4434 ar = 0x93;
4435 if (seg == VCPU_SREG_CS)
4436 ar |= 0x08; /* code segment */
4437
4438 vmcs_write32(sf->ar_bytes, ar);
4439 }
4440
alloc_apic_access_page(struct kvm * kvm)4441 static int alloc_apic_access_page(struct kvm *kvm)
4442 {
4443 struct page *page;
4444 int r = 0;
4445
4446 mutex_lock(&kvm->slots_lock);
4447 if (kvm->arch.apic_access_page_done)
4448 goto out;
4449 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4450 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4451 if (r)
4452 goto out;
4453
4454 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4455 if (is_error_page(page)) {
4456 r = -EFAULT;
4457 goto out;
4458 }
4459
4460 /*
4461 * Do not pin the page in memory, so that memory hot-unplug
4462 * is able to migrate it.
4463 */
4464 put_page(page);
4465 kvm->arch.apic_access_page_done = true;
4466 out:
4467 mutex_unlock(&kvm->slots_lock);
4468 return r;
4469 }
4470
alloc_identity_pagetable(struct kvm * kvm)4471 static int alloc_identity_pagetable(struct kvm *kvm)
4472 {
4473 /* Called with kvm->slots_lock held. */
4474
4475 int r = 0;
4476
4477 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4478
4479 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4480 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4481
4482 return r;
4483 }
4484
allocate_vpid(void)4485 static int allocate_vpid(void)
4486 {
4487 int vpid;
4488
4489 if (!enable_vpid)
4490 return 0;
4491 spin_lock(&vmx_vpid_lock);
4492 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4493 if (vpid < VMX_NR_VPIDS)
4494 __set_bit(vpid, vmx_vpid_bitmap);
4495 else
4496 vpid = 0;
4497 spin_unlock(&vmx_vpid_lock);
4498 return vpid;
4499 }
4500
free_vpid(int vpid)4501 static void free_vpid(int vpid)
4502 {
4503 if (!enable_vpid || vpid == 0)
4504 return;
4505 spin_lock(&vmx_vpid_lock);
4506 __clear_bit(vpid, vmx_vpid_bitmap);
4507 spin_unlock(&vmx_vpid_lock);
4508 }
4509
vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)4510 static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4511 u32 msr, int type)
4512 {
4513 int f = sizeof(unsigned long);
4514
4515 if (!cpu_has_vmx_msr_bitmap())
4516 return;
4517
4518 /*
4519 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4520 * have the write-low and read-high bitmap offsets the wrong way round.
4521 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4522 */
4523 if (msr <= 0x1fff) {
4524 if (type & MSR_TYPE_R)
4525 /* read-low */
4526 __clear_bit(msr, msr_bitmap + 0x000 / f);
4527
4528 if (type & MSR_TYPE_W)
4529 /* write-low */
4530 __clear_bit(msr, msr_bitmap + 0x800 / f);
4531
4532 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4533 msr &= 0x1fff;
4534 if (type & MSR_TYPE_R)
4535 /* read-high */
4536 __clear_bit(msr, msr_bitmap + 0x400 / f);
4537
4538 if (type & MSR_TYPE_W)
4539 /* write-high */
4540 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4541
4542 }
4543 }
4544
vmx_enable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)4545 static void __always_inline vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4546 u32 msr, int type)
4547 {
4548 int f = sizeof(unsigned long);
4549
4550 if (!cpu_has_vmx_msr_bitmap())
4551 return;
4552
4553 /*
4554 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4555 * have the write-low and read-high bitmap offsets the wrong way round.
4556 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4557 */
4558 if (msr <= 0x1fff) {
4559 if (type & MSR_TYPE_R)
4560 /* read-low */
4561 __set_bit(msr, msr_bitmap + 0x000 / f);
4562
4563 if (type & MSR_TYPE_W)
4564 /* write-low */
4565 __set_bit(msr, msr_bitmap + 0x800 / f);
4566
4567 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4568 msr &= 0x1fff;
4569 if (type & MSR_TYPE_R)
4570 /* read-high */
4571 __set_bit(msr, msr_bitmap + 0x400 / f);
4572
4573 if (type & MSR_TYPE_W)
4574 /* write-high */
4575 __set_bit(msr, msr_bitmap + 0xc00 / f);
4576
4577 }
4578 }
4579
4580 /*
4581 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4582 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4583 */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)4584 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4585 unsigned long *msr_bitmap_nested,
4586 u32 msr, int type)
4587 {
4588 int f = sizeof(unsigned long);
4589
4590 if (!cpu_has_vmx_msr_bitmap()) {
4591 WARN_ON(1);
4592 return;
4593 }
4594
4595 /*
4596 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4597 * have the write-low and read-high bitmap offsets the wrong way round.
4598 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4599 */
4600 if (msr <= 0x1fff) {
4601 if (type & MSR_TYPE_R &&
4602 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4603 /* read-low */
4604 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4605
4606 if (type & MSR_TYPE_W &&
4607 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4608 /* write-low */
4609 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4610
4611 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4612 msr &= 0x1fff;
4613 if (type & MSR_TYPE_R &&
4614 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4615 /* read-high */
4616 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4617
4618 if (type & MSR_TYPE_W &&
4619 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4620 /* write-high */
4621 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4622
4623 }
4624 }
4625
vmx_set_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type,bool value)4626 static void __always_inline vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
4627 u32 msr, int type, bool value)
4628 {
4629 if (value)
4630 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
4631 else
4632 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
4633 }
4634
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)4635 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
4636 {
4637 u8 mode = 0;
4638
4639 if (cpu_has_secondary_exec_ctrls() &&
4640 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
4641 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4642 mode |= MSR_BITMAP_MODE_X2APIC;
4643 if (enable_apicv)
4644 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4645 }
4646
4647 if (is_long_mode(vcpu))
4648 mode |= MSR_BITMAP_MODE_LM;
4649
4650 return mode;
4651 }
4652
4653 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
4654
vmx_update_msr_bitmap_x2apic(unsigned long * msr_bitmap,u8 mode)4655 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
4656 u8 mode)
4657 {
4658 int msr;
4659
4660 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
4661 unsigned word = msr / BITS_PER_LONG;
4662 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
4663 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
4664 }
4665
4666 if (mode & MSR_BITMAP_MODE_X2APIC) {
4667 /*
4668 * TPR reads and writes can be virtualized even if virtual interrupt
4669 * delivery is not in use.
4670 */
4671 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
4672 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4673 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_ID), MSR_TYPE_R);
4674 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
4675 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4676 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4677 }
4678 }
4679 }
4680
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)4681 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
4682 {
4683 struct vcpu_vmx *vmx = to_vmx(vcpu);
4684 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4685 u8 mode = vmx_msr_bitmap_mode(vcpu);
4686 u8 changed = mode ^ vmx->msr_bitmap_mode;
4687
4688 if (!changed)
4689 return;
4690
4691 vmx_set_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW,
4692 !(mode & MSR_BITMAP_MODE_LM));
4693
4694 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
4695 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
4696
4697 vmx->msr_bitmap_mode = mode;
4698 }
4699
vmx_cpu_uses_apicv(struct kvm_vcpu * vcpu)4700 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu)
4701 {
4702 return enable_apicv && lapic_in_kernel(vcpu);
4703 }
4704
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)4705 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
4706 {
4707 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4708 gfn_t gfn;
4709
4710 /*
4711 * Don't need to mark the APIC access page dirty; it is never
4712 * written to by the CPU during APIC virtualization.
4713 */
4714
4715 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
4716 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
4717 kvm_vcpu_mark_page_dirty(vcpu, gfn);
4718 }
4719
4720 if (nested_cpu_has_posted_intr(vmcs12)) {
4721 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
4722 kvm_vcpu_mark_page_dirty(vcpu, gfn);
4723 }
4724 }
4725
4726
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)4727 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4728 {
4729 struct vcpu_vmx *vmx = to_vmx(vcpu);
4730 int max_irr;
4731 void *vapic_page;
4732 u16 status;
4733
4734 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
4735 return;
4736
4737 vmx->nested.pi_pending = false;
4738 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4739 return;
4740
4741 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
4742 if (max_irr != 256) {
4743 vapic_page = kmap(vmx->nested.virtual_apic_page);
4744 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4745 kunmap(vmx->nested.virtual_apic_page);
4746
4747 status = vmcs_read16(GUEST_INTR_STATUS);
4748 if ((u8)max_irr > ((u8)status & 0xff)) {
4749 status &= ~0xff;
4750 status |= (u8)max_irr;
4751 vmcs_write16(GUEST_INTR_STATUS, status);
4752 }
4753 }
4754
4755 nested_mark_vmcs12_pages_dirty(vcpu);
4756 }
4757
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu)4758 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4759 {
4760 #ifdef CONFIG_SMP
4761 if (vcpu->mode == IN_GUEST_MODE) {
4762 /*
4763 * The vector of interrupt to be delivered to vcpu had
4764 * been set in PIR before this function.
4765 *
4766 * Following cases will be reached in this block, and
4767 * we always send a notification event in all cases as
4768 * explained below.
4769 *
4770 * Case 1: vcpu keeps in non-root mode. Sending a
4771 * notification event posts the interrupt to vcpu.
4772 *
4773 * Case 2: vcpu exits to root mode and is still
4774 * runnable. PIR will be synced to vIRR before the
4775 * next vcpu entry. Sending a notification event in
4776 * this case has no effect, as vcpu is not in root
4777 * mode.
4778 *
4779 * Case 3: vcpu exits to root mode and is blocked.
4780 * vcpu_block() has already synced PIR to vIRR and
4781 * never blocks vcpu if vIRR is not cleared. Therefore,
4782 * a blocked vcpu here does not wait for any requested
4783 * interrupts in PIR, and sending a notification event
4784 * which has no effect is safe here.
4785 */
4786
4787 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4788 POSTED_INTR_VECTOR);
4789 return true;
4790 }
4791 #endif
4792 return false;
4793 }
4794
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4795 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4796 int vector)
4797 {
4798 struct vcpu_vmx *vmx = to_vmx(vcpu);
4799
4800 if (is_guest_mode(vcpu) &&
4801 vector == vmx->nested.posted_intr_nv) {
4802 /*
4803 * If a posted intr is not recognized by hardware,
4804 * we will accomplish it in the next vmentry.
4805 */
4806 vmx->nested.pi_pending = true;
4807 kvm_make_request(KVM_REQ_EVENT, vcpu);
4808 /* the PIR and ON have been set by L1. */
4809 if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
4810 kvm_vcpu_kick(vcpu);
4811 return 0;
4812 }
4813 return -1;
4814 }
4815 /*
4816 * Send interrupt to vcpu via posted interrupt way.
4817 * 1. If target vcpu is running(non-root mode), send posted interrupt
4818 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4819 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4820 * interrupt from PIR in next vmentry.
4821 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4822 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4823 {
4824 struct vcpu_vmx *vmx = to_vmx(vcpu);
4825 int r;
4826
4827 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4828 if (!r)
4829 return;
4830
4831 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4832 return;
4833
4834 r = pi_test_and_set_on(&vmx->pi_desc);
4835 kvm_make_request(KVM_REQ_EVENT, vcpu);
4836 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4837 kvm_vcpu_kick(vcpu);
4838 }
4839
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)4840 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4841 {
4842 struct vcpu_vmx *vmx = to_vmx(vcpu);
4843
4844 if (!pi_test_and_clear_on(&vmx->pi_desc))
4845 return;
4846
4847 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4848 }
4849
vmx_sync_pir_to_irr_dummy(struct kvm_vcpu * vcpu)4850 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4851 {
4852 return;
4853 }
4854
4855 /*
4856 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4857 * will not change in the lifetime of the guest.
4858 * Note that host-state that does change is set elsewhere. E.g., host-state
4859 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4860 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4861 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4862 {
4863 u32 low32, high32;
4864 unsigned long tmpl;
4865 struct desc_ptr dt;
4866 unsigned long cr4;
4867
4868 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4869 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4870
4871 /* Save the most likely value for this task's CR4 in the VMCS. */
4872 cr4 = cr4_read_shadow();
4873 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4874 vmx->host_state.vmcs_host_cr4 = cr4;
4875
4876 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4877 #ifdef CONFIG_X86_64
4878 /*
4879 * Load null selectors, so we can avoid reloading them in
4880 * __vmx_load_host_state(), in case userspace uses the null selectors
4881 * too (the expected case).
4882 */
4883 vmcs_write16(HOST_DS_SELECTOR, 0);
4884 vmcs_write16(HOST_ES_SELECTOR, 0);
4885 #else
4886 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4887 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4888 #endif
4889 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4890 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4891
4892 native_store_idt(&dt);
4893 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4894 vmx->host_idt_base = dt.address;
4895
4896 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4897
4898 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4899 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4900 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4901 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4902
4903 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4904 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4905 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4906 }
4907 }
4908
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4909 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4910 {
4911 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4912 if (enable_ept)
4913 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4914 if (is_guest_mode(&vmx->vcpu))
4915 vmx->vcpu.arch.cr4_guest_owned_bits &=
4916 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4917 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4918 }
4919
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4920 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4921 {
4922 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4923
4924 if (!vmx_cpu_uses_apicv(&vmx->vcpu))
4925 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4926 return pin_based_exec_ctrl;
4927 }
4928
vmx_exec_control(struct vcpu_vmx * vmx)4929 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4930 {
4931 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4932
4933 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4934 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4935
4936 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4937 exec_control &= ~CPU_BASED_TPR_SHADOW;
4938 #ifdef CONFIG_X86_64
4939 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4940 CPU_BASED_CR8_LOAD_EXITING;
4941 #endif
4942 }
4943 if (!enable_ept)
4944 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4945 CPU_BASED_CR3_LOAD_EXITING |
4946 CPU_BASED_INVLPG_EXITING;
4947 return exec_control;
4948 }
4949
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4950 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4951 {
4952 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4953 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4954 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4955 if (vmx->vpid == 0)
4956 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4957 if (!enable_ept) {
4958 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4959 enable_unrestricted_guest = 0;
4960 /* Enable INVPCID for non-ept guests may cause performance regression. */
4961 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4962 }
4963 if (!enable_unrestricted_guest)
4964 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4965 if (!ple_gap)
4966 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4967 if (!vmx_cpu_uses_apicv(&vmx->vcpu))
4968 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4969 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4970 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4971 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4972 (handle_vmptrld).
4973 We can NOT enable shadow_vmcs here because we don't have yet
4974 a current VMCS12
4975 */
4976 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4977
4978 if (!enable_pml)
4979 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4980
4981 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4982 exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4983
4984 return exec_control;
4985 }
4986
ept_set_mmio_spte_mask(void)4987 static void ept_set_mmio_spte_mask(void)
4988 {
4989 /*
4990 * EPT Misconfigurations can be generated if the value of bits 2:0
4991 * of an EPT paging-structure entry is 110b (write/execute).
4992 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4993 * spte.
4994 */
4995 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4996 }
4997
4998 #define VMX_XSS_EXIT_BITMAP 0
4999 /*
5000 * Sets up the vmcs for emulated real mode.
5001 */
vmx_vcpu_setup(struct vcpu_vmx * vmx)5002 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5003 {
5004 #ifdef CONFIG_X86_64
5005 unsigned long a;
5006 #endif
5007 int i;
5008
5009 /* I/O */
5010 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5011 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5012
5013 if (enable_shadow_vmcs) {
5014 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5015 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5016 }
5017 if (cpu_has_vmx_msr_bitmap())
5018 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
5019
5020 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5021
5022 /* Control */
5023 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5024
5025 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5026
5027 if (cpu_has_secondary_exec_ctrls())
5028 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5029 vmx_secondary_exec_control(vmx));
5030
5031 if (vmx_cpu_uses_apicv(&vmx->vcpu)) {
5032 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5033 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5034 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5035 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5036
5037 vmcs_write16(GUEST_INTR_STATUS, 0);
5038
5039 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5040 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5041 }
5042
5043 if (ple_gap) {
5044 vmcs_write32(PLE_GAP, ple_gap);
5045 vmx->ple_window = ple_window;
5046 vmx->ple_window_dirty = true;
5047 }
5048
5049 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5050 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5051 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5052
5053 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5054 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
5055 vmx_set_constant_host_state(vmx);
5056 #ifdef CONFIG_X86_64
5057 rdmsrl(MSR_FS_BASE, a);
5058 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5059 rdmsrl(MSR_GS_BASE, a);
5060 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5061 #else
5062 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5063 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5064 #endif
5065
5066 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5067 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5068 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5069 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5070 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5071
5072 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5073 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5074
5075 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5076 u32 index = vmx_msr_index[i];
5077 u32 data_low, data_high;
5078 int j = vmx->nmsrs;
5079
5080 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5081 continue;
5082 if (wrmsr_safe(index, data_low, data_high) < 0)
5083 continue;
5084 vmx->guest_msrs[j].index = i;
5085 vmx->guest_msrs[j].data = 0;
5086 vmx->guest_msrs[j].mask = -1ull;
5087 ++vmx->nmsrs;
5088 }
5089
5090 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5091
5092 /* 22.2.1, 20.8.1 */
5093 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5094
5095 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
5096 set_cr4_guest_host_mask(vmx);
5097
5098 if (vmx_xsaves_supported())
5099 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5100
5101 if (enable_pml) {
5102 ASSERT(vmx->pml_pg);
5103 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5104 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5105 }
5106
5107 return 0;
5108 }
5109
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)5110 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5111 {
5112 struct vcpu_vmx *vmx = to_vmx(vcpu);
5113 struct msr_data apic_base_msr;
5114 u64 cr0;
5115
5116 vmx->rmode.vm86_active = 0;
5117 vmx->spec_ctrl = 0;
5118
5119 vmx->soft_vnmi_blocked = 0;
5120
5121 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5122 kvm_set_cr8(vcpu, 0);
5123
5124 if (!init_event) {
5125 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5126 MSR_IA32_APICBASE_ENABLE;
5127 if (kvm_vcpu_is_reset_bsp(vcpu))
5128 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5129 apic_base_msr.host_initiated = true;
5130 kvm_set_apic_base(vcpu, &apic_base_msr);
5131 }
5132
5133 vmx_segment_cache_clear(vmx);
5134
5135 seg_setup(VCPU_SREG_CS);
5136 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5137 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
5138
5139 seg_setup(VCPU_SREG_DS);
5140 seg_setup(VCPU_SREG_ES);
5141 seg_setup(VCPU_SREG_FS);
5142 seg_setup(VCPU_SREG_GS);
5143 seg_setup(VCPU_SREG_SS);
5144
5145 vmcs_write16(GUEST_TR_SELECTOR, 0);
5146 vmcs_writel(GUEST_TR_BASE, 0);
5147 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5148 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5149
5150 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5151 vmcs_writel(GUEST_LDTR_BASE, 0);
5152 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5153 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5154
5155 if (!init_event) {
5156 vmcs_write32(GUEST_SYSENTER_CS, 0);
5157 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5158 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5159 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5160 }
5161
5162 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
5163 kvm_rip_write(vcpu, 0xfff0);
5164
5165 vmcs_writel(GUEST_GDTR_BASE, 0);
5166 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5167
5168 vmcs_writel(GUEST_IDTR_BASE, 0);
5169 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5170
5171 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5172 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5173 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5174
5175 setup_msrs(vmx);
5176
5177 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5178
5179 if (cpu_has_vmx_tpr_shadow() && !init_event) {
5180 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5181 if (cpu_need_tpr_shadow(vcpu))
5182 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5183 __pa(vcpu->arch.apic->regs));
5184 vmcs_write32(TPR_THRESHOLD, 0);
5185 }
5186
5187 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5188
5189 if (vmx_cpu_uses_apicv(vcpu))
5190 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5191
5192 if (vmx->vpid != 0)
5193 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5194
5195 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5196 vmx->vcpu.arch.cr0 = cr0;
5197 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5198 vmx_set_cr4(vcpu, 0);
5199 vmx_set_efer(vcpu, 0);
5200 vmx_fpu_activate(vcpu);
5201 update_exception_bitmap(vcpu);
5202
5203 vpid_sync_context(vmx->vpid);
5204 }
5205
5206 /*
5207 * In nested virtualization, check if L1 asked to exit on external interrupts.
5208 * For most existing hypervisors, this will always return true.
5209 */
nested_exit_on_intr(struct kvm_vcpu * vcpu)5210 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5211 {
5212 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5213 PIN_BASED_EXT_INTR_MASK;
5214 }
5215
5216 /*
5217 * In nested virtualization, check if L1 has set
5218 * VM_EXIT_ACK_INTR_ON_EXIT
5219 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)5220 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5221 {
5222 return get_vmcs12(vcpu)->vm_exit_controls &
5223 VM_EXIT_ACK_INTR_ON_EXIT;
5224 }
5225
nested_exit_on_nmi(struct kvm_vcpu * vcpu)5226 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5227 {
5228 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5229 PIN_BASED_NMI_EXITING;
5230 }
5231
enable_irq_window(struct kvm_vcpu * vcpu)5232 static void enable_irq_window(struct kvm_vcpu *vcpu)
5233 {
5234 u32 cpu_based_vm_exec_control;
5235
5236 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5237 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5238 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5239 }
5240
enable_nmi_window(struct kvm_vcpu * vcpu)5241 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5242 {
5243 u32 cpu_based_vm_exec_control;
5244
5245 if (!cpu_has_virtual_nmis() ||
5246 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5247 enable_irq_window(vcpu);
5248 return;
5249 }
5250
5251 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5252 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5253 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5254 }
5255
vmx_inject_irq(struct kvm_vcpu * vcpu)5256 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5257 {
5258 struct vcpu_vmx *vmx = to_vmx(vcpu);
5259 uint32_t intr;
5260 int irq = vcpu->arch.interrupt.nr;
5261
5262 trace_kvm_inj_virq(irq);
5263
5264 ++vcpu->stat.irq_injections;
5265 if (vmx->rmode.vm86_active) {
5266 int inc_eip = 0;
5267 if (vcpu->arch.interrupt.soft)
5268 inc_eip = vcpu->arch.event_exit_inst_len;
5269 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5270 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5271 return;
5272 }
5273 intr = irq | INTR_INFO_VALID_MASK;
5274 if (vcpu->arch.interrupt.soft) {
5275 intr |= INTR_TYPE_SOFT_INTR;
5276 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5277 vmx->vcpu.arch.event_exit_inst_len);
5278 } else
5279 intr |= INTR_TYPE_EXT_INTR;
5280 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5281 }
5282
vmx_inject_nmi(struct kvm_vcpu * vcpu)5283 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5284 {
5285 struct vcpu_vmx *vmx = to_vmx(vcpu);
5286
5287 if (is_guest_mode(vcpu))
5288 return;
5289
5290 if (!cpu_has_virtual_nmis()) {
5291 /*
5292 * Tracking the NMI-blocked state in software is built upon
5293 * finding the next open IRQ window. This, in turn, depends on
5294 * well-behaving guests: They have to keep IRQs disabled at
5295 * least as long as the NMI handler runs. Otherwise we may
5296 * cause NMI nesting, maybe breaking the guest. But as this is
5297 * highly unlikely, we can live with the residual risk.
5298 */
5299 vmx->soft_vnmi_blocked = 1;
5300 vmx->vnmi_blocked_time = 0;
5301 }
5302
5303 ++vcpu->stat.nmi_injections;
5304 vmx->nmi_known_unmasked = false;
5305 if (vmx->rmode.vm86_active) {
5306 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5307 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5308 return;
5309 }
5310 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5311 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5312 }
5313
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)5314 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5315 {
5316 if (!cpu_has_virtual_nmis())
5317 return to_vmx(vcpu)->soft_vnmi_blocked;
5318 if (to_vmx(vcpu)->nmi_known_unmasked)
5319 return false;
5320 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5321 }
5322
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5323 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5324 {
5325 struct vcpu_vmx *vmx = to_vmx(vcpu);
5326
5327 if (!cpu_has_virtual_nmis()) {
5328 if (vmx->soft_vnmi_blocked != masked) {
5329 vmx->soft_vnmi_blocked = masked;
5330 vmx->vnmi_blocked_time = 0;
5331 }
5332 } else {
5333 vmx->nmi_known_unmasked = !masked;
5334 if (masked)
5335 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5336 GUEST_INTR_STATE_NMI);
5337 else
5338 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5339 GUEST_INTR_STATE_NMI);
5340 }
5341 }
5342
vmx_nmi_allowed(struct kvm_vcpu * vcpu)5343 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5344 {
5345 if (to_vmx(vcpu)->nested.nested_run_pending)
5346 return 0;
5347
5348 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5349 return 0;
5350
5351 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5352 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5353 | GUEST_INTR_STATE_NMI));
5354 }
5355
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)5356 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5357 {
5358 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5359 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5360 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5361 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5362 }
5363
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5364 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5365 {
5366 int ret;
5367
5368 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5369 PAGE_SIZE * 3);
5370 if (ret)
5371 return ret;
5372 kvm->arch.tss_addr = addr;
5373 return init_rmode_tss(kvm);
5374 }
5375
rmode_exception(struct kvm_vcpu * vcpu,int vec)5376 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5377 {
5378 switch (vec) {
5379 case BP_VECTOR:
5380 /*
5381 * Update instruction length as we may reinject the exception
5382 * from user space while in guest debugging mode.
5383 */
5384 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5385 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5386 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5387 return false;
5388 /* fall through */
5389 case DB_VECTOR:
5390 if (vcpu->guest_debug &
5391 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5392 return false;
5393 /* fall through */
5394 case DE_VECTOR:
5395 case OF_VECTOR:
5396 case BR_VECTOR:
5397 case UD_VECTOR:
5398 case DF_VECTOR:
5399 case SS_VECTOR:
5400 case GP_VECTOR:
5401 case MF_VECTOR:
5402 return true;
5403 break;
5404 }
5405 return false;
5406 }
5407
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5408 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5409 int vec, u32 err_code)
5410 {
5411 /*
5412 * Instruction with address size override prefix opcode 0x67
5413 * Cause the #SS fault with 0 error code in VM86 mode.
5414 */
5415 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5416 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5417 if (vcpu->arch.halt_request) {
5418 vcpu->arch.halt_request = 0;
5419 return kvm_vcpu_halt(vcpu);
5420 }
5421 return 1;
5422 }
5423 return 0;
5424 }
5425
5426 /*
5427 * Forward all other exceptions that are valid in real mode.
5428 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5429 * the required debugging infrastructure rework.
5430 */
5431 kvm_queue_exception(vcpu, vec);
5432 return 1;
5433 }
5434
5435 /*
5436 * Trigger machine check on the host. We assume all the MSRs are already set up
5437 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5438 * We pass a fake environment to the machine check handler because we want
5439 * the guest to be always treated like user space, no matter what context
5440 * it used internally.
5441 */
kvm_machine_check(void)5442 static void kvm_machine_check(void)
5443 {
5444 #if defined(CONFIG_X86_MCE)
5445 struct pt_regs regs = {
5446 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5447 .flags = X86_EFLAGS_IF,
5448 };
5449
5450 do_machine_check(®s, 0);
5451 #endif
5452 }
5453
handle_machine_check(struct kvm_vcpu * vcpu)5454 static int handle_machine_check(struct kvm_vcpu *vcpu)
5455 {
5456 /* already handled by vcpu_run */
5457 return 1;
5458 }
5459
handle_exception(struct kvm_vcpu * vcpu)5460 static int handle_exception(struct kvm_vcpu *vcpu)
5461 {
5462 struct vcpu_vmx *vmx = to_vmx(vcpu);
5463 struct kvm_run *kvm_run = vcpu->run;
5464 u32 intr_info, ex_no, error_code;
5465 unsigned long cr2, rip, dr6;
5466 u32 vect_info;
5467 enum emulation_result er;
5468
5469 vect_info = vmx->idt_vectoring_info;
5470 intr_info = vmx->exit_intr_info;
5471
5472 if (is_machine_check(intr_info))
5473 return handle_machine_check(vcpu);
5474
5475 if (is_nmi(intr_info))
5476 return 1; /* already handled by vmx_vcpu_run() */
5477
5478 if (is_no_device(intr_info)) {
5479 vmx_fpu_activate(vcpu);
5480 return 1;
5481 }
5482
5483 if (is_invalid_opcode(intr_info)) {
5484 if (is_guest_mode(vcpu)) {
5485 kvm_queue_exception(vcpu, UD_VECTOR);
5486 return 1;
5487 }
5488 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5489 if (er == EMULATE_USER_EXIT)
5490 return 0;
5491 if (er != EMULATE_DONE)
5492 kvm_queue_exception(vcpu, UD_VECTOR);
5493 return 1;
5494 }
5495
5496 error_code = 0;
5497 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5498 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5499
5500 /*
5501 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5502 * MMIO, it is better to report an internal error.
5503 * See the comments in vmx_handle_exit.
5504 */
5505 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5506 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5507 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5508 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5509 vcpu->run->internal.ndata = 3;
5510 vcpu->run->internal.data[0] = vect_info;
5511 vcpu->run->internal.data[1] = intr_info;
5512 vcpu->run->internal.data[2] = error_code;
5513 return 0;
5514 }
5515
5516 if (is_page_fault(intr_info)) {
5517 /* EPT won't cause page fault directly */
5518 BUG_ON(enable_ept);
5519 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5520 trace_kvm_page_fault(cr2, error_code);
5521
5522 if (kvm_event_needs_reinjection(vcpu))
5523 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5524 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5525 }
5526
5527 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5528
5529 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5530 return handle_rmode_exception(vcpu, ex_no, error_code);
5531
5532 switch (ex_no) {
5533 case AC_VECTOR:
5534 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5535 return 1;
5536 case DB_VECTOR:
5537 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5538 if (!(vcpu->guest_debug &
5539 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5540 vcpu->arch.dr6 &= ~15;
5541 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5542 if (is_icebp(intr_info))
5543 skip_emulated_instruction(vcpu);
5544
5545 kvm_queue_exception(vcpu, DB_VECTOR);
5546 return 1;
5547 }
5548 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5549 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5550 /* fall through */
5551 case BP_VECTOR:
5552 /*
5553 * Update instruction length as we may reinject #BP from
5554 * user space while in guest debugging mode. Reading it for
5555 * #DB as well causes no harm, it is not used in that case.
5556 */
5557 vmx->vcpu.arch.event_exit_inst_len =
5558 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5559 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5560 rip = kvm_rip_read(vcpu);
5561 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5562 kvm_run->debug.arch.exception = ex_no;
5563 break;
5564 default:
5565 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5566 kvm_run->ex.exception = ex_no;
5567 kvm_run->ex.error_code = error_code;
5568 break;
5569 }
5570 return 0;
5571 }
5572
handle_external_interrupt(struct kvm_vcpu * vcpu)5573 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5574 {
5575 ++vcpu->stat.irq_exits;
5576 return 1;
5577 }
5578
handle_triple_fault(struct kvm_vcpu * vcpu)5579 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5580 {
5581 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5582 vcpu->mmio_needed = 0;
5583 return 0;
5584 }
5585
handle_io(struct kvm_vcpu * vcpu)5586 static int handle_io(struct kvm_vcpu *vcpu)
5587 {
5588 unsigned long exit_qualification;
5589 int size, in, string;
5590 unsigned port;
5591
5592 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5593 string = (exit_qualification & 16) != 0;
5594 in = (exit_qualification & 8) != 0;
5595
5596 ++vcpu->stat.io_exits;
5597
5598 if (string || in)
5599 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5600
5601 port = exit_qualification >> 16;
5602 size = (exit_qualification & 7) + 1;
5603 skip_emulated_instruction(vcpu);
5604
5605 return kvm_fast_pio_out(vcpu, size, port);
5606 }
5607
5608 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5609 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5610 {
5611 /*
5612 * Patch in the VMCALL instruction:
5613 */
5614 hypercall[0] = 0x0f;
5615 hypercall[1] = 0x01;
5616 hypercall[2] = 0xc1;
5617 }
5618
nested_cr0_valid(struct kvm_vcpu * vcpu,unsigned long val)5619 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5620 {
5621 unsigned long always_on = VMXON_CR0_ALWAYSON;
5622 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5623
5624 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5625 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5626 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5627 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5628 return (val & always_on) == always_on;
5629 }
5630
5631 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5632 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5633 {
5634 if (is_guest_mode(vcpu)) {
5635 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5636 unsigned long orig_val = val;
5637
5638 /*
5639 * We get here when L2 changed cr0 in a way that did not change
5640 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5641 * but did change L0 shadowed bits. So we first calculate the
5642 * effective cr0 value that L1 would like to write into the
5643 * hardware. It consists of the L2-owned bits from the new
5644 * value combined with the L1-owned bits from L1's guest_cr0.
5645 */
5646 val = (val & ~vmcs12->cr0_guest_host_mask) |
5647 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5648
5649 if (!nested_cr0_valid(vcpu, val))
5650 return 1;
5651
5652 if (kvm_set_cr0(vcpu, val))
5653 return 1;
5654 vmcs_writel(CR0_READ_SHADOW, orig_val);
5655 return 0;
5656 } else {
5657 if (to_vmx(vcpu)->nested.vmxon &&
5658 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5659 return 1;
5660 return kvm_set_cr0(vcpu, val);
5661 }
5662 }
5663
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5664 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5665 {
5666 if (is_guest_mode(vcpu)) {
5667 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5668 unsigned long orig_val = val;
5669
5670 /* analogously to handle_set_cr0 */
5671 val = (val & ~vmcs12->cr4_guest_host_mask) |
5672 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5673 if (kvm_set_cr4(vcpu, val))
5674 return 1;
5675 vmcs_writel(CR4_READ_SHADOW, orig_val);
5676 return 0;
5677 } else
5678 return kvm_set_cr4(vcpu, val);
5679 }
5680
5681 /* called to set cr0 as approriate for clts instruction exit. */
handle_clts(struct kvm_vcpu * vcpu)5682 static void handle_clts(struct kvm_vcpu *vcpu)
5683 {
5684 if (is_guest_mode(vcpu)) {
5685 /*
5686 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5687 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5688 * just pretend it's off (also in arch.cr0 for fpu_activate).
5689 */
5690 vmcs_writel(CR0_READ_SHADOW,
5691 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5692 vcpu->arch.cr0 &= ~X86_CR0_TS;
5693 } else
5694 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5695 }
5696
handle_cr(struct kvm_vcpu * vcpu)5697 static int handle_cr(struct kvm_vcpu *vcpu)
5698 {
5699 unsigned long exit_qualification, val;
5700 int cr;
5701 int reg;
5702 int err;
5703
5704 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5705 cr = exit_qualification & 15;
5706 reg = (exit_qualification >> 8) & 15;
5707 switch ((exit_qualification >> 4) & 3) {
5708 case 0: /* mov to cr */
5709 val = kvm_register_readl(vcpu, reg);
5710 trace_kvm_cr_write(cr, val);
5711 switch (cr) {
5712 case 0:
5713 err = handle_set_cr0(vcpu, val);
5714 kvm_complete_insn_gp(vcpu, err);
5715 return 1;
5716 case 3:
5717 err = kvm_set_cr3(vcpu, val);
5718 kvm_complete_insn_gp(vcpu, err);
5719 return 1;
5720 case 4:
5721 err = handle_set_cr4(vcpu, val);
5722 kvm_complete_insn_gp(vcpu, err);
5723 return 1;
5724 case 8: {
5725 u8 cr8_prev = kvm_get_cr8(vcpu);
5726 u8 cr8 = (u8)val;
5727 err = kvm_set_cr8(vcpu, cr8);
5728 kvm_complete_insn_gp(vcpu, err);
5729 if (lapic_in_kernel(vcpu))
5730 return 1;
5731 if (cr8_prev <= cr8)
5732 return 1;
5733 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5734 return 0;
5735 }
5736 }
5737 break;
5738 case 2: /* clts */
5739 handle_clts(vcpu);
5740 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5741 skip_emulated_instruction(vcpu);
5742 vmx_fpu_activate(vcpu);
5743 return 1;
5744 case 1: /*mov from cr*/
5745 switch (cr) {
5746 case 3:
5747 val = kvm_read_cr3(vcpu);
5748 kvm_register_write(vcpu, reg, val);
5749 trace_kvm_cr_read(cr, val);
5750 skip_emulated_instruction(vcpu);
5751 return 1;
5752 case 8:
5753 val = kvm_get_cr8(vcpu);
5754 kvm_register_write(vcpu, reg, val);
5755 trace_kvm_cr_read(cr, val);
5756 skip_emulated_instruction(vcpu);
5757 return 1;
5758 }
5759 break;
5760 case 3: /* lmsw */
5761 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5762 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5763 kvm_lmsw(vcpu, val);
5764
5765 skip_emulated_instruction(vcpu);
5766 return 1;
5767 default:
5768 break;
5769 }
5770 vcpu->run->exit_reason = 0;
5771 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5772 (int)(exit_qualification >> 4) & 3, cr);
5773 return 0;
5774 }
5775
handle_dr(struct kvm_vcpu * vcpu)5776 static int handle_dr(struct kvm_vcpu *vcpu)
5777 {
5778 unsigned long exit_qualification;
5779 int dr, dr7, reg;
5780
5781 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5782 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5783
5784 /* First, if DR does not exist, trigger UD */
5785 if (!kvm_require_dr(vcpu, dr))
5786 return 1;
5787
5788 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5789 if (!kvm_require_cpl(vcpu, 0))
5790 return 1;
5791 dr7 = vmcs_readl(GUEST_DR7);
5792 if (dr7 & DR7_GD) {
5793 /*
5794 * As the vm-exit takes precedence over the debug trap, we
5795 * need to emulate the latter, either for the host or the
5796 * guest debugging itself.
5797 */
5798 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5799 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5800 vcpu->run->debug.arch.dr7 = dr7;
5801 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5802 vcpu->run->debug.arch.exception = DB_VECTOR;
5803 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5804 return 0;
5805 } else {
5806 vcpu->arch.dr6 &= ~15;
5807 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5808 kvm_queue_exception(vcpu, DB_VECTOR);
5809 return 1;
5810 }
5811 }
5812
5813 if (vcpu->guest_debug == 0) {
5814 u32 cpu_based_vm_exec_control;
5815
5816 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5817 cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5818 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5819
5820 /*
5821 * No more DR vmexits; force a reload of the debug registers
5822 * and reenter on this instruction. The next vmexit will
5823 * retrieve the full state of the debug registers.
5824 */
5825 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5826 return 1;
5827 }
5828
5829 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5830 if (exit_qualification & TYPE_MOV_FROM_DR) {
5831 unsigned long val;
5832
5833 if (kvm_get_dr(vcpu, dr, &val))
5834 return 1;
5835 kvm_register_write(vcpu, reg, val);
5836 } else
5837 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5838 return 1;
5839
5840 skip_emulated_instruction(vcpu);
5841 return 1;
5842 }
5843
vmx_get_dr6(struct kvm_vcpu * vcpu)5844 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5845 {
5846 return vcpu->arch.dr6;
5847 }
5848
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)5849 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5850 {
5851 }
5852
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5853 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5854 {
5855 u32 cpu_based_vm_exec_control;
5856
5857 get_debugreg(vcpu->arch.db[0], 0);
5858 get_debugreg(vcpu->arch.db[1], 1);
5859 get_debugreg(vcpu->arch.db[2], 2);
5860 get_debugreg(vcpu->arch.db[3], 3);
5861 get_debugreg(vcpu->arch.dr6, 6);
5862 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5863
5864 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5865
5866 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5867 cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5868 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5869 }
5870
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5871 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5872 {
5873 vmcs_writel(GUEST_DR7, val);
5874 }
5875
handle_cpuid(struct kvm_vcpu * vcpu)5876 static int handle_cpuid(struct kvm_vcpu *vcpu)
5877 {
5878 kvm_emulate_cpuid(vcpu);
5879 return 1;
5880 }
5881
handle_rdmsr(struct kvm_vcpu * vcpu)5882 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5883 {
5884 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5885 struct msr_data msr_info;
5886
5887 msr_info.index = ecx;
5888 msr_info.host_initiated = false;
5889 if (vmx_get_msr(vcpu, &msr_info)) {
5890 trace_kvm_msr_read_ex(ecx);
5891 kvm_inject_gp(vcpu, 0);
5892 return 1;
5893 }
5894
5895 trace_kvm_msr_read(ecx, msr_info.data);
5896
5897 /* FIXME: handling of bits 32:63 of rax, rdx */
5898 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5899 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5900 skip_emulated_instruction(vcpu);
5901 return 1;
5902 }
5903
handle_wrmsr(struct kvm_vcpu * vcpu)5904 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5905 {
5906 struct msr_data msr;
5907 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5908 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5909 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5910
5911 msr.data = data;
5912 msr.index = ecx;
5913 msr.host_initiated = false;
5914 if (kvm_set_msr(vcpu, &msr) != 0) {
5915 trace_kvm_msr_write_ex(ecx, data);
5916 kvm_inject_gp(vcpu, 0);
5917 return 1;
5918 }
5919
5920 trace_kvm_msr_write(ecx, data);
5921 skip_emulated_instruction(vcpu);
5922 return 1;
5923 }
5924
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5925 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5926 {
5927 kvm_make_request(KVM_REQ_EVENT, vcpu);
5928 return 1;
5929 }
5930
handle_interrupt_window(struct kvm_vcpu * vcpu)5931 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5932 {
5933 u32 cpu_based_vm_exec_control;
5934
5935 /* clear pending irq */
5936 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5937 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5938 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5939
5940 kvm_make_request(KVM_REQ_EVENT, vcpu);
5941
5942 ++vcpu->stat.irq_window_exits;
5943 return 1;
5944 }
5945
handle_halt(struct kvm_vcpu * vcpu)5946 static int handle_halt(struct kvm_vcpu *vcpu)
5947 {
5948 return kvm_emulate_halt(vcpu);
5949 }
5950
handle_vmcall(struct kvm_vcpu * vcpu)5951 static int handle_vmcall(struct kvm_vcpu *vcpu)
5952 {
5953 kvm_emulate_hypercall(vcpu);
5954 return 1;
5955 }
5956
handle_invd(struct kvm_vcpu * vcpu)5957 static int handle_invd(struct kvm_vcpu *vcpu)
5958 {
5959 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5960 }
5961
handle_invlpg(struct kvm_vcpu * vcpu)5962 static int handle_invlpg(struct kvm_vcpu *vcpu)
5963 {
5964 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5965
5966 kvm_mmu_invlpg(vcpu, exit_qualification);
5967 skip_emulated_instruction(vcpu);
5968 return 1;
5969 }
5970
handle_rdpmc(struct kvm_vcpu * vcpu)5971 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5972 {
5973 int err;
5974
5975 err = kvm_rdpmc(vcpu);
5976 kvm_complete_insn_gp(vcpu, err);
5977
5978 return 1;
5979 }
5980
handle_wbinvd(struct kvm_vcpu * vcpu)5981 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5982 {
5983 kvm_emulate_wbinvd(vcpu);
5984 return 1;
5985 }
5986
handle_xsetbv(struct kvm_vcpu * vcpu)5987 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5988 {
5989 u64 new_bv = kvm_read_edx_eax(vcpu);
5990 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5991
5992 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5993 skip_emulated_instruction(vcpu);
5994 return 1;
5995 }
5996
handle_xsaves(struct kvm_vcpu * vcpu)5997 static int handle_xsaves(struct kvm_vcpu *vcpu)
5998 {
5999 skip_emulated_instruction(vcpu);
6000 WARN(1, "this should never happen\n");
6001 return 1;
6002 }
6003
handle_xrstors(struct kvm_vcpu * vcpu)6004 static int handle_xrstors(struct kvm_vcpu *vcpu)
6005 {
6006 skip_emulated_instruction(vcpu);
6007 WARN(1, "this should never happen\n");
6008 return 1;
6009 }
6010
handle_apic_access(struct kvm_vcpu * vcpu)6011 static int handle_apic_access(struct kvm_vcpu *vcpu)
6012 {
6013 if (likely(fasteoi)) {
6014 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6015 int access_type, offset;
6016
6017 access_type = exit_qualification & APIC_ACCESS_TYPE;
6018 offset = exit_qualification & APIC_ACCESS_OFFSET;
6019 /*
6020 * Sane guest uses MOV to write EOI, with written value
6021 * not cared. So make a short-circuit here by avoiding
6022 * heavy instruction emulation.
6023 */
6024 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6025 (offset == APIC_EOI)) {
6026 kvm_lapic_set_eoi(vcpu);
6027 skip_emulated_instruction(vcpu);
6028 return 1;
6029 }
6030 }
6031 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6032 }
6033
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)6034 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6035 {
6036 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6037 int vector = exit_qualification & 0xff;
6038
6039 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6040 kvm_apic_set_eoi_accelerated(vcpu, vector);
6041 return 1;
6042 }
6043
handle_apic_write(struct kvm_vcpu * vcpu)6044 static int handle_apic_write(struct kvm_vcpu *vcpu)
6045 {
6046 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6047 u32 offset = exit_qualification & 0xfff;
6048
6049 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6050 kvm_apic_write_nodecode(vcpu, offset);
6051 return 1;
6052 }
6053
handle_task_switch(struct kvm_vcpu * vcpu)6054 static int handle_task_switch(struct kvm_vcpu *vcpu)
6055 {
6056 struct vcpu_vmx *vmx = to_vmx(vcpu);
6057 unsigned long exit_qualification;
6058 bool has_error_code = false;
6059 u32 error_code = 0;
6060 u16 tss_selector;
6061 int reason, type, idt_v, idt_index;
6062
6063 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6064 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6065 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6066
6067 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6068
6069 reason = (u32)exit_qualification >> 30;
6070 if (reason == TASK_SWITCH_GATE && idt_v) {
6071 switch (type) {
6072 case INTR_TYPE_NMI_INTR:
6073 vcpu->arch.nmi_injected = false;
6074 vmx_set_nmi_mask(vcpu, true);
6075 break;
6076 case INTR_TYPE_EXT_INTR:
6077 case INTR_TYPE_SOFT_INTR:
6078 kvm_clear_interrupt_queue(vcpu);
6079 break;
6080 case INTR_TYPE_HARD_EXCEPTION:
6081 if (vmx->idt_vectoring_info &
6082 VECTORING_INFO_DELIVER_CODE_MASK) {
6083 has_error_code = true;
6084 error_code =
6085 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6086 }
6087 /* fall through */
6088 case INTR_TYPE_SOFT_EXCEPTION:
6089 kvm_clear_exception_queue(vcpu);
6090 break;
6091 default:
6092 break;
6093 }
6094 }
6095 tss_selector = exit_qualification;
6096
6097 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6098 type != INTR_TYPE_EXT_INTR &&
6099 type != INTR_TYPE_NMI_INTR))
6100 skip_emulated_instruction(vcpu);
6101
6102 if (kvm_task_switch(vcpu, tss_selector,
6103 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6104 has_error_code, error_code) == EMULATE_FAIL) {
6105 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6106 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6107 vcpu->run->internal.ndata = 0;
6108 return 0;
6109 }
6110
6111 /*
6112 * TODO: What about debug traps on tss switch?
6113 * Are we supposed to inject them and update dr6?
6114 */
6115
6116 return 1;
6117 }
6118
handle_ept_violation(struct kvm_vcpu * vcpu)6119 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6120 {
6121 unsigned long exit_qualification;
6122 gpa_t gpa;
6123 u32 error_code;
6124 int gla_validity;
6125
6126 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6127
6128 gla_validity = (exit_qualification >> 7) & 0x3;
6129 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
6130 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
6131 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
6132 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
6133 vmcs_readl(GUEST_LINEAR_ADDRESS));
6134 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
6135 (long unsigned int)exit_qualification);
6136 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6137 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
6138 return 0;
6139 }
6140
6141 /*
6142 * EPT violation happened while executing iret from NMI,
6143 * "blocked by NMI" bit has to be set before next VM entry.
6144 * There are errata that may cause this bit to not be set:
6145 * AAK134, BY25.
6146 */
6147 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6148 cpu_has_virtual_nmis() &&
6149 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6150 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6151
6152 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6153 trace_kvm_page_fault(gpa, exit_qualification);
6154
6155 /* It is a write fault? */
6156 error_code = exit_qualification & PFERR_WRITE_MASK;
6157 /* It is a fetch fault? */
6158 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
6159 /* ept page table is present? */
6160 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
6161
6162 vcpu->arch.exit_qualification = exit_qualification;
6163
6164 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6165 }
6166
handle_ept_misconfig(struct kvm_vcpu * vcpu)6167 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6168 {
6169 int ret;
6170 gpa_t gpa;
6171
6172 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6173 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6174 trace_kvm_fast_mmio(gpa);
6175 /*
6176 * Doing kvm_skip_emulated_instruction() depends on undefined
6177 * behavior: Intel's manual doesn't mandate
6178 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
6179 * occurs and while on real hardware it was observed to be set,
6180 * other hypervisors (namely Hyper-V) don't set it, we end up
6181 * advancing IP with some random value. Disable fast mmio when
6182 * running nested and keep it for real hardware in hope that
6183 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
6184 */
6185 if (!static_cpu_has(X86_FEATURE_HYPERVISOR)) {
6186 skip_emulated_instruction(vcpu);
6187 return 1;
6188 }
6189 else
6190 return emulate_instruction(vcpu, EMULTYPE_SKIP) ==
6191 EMULATE_DONE;
6192 }
6193
6194 ret = handle_mmio_page_fault(vcpu, gpa, true);
6195 if (likely(ret == RET_MMIO_PF_EMULATE))
6196 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6197 EMULATE_DONE;
6198
6199 if (unlikely(ret == RET_MMIO_PF_INVALID))
6200 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6201
6202 if (unlikely(ret == RET_MMIO_PF_RETRY))
6203 return 1;
6204
6205 /* It is the real ept misconfig */
6206 WARN_ON(1);
6207
6208 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6209 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6210
6211 return 0;
6212 }
6213
handle_nmi_window(struct kvm_vcpu * vcpu)6214 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6215 {
6216 u32 cpu_based_vm_exec_control;
6217
6218 /* clear pending NMI */
6219 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6220 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6221 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6222 ++vcpu->stat.nmi_window_exits;
6223 kvm_make_request(KVM_REQ_EVENT, vcpu);
6224
6225 return 1;
6226 }
6227
handle_invalid_guest_state(struct kvm_vcpu * vcpu)6228 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6229 {
6230 struct vcpu_vmx *vmx = to_vmx(vcpu);
6231 enum emulation_result err = EMULATE_DONE;
6232 int ret = 1;
6233 u32 cpu_exec_ctrl;
6234 bool intr_window_requested;
6235 unsigned count = 130;
6236
6237 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6238 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6239
6240 while (vmx->emulation_required && count-- != 0) {
6241 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6242 return handle_interrupt_window(&vmx->vcpu);
6243
6244 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6245 return 1;
6246
6247 err = emulate_instruction(vcpu, 0);
6248
6249 if (err == EMULATE_USER_EXIT) {
6250 ++vcpu->stat.mmio_exits;
6251 ret = 0;
6252 goto out;
6253 }
6254
6255 if (err != EMULATE_DONE)
6256 goto emulation_error;
6257
6258 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
6259 vcpu->arch.exception.pending)
6260 goto emulation_error;
6261
6262 if (vcpu->arch.halt_request) {
6263 vcpu->arch.halt_request = 0;
6264 ret = kvm_vcpu_halt(vcpu);
6265 goto out;
6266 }
6267
6268 if (signal_pending(current))
6269 goto out;
6270 if (need_resched())
6271 schedule();
6272 }
6273
6274 out:
6275 return ret;
6276
6277 emulation_error:
6278 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6279 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6280 vcpu->run->internal.ndata = 0;
6281 return 0;
6282 }
6283
__grow_ple_window(int val)6284 static int __grow_ple_window(int val)
6285 {
6286 if (ple_window_grow < 1)
6287 return ple_window;
6288
6289 val = min(val, ple_window_actual_max);
6290
6291 if (ple_window_grow < ple_window)
6292 val *= ple_window_grow;
6293 else
6294 val += ple_window_grow;
6295
6296 return val;
6297 }
6298
__shrink_ple_window(int val,int modifier,int minimum)6299 static int __shrink_ple_window(int val, int modifier, int minimum)
6300 {
6301 if (modifier < 1)
6302 return ple_window;
6303
6304 if (modifier < ple_window)
6305 val /= modifier;
6306 else
6307 val -= modifier;
6308
6309 return max(val, minimum);
6310 }
6311
grow_ple_window(struct kvm_vcpu * vcpu)6312 static void grow_ple_window(struct kvm_vcpu *vcpu)
6313 {
6314 struct vcpu_vmx *vmx = to_vmx(vcpu);
6315 int old = vmx->ple_window;
6316
6317 vmx->ple_window = __grow_ple_window(old);
6318
6319 if (vmx->ple_window != old)
6320 vmx->ple_window_dirty = true;
6321
6322 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6323 }
6324
shrink_ple_window(struct kvm_vcpu * vcpu)6325 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6326 {
6327 struct vcpu_vmx *vmx = to_vmx(vcpu);
6328 int old = vmx->ple_window;
6329
6330 vmx->ple_window = __shrink_ple_window(old,
6331 ple_window_shrink, ple_window);
6332
6333 if (vmx->ple_window != old)
6334 vmx->ple_window_dirty = true;
6335
6336 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6337 }
6338
6339 /*
6340 * ple_window_actual_max is computed to be one grow_ple_window() below
6341 * ple_window_max. (See __grow_ple_window for the reason.)
6342 * This prevents overflows, because ple_window_max is int.
6343 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6344 * this process.
6345 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6346 */
update_ple_window_actual_max(void)6347 static void update_ple_window_actual_max(void)
6348 {
6349 ple_window_actual_max =
6350 __shrink_ple_window(max(ple_window_max, ple_window),
6351 ple_window_grow, INT_MIN);
6352 }
6353
6354 /*
6355 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6356 */
wakeup_handler(void)6357 static void wakeup_handler(void)
6358 {
6359 struct kvm_vcpu *vcpu;
6360 int cpu = smp_processor_id();
6361
6362 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6363 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6364 blocked_vcpu_list) {
6365 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6366
6367 if (pi_test_on(pi_desc) == 1)
6368 kvm_vcpu_kick(vcpu);
6369 }
6370 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6371 }
6372
hardware_setup(void)6373 static __init int hardware_setup(void)
6374 {
6375 int r = -ENOMEM, i;
6376
6377 rdmsrl_safe(MSR_EFER, &host_efer);
6378
6379 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6380 kvm_define_shared_msr(i, vmx_msr_index[i]);
6381
6382 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6383 if (!vmx_io_bitmap_a)
6384 return r;
6385
6386 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6387 if (!vmx_io_bitmap_b)
6388 goto out;
6389
6390 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6391 if (!vmx_vmread_bitmap)
6392 goto out1;
6393
6394 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6395 if (!vmx_vmwrite_bitmap)
6396 goto out2;
6397
6398 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6399 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6400
6401 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6402
6403 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6404
6405 if (setup_vmcs_config(&vmcs_config) < 0) {
6406 r = -EIO;
6407 goto out3;
6408 }
6409
6410 if (boot_cpu_has(X86_FEATURE_NX))
6411 kvm_enable_efer_bits(EFER_NX);
6412
6413 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6414 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6415 enable_vpid = 0;
6416
6417 if (!cpu_has_vmx_shadow_vmcs())
6418 enable_shadow_vmcs = 0;
6419 if (enable_shadow_vmcs)
6420 init_vmcs_shadow_fields();
6421
6422 if (!cpu_has_vmx_ept() ||
6423 !cpu_has_vmx_ept_4levels()) {
6424 enable_ept = 0;
6425 enable_unrestricted_guest = 0;
6426 enable_ept_ad_bits = 0;
6427 }
6428
6429 if (!cpu_has_vmx_ept_ad_bits())
6430 enable_ept_ad_bits = 0;
6431
6432 if (!cpu_has_vmx_unrestricted_guest())
6433 enable_unrestricted_guest = 0;
6434
6435 if (!cpu_has_vmx_flexpriority())
6436 flexpriority_enabled = 0;
6437
6438 /*
6439 * set_apic_access_page_addr() is used to reload apic access
6440 * page upon invalidation. No need to do anything if not
6441 * using the APIC_ACCESS_ADDR VMCS field.
6442 */
6443 if (!flexpriority_enabled)
6444 kvm_x86_ops->set_apic_access_page_addr = NULL;
6445
6446 if (!cpu_has_vmx_tpr_shadow())
6447 kvm_x86_ops->update_cr8_intercept = NULL;
6448
6449 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6450 kvm_disable_largepages();
6451
6452 if (!cpu_has_vmx_ple())
6453 ple_gap = 0;
6454
6455 if (!cpu_has_vmx_apicv())
6456 enable_apicv = 0;
6457
6458 if (cpu_has_vmx_tsc_scaling()) {
6459 kvm_has_tsc_control = true;
6460 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6461 kvm_tsc_scaling_ratio_frac_bits = 48;
6462 }
6463
6464 if (enable_apicv)
6465 kvm_x86_ops->update_cr8_intercept = NULL;
6466 else {
6467 kvm_x86_ops->hwapic_irr_update = NULL;
6468 kvm_x86_ops->hwapic_isr_update = NULL;
6469 kvm_x86_ops->deliver_posted_interrupt = NULL;
6470 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6471 }
6472
6473 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6474
6475 if (enable_ept) {
6476 kvm_mmu_set_mask_ptes(0ull,
6477 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6478 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6479 0ull, VMX_EPT_EXECUTABLE_MASK);
6480 ept_set_mmio_spte_mask();
6481 kvm_enable_tdp();
6482 } else
6483 kvm_disable_tdp();
6484
6485 update_ple_window_actual_max();
6486
6487 /*
6488 * Only enable PML when hardware supports PML feature, and both EPT
6489 * and EPT A/D bit features are enabled -- PML depends on them to work.
6490 */
6491 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6492 enable_pml = 0;
6493
6494 if (!enable_pml) {
6495 kvm_x86_ops->slot_enable_log_dirty = NULL;
6496 kvm_x86_ops->slot_disable_log_dirty = NULL;
6497 kvm_x86_ops->flush_log_dirty = NULL;
6498 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6499 }
6500
6501 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6502
6503 return alloc_kvm_area();
6504
6505 out3:
6506 free_page((unsigned long)vmx_vmwrite_bitmap);
6507 out2:
6508 free_page((unsigned long)vmx_vmread_bitmap);
6509 out1:
6510 free_page((unsigned long)vmx_io_bitmap_b);
6511 out:
6512 free_page((unsigned long)vmx_io_bitmap_a);
6513
6514 return r;
6515 }
6516
hardware_unsetup(void)6517 static __exit void hardware_unsetup(void)
6518 {
6519 free_page((unsigned long)vmx_io_bitmap_b);
6520 free_page((unsigned long)vmx_io_bitmap_a);
6521 free_page((unsigned long)vmx_vmwrite_bitmap);
6522 free_page((unsigned long)vmx_vmread_bitmap);
6523
6524 free_kvm_area();
6525 }
6526
6527 /*
6528 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6529 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6530 */
handle_pause(struct kvm_vcpu * vcpu)6531 static int handle_pause(struct kvm_vcpu *vcpu)
6532 {
6533 if (ple_gap)
6534 grow_ple_window(vcpu);
6535
6536 skip_emulated_instruction(vcpu);
6537 kvm_vcpu_on_spin(vcpu);
6538
6539 return 1;
6540 }
6541
handle_nop(struct kvm_vcpu * vcpu)6542 static int handle_nop(struct kvm_vcpu *vcpu)
6543 {
6544 skip_emulated_instruction(vcpu);
6545 return 1;
6546 }
6547
handle_mwait(struct kvm_vcpu * vcpu)6548 static int handle_mwait(struct kvm_vcpu *vcpu)
6549 {
6550 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6551 return handle_nop(vcpu);
6552 }
6553
handle_monitor_trap(struct kvm_vcpu * vcpu)6554 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6555 {
6556 return 1;
6557 }
6558
handle_monitor(struct kvm_vcpu * vcpu)6559 static int handle_monitor(struct kvm_vcpu *vcpu)
6560 {
6561 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6562 return handle_nop(vcpu);
6563 }
6564
6565 /*
6566 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6567 * set the success or error code of an emulated VMX instruction, as specified
6568 * by Vol 2B, VMX Instruction Reference, "Conventions".
6569 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)6570 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6571 {
6572 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6573 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6574 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6575 }
6576
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)6577 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6578 {
6579 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6580 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6581 X86_EFLAGS_SF | X86_EFLAGS_OF))
6582 | X86_EFLAGS_CF);
6583 }
6584
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)6585 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6586 u32 vm_instruction_error)
6587 {
6588 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6589 /*
6590 * failValid writes the error number to the current VMCS, which
6591 * can't be done there isn't a current VMCS.
6592 */
6593 nested_vmx_failInvalid(vcpu);
6594 return;
6595 }
6596 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6597 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6598 X86_EFLAGS_SF | X86_EFLAGS_OF))
6599 | X86_EFLAGS_ZF);
6600 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6601 /*
6602 * We don't need to force a shadow sync because
6603 * VM_INSTRUCTION_ERROR is not shadowed
6604 */
6605 }
6606
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)6607 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6608 {
6609 /* TODO: not to reset guest simply here. */
6610 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6611 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6612 }
6613
vmx_preemption_timer_fn(struct hrtimer * timer)6614 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6615 {
6616 struct vcpu_vmx *vmx =
6617 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6618
6619 vmx->nested.preemption_timer_expired = true;
6620 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6621 kvm_vcpu_kick(&vmx->vcpu);
6622
6623 return HRTIMER_NORESTART;
6624 }
6625
6626 /*
6627 * Decode the memory-address operand of a vmx instruction, as recorded on an
6628 * exit caused by such an instruction (run by a guest hypervisor).
6629 * On success, returns 0. When the operand is invalid, returns 1 and throws
6630 * #UD or #GP.
6631 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,gva_t * ret)6632 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6633 unsigned long exit_qualification,
6634 u32 vmx_instruction_info, bool wr, gva_t *ret)
6635 {
6636 gva_t off;
6637 bool exn;
6638 struct kvm_segment s;
6639
6640 /*
6641 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6642 * Execution", on an exit, vmx_instruction_info holds most of the
6643 * addressing components of the operand. Only the displacement part
6644 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6645 * For how an actual address is calculated from all these components,
6646 * refer to Vol. 1, "Operand Addressing".
6647 */
6648 int scaling = vmx_instruction_info & 3;
6649 int addr_size = (vmx_instruction_info >> 7) & 7;
6650 bool is_reg = vmx_instruction_info & (1u << 10);
6651 int seg_reg = (vmx_instruction_info >> 15) & 7;
6652 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6653 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6654 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6655 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6656
6657 if (is_reg) {
6658 kvm_queue_exception(vcpu, UD_VECTOR);
6659 return 1;
6660 }
6661
6662 /* Addr = segment_base + offset */
6663 /* offset = base + [index * scale] + displacement */
6664 off = exit_qualification; /* holds the displacement */
6665 if (addr_size == 1)
6666 off = (gva_t)sign_extend64(off, 31);
6667 else if (addr_size == 0)
6668 off = (gva_t)sign_extend64(off, 15);
6669 if (base_is_valid)
6670 off += kvm_register_read(vcpu, base_reg);
6671 if (index_is_valid)
6672 off += kvm_register_read(vcpu, index_reg)<<scaling;
6673 vmx_get_segment(vcpu, &s, seg_reg);
6674 *ret = s.base + off;
6675
6676 if (addr_size == 1) /* 32 bit */
6677 *ret &= 0xffffffff;
6678
6679 /* Checks for #GP/#SS exceptions. */
6680 exn = false;
6681 if (is_long_mode(vcpu)) {
6682 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6683 * non-canonical form. This is the only check on the memory
6684 * destination for long mode!
6685 */
6686 exn = is_noncanonical_address(*ret);
6687 } else if (is_protmode(vcpu)) {
6688 /* Protected mode: apply checks for segment validity in the
6689 * following order:
6690 * - segment type check (#GP(0) may be thrown)
6691 * - usability check (#GP(0)/#SS(0))
6692 * - limit check (#GP(0)/#SS(0))
6693 */
6694 if (wr)
6695 /* #GP(0) if the destination operand is located in a
6696 * read-only data segment or any code segment.
6697 */
6698 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6699 else
6700 /* #GP(0) if the source operand is located in an
6701 * execute-only code segment
6702 */
6703 exn = ((s.type & 0xa) == 8);
6704 if (exn) {
6705 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6706 return 1;
6707 }
6708 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6709 */
6710 exn = (s.unusable != 0);
6711
6712 /*
6713 * Protected mode: #GP(0)/#SS(0) if the memory operand is
6714 * outside the segment limit. All CPUs that support VMX ignore
6715 * limit checks for flat segments, i.e. segments with base==0,
6716 * limit==0xffffffff and of type expand-up data or code.
6717 */
6718 if (!(s.base == 0 && s.limit == 0xffffffff &&
6719 ((s.type & 8) || !(s.type & 4))))
6720 exn = exn || (off + sizeof(u64) > s.limit);
6721 }
6722 if (exn) {
6723 kvm_queue_exception_e(vcpu,
6724 seg_reg == VCPU_SREG_SS ?
6725 SS_VECTOR : GP_VECTOR,
6726 0);
6727 return 1;
6728 }
6729
6730 return 0;
6731 }
6732
6733 /*
6734 * This function performs the various checks including
6735 * - if it's 4KB aligned
6736 * - No bits beyond the physical address width are set
6737 * - Returns 0 on success or else 1
6738 * (Intel SDM Section 30.3)
6739 */
nested_vmx_check_vmptr(struct kvm_vcpu * vcpu,int exit_reason,gpa_t * vmpointer)6740 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6741 gpa_t *vmpointer)
6742 {
6743 gva_t gva;
6744 gpa_t vmptr;
6745 struct x86_exception e;
6746 struct page *page;
6747 struct vcpu_vmx *vmx = to_vmx(vcpu);
6748 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6749
6750 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6751 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6752 return 1;
6753
6754 if (kvm_read_guest_virt(vcpu, gva, &vmptr, sizeof(vmptr), &e)) {
6755 kvm_inject_page_fault(vcpu, &e);
6756 return 1;
6757 }
6758
6759 switch (exit_reason) {
6760 case EXIT_REASON_VMON:
6761 /*
6762 * SDM 3: 24.11.5
6763 * The first 4 bytes of VMXON region contain the supported
6764 * VMCS revision identifier
6765 *
6766 * Note - IA32_VMX_BASIC[48] will never be 1
6767 * for the nested case;
6768 * which replaces physical address width with 32
6769 *
6770 */
6771 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6772 nested_vmx_failInvalid(vcpu);
6773 skip_emulated_instruction(vcpu);
6774 return 1;
6775 }
6776
6777 page = nested_get_page(vcpu, vmptr);
6778 if (page == NULL) {
6779 nested_vmx_failInvalid(vcpu);
6780 skip_emulated_instruction(vcpu);
6781 return 1;
6782 }
6783 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
6784 kunmap(page);
6785 nested_release_page_clean(page);
6786 nested_vmx_failInvalid(vcpu);
6787 skip_emulated_instruction(vcpu);
6788 return 1;
6789 }
6790 kunmap(page);
6791 nested_release_page_clean(page);
6792 vmx->nested.vmxon_ptr = vmptr;
6793 break;
6794 case EXIT_REASON_VMCLEAR:
6795 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6796 nested_vmx_failValid(vcpu,
6797 VMXERR_VMCLEAR_INVALID_ADDRESS);
6798 skip_emulated_instruction(vcpu);
6799 return 1;
6800 }
6801
6802 if (vmptr == vmx->nested.vmxon_ptr) {
6803 nested_vmx_failValid(vcpu,
6804 VMXERR_VMCLEAR_VMXON_POINTER);
6805 skip_emulated_instruction(vcpu);
6806 return 1;
6807 }
6808 break;
6809 case EXIT_REASON_VMPTRLD:
6810 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6811 nested_vmx_failValid(vcpu,
6812 VMXERR_VMPTRLD_INVALID_ADDRESS);
6813 skip_emulated_instruction(vcpu);
6814 return 1;
6815 }
6816
6817 if (vmptr == vmx->nested.vmxon_ptr) {
6818 nested_vmx_failValid(vcpu,
6819 VMXERR_VMCLEAR_VMXON_POINTER);
6820 skip_emulated_instruction(vcpu);
6821 return 1;
6822 }
6823 break;
6824 default:
6825 return 1; /* shouldn't happen */
6826 }
6827
6828 if (vmpointer)
6829 *vmpointer = vmptr;
6830 return 0;
6831 }
6832
6833 /*
6834 * Emulate the VMXON instruction.
6835 * Currently, we just remember that VMX is active, and do not save or even
6836 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6837 * do not currently need to store anything in that guest-allocated memory
6838 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6839 * argument is different from the VMXON pointer (which the spec says they do).
6840 */
handle_vmon(struct kvm_vcpu * vcpu)6841 static int handle_vmon(struct kvm_vcpu *vcpu)
6842 {
6843 struct kvm_segment cs;
6844 struct vcpu_vmx *vmx = to_vmx(vcpu);
6845 struct vmcs *shadow_vmcs;
6846 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6847 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6848 int r;
6849
6850 /* The Intel VMX Instruction Reference lists a bunch of bits that
6851 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6852 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6853 * Otherwise, we should fail with #UD. We test these now:
6854 */
6855 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6856 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6857 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6858 kvm_queue_exception(vcpu, UD_VECTOR);
6859 return 1;
6860 }
6861
6862 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6863 if (is_long_mode(vcpu) && !cs.l) {
6864 kvm_queue_exception(vcpu, UD_VECTOR);
6865 return 1;
6866 }
6867
6868 if (vmx_get_cpl(vcpu)) {
6869 kvm_inject_gp(vcpu, 0);
6870 return 1;
6871 }
6872
6873 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6874 return 1;
6875
6876 if (vmx->nested.vmxon) {
6877 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6878 skip_emulated_instruction(vcpu);
6879 return 1;
6880 }
6881
6882 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6883 != VMXON_NEEDED_FEATURES) {
6884 kvm_inject_gp(vcpu, 0);
6885 return 1;
6886 }
6887
6888 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
6889 if (r < 0)
6890 goto out_vmcs02;
6891
6892 if (enable_shadow_vmcs) {
6893 shadow_vmcs = alloc_vmcs();
6894 if (!shadow_vmcs)
6895 goto out_shadow_vmcs;
6896 /* mark vmcs as shadow */
6897 shadow_vmcs->revision_id |= (1u << 31);
6898 /* init shadow vmcs */
6899 vmcs_clear(shadow_vmcs);
6900 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6901 }
6902
6903 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6904 HRTIMER_MODE_REL);
6905 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6906
6907 vmx->nested.vpid02 = allocate_vpid();
6908
6909 vmx->nested.vmxon = true;
6910
6911 skip_emulated_instruction(vcpu);
6912 nested_vmx_succeed(vcpu);
6913 return 1;
6914
6915 out_shadow_vmcs:
6916 free_loaded_vmcs(&vmx->nested.vmcs02);
6917
6918 out_vmcs02:
6919 return -ENOMEM;
6920 }
6921
6922 /*
6923 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6924 * for running VMX instructions (except VMXON, whose prerequisites are
6925 * slightly different). It also specifies what exception to inject otherwise.
6926 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)6927 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6928 {
6929 struct kvm_segment cs;
6930 struct vcpu_vmx *vmx = to_vmx(vcpu);
6931
6932 if (!vmx->nested.vmxon) {
6933 kvm_queue_exception(vcpu, UD_VECTOR);
6934 return 0;
6935 }
6936
6937 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6938 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6939 (is_long_mode(vcpu) && !cs.l)) {
6940 kvm_queue_exception(vcpu, UD_VECTOR);
6941 return 0;
6942 }
6943
6944 if (vmx_get_cpl(vcpu)) {
6945 kvm_inject_gp(vcpu, 0);
6946 return 0;
6947 }
6948
6949 return 1;
6950 }
6951
nested_release_vmcs12(struct vcpu_vmx * vmx)6952 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6953 {
6954 if (vmx->nested.current_vmptr == -1ull)
6955 return;
6956
6957 /* current_vmptr and current_vmcs12 are always set/reset together */
6958 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6959 return;
6960
6961 if (enable_shadow_vmcs) {
6962 /* copy to memory all shadowed fields in case
6963 they were modified */
6964 copy_shadow_to_vmcs12(vmx);
6965 vmx->nested.sync_shadow_vmcs = false;
6966 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6967 SECONDARY_EXEC_SHADOW_VMCS);
6968 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6969 }
6970 vmx->nested.posted_intr_nv = -1;
6971 kunmap(vmx->nested.current_vmcs12_page);
6972 nested_release_page(vmx->nested.current_vmcs12_page);
6973 vmx->nested.current_vmptr = -1ull;
6974 vmx->nested.current_vmcs12 = NULL;
6975 }
6976
6977 /*
6978 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6979 * just stops using VMX.
6980 */
free_nested(struct vcpu_vmx * vmx)6981 static void free_nested(struct vcpu_vmx *vmx)
6982 {
6983 if (!vmx->nested.vmxon)
6984 return;
6985
6986 hrtimer_cancel(&vmx->nested.preemption_timer);
6987 vmx->nested.vmxon = false;
6988 free_vpid(vmx->nested.vpid02);
6989 nested_release_vmcs12(vmx);
6990 if (enable_shadow_vmcs)
6991 free_vmcs(vmx->nested.current_shadow_vmcs);
6992 /* Unpin physical memory we referred to in the vmcs02 */
6993 if (vmx->nested.apic_access_page) {
6994 nested_release_page(vmx->nested.apic_access_page);
6995 vmx->nested.apic_access_page = NULL;
6996 }
6997 if (vmx->nested.virtual_apic_page) {
6998 nested_release_page(vmx->nested.virtual_apic_page);
6999 vmx->nested.virtual_apic_page = NULL;
7000 }
7001 if (vmx->nested.pi_desc_page) {
7002 kunmap(vmx->nested.pi_desc_page);
7003 nested_release_page(vmx->nested.pi_desc_page);
7004 vmx->nested.pi_desc_page = NULL;
7005 vmx->nested.pi_desc = NULL;
7006 }
7007
7008 free_loaded_vmcs(&vmx->nested.vmcs02);
7009 }
7010
7011 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)7012 static int handle_vmoff(struct kvm_vcpu *vcpu)
7013 {
7014 if (!nested_vmx_check_permission(vcpu))
7015 return 1;
7016 free_nested(to_vmx(vcpu));
7017 skip_emulated_instruction(vcpu);
7018 nested_vmx_succeed(vcpu);
7019 return 1;
7020 }
7021
7022 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)7023 static int handle_vmclear(struct kvm_vcpu *vcpu)
7024 {
7025 struct vcpu_vmx *vmx = to_vmx(vcpu);
7026 u32 zero = 0;
7027 gpa_t vmptr;
7028
7029 if (!nested_vmx_check_permission(vcpu))
7030 return 1;
7031
7032 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
7033 return 1;
7034
7035 if (vmptr == vmx->nested.current_vmptr)
7036 nested_release_vmcs12(vmx);
7037
7038 kvm_vcpu_write_guest(vcpu,
7039 vmptr + offsetof(struct vmcs12, launch_state),
7040 &zero, sizeof(zero));
7041
7042 skip_emulated_instruction(vcpu);
7043 nested_vmx_succeed(vcpu);
7044 return 1;
7045 }
7046
7047 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7048
7049 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)7050 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7051 {
7052 return nested_vmx_run(vcpu, true);
7053 }
7054
7055 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)7056 static int handle_vmresume(struct kvm_vcpu *vcpu)
7057 {
7058
7059 return nested_vmx_run(vcpu, false);
7060 }
7061
7062 enum vmcs_field_type {
7063 VMCS_FIELD_TYPE_U16 = 0,
7064 VMCS_FIELD_TYPE_U64 = 1,
7065 VMCS_FIELD_TYPE_U32 = 2,
7066 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7067 };
7068
vmcs_field_type(unsigned long field)7069 static inline int vmcs_field_type(unsigned long field)
7070 {
7071 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7072 return VMCS_FIELD_TYPE_U32;
7073 return (field >> 13) & 0x3 ;
7074 }
7075
vmcs_field_readonly(unsigned long field)7076 static inline int vmcs_field_readonly(unsigned long field)
7077 {
7078 return (((field >> 10) & 0x3) == 1);
7079 }
7080
7081 /*
7082 * Read a vmcs12 field. Since these can have varying lengths and we return
7083 * one type, we chose the biggest type (u64) and zero-extend the return value
7084 * to that size. Note that the caller, handle_vmread, might need to use only
7085 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7086 * 64-bit fields are to be returned).
7087 */
vmcs12_read_any(struct kvm_vcpu * vcpu,unsigned long field,u64 * ret)7088 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7089 unsigned long field, u64 *ret)
7090 {
7091 short offset = vmcs_field_to_offset(field);
7092 char *p;
7093
7094 if (offset < 0)
7095 return offset;
7096
7097 p = ((char *)(get_vmcs12(vcpu))) + offset;
7098
7099 switch (vmcs_field_type(field)) {
7100 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7101 *ret = *((natural_width *)p);
7102 return 0;
7103 case VMCS_FIELD_TYPE_U16:
7104 *ret = *((u16 *)p);
7105 return 0;
7106 case VMCS_FIELD_TYPE_U32:
7107 *ret = *((u32 *)p);
7108 return 0;
7109 case VMCS_FIELD_TYPE_U64:
7110 *ret = *((u64 *)p);
7111 return 0;
7112 default:
7113 WARN_ON(1);
7114 return -ENOENT;
7115 }
7116 }
7117
7118
vmcs12_write_any(struct kvm_vcpu * vcpu,unsigned long field,u64 field_value)7119 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7120 unsigned long field, u64 field_value){
7121 short offset = vmcs_field_to_offset(field);
7122 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7123 if (offset < 0)
7124 return offset;
7125
7126 switch (vmcs_field_type(field)) {
7127 case VMCS_FIELD_TYPE_U16:
7128 *(u16 *)p = field_value;
7129 return 0;
7130 case VMCS_FIELD_TYPE_U32:
7131 *(u32 *)p = field_value;
7132 return 0;
7133 case VMCS_FIELD_TYPE_U64:
7134 *(u64 *)p = field_value;
7135 return 0;
7136 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7137 *(natural_width *)p = field_value;
7138 return 0;
7139 default:
7140 WARN_ON(1);
7141 return -ENOENT;
7142 }
7143
7144 }
7145
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)7146 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7147 {
7148 int i;
7149 unsigned long field;
7150 u64 field_value;
7151 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7152 const unsigned long *fields = shadow_read_write_fields;
7153 const int num_fields = max_shadow_read_write_fields;
7154
7155 preempt_disable();
7156
7157 vmcs_load(shadow_vmcs);
7158
7159 for (i = 0; i < num_fields; i++) {
7160 field = fields[i];
7161 switch (vmcs_field_type(field)) {
7162 case VMCS_FIELD_TYPE_U16:
7163 field_value = vmcs_read16(field);
7164 break;
7165 case VMCS_FIELD_TYPE_U32:
7166 field_value = vmcs_read32(field);
7167 break;
7168 case VMCS_FIELD_TYPE_U64:
7169 field_value = vmcs_read64(field);
7170 break;
7171 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7172 field_value = vmcs_readl(field);
7173 break;
7174 default:
7175 WARN_ON(1);
7176 continue;
7177 }
7178 vmcs12_write_any(&vmx->vcpu, field, field_value);
7179 }
7180
7181 vmcs_clear(shadow_vmcs);
7182 vmcs_load(vmx->loaded_vmcs->vmcs);
7183
7184 preempt_enable();
7185 }
7186
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)7187 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7188 {
7189 const unsigned long *fields[] = {
7190 shadow_read_write_fields,
7191 shadow_read_only_fields
7192 };
7193 const int max_fields[] = {
7194 max_shadow_read_write_fields,
7195 max_shadow_read_only_fields
7196 };
7197 int i, q;
7198 unsigned long field;
7199 u64 field_value = 0;
7200 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7201
7202 vmcs_load(shadow_vmcs);
7203
7204 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7205 for (i = 0; i < max_fields[q]; i++) {
7206 field = fields[q][i];
7207 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7208
7209 switch (vmcs_field_type(field)) {
7210 case VMCS_FIELD_TYPE_U16:
7211 vmcs_write16(field, (u16)field_value);
7212 break;
7213 case VMCS_FIELD_TYPE_U32:
7214 vmcs_write32(field, (u32)field_value);
7215 break;
7216 case VMCS_FIELD_TYPE_U64:
7217 vmcs_write64(field, (u64)field_value);
7218 break;
7219 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7220 vmcs_writel(field, (long)field_value);
7221 break;
7222 default:
7223 WARN_ON(1);
7224 break;
7225 }
7226 }
7227 }
7228
7229 vmcs_clear(shadow_vmcs);
7230 vmcs_load(vmx->loaded_vmcs->vmcs);
7231 }
7232
7233 /*
7234 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7235 * used before) all generate the same failure when it is missing.
7236 */
nested_vmx_check_vmcs12(struct kvm_vcpu * vcpu)7237 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7238 {
7239 struct vcpu_vmx *vmx = to_vmx(vcpu);
7240 if (vmx->nested.current_vmptr == -1ull) {
7241 nested_vmx_failInvalid(vcpu);
7242 skip_emulated_instruction(vcpu);
7243 return 0;
7244 }
7245 return 1;
7246 }
7247
handle_vmread(struct kvm_vcpu * vcpu)7248 static int handle_vmread(struct kvm_vcpu *vcpu)
7249 {
7250 unsigned long field;
7251 u64 field_value;
7252 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7253 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7254 gva_t gva = 0;
7255 struct x86_exception e;
7256
7257 if (!nested_vmx_check_permission(vcpu) ||
7258 !nested_vmx_check_vmcs12(vcpu))
7259 return 1;
7260
7261 /* Decode instruction info and find the field to read */
7262 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7263 /* Read the field, zero-extended to a u64 field_value */
7264 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7265 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7266 skip_emulated_instruction(vcpu);
7267 return 1;
7268 }
7269 /*
7270 * Now copy part of this value to register or memory, as requested.
7271 * Note that the number of bits actually copied is 32 or 64 depending
7272 * on the guest's mode (32 or 64 bit), not on the given field's length.
7273 */
7274 if (vmx_instruction_info & (1u << 10)) {
7275 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7276 field_value);
7277 } else {
7278 if (get_vmx_mem_address(vcpu, exit_qualification,
7279 vmx_instruction_info, true, &gva))
7280 return 1;
7281 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7282 if (kvm_write_guest_virt_system(vcpu, gva, &field_value,
7283 (is_long_mode(vcpu) ? 8 : 4),
7284 &e)) {
7285 kvm_inject_page_fault(vcpu, &e);
7286 return 1;
7287 }
7288 }
7289
7290 nested_vmx_succeed(vcpu);
7291 skip_emulated_instruction(vcpu);
7292 return 1;
7293 }
7294
7295
handle_vmwrite(struct kvm_vcpu * vcpu)7296 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7297 {
7298 unsigned long field;
7299 gva_t gva;
7300 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7301 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7302 /* The value to write might be 32 or 64 bits, depending on L1's long
7303 * mode, and eventually we need to write that into a field of several
7304 * possible lengths. The code below first zero-extends the value to 64
7305 * bit (field_value), and then copies only the approriate number of
7306 * bits into the vmcs12 field.
7307 */
7308 u64 field_value = 0;
7309 struct x86_exception e;
7310
7311 if (!nested_vmx_check_permission(vcpu) ||
7312 !nested_vmx_check_vmcs12(vcpu))
7313 return 1;
7314
7315 if (vmx_instruction_info & (1u << 10))
7316 field_value = kvm_register_readl(vcpu,
7317 (((vmx_instruction_info) >> 3) & 0xf));
7318 else {
7319 if (get_vmx_mem_address(vcpu, exit_qualification,
7320 vmx_instruction_info, false, &gva))
7321 return 1;
7322 if (kvm_read_guest_virt(vcpu, gva, &field_value,
7323 (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7324 kvm_inject_page_fault(vcpu, &e);
7325 return 1;
7326 }
7327 }
7328
7329
7330 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7331 if (vmcs_field_readonly(field)) {
7332 nested_vmx_failValid(vcpu,
7333 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7334 skip_emulated_instruction(vcpu);
7335 return 1;
7336 }
7337
7338 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7339 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7340 skip_emulated_instruction(vcpu);
7341 return 1;
7342 }
7343
7344 nested_vmx_succeed(vcpu);
7345 skip_emulated_instruction(vcpu);
7346 return 1;
7347 }
7348
7349 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)7350 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7351 {
7352 struct vcpu_vmx *vmx = to_vmx(vcpu);
7353 gpa_t vmptr;
7354
7355 if (!nested_vmx_check_permission(vcpu))
7356 return 1;
7357
7358 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7359 return 1;
7360
7361 if (vmx->nested.current_vmptr != vmptr) {
7362 struct vmcs12 *new_vmcs12;
7363 struct page *page;
7364 page = nested_get_page(vcpu, vmptr);
7365 if (page == NULL) {
7366 nested_vmx_failInvalid(vcpu);
7367 skip_emulated_instruction(vcpu);
7368 return 1;
7369 }
7370 new_vmcs12 = kmap(page);
7371 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7372 kunmap(page);
7373 nested_release_page_clean(page);
7374 nested_vmx_failValid(vcpu,
7375 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7376 skip_emulated_instruction(vcpu);
7377 return 1;
7378 }
7379
7380 nested_release_vmcs12(vmx);
7381 vmx->nested.current_vmptr = vmptr;
7382 vmx->nested.current_vmcs12 = new_vmcs12;
7383 vmx->nested.current_vmcs12_page = page;
7384 if (enable_shadow_vmcs) {
7385 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7386 SECONDARY_EXEC_SHADOW_VMCS);
7387 vmcs_write64(VMCS_LINK_POINTER,
7388 __pa(vmx->nested.current_shadow_vmcs));
7389 vmx->nested.sync_shadow_vmcs = true;
7390 }
7391 }
7392
7393 nested_vmx_succeed(vcpu);
7394 skip_emulated_instruction(vcpu);
7395 return 1;
7396 }
7397
7398 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)7399 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7400 {
7401 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7402 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7403 gva_t vmcs_gva;
7404 struct x86_exception e;
7405
7406 if (!nested_vmx_check_permission(vcpu))
7407 return 1;
7408
7409 if (get_vmx_mem_address(vcpu, exit_qualification,
7410 vmx_instruction_info, true, &vmcs_gva))
7411 return 1;
7412 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7413 if (kvm_write_guest_virt_system(vcpu, vmcs_gva,
7414 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7415 sizeof(u64), &e)) {
7416 kvm_inject_page_fault(vcpu, &e);
7417 return 1;
7418 }
7419 nested_vmx_succeed(vcpu);
7420 skip_emulated_instruction(vcpu);
7421 return 1;
7422 }
7423
7424 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)7425 static int handle_invept(struct kvm_vcpu *vcpu)
7426 {
7427 struct vcpu_vmx *vmx = to_vmx(vcpu);
7428 u32 vmx_instruction_info, types;
7429 unsigned long type;
7430 gva_t gva;
7431 struct x86_exception e;
7432 struct {
7433 u64 eptp, gpa;
7434 } operand;
7435
7436 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7437 SECONDARY_EXEC_ENABLE_EPT) ||
7438 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7439 kvm_queue_exception(vcpu, UD_VECTOR);
7440 return 1;
7441 }
7442
7443 if (!nested_vmx_check_permission(vcpu))
7444 return 1;
7445
7446 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7447 kvm_queue_exception(vcpu, UD_VECTOR);
7448 return 1;
7449 }
7450
7451 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7452 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7453
7454 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7455
7456 if (type >= 32 || !(types & (1 << type))) {
7457 nested_vmx_failValid(vcpu,
7458 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7459 skip_emulated_instruction(vcpu);
7460 return 1;
7461 }
7462
7463 /* According to the Intel VMX instruction reference, the memory
7464 * operand is read even if it isn't needed (e.g., for type==global)
7465 */
7466 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7467 vmx_instruction_info, false, &gva))
7468 return 1;
7469 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
7470 kvm_inject_page_fault(vcpu, &e);
7471 return 1;
7472 }
7473
7474 switch (type) {
7475 case VMX_EPT_EXTENT_GLOBAL:
7476 kvm_mmu_sync_roots(vcpu);
7477 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7478 nested_vmx_succeed(vcpu);
7479 break;
7480 default:
7481 /* Trap single context invalidation invept calls */
7482 BUG_ON(1);
7483 break;
7484 }
7485
7486 skip_emulated_instruction(vcpu);
7487 return 1;
7488 }
7489
handle_invvpid(struct kvm_vcpu * vcpu)7490 static int handle_invvpid(struct kvm_vcpu *vcpu)
7491 {
7492 struct vcpu_vmx *vmx = to_vmx(vcpu);
7493 u32 vmx_instruction_info;
7494 unsigned long type, types;
7495 gva_t gva;
7496 struct x86_exception e;
7497 int vpid;
7498
7499 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7500 SECONDARY_EXEC_ENABLE_VPID) ||
7501 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7502 kvm_queue_exception(vcpu, UD_VECTOR);
7503 return 1;
7504 }
7505
7506 if (!nested_vmx_check_permission(vcpu))
7507 return 1;
7508
7509 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7510 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7511
7512 types = (vmx->nested.nested_vmx_vpid_caps &
7513 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7514
7515 if (type >= 32 || !(types & (1 << type))) {
7516 nested_vmx_failValid(vcpu,
7517 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7518 skip_emulated_instruction(vcpu);
7519 return 1;
7520 }
7521
7522 /* according to the intel vmx instruction reference, the memory
7523 * operand is read even if it isn't needed (e.g., for type==global)
7524 */
7525 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7526 vmx_instruction_info, false, &gva))
7527 return 1;
7528 if (kvm_read_guest_virt(vcpu, gva, &vpid, sizeof(u32), &e)) {
7529 kvm_inject_page_fault(vcpu, &e);
7530 return 1;
7531 }
7532
7533 switch (type) {
7534 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7535 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7536 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7537 if (!vpid) {
7538 nested_vmx_failValid(vcpu,
7539 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7540 skip_emulated_instruction(vcpu);
7541 return 1;
7542 }
7543 break;
7544 case VMX_VPID_EXTENT_ALL_CONTEXT:
7545 break;
7546 default:
7547 WARN_ON_ONCE(1);
7548 skip_emulated_instruction(vcpu);
7549 return 1;
7550 }
7551
7552 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7553 nested_vmx_succeed(vcpu);
7554
7555 skip_emulated_instruction(vcpu);
7556 return 1;
7557 }
7558
handle_pml_full(struct kvm_vcpu * vcpu)7559 static int handle_pml_full(struct kvm_vcpu *vcpu)
7560 {
7561 unsigned long exit_qualification;
7562
7563 trace_kvm_pml_full(vcpu->vcpu_id);
7564
7565 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7566
7567 /*
7568 * PML buffer FULL happened while executing iret from NMI,
7569 * "blocked by NMI" bit has to be set before next VM entry.
7570 */
7571 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7572 cpu_has_virtual_nmis() &&
7573 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7574 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7575 GUEST_INTR_STATE_NMI);
7576
7577 /*
7578 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7579 * here.., and there's no userspace involvement needed for PML.
7580 */
7581 return 1;
7582 }
7583
handle_pcommit(struct kvm_vcpu * vcpu)7584 static int handle_pcommit(struct kvm_vcpu *vcpu)
7585 {
7586 /* we never catch pcommit instruct for L1 guest. */
7587 WARN_ON(1);
7588 return 1;
7589 }
7590
7591 /*
7592 * The exit handlers return 1 if the exit was handled fully and guest execution
7593 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7594 * to be done to userspace and return 0.
7595 */
7596 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7597 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7598 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7599 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7600 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7601 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7602 [EXIT_REASON_CR_ACCESS] = handle_cr,
7603 [EXIT_REASON_DR_ACCESS] = handle_dr,
7604 [EXIT_REASON_CPUID] = handle_cpuid,
7605 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7606 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7607 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7608 [EXIT_REASON_HLT] = handle_halt,
7609 [EXIT_REASON_INVD] = handle_invd,
7610 [EXIT_REASON_INVLPG] = handle_invlpg,
7611 [EXIT_REASON_RDPMC] = handle_rdpmc,
7612 [EXIT_REASON_VMCALL] = handle_vmcall,
7613 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7614 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7615 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7616 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7617 [EXIT_REASON_VMREAD] = handle_vmread,
7618 [EXIT_REASON_VMRESUME] = handle_vmresume,
7619 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7620 [EXIT_REASON_VMOFF] = handle_vmoff,
7621 [EXIT_REASON_VMON] = handle_vmon,
7622 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7623 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7624 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7625 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7626 [EXIT_REASON_WBINVD] = handle_wbinvd,
7627 [EXIT_REASON_XSETBV] = handle_xsetbv,
7628 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7629 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7630 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7631 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7632 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7633 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7634 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7635 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7636 [EXIT_REASON_INVEPT] = handle_invept,
7637 [EXIT_REASON_INVVPID] = handle_invvpid,
7638 [EXIT_REASON_XSAVES] = handle_xsaves,
7639 [EXIT_REASON_XRSTORS] = handle_xrstors,
7640 [EXIT_REASON_PML_FULL] = handle_pml_full,
7641 [EXIT_REASON_PCOMMIT] = handle_pcommit,
7642 };
7643
7644 static const int kvm_vmx_max_exit_handlers =
7645 ARRAY_SIZE(kvm_vmx_exit_handlers);
7646
7647 /*
7648 * Return true if an IO instruction with the specified port and size should cause
7649 * a VM-exit into L1.
7650 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)7651 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
7652 int size)
7653 {
7654 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7655 gpa_t bitmap, last_bitmap;
7656 u8 b;
7657
7658 last_bitmap = (gpa_t)-1;
7659 b = -1;
7660
7661 while (size > 0) {
7662 if (port < 0x8000)
7663 bitmap = vmcs12->io_bitmap_a;
7664 else if (port < 0x10000)
7665 bitmap = vmcs12->io_bitmap_b;
7666 else
7667 return true;
7668 bitmap += (port & 0x7fff) / 8;
7669
7670 if (last_bitmap != bitmap)
7671 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7672 return true;
7673 if (b & (1 << (port & 7)))
7674 return true;
7675
7676 port++;
7677 size--;
7678 last_bitmap = bitmap;
7679 }
7680
7681 return false;
7682 }
7683
7684 /*
7685 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7686 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7687 * disinterest in the current event (read or write a specific MSR) by using an
7688 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7689 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason)7690 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7691 struct vmcs12 *vmcs12, u32 exit_reason)
7692 {
7693 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7694 gpa_t bitmap;
7695
7696 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7697 return true;
7698
7699 /*
7700 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7701 * for the four combinations of read/write and low/high MSR numbers.
7702 * First we need to figure out which of the four to use:
7703 */
7704 bitmap = vmcs12->msr_bitmap;
7705 if (exit_reason == EXIT_REASON_MSR_WRITE)
7706 bitmap += 2048;
7707 if (msr_index >= 0xc0000000) {
7708 msr_index -= 0xc0000000;
7709 bitmap += 1024;
7710 }
7711
7712 /* Then read the msr_index'th bit from this bitmap: */
7713 if (msr_index < 1024*8) {
7714 unsigned char b;
7715 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7716 return true;
7717 return 1 & (b >> (msr_index & 7));
7718 } else
7719 return true; /* let L1 handle the wrong parameter */
7720 }
7721
7722 /*
7723 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7724 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7725 * intercept (via guest_host_mask etc.) the current event.
7726 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)7727 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7728 struct vmcs12 *vmcs12)
7729 {
7730 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7731 int cr = exit_qualification & 15;
7732 int reg;
7733 unsigned long val;
7734
7735 switch ((exit_qualification >> 4) & 3) {
7736 case 0: /* mov to cr */
7737 reg = (exit_qualification >> 8) & 15;
7738 val = kvm_register_readl(vcpu, reg);
7739 switch (cr) {
7740 case 0:
7741 if (vmcs12->cr0_guest_host_mask &
7742 (val ^ vmcs12->cr0_read_shadow))
7743 return true;
7744 break;
7745 case 3:
7746 if ((vmcs12->cr3_target_count >= 1 &&
7747 vmcs12->cr3_target_value0 == val) ||
7748 (vmcs12->cr3_target_count >= 2 &&
7749 vmcs12->cr3_target_value1 == val) ||
7750 (vmcs12->cr3_target_count >= 3 &&
7751 vmcs12->cr3_target_value2 == val) ||
7752 (vmcs12->cr3_target_count >= 4 &&
7753 vmcs12->cr3_target_value3 == val))
7754 return false;
7755 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7756 return true;
7757 break;
7758 case 4:
7759 if (vmcs12->cr4_guest_host_mask &
7760 (vmcs12->cr4_read_shadow ^ val))
7761 return true;
7762 break;
7763 case 8:
7764 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7765 return true;
7766 break;
7767 }
7768 break;
7769 case 2: /* clts */
7770 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7771 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7772 return true;
7773 break;
7774 case 1: /* mov from cr */
7775 switch (cr) {
7776 case 3:
7777 if (vmcs12->cpu_based_vm_exec_control &
7778 CPU_BASED_CR3_STORE_EXITING)
7779 return true;
7780 break;
7781 case 8:
7782 if (vmcs12->cpu_based_vm_exec_control &
7783 CPU_BASED_CR8_STORE_EXITING)
7784 return true;
7785 break;
7786 }
7787 break;
7788 case 3: /* lmsw */
7789 /*
7790 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7791 * cr0. Other attempted changes are ignored, with no exit.
7792 */
7793 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
7794 if (vmcs12->cr0_guest_host_mask & 0xe &
7795 (val ^ vmcs12->cr0_read_shadow))
7796 return true;
7797 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7798 !(vmcs12->cr0_read_shadow & 0x1) &&
7799 (val & 0x1))
7800 return true;
7801 break;
7802 }
7803 return false;
7804 }
7805
7806 /*
7807 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7808 * should handle it ourselves in L0 (and then continue L2). Only call this
7809 * when in is_guest_mode (L2).
7810 */
nested_vmx_exit_handled(struct kvm_vcpu * vcpu)7811 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7812 {
7813 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7814 struct vcpu_vmx *vmx = to_vmx(vcpu);
7815 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7816 u32 exit_reason = vmx->exit_reason;
7817
7818 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7819 vmcs_readl(EXIT_QUALIFICATION),
7820 vmx->idt_vectoring_info,
7821 intr_info,
7822 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7823 KVM_ISA_VMX);
7824
7825 /*
7826 * The host physical addresses of some pages of guest memory
7827 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
7828 * Page). The CPU may write to these pages via their host
7829 * physical address while L2 is running, bypassing any
7830 * address-translation-based dirty tracking (e.g. EPT write
7831 * protection).
7832 *
7833 * Mark them dirty on every exit from L2 to prevent them from
7834 * getting out of sync with dirty tracking.
7835 */
7836 nested_mark_vmcs12_pages_dirty(vcpu);
7837
7838 if (vmx->nested.nested_run_pending)
7839 return false;
7840
7841 if (unlikely(vmx->fail)) {
7842 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7843 vmcs_read32(VM_INSTRUCTION_ERROR));
7844 return true;
7845 }
7846
7847 switch ((u16)exit_reason) {
7848 case EXIT_REASON_EXCEPTION_NMI:
7849 if (is_nmi(intr_info))
7850 return false;
7851 else if (is_page_fault(intr_info))
7852 return enable_ept;
7853 else if (is_no_device(intr_info) &&
7854 !(vmcs12->guest_cr0 & X86_CR0_TS))
7855 return false;
7856 return vmcs12->exception_bitmap &
7857 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7858 case EXIT_REASON_EXTERNAL_INTERRUPT:
7859 return false;
7860 case EXIT_REASON_TRIPLE_FAULT:
7861 return true;
7862 case EXIT_REASON_PENDING_INTERRUPT:
7863 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7864 case EXIT_REASON_NMI_WINDOW:
7865 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7866 case EXIT_REASON_TASK_SWITCH:
7867 return true;
7868 case EXIT_REASON_CPUID:
7869 return true;
7870 case EXIT_REASON_HLT:
7871 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7872 case EXIT_REASON_INVD:
7873 return true;
7874 case EXIT_REASON_INVLPG:
7875 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7876 case EXIT_REASON_RDPMC:
7877 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7878 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7879 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7880 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7881 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7882 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7883 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7884 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7885 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7886 /*
7887 * VMX instructions trap unconditionally. This allows L1 to
7888 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7889 */
7890 return true;
7891 case EXIT_REASON_CR_ACCESS:
7892 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7893 case EXIT_REASON_DR_ACCESS:
7894 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7895 case EXIT_REASON_IO_INSTRUCTION:
7896 return nested_vmx_exit_handled_io(vcpu, vmcs12);
7897 case EXIT_REASON_MSR_READ:
7898 case EXIT_REASON_MSR_WRITE:
7899 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7900 case EXIT_REASON_INVALID_STATE:
7901 return true;
7902 case EXIT_REASON_MWAIT_INSTRUCTION:
7903 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7904 case EXIT_REASON_MONITOR_TRAP_FLAG:
7905 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7906 case EXIT_REASON_MONITOR_INSTRUCTION:
7907 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7908 case EXIT_REASON_PAUSE_INSTRUCTION:
7909 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7910 nested_cpu_has2(vmcs12,
7911 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7912 case EXIT_REASON_MCE_DURING_VMENTRY:
7913 return false;
7914 case EXIT_REASON_TPR_BELOW_THRESHOLD:
7915 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7916 case EXIT_REASON_APIC_ACCESS:
7917 return nested_cpu_has2(vmcs12,
7918 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7919 case EXIT_REASON_APIC_WRITE:
7920 case EXIT_REASON_EOI_INDUCED:
7921 /* apic_write and eoi_induced should exit unconditionally. */
7922 return true;
7923 case EXIT_REASON_EPT_VIOLATION:
7924 /*
7925 * L0 always deals with the EPT violation. If nested EPT is
7926 * used, and the nested mmu code discovers that the address is
7927 * missing in the guest EPT table (EPT12), the EPT violation
7928 * will be injected with nested_ept_inject_page_fault()
7929 */
7930 return false;
7931 case EXIT_REASON_EPT_MISCONFIG:
7932 /*
7933 * L2 never uses directly L1's EPT, but rather L0's own EPT
7934 * table (shadow on EPT) or a merged EPT table that L0 built
7935 * (EPT on EPT). So any problems with the structure of the
7936 * table is L0's fault.
7937 */
7938 return false;
7939 case EXIT_REASON_WBINVD:
7940 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7941 case EXIT_REASON_XSETBV:
7942 return true;
7943 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7944 /*
7945 * This should never happen, since it is not possible to
7946 * set XSS to a non-zero value---neither in L1 nor in L2.
7947 * If if it were, XSS would have to be checked against
7948 * the XSS exit bitmap in vmcs12.
7949 */
7950 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7951 case EXIT_REASON_PCOMMIT:
7952 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
7953 case EXIT_REASON_PML_FULL:
7954 /* We don't expose PML support to L1. */
7955 return false;
7956 default:
7957 return true;
7958 }
7959 }
7960
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)7961 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7962 {
7963 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7964 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7965 }
7966
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)7967 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
7968 {
7969 if (vmx->pml_pg) {
7970 __free_page(vmx->pml_pg);
7971 vmx->pml_pg = NULL;
7972 }
7973 }
7974
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)7975 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7976 {
7977 struct vcpu_vmx *vmx = to_vmx(vcpu);
7978 u64 *pml_buf;
7979 u16 pml_idx;
7980
7981 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7982
7983 /* Do nothing if PML buffer is empty */
7984 if (pml_idx == (PML_ENTITY_NUM - 1))
7985 return;
7986
7987 /* PML index always points to next available PML buffer entity */
7988 if (pml_idx >= PML_ENTITY_NUM)
7989 pml_idx = 0;
7990 else
7991 pml_idx++;
7992
7993 pml_buf = page_address(vmx->pml_pg);
7994 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7995 u64 gpa;
7996
7997 gpa = pml_buf[pml_idx];
7998 WARN_ON(gpa & (PAGE_SIZE - 1));
7999 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8000 }
8001
8002 /* reset PML index */
8003 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8004 }
8005
8006 /*
8007 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8008 * Called before reporting dirty_bitmap to userspace.
8009 */
kvm_flush_pml_buffers(struct kvm * kvm)8010 static void kvm_flush_pml_buffers(struct kvm *kvm)
8011 {
8012 int i;
8013 struct kvm_vcpu *vcpu;
8014 /*
8015 * We only need to kick vcpu out of guest mode here, as PML buffer
8016 * is flushed at beginning of all VMEXITs, and it's obvious that only
8017 * vcpus running in guest are possible to have unflushed GPAs in PML
8018 * buffer.
8019 */
8020 kvm_for_each_vcpu(i, vcpu, kvm)
8021 kvm_vcpu_kick(vcpu);
8022 }
8023
vmx_dump_sel(char * name,uint32_t sel)8024 static void vmx_dump_sel(char *name, uint32_t sel)
8025 {
8026 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8027 name, vmcs_read16(sel),
8028 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8029 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8030 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8031 }
8032
vmx_dump_dtsel(char * name,uint32_t limit)8033 static void vmx_dump_dtsel(char *name, uint32_t limit)
8034 {
8035 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8036 name, vmcs_read32(limit),
8037 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8038 }
8039
dump_vmcs(void)8040 static void dump_vmcs(void)
8041 {
8042 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8043 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8044 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8045 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8046 u32 secondary_exec_control = 0;
8047 unsigned long cr4 = vmcs_readl(GUEST_CR4);
8048 u64 efer = vmcs_readl(GUEST_IA32_EFER);
8049 int i, n;
8050
8051 if (cpu_has_secondary_exec_ctrls())
8052 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8053
8054 pr_err("*** Guest State ***\n");
8055 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8056 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8057 vmcs_readl(CR0_GUEST_HOST_MASK));
8058 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8059 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8060 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8061 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8062 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8063 {
8064 pr_err("PDPTR0 = 0x%016lx PDPTR1 = 0x%016lx\n",
8065 vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
8066 pr_err("PDPTR2 = 0x%016lx PDPTR3 = 0x%016lx\n",
8067 vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
8068 }
8069 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8070 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8071 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8072 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8073 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8074 vmcs_readl(GUEST_SYSENTER_ESP),
8075 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8076 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8077 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8078 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8079 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8080 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8081 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8082 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8083 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8084 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8085 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8086 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8087 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8088 pr_err("EFER = 0x%016llx PAT = 0x%016lx\n",
8089 efer, vmcs_readl(GUEST_IA32_PAT));
8090 pr_err("DebugCtl = 0x%016lx DebugExceptions = 0x%016lx\n",
8091 vmcs_readl(GUEST_IA32_DEBUGCTL),
8092 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8093 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8094 pr_err("PerfGlobCtl = 0x%016lx\n",
8095 vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
8096 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8097 pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
8098 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8099 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8100 vmcs_read32(GUEST_ACTIVITY_STATE));
8101 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8102 pr_err("InterruptStatus = %04x\n",
8103 vmcs_read16(GUEST_INTR_STATUS));
8104
8105 pr_err("*** Host State ***\n");
8106 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8107 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8108 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8109 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8110 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8111 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8112 vmcs_read16(HOST_TR_SELECTOR));
8113 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8114 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8115 vmcs_readl(HOST_TR_BASE));
8116 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8117 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8118 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8119 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8120 vmcs_readl(HOST_CR4));
8121 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8122 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8123 vmcs_read32(HOST_IA32_SYSENTER_CS),
8124 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8125 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8126 pr_err("EFER = 0x%016lx PAT = 0x%016lx\n",
8127 vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
8128 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8129 pr_err("PerfGlobCtl = 0x%016lx\n",
8130 vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
8131
8132 pr_err("*** Control State ***\n");
8133 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8134 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8135 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8136 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8137 vmcs_read32(EXCEPTION_BITMAP),
8138 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8139 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8140 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8141 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8142 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8143 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8144 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8145 vmcs_read32(VM_EXIT_INTR_INFO),
8146 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8147 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8148 pr_err(" reason=%08x qualification=%016lx\n",
8149 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8150 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8151 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8152 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8153 pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
8154 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8155 pr_err("TSC Multiplier = 0x%016lx\n",
8156 vmcs_readl(TSC_MULTIPLIER));
8157 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8158 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8159 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8160 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8161 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8162 pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
8163 n = vmcs_read32(CR3_TARGET_COUNT);
8164 for (i = 0; i + 1 < n; i += 4)
8165 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8166 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8167 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8168 if (i < n)
8169 pr_err("CR3 target%u=%016lx\n",
8170 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8171 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8172 pr_err("PLE Gap=%08x Window=%08x\n",
8173 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8174 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8175 pr_err("Virtual processor ID = 0x%04x\n",
8176 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8177 }
8178
8179 /*
8180 * The guest has exited. See if we can fix it or if we need userspace
8181 * assistance.
8182 */
vmx_handle_exit(struct kvm_vcpu * vcpu)8183 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8184 {
8185 struct vcpu_vmx *vmx = to_vmx(vcpu);
8186 u32 exit_reason = vmx->exit_reason;
8187 u32 vectoring_info = vmx->idt_vectoring_info;
8188
8189 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8190
8191 /*
8192 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8193 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8194 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8195 * mode as if vcpus is in root mode, the PML buffer must has been
8196 * flushed already.
8197 */
8198 if (enable_pml)
8199 vmx_flush_pml_buffer(vcpu);
8200
8201 /* If guest state is invalid, start emulating */
8202 if (vmx->emulation_required)
8203 return handle_invalid_guest_state(vcpu);
8204
8205 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8206 nested_vmx_vmexit(vcpu, exit_reason,
8207 vmcs_read32(VM_EXIT_INTR_INFO),
8208 vmcs_readl(EXIT_QUALIFICATION));
8209 return 1;
8210 }
8211
8212 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8213 dump_vmcs();
8214 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8215 vcpu->run->fail_entry.hardware_entry_failure_reason
8216 = exit_reason;
8217 return 0;
8218 }
8219
8220 if (unlikely(vmx->fail)) {
8221 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8222 vcpu->run->fail_entry.hardware_entry_failure_reason
8223 = vmcs_read32(VM_INSTRUCTION_ERROR);
8224 return 0;
8225 }
8226
8227 /*
8228 * Note:
8229 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8230 * delivery event since it indicates guest is accessing MMIO.
8231 * The vm-exit can be triggered again after return to guest that
8232 * will cause infinite loop.
8233 */
8234 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8235 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8236 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8237 exit_reason != EXIT_REASON_PML_FULL &&
8238 exit_reason != EXIT_REASON_APIC_ACCESS &&
8239 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8240 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8241 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8242 vcpu->run->internal.ndata = 2;
8243 vcpu->run->internal.data[0] = vectoring_info;
8244 vcpu->run->internal.data[1] = exit_reason;
8245 return 0;
8246 }
8247
8248 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8249 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8250 get_vmcs12(vcpu))))) {
8251 if (vmx_interrupt_allowed(vcpu)) {
8252 vmx->soft_vnmi_blocked = 0;
8253 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8254 vcpu->arch.nmi_pending) {
8255 /*
8256 * This CPU don't support us in finding the end of an
8257 * NMI-blocked window if the guest runs with IRQs
8258 * disabled. So we pull the trigger after 1 s of
8259 * futile waiting, but inform the user about this.
8260 */
8261 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8262 "state on VCPU %d after 1 s timeout\n",
8263 __func__, vcpu->vcpu_id);
8264 vmx->soft_vnmi_blocked = 0;
8265 }
8266 }
8267
8268 if (exit_reason < kvm_vmx_max_exit_handlers
8269 && kvm_vmx_exit_handlers[exit_reason])
8270 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8271 else {
8272 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8273 kvm_queue_exception(vcpu, UD_VECTOR);
8274 return 1;
8275 }
8276 }
8277
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)8278 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8279 {
8280 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8281
8282 if (is_guest_mode(vcpu) &&
8283 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8284 return;
8285
8286 if (irr == -1 || tpr < irr) {
8287 vmcs_write32(TPR_THRESHOLD, 0);
8288 return;
8289 }
8290
8291 vmcs_write32(TPR_THRESHOLD, irr);
8292 }
8293
vmx_set_virtual_x2apic_mode(struct kvm_vcpu * vcpu,bool set)8294 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8295 {
8296 u32 sec_exec_control;
8297
8298 /* Postpone execution until vmcs01 is the current VMCS. */
8299 if (is_guest_mode(vcpu)) {
8300 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8301 return;
8302 }
8303
8304 /*
8305 * There is not point to enable virtualize x2apic without enable
8306 * apicv
8307 */
8308 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8309 !vmx_cpu_uses_apicv(vcpu))
8310 return;
8311
8312 if (!cpu_need_tpr_shadow(vcpu))
8313 return;
8314
8315 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8316
8317 if (set) {
8318 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8319 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8320 } else {
8321 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8322 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8323 }
8324 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8325
8326 vmx_update_msr_bitmap(vcpu);
8327 }
8328
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu,hpa_t hpa)8329 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8330 {
8331 struct vcpu_vmx *vmx = to_vmx(vcpu);
8332
8333 /*
8334 * Currently we do not handle the nested case where L2 has an
8335 * APIC access page of its own; that page is still pinned.
8336 * Hence, we skip the case where the VCPU is in guest mode _and_
8337 * L1 prepared an APIC access page for L2.
8338 *
8339 * For the case where L1 and L2 share the same APIC access page
8340 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8341 * in the vmcs12), this function will only update either the vmcs01
8342 * or the vmcs02. If the former, the vmcs02 will be updated by
8343 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8344 * the next L2->L1 exit.
8345 */
8346 if (!is_guest_mode(vcpu) ||
8347 !nested_cpu_has2(vmx->nested.current_vmcs12,
8348 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8349 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8350 }
8351
vmx_hwapic_isr_update(struct kvm * kvm,int isr)8352 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8353 {
8354 u16 status;
8355 u8 old;
8356
8357 if (isr == -1)
8358 isr = 0;
8359
8360 status = vmcs_read16(GUEST_INTR_STATUS);
8361 old = status >> 8;
8362 if (isr != old) {
8363 status &= 0xff;
8364 status |= isr << 8;
8365 vmcs_write16(GUEST_INTR_STATUS, status);
8366 }
8367 }
8368
vmx_set_rvi(int vector)8369 static void vmx_set_rvi(int vector)
8370 {
8371 u16 status;
8372 u8 old;
8373
8374 if (vector == -1)
8375 vector = 0;
8376
8377 status = vmcs_read16(GUEST_INTR_STATUS);
8378 old = (u8)status & 0xff;
8379 if ((u8)vector != old) {
8380 status &= ~0xff;
8381 status |= (u8)vector;
8382 vmcs_write16(GUEST_INTR_STATUS, status);
8383 }
8384 }
8385
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)8386 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8387 {
8388 if (!is_guest_mode(vcpu)) {
8389 vmx_set_rvi(max_irr);
8390 return;
8391 }
8392
8393 if (max_irr == -1)
8394 return;
8395
8396 /*
8397 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8398 * handles it.
8399 */
8400 if (nested_exit_on_intr(vcpu))
8401 return;
8402
8403 /*
8404 * Else, fall back to pre-APICv interrupt injection since L2
8405 * is run without virtual interrupt delivery.
8406 */
8407 if (!kvm_event_needs_reinjection(vcpu) &&
8408 vmx_interrupt_allowed(vcpu)) {
8409 kvm_queue_interrupt(vcpu, max_irr, false);
8410 vmx_inject_irq(vcpu);
8411 }
8412 }
8413
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu)8414 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8415 {
8416 u64 *eoi_exit_bitmap = vcpu->arch.eoi_exit_bitmap;
8417 if (!vmx_cpu_uses_apicv(vcpu))
8418 return;
8419
8420 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8421 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8422 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8423 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8424 }
8425
vmx_complete_atomic_exit(struct vcpu_vmx * vmx)8426 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8427 {
8428 u32 exit_intr_info;
8429
8430 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8431 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8432 return;
8433
8434 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8435 exit_intr_info = vmx->exit_intr_info;
8436
8437 /* Handle machine checks before interrupts are enabled */
8438 if (is_machine_check(exit_intr_info))
8439 kvm_machine_check();
8440
8441 /* We need to handle NMIs before interrupts are enabled */
8442 if (is_nmi(exit_intr_info)) {
8443 kvm_before_handle_nmi(&vmx->vcpu);
8444 asm("int $2");
8445 kvm_after_handle_nmi(&vmx->vcpu);
8446 }
8447 }
8448
vmx_handle_external_intr(struct kvm_vcpu * vcpu)8449 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8450 {
8451 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8452
8453 /*
8454 * If external interrupt exists, IF bit is set in rflags/eflags on the
8455 * interrupt stack frame, and interrupt will be enabled on a return
8456 * from interrupt handler.
8457 */
8458 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8459 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8460 unsigned int vector;
8461 unsigned long entry;
8462 gate_desc *desc;
8463 struct vcpu_vmx *vmx = to_vmx(vcpu);
8464 #ifdef CONFIG_X86_64
8465 unsigned long tmp;
8466 #endif
8467
8468 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8469 desc = (gate_desc *)vmx->host_idt_base + vector;
8470 entry = gate_offset(*desc);
8471 asm volatile(
8472 #ifdef CONFIG_X86_64
8473 "mov %%" _ASM_SP ", %[sp]\n\t"
8474 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8475 "push $%c[ss]\n\t"
8476 "push %[sp]\n\t"
8477 #endif
8478 "pushf\n\t"
8479 "orl $0x200, (%%" _ASM_SP ")\n\t"
8480 __ASM_SIZE(push) " $%c[cs]\n\t"
8481 CALL_NOSPEC
8482 :
8483 #ifdef CONFIG_X86_64
8484 [sp]"=&r"(tmp)
8485 #endif
8486 :
8487 THUNK_TARGET(entry),
8488 [ss]"i"(__KERNEL_DS),
8489 [cs]"i"(__KERNEL_CS)
8490 );
8491 } else
8492 local_irq_enable();
8493 }
8494
vmx_has_emulated_msr(int index)8495 static bool vmx_has_emulated_msr(int index)
8496 {
8497 switch (index) {
8498 case MSR_IA32_SMBASE:
8499 /*
8500 * We cannot do SMM unless we can run the guest in big
8501 * real mode.
8502 */
8503 return enable_unrestricted_guest || emulate_invalid_guest_state;
8504 case MSR_AMD64_VIRT_SPEC_CTRL:
8505 /* This is AMD only. */
8506 return false;
8507 default:
8508 return true;
8509 }
8510 }
8511
vmx_mpx_supported(void)8512 static bool vmx_mpx_supported(void)
8513 {
8514 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8515 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8516 }
8517
vmx_xsaves_supported(void)8518 static bool vmx_xsaves_supported(void)
8519 {
8520 return vmcs_config.cpu_based_2nd_exec_ctrl &
8521 SECONDARY_EXEC_XSAVES;
8522 }
8523
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)8524 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8525 {
8526 u32 exit_intr_info;
8527 bool unblock_nmi;
8528 u8 vector;
8529 bool idtv_info_valid;
8530
8531 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8532
8533 if (cpu_has_virtual_nmis()) {
8534 if (vmx->nmi_known_unmasked)
8535 return;
8536 /*
8537 * Can't use vmx->exit_intr_info since we're not sure what
8538 * the exit reason is.
8539 */
8540 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8541 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8542 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8543 /*
8544 * SDM 3: 27.7.1.2 (September 2008)
8545 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8546 * a guest IRET fault.
8547 * SDM 3: 23.2.2 (September 2008)
8548 * Bit 12 is undefined in any of the following cases:
8549 * If the VM exit sets the valid bit in the IDT-vectoring
8550 * information field.
8551 * If the VM exit is due to a double fault.
8552 */
8553 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8554 vector != DF_VECTOR && !idtv_info_valid)
8555 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8556 GUEST_INTR_STATE_NMI);
8557 else
8558 vmx->nmi_known_unmasked =
8559 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8560 & GUEST_INTR_STATE_NMI);
8561 } else if (unlikely(vmx->soft_vnmi_blocked))
8562 vmx->vnmi_blocked_time +=
8563 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8564 }
8565
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)8566 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8567 u32 idt_vectoring_info,
8568 int instr_len_field,
8569 int error_code_field)
8570 {
8571 u8 vector;
8572 int type;
8573 bool idtv_info_valid;
8574
8575 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8576
8577 vcpu->arch.nmi_injected = false;
8578 kvm_clear_exception_queue(vcpu);
8579 kvm_clear_interrupt_queue(vcpu);
8580
8581 if (!idtv_info_valid)
8582 return;
8583
8584 kvm_make_request(KVM_REQ_EVENT, vcpu);
8585
8586 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8587 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8588
8589 switch (type) {
8590 case INTR_TYPE_NMI_INTR:
8591 vcpu->arch.nmi_injected = true;
8592 /*
8593 * SDM 3: 27.7.1.2 (September 2008)
8594 * Clear bit "block by NMI" before VM entry if a NMI
8595 * delivery faulted.
8596 */
8597 vmx_set_nmi_mask(vcpu, false);
8598 break;
8599 case INTR_TYPE_SOFT_EXCEPTION:
8600 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8601 /* fall through */
8602 case INTR_TYPE_HARD_EXCEPTION:
8603 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8604 u32 err = vmcs_read32(error_code_field);
8605 kvm_requeue_exception_e(vcpu, vector, err);
8606 } else
8607 kvm_requeue_exception(vcpu, vector);
8608 break;
8609 case INTR_TYPE_SOFT_INTR:
8610 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8611 /* fall through */
8612 case INTR_TYPE_EXT_INTR:
8613 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8614 break;
8615 default:
8616 break;
8617 }
8618 }
8619
vmx_complete_interrupts(struct vcpu_vmx * vmx)8620 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8621 {
8622 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8623 VM_EXIT_INSTRUCTION_LEN,
8624 IDT_VECTORING_ERROR_CODE);
8625 }
8626
vmx_cancel_injection(struct kvm_vcpu * vcpu)8627 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8628 {
8629 __vmx_complete_interrupts(vcpu,
8630 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8631 VM_ENTRY_INSTRUCTION_LEN,
8632 VM_ENTRY_EXCEPTION_ERROR_CODE);
8633
8634 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8635 }
8636
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)8637 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8638 {
8639 int i, nr_msrs;
8640 struct perf_guest_switch_msr *msrs;
8641
8642 msrs = perf_guest_get_msrs(&nr_msrs);
8643
8644 if (!msrs)
8645 return;
8646
8647 for (i = 0; i < nr_msrs; i++)
8648 if (msrs[i].host == msrs[i].guest)
8649 clear_atomic_switch_msr(vmx, msrs[i].msr);
8650 else
8651 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8652 msrs[i].host);
8653 }
8654
vmx_vcpu_run(struct kvm_vcpu * vcpu)8655 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8656 {
8657 struct vcpu_vmx *vmx = to_vmx(vcpu);
8658 unsigned long debugctlmsr, cr4;
8659
8660 /* Record the guest's net vcpu time for enforced NMI injections. */
8661 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8662 vmx->entry_time = ktime_get();
8663
8664 /* Don't enter VMX if guest state is invalid, let the exit handler
8665 start emulation until we arrive back to a valid state */
8666 if (vmx->emulation_required)
8667 return;
8668
8669 if (vmx->ple_window_dirty) {
8670 vmx->ple_window_dirty = false;
8671 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8672 }
8673
8674 if (vmx->nested.sync_shadow_vmcs) {
8675 copy_vmcs12_to_shadow(vmx);
8676 vmx->nested.sync_shadow_vmcs = false;
8677 }
8678
8679 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8680 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8681 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8682 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8683
8684 cr4 = cr4_read_shadow();
8685 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8686 vmcs_writel(HOST_CR4, cr4);
8687 vmx->host_state.vmcs_host_cr4 = cr4;
8688 }
8689
8690 /* When single-stepping over STI and MOV SS, we must clear the
8691 * corresponding interruptibility bits in the guest state. Otherwise
8692 * vmentry fails as it then expects bit 14 (BS) in pending debug
8693 * exceptions being set, but that's not correct for the guest debugging
8694 * case. */
8695 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8696 vmx_set_interrupt_shadow(vcpu, 0);
8697
8698 atomic_switch_perf_msrs(vmx);
8699 debugctlmsr = get_debugctlmsr();
8700
8701 /*
8702 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
8703 * it's non-zero. Since vmentry is serialising on affected CPUs, there
8704 * is no need to worry about the conditional branch over the wrmsr
8705 * being speculatively taken.
8706 */
8707 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
8708
8709 vmx->__launched = vmx->loaded_vmcs->launched;
8710
8711 asm(
8712 /* Store host registers */
8713 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8714 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8715 "push %%" _ASM_CX " \n\t"
8716 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8717 "je 1f \n\t"
8718 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8719 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8720 "1: \n\t"
8721 /* Reload cr2 if changed */
8722 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8723 "mov %%cr2, %%" _ASM_DX " \n\t"
8724 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8725 "je 2f \n\t"
8726 "mov %%" _ASM_AX", %%cr2 \n\t"
8727 "2: \n\t"
8728 /* Check if vmlaunch of vmresume is needed */
8729 "cmpl $0, %c[launched](%0) \n\t"
8730 /* Load guest registers. Don't clobber flags. */
8731 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8732 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8733 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8734 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8735 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8736 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8737 #ifdef CONFIG_X86_64
8738 "mov %c[r8](%0), %%r8 \n\t"
8739 "mov %c[r9](%0), %%r9 \n\t"
8740 "mov %c[r10](%0), %%r10 \n\t"
8741 "mov %c[r11](%0), %%r11 \n\t"
8742 "mov %c[r12](%0), %%r12 \n\t"
8743 "mov %c[r13](%0), %%r13 \n\t"
8744 "mov %c[r14](%0), %%r14 \n\t"
8745 "mov %c[r15](%0), %%r15 \n\t"
8746 #endif
8747 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8748
8749 /* Enter guest mode */
8750 "jne 1f \n\t"
8751 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8752 "jmp 2f \n\t"
8753 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8754 "2: "
8755 /* Save guest registers, load host registers, keep flags */
8756 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8757 "pop %0 \n\t"
8758 "setbe %c[fail](%0)\n\t"
8759 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8760 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8761 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8762 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8763 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8764 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8765 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8766 #ifdef CONFIG_X86_64
8767 "mov %%r8, %c[r8](%0) \n\t"
8768 "mov %%r9, %c[r9](%0) \n\t"
8769 "mov %%r10, %c[r10](%0) \n\t"
8770 "mov %%r11, %c[r11](%0) \n\t"
8771 "mov %%r12, %c[r12](%0) \n\t"
8772 "mov %%r13, %c[r13](%0) \n\t"
8773 "mov %%r14, %c[r14](%0) \n\t"
8774 "mov %%r15, %c[r15](%0) \n\t"
8775 "xor %%r8d, %%r8d \n\t"
8776 "xor %%r9d, %%r9d \n\t"
8777 "xor %%r10d, %%r10d \n\t"
8778 "xor %%r11d, %%r11d \n\t"
8779 "xor %%r12d, %%r12d \n\t"
8780 "xor %%r13d, %%r13d \n\t"
8781 "xor %%r14d, %%r14d \n\t"
8782 "xor %%r15d, %%r15d \n\t"
8783 #endif
8784 "mov %%cr2, %%" _ASM_AX " \n\t"
8785 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8786
8787 "xor %%eax, %%eax \n\t"
8788 "xor %%ebx, %%ebx \n\t"
8789 "xor %%esi, %%esi \n\t"
8790 "xor %%edi, %%edi \n\t"
8791 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
8792 ".pushsection .rodata \n\t"
8793 ".global vmx_return \n\t"
8794 "vmx_return: " _ASM_PTR " 2b \n\t"
8795 ".popsection"
8796 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8797 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8798 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8799 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8800 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8801 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8802 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8803 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8804 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8805 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8806 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8807 #ifdef CONFIG_X86_64
8808 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8809 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8810 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8811 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8812 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8813 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8814 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8815 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8816 #endif
8817 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8818 [wordsize]"i"(sizeof(ulong))
8819 : "cc", "memory"
8820 #ifdef CONFIG_X86_64
8821 , "rax", "rbx", "rdi", "rsi"
8822 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8823 #else
8824 , "eax", "ebx", "edi", "esi"
8825 #endif
8826 );
8827
8828 /*
8829 * We do not use IBRS in the kernel. If this vCPU has used the
8830 * SPEC_CTRL MSR it may have left it on; save the value and
8831 * turn it off. This is much more efficient than blindly adding
8832 * it to the atomic save/restore list. Especially as the former
8833 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
8834 *
8835 * For non-nested case:
8836 * If the L01 MSR bitmap does not intercept the MSR, then we need to
8837 * save it.
8838 *
8839 * For nested case:
8840 * If the L02 MSR bitmap does not intercept the MSR, then we need to
8841 * save it.
8842 */
8843 if (!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))
8844 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
8845
8846 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
8847
8848 /* Eliminate branch target predictions from guest mode */
8849 vmexit_fill_RSB();
8850
8851 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8852 if (debugctlmsr)
8853 update_debugctlmsr(debugctlmsr);
8854
8855 #ifndef CONFIG_X86_64
8856 /*
8857 * The sysexit path does not restore ds/es, so we must set them to
8858 * a reasonable value ourselves.
8859 *
8860 * We can't defer this to vmx_load_host_state() since that function
8861 * may be executed in interrupt context, which saves and restore segments
8862 * around it, nullifying its effect.
8863 */
8864 loadsegment(ds, __USER_DS);
8865 loadsegment(es, __USER_DS);
8866 #endif
8867
8868 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8869 | (1 << VCPU_EXREG_RFLAGS)
8870 | (1 << VCPU_EXREG_PDPTR)
8871 | (1 << VCPU_EXREG_SEGMENTS)
8872 | (1 << VCPU_EXREG_CR3));
8873 vcpu->arch.regs_dirty = 0;
8874
8875 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8876
8877 vmx->loaded_vmcs->launched = 1;
8878
8879 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8880
8881 /*
8882 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8883 * we did not inject a still-pending event to L1 now because of
8884 * nested_run_pending, we need to re-enable this bit.
8885 */
8886 if (vmx->nested.nested_run_pending)
8887 kvm_make_request(KVM_REQ_EVENT, vcpu);
8888
8889 vmx->nested.nested_run_pending = 0;
8890
8891 vmx_complete_atomic_exit(vmx);
8892 vmx_recover_nmi_blocking(vmx);
8893 vmx_complete_interrupts(vmx);
8894 }
8895
vmx_load_vmcs01(struct kvm_vcpu * vcpu)8896 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8897 {
8898 struct vcpu_vmx *vmx = to_vmx(vcpu);
8899 int cpu;
8900
8901 if (vmx->loaded_vmcs == &vmx->vmcs01)
8902 return;
8903
8904 cpu = get_cpu();
8905 vmx->loaded_vmcs = &vmx->vmcs01;
8906 vmx_vcpu_put(vcpu);
8907 vmx_vcpu_load(vcpu, cpu);
8908 vcpu->cpu = cpu;
8909 put_cpu();
8910 }
8911
8912 /*
8913 * Ensure that the current vmcs of the logical processor is the
8914 * vmcs01 of the vcpu before calling free_nested().
8915 */
vmx_free_vcpu_nested(struct kvm_vcpu * vcpu)8916 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
8917 {
8918 struct vcpu_vmx *vmx = to_vmx(vcpu);
8919 int r;
8920
8921 r = vcpu_load(vcpu);
8922 BUG_ON(r);
8923 vmx_load_vmcs01(vcpu);
8924 free_nested(vmx);
8925 vcpu_put(vcpu);
8926 }
8927
vmx_free_vcpu(struct kvm_vcpu * vcpu)8928 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8929 {
8930 struct vcpu_vmx *vmx = to_vmx(vcpu);
8931
8932 if (enable_pml)
8933 vmx_destroy_pml_buffer(vmx);
8934 free_vpid(vmx->vpid);
8935 leave_guest_mode(vcpu);
8936 vmx_free_vcpu_nested(vcpu);
8937 free_loaded_vmcs(vmx->loaded_vmcs);
8938 kfree(vmx->guest_msrs);
8939 kvm_vcpu_uninit(vcpu);
8940 kmem_cache_free(kvm_vcpu_cache, vmx);
8941 }
8942
vmx_create_vcpu(struct kvm * kvm,unsigned int id)8943 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8944 {
8945 int err;
8946 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8947 unsigned long *msr_bitmap;
8948 int cpu;
8949
8950 if (!vmx)
8951 return ERR_PTR(-ENOMEM);
8952
8953 vmx->vpid = allocate_vpid();
8954
8955 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8956 if (err)
8957 goto free_vcpu;
8958
8959 err = -ENOMEM;
8960
8961 /*
8962 * If PML is turned on, failure on enabling PML just results in failure
8963 * of creating the vcpu, therefore we can simplify PML logic (by
8964 * avoiding dealing with cases, such as enabling PML partially on vcpus
8965 * for the guest, etc.
8966 */
8967 if (enable_pml) {
8968 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
8969 if (!vmx->pml_pg)
8970 goto uninit_vcpu;
8971 }
8972
8973 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8974 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8975 > PAGE_SIZE);
8976
8977 if (!vmx->guest_msrs)
8978 goto free_pml;
8979
8980 if (!vmm_exclusive)
8981 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8982 err = alloc_loaded_vmcs(&vmx->vmcs01);
8983 if (!vmm_exclusive)
8984 kvm_cpu_vmxoff();
8985 if (err < 0)
8986 goto free_msrs;
8987
8988 msr_bitmap = vmx->vmcs01.msr_bitmap;
8989 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
8990 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
8991 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
8992 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
8993 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
8994 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
8995 vmx->msr_bitmap_mode = 0;
8996
8997 vmx->loaded_vmcs = &vmx->vmcs01;
8998 cpu = get_cpu();
8999 vmx_vcpu_load(&vmx->vcpu, cpu);
9000 vmx->vcpu.cpu = cpu;
9001 err = vmx_vcpu_setup(vmx);
9002 vmx_vcpu_put(&vmx->vcpu);
9003 put_cpu();
9004 if (err)
9005 goto free_vmcs;
9006 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9007 err = alloc_apic_access_page(kvm);
9008 if (err)
9009 goto free_vmcs;
9010 }
9011
9012 if (enable_ept) {
9013 if (!kvm->arch.ept_identity_map_addr)
9014 kvm->arch.ept_identity_map_addr =
9015 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9016 err = init_rmode_identity_map(kvm);
9017 if (err)
9018 goto free_vmcs;
9019 }
9020
9021 if (nested)
9022 nested_vmx_setup_ctls_msrs(vmx);
9023
9024 vmx->nested.posted_intr_nv = -1;
9025 vmx->nested.current_vmptr = -1ull;
9026 vmx->nested.current_vmcs12 = NULL;
9027
9028 return &vmx->vcpu;
9029
9030 free_vmcs:
9031 free_loaded_vmcs(vmx->loaded_vmcs);
9032 free_msrs:
9033 kfree(vmx->guest_msrs);
9034 free_pml:
9035 vmx_destroy_pml_buffer(vmx);
9036 uninit_vcpu:
9037 kvm_vcpu_uninit(&vmx->vcpu);
9038 free_vcpu:
9039 free_vpid(vmx->vpid);
9040 kmem_cache_free(kvm_vcpu_cache, vmx);
9041 return ERR_PTR(err);
9042 }
9043
vmx_check_processor_compat(void * rtn)9044 static void __init vmx_check_processor_compat(void *rtn)
9045 {
9046 struct vmcs_config vmcs_conf;
9047
9048 *(int *)rtn = 0;
9049 if (setup_vmcs_config(&vmcs_conf) < 0)
9050 *(int *)rtn = -EIO;
9051 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9052 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9053 smp_processor_id());
9054 *(int *)rtn = -EIO;
9055 }
9056 }
9057
get_ept_level(void)9058 static int get_ept_level(void)
9059 {
9060 return VMX_EPT_DEFAULT_GAW + 1;
9061 }
9062
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)9063 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9064 {
9065 u8 cache;
9066 u64 ipat = 0;
9067
9068 /* For VT-d and EPT combination
9069 * 1. MMIO: always map as UC
9070 * 2. EPT with VT-d:
9071 * a. VT-d without snooping control feature: can't guarantee the
9072 * result, try to trust guest.
9073 * b. VT-d with snooping control feature: snooping control feature of
9074 * VT-d engine can guarantee the cache correctness. Just set it
9075 * to WB to keep consistent with host. So the same as item 3.
9076 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9077 * consistent with host MTRR
9078 */
9079 if (is_mmio) {
9080 cache = MTRR_TYPE_UNCACHABLE;
9081 goto exit;
9082 }
9083
9084 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9085 ipat = VMX_EPT_IPAT_BIT;
9086 cache = MTRR_TYPE_WRBACK;
9087 goto exit;
9088 }
9089
9090 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9091 ipat = VMX_EPT_IPAT_BIT;
9092 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9093 cache = MTRR_TYPE_WRBACK;
9094 else
9095 cache = MTRR_TYPE_UNCACHABLE;
9096 goto exit;
9097 }
9098
9099 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9100
9101 exit:
9102 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9103 }
9104
vmx_get_lpage_level(void)9105 static int vmx_get_lpage_level(void)
9106 {
9107 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9108 return PT_DIRECTORY_LEVEL;
9109 else
9110 /* For shadow and EPT supported 1GB page */
9111 return PT_PDPE_LEVEL;
9112 }
9113
vmcs_set_secondary_exec_control(u32 new_ctl)9114 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9115 {
9116 /*
9117 * These bits in the secondary execution controls field
9118 * are dynamic, the others are mostly based on the hypervisor
9119 * architecture and the guest's CPUID. Do not touch the
9120 * dynamic bits.
9121 */
9122 u32 mask =
9123 SECONDARY_EXEC_SHADOW_VMCS |
9124 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9125 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9126
9127 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9128
9129 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9130 (new_ctl & ~mask) | (cur_ctl & mask));
9131 }
9132
vmx_cpuid_update(struct kvm_vcpu * vcpu)9133 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9134 {
9135 struct kvm_cpuid_entry2 *best;
9136 struct vcpu_vmx *vmx = to_vmx(vcpu);
9137 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9138
9139 if (vmx_rdtscp_supported()) {
9140 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9141 if (!rdtscp_enabled)
9142 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9143
9144 if (nested) {
9145 if (rdtscp_enabled)
9146 vmx->nested.nested_vmx_secondary_ctls_high |=
9147 SECONDARY_EXEC_RDTSCP;
9148 else
9149 vmx->nested.nested_vmx_secondary_ctls_high &=
9150 ~SECONDARY_EXEC_RDTSCP;
9151 }
9152 }
9153
9154 /* Exposing INVPCID only when PCID is exposed */
9155 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9156 if (vmx_invpcid_supported() &&
9157 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9158 !guest_cpuid_has_pcid(vcpu))) {
9159 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9160
9161 if (best)
9162 best->ebx &= ~bit(X86_FEATURE_INVPCID);
9163 }
9164
9165 if (cpu_has_secondary_exec_ctrls())
9166 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9167
9168 if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
9169 if (guest_cpuid_has_pcommit(vcpu))
9170 vmx->nested.nested_vmx_secondary_ctls_high |=
9171 SECONDARY_EXEC_PCOMMIT;
9172 else
9173 vmx->nested.nested_vmx_secondary_ctls_high &=
9174 ~SECONDARY_EXEC_PCOMMIT;
9175 }
9176 }
9177
vmx_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)9178 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9179 {
9180 if (func == 1 && nested)
9181 entry->ecx |= bit(X86_FEATURE_VMX);
9182 }
9183
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)9184 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9185 struct x86_exception *fault)
9186 {
9187 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9188 u32 exit_reason;
9189
9190 if (fault->error_code & PFERR_RSVD_MASK)
9191 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9192 else
9193 exit_reason = EXIT_REASON_EPT_VIOLATION;
9194 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9195 vmcs12->guest_physical_address = fault->address;
9196 }
9197
9198 /* Callbacks for nested_ept_init_mmu_context: */
9199
nested_ept_get_cr3(struct kvm_vcpu * vcpu)9200 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9201 {
9202 /* return the page table to be shadowed - in our case, EPT12 */
9203 return get_vmcs12(vcpu)->ept_pointer;
9204 }
9205
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)9206 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9207 {
9208 WARN_ON(mmu_is_nested(vcpu));
9209 kvm_init_shadow_ept_mmu(vcpu,
9210 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9211 VMX_EPT_EXECUTE_ONLY_BIT);
9212 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9213 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9214 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9215
9216 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9217 }
9218
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)9219 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9220 {
9221 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9222 }
9223
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)9224 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9225 u16 error_code)
9226 {
9227 bool inequality, bit;
9228
9229 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9230 inequality =
9231 (error_code & vmcs12->page_fault_error_code_mask) !=
9232 vmcs12->page_fault_error_code_match;
9233 return inequality ^ bit;
9234 }
9235
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)9236 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9237 struct x86_exception *fault)
9238 {
9239 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9240
9241 WARN_ON(!is_guest_mode(vcpu));
9242
9243 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9244 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9245 vmcs_read32(VM_EXIT_INTR_INFO),
9246 vmcs_readl(EXIT_QUALIFICATION));
9247 else
9248 kvm_inject_page_fault(vcpu, fault);
9249 }
9250
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9251 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9252 struct vmcs12 *vmcs12)
9253 {
9254 struct vcpu_vmx *vmx = to_vmx(vcpu);
9255 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9256
9257 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9258 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9259 vmcs12->apic_access_addr >> maxphyaddr)
9260 return false;
9261
9262 /*
9263 * Translate L1 physical address to host physical
9264 * address for vmcs02. Keep the page pinned, so this
9265 * physical address remains valid. We keep a reference
9266 * to it so we can release it later.
9267 */
9268 if (vmx->nested.apic_access_page) /* shouldn't happen */
9269 nested_release_page(vmx->nested.apic_access_page);
9270 vmx->nested.apic_access_page =
9271 nested_get_page(vcpu, vmcs12->apic_access_addr);
9272 }
9273
9274 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9275 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9276 vmcs12->virtual_apic_page_addr >> maxphyaddr)
9277 return false;
9278
9279 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9280 nested_release_page(vmx->nested.virtual_apic_page);
9281 vmx->nested.virtual_apic_page =
9282 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9283
9284 /*
9285 * Failing the vm entry is _not_ what the processor does
9286 * but it's basically the only possibility we have.
9287 * We could still enter the guest if CR8 load exits are
9288 * enabled, CR8 store exits are enabled, and virtualize APIC
9289 * access is disabled; in this case the processor would never
9290 * use the TPR shadow and we could simply clear the bit from
9291 * the execution control. But such a configuration is useless,
9292 * so let's keep the code simple.
9293 */
9294 if (!vmx->nested.virtual_apic_page)
9295 return false;
9296 }
9297
9298 if (nested_cpu_has_posted_intr(vmcs12)) {
9299 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9300 vmcs12->posted_intr_desc_addr >> maxphyaddr)
9301 return false;
9302
9303 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9304 kunmap(vmx->nested.pi_desc_page);
9305 nested_release_page(vmx->nested.pi_desc_page);
9306 }
9307 vmx->nested.pi_desc_page =
9308 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9309 if (!vmx->nested.pi_desc_page)
9310 return false;
9311
9312 vmx->nested.pi_desc =
9313 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9314 if (!vmx->nested.pi_desc) {
9315 nested_release_page_clean(vmx->nested.pi_desc_page);
9316 return false;
9317 }
9318 vmx->nested.pi_desc =
9319 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9320 (unsigned long)(vmcs12->posted_intr_desc_addr &
9321 (PAGE_SIZE - 1)));
9322 }
9323
9324 return true;
9325 }
9326
vmx_start_preemption_timer(struct kvm_vcpu * vcpu)9327 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9328 {
9329 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9330 struct vcpu_vmx *vmx = to_vmx(vcpu);
9331
9332 if (vcpu->arch.virtual_tsc_khz == 0)
9333 return;
9334
9335 /* Make sure short timeouts reliably trigger an immediate vmexit.
9336 * hrtimer_start does not guarantee this. */
9337 if (preemption_timeout <= 1) {
9338 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9339 return;
9340 }
9341
9342 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9343 preemption_timeout *= 1000000;
9344 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9345 hrtimer_start(&vmx->nested.preemption_timer,
9346 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9347 }
9348
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9349 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9350 struct vmcs12 *vmcs12)
9351 {
9352 int maxphyaddr;
9353 u64 addr;
9354
9355 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9356 return 0;
9357
9358 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9359 WARN_ON(1);
9360 return -EINVAL;
9361 }
9362 maxphyaddr = cpuid_maxphyaddr(vcpu);
9363
9364 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9365 ((addr + PAGE_SIZE) >> maxphyaddr))
9366 return -EINVAL;
9367
9368 return 0;
9369 }
9370
9371 /*
9372 * Merge L0's and L1's MSR bitmap, return false to indicate that
9373 * we do not use the hardware.
9374 */
nested_vmx_merge_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9375 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9376 struct vmcs12 *vmcs12)
9377 {
9378 int msr;
9379 struct page *page;
9380 unsigned long *msr_bitmap_l1;
9381 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
9382 /*
9383 * pred_cmd & spec_ctrl are trying to verify two things:
9384 *
9385 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
9386 * ensures that we do not accidentally generate an L02 MSR bitmap
9387 * from the L12 MSR bitmap that is too permissive.
9388 * 2. That L1 or L2s have actually used the MSR. This avoids
9389 * unnecessarily merging of the bitmap if the MSR is unused. This
9390 * works properly because we only update the L01 MSR bitmap lazily.
9391 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
9392 * updated to reflect this when L1 (or its L2s) actually write to
9393 * the MSR.
9394 */
9395 bool pred_cmd = msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
9396 bool spec_ctrl = msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
9397
9398 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9399 !pred_cmd && !spec_ctrl)
9400 return false;
9401
9402 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9403 if (!page) {
9404 WARN_ON(1);
9405 return false;
9406 }
9407 msr_bitmap_l1 = (unsigned long *)kmap(page);
9408
9409 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9410
9411 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9412 if (nested_cpu_has_apic_reg_virt(vmcs12))
9413 for (msr = 0x800; msr <= 0x8ff; msr++)
9414 nested_vmx_disable_intercept_for_msr(
9415 msr_bitmap_l1, msr_bitmap_l0,
9416 msr, MSR_TYPE_R);
9417
9418 nested_vmx_disable_intercept_for_msr(
9419 msr_bitmap_l1, msr_bitmap_l0,
9420 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9421 MSR_TYPE_R | MSR_TYPE_W);
9422
9423 if (nested_cpu_has_vid(vmcs12)) {
9424 nested_vmx_disable_intercept_for_msr(
9425 msr_bitmap_l1, msr_bitmap_l0,
9426 APIC_BASE_MSR + (APIC_EOI >> 4),
9427 MSR_TYPE_W);
9428 nested_vmx_disable_intercept_for_msr(
9429 msr_bitmap_l1, msr_bitmap_l0,
9430 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9431 MSR_TYPE_W);
9432 }
9433 }
9434
9435 if (spec_ctrl)
9436 nested_vmx_disable_intercept_for_msr(
9437 msr_bitmap_l1, msr_bitmap_l0,
9438 MSR_IA32_SPEC_CTRL,
9439 MSR_TYPE_R | MSR_TYPE_W);
9440
9441 if (pred_cmd)
9442 nested_vmx_disable_intercept_for_msr(
9443 msr_bitmap_l1, msr_bitmap_l0,
9444 MSR_IA32_PRED_CMD,
9445 MSR_TYPE_W);
9446
9447 kunmap(page);
9448 nested_release_page_clean(page);
9449
9450 return true;
9451 }
9452
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9453 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9454 struct vmcs12 *vmcs12)
9455 {
9456 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9457 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9458 !nested_cpu_has_vid(vmcs12) &&
9459 !nested_cpu_has_posted_intr(vmcs12))
9460 return 0;
9461
9462 /*
9463 * If virtualize x2apic mode is enabled,
9464 * virtualize apic access must be disabled.
9465 */
9466 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9467 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9468 return -EINVAL;
9469
9470 /*
9471 * If virtual interrupt delivery is enabled,
9472 * we must exit on external interrupts.
9473 */
9474 if (nested_cpu_has_vid(vmcs12) &&
9475 !nested_exit_on_intr(vcpu))
9476 return -EINVAL;
9477
9478 /*
9479 * bits 15:8 should be zero in posted_intr_nv,
9480 * the descriptor address has been already checked
9481 * in nested_get_vmcs12_pages.
9482 */
9483 if (nested_cpu_has_posted_intr(vmcs12) &&
9484 (!nested_cpu_has_vid(vmcs12) ||
9485 !nested_exit_intr_ack_set(vcpu) ||
9486 vmcs12->posted_intr_nv & 0xff00))
9487 return -EINVAL;
9488
9489 /* tpr shadow is needed by all apicv features. */
9490 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9491 return -EINVAL;
9492
9493 return 0;
9494 }
9495
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,unsigned long count_field,unsigned long addr_field)9496 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9497 unsigned long count_field,
9498 unsigned long addr_field)
9499 {
9500 int maxphyaddr;
9501 u64 count, addr;
9502
9503 if (vmcs12_read_any(vcpu, count_field, &count) ||
9504 vmcs12_read_any(vcpu, addr_field, &addr)) {
9505 WARN_ON(1);
9506 return -EINVAL;
9507 }
9508 if (count == 0)
9509 return 0;
9510 maxphyaddr = cpuid_maxphyaddr(vcpu);
9511 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9512 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9513 pr_warn_ratelimited(
9514 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9515 addr_field, maxphyaddr, count, addr);
9516 return -EINVAL;
9517 }
9518 return 0;
9519 }
9520
nested_vmx_check_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9521 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9522 struct vmcs12 *vmcs12)
9523 {
9524 if (vmcs12->vm_exit_msr_load_count == 0 &&
9525 vmcs12->vm_exit_msr_store_count == 0 &&
9526 vmcs12->vm_entry_msr_load_count == 0)
9527 return 0; /* Fast path */
9528 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9529 VM_EXIT_MSR_LOAD_ADDR) ||
9530 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9531 VM_EXIT_MSR_STORE_ADDR) ||
9532 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9533 VM_ENTRY_MSR_LOAD_ADDR))
9534 return -EINVAL;
9535 return 0;
9536 }
9537
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)9538 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9539 struct vmx_msr_entry *e)
9540 {
9541 /* x2APIC MSR accesses are not allowed */
9542 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9543 return -EINVAL;
9544 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9545 e->index == MSR_IA32_UCODE_REV)
9546 return -EINVAL;
9547 if (e->reserved != 0)
9548 return -EINVAL;
9549 return 0;
9550 }
9551
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)9552 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9553 struct vmx_msr_entry *e)
9554 {
9555 if (e->index == MSR_FS_BASE ||
9556 e->index == MSR_GS_BASE ||
9557 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9558 nested_vmx_msr_check_common(vcpu, e))
9559 return -EINVAL;
9560 return 0;
9561 }
9562
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)9563 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9564 struct vmx_msr_entry *e)
9565 {
9566 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9567 nested_vmx_msr_check_common(vcpu, e))
9568 return -EINVAL;
9569 return 0;
9570 }
9571
9572 /*
9573 * Load guest's/host's msr at nested entry/exit.
9574 * return 0 for success, entry index for failure.
9575 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)9576 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9577 {
9578 u32 i;
9579 struct vmx_msr_entry e;
9580 struct msr_data msr;
9581
9582 msr.host_initiated = false;
9583 for (i = 0; i < count; i++) {
9584 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9585 &e, sizeof(e))) {
9586 pr_warn_ratelimited(
9587 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9588 __func__, i, gpa + i * sizeof(e));
9589 goto fail;
9590 }
9591 if (nested_vmx_load_msr_check(vcpu, &e)) {
9592 pr_warn_ratelimited(
9593 "%s check failed (%u, 0x%x, 0x%x)\n",
9594 __func__, i, e.index, e.reserved);
9595 goto fail;
9596 }
9597 msr.index = e.index;
9598 msr.data = e.value;
9599 if (kvm_set_msr(vcpu, &msr)) {
9600 pr_warn_ratelimited(
9601 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9602 __func__, i, e.index, e.value);
9603 goto fail;
9604 }
9605 }
9606 return 0;
9607 fail:
9608 return i + 1;
9609 }
9610
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)9611 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9612 {
9613 u32 i;
9614 struct vmx_msr_entry e;
9615
9616 for (i = 0; i < count; i++) {
9617 struct msr_data msr_info;
9618 if (kvm_vcpu_read_guest(vcpu,
9619 gpa + i * sizeof(e),
9620 &e, 2 * sizeof(u32))) {
9621 pr_warn_ratelimited(
9622 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9623 __func__, i, gpa + i * sizeof(e));
9624 return -EINVAL;
9625 }
9626 if (nested_vmx_store_msr_check(vcpu, &e)) {
9627 pr_warn_ratelimited(
9628 "%s check failed (%u, 0x%x, 0x%x)\n",
9629 __func__, i, e.index, e.reserved);
9630 return -EINVAL;
9631 }
9632 msr_info.host_initiated = false;
9633 msr_info.index = e.index;
9634 if (kvm_get_msr(vcpu, &msr_info)) {
9635 pr_warn_ratelimited(
9636 "%s cannot read MSR (%u, 0x%x)\n",
9637 __func__, i, e.index);
9638 return -EINVAL;
9639 }
9640 if (kvm_vcpu_write_guest(vcpu,
9641 gpa + i * sizeof(e) +
9642 offsetof(struct vmx_msr_entry, value),
9643 &msr_info.data, sizeof(msr_info.data))) {
9644 pr_warn_ratelimited(
9645 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9646 __func__, i, e.index, msr_info.data);
9647 return -EINVAL;
9648 }
9649 }
9650 return 0;
9651 }
9652
9653 /*
9654 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9655 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9656 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9657 * guest in a way that will both be appropriate to L1's requests, and our
9658 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9659 * function also has additional necessary side-effects, like setting various
9660 * vcpu->arch fields.
9661 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9662 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9663 {
9664 struct vcpu_vmx *vmx = to_vmx(vcpu);
9665 u32 exec_control;
9666
9667 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9668 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9669 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9670 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9671 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9672 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9673 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9674 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9675 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9676 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9677 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9678 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9679 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9680 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9681 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9682 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9683 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9684 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9685 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9686 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9687 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9688 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9689 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9690 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9691 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9692 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9693 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9694 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9695 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9696 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9697 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9698 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9699 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9700 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9701 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9702 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9703
9704 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9705 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9706 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9707 } else {
9708 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9709 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9710 }
9711 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9712 vmcs12->vm_entry_intr_info_field);
9713 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9714 vmcs12->vm_entry_exception_error_code);
9715 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9716 vmcs12->vm_entry_instruction_len);
9717 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9718 vmcs12->guest_interruptibility_info);
9719 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9720 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9721 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9722 vmcs12->guest_pending_dbg_exceptions);
9723 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9724 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9725
9726 if (nested_cpu_has_xsaves(vmcs12))
9727 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9728 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9729
9730 exec_control = vmcs12->pin_based_vm_exec_control;
9731 exec_control |= vmcs_config.pin_based_exec_ctrl;
9732 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9733
9734 if (nested_cpu_has_posted_intr(vmcs12)) {
9735 /*
9736 * Note that we use L0's vector here and in
9737 * vmx_deliver_nested_posted_interrupt.
9738 */
9739 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9740 vmx->nested.pi_pending = false;
9741 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9742 vmcs_write64(POSTED_INTR_DESC_ADDR,
9743 page_to_phys(vmx->nested.pi_desc_page) +
9744 (unsigned long)(vmcs12->posted_intr_desc_addr &
9745 (PAGE_SIZE - 1)));
9746 } else
9747 exec_control &= ~PIN_BASED_POSTED_INTR;
9748
9749 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9750
9751 vmx->nested.preemption_timer_expired = false;
9752 if (nested_cpu_has_preemption_timer(vmcs12))
9753 vmx_start_preemption_timer(vcpu);
9754
9755 /*
9756 * Whether page-faults are trapped is determined by a combination of
9757 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9758 * If enable_ept, L0 doesn't care about page faults and we should
9759 * set all of these to L1's desires. However, if !enable_ept, L0 does
9760 * care about (at least some) page faults, and because it is not easy
9761 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9762 * to exit on each and every L2 page fault. This is done by setting
9763 * MASK=MATCH=0 and (see below) EB.PF=1.
9764 * Note that below we don't need special code to set EB.PF beyond the
9765 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9766 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9767 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9768 *
9769 * A problem with this approach (when !enable_ept) is that L1 may be
9770 * injected with more page faults than it asked for. This could have
9771 * caused problems, but in practice existing hypervisors don't care.
9772 * To fix this, we will need to emulate the PFEC checking (on the L1
9773 * page tables), using walk_addr(), when injecting PFs to L1.
9774 */
9775 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9776 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9777 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9778 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9779
9780 if (cpu_has_secondary_exec_ctrls()) {
9781 exec_control = vmx_secondary_exec_control(vmx);
9782
9783 /* Take the following fields only from vmcs12 */
9784 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9785 SECONDARY_EXEC_RDTSCP |
9786 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9787 SECONDARY_EXEC_APIC_REGISTER_VIRT |
9788 SECONDARY_EXEC_PCOMMIT);
9789 if (nested_cpu_has(vmcs12,
9790 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9791 exec_control |= vmcs12->secondary_vm_exec_control;
9792
9793 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9794 /*
9795 * If translation failed, no matter: This feature asks
9796 * to exit when accessing the given address, and if it
9797 * can never be accessed, this feature won't do
9798 * anything anyway.
9799 */
9800 if (!vmx->nested.apic_access_page)
9801 exec_control &=
9802 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9803 else
9804 vmcs_write64(APIC_ACCESS_ADDR,
9805 page_to_phys(vmx->nested.apic_access_page));
9806 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9807 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9808 exec_control |=
9809 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9810 kvm_vcpu_reload_apic_access_page(vcpu);
9811 }
9812
9813 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9814 vmcs_write64(EOI_EXIT_BITMAP0,
9815 vmcs12->eoi_exit_bitmap0);
9816 vmcs_write64(EOI_EXIT_BITMAP1,
9817 vmcs12->eoi_exit_bitmap1);
9818 vmcs_write64(EOI_EXIT_BITMAP2,
9819 vmcs12->eoi_exit_bitmap2);
9820 vmcs_write64(EOI_EXIT_BITMAP3,
9821 vmcs12->eoi_exit_bitmap3);
9822 vmcs_write16(GUEST_INTR_STATUS,
9823 vmcs12->guest_intr_status);
9824 }
9825
9826 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9827 }
9828
9829
9830 /*
9831 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9832 * Some constant fields are set here by vmx_set_constant_host_state().
9833 * Other fields are different per CPU, and will be set later when
9834 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9835 */
9836 vmx_set_constant_host_state(vmx);
9837
9838 /*
9839 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9840 * entry, but only if the current (host) sp changed from the value
9841 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9842 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9843 * here we just force the write to happen on entry.
9844 */
9845 vmx->host_rsp = 0;
9846
9847 exec_control = vmx_exec_control(vmx); /* L0's desires */
9848 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9849 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9850 exec_control &= ~CPU_BASED_TPR_SHADOW;
9851 exec_control |= vmcs12->cpu_based_vm_exec_control;
9852
9853 if (exec_control & CPU_BASED_TPR_SHADOW) {
9854 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9855 page_to_phys(vmx->nested.virtual_apic_page));
9856 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9857 } else {
9858 #ifdef CONFIG_X86_64
9859 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
9860 CPU_BASED_CR8_STORE_EXITING;
9861 #endif
9862 }
9863
9864 if (cpu_has_vmx_msr_bitmap() &&
9865 exec_control & CPU_BASED_USE_MSR_BITMAPS &&
9866 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9867 ; /* MSR_BITMAP will be set by following vmx_set_efer. */
9868 else
9869 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9870
9871 /*
9872 * Merging of IO bitmap not currently supported.
9873 * Rather, exit every time.
9874 */
9875 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9876 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9877
9878 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9879
9880 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9881 * bitwise-or of what L1 wants to trap for L2, and what we want to
9882 * trap. Note that CR0.TS also needs updating - we do this later.
9883 */
9884 update_exception_bitmap(vcpu);
9885 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9886 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9887
9888 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9889 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9890 * bits are further modified by vmx_set_efer() below.
9891 */
9892 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9893
9894 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9895 * emulated by vmx_set_efer(), below.
9896 */
9897 vm_entry_controls_init(vmx,
9898 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9899 ~VM_ENTRY_IA32E_MODE) |
9900 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9901
9902 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9903 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9904 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9905 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9906 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9907
9908
9909 set_cr4_guest_host_mask(vmx);
9910
9911 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9912 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9913
9914 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9915 vmcs_write64(TSC_OFFSET,
9916 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9917 else
9918 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9919
9920 if (cpu_has_vmx_msr_bitmap())
9921 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
9922
9923 if (enable_vpid) {
9924 /*
9925 * There is no direct mapping between vpid02 and vpid12, the
9926 * vpid02 is per-vCPU for L0 and reused while the value of
9927 * vpid12 is changed w/ one invvpid during nested vmentry.
9928 * The vpid12 is allocated by L1 for L2, so it will not
9929 * influence global bitmap(for vpid01 and vpid02 allocation)
9930 * even if spawn a lot of nested vCPUs.
9931 */
9932 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9933 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9934 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9935 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9936 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9937 }
9938 } else {
9939 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9940 vmx_flush_tlb(vcpu);
9941 }
9942
9943 }
9944
9945 if (enable_pml) {
9946 /*
9947 * Conceptually we want to copy the PML address and index from
9948 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
9949 * since we always flush the log on each vmexit, this happens
9950 * to be equivalent to simply resetting the fields in vmcs02.
9951 */
9952 ASSERT(vmx->pml_pg);
9953 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
9954 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
9955 }
9956
9957 if (nested_cpu_has_ept(vmcs12)) {
9958 kvm_mmu_unload(vcpu);
9959 nested_ept_init_mmu_context(vcpu);
9960 }
9961
9962 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9963 vcpu->arch.efer = vmcs12->guest_ia32_efer;
9964 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9965 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9966 else
9967 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9968 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9969 vmx_set_efer(vcpu, vcpu->arch.efer);
9970
9971 /*
9972 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9973 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9974 * The CR0_READ_SHADOW is what L2 should have expected to read given
9975 * the specifications by L1; It's not enough to take
9976 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9977 * have more bits than L1 expected.
9978 */
9979 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9980 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9981
9982 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9983 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9984
9985 /* shadow page tables on either EPT or shadow page tables */
9986 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9987 kvm_mmu_reset_context(vcpu);
9988
9989 if (!enable_ept)
9990 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9991
9992 /*
9993 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9994 */
9995 if (enable_ept) {
9996 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9997 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9998 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9999 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10000 }
10001
10002 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10003 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10004 }
10005
10006 /*
10007 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10008 * for running an L2 nested guest.
10009 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)10010 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10011 {
10012 struct vmcs12 *vmcs12;
10013 struct vcpu_vmx *vmx = to_vmx(vcpu);
10014 int cpu;
10015 bool ia32e;
10016 u32 msr_entry_idx;
10017
10018 if (!nested_vmx_check_permission(vcpu) ||
10019 !nested_vmx_check_vmcs12(vcpu))
10020 return 1;
10021
10022 skip_emulated_instruction(vcpu);
10023 vmcs12 = get_vmcs12(vcpu);
10024
10025 if (enable_shadow_vmcs)
10026 copy_shadow_to_vmcs12(vmx);
10027
10028 /*
10029 * The nested entry process starts with enforcing various prerequisites
10030 * on vmcs12 as required by the Intel SDM, and act appropriately when
10031 * they fail: As the SDM explains, some conditions should cause the
10032 * instruction to fail, while others will cause the instruction to seem
10033 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10034 * To speed up the normal (success) code path, we should avoid checking
10035 * for misconfigurations which will anyway be caught by the processor
10036 * when using the merged vmcs02.
10037 */
10038 if (vmcs12->launch_state == launch) {
10039 nested_vmx_failValid(vcpu,
10040 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10041 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10042 return 1;
10043 }
10044
10045 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10046 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
10047 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10048 return 1;
10049 }
10050
10051 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
10052 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10053 return 1;
10054 }
10055
10056 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
10057 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10058 return 1;
10059 }
10060
10061 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
10062 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10063 return 1;
10064 }
10065
10066 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
10067 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10068 return 1;
10069 }
10070
10071 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10072 vmx->nested.nested_vmx_true_procbased_ctls_low,
10073 vmx->nested.nested_vmx_procbased_ctls_high) ||
10074 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10075 vmx->nested.nested_vmx_secondary_ctls_low,
10076 vmx->nested.nested_vmx_secondary_ctls_high) ||
10077 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10078 vmx->nested.nested_vmx_pinbased_ctls_low,
10079 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10080 !vmx_control_verify(vmcs12->vm_exit_controls,
10081 vmx->nested.nested_vmx_true_exit_ctls_low,
10082 vmx->nested.nested_vmx_exit_ctls_high) ||
10083 !vmx_control_verify(vmcs12->vm_entry_controls,
10084 vmx->nested.nested_vmx_true_entry_ctls_low,
10085 vmx->nested.nested_vmx_entry_ctls_high))
10086 {
10087 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10088 return 1;
10089 }
10090
10091 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
10092 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10093 nested_vmx_failValid(vcpu,
10094 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
10095 return 1;
10096 }
10097
10098 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10099 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10100 nested_vmx_entry_failure(vcpu, vmcs12,
10101 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10102 return 1;
10103 }
10104 if (vmcs12->vmcs_link_pointer != -1ull) {
10105 nested_vmx_entry_failure(vcpu, vmcs12,
10106 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
10107 return 1;
10108 }
10109
10110 /*
10111 * If the load IA32_EFER VM-entry control is 1, the following checks
10112 * are performed on the field for the IA32_EFER MSR:
10113 * - Bits reserved in the IA32_EFER MSR must be 0.
10114 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10115 * the IA-32e mode guest VM-exit control. It must also be identical
10116 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10117 * CR0.PG) is 1.
10118 */
10119 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10120 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10121 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10122 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10123 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10124 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10125 nested_vmx_entry_failure(vcpu, vmcs12,
10126 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10127 return 1;
10128 }
10129 }
10130
10131 /*
10132 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10133 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10134 * the values of the LMA and LME bits in the field must each be that of
10135 * the host address-space size VM-exit control.
10136 */
10137 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10138 ia32e = (vmcs12->vm_exit_controls &
10139 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10140 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10141 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10142 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10143 nested_vmx_entry_failure(vcpu, vmcs12,
10144 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10145 return 1;
10146 }
10147 }
10148
10149 /*
10150 * We're finally done with prerequisite checking, and can start with
10151 * the nested entry.
10152 */
10153
10154 enter_guest_mode(vcpu);
10155
10156 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
10157
10158 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10159 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10160
10161 cpu = get_cpu();
10162 vmx->loaded_vmcs = &vmx->nested.vmcs02;
10163 vmx_vcpu_put(vcpu);
10164 vmx_vcpu_load(vcpu, cpu);
10165 vcpu->cpu = cpu;
10166 put_cpu();
10167
10168 vmx_segment_cache_clear(vmx);
10169
10170 prepare_vmcs02(vcpu, vmcs12);
10171
10172 msr_entry_idx = nested_vmx_load_msr(vcpu,
10173 vmcs12->vm_entry_msr_load_addr,
10174 vmcs12->vm_entry_msr_load_count);
10175 if (msr_entry_idx) {
10176 leave_guest_mode(vcpu);
10177 vmx_load_vmcs01(vcpu);
10178 nested_vmx_entry_failure(vcpu, vmcs12,
10179 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10180 return 1;
10181 }
10182
10183 vmcs12->launch_state = 1;
10184
10185 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10186 return kvm_vcpu_halt(vcpu);
10187
10188 vmx->nested.nested_run_pending = 1;
10189
10190 /*
10191 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10192 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10193 * returned as far as L1 is concerned. It will only return (and set
10194 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10195 */
10196 return 1;
10197 }
10198
10199 /*
10200 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10201 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10202 * This function returns the new value we should put in vmcs12.guest_cr0.
10203 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10204 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10205 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10206 * didn't trap the bit, because if L1 did, so would L0).
10207 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10208 * been modified by L2, and L1 knows it. So just leave the old value of
10209 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10210 * isn't relevant, because if L0 traps this bit it can set it to anything.
10211 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10212 * changed these bits, and therefore they need to be updated, but L0
10213 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10214 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10215 */
10216 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10217 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10218 {
10219 return
10220 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10221 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10222 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10223 vcpu->arch.cr0_guest_owned_bits));
10224 }
10225
10226 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10227 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10228 {
10229 return
10230 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10231 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10232 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10233 vcpu->arch.cr4_guest_owned_bits));
10234 }
10235
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10236 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10237 struct vmcs12 *vmcs12)
10238 {
10239 u32 idt_vectoring;
10240 unsigned int nr;
10241
10242 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10243 nr = vcpu->arch.exception.nr;
10244 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10245
10246 if (kvm_exception_is_soft(nr)) {
10247 vmcs12->vm_exit_instruction_len =
10248 vcpu->arch.event_exit_inst_len;
10249 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10250 } else
10251 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10252
10253 if (vcpu->arch.exception.has_error_code) {
10254 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10255 vmcs12->idt_vectoring_error_code =
10256 vcpu->arch.exception.error_code;
10257 }
10258
10259 vmcs12->idt_vectoring_info_field = idt_vectoring;
10260 } else if (vcpu->arch.nmi_injected) {
10261 vmcs12->idt_vectoring_info_field =
10262 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10263 } else if (vcpu->arch.interrupt.pending) {
10264 nr = vcpu->arch.interrupt.nr;
10265 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10266
10267 if (vcpu->arch.interrupt.soft) {
10268 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10269 vmcs12->vm_entry_instruction_len =
10270 vcpu->arch.event_exit_inst_len;
10271 } else
10272 idt_vectoring |= INTR_TYPE_EXT_INTR;
10273
10274 vmcs12->idt_vectoring_info_field = idt_vectoring;
10275 }
10276 }
10277
vmx_check_nested_events(struct kvm_vcpu * vcpu,bool external_intr)10278 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10279 {
10280 struct vcpu_vmx *vmx = to_vmx(vcpu);
10281
10282 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10283 vmx->nested.preemption_timer_expired) {
10284 if (vmx->nested.nested_run_pending)
10285 return -EBUSY;
10286 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10287 return 0;
10288 }
10289
10290 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10291 if (vmx->nested.nested_run_pending ||
10292 vcpu->arch.interrupt.pending)
10293 return -EBUSY;
10294 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10295 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10296 INTR_INFO_VALID_MASK, 0);
10297 /*
10298 * The NMI-triggered VM exit counts as injection:
10299 * clear this one and block further NMIs.
10300 */
10301 vcpu->arch.nmi_pending = 0;
10302 vmx_set_nmi_mask(vcpu, true);
10303 return 0;
10304 }
10305
10306 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10307 nested_exit_on_intr(vcpu)) {
10308 if (vmx->nested.nested_run_pending)
10309 return -EBUSY;
10310 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10311 return 0;
10312 }
10313
10314 vmx_complete_nested_posted_interrupt(vcpu);
10315 return 0;
10316 }
10317
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)10318 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10319 {
10320 ktime_t remaining =
10321 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10322 u64 value;
10323
10324 if (ktime_to_ns(remaining) <= 0)
10325 return 0;
10326
10327 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10328 do_div(value, 1000000);
10329 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10330 }
10331
10332 /*
10333 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10334 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10335 * and this function updates it to reflect the changes to the guest state while
10336 * L2 was running (and perhaps made some exits which were handled directly by L0
10337 * without going back to L1), and to reflect the exit reason.
10338 * Note that we do not have to copy here all VMCS fields, just those that
10339 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10340 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10341 * which already writes to vmcs12 directly.
10342 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)10343 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10344 u32 exit_reason, u32 exit_intr_info,
10345 unsigned long exit_qualification)
10346 {
10347 /* update guest state fields: */
10348 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10349 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10350
10351 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10352 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10353 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10354
10355 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10356 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10357 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10358 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10359 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10360 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10361 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10362 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10363 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10364 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10365 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10366 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10367 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10368 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10369 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10370 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10371 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10372 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10373 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10374 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10375 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10376 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10377 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10378 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10379 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10380 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10381 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10382 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10383 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10384 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10385 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10386 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10387 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10388 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10389 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10390 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10391
10392 vmcs12->guest_interruptibility_info =
10393 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10394 vmcs12->guest_pending_dbg_exceptions =
10395 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10396 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10397 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10398 else
10399 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10400
10401 if (nested_cpu_has_preemption_timer(vmcs12)) {
10402 if (vmcs12->vm_exit_controls &
10403 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10404 vmcs12->vmx_preemption_timer_value =
10405 vmx_get_preemption_timer_value(vcpu);
10406 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10407 }
10408
10409 /*
10410 * In some cases (usually, nested EPT), L2 is allowed to change its
10411 * own CR3 without exiting. If it has changed it, we must keep it.
10412 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10413 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10414 *
10415 * Additionally, restore L2's PDPTR to vmcs12.
10416 */
10417 if (enable_ept) {
10418 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
10419 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10420 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10421 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10422 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10423 }
10424
10425 if (nested_cpu_has_vid(vmcs12))
10426 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10427
10428 vmcs12->vm_entry_controls =
10429 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10430 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10431
10432 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10433 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10434 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10435 }
10436
10437 /* TODO: These cannot have changed unless we have MSR bitmaps and
10438 * the relevant bit asks not to trap the change */
10439 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10440 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10441 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10442 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10443 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10444 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10445 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10446 if (kvm_mpx_supported())
10447 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10448 if (nested_cpu_has_xsaves(vmcs12))
10449 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10450
10451 /* update exit information fields: */
10452
10453 vmcs12->vm_exit_reason = exit_reason;
10454 vmcs12->exit_qualification = exit_qualification;
10455
10456 vmcs12->vm_exit_intr_info = exit_intr_info;
10457 if ((vmcs12->vm_exit_intr_info &
10458 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10459 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10460 vmcs12->vm_exit_intr_error_code =
10461 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10462 vmcs12->idt_vectoring_info_field = 0;
10463 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10464 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10465
10466 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10467 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10468 * instead of reading the real value. */
10469 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10470
10471 /*
10472 * Transfer the event that L0 or L1 may wanted to inject into
10473 * L2 to IDT_VECTORING_INFO_FIELD.
10474 */
10475 vmcs12_save_pending_event(vcpu, vmcs12);
10476 }
10477
10478 /*
10479 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10480 * preserved above and would only end up incorrectly in L1.
10481 */
10482 vcpu->arch.nmi_injected = false;
10483 kvm_clear_exception_queue(vcpu);
10484 kvm_clear_interrupt_queue(vcpu);
10485 }
10486
10487 /*
10488 * A part of what we need to when the nested L2 guest exits and we want to
10489 * run its L1 parent, is to reset L1's guest state to the host state specified
10490 * in vmcs12.
10491 * This function is to be called not only on normal nested exit, but also on
10492 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10493 * Failures During or After Loading Guest State").
10494 * This function should be called when the active VMCS is L1's (vmcs01).
10495 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10496 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10497 struct vmcs12 *vmcs12)
10498 {
10499 struct kvm_segment seg;
10500
10501 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10502 vcpu->arch.efer = vmcs12->host_ia32_efer;
10503 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10504 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10505 else
10506 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10507 vmx_set_efer(vcpu, vcpu->arch.efer);
10508
10509 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10510 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10511 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10512 /*
10513 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10514 * actually changed, because it depends on the current state of
10515 * fpu_active (which may have changed).
10516 * Note that vmx_set_cr0 refers to efer set above.
10517 */
10518 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10519 /*
10520 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10521 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10522 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10523 */
10524 update_exception_bitmap(vcpu);
10525 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10526 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10527
10528 /*
10529 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10530 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10531 */
10532 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10533 vmx_set_cr4(vcpu, vmcs12->host_cr4);
10534
10535 nested_ept_uninit_mmu_context(vcpu);
10536
10537 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10538 kvm_mmu_reset_context(vcpu);
10539
10540 if (!enable_ept)
10541 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10542
10543 if (enable_vpid) {
10544 /*
10545 * Trivially support vpid by letting L2s share their parent
10546 * L1's vpid. TODO: move to a more elaborate solution, giving
10547 * each L2 its own vpid and exposing the vpid feature to L1.
10548 */
10549 vmx_flush_tlb(vcpu);
10550 }
10551
10552
10553 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10554 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10555 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10556 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10557 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10558 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
10559 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
10560
10561 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10562 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10563 vmcs_write64(GUEST_BNDCFGS, 0);
10564
10565 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10566 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10567 vcpu->arch.pat = vmcs12->host_ia32_pat;
10568 }
10569 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10570 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10571 vmcs12->host_ia32_perf_global_ctrl);
10572
10573 /* Set L1 segment info according to Intel SDM
10574 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10575 seg = (struct kvm_segment) {
10576 .base = 0,
10577 .limit = 0xFFFFFFFF,
10578 .selector = vmcs12->host_cs_selector,
10579 .type = 11,
10580 .present = 1,
10581 .s = 1,
10582 .g = 1
10583 };
10584 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10585 seg.l = 1;
10586 else
10587 seg.db = 1;
10588 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10589 seg = (struct kvm_segment) {
10590 .base = 0,
10591 .limit = 0xFFFFFFFF,
10592 .type = 3,
10593 .present = 1,
10594 .s = 1,
10595 .db = 1,
10596 .g = 1
10597 };
10598 seg.selector = vmcs12->host_ds_selector;
10599 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10600 seg.selector = vmcs12->host_es_selector;
10601 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10602 seg.selector = vmcs12->host_ss_selector;
10603 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10604 seg.selector = vmcs12->host_fs_selector;
10605 seg.base = vmcs12->host_fs_base;
10606 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10607 seg.selector = vmcs12->host_gs_selector;
10608 seg.base = vmcs12->host_gs_base;
10609 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10610 seg = (struct kvm_segment) {
10611 .base = vmcs12->host_tr_base,
10612 .limit = 0x67,
10613 .selector = vmcs12->host_tr_selector,
10614 .type = 11,
10615 .present = 1
10616 };
10617 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10618
10619 kvm_set_dr(vcpu, 7, 0x400);
10620 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10621
10622 if (cpu_has_vmx_msr_bitmap())
10623 vmx_update_msr_bitmap(vcpu);
10624
10625 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10626 vmcs12->vm_exit_msr_load_count))
10627 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10628 }
10629
10630 /*
10631 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10632 * and modify vmcs12 to make it see what it would expect to see there if
10633 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10634 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)10635 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10636 u32 exit_intr_info,
10637 unsigned long exit_qualification)
10638 {
10639 struct vcpu_vmx *vmx = to_vmx(vcpu);
10640 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10641
10642 /* trying to cancel vmlaunch/vmresume is a bug */
10643 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10644
10645 leave_guest_mode(vcpu);
10646 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10647 exit_qualification);
10648
10649 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10650 vmcs12->vm_exit_msr_store_count))
10651 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10652
10653 vmx_load_vmcs01(vcpu);
10654
10655 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10656 && nested_exit_intr_ack_set(vcpu)) {
10657 int irq = kvm_cpu_get_interrupt(vcpu);
10658 WARN_ON(irq < 0);
10659 vmcs12->vm_exit_intr_info = irq |
10660 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10661 }
10662
10663 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10664 vmcs12->exit_qualification,
10665 vmcs12->idt_vectoring_info_field,
10666 vmcs12->vm_exit_intr_info,
10667 vmcs12->vm_exit_intr_error_code,
10668 KVM_ISA_VMX);
10669
10670 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10671 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10672 vmx_segment_cache_clear(vmx);
10673
10674 load_vmcs12_host_state(vcpu, vmcs12);
10675
10676 /* Update TSC_OFFSET if TSC was changed while L2 ran */
10677 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10678
10679 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
10680 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
10681 vmx_set_virtual_x2apic_mode(vcpu,
10682 vcpu->arch.apic_base & X2APIC_ENABLE);
10683 }
10684
10685 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10686 vmx->host_rsp = 0;
10687
10688 /* Unpin physical memory we referred to in vmcs02 */
10689 if (vmx->nested.apic_access_page) {
10690 nested_release_page(vmx->nested.apic_access_page);
10691 vmx->nested.apic_access_page = NULL;
10692 }
10693 if (vmx->nested.virtual_apic_page) {
10694 nested_release_page(vmx->nested.virtual_apic_page);
10695 vmx->nested.virtual_apic_page = NULL;
10696 }
10697 if (vmx->nested.pi_desc_page) {
10698 kunmap(vmx->nested.pi_desc_page);
10699 nested_release_page(vmx->nested.pi_desc_page);
10700 vmx->nested.pi_desc_page = NULL;
10701 vmx->nested.pi_desc = NULL;
10702 }
10703
10704 /*
10705 * We are now running in L2, mmu_notifier will force to reload the
10706 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10707 */
10708 kvm_vcpu_reload_apic_access_page(vcpu);
10709
10710 /*
10711 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10712 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10713 * success or failure flag accordingly.
10714 */
10715 if (unlikely(vmx->fail)) {
10716 vmx->fail = 0;
10717 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10718 } else
10719 nested_vmx_succeed(vcpu);
10720 if (enable_shadow_vmcs)
10721 vmx->nested.sync_shadow_vmcs = true;
10722
10723 /* in case we halted in L2 */
10724 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10725 }
10726
10727 /*
10728 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10729 */
vmx_leave_nested(struct kvm_vcpu * vcpu)10730 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10731 {
10732 if (is_guest_mode(vcpu)) {
10733 to_vmx(vcpu)->nested.nested_run_pending = 0;
10734 nested_vmx_vmexit(vcpu, -1, 0, 0);
10735 }
10736 free_nested(to_vmx(vcpu));
10737 }
10738
10739 /*
10740 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10741 * 23.7 "VM-entry failures during or after loading guest state" (this also
10742 * lists the acceptable exit-reason and exit-qualification parameters).
10743 * It should only be called before L2 actually succeeded to run, and when
10744 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10745 */
nested_vmx_entry_failure(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 reason,unsigned long qualification)10746 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10747 struct vmcs12 *vmcs12,
10748 u32 reason, unsigned long qualification)
10749 {
10750 load_vmcs12_host_state(vcpu, vmcs12);
10751 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10752 vmcs12->exit_qualification = qualification;
10753 nested_vmx_succeed(vcpu);
10754 if (enable_shadow_vmcs)
10755 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10756 }
10757
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)10758 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
10759 struct x86_instruction_info *info)
10760 {
10761 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10762 unsigned short port;
10763 bool intercept;
10764 int size;
10765
10766 if (info->intercept == x86_intercept_in ||
10767 info->intercept == x86_intercept_ins) {
10768 port = info->src_val;
10769 size = info->dst_bytes;
10770 } else {
10771 port = info->dst_val;
10772 size = info->src_bytes;
10773 }
10774
10775 /*
10776 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
10777 * VM-exits depend on the 'unconditional IO exiting' VM-execution
10778 * control.
10779 *
10780 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
10781 */
10782 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
10783 intercept = nested_cpu_has(vmcs12,
10784 CPU_BASED_UNCOND_IO_EXITING);
10785 else
10786 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
10787
10788 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
10789 }
10790
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)10791 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10792 struct x86_instruction_info *info,
10793 enum x86_intercept_stage stage)
10794 {
10795 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10796 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
10797
10798 switch (info->intercept) {
10799 /*
10800 * RDPID causes #UD if disabled through secondary execution controls.
10801 * Because it is marked as EmulateOnUD, we need to intercept it here.
10802 */
10803 case x86_intercept_rdtscp:
10804 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
10805 ctxt->exception.vector = UD_VECTOR;
10806 ctxt->exception.error_code_valid = false;
10807 return X86EMUL_PROPAGATE_FAULT;
10808 }
10809 break;
10810
10811 case x86_intercept_in:
10812 case x86_intercept_ins:
10813 case x86_intercept_out:
10814 case x86_intercept_outs:
10815 return vmx_check_intercept_io(vcpu, info);
10816
10817 /* TODO: check more intercepts... */
10818 default:
10819 break;
10820 }
10821
10822 return X86EMUL_UNHANDLEABLE;
10823 }
10824
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)10825 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10826 {
10827 if (ple_gap)
10828 shrink_ple_window(vcpu);
10829 }
10830
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)10831 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10832 struct kvm_memory_slot *slot)
10833 {
10834 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10835 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10836 }
10837
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)10838 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10839 struct kvm_memory_slot *slot)
10840 {
10841 kvm_mmu_slot_set_dirty(kvm, slot);
10842 }
10843
vmx_flush_log_dirty(struct kvm * kvm)10844 static void vmx_flush_log_dirty(struct kvm *kvm)
10845 {
10846 kvm_flush_pml_buffers(kvm);
10847 }
10848
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)10849 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10850 struct kvm_memory_slot *memslot,
10851 gfn_t offset, unsigned long mask)
10852 {
10853 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10854 }
10855
10856 /*
10857 * This routine does the following things for vCPU which is going
10858 * to be blocked if VT-d PI is enabled.
10859 * - Store the vCPU to the wakeup list, so when interrupts happen
10860 * we can find the right vCPU to wake up.
10861 * - Change the Posted-interrupt descriptor as below:
10862 * 'NDST' <-- vcpu->pre_pcpu
10863 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10864 * - If 'ON' is set during this process, which means at least one
10865 * interrupt is posted for this vCPU, we cannot block it, in
10866 * this case, return 1, otherwise, return 0.
10867 *
10868 */
vmx_pre_block(struct kvm_vcpu * vcpu)10869 static int vmx_pre_block(struct kvm_vcpu *vcpu)
10870 {
10871 unsigned long flags;
10872 unsigned int dest;
10873 struct pi_desc old, new;
10874 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10875
10876 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10877 !irq_remapping_cap(IRQ_POSTING_CAP))
10878 return 0;
10879
10880 vcpu->pre_pcpu = vcpu->cpu;
10881 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10882 vcpu->pre_pcpu), flags);
10883 list_add_tail(&vcpu->blocked_vcpu_list,
10884 &per_cpu(blocked_vcpu_on_cpu,
10885 vcpu->pre_pcpu));
10886 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10887 vcpu->pre_pcpu), flags);
10888
10889 do {
10890 old.control = new.control = pi_desc->control;
10891
10892 /*
10893 * We should not block the vCPU if
10894 * an interrupt is posted for it.
10895 */
10896 if (pi_test_on(pi_desc) == 1) {
10897 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10898 vcpu->pre_pcpu), flags);
10899 list_del(&vcpu->blocked_vcpu_list);
10900 spin_unlock_irqrestore(
10901 &per_cpu(blocked_vcpu_on_cpu_lock,
10902 vcpu->pre_pcpu), flags);
10903 vcpu->pre_pcpu = -1;
10904
10905 return 1;
10906 }
10907
10908 WARN((pi_desc->sn == 1),
10909 "Warning: SN field of posted-interrupts "
10910 "is set before blocking\n");
10911
10912 /*
10913 * Since vCPU can be preempted during this process,
10914 * vcpu->cpu could be different with pre_pcpu, we
10915 * need to set pre_pcpu as the destination of wakeup
10916 * notification event, then we can find the right vCPU
10917 * to wakeup in wakeup handler if interrupts happen
10918 * when the vCPU is in blocked state.
10919 */
10920 dest = cpu_physical_id(vcpu->pre_pcpu);
10921
10922 if (x2apic_enabled())
10923 new.ndst = dest;
10924 else
10925 new.ndst = (dest << 8) & 0xFF00;
10926
10927 /* set 'NV' to 'wakeup vector' */
10928 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10929 } while (cmpxchg64(&pi_desc->control, old.control,
10930 new.control) != old.control);
10931
10932 return 0;
10933 }
10934
vmx_post_block(struct kvm_vcpu * vcpu)10935 static void vmx_post_block(struct kvm_vcpu *vcpu)
10936 {
10937 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10938 struct pi_desc old, new;
10939 unsigned int dest;
10940 unsigned long flags;
10941
10942 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10943 !irq_remapping_cap(IRQ_POSTING_CAP))
10944 return;
10945
10946 do {
10947 old.control = new.control = pi_desc->control;
10948
10949 dest = cpu_physical_id(vcpu->cpu);
10950
10951 if (x2apic_enabled())
10952 new.ndst = dest;
10953 else
10954 new.ndst = (dest << 8) & 0xFF00;
10955
10956 /* Allow posting non-urgent interrupts */
10957 new.sn = 0;
10958
10959 /* set 'NV' to 'notification vector' */
10960 new.nv = POSTED_INTR_VECTOR;
10961 } while (cmpxchg64(&pi_desc->control, old.control,
10962 new.control) != old.control);
10963
10964 if(vcpu->pre_pcpu != -1) {
10965 spin_lock_irqsave(
10966 &per_cpu(blocked_vcpu_on_cpu_lock,
10967 vcpu->pre_pcpu), flags);
10968 list_del(&vcpu->blocked_vcpu_list);
10969 spin_unlock_irqrestore(
10970 &per_cpu(blocked_vcpu_on_cpu_lock,
10971 vcpu->pre_pcpu), flags);
10972 vcpu->pre_pcpu = -1;
10973 }
10974 }
10975
10976 /*
10977 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10978 *
10979 * @kvm: kvm
10980 * @host_irq: host irq of the interrupt
10981 * @guest_irq: gsi of the interrupt
10982 * @set: set or unset PI
10983 * returns 0 on success, < 0 on failure
10984 */
vmx_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)10985 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10986 uint32_t guest_irq, bool set)
10987 {
10988 struct kvm_kernel_irq_routing_entry *e;
10989 struct kvm_irq_routing_table *irq_rt;
10990 struct kvm_lapic_irq irq;
10991 struct kvm_vcpu *vcpu;
10992 struct vcpu_data vcpu_info;
10993 int idx, ret = 0;
10994
10995 if (!kvm_arch_has_assigned_device(kvm) ||
10996 !irq_remapping_cap(IRQ_POSTING_CAP))
10997 return 0;
10998
10999 idx = srcu_read_lock(&kvm->irq_srcu);
11000 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11001 if (guest_irq >= irq_rt->nr_rt_entries ||
11002 hlist_empty(&irq_rt->map[guest_irq])) {
11003 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11004 guest_irq, irq_rt->nr_rt_entries);
11005 goto out;
11006 }
11007
11008 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11009 if (e->type != KVM_IRQ_ROUTING_MSI)
11010 continue;
11011 /*
11012 * VT-d PI cannot support posting multicast/broadcast
11013 * interrupts to a vCPU, we still use interrupt remapping
11014 * for these kind of interrupts.
11015 *
11016 * For lowest-priority interrupts, we only support
11017 * those with single CPU as the destination, e.g. user
11018 * configures the interrupts via /proc/irq or uses
11019 * irqbalance to make the interrupts single-CPU.
11020 *
11021 * We will support full lowest-priority interrupt later.
11022 */
11023
11024 kvm_set_msi_irq(e, &irq);
11025 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu))
11026 continue;
11027
11028 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11029 vcpu_info.vector = irq.vector;
11030
11031 trace_kvm_pi_irte_update(vcpu->vcpu_id, e->gsi,
11032 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11033
11034 if (set)
11035 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11036 else
11037 ret = irq_set_vcpu_affinity(host_irq, NULL);
11038
11039 if (ret < 0) {
11040 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11041 __func__);
11042 goto out;
11043 }
11044 }
11045
11046 ret = 0;
11047 out:
11048 srcu_read_unlock(&kvm->irq_srcu, idx);
11049 return ret;
11050 }
11051
11052 static struct kvm_x86_ops vmx_x86_ops = {
11053 .cpu_has_kvm_support = cpu_has_kvm_support,
11054 .disabled_by_bios = vmx_disabled_by_bios,
11055 .hardware_setup = hardware_setup,
11056 .hardware_unsetup = hardware_unsetup,
11057 .check_processor_compatibility = vmx_check_processor_compat,
11058 .hardware_enable = hardware_enable,
11059 .hardware_disable = hardware_disable,
11060 .cpu_has_accelerated_tpr = report_flexpriority,
11061 .has_emulated_msr = vmx_has_emulated_msr,
11062
11063 .vcpu_create = vmx_create_vcpu,
11064 .vcpu_free = vmx_free_vcpu,
11065 .vcpu_reset = vmx_vcpu_reset,
11066
11067 .prepare_guest_switch = vmx_save_host_state,
11068 .vcpu_load = vmx_vcpu_load,
11069 .vcpu_put = vmx_vcpu_put,
11070
11071 .update_bp_intercept = update_exception_bitmap,
11072 .get_msr = vmx_get_msr,
11073 .set_msr = vmx_set_msr,
11074 .get_segment_base = vmx_get_segment_base,
11075 .get_segment = vmx_get_segment,
11076 .set_segment = vmx_set_segment,
11077 .get_cpl = vmx_get_cpl,
11078 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11079 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11080 .decache_cr3 = vmx_decache_cr3,
11081 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11082 .set_cr0 = vmx_set_cr0,
11083 .set_cr3 = vmx_set_cr3,
11084 .set_cr4 = vmx_set_cr4,
11085 .set_efer = vmx_set_efer,
11086 .get_idt = vmx_get_idt,
11087 .set_idt = vmx_set_idt,
11088 .get_gdt = vmx_get_gdt,
11089 .set_gdt = vmx_set_gdt,
11090 .get_dr6 = vmx_get_dr6,
11091 .set_dr6 = vmx_set_dr6,
11092 .set_dr7 = vmx_set_dr7,
11093 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11094 .cache_reg = vmx_cache_reg,
11095 .get_rflags = vmx_get_rflags,
11096 .set_rflags = vmx_set_rflags,
11097 .fpu_activate = vmx_fpu_activate,
11098 .fpu_deactivate = vmx_fpu_deactivate,
11099
11100 .tlb_flush = vmx_flush_tlb,
11101
11102 .run = vmx_vcpu_run,
11103 .handle_exit = vmx_handle_exit,
11104 .skip_emulated_instruction = skip_emulated_instruction,
11105 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11106 .get_interrupt_shadow = vmx_get_interrupt_shadow,
11107 .patch_hypercall = vmx_patch_hypercall,
11108 .set_irq = vmx_inject_irq,
11109 .set_nmi = vmx_inject_nmi,
11110 .queue_exception = vmx_queue_exception,
11111 .cancel_injection = vmx_cancel_injection,
11112 .interrupt_allowed = vmx_interrupt_allowed,
11113 .nmi_allowed = vmx_nmi_allowed,
11114 .get_nmi_mask = vmx_get_nmi_mask,
11115 .set_nmi_mask = vmx_set_nmi_mask,
11116 .enable_nmi_window = enable_nmi_window,
11117 .enable_irq_window = enable_irq_window,
11118 .update_cr8_intercept = update_cr8_intercept,
11119 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11120 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11121 .cpu_uses_apicv = vmx_cpu_uses_apicv,
11122 .load_eoi_exitmap = vmx_load_eoi_exitmap,
11123 .hwapic_irr_update = vmx_hwapic_irr_update,
11124 .hwapic_isr_update = vmx_hwapic_isr_update,
11125 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11126 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11127
11128 .set_tss_addr = vmx_set_tss_addr,
11129 .get_tdp_level = get_ept_level,
11130 .get_mt_mask = vmx_get_mt_mask,
11131
11132 .get_exit_info = vmx_get_exit_info,
11133
11134 .get_lpage_level = vmx_get_lpage_level,
11135
11136 .cpuid_update = vmx_cpuid_update,
11137
11138 .rdtscp_supported = vmx_rdtscp_supported,
11139 .invpcid_supported = vmx_invpcid_supported,
11140
11141 .set_supported_cpuid = vmx_set_supported_cpuid,
11142
11143 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11144
11145 .read_tsc_offset = vmx_read_tsc_offset,
11146 .write_tsc_offset = vmx_write_tsc_offset,
11147 .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
11148 .read_l1_tsc = vmx_read_l1_tsc,
11149
11150 .set_tdp_cr3 = vmx_set_cr3,
11151
11152 .check_intercept = vmx_check_intercept,
11153 .handle_external_intr = vmx_handle_external_intr,
11154 .mpx_supported = vmx_mpx_supported,
11155 .xsaves_supported = vmx_xsaves_supported,
11156
11157 .check_nested_events = vmx_check_nested_events,
11158
11159 .sched_in = vmx_sched_in,
11160
11161 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11162 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11163 .flush_log_dirty = vmx_flush_log_dirty,
11164 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11165
11166 .pre_block = vmx_pre_block,
11167 .post_block = vmx_post_block,
11168
11169 .pmu_ops = &intel_pmu_ops,
11170
11171 .update_pi_irte = vmx_update_pi_irte,
11172 };
11173
vmx_init(void)11174 static int __init vmx_init(void)
11175 {
11176 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11177 __alignof__(struct vcpu_vmx), THIS_MODULE);
11178 if (r)
11179 return r;
11180
11181 #ifdef CONFIG_KEXEC_CORE
11182 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11183 crash_vmclear_local_loaded_vmcss);
11184 #endif
11185
11186 return 0;
11187 }
11188
vmx_exit(void)11189 static void __exit vmx_exit(void)
11190 {
11191 #ifdef CONFIG_KEXEC_CORE
11192 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11193 synchronize_rcu();
11194 #endif
11195
11196 kvm_exit();
11197 }
11198
11199 module_init(vmx_init)
11200 module_exit(vmx_exit)
11201