• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/trace_events.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include <linux/hrtimer.h>
35 #include <linux/nospec.h>
36 #include "kvm_cache_regs.h"
37 #include "x86.h"
38 
39 #include <asm/cpu.h>
40 #include <asm/io.h>
41 #include <asm/desc.h>
42 #include <asm/vmx.h>
43 #include <asm/virtext.h>
44 #include <asm/mce.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/perf_event.h>
47 #include <asm/debugreg.h>
48 #include <asm/kexec.h>
49 #include <asm/apic.h>
50 #include <asm/irq_remapping.h>
51 #include <asm/microcode.h>
52 #include <asm/spec-ctrl.h>
53 
54 #include "trace.h"
55 #include "pmu.h"
56 
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59 	____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60 
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63 
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65 	X86_FEATURE_MATCH(X86_FEATURE_VMX),
66 	{}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69 
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72 
73 static bool __read_mostly flexpriority_enabled = 1;
74 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
75 
76 static bool __read_mostly enable_ept = 1;
77 module_param_named(ept, enable_ept, bool, S_IRUGO);
78 
79 static bool __read_mostly enable_unrestricted_guest = 1;
80 module_param_named(unrestricted_guest,
81 			enable_unrestricted_guest, bool, S_IRUGO);
82 
83 static bool __read_mostly enable_ept_ad_bits = 1;
84 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85 
86 static bool __read_mostly emulate_invalid_guest_state = true;
87 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
88 
89 static bool __read_mostly vmm_exclusive = 1;
90 module_param(vmm_exclusive, bool, S_IRUGO);
91 
92 static bool __read_mostly fasteoi = 1;
93 module_param(fasteoi, bool, S_IRUGO);
94 
95 static bool __read_mostly enable_apicv = 1;
96 module_param(enable_apicv, bool, S_IRUGO);
97 
98 static bool __read_mostly enable_shadow_vmcs = 1;
99 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
100 /*
101  * If nested=1, nested virtualization is supported, i.e., guests may use
102  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
103  * use VMX instructions.
104  */
105 static bool __read_mostly nested = 0;
106 module_param(nested, bool, S_IRUGO);
107 
108 static u64 __read_mostly host_xss;
109 
110 static bool __read_mostly enable_pml = 1;
111 module_param_named(pml, enable_pml, bool, S_IRUGO);
112 
113 #define MSR_TYPE_R	1
114 #define MSR_TYPE_W	2
115 #define MSR_TYPE_RW	3
116 
117 #define MSR_BITMAP_MODE_X2APIC		1
118 #define MSR_BITMAP_MODE_X2APIC_APICV	2
119 #define MSR_BITMAP_MODE_LM		4
120 
121 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
122 
123 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
124 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
125 #define KVM_VM_CR0_ALWAYS_ON						\
126 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
127 #define KVM_CR4_GUEST_OWNED_BITS				      \
128 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
129 	 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
130 
131 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
132 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
133 
134 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
135 
136 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
137 
138 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
139 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
140 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
141 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
142 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143 
144 /*
145  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146  * ple_gap:    upper bound on the amount of time between two successive
147  *             executions of PAUSE in a loop. Also indicate if ple enabled.
148  *             According to test, this time is usually smaller than 128 cycles.
149  * ple_window: upper bound on the amount of time a guest is allowed to execute
150  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
151  *             less than 2^12 cycles
152  * Time is measured based on a counter that runs at the same rate as the TSC,
153  * refer SDM volume 3b section 21.6.13 & 22.1.3.
154  */
155 #define KVM_VMX_DEFAULT_PLE_GAP           128
156 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
160 		INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161 
162 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163 module_param(ple_gap, int, S_IRUGO);
164 
165 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166 module_param(ple_window, int, S_IRUGO);
167 
168 /* Default doubles per-vcpu window every exit. */
169 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170 module_param(ple_window_grow, int, S_IRUGO);
171 
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174 module_param(ple_window_shrink, int, S_IRUGO);
175 
176 /* Default is to compute the maximum so we can never overflow. */
177 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, int, S_IRUGO);
180 
181 extern const ulong vmx_return;
182 
183 #define NR_AUTOLOAD_MSRS 8
184 
185 struct vmcs {
186 	u32 revision_id;
187 	u32 abort;
188 	char data[0];
189 };
190 
191 /*
192  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
193  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
194  * loaded on this CPU (so we can clear them if the CPU goes down).
195  */
196 struct loaded_vmcs {
197 	struct vmcs *vmcs;
198 	int cpu;
199 	int launched;
200 	unsigned long *msr_bitmap;
201 	struct list_head loaded_vmcss_on_cpu_link;
202 };
203 
204 struct shared_msr_entry {
205 	unsigned index;
206 	u64 data;
207 	u64 mask;
208 };
209 
210 /*
211  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
212  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
213  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
214  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
215  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
216  * More than one of these structures may exist, if L1 runs multiple L2 guests.
217  * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
218  * underlying hardware which will be used to run L2.
219  * This structure is packed to ensure that its layout is identical across
220  * machines (necessary for live migration).
221  * If there are changes in this struct, VMCS12_REVISION must be changed.
222  */
223 typedef u64 natural_width;
224 struct __packed vmcs12 {
225 	/* According to the Intel spec, a VMCS region must start with the
226 	 * following two fields. Then follow implementation-specific data.
227 	 */
228 	u32 revision_id;
229 	u32 abort;
230 
231 	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
232 	u32 padding[7]; /* room for future expansion */
233 
234 	u64 io_bitmap_a;
235 	u64 io_bitmap_b;
236 	u64 msr_bitmap;
237 	u64 vm_exit_msr_store_addr;
238 	u64 vm_exit_msr_load_addr;
239 	u64 vm_entry_msr_load_addr;
240 	u64 tsc_offset;
241 	u64 virtual_apic_page_addr;
242 	u64 apic_access_addr;
243 	u64 posted_intr_desc_addr;
244 	u64 ept_pointer;
245 	u64 eoi_exit_bitmap0;
246 	u64 eoi_exit_bitmap1;
247 	u64 eoi_exit_bitmap2;
248 	u64 eoi_exit_bitmap3;
249 	u64 xss_exit_bitmap;
250 	u64 guest_physical_address;
251 	u64 vmcs_link_pointer;
252 	u64 guest_ia32_debugctl;
253 	u64 guest_ia32_pat;
254 	u64 guest_ia32_efer;
255 	u64 guest_ia32_perf_global_ctrl;
256 	u64 guest_pdptr0;
257 	u64 guest_pdptr1;
258 	u64 guest_pdptr2;
259 	u64 guest_pdptr3;
260 	u64 guest_bndcfgs;
261 	u64 host_ia32_pat;
262 	u64 host_ia32_efer;
263 	u64 host_ia32_perf_global_ctrl;
264 	u64 padding64[8]; /* room for future expansion */
265 	/*
266 	 * To allow migration of L1 (complete with its L2 guests) between
267 	 * machines of different natural widths (32 or 64 bit), we cannot have
268 	 * unsigned long fields with no explict size. We use u64 (aliased
269 	 * natural_width) instead. Luckily, x86 is little-endian.
270 	 */
271 	natural_width cr0_guest_host_mask;
272 	natural_width cr4_guest_host_mask;
273 	natural_width cr0_read_shadow;
274 	natural_width cr4_read_shadow;
275 	natural_width cr3_target_value0;
276 	natural_width cr3_target_value1;
277 	natural_width cr3_target_value2;
278 	natural_width cr3_target_value3;
279 	natural_width exit_qualification;
280 	natural_width guest_linear_address;
281 	natural_width guest_cr0;
282 	natural_width guest_cr3;
283 	natural_width guest_cr4;
284 	natural_width guest_es_base;
285 	natural_width guest_cs_base;
286 	natural_width guest_ss_base;
287 	natural_width guest_ds_base;
288 	natural_width guest_fs_base;
289 	natural_width guest_gs_base;
290 	natural_width guest_ldtr_base;
291 	natural_width guest_tr_base;
292 	natural_width guest_gdtr_base;
293 	natural_width guest_idtr_base;
294 	natural_width guest_dr7;
295 	natural_width guest_rsp;
296 	natural_width guest_rip;
297 	natural_width guest_rflags;
298 	natural_width guest_pending_dbg_exceptions;
299 	natural_width guest_sysenter_esp;
300 	natural_width guest_sysenter_eip;
301 	natural_width host_cr0;
302 	natural_width host_cr3;
303 	natural_width host_cr4;
304 	natural_width host_fs_base;
305 	natural_width host_gs_base;
306 	natural_width host_tr_base;
307 	natural_width host_gdtr_base;
308 	natural_width host_idtr_base;
309 	natural_width host_ia32_sysenter_esp;
310 	natural_width host_ia32_sysenter_eip;
311 	natural_width host_rsp;
312 	natural_width host_rip;
313 	natural_width paddingl[8]; /* room for future expansion */
314 	u32 pin_based_vm_exec_control;
315 	u32 cpu_based_vm_exec_control;
316 	u32 exception_bitmap;
317 	u32 page_fault_error_code_mask;
318 	u32 page_fault_error_code_match;
319 	u32 cr3_target_count;
320 	u32 vm_exit_controls;
321 	u32 vm_exit_msr_store_count;
322 	u32 vm_exit_msr_load_count;
323 	u32 vm_entry_controls;
324 	u32 vm_entry_msr_load_count;
325 	u32 vm_entry_intr_info_field;
326 	u32 vm_entry_exception_error_code;
327 	u32 vm_entry_instruction_len;
328 	u32 tpr_threshold;
329 	u32 secondary_vm_exec_control;
330 	u32 vm_instruction_error;
331 	u32 vm_exit_reason;
332 	u32 vm_exit_intr_info;
333 	u32 vm_exit_intr_error_code;
334 	u32 idt_vectoring_info_field;
335 	u32 idt_vectoring_error_code;
336 	u32 vm_exit_instruction_len;
337 	u32 vmx_instruction_info;
338 	u32 guest_es_limit;
339 	u32 guest_cs_limit;
340 	u32 guest_ss_limit;
341 	u32 guest_ds_limit;
342 	u32 guest_fs_limit;
343 	u32 guest_gs_limit;
344 	u32 guest_ldtr_limit;
345 	u32 guest_tr_limit;
346 	u32 guest_gdtr_limit;
347 	u32 guest_idtr_limit;
348 	u32 guest_es_ar_bytes;
349 	u32 guest_cs_ar_bytes;
350 	u32 guest_ss_ar_bytes;
351 	u32 guest_ds_ar_bytes;
352 	u32 guest_fs_ar_bytes;
353 	u32 guest_gs_ar_bytes;
354 	u32 guest_ldtr_ar_bytes;
355 	u32 guest_tr_ar_bytes;
356 	u32 guest_interruptibility_info;
357 	u32 guest_activity_state;
358 	u32 guest_sysenter_cs;
359 	u32 host_ia32_sysenter_cs;
360 	u32 vmx_preemption_timer_value;
361 	u32 padding32[7]; /* room for future expansion */
362 	u16 virtual_processor_id;
363 	u16 posted_intr_nv;
364 	u16 guest_es_selector;
365 	u16 guest_cs_selector;
366 	u16 guest_ss_selector;
367 	u16 guest_ds_selector;
368 	u16 guest_fs_selector;
369 	u16 guest_gs_selector;
370 	u16 guest_ldtr_selector;
371 	u16 guest_tr_selector;
372 	u16 guest_intr_status;
373 	u16 host_es_selector;
374 	u16 host_cs_selector;
375 	u16 host_ss_selector;
376 	u16 host_ds_selector;
377 	u16 host_fs_selector;
378 	u16 host_gs_selector;
379 	u16 host_tr_selector;
380 };
381 
382 /*
383  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
384  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
385  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
386  */
387 #define VMCS12_REVISION 0x11e57ed0
388 
389 /*
390  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
391  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
392  * current implementation, 4K are reserved to avoid future complications.
393  */
394 #define VMCS12_SIZE 0x1000
395 
396 /*
397  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
398  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
399  */
400 struct nested_vmx {
401 	/* Has the level1 guest done vmxon? */
402 	bool vmxon;
403 	gpa_t vmxon_ptr;
404 
405 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
406 	gpa_t current_vmptr;
407 	/* The host-usable pointer to the above */
408 	struct page *current_vmcs12_page;
409 	struct vmcs12 *current_vmcs12;
410 	struct vmcs *current_shadow_vmcs;
411 	/*
412 	 * Indicates if the shadow vmcs must be updated with the
413 	 * data hold by vmcs12
414 	 */
415 	bool sync_shadow_vmcs;
416 
417 	u64 vmcs01_tsc_offset;
418 	bool change_vmcs01_virtual_x2apic_mode;
419 	/* L2 must run next, and mustn't decide to exit to L1. */
420 	bool nested_run_pending;
421 
422 	struct loaded_vmcs vmcs02;
423 
424 	/*
425 	 * Guest pages referred to in the vmcs02 with host-physical
426 	 * pointers, so we must keep them pinned while L2 runs.
427 	 */
428 	struct page *apic_access_page;
429 	struct page *virtual_apic_page;
430 	struct page *pi_desc_page;
431 	struct pi_desc *pi_desc;
432 	bool pi_pending;
433 	u16 posted_intr_nv;
434 	u64 msr_ia32_feature_control;
435 
436 	struct hrtimer preemption_timer;
437 	bool preemption_timer_expired;
438 
439 	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
440 	u64 vmcs01_debugctl;
441 
442 	u16 vpid02;
443 	u16 last_vpid;
444 
445 	u32 nested_vmx_procbased_ctls_low;
446 	u32 nested_vmx_procbased_ctls_high;
447 	u32 nested_vmx_true_procbased_ctls_low;
448 	u32 nested_vmx_secondary_ctls_low;
449 	u32 nested_vmx_secondary_ctls_high;
450 	u32 nested_vmx_pinbased_ctls_low;
451 	u32 nested_vmx_pinbased_ctls_high;
452 	u32 nested_vmx_exit_ctls_low;
453 	u32 nested_vmx_exit_ctls_high;
454 	u32 nested_vmx_true_exit_ctls_low;
455 	u32 nested_vmx_entry_ctls_low;
456 	u32 nested_vmx_entry_ctls_high;
457 	u32 nested_vmx_true_entry_ctls_low;
458 	u32 nested_vmx_misc_low;
459 	u32 nested_vmx_misc_high;
460 	u32 nested_vmx_ept_caps;
461 	u32 nested_vmx_vpid_caps;
462 };
463 
464 #define POSTED_INTR_ON  0
465 #define POSTED_INTR_SN  1
466 
467 /* Posted-Interrupt Descriptor */
468 struct pi_desc {
469 	u32 pir[8];     /* Posted interrupt requested */
470 	union {
471 		struct {
472 				/* bit 256 - Outstanding Notification */
473 			u16	on	: 1,
474 				/* bit 257 - Suppress Notification */
475 				sn	: 1,
476 				/* bit 271:258 - Reserved */
477 				rsvd_1	: 14;
478 				/* bit 279:272 - Notification Vector */
479 			u8	nv;
480 				/* bit 287:280 - Reserved */
481 			u8	rsvd_2;
482 				/* bit 319:288 - Notification Destination */
483 			u32	ndst;
484 		};
485 		u64 control;
486 	};
487 	u32 rsvd[6];
488 } __aligned(64);
489 
pi_test_and_set_on(struct pi_desc * pi_desc)490 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
491 {
492 	return test_and_set_bit(POSTED_INTR_ON,
493 			(unsigned long *)&pi_desc->control);
494 }
495 
pi_test_and_clear_on(struct pi_desc * pi_desc)496 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
497 {
498 	return test_and_clear_bit(POSTED_INTR_ON,
499 			(unsigned long *)&pi_desc->control);
500 }
501 
pi_test_and_set_pir(int vector,struct pi_desc * pi_desc)502 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
503 {
504 	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
505 }
506 
pi_clear_sn(struct pi_desc * pi_desc)507 static inline void pi_clear_sn(struct pi_desc *pi_desc)
508 {
509 	return clear_bit(POSTED_INTR_SN,
510 			(unsigned long *)&pi_desc->control);
511 }
512 
pi_set_sn(struct pi_desc * pi_desc)513 static inline void pi_set_sn(struct pi_desc *pi_desc)
514 {
515 	return set_bit(POSTED_INTR_SN,
516 			(unsigned long *)&pi_desc->control);
517 }
518 
pi_test_on(struct pi_desc * pi_desc)519 static inline int pi_test_on(struct pi_desc *pi_desc)
520 {
521 	return test_bit(POSTED_INTR_ON,
522 			(unsigned long *)&pi_desc->control);
523 }
524 
pi_test_sn(struct pi_desc * pi_desc)525 static inline int pi_test_sn(struct pi_desc *pi_desc)
526 {
527 	return test_bit(POSTED_INTR_SN,
528 			(unsigned long *)&pi_desc->control);
529 }
530 
531 struct vcpu_vmx {
532 	struct kvm_vcpu       vcpu;
533 	unsigned long         host_rsp;
534 	u8                    fail;
535 	bool                  nmi_known_unmasked;
536 	u8		      msr_bitmap_mode;
537 	u32                   exit_intr_info;
538 	u32                   idt_vectoring_info;
539 	ulong                 rflags;
540 	struct shared_msr_entry *guest_msrs;
541 	int                   nmsrs;
542 	int                   save_nmsrs;
543 	unsigned long	      host_idt_base;
544 #ifdef CONFIG_X86_64
545 	u64 		      msr_host_kernel_gs_base;
546 	u64 		      msr_guest_kernel_gs_base;
547 #endif
548 
549 	u64 		      spec_ctrl;
550 
551 	u32 vm_entry_controls_shadow;
552 	u32 vm_exit_controls_shadow;
553 	/*
554 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
555 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
556 	 * guest (L2), it points to a different VMCS.
557 	 */
558 	struct loaded_vmcs    vmcs01;
559 	struct loaded_vmcs   *loaded_vmcs;
560 	bool                  __launched; /* temporary, used in vmx_vcpu_run */
561 	struct msr_autoload {
562 		unsigned nr;
563 		struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
564 		struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
565 	} msr_autoload;
566 	struct {
567 		int           loaded;
568 		u16           fs_sel, gs_sel, ldt_sel;
569 #ifdef CONFIG_X86_64
570 		u16           ds_sel, es_sel;
571 #endif
572 		int           gs_ldt_reload_needed;
573 		int           fs_reload_needed;
574 		u64           msr_host_bndcfgs;
575 		unsigned long vmcs_host_cr4;	/* May not match real cr4 */
576 	} host_state;
577 	struct {
578 		int vm86_active;
579 		ulong save_rflags;
580 		struct kvm_segment segs[8];
581 	} rmode;
582 	struct {
583 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
584 		struct kvm_save_segment {
585 			u16 selector;
586 			unsigned long base;
587 			u32 limit;
588 			u32 ar;
589 		} seg[8];
590 	} segment_cache;
591 	int vpid;
592 	bool emulation_required;
593 
594 	/* Support for vnmi-less CPUs */
595 	int soft_vnmi_blocked;
596 	ktime_t entry_time;
597 	s64 vnmi_blocked_time;
598 	u32 exit_reason;
599 
600 	/* Posted interrupt descriptor */
601 	struct pi_desc pi_desc;
602 
603 	/* Support for a guest hypervisor (nested VMX) */
604 	struct nested_vmx nested;
605 
606 	/* Dynamic PLE window. */
607 	int ple_window;
608 	bool ple_window_dirty;
609 
610 	/* Support for PML */
611 #define PML_ENTITY_NUM		512
612 	struct page *pml_pg;
613 
614 	u64 current_tsc_ratio;
615 };
616 
617 enum segment_cache_field {
618 	SEG_FIELD_SEL = 0,
619 	SEG_FIELD_BASE = 1,
620 	SEG_FIELD_LIMIT = 2,
621 	SEG_FIELD_AR = 3,
622 
623 	SEG_FIELD_NR = 4
624 };
625 
to_vmx(struct kvm_vcpu * vcpu)626 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
627 {
628 	return container_of(vcpu, struct vcpu_vmx, vcpu);
629 }
630 
vcpu_to_pi_desc(struct kvm_vcpu * vcpu)631 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
632 {
633 	return &(to_vmx(vcpu)->pi_desc);
634 }
635 
636 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
637 #define FIELD(number, name)	[number] = VMCS12_OFFSET(name)
638 #define FIELD64(number, name)	[number] = VMCS12_OFFSET(name), \
639 				[number##_HIGH] = VMCS12_OFFSET(name)+4
640 
641 
642 static unsigned long shadow_read_only_fields[] = {
643 	/*
644 	 * We do NOT shadow fields that are modified when L0
645 	 * traps and emulates any vmx instruction (e.g. VMPTRLD,
646 	 * VMXON...) executed by L1.
647 	 * For example, VM_INSTRUCTION_ERROR is read
648 	 * by L1 if a vmx instruction fails (part of the error path).
649 	 * Note the code assumes this logic. If for some reason
650 	 * we start shadowing these fields then we need to
651 	 * force a shadow sync when L0 emulates vmx instructions
652 	 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
653 	 * by nested_vmx_failValid)
654 	 */
655 	VM_EXIT_REASON,
656 	VM_EXIT_INTR_INFO,
657 	VM_EXIT_INSTRUCTION_LEN,
658 	IDT_VECTORING_INFO_FIELD,
659 	IDT_VECTORING_ERROR_CODE,
660 	VM_EXIT_INTR_ERROR_CODE,
661 	EXIT_QUALIFICATION,
662 	GUEST_LINEAR_ADDRESS,
663 	GUEST_PHYSICAL_ADDRESS
664 };
665 static int max_shadow_read_only_fields =
666 	ARRAY_SIZE(shadow_read_only_fields);
667 
668 static unsigned long shadow_read_write_fields[] = {
669 	TPR_THRESHOLD,
670 	GUEST_RIP,
671 	GUEST_RSP,
672 	GUEST_CR0,
673 	GUEST_CR3,
674 	GUEST_CR4,
675 	GUEST_INTERRUPTIBILITY_INFO,
676 	GUEST_RFLAGS,
677 	GUEST_CS_SELECTOR,
678 	GUEST_CS_AR_BYTES,
679 	GUEST_CS_LIMIT,
680 	GUEST_CS_BASE,
681 	GUEST_ES_BASE,
682 	GUEST_BNDCFGS,
683 	CR0_GUEST_HOST_MASK,
684 	CR0_READ_SHADOW,
685 	CR4_READ_SHADOW,
686 	TSC_OFFSET,
687 	EXCEPTION_BITMAP,
688 	CPU_BASED_VM_EXEC_CONTROL,
689 	VM_ENTRY_EXCEPTION_ERROR_CODE,
690 	VM_ENTRY_INTR_INFO_FIELD,
691 	VM_ENTRY_INSTRUCTION_LEN,
692 	VM_ENTRY_EXCEPTION_ERROR_CODE,
693 	HOST_FS_BASE,
694 	HOST_GS_BASE,
695 	HOST_FS_SELECTOR,
696 	HOST_GS_SELECTOR
697 };
698 static int max_shadow_read_write_fields =
699 	ARRAY_SIZE(shadow_read_write_fields);
700 
701 static const unsigned short vmcs_field_to_offset_table[] = {
702 	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
703 	FIELD(POSTED_INTR_NV, posted_intr_nv),
704 	FIELD(GUEST_ES_SELECTOR, guest_es_selector),
705 	FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
706 	FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
707 	FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
708 	FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
709 	FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
710 	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
711 	FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
712 	FIELD(GUEST_INTR_STATUS, guest_intr_status),
713 	FIELD(HOST_ES_SELECTOR, host_es_selector),
714 	FIELD(HOST_CS_SELECTOR, host_cs_selector),
715 	FIELD(HOST_SS_SELECTOR, host_ss_selector),
716 	FIELD(HOST_DS_SELECTOR, host_ds_selector),
717 	FIELD(HOST_FS_SELECTOR, host_fs_selector),
718 	FIELD(HOST_GS_SELECTOR, host_gs_selector),
719 	FIELD(HOST_TR_SELECTOR, host_tr_selector),
720 	FIELD64(IO_BITMAP_A, io_bitmap_a),
721 	FIELD64(IO_BITMAP_B, io_bitmap_b),
722 	FIELD64(MSR_BITMAP, msr_bitmap),
723 	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
724 	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
725 	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
726 	FIELD64(TSC_OFFSET, tsc_offset),
727 	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
728 	FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
729 	FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
730 	FIELD64(EPT_POINTER, ept_pointer),
731 	FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
732 	FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
733 	FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
734 	FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
735 	FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
736 	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
737 	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
738 	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
739 	FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
740 	FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
741 	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
742 	FIELD64(GUEST_PDPTR0, guest_pdptr0),
743 	FIELD64(GUEST_PDPTR1, guest_pdptr1),
744 	FIELD64(GUEST_PDPTR2, guest_pdptr2),
745 	FIELD64(GUEST_PDPTR3, guest_pdptr3),
746 	FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
747 	FIELD64(HOST_IA32_PAT, host_ia32_pat),
748 	FIELD64(HOST_IA32_EFER, host_ia32_efer),
749 	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
750 	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
751 	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
752 	FIELD(EXCEPTION_BITMAP, exception_bitmap),
753 	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
754 	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
755 	FIELD(CR3_TARGET_COUNT, cr3_target_count),
756 	FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
757 	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
758 	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
759 	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
760 	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
761 	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
762 	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
763 	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
764 	FIELD(TPR_THRESHOLD, tpr_threshold),
765 	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
766 	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
767 	FIELD(VM_EXIT_REASON, vm_exit_reason),
768 	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
769 	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
770 	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
771 	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
772 	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
773 	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
774 	FIELD(GUEST_ES_LIMIT, guest_es_limit),
775 	FIELD(GUEST_CS_LIMIT, guest_cs_limit),
776 	FIELD(GUEST_SS_LIMIT, guest_ss_limit),
777 	FIELD(GUEST_DS_LIMIT, guest_ds_limit),
778 	FIELD(GUEST_FS_LIMIT, guest_fs_limit),
779 	FIELD(GUEST_GS_LIMIT, guest_gs_limit),
780 	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
781 	FIELD(GUEST_TR_LIMIT, guest_tr_limit),
782 	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
783 	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
784 	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
785 	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
786 	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
787 	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
788 	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
789 	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
790 	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
791 	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
792 	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
793 	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
794 	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
795 	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
796 	FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
797 	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
798 	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
799 	FIELD(CR0_READ_SHADOW, cr0_read_shadow),
800 	FIELD(CR4_READ_SHADOW, cr4_read_shadow),
801 	FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
802 	FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
803 	FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
804 	FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
805 	FIELD(EXIT_QUALIFICATION, exit_qualification),
806 	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
807 	FIELD(GUEST_CR0, guest_cr0),
808 	FIELD(GUEST_CR3, guest_cr3),
809 	FIELD(GUEST_CR4, guest_cr4),
810 	FIELD(GUEST_ES_BASE, guest_es_base),
811 	FIELD(GUEST_CS_BASE, guest_cs_base),
812 	FIELD(GUEST_SS_BASE, guest_ss_base),
813 	FIELD(GUEST_DS_BASE, guest_ds_base),
814 	FIELD(GUEST_FS_BASE, guest_fs_base),
815 	FIELD(GUEST_GS_BASE, guest_gs_base),
816 	FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
817 	FIELD(GUEST_TR_BASE, guest_tr_base),
818 	FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
819 	FIELD(GUEST_IDTR_BASE, guest_idtr_base),
820 	FIELD(GUEST_DR7, guest_dr7),
821 	FIELD(GUEST_RSP, guest_rsp),
822 	FIELD(GUEST_RIP, guest_rip),
823 	FIELD(GUEST_RFLAGS, guest_rflags),
824 	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
825 	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
826 	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
827 	FIELD(HOST_CR0, host_cr0),
828 	FIELD(HOST_CR3, host_cr3),
829 	FIELD(HOST_CR4, host_cr4),
830 	FIELD(HOST_FS_BASE, host_fs_base),
831 	FIELD(HOST_GS_BASE, host_gs_base),
832 	FIELD(HOST_TR_BASE, host_tr_base),
833 	FIELD(HOST_GDTR_BASE, host_gdtr_base),
834 	FIELD(HOST_IDTR_BASE, host_idtr_base),
835 	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
836 	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
837 	FIELD(HOST_RSP, host_rsp),
838 	FIELD(HOST_RIP, host_rip),
839 };
840 
vmcs_field_to_offset(unsigned long field)841 static inline short vmcs_field_to_offset(unsigned long field)
842 {
843 	const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
844 	unsigned short offset;
845 
846 	BUILD_BUG_ON(size > SHRT_MAX);
847 	if (field >= size)
848 		return -ENOENT;
849 
850 	field = array_index_nospec(field, size);
851 	offset = vmcs_field_to_offset_table[field];
852 	if (offset == 0)
853 		return -ENOENT;
854 	return offset;
855 }
856 
get_vmcs12(struct kvm_vcpu * vcpu)857 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
858 {
859 	return to_vmx(vcpu)->nested.current_vmcs12;
860 }
861 
nested_get_page(struct kvm_vcpu * vcpu,gpa_t addr)862 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
863 {
864 	struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
865 	if (is_error_page(page))
866 		return NULL;
867 
868 	return page;
869 }
870 
nested_release_page(struct page * page)871 static void nested_release_page(struct page *page)
872 {
873 	kvm_release_page_dirty(page);
874 }
875 
nested_release_page_clean(struct page * page)876 static void nested_release_page_clean(struct page *page)
877 {
878 	kvm_release_page_clean(page);
879 }
880 
881 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
882 static u64 construct_eptp(unsigned long root_hpa);
883 static void kvm_cpu_vmxon(u64 addr);
884 static void kvm_cpu_vmxoff(void);
885 static bool vmx_xsaves_supported(void);
886 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu);
887 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
888 static void vmx_set_segment(struct kvm_vcpu *vcpu,
889 			    struct kvm_segment *var, int seg);
890 static void vmx_get_segment(struct kvm_vcpu *vcpu,
891 			    struct kvm_segment *var, int seg);
892 static bool guest_state_valid(struct kvm_vcpu *vcpu);
893 static u32 vmx_segment_access_rights(struct kvm_segment *var);
894 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
895 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
896 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
897 static int alloc_identity_pagetable(struct kvm *kvm);
898 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
899 static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
900 							  u32 msr, int type);
901 
902 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
903 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
904 /*
905  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
906  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
907  */
908 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
909 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
910 
911 /*
912  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
913  * can find which vCPU should be waken up.
914  */
915 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
916 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
917 
918 static unsigned long *vmx_io_bitmap_a;
919 static unsigned long *vmx_io_bitmap_b;
920 static unsigned long *vmx_vmread_bitmap;
921 static unsigned long *vmx_vmwrite_bitmap;
922 
923 static bool cpu_has_load_ia32_efer;
924 static bool cpu_has_load_perf_global_ctrl;
925 
926 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
927 static DEFINE_SPINLOCK(vmx_vpid_lock);
928 
929 static struct vmcs_config {
930 	int size;
931 	int order;
932 	u32 revision_id;
933 	u32 pin_based_exec_ctrl;
934 	u32 cpu_based_exec_ctrl;
935 	u32 cpu_based_2nd_exec_ctrl;
936 	u32 vmexit_ctrl;
937 	u32 vmentry_ctrl;
938 } vmcs_config;
939 
940 static struct vmx_capability {
941 	u32 ept;
942 	u32 vpid;
943 } vmx_capability;
944 
945 #define VMX_SEGMENT_FIELD(seg)					\
946 	[VCPU_SREG_##seg] = {                                   \
947 		.selector = GUEST_##seg##_SELECTOR,		\
948 		.base = GUEST_##seg##_BASE,		   	\
949 		.limit = GUEST_##seg##_LIMIT,		   	\
950 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
951 	}
952 
953 static const struct kvm_vmx_segment_field {
954 	unsigned selector;
955 	unsigned base;
956 	unsigned limit;
957 	unsigned ar_bytes;
958 } kvm_vmx_segment_fields[] = {
959 	VMX_SEGMENT_FIELD(CS),
960 	VMX_SEGMENT_FIELD(DS),
961 	VMX_SEGMENT_FIELD(ES),
962 	VMX_SEGMENT_FIELD(FS),
963 	VMX_SEGMENT_FIELD(GS),
964 	VMX_SEGMENT_FIELD(SS),
965 	VMX_SEGMENT_FIELD(TR),
966 	VMX_SEGMENT_FIELD(LDTR),
967 };
968 
969 static u64 host_efer;
970 
971 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
972 
973 /*
974  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
975  * away by decrementing the array size.
976  */
977 static const u32 vmx_msr_index[] = {
978 #ifdef CONFIG_X86_64
979 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
980 #endif
981 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
982 };
983 
is_page_fault(u32 intr_info)984 static inline bool is_page_fault(u32 intr_info)
985 {
986 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
987 			     INTR_INFO_VALID_MASK)) ==
988 		(INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
989 }
990 
is_no_device(u32 intr_info)991 static inline bool is_no_device(u32 intr_info)
992 {
993 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
994 			     INTR_INFO_VALID_MASK)) ==
995 		(INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
996 }
997 
is_invalid_opcode(u32 intr_info)998 static inline bool is_invalid_opcode(u32 intr_info)
999 {
1000 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1001 			     INTR_INFO_VALID_MASK)) ==
1002 		(INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
1003 }
1004 
is_external_interrupt(u32 intr_info)1005 static inline bool is_external_interrupt(u32 intr_info)
1006 {
1007 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1008 		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1009 }
1010 
is_machine_check(u32 intr_info)1011 static inline bool is_machine_check(u32 intr_info)
1012 {
1013 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1014 			     INTR_INFO_VALID_MASK)) ==
1015 		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1016 }
1017 
1018 /* Undocumented: icebp/int1 */
is_icebp(u32 intr_info)1019 static inline bool is_icebp(u32 intr_info)
1020 {
1021 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1022 		== (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
1023 }
1024 
cpu_has_vmx_msr_bitmap(void)1025 static inline bool cpu_has_vmx_msr_bitmap(void)
1026 {
1027 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1028 }
1029 
cpu_has_vmx_tpr_shadow(void)1030 static inline bool cpu_has_vmx_tpr_shadow(void)
1031 {
1032 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1033 }
1034 
cpu_need_tpr_shadow(struct kvm_vcpu * vcpu)1035 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1036 {
1037 	return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1038 }
1039 
cpu_has_secondary_exec_ctrls(void)1040 static inline bool cpu_has_secondary_exec_ctrls(void)
1041 {
1042 	return vmcs_config.cpu_based_exec_ctrl &
1043 		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1044 }
1045 
cpu_has_vmx_virtualize_apic_accesses(void)1046 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1047 {
1048 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1049 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1050 }
1051 
cpu_has_vmx_virtualize_x2apic_mode(void)1052 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1053 {
1054 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1055 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1056 }
1057 
cpu_has_vmx_apic_register_virt(void)1058 static inline bool cpu_has_vmx_apic_register_virt(void)
1059 {
1060 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1061 		SECONDARY_EXEC_APIC_REGISTER_VIRT;
1062 }
1063 
cpu_has_vmx_virtual_intr_delivery(void)1064 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1065 {
1066 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1067 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1068 }
1069 
cpu_has_vmx_posted_intr(void)1070 static inline bool cpu_has_vmx_posted_intr(void)
1071 {
1072 	return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1073 		vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1074 }
1075 
cpu_has_vmx_apicv(void)1076 static inline bool cpu_has_vmx_apicv(void)
1077 {
1078 	return cpu_has_vmx_apic_register_virt() &&
1079 		cpu_has_vmx_virtual_intr_delivery() &&
1080 		cpu_has_vmx_posted_intr();
1081 }
1082 
cpu_has_vmx_flexpriority(void)1083 static inline bool cpu_has_vmx_flexpriority(void)
1084 {
1085 	return cpu_has_vmx_tpr_shadow() &&
1086 		cpu_has_vmx_virtualize_apic_accesses();
1087 }
1088 
cpu_has_vmx_ept_execute_only(void)1089 static inline bool cpu_has_vmx_ept_execute_only(void)
1090 {
1091 	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1092 }
1093 
cpu_has_vmx_ept_2m_page(void)1094 static inline bool cpu_has_vmx_ept_2m_page(void)
1095 {
1096 	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1097 }
1098 
cpu_has_vmx_ept_1g_page(void)1099 static inline bool cpu_has_vmx_ept_1g_page(void)
1100 {
1101 	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1102 }
1103 
cpu_has_vmx_ept_4levels(void)1104 static inline bool cpu_has_vmx_ept_4levels(void)
1105 {
1106 	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1107 }
1108 
cpu_has_vmx_ept_ad_bits(void)1109 static inline bool cpu_has_vmx_ept_ad_bits(void)
1110 {
1111 	return vmx_capability.ept & VMX_EPT_AD_BIT;
1112 }
1113 
cpu_has_vmx_invept_context(void)1114 static inline bool cpu_has_vmx_invept_context(void)
1115 {
1116 	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1117 }
1118 
cpu_has_vmx_invept_global(void)1119 static inline bool cpu_has_vmx_invept_global(void)
1120 {
1121 	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1122 }
1123 
cpu_has_vmx_invvpid_single(void)1124 static inline bool cpu_has_vmx_invvpid_single(void)
1125 {
1126 	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1127 }
1128 
cpu_has_vmx_invvpid_global(void)1129 static inline bool cpu_has_vmx_invvpid_global(void)
1130 {
1131 	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1132 }
1133 
cpu_has_vmx_invvpid(void)1134 static inline bool cpu_has_vmx_invvpid(void)
1135 {
1136 	return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1137 }
1138 
cpu_has_vmx_ept(void)1139 static inline bool cpu_has_vmx_ept(void)
1140 {
1141 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1142 		SECONDARY_EXEC_ENABLE_EPT;
1143 }
1144 
cpu_has_vmx_unrestricted_guest(void)1145 static inline bool cpu_has_vmx_unrestricted_guest(void)
1146 {
1147 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1148 		SECONDARY_EXEC_UNRESTRICTED_GUEST;
1149 }
1150 
cpu_has_vmx_ple(void)1151 static inline bool cpu_has_vmx_ple(void)
1152 {
1153 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1154 		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1155 }
1156 
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)1157 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1158 {
1159 	return flexpriority_enabled && lapic_in_kernel(vcpu);
1160 }
1161 
cpu_has_vmx_vpid(void)1162 static inline bool cpu_has_vmx_vpid(void)
1163 {
1164 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1165 		SECONDARY_EXEC_ENABLE_VPID;
1166 }
1167 
cpu_has_vmx_rdtscp(void)1168 static inline bool cpu_has_vmx_rdtscp(void)
1169 {
1170 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1171 		SECONDARY_EXEC_RDTSCP;
1172 }
1173 
cpu_has_vmx_invpcid(void)1174 static inline bool cpu_has_vmx_invpcid(void)
1175 {
1176 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1177 		SECONDARY_EXEC_ENABLE_INVPCID;
1178 }
1179 
cpu_has_virtual_nmis(void)1180 static inline bool cpu_has_virtual_nmis(void)
1181 {
1182 	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1183 }
1184 
cpu_has_vmx_wbinvd_exit(void)1185 static inline bool cpu_has_vmx_wbinvd_exit(void)
1186 {
1187 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1188 		SECONDARY_EXEC_WBINVD_EXITING;
1189 }
1190 
cpu_has_vmx_shadow_vmcs(void)1191 static inline bool cpu_has_vmx_shadow_vmcs(void)
1192 {
1193 	u64 vmx_msr;
1194 	rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1195 	/* check if the cpu supports writing r/o exit information fields */
1196 	if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1197 		return false;
1198 
1199 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1200 		SECONDARY_EXEC_SHADOW_VMCS;
1201 }
1202 
cpu_has_vmx_pml(void)1203 static inline bool cpu_has_vmx_pml(void)
1204 {
1205 	return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1206 }
1207 
cpu_has_vmx_tsc_scaling(void)1208 static inline bool cpu_has_vmx_tsc_scaling(void)
1209 {
1210 	return vmcs_config.cpu_based_2nd_exec_ctrl &
1211 		SECONDARY_EXEC_TSC_SCALING;
1212 }
1213 
report_flexpriority(void)1214 static inline bool report_flexpriority(void)
1215 {
1216 	return flexpriority_enabled;
1217 }
1218 
nested_cpu_has(struct vmcs12 * vmcs12,u32 bit)1219 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1220 {
1221 	return vmcs12->cpu_based_vm_exec_control & bit;
1222 }
1223 
nested_cpu_has2(struct vmcs12 * vmcs12,u32 bit)1224 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1225 {
1226 	return (vmcs12->cpu_based_vm_exec_control &
1227 			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1228 		(vmcs12->secondary_vm_exec_control & bit);
1229 }
1230 
nested_cpu_has_virtual_nmis(struct vmcs12 * vmcs12)1231 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1232 {
1233 	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1234 }
1235 
nested_cpu_has_preemption_timer(struct vmcs12 * vmcs12)1236 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1237 {
1238 	return vmcs12->pin_based_vm_exec_control &
1239 		PIN_BASED_VMX_PREEMPTION_TIMER;
1240 }
1241 
nested_cpu_has_ept(struct vmcs12 * vmcs12)1242 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1243 {
1244 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1245 }
1246 
nested_cpu_has_xsaves(struct vmcs12 * vmcs12)1247 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1248 {
1249 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1250 		vmx_xsaves_supported();
1251 }
1252 
nested_cpu_has_virt_x2apic_mode(struct vmcs12 * vmcs12)1253 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1254 {
1255 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1256 }
1257 
nested_cpu_has_vpid(struct vmcs12 * vmcs12)1258 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1259 {
1260 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1261 }
1262 
nested_cpu_has_apic_reg_virt(struct vmcs12 * vmcs12)1263 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1264 {
1265 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1266 }
1267 
nested_cpu_has_vid(struct vmcs12 * vmcs12)1268 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1269 {
1270 	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1271 }
1272 
nested_cpu_has_posted_intr(struct vmcs12 * vmcs12)1273 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1274 {
1275 	return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1276 }
1277 
is_nmi(u32 intr_info)1278 static inline bool is_nmi(u32 intr_info)
1279 {
1280 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1281 		== (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1282 }
1283 
1284 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1285 			      u32 exit_intr_info,
1286 			      unsigned long exit_qualification);
1287 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1288 			struct vmcs12 *vmcs12,
1289 			u32 reason, unsigned long qualification);
1290 
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)1291 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1292 {
1293 	int i;
1294 
1295 	for (i = 0; i < vmx->nmsrs; ++i)
1296 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1297 			return i;
1298 	return -1;
1299 }
1300 
__invvpid(unsigned long ext,u16 vpid,gva_t gva)1301 static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva)
1302 {
1303     struct {
1304 	u64 vpid : 16;
1305 	u64 rsvd : 48;
1306 	u64 gva;
1307     } operand = { vpid, 0, gva };
1308 
1309     asm volatile (__ex(ASM_VMX_INVVPID)
1310 		  /* CF==1 or ZF==1 --> rc = -1 */
1311 		  "; ja 1f ; ud2 ; 1:"
1312 		  : : "a"(&operand), "c"(ext) : "cc", "memory");
1313 }
1314 
__invept(unsigned long ext,u64 eptp,gpa_t gpa)1315 static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa)
1316 {
1317 	struct {
1318 		u64 eptp, gpa;
1319 	} operand = {eptp, gpa};
1320 
1321 	asm volatile (__ex(ASM_VMX_INVEPT)
1322 			/* CF==1 or ZF==1 --> rc = -1 */
1323 			"; ja 1f ; ud2 ; 1:\n"
1324 			: : "a" (&operand), "c" (ext) : "cc", "memory");
1325 }
1326 
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)1327 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1328 {
1329 	int i;
1330 
1331 	i = __find_msr_index(vmx, msr);
1332 	if (i >= 0)
1333 		return &vmx->guest_msrs[i];
1334 	return NULL;
1335 }
1336 
vmcs_clear(struct vmcs * vmcs)1337 static void vmcs_clear(struct vmcs *vmcs)
1338 {
1339 	u64 phys_addr = __pa(vmcs);
1340 	u8 error;
1341 
1342 	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1343 		      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1344 		      : "cc", "memory");
1345 	if (error)
1346 		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1347 		       vmcs, phys_addr);
1348 }
1349 
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)1350 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1351 {
1352 	vmcs_clear(loaded_vmcs->vmcs);
1353 	loaded_vmcs->cpu = -1;
1354 	loaded_vmcs->launched = 0;
1355 }
1356 
vmcs_load(struct vmcs * vmcs)1357 static void vmcs_load(struct vmcs *vmcs)
1358 {
1359 	u64 phys_addr = __pa(vmcs);
1360 	u8 error;
1361 
1362 	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1363 			: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1364 			: "cc", "memory");
1365 	if (error)
1366 		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1367 		       vmcs, phys_addr);
1368 }
1369 
1370 #ifdef CONFIG_KEXEC_CORE
1371 /*
1372  * This bitmap is used to indicate whether the vmclear
1373  * operation is enabled on all cpus. All disabled by
1374  * default.
1375  */
1376 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1377 
crash_enable_local_vmclear(int cpu)1378 static inline void crash_enable_local_vmclear(int cpu)
1379 {
1380 	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1381 }
1382 
crash_disable_local_vmclear(int cpu)1383 static inline void crash_disable_local_vmclear(int cpu)
1384 {
1385 	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1386 }
1387 
crash_local_vmclear_enabled(int cpu)1388 static inline int crash_local_vmclear_enabled(int cpu)
1389 {
1390 	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1391 }
1392 
crash_vmclear_local_loaded_vmcss(void)1393 static void crash_vmclear_local_loaded_vmcss(void)
1394 {
1395 	int cpu = raw_smp_processor_id();
1396 	struct loaded_vmcs *v;
1397 
1398 	if (!crash_local_vmclear_enabled(cpu))
1399 		return;
1400 
1401 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1402 			    loaded_vmcss_on_cpu_link)
1403 		vmcs_clear(v->vmcs);
1404 }
1405 #else
crash_enable_local_vmclear(int cpu)1406 static inline void crash_enable_local_vmclear(int cpu) { }
crash_disable_local_vmclear(int cpu)1407 static inline void crash_disable_local_vmclear(int cpu) { }
1408 #endif /* CONFIG_KEXEC_CORE */
1409 
__loaded_vmcs_clear(void * arg)1410 static void __loaded_vmcs_clear(void *arg)
1411 {
1412 	struct loaded_vmcs *loaded_vmcs = arg;
1413 	int cpu = raw_smp_processor_id();
1414 
1415 	if (loaded_vmcs->cpu != cpu)
1416 		return; /* vcpu migration can race with cpu offline */
1417 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1418 		per_cpu(current_vmcs, cpu) = NULL;
1419 	crash_disable_local_vmclear(cpu);
1420 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1421 
1422 	/*
1423 	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1424 	 * is before setting loaded_vmcs->vcpu to -1 which is done in
1425 	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1426 	 * then adds the vmcs into percpu list before it is deleted.
1427 	 */
1428 	smp_wmb();
1429 
1430 	loaded_vmcs_init(loaded_vmcs);
1431 	crash_enable_local_vmclear(cpu);
1432 }
1433 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)1434 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1435 {
1436 	int cpu = loaded_vmcs->cpu;
1437 
1438 	if (cpu != -1)
1439 		smp_call_function_single(cpu,
1440 			 __loaded_vmcs_clear, loaded_vmcs, 1);
1441 }
1442 
vpid_sync_vcpu_single(int vpid)1443 static inline void vpid_sync_vcpu_single(int vpid)
1444 {
1445 	if (vpid == 0)
1446 		return;
1447 
1448 	if (cpu_has_vmx_invvpid_single())
1449 		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1450 }
1451 
vpid_sync_vcpu_global(void)1452 static inline void vpid_sync_vcpu_global(void)
1453 {
1454 	if (cpu_has_vmx_invvpid_global())
1455 		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1456 }
1457 
vpid_sync_context(int vpid)1458 static inline void vpid_sync_context(int vpid)
1459 {
1460 	if (cpu_has_vmx_invvpid_single())
1461 		vpid_sync_vcpu_single(vpid);
1462 	else
1463 		vpid_sync_vcpu_global();
1464 }
1465 
ept_sync_global(void)1466 static inline void ept_sync_global(void)
1467 {
1468 	if (cpu_has_vmx_invept_global())
1469 		__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1470 }
1471 
ept_sync_context(u64 eptp)1472 static inline void ept_sync_context(u64 eptp)
1473 {
1474 	if (enable_ept) {
1475 		if (cpu_has_vmx_invept_context())
1476 			__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1477 		else
1478 			ept_sync_global();
1479 	}
1480 }
1481 
vmcs_readl(unsigned long field)1482 static __always_inline unsigned long vmcs_readl(unsigned long field)
1483 {
1484 	unsigned long value;
1485 
1486 	asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1487 		      : "=a"(value) : "d"(field) : "cc");
1488 	return value;
1489 }
1490 
vmcs_read16(unsigned long field)1491 static __always_inline u16 vmcs_read16(unsigned long field)
1492 {
1493 	return vmcs_readl(field);
1494 }
1495 
vmcs_read32(unsigned long field)1496 static __always_inline u32 vmcs_read32(unsigned long field)
1497 {
1498 	return vmcs_readl(field);
1499 }
1500 
vmcs_read64(unsigned long field)1501 static __always_inline u64 vmcs_read64(unsigned long field)
1502 {
1503 #ifdef CONFIG_X86_64
1504 	return vmcs_readl(field);
1505 #else
1506 	return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1507 #endif
1508 }
1509 
vmwrite_error(unsigned long field,unsigned long value)1510 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1511 {
1512 	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1513 	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1514 	dump_stack();
1515 }
1516 
vmcs_writel(unsigned long field,unsigned long value)1517 static void vmcs_writel(unsigned long field, unsigned long value)
1518 {
1519 	u8 error;
1520 
1521 	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1522 		       : "=q"(error) : "a"(value), "d"(field) : "cc");
1523 	if (unlikely(error))
1524 		vmwrite_error(field, value);
1525 }
1526 
vmcs_write16(unsigned long field,u16 value)1527 static void vmcs_write16(unsigned long field, u16 value)
1528 {
1529 	vmcs_writel(field, value);
1530 }
1531 
vmcs_write32(unsigned long field,u32 value)1532 static void vmcs_write32(unsigned long field, u32 value)
1533 {
1534 	vmcs_writel(field, value);
1535 }
1536 
vmcs_write64(unsigned long field,u64 value)1537 static void vmcs_write64(unsigned long field, u64 value)
1538 {
1539 	vmcs_writel(field, value);
1540 #ifndef CONFIG_X86_64
1541 	asm volatile ("");
1542 	vmcs_writel(field+1, value >> 32);
1543 #endif
1544 }
1545 
vmcs_clear_bits(unsigned long field,u32 mask)1546 static void vmcs_clear_bits(unsigned long field, u32 mask)
1547 {
1548 	vmcs_writel(field, vmcs_readl(field) & ~mask);
1549 }
1550 
vmcs_set_bits(unsigned long field,u32 mask)1551 static void vmcs_set_bits(unsigned long field, u32 mask)
1552 {
1553 	vmcs_writel(field, vmcs_readl(field) | mask);
1554 }
1555 
vm_entry_controls_init(struct vcpu_vmx * vmx,u32 val)1556 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1557 {
1558 	vmcs_write32(VM_ENTRY_CONTROLS, val);
1559 	vmx->vm_entry_controls_shadow = val;
1560 }
1561 
vm_entry_controls_set(struct vcpu_vmx * vmx,u32 val)1562 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1563 {
1564 	if (vmx->vm_entry_controls_shadow != val)
1565 		vm_entry_controls_init(vmx, val);
1566 }
1567 
vm_entry_controls_get(struct vcpu_vmx * vmx)1568 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1569 {
1570 	return vmx->vm_entry_controls_shadow;
1571 }
1572 
1573 
vm_entry_controls_setbit(struct vcpu_vmx * vmx,u32 val)1574 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1575 {
1576 	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1577 }
1578 
vm_entry_controls_clearbit(struct vcpu_vmx * vmx,u32 val)1579 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1580 {
1581 	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1582 }
1583 
vm_exit_controls_init(struct vcpu_vmx * vmx,u32 val)1584 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1585 {
1586 	vmcs_write32(VM_EXIT_CONTROLS, val);
1587 	vmx->vm_exit_controls_shadow = val;
1588 }
1589 
vm_exit_controls_set(struct vcpu_vmx * vmx,u32 val)1590 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1591 {
1592 	if (vmx->vm_exit_controls_shadow != val)
1593 		vm_exit_controls_init(vmx, val);
1594 }
1595 
vm_exit_controls_get(struct vcpu_vmx * vmx)1596 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1597 {
1598 	return vmx->vm_exit_controls_shadow;
1599 }
1600 
1601 
vm_exit_controls_setbit(struct vcpu_vmx * vmx,u32 val)1602 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1603 {
1604 	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1605 }
1606 
vm_exit_controls_clearbit(struct vcpu_vmx * vmx,u32 val)1607 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1608 {
1609 	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1610 }
1611 
vmx_segment_cache_clear(struct vcpu_vmx * vmx)1612 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1613 {
1614 	vmx->segment_cache.bitmask = 0;
1615 }
1616 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)1617 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1618 				       unsigned field)
1619 {
1620 	bool ret;
1621 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1622 
1623 	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1624 		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1625 		vmx->segment_cache.bitmask = 0;
1626 	}
1627 	ret = vmx->segment_cache.bitmask & mask;
1628 	vmx->segment_cache.bitmask |= mask;
1629 	return ret;
1630 }
1631 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)1632 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1633 {
1634 	u16 *p = &vmx->segment_cache.seg[seg].selector;
1635 
1636 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1637 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1638 	return *p;
1639 }
1640 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)1641 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1642 {
1643 	ulong *p = &vmx->segment_cache.seg[seg].base;
1644 
1645 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1646 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1647 	return *p;
1648 }
1649 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)1650 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1651 {
1652 	u32 *p = &vmx->segment_cache.seg[seg].limit;
1653 
1654 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1655 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1656 	return *p;
1657 }
1658 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)1659 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1660 {
1661 	u32 *p = &vmx->segment_cache.seg[seg].ar;
1662 
1663 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1664 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1665 	return *p;
1666 }
1667 
update_exception_bitmap(struct kvm_vcpu * vcpu)1668 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1669 {
1670 	u32 eb;
1671 
1672 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1673 	     (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1674 	if ((vcpu->guest_debug &
1675 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1676 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1677 		eb |= 1u << BP_VECTOR;
1678 	if (to_vmx(vcpu)->rmode.vm86_active)
1679 		eb = ~0;
1680 	if (enable_ept)
1681 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1682 	if (vcpu->fpu_active)
1683 		eb &= ~(1u << NM_VECTOR);
1684 
1685 	/* When we are running a nested L2 guest and L1 specified for it a
1686 	 * certain exception bitmap, we must trap the same exceptions and pass
1687 	 * them to L1. When running L2, we will only handle the exceptions
1688 	 * specified above if L1 did not want them.
1689 	 */
1690 	if (is_guest_mode(vcpu))
1691 		eb |= get_vmcs12(vcpu)->exception_bitmap;
1692 
1693 	vmcs_write32(EXCEPTION_BITMAP, eb);
1694 }
1695 
1696 /*
1697  * Check if MSR is intercepted for currently loaded MSR bitmap.
1698  */
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)1699 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
1700 {
1701 	unsigned long *msr_bitmap;
1702 	int f = sizeof(unsigned long);
1703 
1704 	if (!cpu_has_vmx_msr_bitmap())
1705 		return true;
1706 
1707 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
1708 
1709 	if (msr <= 0x1fff) {
1710 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
1711 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1712 		msr &= 0x1fff;
1713 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
1714 	}
1715 
1716 	return true;
1717 }
1718 
1719 /*
1720  * Check if MSR is intercepted for L01 MSR bitmap.
1721  */
msr_write_intercepted_l01(struct kvm_vcpu * vcpu,u32 msr)1722 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
1723 {
1724 	unsigned long *msr_bitmap;
1725 	int f = sizeof(unsigned long);
1726 
1727 	if (!cpu_has_vmx_msr_bitmap())
1728 		return true;
1729 
1730 	msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
1731 
1732 	if (msr <= 0x1fff) {
1733 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
1734 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1735 		msr &= 0x1fff;
1736 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
1737 	}
1738 
1739 	return true;
1740 }
1741 
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)1742 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1743 		unsigned long entry, unsigned long exit)
1744 {
1745 	vm_entry_controls_clearbit(vmx, entry);
1746 	vm_exit_controls_clearbit(vmx, exit);
1747 }
1748 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)1749 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1750 {
1751 	unsigned i;
1752 	struct msr_autoload *m = &vmx->msr_autoload;
1753 
1754 	switch (msr) {
1755 	case MSR_EFER:
1756 		if (cpu_has_load_ia32_efer) {
1757 			clear_atomic_switch_msr_special(vmx,
1758 					VM_ENTRY_LOAD_IA32_EFER,
1759 					VM_EXIT_LOAD_IA32_EFER);
1760 			return;
1761 		}
1762 		break;
1763 	case MSR_CORE_PERF_GLOBAL_CTRL:
1764 		if (cpu_has_load_perf_global_ctrl) {
1765 			clear_atomic_switch_msr_special(vmx,
1766 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1767 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1768 			return;
1769 		}
1770 		break;
1771 	}
1772 
1773 	for (i = 0; i < m->nr; ++i)
1774 		if (m->guest[i].index == msr)
1775 			break;
1776 
1777 	if (i == m->nr)
1778 		return;
1779 	--m->nr;
1780 	m->guest[i] = m->guest[m->nr];
1781 	m->host[i] = m->host[m->nr];
1782 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1783 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1784 }
1785 
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1786 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1787 		unsigned long entry, unsigned long exit,
1788 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1789 		u64 guest_val, u64 host_val)
1790 {
1791 	vmcs_write64(guest_val_vmcs, guest_val);
1792 	vmcs_write64(host_val_vmcs, host_val);
1793 	vm_entry_controls_setbit(vmx, entry);
1794 	vm_exit_controls_setbit(vmx, exit);
1795 }
1796 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val)1797 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1798 				  u64 guest_val, u64 host_val)
1799 {
1800 	unsigned i;
1801 	struct msr_autoload *m = &vmx->msr_autoload;
1802 
1803 	switch (msr) {
1804 	case MSR_EFER:
1805 		if (cpu_has_load_ia32_efer) {
1806 			add_atomic_switch_msr_special(vmx,
1807 					VM_ENTRY_LOAD_IA32_EFER,
1808 					VM_EXIT_LOAD_IA32_EFER,
1809 					GUEST_IA32_EFER,
1810 					HOST_IA32_EFER,
1811 					guest_val, host_val);
1812 			return;
1813 		}
1814 		break;
1815 	case MSR_CORE_PERF_GLOBAL_CTRL:
1816 		if (cpu_has_load_perf_global_ctrl) {
1817 			add_atomic_switch_msr_special(vmx,
1818 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1819 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1820 					GUEST_IA32_PERF_GLOBAL_CTRL,
1821 					HOST_IA32_PERF_GLOBAL_CTRL,
1822 					guest_val, host_val);
1823 			return;
1824 		}
1825 		break;
1826 	case MSR_IA32_PEBS_ENABLE:
1827 		/* PEBS needs a quiescent period after being disabled (to write
1828 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1829 		 * provide that period, so a CPU could write host's record into
1830 		 * guest's memory.
1831 		 */
1832 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1833 	}
1834 
1835 	for (i = 0; i < m->nr; ++i)
1836 		if (m->guest[i].index == msr)
1837 			break;
1838 
1839 	if (i == NR_AUTOLOAD_MSRS) {
1840 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1841 				"Can't add msr %x\n", msr);
1842 		return;
1843 	} else if (i == m->nr) {
1844 		++m->nr;
1845 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1846 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1847 	}
1848 
1849 	m->guest[i].index = msr;
1850 	m->guest[i].value = guest_val;
1851 	m->host[i].index = msr;
1852 	m->host[i].value = host_val;
1853 }
1854 
reload_tss(void)1855 static void reload_tss(void)
1856 {
1857 	/*
1858 	 * VT restores TR but not its size.  Useless.
1859 	 */
1860 	struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1861 	struct desc_struct *descs;
1862 
1863 	descs = (void *)gdt->address;
1864 	descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1865 	load_TR_desc();
1866 }
1867 
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)1868 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1869 {
1870 	u64 guest_efer = vmx->vcpu.arch.efer;
1871 	u64 ignore_bits = 0;
1872 
1873 	if (!enable_ept) {
1874 		/*
1875 		 * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
1876 		 * host CPUID is more efficient than testing guest CPUID
1877 		 * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
1878 		 */
1879 		if (boot_cpu_has(X86_FEATURE_SMEP))
1880 			guest_efer |= EFER_NX;
1881 		else if (!(guest_efer & EFER_NX))
1882 			ignore_bits |= EFER_NX;
1883 	}
1884 
1885 	/*
1886 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1887 	 */
1888 	ignore_bits |= EFER_SCE;
1889 #ifdef CONFIG_X86_64
1890 	ignore_bits |= EFER_LMA | EFER_LME;
1891 	/* SCE is meaningful only in long mode on Intel */
1892 	if (guest_efer & EFER_LMA)
1893 		ignore_bits &= ~(u64)EFER_SCE;
1894 #endif
1895 
1896 	clear_atomic_switch_msr(vmx, MSR_EFER);
1897 
1898 	/*
1899 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1900 	 * On CPUs that support "load IA32_EFER", always switch EFER
1901 	 * atomically, since it's faster than switching it manually.
1902 	 */
1903 	if (cpu_has_load_ia32_efer ||
1904 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1905 		if (!(guest_efer & EFER_LMA))
1906 			guest_efer &= ~EFER_LME;
1907 		if (guest_efer != host_efer)
1908 			add_atomic_switch_msr(vmx, MSR_EFER,
1909 					      guest_efer, host_efer);
1910 		return false;
1911 	} else {
1912 		guest_efer &= ~ignore_bits;
1913 		guest_efer |= host_efer & ignore_bits;
1914 
1915 		vmx->guest_msrs[efer_offset].data = guest_efer;
1916 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1917 
1918 		return true;
1919 	}
1920 }
1921 
segment_base(u16 selector)1922 static unsigned long segment_base(u16 selector)
1923 {
1924 	struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1925 	struct desc_struct *d;
1926 	unsigned long table_base;
1927 	unsigned long v;
1928 
1929 	if (!(selector & ~3))
1930 		return 0;
1931 
1932 	table_base = gdt->address;
1933 
1934 	if (selector & 4) {           /* from ldt */
1935 		u16 ldt_selector = kvm_read_ldt();
1936 
1937 		if (!(ldt_selector & ~3))
1938 			return 0;
1939 
1940 		table_base = segment_base(ldt_selector);
1941 	}
1942 	d = (struct desc_struct *)(table_base + (selector & ~7));
1943 	v = get_desc_base(d);
1944 #ifdef CONFIG_X86_64
1945        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1946                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1947 #endif
1948 	return v;
1949 }
1950 
kvm_read_tr_base(void)1951 static inline unsigned long kvm_read_tr_base(void)
1952 {
1953 	u16 tr;
1954 	asm("str %0" : "=g"(tr));
1955 	return segment_base(tr);
1956 }
1957 
vmx_save_host_state(struct kvm_vcpu * vcpu)1958 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1959 {
1960 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1961 	int i;
1962 
1963 	if (vmx->host_state.loaded)
1964 		return;
1965 
1966 	vmx->host_state.loaded = 1;
1967 	/*
1968 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1969 	 * allow segment selectors with cpl > 0 or ti == 1.
1970 	 */
1971 	vmx->host_state.ldt_sel = kvm_read_ldt();
1972 	vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1973 	savesegment(fs, vmx->host_state.fs_sel);
1974 	if (!(vmx->host_state.fs_sel & 7)) {
1975 		vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1976 		vmx->host_state.fs_reload_needed = 0;
1977 	} else {
1978 		vmcs_write16(HOST_FS_SELECTOR, 0);
1979 		vmx->host_state.fs_reload_needed = 1;
1980 	}
1981 	savesegment(gs, vmx->host_state.gs_sel);
1982 	if (!(vmx->host_state.gs_sel & 7))
1983 		vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1984 	else {
1985 		vmcs_write16(HOST_GS_SELECTOR, 0);
1986 		vmx->host_state.gs_ldt_reload_needed = 1;
1987 	}
1988 
1989 #ifdef CONFIG_X86_64
1990 	savesegment(ds, vmx->host_state.ds_sel);
1991 	savesegment(es, vmx->host_state.es_sel);
1992 #endif
1993 
1994 #ifdef CONFIG_X86_64
1995 	vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1996 	vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1997 #else
1998 	vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1999 	vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2000 #endif
2001 
2002 #ifdef CONFIG_X86_64
2003 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2004 	if (is_long_mode(&vmx->vcpu))
2005 		wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2006 #endif
2007 	if (boot_cpu_has(X86_FEATURE_MPX))
2008 		rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2009 	for (i = 0; i < vmx->save_nmsrs; ++i)
2010 		kvm_set_shared_msr(vmx->guest_msrs[i].index,
2011 				   vmx->guest_msrs[i].data,
2012 				   vmx->guest_msrs[i].mask);
2013 }
2014 
__vmx_load_host_state(struct vcpu_vmx * vmx)2015 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2016 {
2017 	if (!vmx->host_state.loaded)
2018 		return;
2019 
2020 	++vmx->vcpu.stat.host_state_reload;
2021 	vmx->host_state.loaded = 0;
2022 #ifdef CONFIG_X86_64
2023 	if (is_long_mode(&vmx->vcpu))
2024 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2025 #endif
2026 	if (vmx->host_state.gs_ldt_reload_needed) {
2027 		kvm_load_ldt(vmx->host_state.ldt_sel);
2028 #ifdef CONFIG_X86_64
2029 		load_gs_index(vmx->host_state.gs_sel);
2030 #else
2031 		loadsegment(gs, vmx->host_state.gs_sel);
2032 #endif
2033 	}
2034 	if (vmx->host_state.fs_reload_needed)
2035 		loadsegment(fs, vmx->host_state.fs_sel);
2036 #ifdef CONFIG_X86_64
2037 	if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2038 		loadsegment(ds, vmx->host_state.ds_sel);
2039 		loadsegment(es, vmx->host_state.es_sel);
2040 	}
2041 #endif
2042 	reload_tss();
2043 #ifdef CONFIG_X86_64
2044 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2045 #endif
2046 	if (vmx->host_state.msr_host_bndcfgs)
2047 		wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2048 	/*
2049 	 * If the FPU is not active (through the host task or
2050 	 * the guest vcpu), then restore the cr0.TS bit.
2051 	 */
2052 	if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
2053 		stts();
2054 	load_gdt(this_cpu_ptr(&host_gdt));
2055 }
2056 
vmx_load_host_state(struct vcpu_vmx * vmx)2057 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2058 {
2059 	preempt_disable();
2060 	__vmx_load_host_state(vmx);
2061 	preempt_enable();
2062 }
2063 
vmx_vcpu_pi_load(struct kvm_vcpu * vcpu,int cpu)2064 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2065 {
2066 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2067 	struct pi_desc old, new;
2068 	unsigned int dest;
2069 
2070 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2071 		!irq_remapping_cap(IRQ_POSTING_CAP))
2072 		return;
2073 
2074 	do {
2075 		old.control = new.control = pi_desc->control;
2076 
2077 		/*
2078 		 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2079 		 * are two possible cases:
2080 		 * 1. After running 'pre_block', context switch
2081 		 *    happened. For this case, 'sn' was set in
2082 		 *    vmx_vcpu_put(), so we need to clear it here.
2083 		 * 2. After running 'pre_block', we were blocked,
2084 		 *    and woken up by some other guy. For this case,
2085 		 *    we don't need to do anything, 'pi_post_block'
2086 		 *    will do everything for us. However, we cannot
2087 		 *    check whether it is case #1 or case #2 here
2088 		 *    (maybe, not needed), so we also clear sn here,
2089 		 *    I think it is not a big deal.
2090 		 */
2091 		if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2092 			if (vcpu->cpu != cpu) {
2093 				dest = cpu_physical_id(cpu);
2094 
2095 				if (x2apic_enabled())
2096 					new.ndst = dest;
2097 				else
2098 					new.ndst = (dest << 8) & 0xFF00;
2099 			}
2100 
2101 			/* set 'NV' to 'notification vector' */
2102 			new.nv = POSTED_INTR_VECTOR;
2103 		}
2104 
2105 		/* Allow posting non-urgent interrupts */
2106 		new.sn = 0;
2107 	} while (cmpxchg64(&pi_desc->control, old.control,
2108 			   new.control) != old.control);
2109 }
2110 /*
2111  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2112  * vcpu mutex is already taken.
2113  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2114 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2115 {
2116 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2117 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2118 
2119 	if (!vmm_exclusive)
2120 		kvm_cpu_vmxon(phys_addr);
2121 	else if (vmx->loaded_vmcs->cpu != cpu)
2122 		loaded_vmcs_clear(vmx->loaded_vmcs);
2123 
2124 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2125 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2126 		vmcs_load(vmx->loaded_vmcs->vmcs);
2127 		indirect_branch_prediction_barrier();
2128 	}
2129 
2130 	if (vmx->loaded_vmcs->cpu != cpu) {
2131 		struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2132 		unsigned long sysenter_esp;
2133 
2134 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2135 		local_irq_disable();
2136 		crash_disable_local_vmclear(cpu);
2137 
2138 		/*
2139 		 * Read loaded_vmcs->cpu should be before fetching
2140 		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2141 		 * See the comments in __loaded_vmcs_clear().
2142 		 */
2143 		smp_rmb();
2144 
2145 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2146 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
2147 		crash_enable_local_vmclear(cpu);
2148 		local_irq_enable();
2149 
2150 		/*
2151 		 * Linux uses per-cpu TSS and GDT, so set these when switching
2152 		 * processors.
2153 		 */
2154 		vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2155 		vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
2156 
2157 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2158 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2159 
2160 		vmx->loaded_vmcs->cpu = cpu;
2161 	}
2162 
2163 	/* Setup TSC multiplier */
2164 	if (kvm_has_tsc_control &&
2165 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) {
2166 		vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2167 		vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2168 	}
2169 
2170 	vmx_vcpu_pi_load(vcpu, cpu);
2171 }
2172 
vmx_vcpu_pi_put(struct kvm_vcpu * vcpu)2173 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2174 {
2175 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2176 
2177 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2178 		!irq_remapping_cap(IRQ_POSTING_CAP))
2179 		return;
2180 
2181 	/* Set SN when the vCPU is preempted */
2182 	if (vcpu->preempted)
2183 		pi_set_sn(pi_desc);
2184 }
2185 
vmx_vcpu_put(struct kvm_vcpu * vcpu)2186 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2187 {
2188 	vmx_vcpu_pi_put(vcpu);
2189 
2190 	__vmx_load_host_state(to_vmx(vcpu));
2191 	if (!vmm_exclusive) {
2192 		__loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2193 		vcpu->cpu = -1;
2194 		kvm_cpu_vmxoff();
2195 	}
2196 }
2197 
vmx_fpu_activate(struct kvm_vcpu * vcpu)2198 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2199 {
2200 	ulong cr0;
2201 
2202 	if (vcpu->fpu_active)
2203 		return;
2204 	vcpu->fpu_active = 1;
2205 	cr0 = vmcs_readl(GUEST_CR0);
2206 	cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2207 	cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2208 	vmcs_writel(GUEST_CR0, cr0);
2209 	update_exception_bitmap(vcpu);
2210 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2211 	if (is_guest_mode(vcpu))
2212 		vcpu->arch.cr0_guest_owned_bits &=
2213 			~get_vmcs12(vcpu)->cr0_guest_host_mask;
2214 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2215 }
2216 
2217 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2218 
2219 /*
2220  * Return the cr0 value that a nested guest would read. This is a combination
2221  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2222  * its hypervisor (cr0_read_shadow).
2223  */
nested_read_cr0(struct vmcs12 * fields)2224 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2225 {
2226 	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2227 		(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2228 }
nested_read_cr4(struct vmcs12 * fields)2229 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2230 {
2231 	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2232 		(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2233 }
2234 
vmx_fpu_deactivate(struct kvm_vcpu * vcpu)2235 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2236 {
2237 	/* Note that there is no vcpu->fpu_active = 0 here. The caller must
2238 	 * set this *before* calling this function.
2239 	 */
2240 	vmx_decache_cr0_guest_bits(vcpu);
2241 	vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2242 	update_exception_bitmap(vcpu);
2243 	vcpu->arch.cr0_guest_owned_bits = 0;
2244 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2245 	if (is_guest_mode(vcpu)) {
2246 		/*
2247 		 * L1's specified read shadow might not contain the TS bit,
2248 		 * so now that we turned on shadowing of this bit, we need to
2249 		 * set this bit of the shadow. Like in nested_vmx_run we need
2250 		 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2251 		 * up-to-date here because we just decached cr0.TS (and we'll
2252 		 * only update vmcs12->guest_cr0 on nested exit).
2253 		 */
2254 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2255 		vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2256 			(vcpu->arch.cr0 & X86_CR0_TS);
2257 		vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2258 	} else
2259 		vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2260 }
2261 
vmx_get_rflags(struct kvm_vcpu * vcpu)2262 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2263 {
2264 	unsigned long rflags, save_rflags;
2265 
2266 	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2267 		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2268 		rflags = vmcs_readl(GUEST_RFLAGS);
2269 		if (to_vmx(vcpu)->rmode.vm86_active) {
2270 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2271 			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2272 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2273 		}
2274 		to_vmx(vcpu)->rflags = rflags;
2275 	}
2276 	return to_vmx(vcpu)->rflags;
2277 }
2278 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)2279 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2280 {
2281 	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2282 	to_vmx(vcpu)->rflags = rflags;
2283 	if (to_vmx(vcpu)->rmode.vm86_active) {
2284 		to_vmx(vcpu)->rmode.save_rflags = rflags;
2285 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2286 	}
2287 	vmcs_writel(GUEST_RFLAGS, rflags);
2288 }
2289 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)2290 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2291 {
2292 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2293 	int ret = 0;
2294 
2295 	if (interruptibility & GUEST_INTR_STATE_STI)
2296 		ret |= KVM_X86_SHADOW_INT_STI;
2297 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2298 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
2299 
2300 	return ret;
2301 }
2302 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)2303 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2304 {
2305 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2306 	u32 interruptibility = interruptibility_old;
2307 
2308 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2309 
2310 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2311 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
2312 	else if (mask & KVM_X86_SHADOW_INT_STI)
2313 		interruptibility |= GUEST_INTR_STATE_STI;
2314 
2315 	if ((interruptibility != interruptibility_old))
2316 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2317 }
2318 
skip_emulated_instruction(struct kvm_vcpu * vcpu)2319 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2320 {
2321 	unsigned long rip;
2322 
2323 	rip = kvm_rip_read(vcpu);
2324 	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2325 	kvm_rip_write(vcpu, rip);
2326 
2327 	/* skipping an emulated instruction also counts */
2328 	vmx_set_interrupt_shadow(vcpu, 0);
2329 }
2330 
2331 /*
2332  * KVM wants to inject page-faults which it got to the guest. This function
2333  * checks whether in a nested guest, we need to inject them to L1 or L2.
2334  */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned nr)2335 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2336 {
2337 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2338 
2339 	if (!(vmcs12->exception_bitmap & (1u << nr)))
2340 		return 0;
2341 
2342 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2343 			  vmcs_read32(VM_EXIT_INTR_INFO),
2344 			  vmcs_readl(EXIT_QUALIFICATION));
2345 	return 1;
2346 }
2347 
vmx_queue_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error_code,u32 error_code,bool reinject)2348 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2349 				bool has_error_code, u32 error_code,
2350 				bool reinject)
2351 {
2352 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2353 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
2354 
2355 	if (!reinject && is_guest_mode(vcpu) &&
2356 	    nested_vmx_check_exception(vcpu, nr))
2357 		return;
2358 
2359 	if (has_error_code) {
2360 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2361 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2362 	}
2363 
2364 	if (vmx->rmode.vm86_active) {
2365 		int inc_eip = 0;
2366 		if (kvm_exception_is_soft(nr))
2367 			inc_eip = vcpu->arch.event_exit_inst_len;
2368 		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2369 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2370 		return;
2371 	}
2372 
2373 	WARN_ON_ONCE(vmx->emulation_required);
2374 
2375 	if (kvm_exception_is_soft(nr)) {
2376 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2377 			     vmx->vcpu.arch.event_exit_inst_len);
2378 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2379 	} else
2380 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
2381 
2382 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2383 }
2384 
vmx_rdtscp_supported(void)2385 static bool vmx_rdtscp_supported(void)
2386 {
2387 	return cpu_has_vmx_rdtscp();
2388 }
2389 
vmx_invpcid_supported(void)2390 static bool vmx_invpcid_supported(void)
2391 {
2392 	return cpu_has_vmx_invpcid() && enable_ept;
2393 }
2394 
2395 /*
2396  * Swap MSR entry in host/guest MSR entry array.
2397  */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)2398 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2399 {
2400 	struct shared_msr_entry tmp;
2401 
2402 	tmp = vmx->guest_msrs[to];
2403 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
2404 	vmx->guest_msrs[from] = tmp;
2405 }
2406 
2407 /*
2408  * Set up the vmcs to automatically save and restore system
2409  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2410  * mode, as fiddling with msrs is very expensive.
2411  */
setup_msrs(struct vcpu_vmx * vmx)2412 static void setup_msrs(struct vcpu_vmx *vmx)
2413 {
2414 	int save_nmsrs, index;
2415 
2416 	save_nmsrs = 0;
2417 #ifdef CONFIG_X86_64
2418 	if (is_long_mode(&vmx->vcpu)) {
2419 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2420 		if (index >= 0)
2421 			move_msr_up(vmx, index, save_nmsrs++);
2422 		index = __find_msr_index(vmx, MSR_LSTAR);
2423 		if (index >= 0)
2424 			move_msr_up(vmx, index, save_nmsrs++);
2425 		index = __find_msr_index(vmx, MSR_CSTAR);
2426 		if (index >= 0)
2427 			move_msr_up(vmx, index, save_nmsrs++);
2428 		index = __find_msr_index(vmx, MSR_TSC_AUX);
2429 		if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2430 			move_msr_up(vmx, index, save_nmsrs++);
2431 		/*
2432 		 * MSR_STAR is only needed on long mode guests, and only
2433 		 * if efer.sce is enabled.
2434 		 */
2435 		index = __find_msr_index(vmx, MSR_STAR);
2436 		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2437 			move_msr_up(vmx, index, save_nmsrs++);
2438 	}
2439 #endif
2440 	index = __find_msr_index(vmx, MSR_EFER);
2441 	if (index >= 0 && update_transition_efer(vmx, index))
2442 		move_msr_up(vmx, index, save_nmsrs++);
2443 
2444 	vmx->save_nmsrs = save_nmsrs;
2445 
2446 	if (cpu_has_vmx_msr_bitmap())
2447 		vmx_update_msr_bitmap(&vmx->vcpu);
2448 }
2449 
2450 /*
2451  * reads and returns guest's timestamp counter "register"
2452  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2453  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2454  */
guest_read_tsc(struct kvm_vcpu * vcpu)2455 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2456 {
2457 	u64 host_tsc, tsc_offset;
2458 
2459 	host_tsc = rdtsc();
2460 	tsc_offset = vmcs_read64(TSC_OFFSET);
2461 	return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2462 }
2463 
2464 /*
2465  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2466  * counter, even if a nested guest (L2) is currently running.
2467  */
vmx_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2468 static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2469 {
2470 	u64 tsc_offset;
2471 
2472 	tsc_offset = is_guest_mode(vcpu) ?
2473 		to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2474 		vmcs_read64(TSC_OFFSET);
2475 	return host_tsc + tsc_offset;
2476 }
2477 
vmx_read_tsc_offset(struct kvm_vcpu * vcpu)2478 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2479 {
2480 	return vmcs_read64(TSC_OFFSET);
2481 }
2482 
2483 /*
2484  * writes 'offset' into guest's timestamp counter offset register
2485  */
vmx_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)2486 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2487 {
2488 	if (is_guest_mode(vcpu)) {
2489 		/*
2490 		 * We're here if L1 chose not to trap WRMSR to TSC. According
2491 		 * to the spec, this should set L1's TSC; The offset that L1
2492 		 * set for L2 remains unchanged, and still needs to be added
2493 		 * to the newly set TSC to get L2's TSC.
2494 		 */
2495 		struct vmcs12 *vmcs12;
2496 		to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2497 		/* recalculate vmcs02.TSC_OFFSET: */
2498 		vmcs12 = get_vmcs12(vcpu);
2499 		vmcs_write64(TSC_OFFSET, offset +
2500 			(nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2501 			 vmcs12->tsc_offset : 0));
2502 	} else {
2503 		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2504 					   vmcs_read64(TSC_OFFSET), offset);
2505 		vmcs_write64(TSC_OFFSET, offset);
2506 	}
2507 }
2508 
vmx_adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2509 static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
2510 {
2511 	u64 offset = vmcs_read64(TSC_OFFSET);
2512 
2513 	vmcs_write64(TSC_OFFSET, offset + adjustment);
2514 	if (is_guest_mode(vcpu)) {
2515 		/* Even when running L2, the adjustment needs to apply to L1 */
2516 		to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2517 	} else
2518 		trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2519 					   offset + adjustment);
2520 }
2521 
guest_cpuid_has_vmx(struct kvm_vcpu * vcpu)2522 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2523 {
2524 	struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2525 	return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2526 }
2527 
2528 /*
2529  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2530  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2531  * all guests if the "nested" module option is off, and can also be disabled
2532  * for a single guest by disabling its VMX cpuid bit.
2533  */
nested_vmx_allowed(struct kvm_vcpu * vcpu)2534 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2535 {
2536 	return nested && guest_cpuid_has_vmx(vcpu);
2537 }
2538 
2539 /*
2540  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2541  * returned for the various VMX controls MSRs when nested VMX is enabled.
2542  * The same values should also be used to verify that vmcs12 control fields are
2543  * valid during nested entry from L1 to L2.
2544  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2545  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2546  * bit in the high half is on if the corresponding bit in the control field
2547  * may be on. See also vmx_control_verify().
2548  */
nested_vmx_setup_ctls_msrs(struct vcpu_vmx * vmx)2549 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2550 {
2551 	/*
2552 	 * Note that as a general rule, the high half of the MSRs (bits in
2553 	 * the control fields which may be 1) should be initialized by the
2554 	 * intersection of the underlying hardware's MSR (i.e., features which
2555 	 * can be supported) and the list of features we want to expose -
2556 	 * because they are known to be properly supported in our code.
2557 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
2558 	 * be set to 0, meaning that L1 may turn off any of these bits. The
2559 	 * reason is that if one of these bits is necessary, it will appear
2560 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2561 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
2562 	 * nested_vmx_exit_handled() will not pass related exits to L1.
2563 	 * These rules have exceptions below.
2564 	 */
2565 
2566 	/* pin-based controls */
2567 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2568 		vmx->nested.nested_vmx_pinbased_ctls_low,
2569 		vmx->nested.nested_vmx_pinbased_ctls_high);
2570 	vmx->nested.nested_vmx_pinbased_ctls_low |=
2571 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2572 	vmx->nested.nested_vmx_pinbased_ctls_high &=
2573 		PIN_BASED_EXT_INTR_MASK |
2574 		PIN_BASED_NMI_EXITING |
2575 		PIN_BASED_VIRTUAL_NMIS;
2576 	vmx->nested.nested_vmx_pinbased_ctls_high |=
2577 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2578 		PIN_BASED_VMX_PREEMPTION_TIMER;
2579 	if (vmx_cpu_uses_apicv(&vmx->vcpu))
2580 		vmx->nested.nested_vmx_pinbased_ctls_high |=
2581 			PIN_BASED_POSTED_INTR;
2582 
2583 	/* exit controls */
2584 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2585 		vmx->nested.nested_vmx_exit_ctls_low,
2586 		vmx->nested.nested_vmx_exit_ctls_high);
2587 	vmx->nested.nested_vmx_exit_ctls_low =
2588 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2589 
2590 	vmx->nested.nested_vmx_exit_ctls_high &=
2591 #ifdef CONFIG_X86_64
2592 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
2593 #endif
2594 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2595 	vmx->nested.nested_vmx_exit_ctls_high |=
2596 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2597 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2598 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2599 
2600 	if (kvm_mpx_supported())
2601 		vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2602 
2603 	/* We support free control of debug control saving. */
2604 	vmx->nested.nested_vmx_true_exit_ctls_low =
2605 		vmx->nested.nested_vmx_exit_ctls_low &
2606 		~VM_EXIT_SAVE_DEBUG_CONTROLS;
2607 
2608 	/* entry controls */
2609 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2610 		vmx->nested.nested_vmx_entry_ctls_low,
2611 		vmx->nested.nested_vmx_entry_ctls_high);
2612 	vmx->nested.nested_vmx_entry_ctls_low =
2613 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2614 	vmx->nested.nested_vmx_entry_ctls_high &=
2615 #ifdef CONFIG_X86_64
2616 		VM_ENTRY_IA32E_MODE |
2617 #endif
2618 		VM_ENTRY_LOAD_IA32_PAT;
2619 	vmx->nested.nested_vmx_entry_ctls_high |=
2620 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2621 	if (kvm_mpx_supported())
2622 		vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2623 
2624 	/* We support free control of debug control loading. */
2625 	vmx->nested.nested_vmx_true_entry_ctls_low =
2626 		vmx->nested.nested_vmx_entry_ctls_low &
2627 		~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2628 
2629 	/* cpu-based controls */
2630 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2631 		vmx->nested.nested_vmx_procbased_ctls_low,
2632 		vmx->nested.nested_vmx_procbased_ctls_high);
2633 	vmx->nested.nested_vmx_procbased_ctls_low =
2634 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2635 	vmx->nested.nested_vmx_procbased_ctls_high &=
2636 		CPU_BASED_VIRTUAL_INTR_PENDING |
2637 		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2638 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2639 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2640 		CPU_BASED_CR3_STORE_EXITING |
2641 #ifdef CONFIG_X86_64
2642 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2643 #endif
2644 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2645 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2646 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2647 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2648 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2649 	/*
2650 	 * We can allow some features even when not supported by the
2651 	 * hardware. For example, L1 can specify an MSR bitmap - and we
2652 	 * can use it to avoid exits to L1 - even when L0 runs L2
2653 	 * without MSR bitmaps.
2654 	 */
2655 	vmx->nested.nested_vmx_procbased_ctls_high |=
2656 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2657 		CPU_BASED_USE_MSR_BITMAPS;
2658 
2659 	/* We support free control of CR3 access interception. */
2660 	vmx->nested.nested_vmx_true_procbased_ctls_low =
2661 		vmx->nested.nested_vmx_procbased_ctls_low &
2662 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2663 
2664 	/* secondary cpu-based controls */
2665 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2666 		vmx->nested.nested_vmx_secondary_ctls_low,
2667 		vmx->nested.nested_vmx_secondary_ctls_high);
2668 	vmx->nested.nested_vmx_secondary_ctls_low = 0;
2669 	vmx->nested.nested_vmx_secondary_ctls_high &=
2670 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2671 		SECONDARY_EXEC_RDTSCP |
2672 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2673 		SECONDARY_EXEC_ENABLE_VPID |
2674 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
2675 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2676 		SECONDARY_EXEC_WBINVD_EXITING |
2677 		SECONDARY_EXEC_XSAVES |
2678 		SECONDARY_EXEC_PCOMMIT;
2679 
2680 	if (enable_ept) {
2681 		/* nested EPT: emulate EPT also to L1 */
2682 		vmx->nested.nested_vmx_secondary_ctls_high |=
2683 			SECONDARY_EXEC_ENABLE_EPT;
2684 		vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2685 			 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2686 			 VMX_EPT_INVEPT_BIT;
2687 		vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2688 		/*
2689 		 * For nested guests, we don't do anything specific
2690 		 * for single context invalidation. Hence, only advertise
2691 		 * support for global context invalidation.
2692 		 */
2693 		vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2694 	} else
2695 		vmx->nested.nested_vmx_ept_caps = 0;
2696 
2697 	/*
2698 	 * Old versions of KVM use the single-context version without
2699 	 * checking for support, so declare that it is supported even
2700 	 * though it is treated as global context.  The alternative is
2701 	 * not failing the single-context invvpid, and it is worse.
2702 	 */
2703 	if (enable_vpid)
2704 		vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2705 			VMX_VPID_EXTENT_SUPPORTED_MASK;
2706 	else
2707 		vmx->nested.nested_vmx_vpid_caps = 0;
2708 
2709 	if (enable_unrestricted_guest)
2710 		vmx->nested.nested_vmx_secondary_ctls_high |=
2711 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
2712 
2713 	/* miscellaneous data */
2714 	rdmsr(MSR_IA32_VMX_MISC,
2715 		vmx->nested.nested_vmx_misc_low,
2716 		vmx->nested.nested_vmx_misc_high);
2717 	vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2718 	vmx->nested.nested_vmx_misc_low |=
2719 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2720 		VMX_MISC_ACTIVITY_HLT;
2721 	vmx->nested.nested_vmx_misc_high = 0;
2722 }
2723 
vmx_control_verify(u32 control,u32 low,u32 high)2724 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2725 {
2726 	/*
2727 	 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2728 	 */
2729 	return ((control & high) | low) == control;
2730 }
2731 
vmx_control_msr(u32 low,u32 high)2732 static inline u64 vmx_control_msr(u32 low, u32 high)
2733 {
2734 	return low | ((u64)high << 32);
2735 }
2736 
2737 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)2738 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2739 {
2740 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2741 
2742 	switch (msr_index) {
2743 	case MSR_IA32_VMX_BASIC:
2744 		/*
2745 		 * This MSR reports some information about VMX support. We
2746 		 * should return information about the VMX we emulate for the
2747 		 * guest, and the VMCS structure we give it - not about the
2748 		 * VMX support of the underlying hardware.
2749 		 */
2750 		*pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2751 			   ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2752 			   (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2753 		break;
2754 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2755 	case MSR_IA32_VMX_PINBASED_CTLS:
2756 		*pdata = vmx_control_msr(
2757 			vmx->nested.nested_vmx_pinbased_ctls_low,
2758 			vmx->nested.nested_vmx_pinbased_ctls_high);
2759 		break;
2760 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2761 		*pdata = vmx_control_msr(
2762 			vmx->nested.nested_vmx_true_procbased_ctls_low,
2763 			vmx->nested.nested_vmx_procbased_ctls_high);
2764 		break;
2765 	case MSR_IA32_VMX_PROCBASED_CTLS:
2766 		*pdata = vmx_control_msr(
2767 			vmx->nested.nested_vmx_procbased_ctls_low,
2768 			vmx->nested.nested_vmx_procbased_ctls_high);
2769 		break;
2770 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2771 		*pdata = vmx_control_msr(
2772 			vmx->nested.nested_vmx_true_exit_ctls_low,
2773 			vmx->nested.nested_vmx_exit_ctls_high);
2774 		break;
2775 	case MSR_IA32_VMX_EXIT_CTLS:
2776 		*pdata = vmx_control_msr(
2777 			vmx->nested.nested_vmx_exit_ctls_low,
2778 			vmx->nested.nested_vmx_exit_ctls_high);
2779 		break;
2780 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2781 		*pdata = vmx_control_msr(
2782 			vmx->nested.nested_vmx_true_entry_ctls_low,
2783 			vmx->nested.nested_vmx_entry_ctls_high);
2784 		break;
2785 	case MSR_IA32_VMX_ENTRY_CTLS:
2786 		*pdata = vmx_control_msr(
2787 			vmx->nested.nested_vmx_entry_ctls_low,
2788 			vmx->nested.nested_vmx_entry_ctls_high);
2789 		break;
2790 	case MSR_IA32_VMX_MISC:
2791 		*pdata = vmx_control_msr(
2792 			vmx->nested.nested_vmx_misc_low,
2793 			vmx->nested.nested_vmx_misc_high);
2794 		break;
2795 	/*
2796 	 * These MSRs specify bits which the guest must keep fixed (on or off)
2797 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2798 	 * We picked the standard core2 setting.
2799 	 */
2800 #define VMXON_CR0_ALWAYSON	(X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2801 #define VMXON_CR4_ALWAYSON	X86_CR4_VMXE
2802 	case MSR_IA32_VMX_CR0_FIXED0:
2803 		*pdata = VMXON_CR0_ALWAYSON;
2804 		break;
2805 	case MSR_IA32_VMX_CR0_FIXED1:
2806 		*pdata = -1ULL;
2807 		break;
2808 	case MSR_IA32_VMX_CR4_FIXED0:
2809 		*pdata = VMXON_CR4_ALWAYSON;
2810 		break;
2811 	case MSR_IA32_VMX_CR4_FIXED1:
2812 		*pdata = -1ULL;
2813 		break;
2814 	case MSR_IA32_VMX_VMCS_ENUM:
2815 		*pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2816 		break;
2817 	case MSR_IA32_VMX_PROCBASED_CTLS2:
2818 		*pdata = vmx_control_msr(
2819 			vmx->nested.nested_vmx_secondary_ctls_low,
2820 			vmx->nested.nested_vmx_secondary_ctls_high);
2821 		break;
2822 	case MSR_IA32_VMX_EPT_VPID_CAP:
2823 		/* Currently, no nested vpid support */
2824 		*pdata = vmx->nested.nested_vmx_ept_caps |
2825 			((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2826 		break;
2827 	default:
2828 		return 1;
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 /*
2835  * Reads an msr value (of 'msr_index') into 'pdata'.
2836  * Returns 0 on success, non-0 otherwise.
2837  * Assumes vcpu_load() was already called.
2838  */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2839 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2840 {
2841 	struct shared_msr_entry *msr;
2842 
2843 	switch (msr_info->index) {
2844 #ifdef CONFIG_X86_64
2845 	case MSR_FS_BASE:
2846 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
2847 		break;
2848 	case MSR_GS_BASE:
2849 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
2850 		break;
2851 	case MSR_KERNEL_GS_BASE:
2852 		vmx_load_host_state(to_vmx(vcpu));
2853 		msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2854 		break;
2855 #endif
2856 	case MSR_EFER:
2857 		return kvm_get_msr_common(vcpu, msr_info);
2858 	case MSR_IA32_TSC:
2859 		msr_info->data = guest_read_tsc(vcpu);
2860 		break;
2861 	case MSR_IA32_SPEC_CTRL:
2862 		if (!msr_info->host_initiated &&
2863 		    !guest_cpuid_has_spec_ctrl(vcpu))
2864 			return 1;
2865 
2866 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2867 		break;
2868 	case MSR_IA32_SYSENTER_CS:
2869 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2870 		break;
2871 	case MSR_IA32_SYSENTER_EIP:
2872 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2873 		break;
2874 	case MSR_IA32_SYSENTER_ESP:
2875 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2876 		break;
2877 	case MSR_IA32_BNDCFGS:
2878 		if (!kvm_mpx_supported() ||
2879 		    (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
2880 			return 1;
2881 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2882 		break;
2883 	case MSR_IA32_FEATURE_CONTROL:
2884 		if (!nested_vmx_allowed(vcpu))
2885 			return 1;
2886 		msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2887 		break;
2888 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2889 		if (!nested_vmx_allowed(vcpu))
2890 			return 1;
2891 		return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
2892 	case MSR_IA32_XSS:
2893 		if (!vmx_xsaves_supported())
2894 			return 1;
2895 		msr_info->data = vcpu->arch.ia32_xss;
2896 		break;
2897 	case MSR_TSC_AUX:
2898 		if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
2899 			return 1;
2900 		/* Otherwise falls through */
2901 	default:
2902 		msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
2903 		if (msr) {
2904 			msr_info->data = msr->data;
2905 			break;
2906 		}
2907 		return kvm_get_msr_common(vcpu, msr_info);
2908 	}
2909 
2910 	return 0;
2911 }
2912 
2913 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2914 
2915 /*
2916  * Writes msr value into into the appropriate "register".
2917  * Returns 0 on success, non-0 otherwise.
2918  * Assumes vcpu_load() was already called.
2919  */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2920 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2921 {
2922 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2923 	struct shared_msr_entry *msr;
2924 	int ret = 0;
2925 	u32 msr_index = msr_info->index;
2926 	u64 data = msr_info->data;
2927 
2928 	switch (msr_index) {
2929 	case MSR_EFER:
2930 		ret = kvm_set_msr_common(vcpu, msr_info);
2931 		break;
2932 #ifdef CONFIG_X86_64
2933 	case MSR_FS_BASE:
2934 		vmx_segment_cache_clear(vmx);
2935 		vmcs_writel(GUEST_FS_BASE, data);
2936 		break;
2937 	case MSR_GS_BASE:
2938 		vmx_segment_cache_clear(vmx);
2939 		vmcs_writel(GUEST_GS_BASE, data);
2940 		break;
2941 	case MSR_KERNEL_GS_BASE:
2942 		vmx_load_host_state(vmx);
2943 		vmx->msr_guest_kernel_gs_base = data;
2944 		break;
2945 #endif
2946 	case MSR_IA32_SYSENTER_CS:
2947 		vmcs_write32(GUEST_SYSENTER_CS, data);
2948 		break;
2949 	case MSR_IA32_SYSENTER_EIP:
2950 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2951 		break;
2952 	case MSR_IA32_SYSENTER_ESP:
2953 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2954 		break;
2955 	case MSR_IA32_BNDCFGS:
2956 		if (!kvm_mpx_supported() ||
2957 		    (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
2958 			return 1;
2959 		if (is_noncanonical_address(data & PAGE_MASK) ||
2960 		    (data & MSR_IA32_BNDCFGS_RSVD))
2961 			return 1;
2962 		vmcs_write64(GUEST_BNDCFGS, data);
2963 		break;
2964 	case MSR_IA32_TSC:
2965 		kvm_write_tsc(vcpu, msr_info);
2966 		break;
2967 	case MSR_IA32_SPEC_CTRL:
2968 		if (!msr_info->host_initiated &&
2969 		    !guest_cpuid_has_spec_ctrl(vcpu))
2970 			return 1;
2971 
2972 		/* The STIBP bit doesn't fault even if it's not advertised */
2973 		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
2974 			return 1;
2975 
2976 		vmx->spec_ctrl = data;
2977 
2978 		if (!data)
2979 			break;
2980 
2981 		/*
2982 		 * For non-nested:
2983 		 * When it's written (to non-zero) for the first time, pass
2984 		 * it through.
2985 		 *
2986 		 * For nested:
2987 		 * The handling of the MSR bitmap for L2 guests is done in
2988 		 * nested_vmx_merge_msr_bitmap. We should not touch the
2989 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2990 		 * in the merging. We update the vmcs01 here for L1 as well
2991 		 * since it will end up touching the MSR anyway now.
2992 		 */
2993 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2994 					      MSR_IA32_SPEC_CTRL,
2995 					      MSR_TYPE_RW);
2996 		break;
2997 	case MSR_IA32_PRED_CMD:
2998 		if (!msr_info->host_initiated &&
2999 		    !guest_cpuid_has_ibpb(vcpu))
3000 			return 1;
3001 
3002 		if (data & ~PRED_CMD_IBPB)
3003 			return 1;
3004 
3005 		if (!data)
3006 			break;
3007 
3008 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3009 
3010 		/*
3011 		 * For non-nested:
3012 		 * When it's written (to non-zero) for the first time, pass
3013 		 * it through.
3014 		 *
3015 		 * For nested:
3016 		 * The handling of the MSR bitmap for L2 guests is done in
3017 		 * nested_vmx_merge_msr_bitmap. We should not touch the
3018 		 * vmcs02.msr_bitmap here since it gets completely overwritten
3019 		 * in the merging.
3020 		 */
3021 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
3022 					      MSR_TYPE_W);
3023 		break;
3024 	case MSR_IA32_CR_PAT:
3025 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3026 			if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3027 				return 1;
3028 			vmcs_write64(GUEST_IA32_PAT, data);
3029 			vcpu->arch.pat = data;
3030 			break;
3031 		}
3032 		ret = kvm_set_msr_common(vcpu, msr_info);
3033 		break;
3034 	case MSR_IA32_TSC_ADJUST:
3035 		ret = kvm_set_msr_common(vcpu, msr_info);
3036 		break;
3037 	case MSR_IA32_FEATURE_CONTROL:
3038 		if (!nested_vmx_allowed(vcpu) ||
3039 		    (to_vmx(vcpu)->nested.msr_ia32_feature_control &
3040 		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3041 			return 1;
3042 		vmx->nested.msr_ia32_feature_control = data;
3043 		if (msr_info->host_initiated && data == 0)
3044 			vmx_leave_nested(vcpu);
3045 		break;
3046 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3047 		return 1; /* they are read-only */
3048 	case MSR_IA32_XSS:
3049 		if (!vmx_xsaves_supported())
3050 			return 1;
3051 		/*
3052 		 * The only supported bit as of Skylake is bit 8, but
3053 		 * it is not supported on KVM.
3054 		 */
3055 		if (data != 0)
3056 			return 1;
3057 		vcpu->arch.ia32_xss = data;
3058 		if (vcpu->arch.ia32_xss != host_xss)
3059 			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3060 				vcpu->arch.ia32_xss, host_xss);
3061 		else
3062 			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3063 		break;
3064 	case MSR_TSC_AUX:
3065 		if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3066 			return 1;
3067 		/* Check reserved bit, higher 32 bits should be zero */
3068 		if ((data >> 32) != 0)
3069 			return 1;
3070 		/* Otherwise falls through */
3071 	default:
3072 		msr = find_msr_entry(vmx, msr_index);
3073 		if (msr) {
3074 			u64 old_msr_data = msr->data;
3075 			msr->data = data;
3076 			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3077 				preempt_disable();
3078 				ret = kvm_set_shared_msr(msr->index, msr->data,
3079 							 msr->mask);
3080 				preempt_enable();
3081 				if (ret)
3082 					msr->data = old_msr_data;
3083 			}
3084 			break;
3085 		}
3086 		ret = kvm_set_msr_common(vcpu, msr_info);
3087 	}
3088 
3089 	return ret;
3090 }
3091 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)3092 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3093 {
3094 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3095 	switch (reg) {
3096 	case VCPU_REGS_RSP:
3097 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3098 		break;
3099 	case VCPU_REGS_RIP:
3100 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3101 		break;
3102 	case VCPU_EXREG_PDPTR:
3103 		if (enable_ept)
3104 			ept_save_pdptrs(vcpu);
3105 		break;
3106 	default:
3107 		break;
3108 	}
3109 }
3110 
cpu_has_kvm_support(void)3111 static __init int cpu_has_kvm_support(void)
3112 {
3113 	return cpu_has_vmx();
3114 }
3115 
vmx_disabled_by_bios(void)3116 static __init int vmx_disabled_by_bios(void)
3117 {
3118 	u64 msr;
3119 
3120 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3121 	if (msr & FEATURE_CONTROL_LOCKED) {
3122 		/* launched w/ TXT and VMX disabled */
3123 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3124 			&& tboot_enabled())
3125 			return 1;
3126 		/* launched w/o TXT and VMX only enabled w/ TXT */
3127 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3128 			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3129 			&& !tboot_enabled()) {
3130 			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3131 				"activate TXT before enabling KVM\n");
3132 			return 1;
3133 		}
3134 		/* launched w/o TXT and VMX disabled */
3135 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3136 			&& !tboot_enabled())
3137 			return 1;
3138 	}
3139 
3140 	return 0;
3141 }
3142 
kvm_cpu_vmxon(u64 addr)3143 static void kvm_cpu_vmxon(u64 addr)
3144 {
3145 	asm volatile (ASM_VMX_VMXON_RAX
3146 			: : "a"(&addr), "m"(addr)
3147 			: "memory", "cc");
3148 }
3149 
hardware_enable(void)3150 static int hardware_enable(void)
3151 {
3152 	int cpu = raw_smp_processor_id();
3153 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3154 	u64 old, test_bits;
3155 
3156 	if (cr4_read_shadow() & X86_CR4_VMXE)
3157 		return -EBUSY;
3158 
3159 	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3160 	INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3161 	spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3162 
3163 	/*
3164 	 * Now we can enable the vmclear operation in kdump
3165 	 * since the loaded_vmcss_on_cpu list on this cpu
3166 	 * has been initialized.
3167 	 *
3168 	 * Though the cpu is not in VMX operation now, there
3169 	 * is no problem to enable the vmclear operation
3170 	 * for the loaded_vmcss_on_cpu list is empty!
3171 	 */
3172 	crash_enable_local_vmclear(cpu);
3173 
3174 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3175 
3176 	test_bits = FEATURE_CONTROL_LOCKED;
3177 	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3178 	if (tboot_enabled())
3179 		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3180 
3181 	if ((old & test_bits) != test_bits) {
3182 		/* enable and lock */
3183 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3184 	}
3185 	cr4_set_bits(X86_CR4_VMXE);
3186 
3187 	if (vmm_exclusive) {
3188 		kvm_cpu_vmxon(phys_addr);
3189 		ept_sync_global();
3190 	}
3191 
3192 	native_store_gdt(this_cpu_ptr(&host_gdt));
3193 
3194 	return 0;
3195 }
3196 
vmclear_local_loaded_vmcss(void)3197 static void vmclear_local_loaded_vmcss(void)
3198 {
3199 	int cpu = raw_smp_processor_id();
3200 	struct loaded_vmcs *v, *n;
3201 
3202 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3203 				 loaded_vmcss_on_cpu_link)
3204 		__loaded_vmcs_clear(v);
3205 }
3206 
3207 
3208 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3209  * tricks.
3210  */
kvm_cpu_vmxoff(void)3211 static void kvm_cpu_vmxoff(void)
3212 {
3213 	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3214 }
3215 
hardware_disable(void)3216 static void hardware_disable(void)
3217 {
3218 	if (vmm_exclusive) {
3219 		vmclear_local_loaded_vmcss();
3220 		kvm_cpu_vmxoff();
3221 	}
3222 	cr4_clear_bits(X86_CR4_VMXE);
3223 }
3224 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)3225 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3226 				      u32 msr, u32 *result)
3227 {
3228 	u32 vmx_msr_low, vmx_msr_high;
3229 	u32 ctl = ctl_min | ctl_opt;
3230 
3231 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
3232 
3233 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3234 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3235 
3236 	/* Ensure minimum (required) set of control bits are supported. */
3237 	if (ctl_min & ~ctl)
3238 		return -EIO;
3239 
3240 	*result = ctl;
3241 	return 0;
3242 }
3243 
allow_1_setting(u32 msr,u32 ctl)3244 static __init bool allow_1_setting(u32 msr, u32 ctl)
3245 {
3246 	u32 vmx_msr_low, vmx_msr_high;
3247 
3248 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
3249 	return vmx_msr_high & ctl;
3250 }
3251 
setup_vmcs_config(struct vmcs_config * vmcs_conf)3252 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3253 {
3254 	u32 vmx_msr_low, vmx_msr_high;
3255 	u32 min, opt, min2, opt2;
3256 	u32 _pin_based_exec_control = 0;
3257 	u32 _cpu_based_exec_control = 0;
3258 	u32 _cpu_based_2nd_exec_control = 0;
3259 	u32 _vmexit_control = 0;
3260 	u32 _vmentry_control = 0;
3261 
3262 	min = CPU_BASED_HLT_EXITING |
3263 #ifdef CONFIG_X86_64
3264 	      CPU_BASED_CR8_LOAD_EXITING |
3265 	      CPU_BASED_CR8_STORE_EXITING |
3266 #endif
3267 	      CPU_BASED_CR3_LOAD_EXITING |
3268 	      CPU_BASED_CR3_STORE_EXITING |
3269 	      CPU_BASED_USE_IO_BITMAPS |
3270 	      CPU_BASED_MOV_DR_EXITING |
3271 	      CPU_BASED_USE_TSC_OFFSETING |
3272 	      CPU_BASED_MWAIT_EXITING |
3273 	      CPU_BASED_MONITOR_EXITING |
3274 	      CPU_BASED_INVLPG_EXITING |
3275 	      CPU_BASED_RDPMC_EXITING;
3276 
3277 	opt = CPU_BASED_TPR_SHADOW |
3278 	      CPU_BASED_USE_MSR_BITMAPS |
3279 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3280 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3281 				&_cpu_based_exec_control) < 0)
3282 		return -EIO;
3283 #ifdef CONFIG_X86_64
3284 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3285 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3286 					   ~CPU_BASED_CR8_STORE_EXITING;
3287 #endif
3288 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3289 		min2 = 0;
3290 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3291 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3292 			SECONDARY_EXEC_WBINVD_EXITING |
3293 			SECONDARY_EXEC_ENABLE_VPID |
3294 			SECONDARY_EXEC_ENABLE_EPT |
3295 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
3296 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3297 			SECONDARY_EXEC_RDTSCP |
3298 			SECONDARY_EXEC_ENABLE_INVPCID |
3299 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
3300 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3301 			SECONDARY_EXEC_SHADOW_VMCS |
3302 			SECONDARY_EXEC_XSAVES |
3303 			SECONDARY_EXEC_ENABLE_PML |
3304 			SECONDARY_EXEC_PCOMMIT |
3305 			SECONDARY_EXEC_TSC_SCALING;
3306 		if (adjust_vmx_controls(min2, opt2,
3307 					MSR_IA32_VMX_PROCBASED_CTLS2,
3308 					&_cpu_based_2nd_exec_control) < 0)
3309 			return -EIO;
3310 	}
3311 #ifndef CONFIG_X86_64
3312 	if (!(_cpu_based_2nd_exec_control &
3313 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3314 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3315 #endif
3316 
3317 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3318 		_cpu_based_2nd_exec_control &= ~(
3319 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
3320 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3321 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3322 
3323 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3324 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3325 		   enabled */
3326 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3327 					     CPU_BASED_CR3_STORE_EXITING |
3328 					     CPU_BASED_INVLPG_EXITING);
3329 		rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3330 		      vmx_capability.ept, vmx_capability.vpid);
3331 	}
3332 
3333 	min = VM_EXIT_SAVE_DEBUG_CONTROLS;
3334 #ifdef CONFIG_X86_64
3335 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3336 #endif
3337 	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3338 		VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
3339 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3340 				&_vmexit_control) < 0)
3341 		return -EIO;
3342 
3343 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3344 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3345 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3346 				&_pin_based_exec_control) < 0)
3347 		return -EIO;
3348 
3349 	if (!(_cpu_based_2nd_exec_control &
3350 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3351 		!(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3352 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3353 
3354 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3355 	opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3356 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3357 				&_vmentry_control) < 0)
3358 		return -EIO;
3359 
3360 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3361 
3362 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3363 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3364 		return -EIO;
3365 
3366 #ifdef CONFIG_X86_64
3367 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3368 	if (vmx_msr_high & (1u<<16))
3369 		return -EIO;
3370 #endif
3371 
3372 	/* Require Write-Back (WB) memory type for VMCS accesses. */
3373 	if (((vmx_msr_high >> 18) & 15) != 6)
3374 		return -EIO;
3375 
3376 	vmcs_conf->size = vmx_msr_high & 0x1fff;
3377 	vmcs_conf->order = get_order(vmcs_config.size);
3378 	vmcs_conf->revision_id = vmx_msr_low;
3379 
3380 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3381 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3382 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3383 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
3384 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
3385 
3386 	cpu_has_load_ia32_efer =
3387 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3388 				VM_ENTRY_LOAD_IA32_EFER)
3389 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3390 				   VM_EXIT_LOAD_IA32_EFER);
3391 
3392 	cpu_has_load_perf_global_ctrl =
3393 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3394 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3395 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3396 				   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3397 
3398 	/*
3399 	 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3400 	 * but due to arrata below it can't be used. Workaround is to use
3401 	 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3402 	 *
3403 	 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3404 	 *
3405 	 * AAK155             (model 26)
3406 	 * AAP115             (model 30)
3407 	 * AAT100             (model 37)
3408 	 * BC86,AAY89,BD102   (model 44)
3409 	 * BA97               (model 46)
3410 	 *
3411 	 */
3412 	if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3413 		switch (boot_cpu_data.x86_model) {
3414 		case 26:
3415 		case 30:
3416 		case 37:
3417 		case 44:
3418 		case 46:
3419 			cpu_has_load_perf_global_ctrl = false;
3420 			printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3421 					"does not work properly. Using workaround\n");
3422 			break;
3423 		default:
3424 			break;
3425 		}
3426 	}
3427 
3428 	if (cpu_has_xsaves)
3429 		rdmsrl(MSR_IA32_XSS, host_xss);
3430 
3431 	return 0;
3432 }
3433 
alloc_vmcs_cpu(int cpu)3434 static struct vmcs *alloc_vmcs_cpu(int cpu)
3435 {
3436 	int node = cpu_to_node(cpu);
3437 	struct page *pages;
3438 	struct vmcs *vmcs;
3439 
3440 	pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3441 	if (!pages)
3442 		return NULL;
3443 	vmcs = page_address(pages);
3444 	memset(vmcs, 0, vmcs_config.size);
3445 	vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3446 	return vmcs;
3447 }
3448 
free_vmcs(struct vmcs * vmcs)3449 static void free_vmcs(struct vmcs *vmcs)
3450 {
3451 	free_pages((unsigned long)vmcs, vmcs_config.order);
3452 }
3453 
3454 /*
3455  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3456  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)3457 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3458 {
3459 	if (!loaded_vmcs->vmcs)
3460 		return;
3461 	loaded_vmcs_clear(loaded_vmcs);
3462 	free_vmcs(loaded_vmcs->vmcs);
3463 	loaded_vmcs->vmcs = NULL;
3464 	if (loaded_vmcs->msr_bitmap)
3465 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
3466 }
3467 
alloc_vmcs(void)3468 static struct vmcs *alloc_vmcs(void)
3469 {
3470 	return alloc_vmcs_cpu(raw_smp_processor_id());
3471 }
3472 
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)3473 static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3474 {
3475 	loaded_vmcs->vmcs = alloc_vmcs();
3476 	if (!loaded_vmcs->vmcs)
3477 		return -ENOMEM;
3478 
3479 	loaded_vmcs_init(loaded_vmcs);
3480 
3481 	if (cpu_has_vmx_msr_bitmap()) {
3482 		loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
3483 		if (!loaded_vmcs->msr_bitmap)
3484 			goto out_vmcs;
3485 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
3486 	}
3487 	return 0;
3488 
3489 out_vmcs:
3490 	free_loaded_vmcs(loaded_vmcs);
3491 	return -ENOMEM;
3492 }
3493 
free_kvm_area(void)3494 static void free_kvm_area(void)
3495 {
3496 	int cpu;
3497 
3498 	for_each_possible_cpu(cpu) {
3499 		free_vmcs(per_cpu(vmxarea, cpu));
3500 		per_cpu(vmxarea, cpu) = NULL;
3501 	}
3502 }
3503 
init_vmcs_shadow_fields(void)3504 static void init_vmcs_shadow_fields(void)
3505 {
3506 	int i, j;
3507 
3508 	/* No checks for read only fields yet */
3509 
3510 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3511 		switch (shadow_read_write_fields[i]) {
3512 		case GUEST_BNDCFGS:
3513 			if (!kvm_mpx_supported())
3514 				continue;
3515 			break;
3516 		default:
3517 			break;
3518 		}
3519 
3520 		if (j < i)
3521 			shadow_read_write_fields[j] =
3522 				shadow_read_write_fields[i];
3523 		j++;
3524 	}
3525 	max_shadow_read_write_fields = j;
3526 
3527 	/* shadowed fields guest access without vmexit */
3528 	for (i = 0; i < max_shadow_read_write_fields; i++) {
3529 		clear_bit(shadow_read_write_fields[i],
3530 			  vmx_vmwrite_bitmap);
3531 		clear_bit(shadow_read_write_fields[i],
3532 			  vmx_vmread_bitmap);
3533 	}
3534 	for (i = 0; i < max_shadow_read_only_fields; i++)
3535 		clear_bit(shadow_read_only_fields[i],
3536 			  vmx_vmread_bitmap);
3537 }
3538 
alloc_kvm_area(void)3539 static __init int alloc_kvm_area(void)
3540 {
3541 	int cpu;
3542 
3543 	for_each_possible_cpu(cpu) {
3544 		struct vmcs *vmcs;
3545 
3546 		vmcs = alloc_vmcs_cpu(cpu);
3547 		if (!vmcs) {
3548 			free_kvm_area();
3549 			return -ENOMEM;
3550 		}
3551 
3552 		per_cpu(vmxarea, cpu) = vmcs;
3553 	}
3554 	return 0;
3555 }
3556 
emulation_required(struct kvm_vcpu * vcpu)3557 static bool emulation_required(struct kvm_vcpu *vcpu)
3558 {
3559 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3560 }
3561 
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)3562 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3563 		struct kvm_segment *save)
3564 {
3565 	if (!emulate_invalid_guest_state) {
3566 		/*
3567 		 * CS and SS RPL should be equal during guest entry according
3568 		 * to VMX spec, but in reality it is not always so. Since vcpu
3569 		 * is in the middle of the transition from real mode to
3570 		 * protected mode it is safe to assume that RPL 0 is a good
3571 		 * default value.
3572 		 */
3573 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3574 			save->selector &= ~SEGMENT_RPL_MASK;
3575 		save->dpl = save->selector & SEGMENT_RPL_MASK;
3576 		save->s = 1;
3577 	}
3578 	vmx_set_segment(vcpu, save, seg);
3579 }
3580 
enter_pmode(struct kvm_vcpu * vcpu)3581 static void enter_pmode(struct kvm_vcpu *vcpu)
3582 {
3583 	unsigned long flags;
3584 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3585 
3586 	/*
3587 	 * Update real mode segment cache. It may be not up-to-date if sement
3588 	 * register was written while vcpu was in a guest mode.
3589 	 */
3590 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3591 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3592 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3593 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3594 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3595 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3596 
3597 	vmx->rmode.vm86_active = 0;
3598 
3599 	vmx_segment_cache_clear(vmx);
3600 
3601 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3602 
3603 	flags = vmcs_readl(GUEST_RFLAGS);
3604 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3605 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3606 	vmcs_writel(GUEST_RFLAGS, flags);
3607 
3608 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3609 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3610 
3611 	update_exception_bitmap(vcpu);
3612 
3613 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3614 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3615 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3616 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3617 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3618 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3619 }
3620 
fix_rmode_seg(int seg,struct kvm_segment * save)3621 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3622 {
3623 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3624 	struct kvm_segment var = *save;
3625 
3626 	var.dpl = 0x3;
3627 	if (seg == VCPU_SREG_CS)
3628 		var.type = 0x3;
3629 
3630 	if (!emulate_invalid_guest_state) {
3631 		var.selector = var.base >> 4;
3632 		var.base = var.base & 0xffff0;
3633 		var.limit = 0xffff;
3634 		var.g = 0;
3635 		var.db = 0;
3636 		var.present = 1;
3637 		var.s = 1;
3638 		var.l = 0;
3639 		var.unusable = 0;
3640 		var.type = 0x3;
3641 		var.avl = 0;
3642 		if (save->base & 0xf)
3643 			printk_once(KERN_WARNING "kvm: segment base is not "
3644 					"paragraph aligned when entering "
3645 					"protected mode (seg=%d)", seg);
3646 	}
3647 
3648 	vmcs_write16(sf->selector, var.selector);
3649 	vmcs_writel(sf->base, var.base);
3650 	vmcs_write32(sf->limit, var.limit);
3651 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3652 }
3653 
enter_rmode(struct kvm_vcpu * vcpu)3654 static void enter_rmode(struct kvm_vcpu *vcpu)
3655 {
3656 	unsigned long flags;
3657 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3658 
3659 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3660 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3661 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3662 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3663 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3664 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3665 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3666 
3667 	vmx->rmode.vm86_active = 1;
3668 
3669 	/*
3670 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3671 	 * vcpu. Warn the user that an update is overdue.
3672 	 */
3673 	if (!vcpu->kvm->arch.tss_addr)
3674 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3675 			     "called before entering vcpu\n");
3676 
3677 	vmx_segment_cache_clear(vmx);
3678 
3679 	vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3680 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3681 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3682 
3683 	flags = vmcs_readl(GUEST_RFLAGS);
3684 	vmx->rmode.save_rflags = flags;
3685 
3686 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3687 
3688 	vmcs_writel(GUEST_RFLAGS, flags);
3689 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3690 	update_exception_bitmap(vcpu);
3691 
3692 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3693 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3694 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3695 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3696 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3697 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3698 
3699 	kvm_mmu_reset_context(vcpu);
3700 }
3701 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3702 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3703 {
3704 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3705 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3706 
3707 	if (!msr)
3708 		return;
3709 
3710 	/*
3711 	 * Force kernel_gs_base reloading before EFER changes, as control
3712 	 * of this msr depends on is_long_mode().
3713 	 */
3714 	vmx_load_host_state(to_vmx(vcpu));
3715 	vcpu->arch.efer = efer;
3716 	if (efer & EFER_LMA) {
3717 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3718 		msr->data = efer;
3719 	} else {
3720 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3721 
3722 		msr->data = efer & ~EFER_LME;
3723 	}
3724 	setup_msrs(vmx);
3725 }
3726 
3727 #ifdef CONFIG_X86_64
3728 
enter_lmode(struct kvm_vcpu * vcpu)3729 static void enter_lmode(struct kvm_vcpu *vcpu)
3730 {
3731 	u32 guest_tr_ar;
3732 
3733 	vmx_segment_cache_clear(to_vmx(vcpu));
3734 
3735 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3736 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3737 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3738 				     __func__);
3739 		vmcs_write32(GUEST_TR_AR_BYTES,
3740 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3741 			     | VMX_AR_TYPE_BUSY_64_TSS);
3742 	}
3743 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3744 }
3745 
exit_lmode(struct kvm_vcpu * vcpu)3746 static void exit_lmode(struct kvm_vcpu *vcpu)
3747 {
3748 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3749 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3750 }
3751 
3752 #endif
3753 
__vmx_flush_tlb(struct kvm_vcpu * vcpu,int vpid)3754 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3755 {
3756 	vpid_sync_context(vpid);
3757 	if (enable_ept) {
3758 		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3759 			return;
3760 		ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3761 	}
3762 }
3763 
vmx_flush_tlb(struct kvm_vcpu * vcpu)3764 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3765 {
3766 	__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3767 }
3768 
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)3769 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3770 {
3771 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3772 
3773 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3774 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3775 }
3776 
vmx_decache_cr3(struct kvm_vcpu * vcpu)3777 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3778 {
3779 	if (enable_ept && is_paging(vcpu))
3780 		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3781 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3782 }
3783 
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)3784 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3785 {
3786 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3787 
3788 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3789 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3790 }
3791 
ept_load_pdptrs(struct kvm_vcpu * vcpu)3792 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3793 {
3794 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3795 
3796 	if (!test_bit(VCPU_EXREG_PDPTR,
3797 		      (unsigned long *)&vcpu->arch.regs_dirty))
3798 		return;
3799 
3800 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3801 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3802 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3803 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3804 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3805 	}
3806 }
3807 
ept_save_pdptrs(struct kvm_vcpu * vcpu)3808 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3809 {
3810 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3811 
3812 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3813 		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3814 		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3815 		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3816 		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3817 	}
3818 
3819 	__set_bit(VCPU_EXREG_PDPTR,
3820 		  (unsigned long *)&vcpu->arch.regs_avail);
3821 	__set_bit(VCPU_EXREG_PDPTR,
3822 		  (unsigned long *)&vcpu->arch.regs_dirty);
3823 }
3824 
3825 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3826 
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)3827 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3828 					unsigned long cr0,
3829 					struct kvm_vcpu *vcpu)
3830 {
3831 	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3832 		vmx_decache_cr3(vcpu);
3833 	if (!(cr0 & X86_CR0_PG)) {
3834 		/* From paging/starting to nonpaging */
3835 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3836 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3837 			     (CPU_BASED_CR3_LOAD_EXITING |
3838 			      CPU_BASED_CR3_STORE_EXITING));
3839 		vcpu->arch.cr0 = cr0;
3840 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3841 	} else if (!is_paging(vcpu)) {
3842 		/* From nonpaging to paging */
3843 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3844 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3845 			     ~(CPU_BASED_CR3_LOAD_EXITING |
3846 			       CPU_BASED_CR3_STORE_EXITING));
3847 		vcpu->arch.cr0 = cr0;
3848 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3849 	}
3850 
3851 	if (!(cr0 & X86_CR0_WP))
3852 		*hw_cr0 &= ~X86_CR0_WP;
3853 }
3854 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3855 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3856 {
3857 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3858 	unsigned long hw_cr0;
3859 
3860 	hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3861 	if (enable_unrestricted_guest)
3862 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3863 	else {
3864 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3865 
3866 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3867 			enter_pmode(vcpu);
3868 
3869 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3870 			enter_rmode(vcpu);
3871 	}
3872 
3873 #ifdef CONFIG_X86_64
3874 	if (vcpu->arch.efer & EFER_LME) {
3875 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3876 			enter_lmode(vcpu);
3877 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3878 			exit_lmode(vcpu);
3879 	}
3880 #endif
3881 
3882 	if (enable_ept)
3883 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3884 
3885 	if (!vcpu->fpu_active)
3886 		hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3887 
3888 	vmcs_writel(CR0_READ_SHADOW, cr0);
3889 	vmcs_writel(GUEST_CR0, hw_cr0);
3890 	vcpu->arch.cr0 = cr0;
3891 
3892 	/* depends on vcpu->arch.cr0 to be set to a new value */
3893 	vmx->emulation_required = emulation_required(vcpu);
3894 }
3895 
construct_eptp(unsigned long root_hpa)3896 static u64 construct_eptp(unsigned long root_hpa)
3897 {
3898 	u64 eptp;
3899 
3900 	/* TODO write the value reading from MSR */
3901 	eptp = VMX_EPT_DEFAULT_MT |
3902 		VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3903 	if (enable_ept_ad_bits)
3904 		eptp |= VMX_EPT_AD_ENABLE_BIT;
3905 	eptp |= (root_hpa & PAGE_MASK);
3906 
3907 	return eptp;
3908 }
3909 
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)3910 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3911 {
3912 	unsigned long guest_cr3;
3913 	u64 eptp;
3914 
3915 	guest_cr3 = cr3;
3916 	if (enable_ept) {
3917 		eptp = construct_eptp(cr3);
3918 		vmcs_write64(EPT_POINTER, eptp);
3919 		if (is_paging(vcpu) || is_guest_mode(vcpu))
3920 			guest_cr3 = kvm_read_cr3(vcpu);
3921 		else
3922 			guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3923 		ept_load_pdptrs(vcpu);
3924 	}
3925 
3926 	vmx_flush_tlb(vcpu);
3927 	vmcs_writel(GUEST_CR3, guest_cr3);
3928 }
3929 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3930 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3931 {
3932 	/*
3933 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3934 	 * is in force while we are in guest mode.  Do not let guests control
3935 	 * this bit, even if host CR4.MCE == 0.
3936 	 */
3937 	unsigned long hw_cr4 =
3938 		(cr4_read_shadow() & X86_CR4_MCE) |
3939 		(cr4 & ~X86_CR4_MCE) |
3940 		(to_vmx(vcpu)->rmode.vm86_active ?
3941 		 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3942 
3943 	if (cr4 & X86_CR4_VMXE) {
3944 		/*
3945 		 * To use VMXON (and later other VMX instructions), a guest
3946 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3947 		 * So basically the check on whether to allow nested VMX
3948 		 * is here.
3949 		 */
3950 		if (!nested_vmx_allowed(vcpu))
3951 			return 1;
3952 	}
3953 	if (to_vmx(vcpu)->nested.vmxon &&
3954 	    ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3955 		return 1;
3956 
3957 	vcpu->arch.cr4 = cr4;
3958 	if (enable_ept) {
3959 		if (!is_paging(vcpu)) {
3960 			hw_cr4 &= ~X86_CR4_PAE;
3961 			hw_cr4 |= X86_CR4_PSE;
3962 		} else if (!(cr4 & X86_CR4_PAE)) {
3963 			hw_cr4 &= ~X86_CR4_PAE;
3964 		}
3965 	}
3966 
3967 	if (!enable_unrestricted_guest && !is_paging(vcpu))
3968 		/*
3969 		 * SMEP/SMAP is disabled if CPU is in non-paging mode in
3970 		 * hardware.  However KVM always uses paging mode without
3971 		 * unrestricted guest.
3972 		 * To emulate this behavior, SMEP/SMAP needs to be manually
3973 		 * disabled when guest switches to non-paging mode.
3974 		 */
3975 		hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3976 
3977 	vmcs_writel(CR4_READ_SHADOW, cr4);
3978 	vmcs_writel(GUEST_CR4, hw_cr4);
3979 	return 0;
3980 }
3981 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3982 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3983 			    struct kvm_segment *var, int seg)
3984 {
3985 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3986 	u32 ar;
3987 
3988 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3989 		*var = vmx->rmode.segs[seg];
3990 		if (seg == VCPU_SREG_TR
3991 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3992 			return;
3993 		var->base = vmx_read_guest_seg_base(vmx, seg);
3994 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3995 		return;
3996 	}
3997 	var->base = vmx_read_guest_seg_base(vmx, seg);
3998 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3999 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
4000 	ar = vmx_read_guest_seg_ar(vmx, seg);
4001 	var->unusable = (ar >> 16) & 1;
4002 	var->type = ar & 15;
4003 	var->s = (ar >> 4) & 1;
4004 	var->dpl = (ar >> 5) & 3;
4005 	/*
4006 	 * Some userspaces do not preserve unusable property. Since usable
4007 	 * segment has to be present according to VMX spec we can use present
4008 	 * property to amend userspace bug by making unusable segment always
4009 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4010 	 * segment as unusable.
4011 	 */
4012 	var->present = !var->unusable;
4013 	var->avl = (ar >> 12) & 1;
4014 	var->l = (ar >> 13) & 1;
4015 	var->db = (ar >> 14) & 1;
4016 	var->g = (ar >> 15) & 1;
4017 }
4018 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)4019 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4020 {
4021 	struct kvm_segment s;
4022 
4023 	if (to_vmx(vcpu)->rmode.vm86_active) {
4024 		vmx_get_segment(vcpu, &s, seg);
4025 		return s.base;
4026 	}
4027 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4028 }
4029 
vmx_get_cpl(struct kvm_vcpu * vcpu)4030 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4031 {
4032 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4033 
4034 	if (unlikely(vmx->rmode.vm86_active))
4035 		return 0;
4036 	else {
4037 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4038 		return VMX_AR_DPL(ar);
4039 	}
4040 }
4041 
vmx_segment_access_rights(struct kvm_segment * var)4042 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4043 {
4044 	u32 ar;
4045 
4046 	if (var->unusable || !var->present)
4047 		ar = 1 << 16;
4048 	else {
4049 		ar = var->type & 15;
4050 		ar |= (var->s & 1) << 4;
4051 		ar |= (var->dpl & 3) << 5;
4052 		ar |= (var->present & 1) << 7;
4053 		ar |= (var->avl & 1) << 12;
4054 		ar |= (var->l & 1) << 13;
4055 		ar |= (var->db & 1) << 14;
4056 		ar |= (var->g & 1) << 15;
4057 	}
4058 
4059 	return ar;
4060 }
4061 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4062 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4063 			    struct kvm_segment *var, int seg)
4064 {
4065 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4066 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4067 
4068 	vmx_segment_cache_clear(vmx);
4069 
4070 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4071 		vmx->rmode.segs[seg] = *var;
4072 		if (seg == VCPU_SREG_TR)
4073 			vmcs_write16(sf->selector, var->selector);
4074 		else if (var->s)
4075 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4076 		goto out;
4077 	}
4078 
4079 	vmcs_writel(sf->base, var->base);
4080 	vmcs_write32(sf->limit, var->limit);
4081 	vmcs_write16(sf->selector, var->selector);
4082 
4083 	/*
4084 	 *   Fix the "Accessed" bit in AR field of segment registers for older
4085 	 * qemu binaries.
4086 	 *   IA32 arch specifies that at the time of processor reset the
4087 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4088 	 * is setting it to 0 in the userland code. This causes invalid guest
4089 	 * state vmexit when "unrestricted guest" mode is turned on.
4090 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4091 	 * tree. Newer qemu binaries with that qemu fix would not need this
4092 	 * kvm hack.
4093 	 */
4094 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4095 		var->type |= 0x1; /* Accessed */
4096 
4097 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4098 
4099 out:
4100 	vmx->emulation_required = emulation_required(vcpu);
4101 }
4102 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)4103 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4104 {
4105 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4106 
4107 	*db = (ar >> 14) & 1;
4108 	*l = (ar >> 13) & 1;
4109 }
4110 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4111 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4112 {
4113 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4114 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
4115 }
4116 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4117 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4118 {
4119 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4120 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
4121 }
4122 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4123 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4124 {
4125 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4126 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
4127 }
4128 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4129 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4130 {
4131 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4132 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
4133 }
4134 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)4135 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4136 {
4137 	struct kvm_segment var;
4138 	u32 ar;
4139 
4140 	vmx_get_segment(vcpu, &var, seg);
4141 	var.dpl = 0x3;
4142 	if (seg == VCPU_SREG_CS)
4143 		var.type = 0x3;
4144 	ar = vmx_segment_access_rights(&var);
4145 
4146 	if (var.base != (var.selector << 4))
4147 		return false;
4148 	if (var.limit != 0xffff)
4149 		return false;
4150 	if (ar != 0xf3)
4151 		return false;
4152 
4153 	return true;
4154 }
4155 
code_segment_valid(struct kvm_vcpu * vcpu)4156 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4157 {
4158 	struct kvm_segment cs;
4159 	unsigned int cs_rpl;
4160 
4161 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4162 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4163 
4164 	if (cs.unusable)
4165 		return false;
4166 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4167 		return false;
4168 	if (!cs.s)
4169 		return false;
4170 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4171 		if (cs.dpl > cs_rpl)
4172 			return false;
4173 	} else {
4174 		if (cs.dpl != cs_rpl)
4175 			return false;
4176 	}
4177 	if (!cs.present)
4178 		return false;
4179 
4180 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4181 	return true;
4182 }
4183 
stack_segment_valid(struct kvm_vcpu * vcpu)4184 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4185 {
4186 	struct kvm_segment ss;
4187 	unsigned int ss_rpl;
4188 
4189 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4190 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4191 
4192 	if (ss.unusable)
4193 		return true;
4194 	if (ss.type != 3 && ss.type != 7)
4195 		return false;
4196 	if (!ss.s)
4197 		return false;
4198 	if (ss.dpl != ss_rpl) /* DPL != RPL */
4199 		return false;
4200 	if (!ss.present)
4201 		return false;
4202 
4203 	return true;
4204 }
4205 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)4206 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4207 {
4208 	struct kvm_segment var;
4209 	unsigned int rpl;
4210 
4211 	vmx_get_segment(vcpu, &var, seg);
4212 	rpl = var.selector & SEGMENT_RPL_MASK;
4213 
4214 	if (var.unusable)
4215 		return true;
4216 	if (!var.s)
4217 		return false;
4218 	if (!var.present)
4219 		return false;
4220 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4221 		if (var.dpl < rpl) /* DPL < RPL */
4222 			return false;
4223 	}
4224 
4225 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
4226 	 * rights flags
4227 	 */
4228 	return true;
4229 }
4230 
tr_valid(struct kvm_vcpu * vcpu)4231 static bool tr_valid(struct kvm_vcpu *vcpu)
4232 {
4233 	struct kvm_segment tr;
4234 
4235 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4236 
4237 	if (tr.unusable)
4238 		return false;
4239 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
4240 		return false;
4241 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4242 		return false;
4243 	if (!tr.present)
4244 		return false;
4245 
4246 	return true;
4247 }
4248 
ldtr_valid(struct kvm_vcpu * vcpu)4249 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4250 {
4251 	struct kvm_segment ldtr;
4252 
4253 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4254 
4255 	if (ldtr.unusable)
4256 		return true;
4257 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
4258 		return false;
4259 	if (ldtr.type != 2)
4260 		return false;
4261 	if (!ldtr.present)
4262 		return false;
4263 
4264 	return true;
4265 }
4266 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)4267 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4268 {
4269 	struct kvm_segment cs, ss;
4270 
4271 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4272 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4273 
4274 	return ((cs.selector & SEGMENT_RPL_MASK) ==
4275 		 (ss.selector & SEGMENT_RPL_MASK));
4276 }
4277 
4278 static bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu,
4279 					unsigned int port, int size);
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4280 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4281 				       struct vmcs12 *vmcs12)
4282 {
4283 	unsigned long exit_qualification;
4284 	unsigned short port;
4285 	int size;
4286 
4287 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
4288 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
4289 
4290 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4291 
4292 	port = exit_qualification >> 16;
4293 	size = (exit_qualification & 7) + 1;
4294 
4295 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
4296 }
4297 
4298 /*
4299  * Check if guest state is valid. Returns true if valid, false if
4300  * not.
4301  * We assume that registers are always usable
4302  */
guest_state_valid(struct kvm_vcpu * vcpu)4303 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4304 {
4305 	if (enable_unrestricted_guest)
4306 		return true;
4307 
4308 	/* real mode guest state checks */
4309 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4310 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4311 			return false;
4312 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4313 			return false;
4314 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4315 			return false;
4316 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4317 			return false;
4318 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4319 			return false;
4320 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4321 			return false;
4322 	} else {
4323 	/* protected mode guest state checks */
4324 		if (!cs_ss_rpl_check(vcpu))
4325 			return false;
4326 		if (!code_segment_valid(vcpu))
4327 			return false;
4328 		if (!stack_segment_valid(vcpu))
4329 			return false;
4330 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4331 			return false;
4332 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4333 			return false;
4334 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4335 			return false;
4336 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4337 			return false;
4338 		if (!tr_valid(vcpu))
4339 			return false;
4340 		if (!ldtr_valid(vcpu))
4341 			return false;
4342 	}
4343 	/* TODO:
4344 	 * - Add checks on RIP
4345 	 * - Add checks on RFLAGS
4346 	 */
4347 
4348 	return true;
4349 }
4350 
init_rmode_tss(struct kvm * kvm)4351 static int init_rmode_tss(struct kvm *kvm)
4352 {
4353 	gfn_t fn;
4354 	u16 data = 0;
4355 	int idx, r;
4356 
4357 	idx = srcu_read_lock(&kvm->srcu);
4358 	fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4359 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4360 	if (r < 0)
4361 		goto out;
4362 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4363 	r = kvm_write_guest_page(kvm, fn++, &data,
4364 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
4365 	if (r < 0)
4366 		goto out;
4367 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4368 	if (r < 0)
4369 		goto out;
4370 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4371 	if (r < 0)
4372 		goto out;
4373 	data = ~0;
4374 	r = kvm_write_guest_page(kvm, fn, &data,
4375 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4376 				 sizeof(u8));
4377 out:
4378 	srcu_read_unlock(&kvm->srcu, idx);
4379 	return r;
4380 }
4381 
init_rmode_identity_map(struct kvm * kvm)4382 static int init_rmode_identity_map(struct kvm *kvm)
4383 {
4384 	int i, idx, r = 0;
4385 	pfn_t identity_map_pfn;
4386 	u32 tmp;
4387 
4388 	if (!enable_ept)
4389 		return 0;
4390 
4391 	/* Protect kvm->arch.ept_identity_pagetable_done. */
4392 	mutex_lock(&kvm->slots_lock);
4393 
4394 	if (likely(kvm->arch.ept_identity_pagetable_done))
4395 		goto out2;
4396 
4397 	identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4398 
4399 	r = alloc_identity_pagetable(kvm);
4400 	if (r < 0)
4401 		goto out2;
4402 
4403 	idx = srcu_read_lock(&kvm->srcu);
4404 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4405 	if (r < 0)
4406 		goto out;
4407 	/* Set up identity-mapping pagetable for EPT in real mode */
4408 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4409 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4410 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4411 		r = kvm_write_guest_page(kvm, identity_map_pfn,
4412 				&tmp, i * sizeof(tmp), sizeof(tmp));
4413 		if (r < 0)
4414 			goto out;
4415 	}
4416 	kvm->arch.ept_identity_pagetable_done = true;
4417 
4418 out:
4419 	srcu_read_unlock(&kvm->srcu, idx);
4420 
4421 out2:
4422 	mutex_unlock(&kvm->slots_lock);
4423 	return r;
4424 }
4425 
seg_setup(int seg)4426 static void seg_setup(int seg)
4427 {
4428 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4429 	unsigned int ar;
4430 
4431 	vmcs_write16(sf->selector, 0);
4432 	vmcs_writel(sf->base, 0);
4433 	vmcs_write32(sf->limit, 0xffff);
4434 	ar = 0x93;
4435 	if (seg == VCPU_SREG_CS)
4436 		ar |= 0x08; /* code segment */
4437 
4438 	vmcs_write32(sf->ar_bytes, ar);
4439 }
4440 
alloc_apic_access_page(struct kvm * kvm)4441 static int alloc_apic_access_page(struct kvm *kvm)
4442 {
4443 	struct page *page;
4444 	int r = 0;
4445 
4446 	mutex_lock(&kvm->slots_lock);
4447 	if (kvm->arch.apic_access_page_done)
4448 		goto out;
4449 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4450 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4451 	if (r)
4452 		goto out;
4453 
4454 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4455 	if (is_error_page(page)) {
4456 		r = -EFAULT;
4457 		goto out;
4458 	}
4459 
4460 	/*
4461 	 * Do not pin the page in memory, so that memory hot-unplug
4462 	 * is able to migrate it.
4463 	 */
4464 	put_page(page);
4465 	kvm->arch.apic_access_page_done = true;
4466 out:
4467 	mutex_unlock(&kvm->slots_lock);
4468 	return r;
4469 }
4470 
alloc_identity_pagetable(struct kvm * kvm)4471 static int alloc_identity_pagetable(struct kvm *kvm)
4472 {
4473 	/* Called with kvm->slots_lock held. */
4474 
4475 	int r = 0;
4476 
4477 	BUG_ON(kvm->arch.ept_identity_pagetable_done);
4478 
4479 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4480 				    kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4481 
4482 	return r;
4483 }
4484 
allocate_vpid(void)4485 static int allocate_vpid(void)
4486 {
4487 	int vpid;
4488 
4489 	if (!enable_vpid)
4490 		return 0;
4491 	spin_lock(&vmx_vpid_lock);
4492 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4493 	if (vpid < VMX_NR_VPIDS)
4494 		__set_bit(vpid, vmx_vpid_bitmap);
4495 	else
4496 		vpid = 0;
4497 	spin_unlock(&vmx_vpid_lock);
4498 	return vpid;
4499 }
4500 
free_vpid(int vpid)4501 static void free_vpid(int vpid)
4502 {
4503 	if (!enable_vpid || vpid == 0)
4504 		return;
4505 	spin_lock(&vmx_vpid_lock);
4506 	__clear_bit(vpid, vmx_vpid_bitmap);
4507 	spin_unlock(&vmx_vpid_lock);
4508 }
4509 
vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)4510 static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4511 							  u32 msr, int type)
4512 {
4513 	int f = sizeof(unsigned long);
4514 
4515 	if (!cpu_has_vmx_msr_bitmap())
4516 		return;
4517 
4518 	/*
4519 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4520 	 * have the write-low and read-high bitmap offsets the wrong way round.
4521 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4522 	 */
4523 	if (msr <= 0x1fff) {
4524 		if (type & MSR_TYPE_R)
4525 			/* read-low */
4526 			__clear_bit(msr, msr_bitmap + 0x000 / f);
4527 
4528 		if (type & MSR_TYPE_W)
4529 			/* write-low */
4530 			__clear_bit(msr, msr_bitmap + 0x800 / f);
4531 
4532 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4533 		msr &= 0x1fff;
4534 		if (type & MSR_TYPE_R)
4535 			/* read-high */
4536 			__clear_bit(msr, msr_bitmap + 0x400 / f);
4537 
4538 		if (type & MSR_TYPE_W)
4539 			/* write-high */
4540 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
4541 
4542 	}
4543 }
4544 
vmx_enable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)4545 static void __always_inline vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4546 							 u32 msr, int type)
4547 {
4548 	int f = sizeof(unsigned long);
4549 
4550 	if (!cpu_has_vmx_msr_bitmap())
4551 		return;
4552 
4553 	/*
4554 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4555 	 * have the write-low and read-high bitmap offsets the wrong way round.
4556 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4557 	 */
4558 	if (msr <= 0x1fff) {
4559 		if (type & MSR_TYPE_R)
4560 			/* read-low */
4561 			__set_bit(msr, msr_bitmap + 0x000 / f);
4562 
4563 		if (type & MSR_TYPE_W)
4564 			/* write-low */
4565 			__set_bit(msr, msr_bitmap + 0x800 / f);
4566 
4567 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4568 		msr &= 0x1fff;
4569 		if (type & MSR_TYPE_R)
4570 			/* read-high */
4571 			__set_bit(msr, msr_bitmap + 0x400 / f);
4572 
4573 		if (type & MSR_TYPE_W)
4574 			/* write-high */
4575 			__set_bit(msr, msr_bitmap + 0xc00 / f);
4576 
4577 	}
4578 }
4579 
4580 /*
4581  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4582  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4583  */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)4584 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4585 					       unsigned long *msr_bitmap_nested,
4586 					       u32 msr, int type)
4587 {
4588 	int f = sizeof(unsigned long);
4589 
4590 	if (!cpu_has_vmx_msr_bitmap()) {
4591 		WARN_ON(1);
4592 		return;
4593 	}
4594 
4595 	/*
4596 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4597 	 * have the write-low and read-high bitmap offsets the wrong way round.
4598 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4599 	 */
4600 	if (msr <= 0x1fff) {
4601 		if (type & MSR_TYPE_R &&
4602 		   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4603 			/* read-low */
4604 			__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4605 
4606 		if (type & MSR_TYPE_W &&
4607 		   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4608 			/* write-low */
4609 			__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4610 
4611 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4612 		msr &= 0x1fff;
4613 		if (type & MSR_TYPE_R &&
4614 		   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4615 			/* read-high */
4616 			__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4617 
4618 		if (type & MSR_TYPE_W &&
4619 		   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4620 			/* write-high */
4621 			__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4622 
4623 	}
4624 }
4625 
vmx_set_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type,bool value)4626 static void __always_inline vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
4627 			     			      u32 msr, int type, bool value)
4628 {
4629 	if (value)
4630 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
4631 	else
4632 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
4633 }
4634 
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)4635 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
4636 {
4637 	u8 mode = 0;
4638 
4639 	if (cpu_has_secondary_exec_ctrls() &&
4640 	    (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
4641 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4642 		mode |= MSR_BITMAP_MODE_X2APIC;
4643 		if (enable_apicv)
4644 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4645 	}
4646 
4647 	if (is_long_mode(vcpu))
4648 		mode |= MSR_BITMAP_MODE_LM;
4649 
4650 	return mode;
4651 }
4652 
4653 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
4654 
vmx_update_msr_bitmap_x2apic(unsigned long * msr_bitmap,u8 mode)4655 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
4656 					 u8 mode)
4657 {
4658 	int msr;
4659 
4660 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
4661 		unsigned word = msr / BITS_PER_LONG;
4662 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
4663 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
4664 	}
4665 
4666 	if (mode & MSR_BITMAP_MODE_X2APIC) {
4667 		/*
4668 		 * TPR reads and writes can be virtualized even if virtual interrupt
4669 		 * delivery is not in use.
4670 		 */
4671 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
4672 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4673 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_ID), MSR_TYPE_R);
4674 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
4675 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4676 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4677 		}
4678 	}
4679 }
4680 
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)4681 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
4682 {
4683 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4684 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4685 	u8 mode = vmx_msr_bitmap_mode(vcpu);
4686 	u8 changed = mode ^ vmx->msr_bitmap_mode;
4687 
4688 	if (!changed)
4689 		return;
4690 
4691 	vmx_set_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW,
4692 				  !(mode & MSR_BITMAP_MODE_LM));
4693 
4694 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
4695 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
4696 
4697 	vmx->msr_bitmap_mode = mode;
4698 }
4699 
vmx_cpu_uses_apicv(struct kvm_vcpu * vcpu)4700 static int vmx_cpu_uses_apicv(struct kvm_vcpu *vcpu)
4701 {
4702 	return enable_apicv && lapic_in_kernel(vcpu);
4703 }
4704 
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)4705 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
4706 {
4707 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4708 	gfn_t gfn;
4709 
4710 	/*
4711 	 * Don't need to mark the APIC access page dirty; it is never
4712 	 * written to by the CPU during APIC virtualization.
4713 	 */
4714 
4715 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
4716 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
4717 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
4718 	}
4719 
4720 	if (nested_cpu_has_posted_intr(vmcs12)) {
4721 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
4722 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
4723 	}
4724 }
4725 
4726 
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)4727 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4728 {
4729 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4730 	int max_irr;
4731 	void *vapic_page;
4732 	u16 status;
4733 
4734 	if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
4735 		return;
4736 
4737 	vmx->nested.pi_pending = false;
4738 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4739 		return;
4740 
4741 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
4742 	if (max_irr != 256) {
4743 		vapic_page = kmap(vmx->nested.virtual_apic_page);
4744 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4745 		kunmap(vmx->nested.virtual_apic_page);
4746 
4747 		status = vmcs_read16(GUEST_INTR_STATUS);
4748 		if ((u8)max_irr > ((u8)status & 0xff)) {
4749 			status &= ~0xff;
4750 			status |= (u8)max_irr;
4751 			vmcs_write16(GUEST_INTR_STATUS, status);
4752 		}
4753 	}
4754 
4755 	nested_mark_vmcs12_pages_dirty(vcpu);
4756 }
4757 
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu)4758 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4759 {
4760 #ifdef CONFIG_SMP
4761 	if (vcpu->mode == IN_GUEST_MODE) {
4762 		/*
4763 		 * The vector of interrupt to be delivered to vcpu had
4764 		 * been set in PIR before this function.
4765 		 *
4766 		 * Following cases will be reached in this block, and
4767 		 * we always send a notification event in all cases as
4768 		 * explained below.
4769 		 *
4770 		 * Case 1: vcpu keeps in non-root mode. Sending a
4771 		 * notification event posts the interrupt to vcpu.
4772 		 *
4773 		 * Case 2: vcpu exits to root mode and is still
4774 		 * runnable. PIR will be synced to vIRR before the
4775 		 * next vcpu entry. Sending a notification event in
4776 		 * this case has no effect, as vcpu is not in root
4777 		 * mode.
4778 		 *
4779 		 * Case 3: vcpu exits to root mode and is blocked.
4780 		 * vcpu_block() has already synced PIR to vIRR and
4781 		 * never blocks vcpu if vIRR is not cleared. Therefore,
4782 		 * a blocked vcpu here does not wait for any requested
4783 		 * interrupts in PIR, and sending a notification event
4784 		 * which has no effect is safe here.
4785 		 */
4786 
4787 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4788 				POSTED_INTR_VECTOR);
4789 		return true;
4790 	}
4791 #endif
4792 	return false;
4793 }
4794 
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4795 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4796 						int vector)
4797 {
4798 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4799 
4800 	if (is_guest_mode(vcpu) &&
4801 	    vector == vmx->nested.posted_intr_nv) {
4802 		/*
4803 		 * If a posted intr is not recognized by hardware,
4804 		 * we will accomplish it in the next vmentry.
4805 		 */
4806 		vmx->nested.pi_pending = true;
4807 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4808 		/* the PIR and ON have been set by L1. */
4809 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
4810 			kvm_vcpu_kick(vcpu);
4811 		return 0;
4812 	}
4813 	return -1;
4814 }
4815 /*
4816  * Send interrupt to vcpu via posted interrupt way.
4817  * 1. If target vcpu is running(non-root mode), send posted interrupt
4818  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4819  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4820  * interrupt from PIR in next vmentry.
4821  */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4822 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4823 {
4824 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4825 	int r;
4826 
4827 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4828 	if (!r)
4829 		return;
4830 
4831 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4832 		return;
4833 
4834 	r = pi_test_and_set_on(&vmx->pi_desc);
4835 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4836 	if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4837 		kvm_vcpu_kick(vcpu);
4838 }
4839 
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)4840 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4841 {
4842 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4843 
4844 	if (!pi_test_and_clear_on(&vmx->pi_desc))
4845 		return;
4846 
4847 	kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4848 }
4849 
vmx_sync_pir_to_irr_dummy(struct kvm_vcpu * vcpu)4850 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4851 {
4852 	return;
4853 }
4854 
4855 /*
4856  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4857  * will not change in the lifetime of the guest.
4858  * Note that host-state that does change is set elsewhere. E.g., host-state
4859  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4860  */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4861 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4862 {
4863 	u32 low32, high32;
4864 	unsigned long tmpl;
4865 	struct desc_ptr dt;
4866 	unsigned long cr4;
4867 
4868 	vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4869 	vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4870 
4871 	/* Save the most likely value for this task's CR4 in the VMCS. */
4872 	cr4 = cr4_read_shadow();
4873 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4874 	vmx->host_state.vmcs_host_cr4 = cr4;
4875 
4876 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4877 #ifdef CONFIG_X86_64
4878 	/*
4879 	 * Load null selectors, so we can avoid reloading them in
4880 	 * __vmx_load_host_state(), in case userspace uses the null selectors
4881 	 * too (the expected case).
4882 	 */
4883 	vmcs_write16(HOST_DS_SELECTOR, 0);
4884 	vmcs_write16(HOST_ES_SELECTOR, 0);
4885 #else
4886 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4887 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4888 #endif
4889 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4890 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4891 
4892 	native_store_idt(&dt);
4893 	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4894 	vmx->host_idt_base = dt.address;
4895 
4896 	vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4897 
4898 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4899 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4900 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4901 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4902 
4903 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4904 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4905 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4906 	}
4907 }
4908 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4909 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4910 {
4911 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4912 	if (enable_ept)
4913 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4914 	if (is_guest_mode(&vmx->vcpu))
4915 		vmx->vcpu.arch.cr4_guest_owned_bits &=
4916 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4917 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4918 }
4919 
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4920 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4921 {
4922 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4923 
4924 	if (!vmx_cpu_uses_apicv(&vmx->vcpu))
4925 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4926 	return pin_based_exec_ctrl;
4927 }
4928 
vmx_exec_control(struct vcpu_vmx * vmx)4929 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4930 {
4931 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4932 
4933 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4934 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4935 
4936 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4937 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4938 #ifdef CONFIG_X86_64
4939 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4940 				CPU_BASED_CR8_LOAD_EXITING;
4941 #endif
4942 	}
4943 	if (!enable_ept)
4944 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4945 				CPU_BASED_CR3_LOAD_EXITING  |
4946 				CPU_BASED_INVLPG_EXITING;
4947 	return exec_control;
4948 }
4949 
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4950 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4951 {
4952 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4953 	if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4954 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4955 	if (vmx->vpid == 0)
4956 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4957 	if (!enable_ept) {
4958 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4959 		enable_unrestricted_guest = 0;
4960 		/* Enable INVPCID for non-ept guests may cause performance regression. */
4961 		exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4962 	}
4963 	if (!enable_unrestricted_guest)
4964 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4965 	if (!ple_gap)
4966 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4967 	if (!vmx_cpu_uses_apicv(&vmx->vcpu))
4968 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4969 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4970 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4971 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4972 	   (handle_vmptrld).
4973 	   We can NOT enable shadow_vmcs here because we don't have yet
4974 	   a current VMCS12
4975 	*/
4976 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4977 
4978 	if (!enable_pml)
4979 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4980 
4981 	/* Currently, we allow L1 guest to directly run pcommit instruction. */
4982 	exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4983 
4984 	return exec_control;
4985 }
4986 
ept_set_mmio_spte_mask(void)4987 static void ept_set_mmio_spte_mask(void)
4988 {
4989 	/*
4990 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4991 	 * of an EPT paging-structure entry is 110b (write/execute).
4992 	 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4993 	 * spte.
4994 	 */
4995 	kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4996 }
4997 
4998 #define VMX_XSS_EXIT_BITMAP 0
4999 /*
5000  * Sets up the vmcs for emulated real mode.
5001  */
vmx_vcpu_setup(struct vcpu_vmx * vmx)5002 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5003 {
5004 #ifdef CONFIG_X86_64
5005 	unsigned long a;
5006 #endif
5007 	int i;
5008 
5009 	/* I/O */
5010 	vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5011 	vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5012 
5013 	if (enable_shadow_vmcs) {
5014 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5015 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5016 	}
5017 	if (cpu_has_vmx_msr_bitmap())
5018 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
5019 
5020 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5021 
5022 	/* Control */
5023 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5024 
5025 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5026 
5027 	if (cpu_has_secondary_exec_ctrls())
5028 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5029 				vmx_secondary_exec_control(vmx));
5030 
5031 	if (vmx_cpu_uses_apicv(&vmx->vcpu)) {
5032 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
5033 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
5034 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
5035 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
5036 
5037 		vmcs_write16(GUEST_INTR_STATUS, 0);
5038 
5039 		vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5040 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5041 	}
5042 
5043 	if (ple_gap) {
5044 		vmcs_write32(PLE_GAP, ple_gap);
5045 		vmx->ple_window = ple_window;
5046 		vmx->ple_window_dirty = true;
5047 	}
5048 
5049 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5050 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5051 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
5052 
5053 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5054 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5055 	vmx_set_constant_host_state(vmx);
5056 #ifdef CONFIG_X86_64
5057 	rdmsrl(MSR_FS_BASE, a);
5058 	vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5059 	rdmsrl(MSR_GS_BASE, a);
5060 	vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5061 #else
5062 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5063 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5064 #endif
5065 
5066 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5067 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5068 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5069 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5070 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5071 
5072 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5073 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5074 
5075 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5076 		u32 index = vmx_msr_index[i];
5077 		u32 data_low, data_high;
5078 		int j = vmx->nmsrs;
5079 
5080 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
5081 			continue;
5082 		if (wrmsr_safe(index, data_low, data_high) < 0)
5083 			continue;
5084 		vmx->guest_msrs[j].index = i;
5085 		vmx->guest_msrs[j].data = 0;
5086 		vmx->guest_msrs[j].mask = -1ull;
5087 		++vmx->nmsrs;
5088 	}
5089 
5090 	vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5091 
5092 	/* 22.2.1, 20.8.1 */
5093 	vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5094 
5095 	vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
5096 	set_cr4_guest_host_mask(vmx);
5097 
5098 	if (vmx_xsaves_supported())
5099 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5100 
5101 	if (enable_pml) {
5102 		ASSERT(vmx->pml_pg);
5103 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5104 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5105 	}
5106 
5107 	return 0;
5108 }
5109 
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)5110 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5111 {
5112 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5113 	struct msr_data apic_base_msr;
5114 	u64 cr0;
5115 
5116 	vmx->rmode.vm86_active = 0;
5117 	vmx->spec_ctrl = 0;
5118 
5119 	vmx->soft_vnmi_blocked = 0;
5120 
5121 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5122 	kvm_set_cr8(vcpu, 0);
5123 
5124 	if (!init_event) {
5125 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5126 				     MSR_IA32_APICBASE_ENABLE;
5127 		if (kvm_vcpu_is_reset_bsp(vcpu))
5128 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5129 		apic_base_msr.host_initiated = true;
5130 		kvm_set_apic_base(vcpu, &apic_base_msr);
5131 	}
5132 
5133 	vmx_segment_cache_clear(vmx);
5134 
5135 	seg_setup(VCPU_SREG_CS);
5136 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5137 	vmcs_write32(GUEST_CS_BASE, 0xffff0000);
5138 
5139 	seg_setup(VCPU_SREG_DS);
5140 	seg_setup(VCPU_SREG_ES);
5141 	seg_setup(VCPU_SREG_FS);
5142 	seg_setup(VCPU_SREG_GS);
5143 	seg_setup(VCPU_SREG_SS);
5144 
5145 	vmcs_write16(GUEST_TR_SELECTOR, 0);
5146 	vmcs_writel(GUEST_TR_BASE, 0);
5147 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5148 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5149 
5150 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5151 	vmcs_writel(GUEST_LDTR_BASE, 0);
5152 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5153 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5154 
5155 	if (!init_event) {
5156 		vmcs_write32(GUEST_SYSENTER_CS, 0);
5157 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
5158 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
5159 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5160 	}
5161 
5162 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
5163 	kvm_rip_write(vcpu, 0xfff0);
5164 
5165 	vmcs_writel(GUEST_GDTR_BASE, 0);
5166 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5167 
5168 	vmcs_writel(GUEST_IDTR_BASE, 0);
5169 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5170 
5171 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5172 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5173 	vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5174 
5175 	setup_msrs(vmx);
5176 
5177 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5178 
5179 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
5180 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5181 		if (cpu_need_tpr_shadow(vcpu))
5182 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5183 				     __pa(vcpu->arch.apic->regs));
5184 		vmcs_write32(TPR_THRESHOLD, 0);
5185 	}
5186 
5187 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5188 
5189 	if (vmx_cpu_uses_apicv(vcpu))
5190 		memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5191 
5192 	if (vmx->vpid != 0)
5193 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5194 
5195 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5196 	vmx->vcpu.arch.cr0 = cr0;
5197 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
5198 	vmx_set_cr4(vcpu, 0);
5199 	vmx_set_efer(vcpu, 0);
5200 	vmx_fpu_activate(vcpu);
5201 	update_exception_bitmap(vcpu);
5202 
5203 	vpid_sync_context(vmx->vpid);
5204 }
5205 
5206 /*
5207  * In nested virtualization, check if L1 asked to exit on external interrupts.
5208  * For most existing hypervisors, this will always return true.
5209  */
nested_exit_on_intr(struct kvm_vcpu * vcpu)5210 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5211 {
5212 	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5213 		PIN_BASED_EXT_INTR_MASK;
5214 }
5215 
5216 /*
5217  * In nested virtualization, check if L1 has set
5218  * VM_EXIT_ACK_INTR_ON_EXIT
5219  */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)5220 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5221 {
5222 	return get_vmcs12(vcpu)->vm_exit_controls &
5223 		VM_EXIT_ACK_INTR_ON_EXIT;
5224 }
5225 
nested_exit_on_nmi(struct kvm_vcpu * vcpu)5226 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5227 {
5228 	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5229 		PIN_BASED_NMI_EXITING;
5230 }
5231 
enable_irq_window(struct kvm_vcpu * vcpu)5232 static void enable_irq_window(struct kvm_vcpu *vcpu)
5233 {
5234 	u32 cpu_based_vm_exec_control;
5235 
5236 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5237 	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5238 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5239 }
5240 
enable_nmi_window(struct kvm_vcpu * vcpu)5241 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5242 {
5243 	u32 cpu_based_vm_exec_control;
5244 
5245 	if (!cpu_has_virtual_nmis() ||
5246 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5247 		enable_irq_window(vcpu);
5248 		return;
5249 	}
5250 
5251 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5252 	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5253 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5254 }
5255 
vmx_inject_irq(struct kvm_vcpu * vcpu)5256 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5257 {
5258 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5259 	uint32_t intr;
5260 	int irq = vcpu->arch.interrupt.nr;
5261 
5262 	trace_kvm_inj_virq(irq);
5263 
5264 	++vcpu->stat.irq_injections;
5265 	if (vmx->rmode.vm86_active) {
5266 		int inc_eip = 0;
5267 		if (vcpu->arch.interrupt.soft)
5268 			inc_eip = vcpu->arch.event_exit_inst_len;
5269 		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5270 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5271 		return;
5272 	}
5273 	intr = irq | INTR_INFO_VALID_MASK;
5274 	if (vcpu->arch.interrupt.soft) {
5275 		intr |= INTR_TYPE_SOFT_INTR;
5276 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5277 			     vmx->vcpu.arch.event_exit_inst_len);
5278 	} else
5279 		intr |= INTR_TYPE_EXT_INTR;
5280 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5281 }
5282 
vmx_inject_nmi(struct kvm_vcpu * vcpu)5283 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5284 {
5285 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5286 
5287 	if (is_guest_mode(vcpu))
5288 		return;
5289 
5290 	if (!cpu_has_virtual_nmis()) {
5291 		/*
5292 		 * Tracking the NMI-blocked state in software is built upon
5293 		 * finding the next open IRQ window. This, in turn, depends on
5294 		 * well-behaving guests: They have to keep IRQs disabled at
5295 		 * least as long as the NMI handler runs. Otherwise we may
5296 		 * cause NMI nesting, maybe breaking the guest. But as this is
5297 		 * highly unlikely, we can live with the residual risk.
5298 		 */
5299 		vmx->soft_vnmi_blocked = 1;
5300 		vmx->vnmi_blocked_time = 0;
5301 	}
5302 
5303 	++vcpu->stat.nmi_injections;
5304 	vmx->nmi_known_unmasked = false;
5305 	if (vmx->rmode.vm86_active) {
5306 		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5307 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5308 		return;
5309 	}
5310 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5311 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5312 }
5313 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)5314 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5315 {
5316 	if (!cpu_has_virtual_nmis())
5317 		return to_vmx(vcpu)->soft_vnmi_blocked;
5318 	if (to_vmx(vcpu)->nmi_known_unmasked)
5319 		return false;
5320 	return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)	& GUEST_INTR_STATE_NMI;
5321 }
5322 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5323 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5324 {
5325 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5326 
5327 	if (!cpu_has_virtual_nmis()) {
5328 		if (vmx->soft_vnmi_blocked != masked) {
5329 			vmx->soft_vnmi_blocked = masked;
5330 			vmx->vnmi_blocked_time = 0;
5331 		}
5332 	} else {
5333 		vmx->nmi_known_unmasked = !masked;
5334 		if (masked)
5335 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5336 				      GUEST_INTR_STATE_NMI);
5337 		else
5338 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5339 					GUEST_INTR_STATE_NMI);
5340 	}
5341 }
5342 
vmx_nmi_allowed(struct kvm_vcpu * vcpu)5343 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5344 {
5345 	if (to_vmx(vcpu)->nested.nested_run_pending)
5346 		return 0;
5347 
5348 	if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5349 		return 0;
5350 
5351 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5352 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5353 		   | GUEST_INTR_STATE_NMI));
5354 }
5355 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)5356 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5357 {
5358 	return (!to_vmx(vcpu)->nested.nested_run_pending &&
5359 		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5360 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5361 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5362 }
5363 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5364 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5365 {
5366 	int ret;
5367 
5368 	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5369 				    PAGE_SIZE * 3);
5370 	if (ret)
5371 		return ret;
5372 	kvm->arch.tss_addr = addr;
5373 	return init_rmode_tss(kvm);
5374 }
5375 
rmode_exception(struct kvm_vcpu * vcpu,int vec)5376 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5377 {
5378 	switch (vec) {
5379 	case BP_VECTOR:
5380 		/*
5381 		 * Update instruction length as we may reinject the exception
5382 		 * from user space while in guest debugging mode.
5383 		 */
5384 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5385 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5386 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5387 			return false;
5388 		/* fall through */
5389 	case DB_VECTOR:
5390 		if (vcpu->guest_debug &
5391 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5392 			return false;
5393 		/* fall through */
5394 	case DE_VECTOR:
5395 	case OF_VECTOR:
5396 	case BR_VECTOR:
5397 	case UD_VECTOR:
5398 	case DF_VECTOR:
5399 	case SS_VECTOR:
5400 	case GP_VECTOR:
5401 	case MF_VECTOR:
5402 		return true;
5403 	break;
5404 	}
5405 	return false;
5406 }
5407 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5408 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5409 				  int vec, u32 err_code)
5410 {
5411 	/*
5412 	 * Instruction with address size override prefix opcode 0x67
5413 	 * Cause the #SS fault with 0 error code in VM86 mode.
5414 	 */
5415 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5416 		if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5417 			if (vcpu->arch.halt_request) {
5418 				vcpu->arch.halt_request = 0;
5419 				return kvm_vcpu_halt(vcpu);
5420 			}
5421 			return 1;
5422 		}
5423 		return 0;
5424 	}
5425 
5426 	/*
5427 	 * Forward all other exceptions that are valid in real mode.
5428 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5429 	 *        the required debugging infrastructure rework.
5430 	 */
5431 	kvm_queue_exception(vcpu, vec);
5432 	return 1;
5433 }
5434 
5435 /*
5436  * Trigger machine check on the host. We assume all the MSRs are already set up
5437  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5438  * We pass a fake environment to the machine check handler because we want
5439  * the guest to be always treated like user space, no matter what context
5440  * it used internally.
5441  */
kvm_machine_check(void)5442 static void kvm_machine_check(void)
5443 {
5444 #if defined(CONFIG_X86_MCE)
5445 	struct pt_regs regs = {
5446 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
5447 		.flags = X86_EFLAGS_IF,
5448 	};
5449 
5450 	do_machine_check(&regs, 0);
5451 #endif
5452 }
5453 
handle_machine_check(struct kvm_vcpu * vcpu)5454 static int handle_machine_check(struct kvm_vcpu *vcpu)
5455 {
5456 	/* already handled by vcpu_run */
5457 	return 1;
5458 }
5459 
handle_exception(struct kvm_vcpu * vcpu)5460 static int handle_exception(struct kvm_vcpu *vcpu)
5461 {
5462 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5463 	struct kvm_run *kvm_run = vcpu->run;
5464 	u32 intr_info, ex_no, error_code;
5465 	unsigned long cr2, rip, dr6;
5466 	u32 vect_info;
5467 	enum emulation_result er;
5468 
5469 	vect_info = vmx->idt_vectoring_info;
5470 	intr_info = vmx->exit_intr_info;
5471 
5472 	if (is_machine_check(intr_info))
5473 		return handle_machine_check(vcpu);
5474 
5475 	if (is_nmi(intr_info))
5476 		return 1;  /* already handled by vmx_vcpu_run() */
5477 
5478 	if (is_no_device(intr_info)) {
5479 		vmx_fpu_activate(vcpu);
5480 		return 1;
5481 	}
5482 
5483 	if (is_invalid_opcode(intr_info)) {
5484 		if (is_guest_mode(vcpu)) {
5485 			kvm_queue_exception(vcpu, UD_VECTOR);
5486 			return 1;
5487 		}
5488 		er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5489 		if (er == EMULATE_USER_EXIT)
5490 			return 0;
5491 		if (er != EMULATE_DONE)
5492 			kvm_queue_exception(vcpu, UD_VECTOR);
5493 		return 1;
5494 	}
5495 
5496 	error_code = 0;
5497 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5498 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5499 
5500 	/*
5501 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5502 	 * MMIO, it is better to report an internal error.
5503 	 * See the comments in vmx_handle_exit.
5504 	 */
5505 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5506 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5507 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5508 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5509 		vcpu->run->internal.ndata = 3;
5510 		vcpu->run->internal.data[0] = vect_info;
5511 		vcpu->run->internal.data[1] = intr_info;
5512 		vcpu->run->internal.data[2] = error_code;
5513 		return 0;
5514 	}
5515 
5516 	if (is_page_fault(intr_info)) {
5517 		/* EPT won't cause page fault directly */
5518 		BUG_ON(enable_ept);
5519 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
5520 		trace_kvm_page_fault(cr2, error_code);
5521 
5522 		if (kvm_event_needs_reinjection(vcpu))
5523 			kvm_mmu_unprotect_page_virt(vcpu, cr2);
5524 		return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5525 	}
5526 
5527 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5528 
5529 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5530 		return handle_rmode_exception(vcpu, ex_no, error_code);
5531 
5532 	switch (ex_no) {
5533 	case AC_VECTOR:
5534 		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5535 		return 1;
5536 	case DB_VECTOR:
5537 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
5538 		if (!(vcpu->guest_debug &
5539 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5540 			vcpu->arch.dr6 &= ~15;
5541 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5542 			if (is_icebp(intr_info))
5543 				skip_emulated_instruction(vcpu);
5544 
5545 			kvm_queue_exception(vcpu, DB_VECTOR);
5546 			return 1;
5547 		}
5548 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5549 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5550 		/* fall through */
5551 	case BP_VECTOR:
5552 		/*
5553 		 * Update instruction length as we may reinject #BP from
5554 		 * user space while in guest debugging mode. Reading it for
5555 		 * #DB as well causes no harm, it is not used in that case.
5556 		 */
5557 		vmx->vcpu.arch.event_exit_inst_len =
5558 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5559 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5560 		rip = kvm_rip_read(vcpu);
5561 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5562 		kvm_run->debug.arch.exception = ex_no;
5563 		break;
5564 	default:
5565 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5566 		kvm_run->ex.exception = ex_no;
5567 		kvm_run->ex.error_code = error_code;
5568 		break;
5569 	}
5570 	return 0;
5571 }
5572 
handle_external_interrupt(struct kvm_vcpu * vcpu)5573 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5574 {
5575 	++vcpu->stat.irq_exits;
5576 	return 1;
5577 }
5578 
handle_triple_fault(struct kvm_vcpu * vcpu)5579 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5580 {
5581 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5582 	vcpu->mmio_needed = 0;
5583 	return 0;
5584 }
5585 
handle_io(struct kvm_vcpu * vcpu)5586 static int handle_io(struct kvm_vcpu *vcpu)
5587 {
5588 	unsigned long exit_qualification;
5589 	int size, in, string;
5590 	unsigned port;
5591 
5592 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5593 	string = (exit_qualification & 16) != 0;
5594 	in = (exit_qualification & 8) != 0;
5595 
5596 	++vcpu->stat.io_exits;
5597 
5598 	if (string || in)
5599 		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5600 
5601 	port = exit_qualification >> 16;
5602 	size = (exit_qualification & 7) + 1;
5603 	skip_emulated_instruction(vcpu);
5604 
5605 	return kvm_fast_pio_out(vcpu, size, port);
5606 }
5607 
5608 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5609 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5610 {
5611 	/*
5612 	 * Patch in the VMCALL instruction:
5613 	 */
5614 	hypercall[0] = 0x0f;
5615 	hypercall[1] = 0x01;
5616 	hypercall[2] = 0xc1;
5617 }
5618 
nested_cr0_valid(struct kvm_vcpu * vcpu,unsigned long val)5619 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5620 {
5621 	unsigned long always_on = VMXON_CR0_ALWAYSON;
5622 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5623 
5624 	if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5625 		SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5626 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5627 		always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5628 	return (val & always_on) == always_on;
5629 }
5630 
5631 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5632 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5633 {
5634 	if (is_guest_mode(vcpu)) {
5635 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5636 		unsigned long orig_val = val;
5637 
5638 		/*
5639 		 * We get here when L2 changed cr0 in a way that did not change
5640 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5641 		 * but did change L0 shadowed bits. So we first calculate the
5642 		 * effective cr0 value that L1 would like to write into the
5643 		 * hardware. It consists of the L2-owned bits from the new
5644 		 * value combined with the L1-owned bits from L1's guest_cr0.
5645 		 */
5646 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5647 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5648 
5649 		if (!nested_cr0_valid(vcpu, val))
5650 			return 1;
5651 
5652 		if (kvm_set_cr0(vcpu, val))
5653 			return 1;
5654 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5655 		return 0;
5656 	} else {
5657 		if (to_vmx(vcpu)->nested.vmxon &&
5658 		    ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5659 			return 1;
5660 		return kvm_set_cr0(vcpu, val);
5661 	}
5662 }
5663 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5664 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5665 {
5666 	if (is_guest_mode(vcpu)) {
5667 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5668 		unsigned long orig_val = val;
5669 
5670 		/* analogously to handle_set_cr0 */
5671 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5672 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5673 		if (kvm_set_cr4(vcpu, val))
5674 			return 1;
5675 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5676 		return 0;
5677 	} else
5678 		return kvm_set_cr4(vcpu, val);
5679 }
5680 
5681 /* called to set cr0 as approriate for clts instruction exit. */
handle_clts(struct kvm_vcpu * vcpu)5682 static void handle_clts(struct kvm_vcpu *vcpu)
5683 {
5684 	if (is_guest_mode(vcpu)) {
5685 		/*
5686 		 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5687 		 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5688 		 * just pretend it's off (also in arch.cr0 for fpu_activate).
5689 		 */
5690 		vmcs_writel(CR0_READ_SHADOW,
5691 			vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5692 		vcpu->arch.cr0 &= ~X86_CR0_TS;
5693 	} else
5694 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5695 }
5696 
handle_cr(struct kvm_vcpu * vcpu)5697 static int handle_cr(struct kvm_vcpu *vcpu)
5698 {
5699 	unsigned long exit_qualification, val;
5700 	int cr;
5701 	int reg;
5702 	int err;
5703 
5704 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5705 	cr = exit_qualification & 15;
5706 	reg = (exit_qualification >> 8) & 15;
5707 	switch ((exit_qualification >> 4) & 3) {
5708 	case 0: /* mov to cr */
5709 		val = kvm_register_readl(vcpu, reg);
5710 		trace_kvm_cr_write(cr, val);
5711 		switch (cr) {
5712 		case 0:
5713 			err = handle_set_cr0(vcpu, val);
5714 			kvm_complete_insn_gp(vcpu, err);
5715 			return 1;
5716 		case 3:
5717 			err = kvm_set_cr3(vcpu, val);
5718 			kvm_complete_insn_gp(vcpu, err);
5719 			return 1;
5720 		case 4:
5721 			err = handle_set_cr4(vcpu, val);
5722 			kvm_complete_insn_gp(vcpu, err);
5723 			return 1;
5724 		case 8: {
5725 				u8 cr8_prev = kvm_get_cr8(vcpu);
5726 				u8 cr8 = (u8)val;
5727 				err = kvm_set_cr8(vcpu, cr8);
5728 				kvm_complete_insn_gp(vcpu, err);
5729 				if (lapic_in_kernel(vcpu))
5730 					return 1;
5731 				if (cr8_prev <= cr8)
5732 					return 1;
5733 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5734 				return 0;
5735 			}
5736 		}
5737 		break;
5738 	case 2: /* clts */
5739 		handle_clts(vcpu);
5740 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5741 		skip_emulated_instruction(vcpu);
5742 		vmx_fpu_activate(vcpu);
5743 		return 1;
5744 	case 1: /*mov from cr*/
5745 		switch (cr) {
5746 		case 3:
5747 			val = kvm_read_cr3(vcpu);
5748 			kvm_register_write(vcpu, reg, val);
5749 			trace_kvm_cr_read(cr, val);
5750 			skip_emulated_instruction(vcpu);
5751 			return 1;
5752 		case 8:
5753 			val = kvm_get_cr8(vcpu);
5754 			kvm_register_write(vcpu, reg, val);
5755 			trace_kvm_cr_read(cr, val);
5756 			skip_emulated_instruction(vcpu);
5757 			return 1;
5758 		}
5759 		break;
5760 	case 3: /* lmsw */
5761 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5762 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5763 		kvm_lmsw(vcpu, val);
5764 
5765 		skip_emulated_instruction(vcpu);
5766 		return 1;
5767 	default:
5768 		break;
5769 	}
5770 	vcpu->run->exit_reason = 0;
5771 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5772 	       (int)(exit_qualification >> 4) & 3, cr);
5773 	return 0;
5774 }
5775 
handle_dr(struct kvm_vcpu * vcpu)5776 static int handle_dr(struct kvm_vcpu *vcpu)
5777 {
5778 	unsigned long exit_qualification;
5779 	int dr, dr7, reg;
5780 
5781 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5782 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5783 
5784 	/* First, if DR does not exist, trigger UD */
5785 	if (!kvm_require_dr(vcpu, dr))
5786 		return 1;
5787 
5788 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
5789 	if (!kvm_require_cpl(vcpu, 0))
5790 		return 1;
5791 	dr7 = vmcs_readl(GUEST_DR7);
5792 	if (dr7 & DR7_GD) {
5793 		/*
5794 		 * As the vm-exit takes precedence over the debug trap, we
5795 		 * need to emulate the latter, either for the host or the
5796 		 * guest debugging itself.
5797 		 */
5798 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5799 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5800 			vcpu->run->debug.arch.dr7 = dr7;
5801 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5802 			vcpu->run->debug.arch.exception = DB_VECTOR;
5803 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5804 			return 0;
5805 		} else {
5806 			vcpu->arch.dr6 &= ~15;
5807 			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5808 			kvm_queue_exception(vcpu, DB_VECTOR);
5809 			return 1;
5810 		}
5811 	}
5812 
5813 	if (vcpu->guest_debug == 0) {
5814 		u32 cpu_based_vm_exec_control;
5815 
5816 		cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5817 		cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5818 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5819 
5820 		/*
5821 		 * No more DR vmexits; force a reload of the debug registers
5822 		 * and reenter on this instruction.  The next vmexit will
5823 		 * retrieve the full state of the debug registers.
5824 		 */
5825 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5826 		return 1;
5827 	}
5828 
5829 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5830 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5831 		unsigned long val;
5832 
5833 		if (kvm_get_dr(vcpu, dr, &val))
5834 			return 1;
5835 		kvm_register_write(vcpu, reg, val);
5836 	} else
5837 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5838 			return 1;
5839 
5840 	skip_emulated_instruction(vcpu);
5841 	return 1;
5842 }
5843 
vmx_get_dr6(struct kvm_vcpu * vcpu)5844 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5845 {
5846 	return vcpu->arch.dr6;
5847 }
5848 
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)5849 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5850 {
5851 }
5852 
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5853 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5854 {
5855 	u32 cpu_based_vm_exec_control;
5856 
5857 	get_debugreg(vcpu->arch.db[0], 0);
5858 	get_debugreg(vcpu->arch.db[1], 1);
5859 	get_debugreg(vcpu->arch.db[2], 2);
5860 	get_debugreg(vcpu->arch.db[3], 3);
5861 	get_debugreg(vcpu->arch.dr6, 6);
5862 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5863 
5864 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5865 
5866 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5867 	cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5868 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5869 }
5870 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5871 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5872 {
5873 	vmcs_writel(GUEST_DR7, val);
5874 }
5875 
handle_cpuid(struct kvm_vcpu * vcpu)5876 static int handle_cpuid(struct kvm_vcpu *vcpu)
5877 {
5878 	kvm_emulate_cpuid(vcpu);
5879 	return 1;
5880 }
5881 
handle_rdmsr(struct kvm_vcpu * vcpu)5882 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5883 {
5884 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5885 	struct msr_data msr_info;
5886 
5887 	msr_info.index = ecx;
5888 	msr_info.host_initiated = false;
5889 	if (vmx_get_msr(vcpu, &msr_info)) {
5890 		trace_kvm_msr_read_ex(ecx);
5891 		kvm_inject_gp(vcpu, 0);
5892 		return 1;
5893 	}
5894 
5895 	trace_kvm_msr_read(ecx, msr_info.data);
5896 
5897 	/* FIXME: handling of bits 32:63 of rax, rdx */
5898 	vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5899 	vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5900 	skip_emulated_instruction(vcpu);
5901 	return 1;
5902 }
5903 
handle_wrmsr(struct kvm_vcpu * vcpu)5904 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5905 {
5906 	struct msr_data msr;
5907 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5908 	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5909 		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5910 
5911 	msr.data = data;
5912 	msr.index = ecx;
5913 	msr.host_initiated = false;
5914 	if (kvm_set_msr(vcpu, &msr) != 0) {
5915 		trace_kvm_msr_write_ex(ecx, data);
5916 		kvm_inject_gp(vcpu, 0);
5917 		return 1;
5918 	}
5919 
5920 	trace_kvm_msr_write(ecx, data);
5921 	skip_emulated_instruction(vcpu);
5922 	return 1;
5923 }
5924 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5925 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5926 {
5927 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5928 	return 1;
5929 }
5930 
handle_interrupt_window(struct kvm_vcpu * vcpu)5931 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5932 {
5933 	u32 cpu_based_vm_exec_control;
5934 
5935 	/* clear pending irq */
5936 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5937 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5938 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5939 
5940 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5941 
5942 	++vcpu->stat.irq_window_exits;
5943 	return 1;
5944 }
5945 
handle_halt(struct kvm_vcpu * vcpu)5946 static int handle_halt(struct kvm_vcpu *vcpu)
5947 {
5948 	return kvm_emulate_halt(vcpu);
5949 }
5950 
handle_vmcall(struct kvm_vcpu * vcpu)5951 static int handle_vmcall(struct kvm_vcpu *vcpu)
5952 {
5953 	kvm_emulate_hypercall(vcpu);
5954 	return 1;
5955 }
5956 
handle_invd(struct kvm_vcpu * vcpu)5957 static int handle_invd(struct kvm_vcpu *vcpu)
5958 {
5959 	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5960 }
5961 
handle_invlpg(struct kvm_vcpu * vcpu)5962 static int handle_invlpg(struct kvm_vcpu *vcpu)
5963 {
5964 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5965 
5966 	kvm_mmu_invlpg(vcpu, exit_qualification);
5967 	skip_emulated_instruction(vcpu);
5968 	return 1;
5969 }
5970 
handle_rdpmc(struct kvm_vcpu * vcpu)5971 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5972 {
5973 	int err;
5974 
5975 	err = kvm_rdpmc(vcpu);
5976 	kvm_complete_insn_gp(vcpu, err);
5977 
5978 	return 1;
5979 }
5980 
handle_wbinvd(struct kvm_vcpu * vcpu)5981 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5982 {
5983 	kvm_emulate_wbinvd(vcpu);
5984 	return 1;
5985 }
5986 
handle_xsetbv(struct kvm_vcpu * vcpu)5987 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5988 {
5989 	u64 new_bv = kvm_read_edx_eax(vcpu);
5990 	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5991 
5992 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5993 		skip_emulated_instruction(vcpu);
5994 	return 1;
5995 }
5996 
handle_xsaves(struct kvm_vcpu * vcpu)5997 static int handle_xsaves(struct kvm_vcpu *vcpu)
5998 {
5999 	skip_emulated_instruction(vcpu);
6000 	WARN(1, "this should never happen\n");
6001 	return 1;
6002 }
6003 
handle_xrstors(struct kvm_vcpu * vcpu)6004 static int handle_xrstors(struct kvm_vcpu *vcpu)
6005 {
6006 	skip_emulated_instruction(vcpu);
6007 	WARN(1, "this should never happen\n");
6008 	return 1;
6009 }
6010 
handle_apic_access(struct kvm_vcpu * vcpu)6011 static int handle_apic_access(struct kvm_vcpu *vcpu)
6012 {
6013 	if (likely(fasteoi)) {
6014 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6015 		int access_type, offset;
6016 
6017 		access_type = exit_qualification & APIC_ACCESS_TYPE;
6018 		offset = exit_qualification & APIC_ACCESS_OFFSET;
6019 		/*
6020 		 * Sane guest uses MOV to write EOI, with written value
6021 		 * not cared. So make a short-circuit here by avoiding
6022 		 * heavy instruction emulation.
6023 		 */
6024 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6025 		    (offset == APIC_EOI)) {
6026 			kvm_lapic_set_eoi(vcpu);
6027 			skip_emulated_instruction(vcpu);
6028 			return 1;
6029 		}
6030 	}
6031 	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6032 }
6033 
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)6034 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6035 {
6036 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6037 	int vector = exit_qualification & 0xff;
6038 
6039 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6040 	kvm_apic_set_eoi_accelerated(vcpu, vector);
6041 	return 1;
6042 }
6043 
handle_apic_write(struct kvm_vcpu * vcpu)6044 static int handle_apic_write(struct kvm_vcpu *vcpu)
6045 {
6046 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6047 	u32 offset = exit_qualification & 0xfff;
6048 
6049 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
6050 	kvm_apic_write_nodecode(vcpu, offset);
6051 	return 1;
6052 }
6053 
handle_task_switch(struct kvm_vcpu * vcpu)6054 static int handle_task_switch(struct kvm_vcpu *vcpu)
6055 {
6056 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6057 	unsigned long exit_qualification;
6058 	bool has_error_code = false;
6059 	u32 error_code = 0;
6060 	u16 tss_selector;
6061 	int reason, type, idt_v, idt_index;
6062 
6063 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6064 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6065 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6066 
6067 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6068 
6069 	reason = (u32)exit_qualification >> 30;
6070 	if (reason == TASK_SWITCH_GATE && idt_v) {
6071 		switch (type) {
6072 		case INTR_TYPE_NMI_INTR:
6073 			vcpu->arch.nmi_injected = false;
6074 			vmx_set_nmi_mask(vcpu, true);
6075 			break;
6076 		case INTR_TYPE_EXT_INTR:
6077 		case INTR_TYPE_SOFT_INTR:
6078 			kvm_clear_interrupt_queue(vcpu);
6079 			break;
6080 		case INTR_TYPE_HARD_EXCEPTION:
6081 			if (vmx->idt_vectoring_info &
6082 			    VECTORING_INFO_DELIVER_CODE_MASK) {
6083 				has_error_code = true;
6084 				error_code =
6085 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
6086 			}
6087 			/* fall through */
6088 		case INTR_TYPE_SOFT_EXCEPTION:
6089 			kvm_clear_exception_queue(vcpu);
6090 			break;
6091 		default:
6092 			break;
6093 		}
6094 	}
6095 	tss_selector = exit_qualification;
6096 
6097 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6098 		       type != INTR_TYPE_EXT_INTR &&
6099 		       type != INTR_TYPE_NMI_INTR))
6100 		skip_emulated_instruction(vcpu);
6101 
6102 	if (kvm_task_switch(vcpu, tss_selector,
6103 			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6104 			    has_error_code, error_code) == EMULATE_FAIL) {
6105 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6106 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6107 		vcpu->run->internal.ndata = 0;
6108 		return 0;
6109 	}
6110 
6111 	/*
6112 	 * TODO: What about debug traps on tss switch?
6113 	 *       Are we supposed to inject them and update dr6?
6114 	 */
6115 
6116 	return 1;
6117 }
6118 
handle_ept_violation(struct kvm_vcpu * vcpu)6119 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6120 {
6121 	unsigned long exit_qualification;
6122 	gpa_t gpa;
6123 	u32 error_code;
6124 	int gla_validity;
6125 
6126 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6127 
6128 	gla_validity = (exit_qualification >> 7) & 0x3;
6129 	if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
6130 		printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
6131 		printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
6132 			(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
6133 			vmcs_readl(GUEST_LINEAR_ADDRESS));
6134 		printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
6135 			(long unsigned int)exit_qualification);
6136 		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6137 		vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
6138 		return 0;
6139 	}
6140 
6141 	/*
6142 	 * EPT violation happened while executing iret from NMI,
6143 	 * "blocked by NMI" bit has to be set before next VM entry.
6144 	 * There are errata that may cause this bit to not be set:
6145 	 * AAK134, BY25.
6146 	 */
6147 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6148 			cpu_has_virtual_nmis() &&
6149 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
6150 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6151 
6152 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6153 	trace_kvm_page_fault(gpa, exit_qualification);
6154 
6155 	/* It is a write fault? */
6156 	error_code = exit_qualification & PFERR_WRITE_MASK;
6157 	/* It is a fetch fault? */
6158 	error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
6159 	/* ept page table is present? */
6160 	error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
6161 
6162 	vcpu->arch.exit_qualification = exit_qualification;
6163 
6164 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6165 }
6166 
handle_ept_misconfig(struct kvm_vcpu * vcpu)6167 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6168 {
6169 	int ret;
6170 	gpa_t gpa;
6171 
6172 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6173 	if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6174 		trace_kvm_fast_mmio(gpa);
6175 		/*
6176 		* Doing kvm_skip_emulated_instruction() depends on undefined
6177 		* behavior: Intel's manual doesn't mandate
6178 		* VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
6179 		* occurs and while on real hardware it was observed to be set,
6180 		* other hypervisors (namely Hyper-V) don't set it, we end up
6181 		* advancing IP with some random value. Disable fast mmio when
6182 		* running nested and keep it for real hardware in hope that
6183 		* VM_EXIT_INSTRUCTION_LEN will always be set correctly.
6184 		*/
6185 		if (!static_cpu_has(X86_FEATURE_HYPERVISOR)) {
6186 			skip_emulated_instruction(vcpu);
6187 			return 1;
6188 		}
6189 		else
6190 			return emulate_instruction(vcpu, EMULTYPE_SKIP) ==
6191 								EMULATE_DONE;
6192 	}
6193 
6194 	ret = handle_mmio_page_fault(vcpu, gpa, true);
6195 	if (likely(ret == RET_MMIO_PF_EMULATE))
6196 		return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6197 					      EMULATE_DONE;
6198 
6199 	if (unlikely(ret == RET_MMIO_PF_INVALID))
6200 		return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6201 
6202 	if (unlikely(ret == RET_MMIO_PF_RETRY))
6203 		return 1;
6204 
6205 	/* It is the real ept misconfig */
6206 	WARN_ON(1);
6207 
6208 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6209 	vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6210 
6211 	return 0;
6212 }
6213 
handle_nmi_window(struct kvm_vcpu * vcpu)6214 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6215 {
6216 	u32 cpu_based_vm_exec_control;
6217 
6218 	/* clear pending NMI */
6219 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6220 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6221 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6222 	++vcpu->stat.nmi_window_exits;
6223 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6224 
6225 	return 1;
6226 }
6227 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)6228 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6229 {
6230 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6231 	enum emulation_result err = EMULATE_DONE;
6232 	int ret = 1;
6233 	u32 cpu_exec_ctrl;
6234 	bool intr_window_requested;
6235 	unsigned count = 130;
6236 
6237 	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6238 	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6239 
6240 	while (vmx->emulation_required && count-- != 0) {
6241 		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6242 			return handle_interrupt_window(&vmx->vcpu);
6243 
6244 		if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6245 			return 1;
6246 
6247 		err = emulate_instruction(vcpu, 0);
6248 
6249 		if (err == EMULATE_USER_EXIT) {
6250 			++vcpu->stat.mmio_exits;
6251 			ret = 0;
6252 			goto out;
6253 		}
6254 
6255 		if (err != EMULATE_DONE)
6256 			goto emulation_error;
6257 
6258 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
6259 		    vcpu->arch.exception.pending)
6260 			goto emulation_error;
6261 
6262 		if (vcpu->arch.halt_request) {
6263 			vcpu->arch.halt_request = 0;
6264 			ret = kvm_vcpu_halt(vcpu);
6265 			goto out;
6266 		}
6267 
6268 		if (signal_pending(current))
6269 			goto out;
6270 		if (need_resched())
6271 			schedule();
6272 	}
6273 
6274 out:
6275 	return ret;
6276 
6277 emulation_error:
6278 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6279 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6280 	vcpu->run->internal.ndata = 0;
6281 	return 0;
6282 }
6283 
__grow_ple_window(int val)6284 static int __grow_ple_window(int val)
6285 {
6286 	if (ple_window_grow < 1)
6287 		return ple_window;
6288 
6289 	val = min(val, ple_window_actual_max);
6290 
6291 	if (ple_window_grow < ple_window)
6292 		val *= ple_window_grow;
6293 	else
6294 		val += ple_window_grow;
6295 
6296 	return val;
6297 }
6298 
__shrink_ple_window(int val,int modifier,int minimum)6299 static int __shrink_ple_window(int val, int modifier, int minimum)
6300 {
6301 	if (modifier < 1)
6302 		return ple_window;
6303 
6304 	if (modifier < ple_window)
6305 		val /= modifier;
6306 	else
6307 		val -= modifier;
6308 
6309 	return max(val, minimum);
6310 }
6311 
grow_ple_window(struct kvm_vcpu * vcpu)6312 static void grow_ple_window(struct kvm_vcpu *vcpu)
6313 {
6314 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6315 	int old = vmx->ple_window;
6316 
6317 	vmx->ple_window = __grow_ple_window(old);
6318 
6319 	if (vmx->ple_window != old)
6320 		vmx->ple_window_dirty = true;
6321 
6322 	trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6323 }
6324 
shrink_ple_window(struct kvm_vcpu * vcpu)6325 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6326 {
6327 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6328 	int old = vmx->ple_window;
6329 
6330 	vmx->ple_window = __shrink_ple_window(old,
6331 	                                      ple_window_shrink, ple_window);
6332 
6333 	if (vmx->ple_window != old)
6334 		vmx->ple_window_dirty = true;
6335 
6336 	trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6337 }
6338 
6339 /*
6340  * ple_window_actual_max is computed to be one grow_ple_window() below
6341  * ple_window_max. (See __grow_ple_window for the reason.)
6342  * This prevents overflows, because ple_window_max is int.
6343  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6344  * this process.
6345  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6346  */
update_ple_window_actual_max(void)6347 static void update_ple_window_actual_max(void)
6348 {
6349 	ple_window_actual_max =
6350 			__shrink_ple_window(max(ple_window_max, ple_window),
6351 			                    ple_window_grow, INT_MIN);
6352 }
6353 
6354 /*
6355  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6356  */
wakeup_handler(void)6357 static void wakeup_handler(void)
6358 {
6359 	struct kvm_vcpu *vcpu;
6360 	int cpu = smp_processor_id();
6361 
6362 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6363 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6364 			blocked_vcpu_list) {
6365 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6366 
6367 		if (pi_test_on(pi_desc) == 1)
6368 			kvm_vcpu_kick(vcpu);
6369 	}
6370 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6371 }
6372 
hardware_setup(void)6373 static __init int hardware_setup(void)
6374 {
6375 	int r = -ENOMEM, i;
6376 
6377 	rdmsrl_safe(MSR_EFER, &host_efer);
6378 
6379 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6380 		kvm_define_shared_msr(i, vmx_msr_index[i]);
6381 
6382 	vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6383 	if (!vmx_io_bitmap_a)
6384 		return r;
6385 
6386 	vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6387 	if (!vmx_io_bitmap_b)
6388 		goto out;
6389 
6390 	vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6391 	if (!vmx_vmread_bitmap)
6392 		goto out1;
6393 
6394 	vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6395 	if (!vmx_vmwrite_bitmap)
6396 		goto out2;
6397 
6398 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6399 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6400 
6401 	memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6402 
6403 	memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6404 
6405 	if (setup_vmcs_config(&vmcs_config) < 0) {
6406 		r = -EIO;
6407 		goto out3;
6408 	}
6409 
6410 	if (boot_cpu_has(X86_FEATURE_NX))
6411 		kvm_enable_efer_bits(EFER_NX);
6412 
6413 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6414 		!(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6415 		enable_vpid = 0;
6416 
6417 	if (!cpu_has_vmx_shadow_vmcs())
6418 		enable_shadow_vmcs = 0;
6419 	if (enable_shadow_vmcs)
6420 		init_vmcs_shadow_fields();
6421 
6422 	if (!cpu_has_vmx_ept() ||
6423 	    !cpu_has_vmx_ept_4levels()) {
6424 		enable_ept = 0;
6425 		enable_unrestricted_guest = 0;
6426 		enable_ept_ad_bits = 0;
6427 	}
6428 
6429 	if (!cpu_has_vmx_ept_ad_bits())
6430 		enable_ept_ad_bits = 0;
6431 
6432 	if (!cpu_has_vmx_unrestricted_guest())
6433 		enable_unrestricted_guest = 0;
6434 
6435 	if (!cpu_has_vmx_flexpriority())
6436 		flexpriority_enabled = 0;
6437 
6438 	/*
6439 	 * set_apic_access_page_addr() is used to reload apic access
6440 	 * page upon invalidation.  No need to do anything if not
6441 	 * using the APIC_ACCESS_ADDR VMCS field.
6442 	 */
6443 	if (!flexpriority_enabled)
6444 		kvm_x86_ops->set_apic_access_page_addr = NULL;
6445 
6446 	if (!cpu_has_vmx_tpr_shadow())
6447 		kvm_x86_ops->update_cr8_intercept = NULL;
6448 
6449 	if (enable_ept && !cpu_has_vmx_ept_2m_page())
6450 		kvm_disable_largepages();
6451 
6452 	if (!cpu_has_vmx_ple())
6453 		ple_gap = 0;
6454 
6455 	if (!cpu_has_vmx_apicv())
6456 		enable_apicv = 0;
6457 
6458 	if (cpu_has_vmx_tsc_scaling()) {
6459 		kvm_has_tsc_control = true;
6460 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6461 		kvm_tsc_scaling_ratio_frac_bits = 48;
6462 	}
6463 
6464 	if (enable_apicv)
6465 		kvm_x86_ops->update_cr8_intercept = NULL;
6466 	else {
6467 		kvm_x86_ops->hwapic_irr_update = NULL;
6468 		kvm_x86_ops->hwapic_isr_update = NULL;
6469 		kvm_x86_ops->deliver_posted_interrupt = NULL;
6470 		kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
6471 	}
6472 
6473 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6474 
6475 	if (enable_ept) {
6476 		kvm_mmu_set_mask_ptes(0ull,
6477 			(enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6478 			(enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6479 			0ull, VMX_EPT_EXECUTABLE_MASK);
6480 		ept_set_mmio_spte_mask();
6481 		kvm_enable_tdp();
6482 	} else
6483 		kvm_disable_tdp();
6484 
6485 	update_ple_window_actual_max();
6486 
6487 	/*
6488 	 * Only enable PML when hardware supports PML feature, and both EPT
6489 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
6490 	 */
6491 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6492 		enable_pml = 0;
6493 
6494 	if (!enable_pml) {
6495 		kvm_x86_ops->slot_enable_log_dirty = NULL;
6496 		kvm_x86_ops->slot_disable_log_dirty = NULL;
6497 		kvm_x86_ops->flush_log_dirty = NULL;
6498 		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6499 	}
6500 
6501 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6502 
6503 	return alloc_kvm_area();
6504 
6505 out3:
6506 	free_page((unsigned long)vmx_vmwrite_bitmap);
6507 out2:
6508 	free_page((unsigned long)vmx_vmread_bitmap);
6509 out1:
6510 	free_page((unsigned long)vmx_io_bitmap_b);
6511 out:
6512 	free_page((unsigned long)vmx_io_bitmap_a);
6513 
6514     return r;
6515 }
6516 
hardware_unsetup(void)6517 static __exit void hardware_unsetup(void)
6518 {
6519 	free_page((unsigned long)vmx_io_bitmap_b);
6520 	free_page((unsigned long)vmx_io_bitmap_a);
6521 	free_page((unsigned long)vmx_vmwrite_bitmap);
6522 	free_page((unsigned long)vmx_vmread_bitmap);
6523 
6524 	free_kvm_area();
6525 }
6526 
6527 /*
6528  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6529  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6530  */
handle_pause(struct kvm_vcpu * vcpu)6531 static int handle_pause(struct kvm_vcpu *vcpu)
6532 {
6533 	if (ple_gap)
6534 		grow_ple_window(vcpu);
6535 
6536 	skip_emulated_instruction(vcpu);
6537 	kvm_vcpu_on_spin(vcpu);
6538 
6539 	return 1;
6540 }
6541 
handle_nop(struct kvm_vcpu * vcpu)6542 static int handle_nop(struct kvm_vcpu *vcpu)
6543 {
6544 	skip_emulated_instruction(vcpu);
6545 	return 1;
6546 }
6547 
handle_mwait(struct kvm_vcpu * vcpu)6548 static int handle_mwait(struct kvm_vcpu *vcpu)
6549 {
6550 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6551 	return handle_nop(vcpu);
6552 }
6553 
handle_monitor_trap(struct kvm_vcpu * vcpu)6554 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6555 {
6556 	return 1;
6557 }
6558 
handle_monitor(struct kvm_vcpu * vcpu)6559 static int handle_monitor(struct kvm_vcpu *vcpu)
6560 {
6561 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6562 	return handle_nop(vcpu);
6563 }
6564 
6565 /*
6566  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6567  * set the success or error code of an emulated VMX instruction, as specified
6568  * by Vol 2B, VMX Instruction Reference, "Conventions".
6569  */
nested_vmx_succeed(struct kvm_vcpu * vcpu)6570 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6571 {
6572 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6573 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6574 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6575 }
6576 
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)6577 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6578 {
6579 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6580 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6581 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
6582 			| X86_EFLAGS_CF);
6583 }
6584 
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)6585 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6586 					u32 vm_instruction_error)
6587 {
6588 	if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6589 		/*
6590 		 * failValid writes the error number to the current VMCS, which
6591 		 * can't be done there isn't a current VMCS.
6592 		 */
6593 		nested_vmx_failInvalid(vcpu);
6594 		return;
6595 	}
6596 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6597 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6598 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
6599 			| X86_EFLAGS_ZF);
6600 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6601 	/*
6602 	 * We don't need to force a shadow sync because
6603 	 * VM_INSTRUCTION_ERROR is not shadowed
6604 	 */
6605 }
6606 
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)6607 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6608 {
6609 	/* TODO: not to reset guest simply here. */
6610 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6611 	pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6612 }
6613 
vmx_preemption_timer_fn(struct hrtimer * timer)6614 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6615 {
6616 	struct vcpu_vmx *vmx =
6617 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6618 
6619 	vmx->nested.preemption_timer_expired = true;
6620 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6621 	kvm_vcpu_kick(&vmx->vcpu);
6622 
6623 	return HRTIMER_NORESTART;
6624 }
6625 
6626 /*
6627  * Decode the memory-address operand of a vmx instruction, as recorded on an
6628  * exit caused by such an instruction (run by a guest hypervisor).
6629  * On success, returns 0. When the operand is invalid, returns 1 and throws
6630  * #UD or #GP.
6631  */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,gva_t * ret)6632 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6633 				 unsigned long exit_qualification,
6634 				 u32 vmx_instruction_info, bool wr, gva_t *ret)
6635 {
6636 	gva_t off;
6637 	bool exn;
6638 	struct kvm_segment s;
6639 
6640 	/*
6641 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6642 	 * Execution", on an exit, vmx_instruction_info holds most of the
6643 	 * addressing components of the operand. Only the displacement part
6644 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6645 	 * For how an actual address is calculated from all these components,
6646 	 * refer to Vol. 1, "Operand Addressing".
6647 	 */
6648 	int  scaling = vmx_instruction_info & 3;
6649 	int  addr_size = (vmx_instruction_info >> 7) & 7;
6650 	bool is_reg = vmx_instruction_info & (1u << 10);
6651 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
6652 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6653 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6654 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6655 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6656 
6657 	if (is_reg) {
6658 		kvm_queue_exception(vcpu, UD_VECTOR);
6659 		return 1;
6660 	}
6661 
6662 	/* Addr = segment_base + offset */
6663 	/* offset = base + [index * scale] + displacement */
6664 	off = exit_qualification; /* holds the displacement */
6665 	if (addr_size == 1)
6666 		off = (gva_t)sign_extend64(off, 31);
6667 	else if (addr_size == 0)
6668 		off = (gva_t)sign_extend64(off, 15);
6669 	if (base_is_valid)
6670 		off += kvm_register_read(vcpu, base_reg);
6671 	if (index_is_valid)
6672 		off += kvm_register_read(vcpu, index_reg)<<scaling;
6673 	vmx_get_segment(vcpu, &s, seg_reg);
6674 	*ret = s.base + off;
6675 
6676 	if (addr_size == 1) /* 32 bit */
6677 		*ret &= 0xffffffff;
6678 
6679 	/* Checks for #GP/#SS exceptions. */
6680 	exn = false;
6681 	if (is_long_mode(vcpu)) {
6682 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
6683 		 * non-canonical form. This is the only check on the memory
6684 		 * destination for long mode!
6685 		 */
6686 		exn = is_noncanonical_address(*ret);
6687 	} else if (is_protmode(vcpu)) {
6688 		/* Protected mode: apply checks for segment validity in the
6689 		 * following order:
6690 		 * - segment type check (#GP(0) may be thrown)
6691 		 * - usability check (#GP(0)/#SS(0))
6692 		 * - limit check (#GP(0)/#SS(0))
6693 		 */
6694 		if (wr)
6695 			/* #GP(0) if the destination operand is located in a
6696 			 * read-only data segment or any code segment.
6697 			 */
6698 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
6699 		else
6700 			/* #GP(0) if the source operand is located in an
6701 			 * execute-only code segment
6702 			 */
6703 			exn = ((s.type & 0xa) == 8);
6704 		if (exn) {
6705 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6706 			return 1;
6707 		}
6708 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6709 		 */
6710 		exn = (s.unusable != 0);
6711 
6712 		/*
6713 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
6714 		 * outside the segment limit.  All CPUs that support VMX ignore
6715 		 * limit checks for flat segments, i.e. segments with base==0,
6716 		 * limit==0xffffffff and of type expand-up data or code.
6717 		 */
6718 		if (!(s.base == 0 && s.limit == 0xffffffff &&
6719 		     ((s.type & 8) || !(s.type & 4))))
6720 			exn = exn || (off + sizeof(u64) > s.limit);
6721 	}
6722 	if (exn) {
6723 		kvm_queue_exception_e(vcpu,
6724 				      seg_reg == VCPU_SREG_SS ?
6725 						SS_VECTOR : GP_VECTOR,
6726 				      0);
6727 		return 1;
6728 	}
6729 
6730 	return 0;
6731 }
6732 
6733 /*
6734  * This function performs the various checks including
6735  * - if it's 4KB aligned
6736  * - No bits beyond the physical address width are set
6737  * - Returns 0 on success or else 1
6738  * (Intel SDM Section 30.3)
6739  */
nested_vmx_check_vmptr(struct kvm_vcpu * vcpu,int exit_reason,gpa_t * vmpointer)6740 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6741 				  gpa_t *vmpointer)
6742 {
6743 	gva_t gva;
6744 	gpa_t vmptr;
6745 	struct x86_exception e;
6746 	struct page *page;
6747 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6748 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
6749 
6750 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6751 			vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6752 		return 1;
6753 
6754 	if (kvm_read_guest_virt(vcpu, gva, &vmptr, sizeof(vmptr), &e)) {
6755 		kvm_inject_page_fault(vcpu, &e);
6756 		return 1;
6757 	}
6758 
6759 	switch (exit_reason) {
6760 	case EXIT_REASON_VMON:
6761 		/*
6762 		 * SDM 3: 24.11.5
6763 		 * The first 4 bytes of VMXON region contain the supported
6764 		 * VMCS revision identifier
6765 		 *
6766 		 * Note - IA32_VMX_BASIC[48] will never be 1
6767 		 * for the nested case;
6768 		 * which replaces physical address width with 32
6769 		 *
6770 		 */
6771 		if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6772 			nested_vmx_failInvalid(vcpu);
6773 			skip_emulated_instruction(vcpu);
6774 			return 1;
6775 		}
6776 
6777 		page = nested_get_page(vcpu, vmptr);
6778 		if (page == NULL) {
6779 			nested_vmx_failInvalid(vcpu);
6780 			skip_emulated_instruction(vcpu);
6781 			return 1;
6782 		}
6783 		if (*(u32 *)kmap(page) != VMCS12_REVISION) {
6784 			kunmap(page);
6785 			nested_release_page_clean(page);
6786 			nested_vmx_failInvalid(vcpu);
6787 			skip_emulated_instruction(vcpu);
6788 			return 1;
6789 		}
6790 		kunmap(page);
6791 		nested_release_page_clean(page);
6792 		vmx->nested.vmxon_ptr = vmptr;
6793 		break;
6794 	case EXIT_REASON_VMCLEAR:
6795 		if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6796 			nested_vmx_failValid(vcpu,
6797 					     VMXERR_VMCLEAR_INVALID_ADDRESS);
6798 			skip_emulated_instruction(vcpu);
6799 			return 1;
6800 		}
6801 
6802 		if (vmptr == vmx->nested.vmxon_ptr) {
6803 			nested_vmx_failValid(vcpu,
6804 					     VMXERR_VMCLEAR_VMXON_POINTER);
6805 			skip_emulated_instruction(vcpu);
6806 			return 1;
6807 		}
6808 		break;
6809 	case EXIT_REASON_VMPTRLD:
6810 		if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6811 			nested_vmx_failValid(vcpu,
6812 					     VMXERR_VMPTRLD_INVALID_ADDRESS);
6813 			skip_emulated_instruction(vcpu);
6814 			return 1;
6815 		}
6816 
6817 		if (vmptr == vmx->nested.vmxon_ptr) {
6818 			nested_vmx_failValid(vcpu,
6819 					     VMXERR_VMCLEAR_VMXON_POINTER);
6820 			skip_emulated_instruction(vcpu);
6821 			return 1;
6822 		}
6823 		break;
6824 	default:
6825 		return 1; /* shouldn't happen */
6826 	}
6827 
6828 	if (vmpointer)
6829 		*vmpointer = vmptr;
6830 	return 0;
6831 }
6832 
6833 /*
6834  * Emulate the VMXON instruction.
6835  * Currently, we just remember that VMX is active, and do not save or even
6836  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6837  * do not currently need to store anything in that guest-allocated memory
6838  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6839  * argument is different from the VMXON pointer (which the spec says they do).
6840  */
handle_vmon(struct kvm_vcpu * vcpu)6841 static int handle_vmon(struct kvm_vcpu *vcpu)
6842 {
6843 	struct kvm_segment cs;
6844 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6845 	struct vmcs *shadow_vmcs;
6846 	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6847 		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6848 	int r;
6849 
6850 	/* The Intel VMX Instruction Reference lists a bunch of bits that
6851 	 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6852 	 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6853 	 * Otherwise, we should fail with #UD. We test these now:
6854 	 */
6855 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6856 	    !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6857 	    (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6858 		kvm_queue_exception(vcpu, UD_VECTOR);
6859 		return 1;
6860 	}
6861 
6862 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6863 	if (is_long_mode(vcpu) && !cs.l) {
6864 		kvm_queue_exception(vcpu, UD_VECTOR);
6865 		return 1;
6866 	}
6867 
6868 	if (vmx_get_cpl(vcpu)) {
6869 		kvm_inject_gp(vcpu, 0);
6870 		return 1;
6871 	}
6872 
6873 	if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6874 		return 1;
6875 
6876 	if (vmx->nested.vmxon) {
6877 		nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6878 		skip_emulated_instruction(vcpu);
6879 		return 1;
6880 	}
6881 
6882 	if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6883 			!= VMXON_NEEDED_FEATURES) {
6884 		kvm_inject_gp(vcpu, 0);
6885 		return 1;
6886 	}
6887 
6888 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
6889 	if (r < 0)
6890 		goto out_vmcs02;
6891 
6892 	if (enable_shadow_vmcs) {
6893 		shadow_vmcs = alloc_vmcs();
6894 		if (!shadow_vmcs)
6895 			goto out_shadow_vmcs;
6896 		/* mark vmcs as shadow */
6897 		shadow_vmcs->revision_id |= (1u << 31);
6898 		/* init shadow vmcs */
6899 		vmcs_clear(shadow_vmcs);
6900 		vmx->nested.current_shadow_vmcs = shadow_vmcs;
6901 	}
6902 
6903 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6904 		     HRTIMER_MODE_REL);
6905 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6906 
6907 	vmx->nested.vpid02 = allocate_vpid();
6908 
6909 	vmx->nested.vmxon = true;
6910 
6911 	skip_emulated_instruction(vcpu);
6912 	nested_vmx_succeed(vcpu);
6913 	return 1;
6914 
6915 out_shadow_vmcs:
6916 	free_loaded_vmcs(&vmx->nested.vmcs02);
6917 
6918 out_vmcs02:
6919 	return -ENOMEM;
6920 }
6921 
6922 /*
6923  * Intel's VMX Instruction Reference specifies a common set of prerequisites
6924  * for running VMX instructions (except VMXON, whose prerequisites are
6925  * slightly different). It also specifies what exception to inject otherwise.
6926  */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)6927 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6928 {
6929 	struct kvm_segment cs;
6930 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6931 
6932 	if (!vmx->nested.vmxon) {
6933 		kvm_queue_exception(vcpu, UD_VECTOR);
6934 		return 0;
6935 	}
6936 
6937 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6938 	if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6939 	    (is_long_mode(vcpu) && !cs.l)) {
6940 		kvm_queue_exception(vcpu, UD_VECTOR);
6941 		return 0;
6942 	}
6943 
6944 	if (vmx_get_cpl(vcpu)) {
6945 		kvm_inject_gp(vcpu, 0);
6946 		return 0;
6947 	}
6948 
6949 	return 1;
6950 }
6951 
nested_release_vmcs12(struct vcpu_vmx * vmx)6952 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6953 {
6954 	if (vmx->nested.current_vmptr == -1ull)
6955 		return;
6956 
6957 	/* current_vmptr and current_vmcs12 are always set/reset together */
6958 	if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6959 		return;
6960 
6961 	if (enable_shadow_vmcs) {
6962 		/* copy to memory all shadowed fields in case
6963 		   they were modified */
6964 		copy_shadow_to_vmcs12(vmx);
6965 		vmx->nested.sync_shadow_vmcs = false;
6966 		vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6967 				SECONDARY_EXEC_SHADOW_VMCS);
6968 		vmcs_write64(VMCS_LINK_POINTER, -1ull);
6969 	}
6970 	vmx->nested.posted_intr_nv = -1;
6971 	kunmap(vmx->nested.current_vmcs12_page);
6972 	nested_release_page(vmx->nested.current_vmcs12_page);
6973 	vmx->nested.current_vmptr = -1ull;
6974 	vmx->nested.current_vmcs12 = NULL;
6975 }
6976 
6977 /*
6978  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6979  * just stops using VMX.
6980  */
free_nested(struct vcpu_vmx * vmx)6981 static void free_nested(struct vcpu_vmx *vmx)
6982 {
6983 	if (!vmx->nested.vmxon)
6984 		return;
6985 
6986 	hrtimer_cancel(&vmx->nested.preemption_timer);
6987 	vmx->nested.vmxon = false;
6988 	free_vpid(vmx->nested.vpid02);
6989 	nested_release_vmcs12(vmx);
6990 	if (enable_shadow_vmcs)
6991 		free_vmcs(vmx->nested.current_shadow_vmcs);
6992 	/* Unpin physical memory we referred to in the vmcs02 */
6993 	if (vmx->nested.apic_access_page) {
6994 		nested_release_page(vmx->nested.apic_access_page);
6995 		vmx->nested.apic_access_page = NULL;
6996 	}
6997 	if (vmx->nested.virtual_apic_page) {
6998 		nested_release_page(vmx->nested.virtual_apic_page);
6999 		vmx->nested.virtual_apic_page = NULL;
7000 	}
7001 	if (vmx->nested.pi_desc_page) {
7002 		kunmap(vmx->nested.pi_desc_page);
7003 		nested_release_page(vmx->nested.pi_desc_page);
7004 		vmx->nested.pi_desc_page = NULL;
7005 		vmx->nested.pi_desc = NULL;
7006 	}
7007 
7008 	free_loaded_vmcs(&vmx->nested.vmcs02);
7009 }
7010 
7011 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)7012 static int handle_vmoff(struct kvm_vcpu *vcpu)
7013 {
7014 	if (!nested_vmx_check_permission(vcpu))
7015 		return 1;
7016 	free_nested(to_vmx(vcpu));
7017 	skip_emulated_instruction(vcpu);
7018 	nested_vmx_succeed(vcpu);
7019 	return 1;
7020 }
7021 
7022 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)7023 static int handle_vmclear(struct kvm_vcpu *vcpu)
7024 {
7025 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7026 	u32 zero = 0;
7027 	gpa_t vmptr;
7028 
7029 	if (!nested_vmx_check_permission(vcpu))
7030 		return 1;
7031 
7032 	if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
7033 		return 1;
7034 
7035 	if (vmptr == vmx->nested.current_vmptr)
7036 		nested_release_vmcs12(vmx);
7037 
7038 	kvm_vcpu_write_guest(vcpu,
7039 			vmptr + offsetof(struct vmcs12, launch_state),
7040 			&zero, sizeof(zero));
7041 
7042 	skip_emulated_instruction(vcpu);
7043 	nested_vmx_succeed(vcpu);
7044 	return 1;
7045 }
7046 
7047 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7048 
7049 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)7050 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7051 {
7052 	return nested_vmx_run(vcpu, true);
7053 }
7054 
7055 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)7056 static int handle_vmresume(struct kvm_vcpu *vcpu)
7057 {
7058 
7059 	return nested_vmx_run(vcpu, false);
7060 }
7061 
7062 enum vmcs_field_type {
7063 	VMCS_FIELD_TYPE_U16 = 0,
7064 	VMCS_FIELD_TYPE_U64 = 1,
7065 	VMCS_FIELD_TYPE_U32 = 2,
7066 	VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7067 };
7068 
vmcs_field_type(unsigned long field)7069 static inline int vmcs_field_type(unsigned long field)
7070 {
7071 	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */
7072 		return VMCS_FIELD_TYPE_U32;
7073 	return (field >> 13) & 0x3 ;
7074 }
7075 
vmcs_field_readonly(unsigned long field)7076 static inline int vmcs_field_readonly(unsigned long field)
7077 {
7078 	return (((field >> 10) & 0x3) == 1);
7079 }
7080 
7081 /*
7082  * Read a vmcs12 field. Since these can have varying lengths and we return
7083  * one type, we chose the biggest type (u64) and zero-extend the return value
7084  * to that size. Note that the caller, handle_vmread, might need to use only
7085  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7086  * 64-bit fields are to be returned).
7087  */
vmcs12_read_any(struct kvm_vcpu * vcpu,unsigned long field,u64 * ret)7088 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7089 				  unsigned long field, u64 *ret)
7090 {
7091 	short offset = vmcs_field_to_offset(field);
7092 	char *p;
7093 
7094 	if (offset < 0)
7095 		return offset;
7096 
7097 	p = ((char *)(get_vmcs12(vcpu))) + offset;
7098 
7099 	switch (vmcs_field_type(field)) {
7100 	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7101 		*ret = *((natural_width *)p);
7102 		return 0;
7103 	case VMCS_FIELD_TYPE_U16:
7104 		*ret = *((u16 *)p);
7105 		return 0;
7106 	case VMCS_FIELD_TYPE_U32:
7107 		*ret = *((u32 *)p);
7108 		return 0;
7109 	case VMCS_FIELD_TYPE_U64:
7110 		*ret = *((u64 *)p);
7111 		return 0;
7112 	default:
7113 		WARN_ON(1);
7114 		return -ENOENT;
7115 	}
7116 }
7117 
7118 
vmcs12_write_any(struct kvm_vcpu * vcpu,unsigned long field,u64 field_value)7119 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7120 				   unsigned long field, u64 field_value){
7121 	short offset = vmcs_field_to_offset(field);
7122 	char *p = ((char *) get_vmcs12(vcpu)) + offset;
7123 	if (offset < 0)
7124 		return offset;
7125 
7126 	switch (vmcs_field_type(field)) {
7127 	case VMCS_FIELD_TYPE_U16:
7128 		*(u16 *)p = field_value;
7129 		return 0;
7130 	case VMCS_FIELD_TYPE_U32:
7131 		*(u32 *)p = field_value;
7132 		return 0;
7133 	case VMCS_FIELD_TYPE_U64:
7134 		*(u64 *)p = field_value;
7135 		return 0;
7136 	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7137 		*(natural_width *)p = field_value;
7138 		return 0;
7139 	default:
7140 		WARN_ON(1);
7141 		return -ENOENT;
7142 	}
7143 
7144 }
7145 
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)7146 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7147 {
7148 	int i;
7149 	unsigned long field;
7150 	u64 field_value;
7151 	struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7152 	const unsigned long *fields = shadow_read_write_fields;
7153 	const int num_fields = max_shadow_read_write_fields;
7154 
7155 	preempt_disable();
7156 
7157 	vmcs_load(shadow_vmcs);
7158 
7159 	for (i = 0; i < num_fields; i++) {
7160 		field = fields[i];
7161 		switch (vmcs_field_type(field)) {
7162 		case VMCS_FIELD_TYPE_U16:
7163 			field_value = vmcs_read16(field);
7164 			break;
7165 		case VMCS_FIELD_TYPE_U32:
7166 			field_value = vmcs_read32(field);
7167 			break;
7168 		case VMCS_FIELD_TYPE_U64:
7169 			field_value = vmcs_read64(field);
7170 			break;
7171 		case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7172 			field_value = vmcs_readl(field);
7173 			break;
7174 		default:
7175 			WARN_ON(1);
7176 			continue;
7177 		}
7178 		vmcs12_write_any(&vmx->vcpu, field, field_value);
7179 	}
7180 
7181 	vmcs_clear(shadow_vmcs);
7182 	vmcs_load(vmx->loaded_vmcs->vmcs);
7183 
7184 	preempt_enable();
7185 }
7186 
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)7187 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7188 {
7189 	const unsigned long *fields[] = {
7190 		shadow_read_write_fields,
7191 		shadow_read_only_fields
7192 	};
7193 	const int max_fields[] = {
7194 		max_shadow_read_write_fields,
7195 		max_shadow_read_only_fields
7196 	};
7197 	int i, q;
7198 	unsigned long field;
7199 	u64 field_value = 0;
7200 	struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7201 
7202 	vmcs_load(shadow_vmcs);
7203 
7204 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
7205 		for (i = 0; i < max_fields[q]; i++) {
7206 			field = fields[q][i];
7207 			vmcs12_read_any(&vmx->vcpu, field, &field_value);
7208 
7209 			switch (vmcs_field_type(field)) {
7210 			case VMCS_FIELD_TYPE_U16:
7211 				vmcs_write16(field, (u16)field_value);
7212 				break;
7213 			case VMCS_FIELD_TYPE_U32:
7214 				vmcs_write32(field, (u32)field_value);
7215 				break;
7216 			case VMCS_FIELD_TYPE_U64:
7217 				vmcs_write64(field, (u64)field_value);
7218 				break;
7219 			case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7220 				vmcs_writel(field, (long)field_value);
7221 				break;
7222 			default:
7223 				WARN_ON(1);
7224 				break;
7225 			}
7226 		}
7227 	}
7228 
7229 	vmcs_clear(shadow_vmcs);
7230 	vmcs_load(vmx->loaded_vmcs->vmcs);
7231 }
7232 
7233 /*
7234  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7235  * used before) all generate the same failure when it is missing.
7236  */
nested_vmx_check_vmcs12(struct kvm_vcpu * vcpu)7237 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7238 {
7239 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7240 	if (vmx->nested.current_vmptr == -1ull) {
7241 		nested_vmx_failInvalid(vcpu);
7242 		skip_emulated_instruction(vcpu);
7243 		return 0;
7244 	}
7245 	return 1;
7246 }
7247 
handle_vmread(struct kvm_vcpu * vcpu)7248 static int handle_vmread(struct kvm_vcpu *vcpu)
7249 {
7250 	unsigned long field;
7251 	u64 field_value;
7252 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7253 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7254 	gva_t gva = 0;
7255 	struct x86_exception e;
7256 
7257 	if (!nested_vmx_check_permission(vcpu) ||
7258 	    !nested_vmx_check_vmcs12(vcpu))
7259 		return 1;
7260 
7261 	/* Decode instruction info and find the field to read */
7262 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7263 	/* Read the field, zero-extended to a u64 field_value */
7264 	if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7265 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7266 		skip_emulated_instruction(vcpu);
7267 		return 1;
7268 	}
7269 	/*
7270 	 * Now copy part of this value to register or memory, as requested.
7271 	 * Note that the number of bits actually copied is 32 or 64 depending
7272 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
7273 	 */
7274 	if (vmx_instruction_info & (1u << 10)) {
7275 		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7276 			field_value);
7277 	} else {
7278 		if (get_vmx_mem_address(vcpu, exit_qualification,
7279 				vmx_instruction_info, true, &gva))
7280 			return 1;
7281 		/* _system ok, as nested_vmx_check_permission verified cpl=0 */
7282 		if (kvm_write_guest_virt_system(vcpu, gva, &field_value,
7283 						(is_long_mode(vcpu) ? 8 : 4),
7284 						&e)) {
7285 			kvm_inject_page_fault(vcpu, &e);
7286 			return 1;
7287 		}
7288 	}
7289 
7290 	nested_vmx_succeed(vcpu);
7291 	skip_emulated_instruction(vcpu);
7292 	return 1;
7293 }
7294 
7295 
handle_vmwrite(struct kvm_vcpu * vcpu)7296 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7297 {
7298 	unsigned long field;
7299 	gva_t gva;
7300 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7301 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7302 	/* The value to write might be 32 or 64 bits, depending on L1's long
7303 	 * mode, and eventually we need to write that into a field of several
7304 	 * possible lengths. The code below first zero-extends the value to 64
7305 	 * bit (field_value), and then copies only the approriate number of
7306 	 * bits into the vmcs12 field.
7307 	 */
7308 	u64 field_value = 0;
7309 	struct x86_exception e;
7310 
7311 	if (!nested_vmx_check_permission(vcpu) ||
7312 	    !nested_vmx_check_vmcs12(vcpu))
7313 		return 1;
7314 
7315 	if (vmx_instruction_info & (1u << 10))
7316 		field_value = kvm_register_readl(vcpu,
7317 			(((vmx_instruction_info) >> 3) & 0xf));
7318 	else {
7319 		if (get_vmx_mem_address(vcpu, exit_qualification,
7320 				vmx_instruction_info, false, &gva))
7321 			return 1;
7322 		if (kvm_read_guest_virt(vcpu, gva, &field_value,
7323 					(is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7324 			kvm_inject_page_fault(vcpu, &e);
7325 			return 1;
7326 		}
7327 	}
7328 
7329 
7330 	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7331 	if (vmcs_field_readonly(field)) {
7332 		nested_vmx_failValid(vcpu,
7333 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7334 		skip_emulated_instruction(vcpu);
7335 		return 1;
7336 	}
7337 
7338 	if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7339 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7340 		skip_emulated_instruction(vcpu);
7341 		return 1;
7342 	}
7343 
7344 	nested_vmx_succeed(vcpu);
7345 	skip_emulated_instruction(vcpu);
7346 	return 1;
7347 }
7348 
7349 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)7350 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7351 {
7352 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7353 	gpa_t vmptr;
7354 
7355 	if (!nested_vmx_check_permission(vcpu))
7356 		return 1;
7357 
7358 	if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7359 		return 1;
7360 
7361 	if (vmx->nested.current_vmptr != vmptr) {
7362 		struct vmcs12 *new_vmcs12;
7363 		struct page *page;
7364 		page = nested_get_page(vcpu, vmptr);
7365 		if (page == NULL) {
7366 			nested_vmx_failInvalid(vcpu);
7367 			skip_emulated_instruction(vcpu);
7368 			return 1;
7369 		}
7370 		new_vmcs12 = kmap(page);
7371 		if (new_vmcs12->revision_id != VMCS12_REVISION) {
7372 			kunmap(page);
7373 			nested_release_page_clean(page);
7374 			nested_vmx_failValid(vcpu,
7375 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7376 			skip_emulated_instruction(vcpu);
7377 			return 1;
7378 		}
7379 
7380 		nested_release_vmcs12(vmx);
7381 		vmx->nested.current_vmptr = vmptr;
7382 		vmx->nested.current_vmcs12 = new_vmcs12;
7383 		vmx->nested.current_vmcs12_page = page;
7384 		if (enable_shadow_vmcs) {
7385 			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7386 				      SECONDARY_EXEC_SHADOW_VMCS);
7387 			vmcs_write64(VMCS_LINK_POINTER,
7388 				     __pa(vmx->nested.current_shadow_vmcs));
7389 			vmx->nested.sync_shadow_vmcs = true;
7390 		}
7391 	}
7392 
7393 	nested_vmx_succeed(vcpu);
7394 	skip_emulated_instruction(vcpu);
7395 	return 1;
7396 }
7397 
7398 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)7399 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7400 {
7401 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7402 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7403 	gva_t vmcs_gva;
7404 	struct x86_exception e;
7405 
7406 	if (!nested_vmx_check_permission(vcpu))
7407 		return 1;
7408 
7409 	if (get_vmx_mem_address(vcpu, exit_qualification,
7410 			vmx_instruction_info, true, &vmcs_gva))
7411 		return 1;
7412 	/* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7413 	if (kvm_write_guest_virt_system(vcpu, vmcs_gva,
7414 					(void *)&to_vmx(vcpu)->nested.current_vmptr,
7415 					sizeof(u64), &e)) {
7416 		kvm_inject_page_fault(vcpu, &e);
7417 		return 1;
7418 	}
7419 	nested_vmx_succeed(vcpu);
7420 	skip_emulated_instruction(vcpu);
7421 	return 1;
7422 }
7423 
7424 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)7425 static int handle_invept(struct kvm_vcpu *vcpu)
7426 {
7427 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7428 	u32 vmx_instruction_info, types;
7429 	unsigned long type;
7430 	gva_t gva;
7431 	struct x86_exception e;
7432 	struct {
7433 		u64 eptp, gpa;
7434 	} operand;
7435 
7436 	if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7437 	      SECONDARY_EXEC_ENABLE_EPT) ||
7438 	    !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7439 		kvm_queue_exception(vcpu, UD_VECTOR);
7440 		return 1;
7441 	}
7442 
7443 	if (!nested_vmx_check_permission(vcpu))
7444 		return 1;
7445 
7446 	if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7447 		kvm_queue_exception(vcpu, UD_VECTOR);
7448 		return 1;
7449 	}
7450 
7451 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7452 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7453 
7454 	types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7455 
7456 	if (type >= 32 || !(types & (1 << type))) {
7457 		nested_vmx_failValid(vcpu,
7458 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7459 		skip_emulated_instruction(vcpu);
7460 		return 1;
7461 	}
7462 
7463 	/* According to the Intel VMX instruction reference, the memory
7464 	 * operand is read even if it isn't needed (e.g., for type==global)
7465 	 */
7466 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7467 			vmx_instruction_info, false, &gva))
7468 		return 1;
7469 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
7470 		kvm_inject_page_fault(vcpu, &e);
7471 		return 1;
7472 	}
7473 
7474 	switch (type) {
7475 	case VMX_EPT_EXTENT_GLOBAL:
7476 		kvm_mmu_sync_roots(vcpu);
7477 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7478 		nested_vmx_succeed(vcpu);
7479 		break;
7480 	default:
7481 		/* Trap single context invalidation invept calls */
7482 		BUG_ON(1);
7483 		break;
7484 	}
7485 
7486 	skip_emulated_instruction(vcpu);
7487 	return 1;
7488 }
7489 
handle_invvpid(struct kvm_vcpu * vcpu)7490 static int handle_invvpid(struct kvm_vcpu *vcpu)
7491 {
7492 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7493 	u32 vmx_instruction_info;
7494 	unsigned long type, types;
7495 	gva_t gva;
7496 	struct x86_exception e;
7497 	int vpid;
7498 
7499 	if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7500 	      SECONDARY_EXEC_ENABLE_VPID) ||
7501 			!(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7502 		kvm_queue_exception(vcpu, UD_VECTOR);
7503 		return 1;
7504 	}
7505 
7506 	if (!nested_vmx_check_permission(vcpu))
7507 		return 1;
7508 
7509 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7510 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7511 
7512 	types = (vmx->nested.nested_vmx_vpid_caps &
7513 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7514 
7515 	if (type >= 32 || !(types & (1 << type))) {
7516 		nested_vmx_failValid(vcpu,
7517 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7518 		skip_emulated_instruction(vcpu);
7519 		return 1;
7520 	}
7521 
7522 	/* according to the intel vmx instruction reference, the memory
7523 	 * operand is read even if it isn't needed (e.g., for type==global)
7524 	 */
7525 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7526 			vmx_instruction_info, false, &gva))
7527 		return 1;
7528 	if (kvm_read_guest_virt(vcpu, gva, &vpid, sizeof(u32), &e)) {
7529 		kvm_inject_page_fault(vcpu, &e);
7530 		return 1;
7531 	}
7532 
7533 	switch (type) {
7534 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7535 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7536 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7537 		if (!vpid) {
7538 			nested_vmx_failValid(vcpu,
7539 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7540 			skip_emulated_instruction(vcpu);
7541 			return 1;
7542 		}
7543 		break;
7544 	case VMX_VPID_EXTENT_ALL_CONTEXT:
7545 		break;
7546 	default:
7547 		WARN_ON_ONCE(1);
7548 		skip_emulated_instruction(vcpu);
7549 		return 1;
7550 	}
7551 
7552 	__vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7553 	nested_vmx_succeed(vcpu);
7554 
7555 	skip_emulated_instruction(vcpu);
7556 	return 1;
7557 }
7558 
handle_pml_full(struct kvm_vcpu * vcpu)7559 static int handle_pml_full(struct kvm_vcpu *vcpu)
7560 {
7561 	unsigned long exit_qualification;
7562 
7563 	trace_kvm_pml_full(vcpu->vcpu_id);
7564 
7565 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7566 
7567 	/*
7568 	 * PML buffer FULL happened while executing iret from NMI,
7569 	 * "blocked by NMI" bit has to be set before next VM entry.
7570 	 */
7571 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7572 			cpu_has_virtual_nmis() &&
7573 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
7574 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7575 				GUEST_INTR_STATE_NMI);
7576 
7577 	/*
7578 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7579 	 * here.., and there's no userspace involvement needed for PML.
7580 	 */
7581 	return 1;
7582 }
7583 
handle_pcommit(struct kvm_vcpu * vcpu)7584 static int handle_pcommit(struct kvm_vcpu *vcpu)
7585 {
7586 	/* we never catch pcommit instruct for L1 guest. */
7587 	WARN_ON(1);
7588 	return 1;
7589 }
7590 
7591 /*
7592  * The exit handlers return 1 if the exit was handled fully and guest execution
7593  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7594  * to be done to userspace and return 0.
7595  */
7596 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7597 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7598 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7599 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7600 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
7601 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7602 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
7603 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
7604 	[EXIT_REASON_CPUID]                   = handle_cpuid,
7605 	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
7606 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7607 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7608 	[EXIT_REASON_HLT]                     = handle_halt,
7609 	[EXIT_REASON_INVD]		      = handle_invd,
7610 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
7611 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
7612 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
7613 	[EXIT_REASON_VMCLEAR]	              = handle_vmclear,
7614 	[EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7615 	[EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7616 	[EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7617 	[EXIT_REASON_VMREAD]                  = handle_vmread,
7618 	[EXIT_REASON_VMRESUME]                = handle_vmresume,
7619 	[EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7620 	[EXIT_REASON_VMOFF]                   = handle_vmoff,
7621 	[EXIT_REASON_VMON]                    = handle_vmon,
7622 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7623 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7624 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7625 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7626 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
7627 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
7628 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7629 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7630 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
7631 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7632 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7633 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
7634 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7635 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7636 	[EXIT_REASON_INVEPT]                  = handle_invept,
7637 	[EXIT_REASON_INVVPID]                 = handle_invvpid,
7638 	[EXIT_REASON_XSAVES]                  = handle_xsaves,
7639 	[EXIT_REASON_XRSTORS]                 = handle_xrstors,
7640 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
7641 	[EXIT_REASON_PCOMMIT]                 = handle_pcommit,
7642 };
7643 
7644 static const int kvm_vmx_max_exit_handlers =
7645 	ARRAY_SIZE(kvm_vmx_exit_handlers);
7646 
7647 /*
7648  * Return true if an IO instruction with the specified port and size should cause
7649  * a VM-exit into L1.
7650  */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)7651 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
7652 				 int size)
7653 {
7654 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7655 	gpa_t bitmap, last_bitmap;
7656 	u8 b;
7657 
7658 	last_bitmap = (gpa_t)-1;
7659 	b = -1;
7660 
7661 	while (size > 0) {
7662 		if (port < 0x8000)
7663 			bitmap = vmcs12->io_bitmap_a;
7664 		else if (port < 0x10000)
7665 			bitmap = vmcs12->io_bitmap_b;
7666 		else
7667 			return true;
7668 		bitmap += (port & 0x7fff) / 8;
7669 
7670 		if (last_bitmap != bitmap)
7671 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7672 				return true;
7673 		if (b & (1 << (port & 7)))
7674 			return true;
7675 
7676 		port++;
7677 		size--;
7678 		last_bitmap = bitmap;
7679 	}
7680 
7681 	return false;
7682 }
7683 
7684 /*
7685  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7686  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7687  * disinterest in the current event (read or write a specific MSR) by using an
7688  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7689  */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason)7690 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7691 	struct vmcs12 *vmcs12, u32 exit_reason)
7692 {
7693 	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7694 	gpa_t bitmap;
7695 
7696 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7697 		return true;
7698 
7699 	/*
7700 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7701 	 * for the four combinations of read/write and low/high MSR numbers.
7702 	 * First we need to figure out which of the four to use:
7703 	 */
7704 	bitmap = vmcs12->msr_bitmap;
7705 	if (exit_reason == EXIT_REASON_MSR_WRITE)
7706 		bitmap += 2048;
7707 	if (msr_index >= 0xc0000000) {
7708 		msr_index -= 0xc0000000;
7709 		bitmap += 1024;
7710 	}
7711 
7712 	/* Then read the msr_index'th bit from this bitmap: */
7713 	if (msr_index < 1024*8) {
7714 		unsigned char b;
7715 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7716 			return true;
7717 		return 1 & (b >> (msr_index & 7));
7718 	} else
7719 		return true; /* let L1 handle the wrong parameter */
7720 }
7721 
7722 /*
7723  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7724  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7725  * intercept (via guest_host_mask etc.) the current event.
7726  */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)7727 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7728 	struct vmcs12 *vmcs12)
7729 {
7730 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7731 	int cr = exit_qualification & 15;
7732 	int reg;
7733 	unsigned long val;
7734 
7735 	switch ((exit_qualification >> 4) & 3) {
7736 	case 0: /* mov to cr */
7737 		reg = (exit_qualification >> 8) & 15;
7738 		val = kvm_register_readl(vcpu, reg);
7739 		switch (cr) {
7740 		case 0:
7741 			if (vmcs12->cr0_guest_host_mask &
7742 			    (val ^ vmcs12->cr0_read_shadow))
7743 				return true;
7744 			break;
7745 		case 3:
7746 			if ((vmcs12->cr3_target_count >= 1 &&
7747 					vmcs12->cr3_target_value0 == val) ||
7748 				(vmcs12->cr3_target_count >= 2 &&
7749 					vmcs12->cr3_target_value1 == val) ||
7750 				(vmcs12->cr3_target_count >= 3 &&
7751 					vmcs12->cr3_target_value2 == val) ||
7752 				(vmcs12->cr3_target_count >= 4 &&
7753 					vmcs12->cr3_target_value3 == val))
7754 				return false;
7755 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7756 				return true;
7757 			break;
7758 		case 4:
7759 			if (vmcs12->cr4_guest_host_mask &
7760 			    (vmcs12->cr4_read_shadow ^ val))
7761 				return true;
7762 			break;
7763 		case 8:
7764 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7765 				return true;
7766 			break;
7767 		}
7768 		break;
7769 	case 2: /* clts */
7770 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7771 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
7772 			return true;
7773 		break;
7774 	case 1: /* mov from cr */
7775 		switch (cr) {
7776 		case 3:
7777 			if (vmcs12->cpu_based_vm_exec_control &
7778 			    CPU_BASED_CR3_STORE_EXITING)
7779 				return true;
7780 			break;
7781 		case 8:
7782 			if (vmcs12->cpu_based_vm_exec_control &
7783 			    CPU_BASED_CR8_STORE_EXITING)
7784 				return true;
7785 			break;
7786 		}
7787 		break;
7788 	case 3: /* lmsw */
7789 		/*
7790 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7791 		 * cr0. Other attempted changes are ignored, with no exit.
7792 		 */
7793 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
7794 		if (vmcs12->cr0_guest_host_mask & 0xe &
7795 		    (val ^ vmcs12->cr0_read_shadow))
7796 			return true;
7797 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7798 		    !(vmcs12->cr0_read_shadow & 0x1) &&
7799 		    (val & 0x1))
7800 			return true;
7801 		break;
7802 	}
7803 	return false;
7804 }
7805 
7806 /*
7807  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7808  * should handle it ourselves in L0 (and then continue L2). Only call this
7809  * when in is_guest_mode (L2).
7810  */
nested_vmx_exit_handled(struct kvm_vcpu * vcpu)7811 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7812 {
7813 	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7814 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7815 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7816 	u32 exit_reason = vmx->exit_reason;
7817 
7818 	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7819 				vmcs_readl(EXIT_QUALIFICATION),
7820 				vmx->idt_vectoring_info,
7821 				intr_info,
7822 				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7823 				KVM_ISA_VMX);
7824 
7825 	/*
7826 	 * The host physical addresses of some pages of guest memory
7827 	 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
7828 	 * Page). The CPU may write to these pages via their host
7829 	 * physical address while L2 is running, bypassing any
7830 	 * address-translation-based dirty tracking (e.g. EPT write
7831 	 * protection).
7832 	 *
7833 	 * Mark them dirty on every exit from L2 to prevent them from
7834 	 * getting out of sync with dirty tracking.
7835 	 */
7836 	nested_mark_vmcs12_pages_dirty(vcpu);
7837 
7838 	if (vmx->nested.nested_run_pending)
7839 		return false;
7840 
7841 	if (unlikely(vmx->fail)) {
7842 		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7843 				    vmcs_read32(VM_INSTRUCTION_ERROR));
7844 		return true;
7845 	}
7846 
7847 	switch ((u16)exit_reason) {
7848 	case EXIT_REASON_EXCEPTION_NMI:
7849 		if (is_nmi(intr_info))
7850 			return false;
7851 		else if (is_page_fault(intr_info))
7852 			return enable_ept;
7853 		else if (is_no_device(intr_info) &&
7854 			 !(vmcs12->guest_cr0 & X86_CR0_TS))
7855 			return false;
7856 		return vmcs12->exception_bitmap &
7857 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
7858 	case EXIT_REASON_EXTERNAL_INTERRUPT:
7859 		return false;
7860 	case EXIT_REASON_TRIPLE_FAULT:
7861 		return true;
7862 	case EXIT_REASON_PENDING_INTERRUPT:
7863 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7864 	case EXIT_REASON_NMI_WINDOW:
7865 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7866 	case EXIT_REASON_TASK_SWITCH:
7867 		return true;
7868 	case EXIT_REASON_CPUID:
7869 		return true;
7870 	case EXIT_REASON_HLT:
7871 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7872 	case EXIT_REASON_INVD:
7873 		return true;
7874 	case EXIT_REASON_INVLPG:
7875 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7876 	case EXIT_REASON_RDPMC:
7877 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7878 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
7879 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7880 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7881 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7882 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7883 	case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7884 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7885 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7886 		/*
7887 		 * VMX instructions trap unconditionally. This allows L1 to
7888 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7889 		 */
7890 		return true;
7891 	case EXIT_REASON_CR_ACCESS:
7892 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7893 	case EXIT_REASON_DR_ACCESS:
7894 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7895 	case EXIT_REASON_IO_INSTRUCTION:
7896 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
7897 	case EXIT_REASON_MSR_READ:
7898 	case EXIT_REASON_MSR_WRITE:
7899 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7900 	case EXIT_REASON_INVALID_STATE:
7901 		return true;
7902 	case EXIT_REASON_MWAIT_INSTRUCTION:
7903 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7904 	case EXIT_REASON_MONITOR_TRAP_FLAG:
7905 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
7906 	case EXIT_REASON_MONITOR_INSTRUCTION:
7907 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7908 	case EXIT_REASON_PAUSE_INSTRUCTION:
7909 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7910 			nested_cpu_has2(vmcs12,
7911 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7912 	case EXIT_REASON_MCE_DURING_VMENTRY:
7913 		return false;
7914 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
7915 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7916 	case EXIT_REASON_APIC_ACCESS:
7917 		return nested_cpu_has2(vmcs12,
7918 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7919 	case EXIT_REASON_APIC_WRITE:
7920 	case EXIT_REASON_EOI_INDUCED:
7921 		/* apic_write and eoi_induced should exit unconditionally. */
7922 		return true;
7923 	case EXIT_REASON_EPT_VIOLATION:
7924 		/*
7925 		 * L0 always deals with the EPT violation. If nested EPT is
7926 		 * used, and the nested mmu code discovers that the address is
7927 		 * missing in the guest EPT table (EPT12), the EPT violation
7928 		 * will be injected with nested_ept_inject_page_fault()
7929 		 */
7930 		return false;
7931 	case EXIT_REASON_EPT_MISCONFIG:
7932 		/*
7933 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
7934 		 * table (shadow on EPT) or a merged EPT table that L0 built
7935 		 * (EPT on EPT). So any problems with the structure of the
7936 		 * table is L0's fault.
7937 		 */
7938 		return false;
7939 	case EXIT_REASON_WBINVD:
7940 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7941 	case EXIT_REASON_XSETBV:
7942 		return true;
7943 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7944 		/*
7945 		 * This should never happen, since it is not possible to
7946 		 * set XSS to a non-zero value---neither in L1 nor in L2.
7947 		 * If if it were, XSS would have to be checked against
7948 		 * the XSS exit bitmap in vmcs12.
7949 		 */
7950 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
7951 	case EXIT_REASON_PCOMMIT:
7952 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
7953 	case EXIT_REASON_PML_FULL:
7954 		/* We don't expose PML support to L1. */
7955 		return false;
7956 	default:
7957 		return true;
7958 	}
7959 }
7960 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)7961 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7962 {
7963 	*info1 = vmcs_readl(EXIT_QUALIFICATION);
7964 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7965 }
7966 
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)7967 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
7968 {
7969 	if (vmx->pml_pg) {
7970 		__free_page(vmx->pml_pg);
7971 		vmx->pml_pg = NULL;
7972 	}
7973 }
7974 
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)7975 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
7976 {
7977 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7978 	u64 *pml_buf;
7979 	u16 pml_idx;
7980 
7981 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
7982 
7983 	/* Do nothing if PML buffer is empty */
7984 	if (pml_idx == (PML_ENTITY_NUM - 1))
7985 		return;
7986 
7987 	/* PML index always points to next available PML buffer entity */
7988 	if (pml_idx >= PML_ENTITY_NUM)
7989 		pml_idx = 0;
7990 	else
7991 		pml_idx++;
7992 
7993 	pml_buf = page_address(vmx->pml_pg);
7994 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7995 		u64 gpa;
7996 
7997 		gpa = pml_buf[pml_idx];
7998 		WARN_ON(gpa & (PAGE_SIZE - 1));
7999 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8000 	}
8001 
8002 	/* reset PML index */
8003 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8004 }
8005 
8006 /*
8007  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8008  * Called before reporting dirty_bitmap to userspace.
8009  */
kvm_flush_pml_buffers(struct kvm * kvm)8010 static void kvm_flush_pml_buffers(struct kvm *kvm)
8011 {
8012 	int i;
8013 	struct kvm_vcpu *vcpu;
8014 	/*
8015 	 * We only need to kick vcpu out of guest mode here, as PML buffer
8016 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
8017 	 * vcpus running in guest are possible to have unflushed GPAs in PML
8018 	 * buffer.
8019 	 */
8020 	kvm_for_each_vcpu(i, vcpu, kvm)
8021 		kvm_vcpu_kick(vcpu);
8022 }
8023 
vmx_dump_sel(char * name,uint32_t sel)8024 static void vmx_dump_sel(char *name, uint32_t sel)
8025 {
8026 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8027 	       name, vmcs_read16(sel),
8028 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8029 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8030 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8031 }
8032 
vmx_dump_dtsel(char * name,uint32_t limit)8033 static void vmx_dump_dtsel(char *name, uint32_t limit)
8034 {
8035 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8036 	       name, vmcs_read32(limit),
8037 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8038 }
8039 
dump_vmcs(void)8040 static void dump_vmcs(void)
8041 {
8042 	u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8043 	u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8044 	u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8045 	u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8046 	u32 secondary_exec_control = 0;
8047 	unsigned long cr4 = vmcs_readl(GUEST_CR4);
8048 	u64 efer = vmcs_readl(GUEST_IA32_EFER);
8049 	int i, n;
8050 
8051 	if (cpu_has_secondary_exec_ctrls())
8052 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8053 
8054 	pr_err("*** Guest State ***\n");
8055 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8056 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8057 	       vmcs_readl(CR0_GUEST_HOST_MASK));
8058 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8059 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8060 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8061 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8062 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8063 	{
8064 		pr_err("PDPTR0 = 0x%016lx  PDPTR1 = 0x%016lx\n",
8065 		       vmcs_readl(GUEST_PDPTR0), vmcs_readl(GUEST_PDPTR1));
8066 		pr_err("PDPTR2 = 0x%016lx  PDPTR3 = 0x%016lx\n",
8067 		       vmcs_readl(GUEST_PDPTR2), vmcs_readl(GUEST_PDPTR3));
8068 	}
8069 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8070 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8071 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8072 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8073 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8074 	       vmcs_readl(GUEST_SYSENTER_ESP),
8075 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8076 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8077 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8078 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8079 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8080 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8081 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8082 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8083 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8084 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8085 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8086 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8087 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8088 		pr_err("EFER =     0x%016llx  PAT = 0x%016lx\n",
8089 		       efer, vmcs_readl(GUEST_IA32_PAT));
8090 	pr_err("DebugCtl = 0x%016lx  DebugExceptions = 0x%016lx\n",
8091 	       vmcs_readl(GUEST_IA32_DEBUGCTL),
8092 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8093 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8094 		pr_err("PerfGlobCtl = 0x%016lx\n",
8095 		       vmcs_readl(GUEST_IA32_PERF_GLOBAL_CTRL));
8096 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8097 		pr_err("BndCfgS = 0x%016lx\n", vmcs_readl(GUEST_BNDCFGS));
8098 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8099 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8100 	       vmcs_read32(GUEST_ACTIVITY_STATE));
8101 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8102 		pr_err("InterruptStatus = %04x\n",
8103 		       vmcs_read16(GUEST_INTR_STATUS));
8104 
8105 	pr_err("*** Host State ***\n");
8106 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8107 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8108 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8109 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8110 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8111 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8112 	       vmcs_read16(HOST_TR_SELECTOR));
8113 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8114 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8115 	       vmcs_readl(HOST_TR_BASE));
8116 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8117 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8118 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8119 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8120 	       vmcs_readl(HOST_CR4));
8121 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8122 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
8123 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
8124 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
8125 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8126 		pr_err("EFER = 0x%016lx  PAT = 0x%016lx\n",
8127 		       vmcs_readl(HOST_IA32_EFER), vmcs_readl(HOST_IA32_PAT));
8128 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8129 		pr_err("PerfGlobCtl = 0x%016lx\n",
8130 		       vmcs_readl(HOST_IA32_PERF_GLOBAL_CTRL));
8131 
8132 	pr_err("*** Control State ***\n");
8133 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8134 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8135 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8136 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8137 	       vmcs_read32(EXCEPTION_BITMAP),
8138 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8139 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8140 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8141 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8142 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8143 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8144 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8145 	       vmcs_read32(VM_EXIT_INTR_INFO),
8146 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8147 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8148 	pr_err("        reason=%08x qualification=%016lx\n",
8149 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8150 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8151 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
8152 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
8153 	pr_err("TSC Offset = 0x%016lx\n", vmcs_readl(TSC_OFFSET));
8154 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8155 		pr_err("TSC Multiplier = 0x%016lx\n",
8156 		       vmcs_readl(TSC_MULTIPLIER));
8157 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8158 		pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8159 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8160 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8161 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8162 		pr_err("EPT pointer = 0x%016lx\n", vmcs_readl(EPT_POINTER));
8163 	n = vmcs_read32(CR3_TARGET_COUNT);
8164 	for (i = 0; i + 1 < n; i += 4)
8165 		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8166 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8167 		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8168 	if (i < n)
8169 		pr_err("CR3 target%u=%016lx\n",
8170 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8171 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8172 		pr_err("PLE Gap=%08x Window=%08x\n",
8173 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8174 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8175 		pr_err("Virtual processor ID = 0x%04x\n",
8176 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
8177 }
8178 
8179 /*
8180  * The guest has exited.  See if we can fix it or if we need userspace
8181  * assistance.
8182  */
vmx_handle_exit(struct kvm_vcpu * vcpu)8183 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8184 {
8185 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8186 	u32 exit_reason = vmx->exit_reason;
8187 	u32 vectoring_info = vmx->idt_vectoring_info;
8188 
8189 	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8190 
8191 	/*
8192 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8193 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8194 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8195 	 * mode as if vcpus is in root mode, the PML buffer must has been
8196 	 * flushed already.
8197 	 */
8198 	if (enable_pml)
8199 		vmx_flush_pml_buffer(vcpu);
8200 
8201 	/* If guest state is invalid, start emulating */
8202 	if (vmx->emulation_required)
8203 		return handle_invalid_guest_state(vcpu);
8204 
8205 	if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8206 		nested_vmx_vmexit(vcpu, exit_reason,
8207 				  vmcs_read32(VM_EXIT_INTR_INFO),
8208 				  vmcs_readl(EXIT_QUALIFICATION));
8209 		return 1;
8210 	}
8211 
8212 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8213 		dump_vmcs();
8214 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8215 		vcpu->run->fail_entry.hardware_entry_failure_reason
8216 			= exit_reason;
8217 		return 0;
8218 	}
8219 
8220 	if (unlikely(vmx->fail)) {
8221 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8222 		vcpu->run->fail_entry.hardware_entry_failure_reason
8223 			= vmcs_read32(VM_INSTRUCTION_ERROR);
8224 		return 0;
8225 	}
8226 
8227 	/*
8228 	 * Note:
8229 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8230 	 * delivery event since it indicates guest is accessing MMIO.
8231 	 * The vm-exit can be triggered again after return to guest that
8232 	 * will cause infinite loop.
8233 	 */
8234 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8235 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8236 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
8237 			exit_reason != EXIT_REASON_PML_FULL &&
8238 			exit_reason != EXIT_REASON_APIC_ACCESS &&
8239 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
8240 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8241 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8242 		vcpu->run->internal.ndata = 2;
8243 		vcpu->run->internal.data[0] = vectoring_info;
8244 		vcpu->run->internal.data[1] = exit_reason;
8245 		return 0;
8246 	}
8247 
8248 	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8249 	    !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8250 					get_vmcs12(vcpu))))) {
8251 		if (vmx_interrupt_allowed(vcpu)) {
8252 			vmx->soft_vnmi_blocked = 0;
8253 		} else if (vmx->vnmi_blocked_time > 1000000000LL &&
8254 			   vcpu->arch.nmi_pending) {
8255 			/*
8256 			 * This CPU don't support us in finding the end of an
8257 			 * NMI-blocked window if the guest runs with IRQs
8258 			 * disabled. So we pull the trigger after 1 s of
8259 			 * futile waiting, but inform the user about this.
8260 			 */
8261 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8262 			       "state on VCPU %d after 1 s timeout\n",
8263 			       __func__, vcpu->vcpu_id);
8264 			vmx->soft_vnmi_blocked = 0;
8265 		}
8266 	}
8267 
8268 	if (exit_reason < kvm_vmx_max_exit_handlers
8269 	    && kvm_vmx_exit_handlers[exit_reason])
8270 		return kvm_vmx_exit_handlers[exit_reason](vcpu);
8271 	else {
8272 		WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8273 		kvm_queue_exception(vcpu, UD_VECTOR);
8274 		return 1;
8275 	}
8276 }
8277 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)8278 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8279 {
8280 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8281 
8282 	if (is_guest_mode(vcpu) &&
8283 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8284 		return;
8285 
8286 	if (irr == -1 || tpr < irr) {
8287 		vmcs_write32(TPR_THRESHOLD, 0);
8288 		return;
8289 	}
8290 
8291 	vmcs_write32(TPR_THRESHOLD, irr);
8292 }
8293 
vmx_set_virtual_x2apic_mode(struct kvm_vcpu * vcpu,bool set)8294 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8295 {
8296 	u32 sec_exec_control;
8297 
8298 	/* Postpone execution until vmcs01 is the current VMCS. */
8299 	if (is_guest_mode(vcpu)) {
8300 		to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8301 		return;
8302 	}
8303 
8304 	/*
8305 	 * There is not point to enable virtualize x2apic without enable
8306 	 * apicv
8307 	 */
8308 	if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8309 				!vmx_cpu_uses_apicv(vcpu))
8310 		return;
8311 
8312 	if (!cpu_need_tpr_shadow(vcpu))
8313 		return;
8314 
8315 	sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8316 
8317 	if (set) {
8318 		sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8319 		sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8320 	} else {
8321 		sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8322 		sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8323 	}
8324 	vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8325 
8326 	vmx_update_msr_bitmap(vcpu);
8327 }
8328 
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu,hpa_t hpa)8329 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8330 {
8331 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8332 
8333 	/*
8334 	 * Currently we do not handle the nested case where L2 has an
8335 	 * APIC access page of its own; that page is still pinned.
8336 	 * Hence, we skip the case where the VCPU is in guest mode _and_
8337 	 * L1 prepared an APIC access page for L2.
8338 	 *
8339 	 * For the case where L1 and L2 share the same APIC access page
8340 	 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8341 	 * in the vmcs12), this function will only update either the vmcs01
8342 	 * or the vmcs02.  If the former, the vmcs02 will be updated by
8343 	 * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8344 	 * the next L2->L1 exit.
8345 	 */
8346 	if (!is_guest_mode(vcpu) ||
8347 	    !nested_cpu_has2(vmx->nested.current_vmcs12,
8348 			     SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8349 		vmcs_write64(APIC_ACCESS_ADDR, hpa);
8350 }
8351 
vmx_hwapic_isr_update(struct kvm * kvm,int isr)8352 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8353 {
8354 	u16 status;
8355 	u8 old;
8356 
8357 	if (isr == -1)
8358 		isr = 0;
8359 
8360 	status = vmcs_read16(GUEST_INTR_STATUS);
8361 	old = status >> 8;
8362 	if (isr != old) {
8363 		status &= 0xff;
8364 		status |= isr << 8;
8365 		vmcs_write16(GUEST_INTR_STATUS, status);
8366 	}
8367 }
8368 
vmx_set_rvi(int vector)8369 static void vmx_set_rvi(int vector)
8370 {
8371 	u16 status;
8372 	u8 old;
8373 
8374 	if (vector == -1)
8375 		vector = 0;
8376 
8377 	status = vmcs_read16(GUEST_INTR_STATUS);
8378 	old = (u8)status & 0xff;
8379 	if ((u8)vector != old) {
8380 		status &= ~0xff;
8381 		status |= (u8)vector;
8382 		vmcs_write16(GUEST_INTR_STATUS, status);
8383 	}
8384 }
8385 
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)8386 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8387 {
8388 	if (!is_guest_mode(vcpu)) {
8389 		vmx_set_rvi(max_irr);
8390 		return;
8391 	}
8392 
8393 	if (max_irr == -1)
8394 		return;
8395 
8396 	/*
8397 	 * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8398 	 * handles it.
8399 	 */
8400 	if (nested_exit_on_intr(vcpu))
8401 		return;
8402 
8403 	/*
8404 	 * Else, fall back to pre-APICv interrupt injection since L2
8405 	 * is run without virtual interrupt delivery.
8406 	 */
8407 	if (!kvm_event_needs_reinjection(vcpu) &&
8408 	    vmx_interrupt_allowed(vcpu)) {
8409 		kvm_queue_interrupt(vcpu, max_irr, false);
8410 		vmx_inject_irq(vcpu);
8411 	}
8412 }
8413 
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu)8414 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8415 {
8416 	u64 *eoi_exit_bitmap = vcpu->arch.eoi_exit_bitmap;
8417 	if (!vmx_cpu_uses_apicv(vcpu))
8418 		return;
8419 
8420 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8421 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8422 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8423 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8424 }
8425 
vmx_complete_atomic_exit(struct vcpu_vmx * vmx)8426 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8427 {
8428 	u32 exit_intr_info;
8429 
8430 	if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8431 	      || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8432 		return;
8433 
8434 	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8435 	exit_intr_info = vmx->exit_intr_info;
8436 
8437 	/* Handle machine checks before interrupts are enabled */
8438 	if (is_machine_check(exit_intr_info))
8439 		kvm_machine_check();
8440 
8441 	/* We need to handle NMIs before interrupts are enabled */
8442 	if (is_nmi(exit_intr_info)) {
8443 		kvm_before_handle_nmi(&vmx->vcpu);
8444 		asm("int $2");
8445 		kvm_after_handle_nmi(&vmx->vcpu);
8446 	}
8447 }
8448 
vmx_handle_external_intr(struct kvm_vcpu * vcpu)8449 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8450 {
8451 	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8452 
8453 	/*
8454 	 * If external interrupt exists, IF bit is set in rflags/eflags on the
8455 	 * interrupt stack frame, and interrupt will be enabled on a return
8456 	 * from interrupt handler.
8457 	 */
8458 	if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8459 			== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8460 		unsigned int vector;
8461 		unsigned long entry;
8462 		gate_desc *desc;
8463 		struct vcpu_vmx *vmx = to_vmx(vcpu);
8464 #ifdef CONFIG_X86_64
8465 		unsigned long tmp;
8466 #endif
8467 
8468 		vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8469 		desc = (gate_desc *)vmx->host_idt_base + vector;
8470 		entry = gate_offset(*desc);
8471 		asm volatile(
8472 #ifdef CONFIG_X86_64
8473 			"mov %%" _ASM_SP ", %[sp]\n\t"
8474 			"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8475 			"push $%c[ss]\n\t"
8476 			"push %[sp]\n\t"
8477 #endif
8478 			"pushf\n\t"
8479 			"orl $0x200, (%%" _ASM_SP ")\n\t"
8480 			__ASM_SIZE(push) " $%c[cs]\n\t"
8481 			CALL_NOSPEC
8482 			:
8483 #ifdef CONFIG_X86_64
8484 			[sp]"=&r"(tmp)
8485 #endif
8486 			:
8487 			THUNK_TARGET(entry),
8488 			[ss]"i"(__KERNEL_DS),
8489 			[cs]"i"(__KERNEL_CS)
8490 			);
8491 	} else
8492 		local_irq_enable();
8493 }
8494 
vmx_has_emulated_msr(int index)8495 static bool vmx_has_emulated_msr(int index)
8496 {
8497 	switch (index) {
8498 	case MSR_IA32_SMBASE:
8499 		/*
8500 		 * We cannot do SMM unless we can run the guest in big
8501 		 * real mode.
8502 		 */
8503 		return enable_unrestricted_guest || emulate_invalid_guest_state;
8504 	case MSR_AMD64_VIRT_SPEC_CTRL:
8505 		/* This is AMD only.  */
8506 		return false;
8507 	default:
8508 		return true;
8509 	}
8510 }
8511 
vmx_mpx_supported(void)8512 static bool vmx_mpx_supported(void)
8513 {
8514 	return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8515 		(vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8516 }
8517 
vmx_xsaves_supported(void)8518 static bool vmx_xsaves_supported(void)
8519 {
8520 	return vmcs_config.cpu_based_2nd_exec_ctrl &
8521 		SECONDARY_EXEC_XSAVES;
8522 }
8523 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)8524 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8525 {
8526 	u32 exit_intr_info;
8527 	bool unblock_nmi;
8528 	u8 vector;
8529 	bool idtv_info_valid;
8530 
8531 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8532 
8533 	if (cpu_has_virtual_nmis()) {
8534 		if (vmx->nmi_known_unmasked)
8535 			return;
8536 		/*
8537 		 * Can't use vmx->exit_intr_info since we're not sure what
8538 		 * the exit reason is.
8539 		 */
8540 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8541 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8542 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8543 		/*
8544 		 * SDM 3: 27.7.1.2 (September 2008)
8545 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8546 		 * a guest IRET fault.
8547 		 * SDM 3: 23.2.2 (September 2008)
8548 		 * Bit 12 is undefined in any of the following cases:
8549 		 *  If the VM exit sets the valid bit in the IDT-vectoring
8550 		 *   information field.
8551 		 *  If the VM exit is due to a double fault.
8552 		 */
8553 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8554 		    vector != DF_VECTOR && !idtv_info_valid)
8555 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8556 				      GUEST_INTR_STATE_NMI);
8557 		else
8558 			vmx->nmi_known_unmasked =
8559 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8560 				  & GUEST_INTR_STATE_NMI);
8561 	} else if (unlikely(vmx->soft_vnmi_blocked))
8562 		vmx->vnmi_blocked_time +=
8563 			ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8564 }
8565 
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)8566 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8567 				      u32 idt_vectoring_info,
8568 				      int instr_len_field,
8569 				      int error_code_field)
8570 {
8571 	u8 vector;
8572 	int type;
8573 	bool idtv_info_valid;
8574 
8575 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8576 
8577 	vcpu->arch.nmi_injected = false;
8578 	kvm_clear_exception_queue(vcpu);
8579 	kvm_clear_interrupt_queue(vcpu);
8580 
8581 	if (!idtv_info_valid)
8582 		return;
8583 
8584 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8585 
8586 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8587 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8588 
8589 	switch (type) {
8590 	case INTR_TYPE_NMI_INTR:
8591 		vcpu->arch.nmi_injected = true;
8592 		/*
8593 		 * SDM 3: 27.7.1.2 (September 2008)
8594 		 * Clear bit "block by NMI" before VM entry if a NMI
8595 		 * delivery faulted.
8596 		 */
8597 		vmx_set_nmi_mask(vcpu, false);
8598 		break;
8599 	case INTR_TYPE_SOFT_EXCEPTION:
8600 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8601 		/* fall through */
8602 	case INTR_TYPE_HARD_EXCEPTION:
8603 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8604 			u32 err = vmcs_read32(error_code_field);
8605 			kvm_requeue_exception_e(vcpu, vector, err);
8606 		} else
8607 			kvm_requeue_exception(vcpu, vector);
8608 		break;
8609 	case INTR_TYPE_SOFT_INTR:
8610 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8611 		/* fall through */
8612 	case INTR_TYPE_EXT_INTR:
8613 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8614 		break;
8615 	default:
8616 		break;
8617 	}
8618 }
8619 
vmx_complete_interrupts(struct vcpu_vmx * vmx)8620 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8621 {
8622 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8623 				  VM_EXIT_INSTRUCTION_LEN,
8624 				  IDT_VECTORING_ERROR_CODE);
8625 }
8626 
vmx_cancel_injection(struct kvm_vcpu * vcpu)8627 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8628 {
8629 	__vmx_complete_interrupts(vcpu,
8630 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8631 				  VM_ENTRY_INSTRUCTION_LEN,
8632 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
8633 
8634 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8635 }
8636 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)8637 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8638 {
8639 	int i, nr_msrs;
8640 	struct perf_guest_switch_msr *msrs;
8641 
8642 	msrs = perf_guest_get_msrs(&nr_msrs);
8643 
8644 	if (!msrs)
8645 		return;
8646 
8647 	for (i = 0; i < nr_msrs; i++)
8648 		if (msrs[i].host == msrs[i].guest)
8649 			clear_atomic_switch_msr(vmx, msrs[i].msr);
8650 		else
8651 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8652 					msrs[i].host);
8653 }
8654 
vmx_vcpu_run(struct kvm_vcpu * vcpu)8655 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8656 {
8657 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8658 	unsigned long debugctlmsr, cr4;
8659 
8660 	/* Record the guest's net vcpu time for enforced NMI injections. */
8661 	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8662 		vmx->entry_time = ktime_get();
8663 
8664 	/* Don't enter VMX if guest state is invalid, let the exit handler
8665 	   start emulation until we arrive back to a valid state */
8666 	if (vmx->emulation_required)
8667 		return;
8668 
8669 	if (vmx->ple_window_dirty) {
8670 		vmx->ple_window_dirty = false;
8671 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
8672 	}
8673 
8674 	if (vmx->nested.sync_shadow_vmcs) {
8675 		copy_vmcs12_to_shadow(vmx);
8676 		vmx->nested.sync_shadow_vmcs = false;
8677 	}
8678 
8679 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8680 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8681 	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8682 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8683 
8684 	cr4 = cr4_read_shadow();
8685 	if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8686 		vmcs_writel(HOST_CR4, cr4);
8687 		vmx->host_state.vmcs_host_cr4 = cr4;
8688 	}
8689 
8690 	/* When single-stepping over STI and MOV SS, we must clear the
8691 	 * corresponding interruptibility bits in the guest state. Otherwise
8692 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
8693 	 * exceptions being set, but that's not correct for the guest debugging
8694 	 * case. */
8695 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8696 		vmx_set_interrupt_shadow(vcpu, 0);
8697 
8698 	atomic_switch_perf_msrs(vmx);
8699 	debugctlmsr = get_debugctlmsr();
8700 
8701 	/*
8702 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
8703 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
8704 	 * is no need to worry about the conditional branch over the wrmsr
8705 	 * being speculatively taken.
8706 	 */
8707 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
8708 
8709 	vmx->__launched = vmx->loaded_vmcs->launched;
8710 
8711 	asm(
8712 		/* Store host registers */
8713 		"push %%" _ASM_DX "; push %%" _ASM_BP ";"
8714 		"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8715 		"push %%" _ASM_CX " \n\t"
8716 		"cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8717 		"je 1f \n\t"
8718 		"mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8719 		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8720 		"1: \n\t"
8721 		/* Reload cr2 if changed */
8722 		"mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8723 		"mov %%cr2, %%" _ASM_DX " \n\t"
8724 		"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8725 		"je 2f \n\t"
8726 		"mov %%" _ASM_AX", %%cr2 \n\t"
8727 		"2: \n\t"
8728 		/* Check if vmlaunch of vmresume is needed */
8729 		"cmpl $0, %c[launched](%0) \n\t"
8730 		/* Load guest registers.  Don't clobber flags. */
8731 		"mov %c[rax](%0), %%" _ASM_AX " \n\t"
8732 		"mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8733 		"mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8734 		"mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8735 		"mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8736 		"mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8737 #ifdef CONFIG_X86_64
8738 		"mov %c[r8](%0),  %%r8  \n\t"
8739 		"mov %c[r9](%0),  %%r9  \n\t"
8740 		"mov %c[r10](%0), %%r10 \n\t"
8741 		"mov %c[r11](%0), %%r11 \n\t"
8742 		"mov %c[r12](%0), %%r12 \n\t"
8743 		"mov %c[r13](%0), %%r13 \n\t"
8744 		"mov %c[r14](%0), %%r14 \n\t"
8745 		"mov %c[r15](%0), %%r15 \n\t"
8746 #endif
8747 		"mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8748 
8749 		/* Enter guest mode */
8750 		"jne 1f \n\t"
8751 		__ex(ASM_VMX_VMLAUNCH) "\n\t"
8752 		"jmp 2f \n\t"
8753 		"1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8754 		"2: "
8755 		/* Save guest registers, load host registers, keep flags */
8756 		"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8757 		"pop %0 \n\t"
8758 		"setbe %c[fail](%0)\n\t"
8759 		"mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8760 		"mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8761 		__ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8762 		"mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8763 		"mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8764 		"mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8765 		"mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8766 #ifdef CONFIG_X86_64
8767 		"mov %%r8,  %c[r8](%0) \n\t"
8768 		"mov %%r9,  %c[r9](%0) \n\t"
8769 		"mov %%r10, %c[r10](%0) \n\t"
8770 		"mov %%r11, %c[r11](%0) \n\t"
8771 		"mov %%r12, %c[r12](%0) \n\t"
8772 		"mov %%r13, %c[r13](%0) \n\t"
8773 		"mov %%r14, %c[r14](%0) \n\t"
8774 		"mov %%r15, %c[r15](%0) \n\t"
8775 		"xor %%r8d,  %%r8d \n\t"
8776 		"xor %%r9d,  %%r9d \n\t"
8777 		"xor %%r10d, %%r10d \n\t"
8778 		"xor %%r11d, %%r11d \n\t"
8779 		"xor %%r12d, %%r12d \n\t"
8780 		"xor %%r13d, %%r13d \n\t"
8781 		"xor %%r14d, %%r14d \n\t"
8782 		"xor %%r15d, %%r15d \n\t"
8783 #endif
8784 		"mov %%cr2, %%" _ASM_AX "   \n\t"
8785 		"mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8786 
8787 		"xor %%eax, %%eax \n\t"
8788 		"xor %%ebx, %%ebx \n\t"
8789 		"xor %%esi, %%esi \n\t"
8790 		"xor %%edi, %%edi \n\t"
8791 		"pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8792 		".pushsection .rodata \n\t"
8793 		".global vmx_return \n\t"
8794 		"vmx_return: " _ASM_PTR " 2b \n\t"
8795 		".popsection"
8796 	      : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8797 		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8798 		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
8799 		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8800 		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8801 		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8802 		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8803 		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8804 		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8805 		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8806 		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8807 #ifdef CONFIG_X86_64
8808 		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8809 		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8810 		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8811 		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8812 		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8813 		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8814 		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8815 		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8816 #endif
8817 		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8818 		[wordsize]"i"(sizeof(ulong))
8819 	      : "cc", "memory"
8820 #ifdef CONFIG_X86_64
8821 		, "rax", "rbx", "rdi", "rsi"
8822 		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8823 #else
8824 		, "eax", "ebx", "edi", "esi"
8825 #endif
8826 	      );
8827 
8828 	/*
8829 	 * We do not use IBRS in the kernel. If this vCPU has used the
8830 	 * SPEC_CTRL MSR it may have left it on; save the value and
8831 	 * turn it off. This is much more efficient than blindly adding
8832 	 * it to the atomic save/restore list. Especially as the former
8833 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
8834 	 *
8835 	 * For non-nested case:
8836 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
8837 	 * save it.
8838 	 *
8839 	 * For nested case:
8840 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
8841 	 * save it.
8842 	 */
8843 	if (!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))
8844 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
8845 
8846 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
8847 
8848 	/* Eliminate branch target predictions from guest mode */
8849 	vmexit_fill_RSB();
8850 
8851 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8852 	if (debugctlmsr)
8853 		update_debugctlmsr(debugctlmsr);
8854 
8855 #ifndef CONFIG_X86_64
8856 	/*
8857 	 * The sysexit path does not restore ds/es, so we must set them to
8858 	 * a reasonable value ourselves.
8859 	 *
8860 	 * We can't defer this to vmx_load_host_state() since that function
8861 	 * may be executed in interrupt context, which saves and restore segments
8862 	 * around it, nullifying its effect.
8863 	 */
8864 	loadsegment(ds, __USER_DS);
8865 	loadsegment(es, __USER_DS);
8866 #endif
8867 
8868 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8869 				  | (1 << VCPU_EXREG_RFLAGS)
8870 				  | (1 << VCPU_EXREG_PDPTR)
8871 				  | (1 << VCPU_EXREG_SEGMENTS)
8872 				  | (1 << VCPU_EXREG_CR3));
8873 	vcpu->arch.regs_dirty = 0;
8874 
8875 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8876 
8877 	vmx->loaded_vmcs->launched = 1;
8878 
8879 	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8880 
8881 	/*
8882 	 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8883 	 * we did not inject a still-pending event to L1 now because of
8884 	 * nested_run_pending, we need to re-enable this bit.
8885 	 */
8886 	if (vmx->nested.nested_run_pending)
8887 		kvm_make_request(KVM_REQ_EVENT, vcpu);
8888 
8889 	vmx->nested.nested_run_pending = 0;
8890 
8891 	vmx_complete_atomic_exit(vmx);
8892 	vmx_recover_nmi_blocking(vmx);
8893 	vmx_complete_interrupts(vmx);
8894 }
8895 
vmx_load_vmcs01(struct kvm_vcpu * vcpu)8896 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8897 {
8898 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8899 	int cpu;
8900 
8901 	if (vmx->loaded_vmcs == &vmx->vmcs01)
8902 		return;
8903 
8904 	cpu = get_cpu();
8905 	vmx->loaded_vmcs = &vmx->vmcs01;
8906 	vmx_vcpu_put(vcpu);
8907 	vmx_vcpu_load(vcpu, cpu);
8908 	vcpu->cpu = cpu;
8909 	put_cpu();
8910 }
8911 
8912 /*
8913  * Ensure that the current vmcs of the logical processor is the
8914  * vmcs01 of the vcpu before calling free_nested().
8915  */
vmx_free_vcpu_nested(struct kvm_vcpu * vcpu)8916 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
8917 {
8918        struct vcpu_vmx *vmx = to_vmx(vcpu);
8919        int r;
8920 
8921        r = vcpu_load(vcpu);
8922        BUG_ON(r);
8923        vmx_load_vmcs01(vcpu);
8924        free_nested(vmx);
8925        vcpu_put(vcpu);
8926 }
8927 
vmx_free_vcpu(struct kvm_vcpu * vcpu)8928 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8929 {
8930 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8931 
8932 	if (enable_pml)
8933 		vmx_destroy_pml_buffer(vmx);
8934 	free_vpid(vmx->vpid);
8935 	leave_guest_mode(vcpu);
8936 	vmx_free_vcpu_nested(vcpu);
8937 	free_loaded_vmcs(vmx->loaded_vmcs);
8938 	kfree(vmx->guest_msrs);
8939 	kvm_vcpu_uninit(vcpu);
8940 	kmem_cache_free(kvm_vcpu_cache, vmx);
8941 }
8942 
vmx_create_vcpu(struct kvm * kvm,unsigned int id)8943 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
8944 {
8945 	int err;
8946 	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
8947 	unsigned long *msr_bitmap;
8948 	int cpu;
8949 
8950 	if (!vmx)
8951 		return ERR_PTR(-ENOMEM);
8952 
8953 	vmx->vpid = allocate_vpid();
8954 
8955 	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8956 	if (err)
8957 		goto free_vcpu;
8958 
8959 	err = -ENOMEM;
8960 
8961 	/*
8962 	 * If PML is turned on, failure on enabling PML just results in failure
8963 	 * of creating the vcpu, therefore we can simplify PML logic (by
8964 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
8965 	 * for the guest, etc.
8966 	 */
8967 	if (enable_pml) {
8968 		vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
8969 		if (!vmx->pml_pg)
8970 			goto uninit_vcpu;
8971 	}
8972 
8973 	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
8974 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8975 		     > PAGE_SIZE);
8976 
8977 	if (!vmx->guest_msrs)
8978 		goto free_pml;
8979 
8980 	if (!vmm_exclusive)
8981 		kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8982 	err = alloc_loaded_vmcs(&vmx->vmcs01);
8983 	if (!vmm_exclusive)
8984 		kvm_cpu_vmxoff();
8985 	if (err < 0)
8986 		goto free_msrs;
8987 
8988 	msr_bitmap = vmx->vmcs01.msr_bitmap;
8989 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
8990 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
8991 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
8992 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
8993 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
8994 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
8995 	vmx->msr_bitmap_mode = 0;
8996 
8997 	vmx->loaded_vmcs = &vmx->vmcs01;
8998 	cpu = get_cpu();
8999 	vmx_vcpu_load(&vmx->vcpu, cpu);
9000 	vmx->vcpu.cpu = cpu;
9001 	err = vmx_vcpu_setup(vmx);
9002 	vmx_vcpu_put(&vmx->vcpu);
9003 	put_cpu();
9004 	if (err)
9005 		goto free_vmcs;
9006 	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9007 		err = alloc_apic_access_page(kvm);
9008 		if (err)
9009 			goto free_vmcs;
9010 	}
9011 
9012 	if (enable_ept) {
9013 		if (!kvm->arch.ept_identity_map_addr)
9014 			kvm->arch.ept_identity_map_addr =
9015 				VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9016 		err = init_rmode_identity_map(kvm);
9017 		if (err)
9018 			goto free_vmcs;
9019 	}
9020 
9021 	if (nested)
9022 		nested_vmx_setup_ctls_msrs(vmx);
9023 
9024 	vmx->nested.posted_intr_nv = -1;
9025 	vmx->nested.current_vmptr = -1ull;
9026 	vmx->nested.current_vmcs12 = NULL;
9027 
9028 	return &vmx->vcpu;
9029 
9030 free_vmcs:
9031 	free_loaded_vmcs(vmx->loaded_vmcs);
9032 free_msrs:
9033 	kfree(vmx->guest_msrs);
9034 free_pml:
9035 	vmx_destroy_pml_buffer(vmx);
9036 uninit_vcpu:
9037 	kvm_vcpu_uninit(&vmx->vcpu);
9038 free_vcpu:
9039 	free_vpid(vmx->vpid);
9040 	kmem_cache_free(kvm_vcpu_cache, vmx);
9041 	return ERR_PTR(err);
9042 }
9043 
vmx_check_processor_compat(void * rtn)9044 static void __init vmx_check_processor_compat(void *rtn)
9045 {
9046 	struct vmcs_config vmcs_conf;
9047 
9048 	*(int *)rtn = 0;
9049 	if (setup_vmcs_config(&vmcs_conf) < 0)
9050 		*(int *)rtn = -EIO;
9051 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9052 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9053 				smp_processor_id());
9054 		*(int *)rtn = -EIO;
9055 	}
9056 }
9057 
get_ept_level(void)9058 static int get_ept_level(void)
9059 {
9060 	return VMX_EPT_DEFAULT_GAW + 1;
9061 }
9062 
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)9063 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9064 {
9065 	u8 cache;
9066 	u64 ipat = 0;
9067 
9068 	/* For VT-d and EPT combination
9069 	 * 1. MMIO: always map as UC
9070 	 * 2. EPT with VT-d:
9071 	 *   a. VT-d without snooping control feature: can't guarantee the
9072 	 *	result, try to trust guest.
9073 	 *   b. VT-d with snooping control feature: snooping control feature of
9074 	 *	VT-d engine can guarantee the cache correctness. Just set it
9075 	 *	to WB to keep consistent with host. So the same as item 3.
9076 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9077 	 *    consistent with host MTRR
9078 	 */
9079 	if (is_mmio) {
9080 		cache = MTRR_TYPE_UNCACHABLE;
9081 		goto exit;
9082 	}
9083 
9084 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9085 		ipat = VMX_EPT_IPAT_BIT;
9086 		cache = MTRR_TYPE_WRBACK;
9087 		goto exit;
9088 	}
9089 
9090 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9091 		ipat = VMX_EPT_IPAT_BIT;
9092 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9093 			cache = MTRR_TYPE_WRBACK;
9094 		else
9095 			cache = MTRR_TYPE_UNCACHABLE;
9096 		goto exit;
9097 	}
9098 
9099 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9100 
9101 exit:
9102 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9103 }
9104 
vmx_get_lpage_level(void)9105 static int vmx_get_lpage_level(void)
9106 {
9107 	if (enable_ept && !cpu_has_vmx_ept_1g_page())
9108 		return PT_DIRECTORY_LEVEL;
9109 	else
9110 		/* For shadow and EPT supported 1GB page */
9111 		return PT_PDPE_LEVEL;
9112 }
9113 
vmcs_set_secondary_exec_control(u32 new_ctl)9114 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9115 {
9116 	/*
9117 	 * These bits in the secondary execution controls field
9118 	 * are dynamic, the others are mostly based on the hypervisor
9119 	 * architecture and the guest's CPUID.  Do not touch the
9120 	 * dynamic bits.
9121 	 */
9122 	u32 mask =
9123 		SECONDARY_EXEC_SHADOW_VMCS |
9124 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9125 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9126 
9127 	u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9128 
9129 	vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9130 		     (new_ctl & ~mask) | (cur_ctl & mask));
9131 }
9132 
vmx_cpuid_update(struct kvm_vcpu * vcpu)9133 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9134 {
9135 	struct kvm_cpuid_entry2 *best;
9136 	struct vcpu_vmx *vmx = to_vmx(vcpu);
9137 	u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9138 
9139 	if (vmx_rdtscp_supported()) {
9140 		bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9141 		if (!rdtscp_enabled)
9142 			secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9143 
9144 		if (nested) {
9145 			if (rdtscp_enabled)
9146 				vmx->nested.nested_vmx_secondary_ctls_high |=
9147 					SECONDARY_EXEC_RDTSCP;
9148 			else
9149 				vmx->nested.nested_vmx_secondary_ctls_high &=
9150 					~SECONDARY_EXEC_RDTSCP;
9151 		}
9152 	}
9153 
9154 	/* Exposing INVPCID only when PCID is exposed */
9155 	best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9156 	if (vmx_invpcid_supported() &&
9157 	    (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9158 	    !guest_cpuid_has_pcid(vcpu))) {
9159 		secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9160 
9161 		if (best)
9162 			best->ebx &= ~bit(X86_FEATURE_INVPCID);
9163 	}
9164 
9165 	if (cpu_has_secondary_exec_ctrls())
9166 		vmcs_set_secondary_exec_control(secondary_exec_ctl);
9167 
9168 	if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
9169 		if (guest_cpuid_has_pcommit(vcpu))
9170 			vmx->nested.nested_vmx_secondary_ctls_high |=
9171 				SECONDARY_EXEC_PCOMMIT;
9172 		else
9173 			vmx->nested.nested_vmx_secondary_ctls_high &=
9174 				~SECONDARY_EXEC_PCOMMIT;
9175 	}
9176 }
9177 
vmx_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)9178 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9179 {
9180 	if (func == 1 && nested)
9181 		entry->ecx |= bit(X86_FEATURE_VMX);
9182 }
9183 
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)9184 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9185 		struct x86_exception *fault)
9186 {
9187 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9188 	u32 exit_reason;
9189 
9190 	if (fault->error_code & PFERR_RSVD_MASK)
9191 		exit_reason = EXIT_REASON_EPT_MISCONFIG;
9192 	else
9193 		exit_reason = EXIT_REASON_EPT_VIOLATION;
9194 	nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9195 	vmcs12->guest_physical_address = fault->address;
9196 }
9197 
9198 /* Callbacks for nested_ept_init_mmu_context: */
9199 
nested_ept_get_cr3(struct kvm_vcpu * vcpu)9200 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9201 {
9202 	/* return the page table to be shadowed - in our case, EPT12 */
9203 	return get_vmcs12(vcpu)->ept_pointer;
9204 }
9205 
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)9206 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9207 {
9208 	WARN_ON(mmu_is_nested(vcpu));
9209 	kvm_init_shadow_ept_mmu(vcpu,
9210 			to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9211 			VMX_EPT_EXECUTE_ONLY_BIT);
9212 	vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9213 	vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9214 	vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9215 
9216 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9217 }
9218 
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)9219 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9220 {
9221 	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9222 }
9223 
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)9224 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9225 					    u16 error_code)
9226 {
9227 	bool inequality, bit;
9228 
9229 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9230 	inequality =
9231 		(error_code & vmcs12->page_fault_error_code_mask) !=
9232 		 vmcs12->page_fault_error_code_match;
9233 	return inequality ^ bit;
9234 }
9235 
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)9236 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9237 		struct x86_exception *fault)
9238 {
9239 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9240 
9241 	WARN_ON(!is_guest_mode(vcpu));
9242 
9243 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9244 		nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9245 				  vmcs_read32(VM_EXIT_INTR_INFO),
9246 				  vmcs_readl(EXIT_QUALIFICATION));
9247 	else
9248 		kvm_inject_page_fault(vcpu, fault);
9249 }
9250 
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9251 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9252 					struct vmcs12 *vmcs12)
9253 {
9254 	struct vcpu_vmx *vmx = to_vmx(vcpu);
9255 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
9256 
9257 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9258 		if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9259 		    vmcs12->apic_access_addr >> maxphyaddr)
9260 			return false;
9261 
9262 		/*
9263 		 * Translate L1 physical address to host physical
9264 		 * address for vmcs02. Keep the page pinned, so this
9265 		 * physical address remains valid. We keep a reference
9266 		 * to it so we can release it later.
9267 		 */
9268 		if (vmx->nested.apic_access_page) /* shouldn't happen */
9269 			nested_release_page(vmx->nested.apic_access_page);
9270 		vmx->nested.apic_access_page =
9271 			nested_get_page(vcpu, vmcs12->apic_access_addr);
9272 	}
9273 
9274 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9275 		if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9276 		    vmcs12->virtual_apic_page_addr >> maxphyaddr)
9277 			return false;
9278 
9279 		if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9280 			nested_release_page(vmx->nested.virtual_apic_page);
9281 		vmx->nested.virtual_apic_page =
9282 			nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9283 
9284 		/*
9285 		 * Failing the vm entry is _not_ what the processor does
9286 		 * but it's basically the only possibility we have.
9287 		 * We could still enter the guest if CR8 load exits are
9288 		 * enabled, CR8 store exits are enabled, and virtualize APIC
9289 		 * access is disabled; in this case the processor would never
9290 		 * use the TPR shadow and we could simply clear the bit from
9291 		 * the execution control.  But such a configuration is useless,
9292 		 * so let's keep the code simple.
9293 		 */
9294 		if (!vmx->nested.virtual_apic_page)
9295 			return false;
9296 	}
9297 
9298 	if (nested_cpu_has_posted_intr(vmcs12)) {
9299 		if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9300 		    vmcs12->posted_intr_desc_addr >> maxphyaddr)
9301 			return false;
9302 
9303 		if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9304 			kunmap(vmx->nested.pi_desc_page);
9305 			nested_release_page(vmx->nested.pi_desc_page);
9306 		}
9307 		vmx->nested.pi_desc_page =
9308 			nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9309 		if (!vmx->nested.pi_desc_page)
9310 			return false;
9311 
9312 		vmx->nested.pi_desc =
9313 			(struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9314 		if (!vmx->nested.pi_desc) {
9315 			nested_release_page_clean(vmx->nested.pi_desc_page);
9316 			return false;
9317 		}
9318 		vmx->nested.pi_desc =
9319 			(struct pi_desc *)((void *)vmx->nested.pi_desc +
9320 			(unsigned long)(vmcs12->posted_intr_desc_addr &
9321 			(PAGE_SIZE - 1)));
9322 	}
9323 
9324 	return true;
9325 }
9326 
vmx_start_preemption_timer(struct kvm_vcpu * vcpu)9327 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9328 {
9329 	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9330 	struct vcpu_vmx *vmx = to_vmx(vcpu);
9331 
9332 	if (vcpu->arch.virtual_tsc_khz == 0)
9333 		return;
9334 
9335 	/* Make sure short timeouts reliably trigger an immediate vmexit.
9336 	 * hrtimer_start does not guarantee this. */
9337 	if (preemption_timeout <= 1) {
9338 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9339 		return;
9340 	}
9341 
9342 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9343 	preemption_timeout *= 1000000;
9344 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9345 	hrtimer_start(&vmx->nested.preemption_timer,
9346 		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9347 }
9348 
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9349 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9350 						struct vmcs12 *vmcs12)
9351 {
9352 	int maxphyaddr;
9353 	u64 addr;
9354 
9355 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9356 		return 0;
9357 
9358 	if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9359 		WARN_ON(1);
9360 		return -EINVAL;
9361 	}
9362 	maxphyaddr = cpuid_maxphyaddr(vcpu);
9363 
9364 	if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9365 	   ((addr + PAGE_SIZE) >> maxphyaddr))
9366 		return -EINVAL;
9367 
9368 	return 0;
9369 }
9370 
9371 /*
9372  * Merge L0's and L1's MSR bitmap, return false to indicate that
9373  * we do not use the hardware.
9374  */
nested_vmx_merge_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9375 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9376 					       struct vmcs12 *vmcs12)
9377 {
9378 	int msr;
9379 	struct page *page;
9380 	unsigned long *msr_bitmap_l1;
9381 	unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
9382 	/*
9383 	 * pred_cmd & spec_ctrl are trying to verify two things:
9384 	 *
9385 	 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
9386 	 *    ensures that we do not accidentally generate an L02 MSR bitmap
9387 	 *    from the L12 MSR bitmap that is too permissive.
9388 	 * 2. That L1 or L2s have actually used the MSR. This avoids
9389 	 *    unnecessarily merging of the bitmap if the MSR is unused. This
9390 	 *    works properly because we only update the L01 MSR bitmap lazily.
9391 	 *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
9392 	 *    updated to reflect this when L1 (or its L2s) actually write to
9393 	 *    the MSR.
9394 	 */
9395 	bool pred_cmd = msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
9396 	bool spec_ctrl = msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
9397 
9398 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9399 	    !pred_cmd && !spec_ctrl)
9400 		return false;
9401 
9402 	page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9403 	if (!page) {
9404 		WARN_ON(1);
9405 		return false;
9406 	}
9407 	msr_bitmap_l1 = (unsigned long *)kmap(page);
9408 
9409 	memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9410 
9411 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9412 		if (nested_cpu_has_apic_reg_virt(vmcs12))
9413 			for (msr = 0x800; msr <= 0x8ff; msr++)
9414 				nested_vmx_disable_intercept_for_msr(
9415 					msr_bitmap_l1, msr_bitmap_l0,
9416 					msr, MSR_TYPE_R);
9417 
9418 		nested_vmx_disable_intercept_for_msr(
9419 				msr_bitmap_l1, msr_bitmap_l0,
9420 				APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9421 				MSR_TYPE_R | MSR_TYPE_W);
9422 
9423 		if (nested_cpu_has_vid(vmcs12)) {
9424 			nested_vmx_disable_intercept_for_msr(
9425 				msr_bitmap_l1, msr_bitmap_l0,
9426 				APIC_BASE_MSR + (APIC_EOI >> 4),
9427 				MSR_TYPE_W);
9428 			nested_vmx_disable_intercept_for_msr(
9429 				msr_bitmap_l1, msr_bitmap_l0,
9430 				APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9431 				MSR_TYPE_W);
9432 		}
9433 	}
9434 
9435 	if (spec_ctrl)
9436 		nested_vmx_disable_intercept_for_msr(
9437 					msr_bitmap_l1, msr_bitmap_l0,
9438 					MSR_IA32_SPEC_CTRL,
9439 					MSR_TYPE_R | MSR_TYPE_W);
9440 
9441 	if (pred_cmd)
9442 		nested_vmx_disable_intercept_for_msr(
9443 					msr_bitmap_l1, msr_bitmap_l0,
9444 					MSR_IA32_PRED_CMD,
9445 					MSR_TYPE_W);
9446 
9447 	kunmap(page);
9448 	nested_release_page_clean(page);
9449 
9450 	return true;
9451 }
9452 
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9453 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9454 					   struct vmcs12 *vmcs12)
9455 {
9456 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9457 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
9458 	    !nested_cpu_has_vid(vmcs12) &&
9459 	    !nested_cpu_has_posted_intr(vmcs12))
9460 		return 0;
9461 
9462 	/*
9463 	 * If virtualize x2apic mode is enabled,
9464 	 * virtualize apic access must be disabled.
9465 	 */
9466 	if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9467 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9468 		return -EINVAL;
9469 
9470 	/*
9471 	 * If virtual interrupt delivery is enabled,
9472 	 * we must exit on external interrupts.
9473 	 */
9474 	if (nested_cpu_has_vid(vmcs12) &&
9475 	   !nested_exit_on_intr(vcpu))
9476 		return -EINVAL;
9477 
9478 	/*
9479 	 * bits 15:8 should be zero in posted_intr_nv,
9480 	 * the descriptor address has been already checked
9481 	 * in nested_get_vmcs12_pages.
9482 	 */
9483 	if (nested_cpu_has_posted_intr(vmcs12) &&
9484 	   (!nested_cpu_has_vid(vmcs12) ||
9485 	    !nested_exit_intr_ack_set(vcpu) ||
9486 	    vmcs12->posted_intr_nv & 0xff00))
9487 		return -EINVAL;
9488 
9489 	/* tpr shadow is needed by all apicv features. */
9490 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9491 		return -EINVAL;
9492 
9493 	return 0;
9494 }
9495 
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,unsigned long count_field,unsigned long addr_field)9496 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9497 				       unsigned long count_field,
9498 				       unsigned long addr_field)
9499 {
9500 	int maxphyaddr;
9501 	u64 count, addr;
9502 
9503 	if (vmcs12_read_any(vcpu, count_field, &count) ||
9504 	    vmcs12_read_any(vcpu, addr_field, &addr)) {
9505 		WARN_ON(1);
9506 		return -EINVAL;
9507 	}
9508 	if (count == 0)
9509 		return 0;
9510 	maxphyaddr = cpuid_maxphyaddr(vcpu);
9511 	if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9512 	    (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9513 		pr_warn_ratelimited(
9514 			"nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9515 			addr_field, maxphyaddr, count, addr);
9516 		return -EINVAL;
9517 	}
9518 	return 0;
9519 }
9520 
nested_vmx_check_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9521 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9522 						struct vmcs12 *vmcs12)
9523 {
9524 	if (vmcs12->vm_exit_msr_load_count == 0 &&
9525 	    vmcs12->vm_exit_msr_store_count == 0 &&
9526 	    vmcs12->vm_entry_msr_load_count == 0)
9527 		return 0; /* Fast path */
9528 	if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9529 					VM_EXIT_MSR_LOAD_ADDR) ||
9530 	    nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9531 					VM_EXIT_MSR_STORE_ADDR) ||
9532 	    nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9533 					VM_ENTRY_MSR_LOAD_ADDR))
9534 		return -EINVAL;
9535 	return 0;
9536 }
9537 
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)9538 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9539 				       struct vmx_msr_entry *e)
9540 {
9541 	/* x2APIC MSR accesses are not allowed */
9542 	if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9543 		return -EINVAL;
9544 	if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9545 	    e->index == MSR_IA32_UCODE_REV)
9546 		return -EINVAL;
9547 	if (e->reserved != 0)
9548 		return -EINVAL;
9549 	return 0;
9550 }
9551 
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)9552 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9553 				     struct vmx_msr_entry *e)
9554 {
9555 	if (e->index == MSR_FS_BASE ||
9556 	    e->index == MSR_GS_BASE ||
9557 	    e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9558 	    nested_vmx_msr_check_common(vcpu, e))
9559 		return -EINVAL;
9560 	return 0;
9561 }
9562 
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)9563 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9564 				      struct vmx_msr_entry *e)
9565 {
9566 	if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9567 	    nested_vmx_msr_check_common(vcpu, e))
9568 		return -EINVAL;
9569 	return 0;
9570 }
9571 
9572 /*
9573  * Load guest's/host's msr at nested entry/exit.
9574  * return 0 for success, entry index for failure.
9575  */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)9576 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9577 {
9578 	u32 i;
9579 	struct vmx_msr_entry e;
9580 	struct msr_data msr;
9581 
9582 	msr.host_initiated = false;
9583 	for (i = 0; i < count; i++) {
9584 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9585 					&e, sizeof(e))) {
9586 			pr_warn_ratelimited(
9587 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
9588 				__func__, i, gpa + i * sizeof(e));
9589 			goto fail;
9590 		}
9591 		if (nested_vmx_load_msr_check(vcpu, &e)) {
9592 			pr_warn_ratelimited(
9593 				"%s check failed (%u, 0x%x, 0x%x)\n",
9594 				__func__, i, e.index, e.reserved);
9595 			goto fail;
9596 		}
9597 		msr.index = e.index;
9598 		msr.data = e.value;
9599 		if (kvm_set_msr(vcpu, &msr)) {
9600 			pr_warn_ratelimited(
9601 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9602 				__func__, i, e.index, e.value);
9603 			goto fail;
9604 		}
9605 	}
9606 	return 0;
9607 fail:
9608 	return i + 1;
9609 }
9610 
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)9611 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9612 {
9613 	u32 i;
9614 	struct vmx_msr_entry e;
9615 
9616 	for (i = 0; i < count; i++) {
9617 		struct msr_data msr_info;
9618 		if (kvm_vcpu_read_guest(vcpu,
9619 					gpa + i * sizeof(e),
9620 					&e, 2 * sizeof(u32))) {
9621 			pr_warn_ratelimited(
9622 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
9623 				__func__, i, gpa + i * sizeof(e));
9624 			return -EINVAL;
9625 		}
9626 		if (nested_vmx_store_msr_check(vcpu, &e)) {
9627 			pr_warn_ratelimited(
9628 				"%s check failed (%u, 0x%x, 0x%x)\n",
9629 				__func__, i, e.index, e.reserved);
9630 			return -EINVAL;
9631 		}
9632 		msr_info.host_initiated = false;
9633 		msr_info.index = e.index;
9634 		if (kvm_get_msr(vcpu, &msr_info)) {
9635 			pr_warn_ratelimited(
9636 				"%s cannot read MSR (%u, 0x%x)\n",
9637 				__func__, i, e.index);
9638 			return -EINVAL;
9639 		}
9640 		if (kvm_vcpu_write_guest(vcpu,
9641 					 gpa + i * sizeof(e) +
9642 					     offsetof(struct vmx_msr_entry, value),
9643 					 &msr_info.data, sizeof(msr_info.data))) {
9644 			pr_warn_ratelimited(
9645 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9646 				__func__, i, e.index, msr_info.data);
9647 			return -EINVAL;
9648 		}
9649 	}
9650 	return 0;
9651 }
9652 
9653 /*
9654  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9655  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9656  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9657  * guest in a way that will both be appropriate to L1's requests, and our
9658  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9659  * function also has additional necessary side-effects, like setting various
9660  * vcpu->arch fields.
9661  */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9662 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9663 {
9664 	struct vcpu_vmx *vmx = to_vmx(vcpu);
9665 	u32 exec_control;
9666 
9667 	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9668 	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9669 	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9670 	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9671 	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9672 	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9673 	vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9674 	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9675 	vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9676 	vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9677 	vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9678 	vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9679 	vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9680 	vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9681 	vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9682 	vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9683 	vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9684 	vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9685 	vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9686 	vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9687 	vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9688 	vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9689 	vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9690 	vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9691 	vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9692 	vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9693 	vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9694 	vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9695 	vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9696 	vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9697 	vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9698 	vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9699 	vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9700 	vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9701 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9702 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9703 
9704 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9705 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9706 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9707 	} else {
9708 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9709 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9710 	}
9711 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9712 		vmcs12->vm_entry_intr_info_field);
9713 	vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9714 		vmcs12->vm_entry_exception_error_code);
9715 	vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9716 		vmcs12->vm_entry_instruction_len);
9717 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9718 		vmcs12->guest_interruptibility_info);
9719 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9720 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9721 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9722 		vmcs12->guest_pending_dbg_exceptions);
9723 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9724 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9725 
9726 	if (nested_cpu_has_xsaves(vmcs12))
9727 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9728 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
9729 
9730 	exec_control = vmcs12->pin_based_vm_exec_control;
9731 	exec_control |= vmcs_config.pin_based_exec_ctrl;
9732 	exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9733 
9734 	if (nested_cpu_has_posted_intr(vmcs12)) {
9735 		/*
9736 		 * Note that we use L0's vector here and in
9737 		 * vmx_deliver_nested_posted_interrupt.
9738 		 */
9739 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9740 		vmx->nested.pi_pending = false;
9741 		vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9742 		vmcs_write64(POSTED_INTR_DESC_ADDR,
9743 			page_to_phys(vmx->nested.pi_desc_page) +
9744 			(unsigned long)(vmcs12->posted_intr_desc_addr &
9745 			(PAGE_SIZE - 1)));
9746 	} else
9747 		exec_control &= ~PIN_BASED_POSTED_INTR;
9748 
9749 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9750 
9751 	vmx->nested.preemption_timer_expired = false;
9752 	if (nested_cpu_has_preemption_timer(vmcs12))
9753 		vmx_start_preemption_timer(vcpu);
9754 
9755 	/*
9756 	 * Whether page-faults are trapped is determined by a combination of
9757 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9758 	 * If enable_ept, L0 doesn't care about page faults and we should
9759 	 * set all of these to L1's desires. However, if !enable_ept, L0 does
9760 	 * care about (at least some) page faults, and because it is not easy
9761 	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9762 	 * to exit on each and every L2 page fault. This is done by setting
9763 	 * MASK=MATCH=0 and (see below) EB.PF=1.
9764 	 * Note that below we don't need special code to set EB.PF beyond the
9765 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9766 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9767 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9768 	 *
9769 	 * A problem with this approach (when !enable_ept) is that L1 may be
9770 	 * injected with more page faults than it asked for. This could have
9771 	 * caused problems, but in practice existing hypervisors don't care.
9772 	 * To fix this, we will need to emulate the PFEC checking (on the L1
9773 	 * page tables), using walk_addr(), when injecting PFs to L1.
9774 	 */
9775 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9776 		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9777 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9778 		enable_ept ? vmcs12->page_fault_error_code_match : 0);
9779 
9780 	if (cpu_has_secondary_exec_ctrls()) {
9781 		exec_control = vmx_secondary_exec_control(vmx);
9782 
9783 		/* Take the following fields only from vmcs12 */
9784 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9785 				  SECONDARY_EXEC_RDTSCP |
9786 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9787 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
9788 				  SECONDARY_EXEC_PCOMMIT);
9789 		if (nested_cpu_has(vmcs12,
9790 				CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9791 			exec_control |= vmcs12->secondary_vm_exec_control;
9792 
9793 		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9794 			/*
9795 			 * If translation failed, no matter: This feature asks
9796 			 * to exit when accessing the given address, and if it
9797 			 * can never be accessed, this feature won't do
9798 			 * anything anyway.
9799 			 */
9800 			if (!vmx->nested.apic_access_page)
9801 				exec_control &=
9802 				  ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9803 			else
9804 				vmcs_write64(APIC_ACCESS_ADDR,
9805 				  page_to_phys(vmx->nested.apic_access_page));
9806 		} else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9807 			    cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9808 			exec_control |=
9809 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9810 			kvm_vcpu_reload_apic_access_page(vcpu);
9811 		}
9812 
9813 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9814 			vmcs_write64(EOI_EXIT_BITMAP0,
9815 				vmcs12->eoi_exit_bitmap0);
9816 			vmcs_write64(EOI_EXIT_BITMAP1,
9817 				vmcs12->eoi_exit_bitmap1);
9818 			vmcs_write64(EOI_EXIT_BITMAP2,
9819 				vmcs12->eoi_exit_bitmap2);
9820 			vmcs_write64(EOI_EXIT_BITMAP3,
9821 				vmcs12->eoi_exit_bitmap3);
9822 			vmcs_write16(GUEST_INTR_STATUS,
9823 				vmcs12->guest_intr_status);
9824 		}
9825 
9826 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9827 	}
9828 
9829 
9830 	/*
9831 	 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9832 	 * Some constant fields are set here by vmx_set_constant_host_state().
9833 	 * Other fields are different per CPU, and will be set later when
9834 	 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9835 	 */
9836 	vmx_set_constant_host_state(vmx);
9837 
9838 	/*
9839 	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9840 	 * entry, but only if the current (host) sp changed from the value
9841 	 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9842 	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9843 	 * here we just force the write to happen on entry.
9844 	 */
9845 	vmx->host_rsp = 0;
9846 
9847 	exec_control = vmx_exec_control(vmx); /* L0's desires */
9848 	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9849 	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9850 	exec_control &= ~CPU_BASED_TPR_SHADOW;
9851 	exec_control |= vmcs12->cpu_based_vm_exec_control;
9852 
9853 	if (exec_control & CPU_BASED_TPR_SHADOW) {
9854 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9855 				page_to_phys(vmx->nested.virtual_apic_page));
9856 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9857 	} else {
9858 #ifdef CONFIG_X86_64
9859 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
9860 				CPU_BASED_CR8_STORE_EXITING;
9861 #endif
9862 	}
9863 
9864 	if (cpu_has_vmx_msr_bitmap() &&
9865 	    exec_control & CPU_BASED_USE_MSR_BITMAPS &&
9866 	    nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9867 		; /* MSR_BITMAP will be set by following vmx_set_efer. */
9868 	else
9869 		exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9870 
9871 	/*
9872 	 * Merging of IO bitmap not currently supported.
9873 	 * Rather, exit every time.
9874 	 */
9875 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9876 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9877 
9878 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9879 
9880 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9881 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
9882 	 * trap. Note that CR0.TS also needs updating - we do this later.
9883 	 */
9884 	update_exception_bitmap(vcpu);
9885 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9886 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9887 
9888 	/* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9889 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9890 	 * bits are further modified by vmx_set_efer() below.
9891 	 */
9892 	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9893 
9894 	/* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9895 	 * emulated by vmx_set_efer(), below.
9896 	 */
9897 	vm_entry_controls_init(vmx,
9898 		(vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9899 			~VM_ENTRY_IA32E_MODE) |
9900 		(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9901 
9902 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9903 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9904 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
9905 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9906 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9907 
9908 
9909 	set_cr4_guest_host_mask(vmx);
9910 
9911 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9912 		vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9913 
9914 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9915 		vmcs_write64(TSC_OFFSET,
9916 			vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9917 	else
9918 		vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
9919 
9920 	if (cpu_has_vmx_msr_bitmap())
9921 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
9922 
9923 	if (enable_vpid) {
9924 		/*
9925 		 * There is no direct mapping between vpid02 and vpid12, the
9926 		 * vpid02 is per-vCPU for L0 and reused while the value of
9927 		 * vpid12 is changed w/ one invvpid during nested vmentry.
9928 		 * The vpid12 is allocated by L1 for L2, so it will not
9929 		 * influence global bitmap(for vpid01 and vpid02 allocation)
9930 		 * even if spawn a lot of nested vCPUs.
9931 		 */
9932 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9933 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9934 			if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9935 				vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9936 				__vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9937 			}
9938 		} else {
9939 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9940 			vmx_flush_tlb(vcpu);
9941 		}
9942 
9943 	}
9944 
9945 	if (enable_pml) {
9946 		/*
9947 		 * Conceptually we want to copy the PML address and index from
9948 		 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
9949 		 * since we always flush the log on each vmexit, this happens
9950 		 * to be equivalent to simply resetting the fields in vmcs02.
9951 		 */
9952 		ASSERT(vmx->pml_pg);
9953 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
9954 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
9955 	}
9956 
9957 	if (nested_cpu_has_ept(vmcs12)) {
9958 		kvm_mmu_unload(vcpu);
9959 		nested_ept_init_mmu_context(vcpu);
9960 	}
9961 
9962 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9963 		vcpu->arch.efer = vmcs12->guest_ia32_efer;
9964 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
9965 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9966 	else
9967 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9968 	/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9969 	vmx_set_efer(vcpu, vcpu->arch.efer);
9970 
9971 	/*
9972 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9973 	 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9974 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
9975 	 * the specifications by L1; It's not enough to take
9976 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9977 	 * have more bits than L1 expected.
9978 	 */
9979 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9980 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9981 
9982 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9983 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9984 
9985 	/* shadow page tables on either EPT or shadow page tables */
9986 	kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9987 	kvm_mmu_reset_context(vcpu);
9988 
9989 	if (!enable_ept)
9990 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9991 
9992 	/*
9993 	 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9994 	 */
9995 	if (enable_ept) {
9996 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9997 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9998 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9999 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10000 	}
10001 
10002 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10003 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10004 }
10005 
10006 /*
10007  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10008  * for running an L2 nested guest.
10009  */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)10010 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10011 {
10012 	struct vmcs12 *vmcs12;
10013 	struct vcpu_vmx *vmx = to_vmx(vcpu);
10014 	int cpu;
10015 	bool ia32e;
10016 	u32 msr_entry_idx;
10017 
10018 	if (!nested_vmx_check_permission(vcpu) ||
10019 	    !nested_vmx_check_vmcs12(vcpu))
10020 		return 1;
10021 
10022 	skip_emulated_instruction(vcpu);
10023 	vmcs12 = get_vmcs12(vcpu);
10024 
10025 	if (enable_shadow_vmcs)
10026 		copy_shadow_to_vmcs12(vmx);
10027 
10028 	/*
10029 	 * The nested entry process starts with enforcing various prerequisites
10030 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
10031 	 * they fail: As the SDM explains, some conditions should cause the
10032 	 * instruction to fail, while others will cause the instruction to seem
10033 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10034 	 * To speed up the normal (success) code path, we should avoid checking
10035 	 * for misconfigurations which will anyway be caught by the processor
10036 	 * when using the merged vmcs02.
10037 	 */
10038 	if (vmcs12->launch_state == launch) {
10039 		nested_vmx_failValid(vcpu,
10040 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10041 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10042 		return 1;
10043 	}
10044 
10045 	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10046 	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
10047 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10048 		return 1;
10049 	}
10050 
10051 	if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
10052 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10053 		return 1;
10054 	}
10055 
10056 	if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
10057 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10058 		return 1;
10059 	}
10060 
10061 	if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
10062 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10063 		return 1;
10064 	}
10065 
10066 	if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
10067 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10068 		return 1;
10069 	}
10070 
10071 	if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10072 				vmx->nested.nested_vmx_true_procbased_ctls_low,
10073 				vmx->nested.nested_vmx_procbased_ctls_high) ||
10074 	    !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10075 				vmx->nested.nested_vmx_secondary_ctls_low,
10076 				vmx->nested.nested_vmx_secondary_ctls_high) ||
10077 	    !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10078 				vmx->nested.nested_vmx_pinbased_ctls_low,
10079 				vmx->nested.nested_vmx_pinbased_ctls_high) ||
10080 	    !vmx_control_verify(vmcs12->vm_exit_controls,
10081 				vmx->nested.nested_vmx_true_exit_ctls_low,
10082 				vmx->nested.nested_vmx_exit_ctls_high) ||
10083 	    !vmx_control_verify(vmcs12->vm_entry_controls,
10084 				vmx->nested.nested_vmx_true_entry_ctls_low,
10085 				vmx->nested.nested_vmx_entry_ctls_high))
10086 	{
10087 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10088 		return 1;
10089 	}
10090 
10091 	if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
10092 	    ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10093 		nested_vmx_failValid(vcpu,
10094 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
10095 		return 1;
10096 	}
10097 
10098 	if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10099 	    ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10100 		nested_vmx_entry_failure(vcpu, vmcs12,
10101 			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10102 		return 1;
10103 	}
10104 	if (vmcs12->vmcs_link_pointer != -1ull) {
10105 		nested_vmx_entry_failure(vcpu, vmcs12,
10106 			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
10107 		return 1;
10108 	}
10109 
10110 	/*
10111 	 * If the load IA32_EFER VM-entry control is 1, the following checks
10112 	 * are performed on the field for the IA32_EFER MSR:
10113 	 * - Bits reserved in the IA32_EFER MSR must be 0.
10114 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10115 	 *   the IA-32e mode guest VM-exit control. It must also be identical
10116 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10117 	 *   CR0.PG) is 1.
10118 	 */
10119 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10120 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10121 		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10122 		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10123 		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10124 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10125 			nested_vmx_entry_failure(vcpu, vmcs12,
10126 				EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10127 			return 1;
10128 		}
10129 	}
10130 
10131 	/*
10132 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10133 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10134 	 * the values of the LMA and LME bits in the field must each be that of
10135 	 * the host address-space size VM-exit control.
10136 	 */
10137 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10138 		ia32e = (vmcs12->vm_exit_controls &
10139 			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10140 		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10141 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10142 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10143 			nested_vmx_entry_failure(vcpu, vmcs12,
10144 				EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10145 			return 1;
10146 		}
10147 	}
10148 
10149 	/*
10150 	 * We're finally done with prerequisite checking, and can start with
10151 	 * the nested entry.
10152 	 */
10153 
10154 	enter_guest_mode(vcpu);
10155 
10156 	vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
10157 
10158 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10159 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10160 
10161 	cpu = get_cpu();
10162 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
10163 	vmx_vcpu_put(vcpu);
10164 	vmx_vcpu_load(vcpu, cpu);
10165 	vcpu->cpu = cpu;
10166 	put_cpu();
10167 
10168 	vmx_segment_cache_clear(vmx);
10169 
10170 	prepare_vmcs02(vcpu, vmcs12);
10171 
10172 	msr_entry_idx = nested_vmx_load_msr(vcpu,
10173 					    vmcs12->vm_entry_msr_load_addr,
10174 					    vmcs12->vm_entry_msr_load_count);
10175 	if (msr_entry_idx) {
10176 		leave_guest_mode(vcpu);
10177 		vmx_load_vmcs01(vcpu);
10178 		nested_vmx_entry_failure(vcpu, vmcs12,
10179 				EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10180 		return 1;
10181 	}
10182 
10183 	vmcs12->launch_state = 1;
10184 
10185 	if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10186 		return kvm_vcpu_halt(vcpu);
10187 
10188 	vmx->nested.nested_run_pending = 1;
10189 
10190 	/*
10191 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10192 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10193 	 * returned as far as L1 is concerned. It will only return (and set
10194 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10195 	 */
10196 	return 1;
10197 }
10198 
10199 /*
10200  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10201  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10202  * This function returns the new value we should put in vmcs12.guest_cr0.
10203  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10204  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10205  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10206  *     didn't trap the bit, because if L1 did, so would L0).
10207  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10208  *     been modified by L2, and L1 knows it. So just leave the old value of
10209  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10210  *     isn't relevant, because if L0 traps this bit it can set it to anything.
10211  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10212  *     changed these bits, and therefore they need to be updated, but L0
10213  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10214  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10215  */
10216 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10217 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10218 {
10219 	return
10220 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10221 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10222 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10223 			vcpu->arch.cr0_guest_owned_bits));
10224 }
10225 
10226 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10227 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10228 {
10229 	return
10230 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10231 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10232 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10233 			vcpu->arch.cr4_guest_owned_bits));
10234 }
10235 
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10236 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10237 				       struct vmcs12 *vmcs12)
10238 {
10239 	u32 idt_vectoring;
10240 	unsigned int nr;
10241 
10242 	if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10243 		nr = vcpu->arch.exception.nr;
10244 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10245 
10246 		if (kvm_exception_is_soft(nr)) {
10247 			vmcs12->vm_exit_instruction_len =
10248 				vcpu->arch.event_exit_inst_len;
10249 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10250 		} else
10251 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10252 
10253 		if (vcpu->arch.exception.has_error_code) {
10254 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10255 			vmcs12->idt_vectoring_error_code =
10256 				vcpu->arch.exception.error_code;
10257 		}
10258 
10259 		vmcs12->idt_vectoring_info_field = idt_vectoring;
10260 	} else if (vcpu->arch.nmi_injected) {
10261 		vmcs12->idt_vectoring_info_field =
10262 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10263 	} else if (vcpu->arch.interrupt.pending) {
10264 		nr = vcpu->arch.interrupt.nr;
10265 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10266 
10267 		if (vcpu->arch.interrupt.soft) {
10268 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
10269 			vmcs12->vm_entry_instruction_len =
10270 				vcpu->arch.event_exit_inst_len;
10271 		} else
10272 			idt_vectoring |= INTR_TYPE_EXT_INTR;
10273 
10274 		vmcs12->idt_vectoring_info_field = idt_vectoring;
10275 	}
10276 }
10277 
vmx_check_nested_events(struct kvm_vcpu * vcpu,bool external_intr)10278 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10279 {
10280 	struct vcpu_vmx *vmx = to_vmx(vcpu);
10281 
10282 	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10283 	    vmx->nested.preemption_timer_expired) {
10284 		if (vmx->nested.nested_run_pending)
10285 			return -EBUSY;
10286 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10287 		return 0;
10288 	}
10289 
10290 	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10291 		if (vmx->nested.nested_run_pending ||
10292 		    vcpu->arch.interrupt.pending)
10293 			return -EBUSY;
10294 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10295 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
10296 				  INTR_INFO_VALID_MASK, 0);
10297 		/*
10298 		 * The NMI-triggered VM exit counts as injection:
10299 		 * clear this one and block further NMIs.
10300 		 */
10301 		vcpu->arch.nmi_pending = 0;
10302 		vmx_set_nmi_mask(vcpu, true);
10303 		return 0;
10304 	}
10305 
10306 	if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10307 	    nested_exit_on_intr(vcpu)) {
10308 		if (vmx->nested.nested_run_pending)
10309 			return -EBUSY;
10310 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10311 		return 0;
10312 	}
10313 
10314 	vmx_complete_nested_posted_interrupt(vcpu);
10315 	return 0;
10316 }
10317 
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)10318 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10319 {
10320 	ktime_t remaining =
10321 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10322 	u64 value;
10323 
10324 	if (ktime_to_ns(remaining) <= 0)
10325 		return 0;
10326 
10327 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10328 	do_div(value, 1000000);
10329 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10330 }
10331 
10332 /*
10333  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10334  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10335  * and this function updates it to reflect the changes to the guest state while
10336  * L2 was running (and perhaps made some exits which were handled directly by L0
10337  * without going back to L1), and to reflect the exit reason.
10338  * Note that we do not have to copy here all VMCS fields, just those that
10339  * could have changed by the L2 guest or the exit - i.e., the guest-state and
10340  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10341  * which already writes to vmcs12 directly.
10342  */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)10343 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10344 			   u32 exit_reason, u32 exit_intr_info,
10345 			   unsigned long exit_qualification)
10346 {
10347 	/* update guest state fields: */
10348 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10349 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10350 
10351 	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10352 	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10353 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10354 
10355 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10356 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10357 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10358 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10359 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10360 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10361 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10362 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10363 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10364 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10365 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10366 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10367 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10368 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10369 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10370 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10371 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10372 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10373 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10374 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10375 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10376 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10377 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10378 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10379 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10380 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10381 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10382 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10383 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10384 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10385 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10386 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10387 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10388 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10389 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10390 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10391 
10392 	vmcs12->guest_interruptibility_info =
10393 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10394 	vmcs12->guest_pending_dbg_exceptions =
10395 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10396 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10397 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10398 	else
10399 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10400 
10401 	if (nested_cpu_has_preemption_timer(vmcs12)) {
10402 		if (vmcs12->vm_exit_controls &
10403 		    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10404 			vmcs12->vmx_preemption_timer_value =
10405 				vmx_get_preemption_timer_value(vcpu);
10406 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10407 	}
10408 
10409 	/*
10410 	 * In some cases (usually, nested EPT), L2 is allowed to change its
10411 	 * own CR3 without exiting. If it has changed it, we must keep it.
10412 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10413 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10414 	 *
10415 	 * Additionally, restore L2's PDPTR to vmcs12.
10416 	 */
10417 	if (enable_ept) {
10418 		vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
10419 		vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10420 		vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10421 		vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10422 		vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10423 	}
10424 
10425 	if (nested_cpu_has_vid(vmcs12))
10426 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10427 
10428 	vmcs12->vm_entry_controls =
10429 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10430 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10431 
10432 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10433 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10434 		vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10435 	}
10436 
10437 	/* TODO: These cannot have changed unless we have MSR bitmaps and
10438 	 * the relevant bit asks not to trap the change */
10439 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10440 		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10441 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10442 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
10443 	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10444 	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10445 	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10446 	if (kvm_mpx_supported())
10447 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10448 	if (nested_cpu_has_xsaves(vmcs12))
10449 		vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10450 
10451 	/* update exit information fields: */
10452 
10453 	vmcs12->vm_exit_reason = exit_reason;
10454 	vmcs12->exit_qualification = exit_qualification;
10455 
10456 	vmcs12->vm_exit_intr_info = exit_intr_info;
10457 	if ((vmcs12->vm_exit_intr_info &
10458 	     (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10459 	    (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10460 		vmcs12->vm_exit_intr_error_code =
10461 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10462 	vmcs12->idt_vectoring_info_field = 0;
10463 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10464 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10465 
10466 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10467 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
10468 		 * instead of reading the real value. */
10469 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10470 
10471 		/*
10472 		 * Transfer the event that L0 or L1 may wanted to inject into
10473 		 * L2 to IDT_VECTORING_INFO_FIELD.
10474 		 */
10475 		vmcs12_save_pending_event(vcpu, vmcs12);
10476 	}
10477 
10478 	/*
10479 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10480 	 * preserved above and would only end up incorrectly in L1.
10481 	 */
10482 	vcpu->arch.nmi_injected = false;
10483 	kvm_clear_exception_queue(vcpu);
10484 	kvm_clear_interrupt_queue(vcpu);
10485 }
10486 
10487 /*
10488  * A part of what we need to when the nested L2 guest exits and we want to
10489  * run its L1 parent, is to reset L1's guest state to the host state specified
10490  * in vmcs12.
10491  * This function is to be called not only on normal nested exit, but also on
10492  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10493  * Failures During or After Loading Guest State").
10494  * This function should be called when the active VMCS is L1's (vmcs01).
10495  */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10496 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10497 				   struct vmcs12 *vmcs12)
10498 {
10499 	struct kvm_segment seg;
10500 
10501 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10502 		vcpu->arch.efer = vmcs12->host_ia32_efer;
10503 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10504 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10505 	else
10506 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10507 	vmx_set_efer(vcpu, vcpu->arch.efer);
10508 
10509 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10510 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10511 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10512 	/*
10513 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10514 	 * actually changed, because it depends on the current state of
10515 	 * fpu_active (which may have changed).
10516 	 * Note that vmx_set_cr0 refers to efer set above.
10517 	 */
10518 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
10519 	/*
10520 	 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10521 	 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10522 	 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10523 	 */
10524 	update_exception_bitmap(vcpu);
10525 	vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10526 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10527 
10528 	/*
10529 	 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10530 	 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10531 	 */
10532 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10533 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
10534 
10535 	nested_ept_uninit_mmu_context(vcpu);
10536 
10537 	kvm_set_cr3(vcpu, vmcs12->host_cr3);
10538 	kvm_mmu_reset_context(vcpu);
10539 
10540 	if (!enable_ept)
10541 		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10542 
10543 	if (enable_vpid) {
10544 		/*
10545 		 * Trivially support vpid by letting L2s share their parent
10546 		 * L1's vpid. TODO: move to a more elaborate solution, giving
10547 		 * each L2 its own vpid and exposing the vpid feature to L1.
10548 		 */
10549 		vmx_flush_tlb(vcpu);
10550 	}
10551 
10552 
10553 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10554 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10555 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10556 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10557 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10558 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
10559 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
10560 
10561 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10562 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10563 		vmcs_write64(GUEST_BNDCFGS, 0);
10564 
10565 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10566 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10567 		vcpu->arch.pat = vmcs12->host_ia32_pat;
10568 	}
10569 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10570 		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10571 			vmcs12->host_ia32_perf_global_ctrl);
10572 
10573 	/* Set L1 segment info according to Intel SDM
10574 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
10575 	seg = (struct kvm_segment) {
10576 		.base = 0,
10577 		.limit = 0xFFFFFFFF,
10578 		.selector = vmcs12->host_cs_selector,
10579 		.type = 11,
10580 		.present = 1,
10581 		.s = 1,
10582 		.g = 1
10583 	};
10584 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10585 		seg.l = 1;
10586 	else
10587 		seg.db = 1;
10588 	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10589 	seg = (struct kvm_segment) {
10590 		.base = 0,
10591 		.limit = 0xFFFFFFFF,
10592 		.type = 3,
10593 		.present = 1,
10594 		.s = 1,
10595 		.db = 1,
10596 		.g = 1
10597 	};
10598 	seg.selector = vmcs12->host_ds_selector;
10599 	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10600 	seg.selector = vmcs12->host_es_selector;
10601 	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10602 	seg.selector = vmcs12->host_ss_selector;
10603 	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10604 	seg.selector = vmcs12->host_fs_selector;
10605 	seg.base = vmcs12->host_fs_base;
10606 	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10607 	seg.selector = vmcs12->host_gs_selector;
10608 	seg.base = vmcs12->host_gs_base;
10609 	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10610 	seg = (struct kvm_segment) {
10611 		.base = vmcs12->host_tr_base,
10612 		.limit = 0x67,
10613 		.selector = vmcs12->host_tr_selector,
10614 		.type = 11,
10615 		.present = 1
10616 	};
10617 	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10618 
10619 	kvm_set_dr(vcpu, 7, 0x400);
10620 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10621 
10622 	if (cpu_has_vmx_msr_bitmap())
10623 		vmx_update_msr_bitmap(vcpu);
10624 
10625 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10626 				vmcs12->vm_exit_msr_load_count))
10627 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10628 }
10629 
10630 /*
10631  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10632  * and modify vmcs12 to make it see what it would expect to see there if
10633  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10634  */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)10635 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10636 			      u32 exit_intr_info,
10637 			      unsigned long exit_qualification)
10638 {
10639 	struct vcpu_vmx *vmx = to_vmx(vcpu);
10640 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10641 
10642 	/* trying to cancel vmlaunch/vmresume is a bug */
10643 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
10644 
10645 	leave_guest_mode(vcpu);
10646 	prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10647 		       exit_qualification);
10648 
10649 	if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10650 				 vmcs12->vm_exit_msr_store_count))
10651 		nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10652 
10653 	vmx_load_vmcs01(vcpu);
10654 
10655 	if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10656 	    && nested_exit_intr_ack_set(vcpu)) {
10657 		int irq = kvm_cpu_get_interrupt(vcpu);
10658 		WARN_ON(irq < 0);
10659 		vmcs12->vm_exit_intr_info = irq |
10660 			INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10661 	}
10662 
10663 	trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10664 				       vmcs12->exit_qualification,
10665 				       vmcs12->idt_vectoring_info_field,
10666 				       vmcs12->vm_exit_intr_info,
10667 				       vmcs12->vm_exit_intr_error_code,
10668 				       KVM_ISA_VMX);
10669 
10670 	vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10671 	vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
10672 	vmx_segment_cache_clear(vmx);
10673 
10674 	load_vmcs12_host_state(vcpu, vmcs12);
10675 
10676 	/* Update TSC_OFFSET if TSC was changed while L2 ran */
10677 	vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10678 
10679 	if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
10680 		vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
10681 		vmx_set_virtual_x2apic_mode(vcpu,
10682 				vcpu->arch.apic_base & X2APIC_ENABLE);
10683 	}
10684 
10685 	/* This is needed for same reason as it was needed in prepare_vmcs02 */
10686 	vmx->host_rsp = 0;
10687 
10688 	/* Unpin physical memory we referred to in vmcs02 */
10689 	if (vmx->nested.apic_access_page) {
10690 		nested_release_page(vmx->nested.apic_access_page);
10691 		vmx->nested.apic_access_page = NULL;
10692 	}
10693 	if (vmx->nested.virtual_apic_page) {
10694 		nested_release_page(vmx->nested.virtual_apic_page);
10695 		vmx->nested.virtual_apic_page = NULL;
10696 	}
10697 	if (vmx->nested.pi_desc_page) {
10698 		kunmap(vmx->nested.pi_desc_page);
10699 		nested_release_page(vmx->nested.pi_desc_page);
10700 		vmx->nested.pi_desc_page = NULL;
10701 		vmx->nested.pi_desc = NULL;
10702 	}
10703 
10704 	/*
10705 	 * We are now running in L2, mmu_notifier will force to reload the
10706 	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10707 	 */
10708 	kvm_vcpu_reload_apic_access_page(vcpu);
10709 
10710 	/*
10711 	 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10712 	 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10713 	 * success or failure flag accordingly.
10714 	 */
10715 	if (unlikely(vmx->fail)) {
10716 		vmx->fail = 0;
10717 		nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10718 	} else
10719 		nested_vmx_succeed(vcpu);
10720 	if (enable_shadow_vmcs)
10721 		vmx->nested.sync_shadow_vmcs = true;
10722 
10723 	/* in case we halted in L2 */
10724 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10725 }
10726 
10727 /*
10728  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10729  */
vmx_leave_nested(struct kvm_vcpu * vcpu)10730 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10731 {
10732 	if (is_guest_mode(vcpu)) {
10733 		to_vmx(vcpu)->nested.nested_run_pending = 0;
10734 		nested_vmx_vmexit(vcpu, -1, 0, 0);
10735 	}
10736 	free_nested(to_vmx(vcpu));
10737 }
10738 
10739 /*
10740  * L1's failure to enter L2 is a subset of a normal exit, as explained in
10741  * 23.7 "VM-entry failures during or after loading guest state" (this also
10742  * lists the acceptable exit-reason and exit-qualification parameters).
10743  * It should only be called before L2 actually succeeded to run, and when
10744  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10745  */
nested_vmx_entry_failure(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 reason,unsigned long qualification)10746 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10747 			struct vmcs12 *vmcs12,
10748 			u32 reason, unsigned long qualification)
10749 {
10750 	load_vmcs12_host_state(vcpu, vmcs12);
10751 	vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10752 	vmcs12->exit_qualification = qualification;
10753 	nested_vmx_succeed(vcpu);
10754 	if (enable_shadow_vmcs)
10755 		to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10756 }
10757 
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)10758 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
10759 				  struct x86_instruction_info *info)
10760 {
10761 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10762 	unsigned short port;
10763 	bool intercept;
10764 	int size;
10765 
10766 	if (info->intercept == x86_intercept_in ||
10767 	    info->intercept == x86_intercept_ins) {
10768 		port = info->src_val;
10769 		size = info->dst_bytes;
10770 	} else {
10771 		port = info->dst_val;
10772 		size = info->src_bytes;
10773 	}
10774 
10775 	/*
10776 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
10777 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
10778 	 * control.
10779 	 *
10780 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
10781 	 */
10782 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
10783 		intercept = nested_cpu_has(vmcs12,
10784 					   CPU_BASED_UNCOND_IO_EXITING);
10785 	else
10786 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
10787 
10788 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
10789 }
10790 
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)10791 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10792 			       struct x86_instruction_info *info,
10793 			       enum x86_intercept_stage stage)
10794 {
10795 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10796 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
10797 
10798 	switch (info->intercept) {
10799 	/*
10800 	 * RDPID causes #UD if disabled through secondary execution controls.
10801 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
10802 	 */
10803 	case x86_intercept_rdtscp:
10804 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
10805 			ctxt->exception.vector = UD_VECTOR;
10806 			ctxt->exception.error_code_valid = false;
10807 			return X86EMUL_PROPAGATE_FAULT;
10808 		}
10809 		break;
10810 
10811 	case x86_intercept_in:
10812 	case x86_intercept_ins:
10813 	case x86_intercept_out:
10814 	case x86_intercept_outs:
10815 		return vmx_check_intercept_io(vcpu, info);
10816 
10817 	/* TODO: check more intercepts... */
10818 	default:
10819 		break;
10820 	}
10821 
10822 	return X86EMUL_UNHANDLEABLE;
10823 }
10824 
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)10825 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10826 {
10827 	if (ple_gap)
10828 		shrink_ple_window(vcpu);
10829 }
10830 
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)10831 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10832 				     struct kvm_memory_slot *slot)
10833 {
10834 	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10835 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10836 }
10837 
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)10838 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10839 				       struct kvm_memory_slot *slot)
10840 {
10841 	kvm_mmu_slot_set_dirty(kvm, slot);
10842 }
10843 
vmx_flush_log_dirty(struct kvm * kvm)10844 static void vmx_flush_log_dirty(struct kvm *kvm)
10845 {
10846 	kvm_flush_pml_buffers(kvm);
10847 }
10848 
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)10849 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10850 					   struct kvm_memory_slot *memslot,
10851 					   gfn_t offset, unsigned long mask)
10852 {
10853 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10854 }
10855 
10856 /*
10857  * This routine does the following things for vCPU which is going
10858  * to be blocked if VT-d PI is enabled.
10859  * - Store the vCPU to the wakeup list, so when interrupts happen
10860  *   we can find the right vCPU to wake up.
10861  * - Change the Posted-interrupt descriptor as below:
10862  *      'NDST' <-- vcpu->pre_pcpu
10863  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10864  * - If 'ON' is set during this process, which means at least one
10865  *   interrupt is posted for this vCPU, we cannot block it, in
10866  *   this case, return 1, otherwise, return 0.
10867  *
10868  */
vmx_pre_block(struct kvm_vcpu * vcpu)10869 static int vmx_pre_block(struct kvm_vcpu *vcpu)
10870 {
10871 	unsigned long flags;
10872 	unsigned int dest;
10873 	struct pi_desc old, new;
10874 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10875 
10876 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10877 		!irq_remapping_cap(IRQ_POSTING_CAP))
10878 		return 0;
10879 
10880 	vcpu->pre_pcpu = vcpu->cpu;
10881 	spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10882 			  vcpu->pre_pcpu), flags);
10883 	list_add_tail(&vcpu->blocked_vcpu_list,
10884 		      &per_cpu(blocked_vcpu_on_cpu,
10885 		      vcpu->pre_pcpu));
10886 	spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10887 			       vcpu->pre_pcpu), flags);
10888 
10889 	do {
10890 		old.control = new.control = pi_desc->control;
10891 
10892 		/*
10893 		 * We should not block the vCPU if
10894 		 * an interrupt is posted for it.
10895 		 */
10896 		if (pi_test_on(pi_desc) == 1) {
10897 			spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10898 					  vcpu->pre_pcpu), flags);
10899 			list_del(&vcpu->blocked_vcpu_list);
10900 			spin_unlock_irqrestore(
10901 					&per_cpu(blocked_vcpu_on_cpu_lock,
10902 					vcpu->pre_pcpu), flags);
10903 			vcpu->pre_pcpu = -1;
10904 
10905 			return 1;
10906 		}
10907 
10908 		WARN((pi_desc->sn == 1),
10909 		     "Warning: SN field of posted-interrupts "
10910 		     "is set before blocking\n");
10911 
10912 		/*
10913 		 * Since vCPU can be preempted during this process,
10914 		 * vcpu->cpu could be different with pre_pcpu, we
10915 		 * need to set pre_pcpu as the destination of wakeup
10916 		 * notification event, then we can find the right vCPU
10917 		 * to wakeup in wakeup handler if interrupts happen
10918 		 * when the vCPU is in blocked state.
10919 		 */
10920 		dest = cpu_physical_id(vcpu->pre_pcpu);
10921 
10922 		if (x2apic_enabled())
10923 			new.ndst = dest;
10924 		else
10925 			new.ndst = (dest << 8) & 0xFF00;
10926 
10927 		/* set 'NV' to 'wakeup vector' */
10928 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
10929 	} while (cmpxchg64(&pi_desc->control, old.control,
10930 			   new.control) != old.control);
10931 
10932 	return 0;
10933 }
10934 
vmx_post_block(struct kvm_vcpu * vcpu)10935 static void vmx_post_block(struct kvm_vcpu *vcpu)
10936 {
10937 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10938 	struct pi_desc old, new;
10939 	unsigned int dest;
10940 	unsigned long flags;
10941 
10942 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10943 		!irq_remapping_cap(IRQ_POSTING_CAP))
10944 		return;
10945 
10946 	do {
10947 		old.control = new.control = pi_desc->control;
10948 
10949 		dest = cpu_physical_id(vcpu->cpu);
10950 
10951 		if (x2apic_enabled())
10952 			new.ndst = dest;
10953 		else
10954 			new.ndst = (dest << 8) & 0xFF00;
10955 
10956 		/* Allow posting non-urgent interrupts */
10957 		new.sn = 0;
10958 
10959 		/* set 'NV' to 'notification vector' */
10960 		new.nv = POSTED_INTR_VECTOR;
10961 	} while (cmpxchg64(&pi_desc->control, old.control,
10962 			   new.control) != old.control);
10963 
10964 	if(vcpu->pre_pcpu != -1) {
10965 		spin_lock_irqsave(
10966 			&per_cpu(blocked_vcpu_on_cpu_lock,
10967 			vcpu->pre_pcpu), flags);
10968 		list_del(&vcpu->blocked_vcpu_list);
10969 		spin_unlock_irqrestore(
10970 			&per_cpu(blocked_vcpu_on_cpu_lock,
10971 			vcpu->pre_pcpu), flags);
10972 		vcpu->pre_pcpu = -1;
10973 	}
10974 }
10975 
10976 /*
10977  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10978  *
10979  * @kvm: kvm
10980  * @host_irq: host irq of the interrupt
10981  * @guest_irq: gsi of the interrupt
10982  * @set: set or unset PI
10983  * returns 0 on success, < 0 on failure
10984  */
vmx_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)10985 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10986 			      uint32_t guest_irq, bool set)
10987 {
10988 	struct kvm_kernel_irq_routing_entry *e;
10989 	struct kvm_irq_routing_table *irq_rt;
10990 	struct kvm_lapic_irq irq;
10991 	struct kvm_vcpu *vcpu;
10992 	struct vcpu_data vcpu_info;
10993 	int idx, ret = 0;
10994 
10995 	if (!kvm_arch_has_assigned_device(kvm) ||
10996 		!irq_remapping_cap(IRQ_POSTING_CAP))
10997 		return 0;
10998 
10999 	idx = srcu_read_lock(&kvm->irq_srcu);
11000 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11001 	if (guest_irq >= irq_rt->nr_rt_entries ||
11002 	    hlist_empty(&irq_rt->map[guest_irq])) {
11003 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11004 			     guest_irq, irq_rt->nr_rt_entries);
11005 		goto out;
11006 	}
11007 
11008 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11009 		if (e->type != KVM_IRQ_ROUTING_MSI)
11010 			continue;
11011 		/*
11012 		 * VT-d PI cannot support posting multicast/broadcast
11013 		 * interrupts to a vCPU, we still use interrupt remapping
11014 		 * for these kind of interrupts.
11015 		 *
11016 		 * For lowest-priority interrupts, we only support
11017 		 * those with single CPU as the destination, e.g. user
11018 		 * configures the interrupts via /proc/irq or uses
11019 		 * irqbalance to make the interrupts single-CPU.
11020 		 *
11021 		 * We will support full lowest-priority interrupt later.
11022 		 */
11023 
11024 		kvm_set_msi_irq(e, &irq);
11025 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu))
11026 			continue;
11027 
11028 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11029 		vcpu_info.vector = irq.vector;
11030 
11031 		trace_kvm_pi_irte_update(vcpu->vcpu_id, e->gsi,
11032 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11033 
11034 		if (set)
11035 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11036 		else
11037 			ret = irq_set_vcpu_affinity(host_irq, NULL);
11038 
11039 		if (ret < 0) {
11040 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
11041 					__func__);
11042 			goto out;
11043 		}
11044 	}
11045 
11046 	ret = 0;
11047 out:
11048 	srcu_read_unlock(&kvm->irq_srcu, idx);
11049 	return ret;
11050 }
11051 
11052 static struct kvm_x86_ops vmx_x86_ops = {
11053 	.cpu_has_kvm_support = cpu_has_kvm_support,
11054 	.disabled_by_bios = vmx_disabled_by_bios,
11055 	.hardware_setup = hardware_setup,
11056 	.hardware_unsetup = hardware_unsetup,
11057 	.check_processor_compatibility = vmx_check_processor_compat,
11058 	.hardware_enable = hardware_enable,
11059 	.hardware_disable = hardware_disable,
11060 	.cpu_has_accelerated_tpr = report_flexpriority,
11061 	.has_emulated_msr = vmx_has_emulated_msr,
11062 
11063 	.vcpu_create = vmx_create_vcpu,
11064 	.vcpu_free = vmx_free_vcpu,
11065 	.vcpu_reset = vmx_vcpu_reset,
11066 
11067 	.prepare_guest_switch = vmx_save_host_state,
11068 	.vcpu_load = vmx_vcpu_load,
11069 	.vcpu_put = vmx_vcpu_put,
11070 
11071 	.update_bp_intercept = update_exception_bitmap,
11072 	.get_msr = vmx_get_msr,
11073 	.set_msr = vmx_set_msr,
11074 	.get_segment_base = vmx_get_segment_base,
11075 	.get_segment = vmx_get_segment,
11076 	.set_segment = vmx_set_segment,
11077 	.get_cpl = vmx_get_cpl,
11078 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11079 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11080 	.decache_cr3 = vmx_decache_cr3,
11081 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11082 	.set_cr0 = vmx_set_cr0,
11083 	.set_cr3 = vmx_set_cr3,
11084 	.set_cr4 = vmx_set_cr4,
11085 	.set_efer = vmx_set_efer,
11086 	.get_idt = vmx_get_idt,
11087 	.set_idt = vmx_set_idt,
11088 	.get_gdt = vmx_get_gdt,
11089 	.set_gdt = vmx_set_gdt,
11090 	.get_dr6 = vmx_get_dr6,
11091 	.set_dr6 = vmx_set_dr6,
11092 	.set_dr7 = vmx_set_dr7,
11093 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11094 	.cache_reg = vmx_cache_reg,
11095 	.get_rflags = vmx_get_rflags,
11096 	.set_rflags = vmx_set_rflags,
11097 	.fpu_activate = vmx_fpu_activate,
11098 	.fpu_deactivate = vmx_fpu_deactivate,
11099 
11100 	.tlb_flush = vmx_flush_tlb,
11101 
11102 	.run = vmx_vcpu_run,
11103 	.handle_exit = vmx_handle_exit,
11104 	.skip_emulated_instruction = skip_emulated_instruction,
11105 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
11106 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
11107 	.patch_hypercall = vmx_patch_hypercall,
11108 	.set_irq = vmx_inject_irq,
11109 	.set_nmi = vmx_inject_nmi,
11110 	.queue_exception = vmx_queue_exception,
11111 	.cancel_injection = vmx_cancel_injection,
11112 	.interrupt_allowed = vmx_interrupt_allowed,
11113 	.nmi_allowed = vmx_nmi_allowed,
11114 	.get_nmi_mask = vmx_get_nmi_mask,
11115 	.set_nmi_mask = vmx_set_nmi_mask,
11116 	.enable_nmi_window = enable_nmi_window,
11117 	.enable_irq_window = enable_irq_window,
11118 	.update_cr8_intercept = update_cr8_intercept,
11119 	.set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11120 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11121 	.cpu_uses_apicv = vmx_cpu_uses_apicv,
11122 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
11123 	.hwapic_irr_update = vmx_hwapic_irr_update,
11124 	.hwapic_isr_update = vmx_hwapic_isr_update,
11125 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
11126 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11127 
11128 	.set_tss_addr = vmx_set_tss_addr,
11129 	.get_tdp_level = get_ept_level,
11130 	.get_mt_mask = vmx_get_mt_mask,
11131 
11132 	.get_exit_info = vmx_get_exit_info,
11133 
11134 	.get_lpage_level = vmx_get_lpage_level,
11135 
11136 	.cpuid_update = vmx_cpuid_update,
11137 
11138 	.rdtscp_supported = vmx_rdtscp_supported,
11139 	.invpcid_supported = vmx_invpcid_supported,
11140 
11141 	.set_supported_cpuid = vmx_set_supported_cpuid,
11142 
11143 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11144 
11145 	.read_tsc_offset = vmx_read_tsc_offset,
11146 	.write_tsc_offset = vmx_write_tsc_offset,
11147 	.adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
11148 	.read_l1_tsc = vmx_read_l1_tsc,
11149 
11150 	.set_tdp_cr3 = vmx_set_cr3,
11151 
11152 	.check_intercept = vmx_check_intercept,
11153 	.handle_external_intr = vmx_handle_external_intr,
11154 	.mpx_supported = vmx_mpx_supported,
11155 	.xsaves_supported = vmx_xsaves_supported,
11156 
11157 	.check_nested_events = vmx_check_nested_events,
11158 
11159 	.sched_in = vmx_sched_in,
11160 
11161 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11162 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11163 	.flush_log_dirty = vmx_flush_log_dirty,
11164 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11165 
11166 	.pre_block = vmx_pre_block,
11167 	.post_block = vmx_post_block,
11168 
11169 	.pmu_ops = &intel_pmu_ops,
11170 
11171 	.update_pi_irte = vmx_update_pi_irte,
11172 };
11173 
vmx_init(void)11174 static int __init vmx_init(void)
11175 {
11176 	int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11177                      __alignof__(struct vcpu_vmx), THIS_MODULE);
11178 	if (r)
11179 		return r;
11180 
11181 #ifdef CONFIG_KEXEC_CORE
11182 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11183 			   crash_vmclear_local_loaded_vmcss);
11184 #endif
11185 
11186 	return 0;
11187 }
11188 
vmx_exit(void)11189 static void __exit vmx_exit(void)
11190 {
11191 #ifdef CONFIG_KEXEC_CORE
11192 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11193 	synchronize_rcu();
11194 #endif
11195 
11196 	kvm_exit();
11197 }
11198 
11199 module_init(vmx_init)
11200 module_exit(vmx_exit)
11201