1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_priv.h"
39 #include "scsi_logging.h"
40
41
42 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
43 #define SG_MEMPOOL_SIZE 2
44
45 struct scsi_host_sg_pool {
46 size_t size;
47 char *name;
48 struct kmem_cache *slab;
49 mempool_t *pool;
50 };
51
52 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
53 #if (SCSI_MAX_SG_SEGMENTS < 32)
54 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
55 #endif
56 static struct scsi_host_sg_pool scsi_sg_pools[] = {
57 SP(8),
58 SP(16),
59 #if (SCSI_MAX_SG_SEGMENTS > 32)
60 SP(32),
61 #if (SCSI_MAX_SG_SEGMENTS > 64)
62 SP(64),
63 #if (SCSI_MAX_SG_SEGMENTS > 128)
64 SP(128),
65 #if (SCSI_MAX_SG_SEGMENTS > 256)
66 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
67 #endif
68 #endif
69 #endif
70 #endif
71 SP(SCSI_MAX_SG_SEGMENTS)
72 };
73 #undef SP
74
75 struct kmem_cache *scsi_sdb_cache;
76
77 /*
78 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79 * not change behaviour from the previous unplug mechanism, experimentation
80 * may prove this needs changing.
81 */
82 #define SCSI_QUEUE_DELAY 3
83
84 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87 struct Scsi_Host *host = cmd->device->host;
88 struct scsi_device *device = cmd->device;
89 struct scsi_target *starget = scsi_target(device);
90
91 /*
92 * Set the appropriate busy bit for the device/host.
93 *
94 * If the host/device isn't busy, assume that something actually
95 * completed, and that we should be able to queue a command now.
96 *
97 * Note that the prior mid-layer assumption that any host could
98 * always queue at least one command is now broken. The mid-layer
99 * will implement a user specifiable stall (see
100 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 * if a command is requeued with no other commands outstanding
102 * either for the device or for the host.
103 */
104 switch (reason) {
105 case SCSI_MLQUEUE_HOST_BUSY:
106 atomic_set(&host->host_blocked, host->max_host_blocked);
107 break;
108 case SCSI_MLQUEUE_DEVICE_BUSY:
109 case SCSI_MLQUEUE_EH_RETRY:
110 atomic_set(&device->device_blocked,
111 device->max_device_blocked);
112 break;
113 case SCSI_MLQUEUE_TARGET_BUSY:
114 atomic_set(&starget->target_blocked,
115 starget->max_target_blocked);
116 break;
117 }
118 }
119
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122 struct scsi_device *sdev = cmd->device;
123 struct request_queue *q = cmd->request->q;
124
125 blk_mq_requeue_request(cmd->request);
126 blk_mq_kick_requeue_list(q);
127 put_device(&sdev->sdev_gendev);
128 }
129
130 /**
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason: The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
135 *
136 * This is a private queue insertion. The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion. This function is
139 * for a requeue after completion, which should only occur in this
140 * file.
141 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,int unbusy)142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
143 {
144 struct scsi_device *device = cmd->device;
145 struct request_queue *q = device->request_queue;
146 unsigned long flags;
147
148 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149 "Inserting command %p into mlqueue\n", cmd));
150
151 scsi_set_blocked(cmd, reason);
152
153 /*
154 * Decrement the counters, since these commands are no longer
155 * active on the host/device.
156 */
157 if (unbusy)
158 scsi_device_unbusy(device);
159
160 /*
161 * Requeue this command. It will go before all other commands
162 * that are already in the queue. Schedule requeue work under
163 * lock such that the kblockd_schedule_work() call happens
164 * before blk_cleanup_queue() finishes.
165 */
166 cmd->result = 0;
167 if (q->mq_ops) {
168 scsi_mq_requeue_cmd(cmd);
169 return;
170 }
171 spin_lock_irqsave(q->queue_lock, flags);
172 blk_requeue_request(q, cmd->request);
173 kblockd_schedule_work(&device->requeue_work);
174 spin_unlock_irqrestore(q->queue_lock, flags);
175 }
176
177 /*
178 * Function: scsi_queue_insert()
179 *
180 * Purpose: Insert a command in the midlevel queue.
181 *
182 * Arguments: cmd - command that we are adding to queue.
183 * reason - why we are inserting command to queue.
184 *
185 * Lock status: Assumed that lock is not held upon entry.
186 *
187 * Returns: Nothing.
188 *
189 * Notes: We do this for one of two cases. Either the host is busy
190 * and it cannot accept any more commands for the time being,
191 * or the device returned QUEUE_FULL and can accept no more
192 * commands.
193 * Notes: This could be called either from an interrupt context or a
194 * normal process context.
195 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)196 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
197 {
198 __scsi_queue_insert(cmd, reason, 1);
199 }
200 /**
201 * scsi_execute - insert request and wait for the result
202 * @sdev: scsi device
203 * @cmd: scsi command
204 * @data_direction: data direction
205 * @buffer: data buffer
206 * @bufflen: len of buffer
207 * @sense: optional sense buffer
208 * @timeout: request timeout in seconds
209 * @retries: number of times to retry request
210 * @flags: or into request flags;
211 * @resid: optional residual length
212 *
213 * returns the req->errors value which is the scsi_cmnd result
214 * field.
215 */
scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,int timeout,int retries,u64 flags,int * resid)216 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
217 int data_direction, void *buffer, unsigned bufflen,
218 unsigned char *sense, int timeout, int retries, u64 flags,
219 int *resid)
220 {
221 struct request *req;
222 int write = (data_direction == DMA_TO_DEVICE);
223 int ret = DRIVER_ERROR << 24;
224
225 req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
226 if (IS_ERR(req))
227 return ret;
228 blk_rq_set_block_pc(req);
229
230 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
231 buffer, bufflen, __GFP_RECLAIM))
232 goto out;
233
234 req->cmd_len = COMMAND_SIZE(cmd[0]);
235 memcpy(req->cmd, cmd, req->cmd_len);
236 req->sense = sense;
237 req->sense_len = 0;
238 req->retries = retries;
239 req->timeout = timeout;
240 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
241
242 /*
243 * head injection *required* here otherwise quiesce won't work
244 */
245 blk_execute_rq(req->q, NULL, req, 1);
246
247 /*
248 * Some devices (USB mass-storage in particular) may transfer
249 * garbage data together with a residue indicating that the data
250 * is invalid. Prevent the garbage from being misinterpreted
251 * and prevent security leaks by zeroing out the excess data.
252 */
253 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
254 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
255
256 if (resid)
257 *resid = req->resid_len;
258 ret = req->errors;
259 out:
260 blk_put_request(req);
261
262 return ret;
263 }
264 EXPORT_SYMBOL(scsi_execute);
265
scsi_execute_req_flags(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,struct scsi_sense_hdr * sshdr,int timeout,int retries,int * resid,u64 flags)266 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
267 int data_direction, void *buffer, unsigned bufflen,
268 struct scsi_sense_hdr *sshdr, int timeout, int retries,
269 int *resid, u64 flags)
270 {
271 char *sense = NULL;
272 int result;
273
274 if (sshdr) {
275 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
276 if (!sense)
277 return DRIVER_ERROR << 24;
278 }
279 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
280 sense, timeout, retries, flags, resid);
281 if (sshdr)
282 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
283
284 kfree(sense);
285 return result;
286 }
287 EXPORT_SYMBOL(scsi_execute_req_flags);
288
289 /*
290 * Function: scsi_init_cmd_errh()
291 *
292 * Purpose: Initialize cmd fields related to error handling.
293 *
294 * Arguments: cmd - command that is ready to be queued.
295 *
296 * Notes: This function has the job of initializing a number of
297 * fields related to error handling. Typically this will
298 * be called once for each command, as required.
299 */
scsi_init_cmd_errh(struct scsi_cmnd * cmd)300 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
301 {
302 cmd->serial_number = 0;
303 scsi_set_resid(cmd, 0);
304 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
305 if (cmd->cmd_len == 0)
306 cmd->cmd_len = scsi_command_size(cmd->cmnd);
307 }
308
scsi_device_unbusy(struct scsi_device * sdev)309 void scsi_device_unbusy(struct scsi_device *sdev)
310 {
311 struct Scsi_Host *shost = sdev->host;
312 struct scsi_target *starget = scsi_target(sdev);
313 unsigned long flags;
314
315 atomic_dec(&shost->host_busy);
316 if (starget->can_queue > 0)
317 atomic_dec(&starget->target_busy);
318
319 if (unlikely(scsi_host_in_recovery(shost) &&
320 (shost->host_failed || shost->host_eh_scheduled))) {
321 spin_lock_irqsave(shost->host_lock, flags);
322 scsi_eh_wakeup(shost);
323 spin_unlock_irqrestore(shost->host_lock, flags);
324 }
325
326 atomic_dec(&sdev->device_busy);
327 }
328
scsi_kick_queue(struct request_queue * q)329 static void scsi_kick_queue(struct request_queue *q)
330 {
331 if (q->mq_ops)
332 blk_mq_start_hw_queues(q);
333 else
334 blk_run_queue(q);
335 }
336
337 /*
338 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
339 * and call blk_run_queue for all the scsi_devices on the target -
340 * including current_sdev first.
341 *
342 * Called with *no* scsi locks held.
343 */
scsi_single_lun_run(struct scsi_device * current_sdev)344 static void scsi_single_lun_run(struct scsi_device *current_sdev)
345 {
346 struct Scsi_Host *shost = current_sdev->host;
347 struct scsi_device *sdev, *tmp;
348 struct scsi_target *starget = scsi_target(current_sdev);
349 unsigned long flags;
350
351 spin_lock_irqsave(shost->host_lock, flags);
352 starget->starget_sdev_user = NULL;
353 spin_unlock_irqrestore(shost->host_lock, flags);
354
355 /*
356 * Call blk_run_queue for all LUNs on the target, starting with
357 * current_sdev. We race with others (to set starget_sdev_user),
358 * but in most cases, we will be first. Ideally, each LU on the
359 * target would get some limited time or requests on the target.
360 */
361 scsi_kick_queue(current_sdev->request_queue);
362
363 spin_lock_irqsave(shost->host_lock, flags);
364 if (starget->starget_sdev_user)
365 goto out;
366 list_for_each_entry_safe(sdev, tmp, &starget->devices,
367 same_target_siblings) {
368 if (sdev == current_sdev)
369 continue;
370 if (scsi_device_get(sdev))
371 continue;
372
373 spin_unlock_irqrestore(shost->host_lock, flags);
374 scsi_kick_queue(sdev->request_queue);
375 spin_lock_irqsave(shost->host_lock, flags);
376
377 scsi_device_put(sdev);
378 }
379 out:
380 spin_unlock_irqrestore(shost->host_lock, flags);
381 }
382
scsi_device_is_busy(struct scsi_device * sdev)383 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
384 {
385 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
386 return true;
387 if (atomic_read(&sdev->device_blocked) > 0)
388 return true;
389 return false;
390 }
391
scsi_target_is_busy(struct scsi_target * starget)392 static inline bool scsi_target_is_busy(struct scsi_target *starget)
393 {
394 if (starget->can_queue > 0) {
395 if (atomic_read(&starget->target_busy) >= starget->can_queue)
396 return true;
397 if (atomic_read(&starget->target_blocked) > 0)
398 return true;
399 }
400 return false;
401 }
402
scsi_host_is_busy(struct Scsi_Host * shost)403 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
404 {
405 if (shost->can_queue > 0 &&
406 atomic_read(&shost->host_busy) >= shost->can_queue)
407 return true;
408 if (atomic_read(&shost->host_blocked) > 0)
409 return true;
410 if (shost->host_self_blocked)
411 return true;
412 return false;
413 }
414
scsi_starved_list_run(struct Scsi_Host * shost)415 static void scsi_starved_list_run(struct Scsi_Host *shost)
416 {
417 LIST_HEAD(starved_list);
418 struct scsi_device *sdev;
419 unsigned long flags;
420
421 spin_lock_irqsave(shost->host_lock, flags);
422 list_splice_init(&shost->starved_list, &starved_list);
423
424 while (!list_empty(&starved_list)) {
425 struct request_queue *slq;
426
427 /*
428 * As long as shost is accepting commands and we have
429 * starved queues, call blk_run_queue. scsi_request_fn
430 * drops the queue_lock and can add us back to the
431 * starved_list.
432 *
433 * host_lock protects the starved_list and starved_entry.
434 * scsi_request_fn must get the host_lock before checking
435 * or modifying starved_list or starved_entry.
436 */
437 if (scsi_host_is_busy(shost))
438 break;
439
440 sdev = list_entry(starved_list.next,
441 struct scsi_device, starved_entry);
442 list_del_init(&sdev->starved_entry);
443 if (scsi_target_is_busy(scsi_target(sdev))) {
444 list_move_tail(&sdev->starved_entry,
445 &shost->starved_list);
446 continue;
447 }
448
449 /*
450 * Once we drop the host lock, a racing scsi_remove_device()
451 * call may remove the sdev from the starved list and destroy
452 * it and the queue. Mitigate by taking a reference to the
453 * queue and never touching the sdev again after we drop the
454 * host lock. Note: if __scsi_remove_device() invokes
455 * blk_cleanup_queue() before the queue is run from this
456 * function then blk_run_queue() will return immediately since
457 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
458 */
459 slq = sdev->request_queue;
460 if (!blk_get_queue(slq))
461 continue;
462 spin_unlock_irqrestore(shost->host_lock, flags);
463
464 scsi_kick_queue(slq);
465 blk_put_queue(slq);
466
467 spin_lock_irqsave(shost->host_lock, flags);
468 }
469 /* put any unprocessed entries back */
470 list_splice(&starved_list, &shost->starved_list);
471 spin_unlock_irqrestore(shost->host_lock, flags);
472 }
473
474 /*
475 * Function: scsi_run_queue()
476 *
477 * Purpose: Select a proper request queue to serve next
478 *
479 * Arguments: q - last request's queue
480 *
481 * Returns: Nothing
482 *
483 * Notes: The previous command was completely finished, start
484 * a new one if possible.
485 */
scsi_run_queue(struct request_queue * q)486 static void scsi_run_queue(struct request_queue *q)
487 {
488 struct scsi_device *sdev = q->queuedata;
489
490 if (scsi_target(sdev)->single_lun)
491 scsi_single_lun_run(sdev);
492 if (!list_empty(&sdev->host->starved_list))
493 scsi_starved_list_run(sdev->host);
494
495 if (q->mq_ops)
496 blk_mq_start_stopped_hw_queues(q, false);
497 else
498 blk_run_queue(q);
499 }
500
scsi_requeue_run_queue(struct work_struct * work)501 void scsi_requeue_run_queue(struct work_struct *work)
502 {
503 struct scsi_device *sdev;
504 struct request_queue *q;
505
506 sdev = container_of(work, struct scsi_device, requeue_work);
507 q = sdev->request_queue;
508 scsi_run_queue(q);
509 }
510
511 /*
512 * Function: scsi_requeue_command()
513 *
514 * Purpose: Handle post-processing of completed commands.
515 *
516 * Arguments: q - queue to operate on
517 * cmd - command that may need to be requeued.
518 *
519 * Returns: Nothing
520 *
521 * Notes: After command completion, there may be blocks left
522 * over which weren't finished by the previous command
523 * this can be for a number of reasons - the main one is
524 * I/O errors in the middle of the request, in which case
525 * we need to request the blocks that come after the bad
526 * sector.
527 * Notes: Upon return, cmd is a stale pointer.
528 */
scsi_requeue_command(struct request_queue * q,struct scsi_cmnd * cmd)529 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
530 {
531 struct scsi_device *sdev = cmd->device;
532 struct request *req = cmd->request;
533 unsigned long flags;
534
535 spin_lock_irqsave(q->queue_lock, flags);
536 blk_unprep_request(req);
537 req->special = NULL;
538 scsi_put_command(cmd);
539 blk_requeue_request(q, req);
540 spin_unlock_irqrestore(q->queue_lock, flags);
541
542 scsi_run_queue(q);
543
544 put_device(&sdev->sdev_gendev);
545 }
546
scsi_run_host_queues(struct Scsi_Host * shost)547 void scsi_run_host_queues(struct Scsi_Host *shost)
548 {
549 struct scsi_device *sdev;
550
551 shost_for_each_device(sdev, shost)
552 scsi_run_queue(sdev->request_queue);
553 }
554
scsi_sgtable_index(unsigned short nents)555 static inline unsigned int scsi_sgtable_index(unsigned short nents)
556 {
557 unsigned int index;
558
559 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
560
561 if (nents <= 8)
562 index = 0;
563 else
564 index = get_count_order(nents) - 3;
565
566 return index;
567 }
568
scsi_sg_free(struct scatterlist * sgl,unsigned int nents)569 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
570 {
571 struct scsi_host_sg_pool *sgp;
572
573 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
574 mempool_free(sgl, sgp->pool);
575 }
576
scsi_sg_alloc(unsigned int nents,gfp_t gfp_mask)577 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
578 {
579 struct scsi_host_sg_pool *sgp;
580
581 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
582 return mempool_alloc(sgp->pool, gfp_mask);
583 }
584
scsi_free_sgtable(struct scsi_data_buffer * sdb,bool mq)585 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
586 {
587 if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
588 return;
589 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
590 }
591
scsi_alloc_sgtable(struct scsi_data_buffer * sdb,int nents,bool mq)592 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
593 {
594 struct scatterlist *first_chunk = NULL;
595 int ret;
596
597 BUG_ON(!nents);
598
599 if (mq) {
600 if (nents <= SCSI_MAX_SG_SEGMENTS) {
601 sdb->table.nents = sdb->table.orig_nents = nents;
602 sg_init_table(sdb->table.sgl, nents);
603 return 0;
604 }
605 first_chunk = sdb->table.sgl;
606 }
607
608 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
609 first_chunk, GFP_ATOMIC, scsi_sg_alloc);
610 if (unlikely(ret))
611 scsi_free_sgtable(sdb, mq);
612 return ret;
613 }
614
scsi_uninit_cmd(struct scsi_cmnd * cmd)615 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
616 {
617 if (cmd->request->cmd_type == REQ_TYPE_FS) {
618 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
619
620 if (drv->uninit_command)
621 drv->uninit_command(cmd);
622 }
623 }
624
scsi_mq_free_sgtables(struct scsi_cmnd * cmd)625 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
626 {
627 if (cmd->sdb.table.nents)
628 scsi_free_sgtable(&cmd->sdb, true);
629 if (cmd->request->next_rq && cmd->request->next_rq->special)
630 scsi_free_sgtable(cmd->request->next_rq->special, true);
631 if (scsi_prot_sg_count(cmd))
632 scsi_free_sgtable(cmd->prot_sdb, true);
633 }
634
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)635 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
636 {
637 struct scsi_device *sdev = cmd->device;
638 struct Scsi_Host *shost = sdev->host;
639 unsigned long flags;
640
641 scsi_mq_free_sgtables(cmd);
642 scsi_uninit_cmd(cmd);
643
644 if (shost->use_cmd_list) {
645 BUG_ON(list_empty(&cmd->list));
646 spin_lock_irqsave(&sdev->list_lock, flags);
647 list_del_init(&cmd->list);
648 spin_unlock_irqrestore(&sdev->list_lock, flags);
649 }
650 }
651
652 /*
653 * Function: scsi_release_buffers()
654 *
655 * Purpose: Free resources allocate for a scsi_command.
656 *
657 * Arguments: cmd - command that we are bailing.
658 *
659 * Lock status: Assumed that no lock is held upon entry.
660 *
661 * Returns: Nothing
662 *
663 * Notes: In the event that an upper level driver rejects a
664 * command, we must release resources allocated during
665 * the __init_io() function. Primarily this would involve
666 * the scatter-gather table.
667 */
scsi_release_buffers(struct scsi_cmnd * cmd)668 static void scsi_release_buffers(struct scsi_cmnd *cmd)
669 {
670 if (cmd->sdb.table.nents)
671 scsi_free_sgtable(&cmd->sdb, false);
672
673 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
674
675 if (scsi_prot_sg_count(cmd))
676 scsi_free_sgtable(cmd->prot_sdb, false);
677 }
678
scsi_release_bidi_buffers(struct scsi_cmnd * cmd)679 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
680 {
681 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
682
683 scsi_free_sgtable(bidi_sdb, false);
684 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
685 cmd->request->next_rq->special = NULL;
686 }
687
scsi_end_request(struct request * req,int error,unsigned int bytes,unsigned int bidi_bytes)688 static bool scsi_end_request(struct request *req, int error,
689 unsigned int bytes, unsigned int bidi_bytes)
690 {
691 struct scsi_cmnd *cmd = req->special;
692 struct scsi_device *sdev = cmd->device;
693 struct request_queue *q = sdev->request_queue;
694
695 if (blk_update_request(req, error, bytes))
696 return true;
697
698 /* Bidi request must be completed as a whole */
699 if (unlikely(bidi_bytes) &&
700 blk_update_request(req->next_rq, error, bidi_bytes))
701 return true;
702
703 if (blk_queue_add_random(q))
704 add_disk_randomness(req->rq_disk);
705
706 if (req->mq_ctx) {
707 /*
708 * In the MQ case the command gets freed by __blk_mq_end_request,
709 * so we have to do all cleanup that depends on it earlier.
710 *
711 * We also can't kick the queues from irq context, so we
712 * will have to defer it to a workqueue.
713 */
714 scsi_mq_uninit_cmd(cmd);
715
716 __blk_mq_end_request(req, error);
717
718 if (scsi_target(sdev)->single_lun ||
719 !list_empty(&sdev->host->starved_list))
720 kblockd_schedule_work(&sdev->requeue_work);
721 else
722 blk_mq_start_stopped_hw_queues(q, true);
723 } else {
724 unsigned long flags;
725
726 if (bidi_bytes)
727 scsi_release_bidi_buffers(cmd);
728
729 spin_lock_irqsave(q->queue_lock, flags);
730 blk_finish_request(req, error);
731 spin_unlock_irqrestore(q->queue_lock, flags);
732
733 scsi_release_buffers(cmd);
734
735 scsi_put_command(cmd);
736 scsi_run_queue(q);
737 }
738
739 put_device(&sdev->sdev_gendev);
740 return false;
741 }
742
743 /**
744 * __scsi_error_from_host_byte - translate SCSI error code into errno
745 * @cmd: SCSI command (unused)
746 * @result: scsi error code
747 *
748 * Translate SCSI error code into standard UNIX errno.
749 * Return values:
750 * -ENOLINK temporary transport failure
751 * -EREMOTEIO permanent target failure, do not retry
752 * -EBADE permanent nexus failure, retry on other path
753 * -ENOSPC No write space available
754 * -ENODATA Medium error
755 * -EIO unspecified I/O error
756 */
__scsi_error_from_host_byte(struct scsi_cmnd * cmd,int result)757 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
758 {
759 int error = 0;
760
761 switch(host_byte(result)) {
762 case DID_TRANSPORT_FAILFAST:
763 error = -ENOLINK;
764 break;
765 case DID_TARGET_FAILURE:
766 set_host_byte(cmd, DID_OK);
767 error = -EREMOTEIO;
768 break;
769 case DID_NEXUS_FAILURE:
770 set_host_byte(cmd, DID_OK);
771 error = -EBADE;
772 break;
773 case DID_ALLOC_FAILURE:
774 set_host_byte(cmd, DID_OK);
775 error = -ENOSPC;
776 break;
777 case DID_MEDIUM_ERROR:
778 set_host_byte(cmd, DID_OK);
779 error = -ENODATA;
780 break;
781 default:
782 error = -EIO;
783 break;
784 }
785
786 return error;
787 }
788
789 /*
790 * Function: scsi_io_completion()
791 *
792 * Purpose: Completion processing for block device I/O requests.
793 *
794 * Arguments: cmd - command that is finished.
795 *
796 * Lock status: Assumed that no lock is held upon entry.
797 *
798 * Returns: Nothing
799 *
800 * Notes: We will finish off the specified number of sectors. If we
801 * are done, the command block will be released and the queue
802 * function will be goosed. If we are not done then we have to
803 * figure out what to do next:
804 *
805 * a) We can call scsi_requeue_command(). The request
806 * will be unprepared and put back on the queue. Then
807 * a new command will be created for it. This should
808 * be used if we made forward progress, or if we want
809 * to switch from READ(10) to READ(6) for example.
810 *
811 * b) We can call __scsi_queue_insert(). The request will
812 * be put back on the queue and retried using the same
813 * command as before, possibly after a delay.
814 *
815 * c) We can call scsi_end_request() with -EIO to fail
816 * the remainder of the request.
817 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)818 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
819 {
820 int result = cmd->result;
821 struct request_queue *q = cmd->device->request_queue;
822 struct request *req = cmd->request;
823 int error = 0;
824 struct scsi_sense_hdr sshdr;
825 bool sense_valid = false;
826 int sense_deferred = 0, level = 0;
827 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
828 ACTION_DELAYED_RETRY} action;
829 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
830
831 if (result) {
832 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833 if (sense_valid)
834 sense_deferred = scsi_sense_is_deferred(&sshdr);
835 }
836
837 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
838 if (result) {
839 if (sense_valid && req->sense) {
840 /*
841 * SG_IO wants current and deferred errors
842 */
843 int len = 8 + cmd->sense_buffer[7];
844
845 if (len > SCSI_SENSE_BUFFERSIZE)
846 len = SCSI_SENSE_BUFFERSIZE;
847 memcpy(req->sense, cmd->sense_buffer, len);
848 req->sense_len = len;
849 }
850 if (!sense_deferred)
851 error = __scsi_error_from_host_byte(cmd, result);
852 }
853 /*
854 * __scsi_error_from_host_byte may have reset the host_byte
855 */
856 req->errors = cmd->result;
857
858 req->resid_len = scsi_get_resid(cmd);
859
860 if (scsi_bidi_cmnd(cmd)) {
861 /*
862 * Bidi commands Must be complete as a whole,
863 * both sides at once.
864 */
865 req->next_rq->resid_len = scsi_in(cmd)->resid;
866 if (scsi_end_request(req, 0, blk_rq_bytes(req),
867 blk_rq_bytes(req->next_rq)))
868 BUG();
869 return;
870 }
871 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
872 /*
873 * Certain non BLOCK_PC requests are commands that don't
874 * actually transfer anything (FLUSH), so cannot use
875 * good_bytes != blk_rq_bytes(req) as the signal for an error.
876 * This sets the error explicitly for the problem case.
877 */
878 error = __scsi_error_from_host_byte(cmd, result);
879 }
880
881 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
882 BUG_ON(blk_bidi_rq(req));
883
884 /*
885 * Next deal with any sectors which we were able to correctly
886 * handle.
887 */
888 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
889 "%u sectors total, %d bytes done.\n",
890 blk_rq_sectors(req), good_bytes));
891
892 /*
893 * Recovered errors need reporting, but they're always treated
894 * as success, so fiddle the result code here. For BLOCK_PC
895 * we already took a copy of the original into rq->errors which
896 * is what gets returned to the user
897 */
898 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
899 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
900 * print since caller wants ATA registers. Only occurs on
901 * SCSI ATA PASS_THROUGH commands when CK_COND=1
902 */
903 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904 ;
905 else if (!(req->cmd_flags & REQ_QUIET))
906 scsi_print_sense(cmd);
907 result = 0;
908 /* BLOCK_PC may have set error */
909 error = 0;
910 }
911
912 /*
913 * special case: failed zero length commands always need to
914 * drop down into the retry code. Otherwise, if we finished
915 * all bytes in the request we are done now.
916 */
917 if (!(blk_rq_bytes(req) == 0 && error) &&
918 !scsi_end_request(req, error, good_bytes, 0))
919 return;
920
921 /*
922 * Kill remainder if no retrys.
923 */
924 if (error && scsi_noretry_cmd(cmd)) {
925 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
926 BUG();
927 return;
928 }
929
930 /*
931 * If there had been no error, but we have leftover bytes in the
932 * requeues just queue the command up again.
933 */
934 if (result == 0)
935 goto requeue;
936
937 error = __scsi_error_from_host_byte(cmd, result);
938
939 if (host_byte(result) == DID_RESET) {
940 /* Third party bus reset or reset for error recovery
941 * reasons. Just retry the command and see what
942 * happens.
943 */
944 action = ACTION_RETRY;
945 } else if (sense_valid && !sense_deferred) {
946 switch (sshdr.sense_key) {
947 case UNIT_ATTENTION:
948 if (cmd->device->removable) {
949 /* Detected disc change. Set a bit
950 * and quietly refuse further access.
951 */
952 cmd->device->changed = 1;
953 action = ACTION_FAIL;
954 } else {
955 /* Must have been a power glitch, or a
956 * bus reset. Could not have been a
957 * media change, so we just retry the
958 * command and see what happens.
959 */
960 action = ACTION_RETRY;
961 }
962 break;
963 case ILLEGAL_REQUEST:
964 /* If we had an ILLEGAL REQUEST returned, then
965 * we may have performed an unsupported
966 * command. The only thing this should be
967 * would be a ten byte read where only a six
968 * byte read was supported. Also, on a system
969 * where READ CAPACITY failed, we may have
970 * read past the end of the disk.
971 */
972 if ((cmd->device->use_10_for_rw &&
973 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
974 (cmd->cmnd[0] == READ_10 ||
975 cmd->cmnd[0] == WRITE_10)) {
976 /* This will issue a new 6-byte command. */
977 cmd->device->use_10_for_rw = 0;
978 action = ACTION_REPREP;
979 } else if (sshdr.asc == 0x10) /* DIX */ {
980 action = ACTION_FAIL;
981 error = -EILSEQ;
982 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
983 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
984 action = ACTION_FAIL;
985 error = -EREMOTEIO;
986 } else
987 action = ACTION_FAIL;
988 break;
989 case ABORTED_COMMAND:
990 action = ACTION_FAIL;
991 if (sshdr.asc == 0x10) /* DIF */
992 error = -EILSEQ;
993 break;
994 case NOT_READY:
995 /* If the device is in the process of becoming
996 * ready, or has a temporary blockage, retry.
997 */
998 if (sshdr.asc == 0x04) {
999 switch (sshdr.ascq) {
1000 case 0x01: /* becoming ready */
1001 case 0x04: /* format in progress */
1002 case 0x05: /* rebuild in progress */
1003 case 0x06: /* recalculation in progress */
1004 case 0x07: /* operation in progress */
1005 case 0x08: /* Long write in progress */
1006 case 0x09: /* self test in progress */
1007 case 0x11: /* notify (enable spinup) required */
1008 case 0x14: /* space allocation in progress */
1009 action = ACTION_DELAYED_RETRY;
1010 break;
1011 default:
1012 action = ACTION_FAIL;
1013 break;
1014 }
1015 } else
1016 action = ACTION_FAIL;
1017 break;
1018 case VOLUME_OVERFLOW:
1019 /* See SSC3rXX or current. */
1020 action = ACTION_FAIL;
1021 break;
1022 default:
1023 action = ACTION_FAIL;
1024 break;
1025 }
1026 } else
1027 action = ACTION_FAIL;
1028
1029 if (action != ACTION_FAIL &&
1030 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1031 action = ACTION_FAIL;
1032
1033 switch (action) {
1034 case ACTION_FAIL:
1035 /* Give up and fail the remainder of the request */
1036 if (!(req->cmd_flags & REQ_QUIET)) {
1037 static DEFINE_RATELIMIT_STATE(_rs,
1038 DEFAULT_RATELIMIT_INTERVAL,
1039 DEFAULT_RATELIMIT_BURST);
1040
1041 if (unlikely(scsi_logging_level))
1042 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1043 SCSI_LOG_MLCOMPLETE_BITS);
1044
1045 /*
1046 * if logging is enabled the failure will be printed
1047 * in scsi_log_completion(), so avoid duplicate messages
1048 */
1049 if (!level && __ratelimit(&_rs)) {
1050 scsi_print_result(cmd, NULL, FAILED);
1051 if (driver_byte(result) & DRIVER_SENSE)
1052 scsi_print_sense(cmd);
1053 scsi_print_command(cmd);
1054 }
1055 }
1056 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1057 return;
1058 /*FALLTHRU*/
1059 case ACTION_REPREP:
1060 requeue:
1061 /* Unprep the request and put it back at the head of the queue.
1062 * A new command will be prepared and issued.
1063 */
1064 if (q->mq_ops) {
1065 cmd->request->cmd_flags &= ~REQ_DONTPREP;
1066 scsi_mq_uninit_cmd(cmd);
1067 scsi_mq_requeue_cmd(cmd);
1068 } else {
1069 scsi_release_buffers(cmd);
1070 scsi_requeue_command(q, cmd);
1071 }
1072 break;
1073 case ACTION_RETRY:
1074 /* Retry the same command immediately */
1075 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1076 break;
1077 case ACTION_DELAYED_RETRY:
1078 /* Retry the same command after a delay */
1079 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1080 break;
1081 }
1082 }
1083
scsi_init_sgtable(struct request * req,struct scsi_data_buffer * sdb)1084 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1085 {
1086 int count;
1087
1088 /*
1089 * If sg table allocation fails, requeue request later.
1090 */
1091 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1092 req->mq_ctx != NULL)))
1093 return BLKPREP_DEFER;
1094
1095 /*
1096 * Next, walk the list, and fill in the addresses and sizes of
1097 * each segment.
1098 */
1099 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1100 BUG_ON(count > sdb->table.nents);
1101 sdb->table.nents = count;
1102 sdb->length = blk_rq_bytes(req);
1103 return BLKPREP_OK;
1104 }
1105
1106 /*
1107 * Function: scsi_init_io()
1108 *
1109 * Purpose: SCSI I/O initialize function.
1110 *
1111 * Arguments: cmd - Command descriptor we wish to initialize
1112 *
1113 * Returns: 0 on success
1114 * BLKPREP_DEFER if the failure is retryable
1115 * BLKPREP_KILL if the failure is fatal
1116 */
scsi_init_io(struct scsi_cmnd * cmd)1117 int scsi_init_io(struct scsi_cmnd *cmd)
1118 {
1119 struct scsi_device *sdev = cmd->device;
1120 struct request *rq = cmd->request;
1121 bool is_mq = (rq->mq_ctx != NULL);
1122 int error = BLKPREP_KILL;
1123
1124 if (WARN_ON_ONCE(!rq->nr_phys_segments))
1125 goto err_exit;
1126
1127 error = scsi_init_sgtable(rq, &cmd->sdb);
1128 if (error)
1129 goto err_exit;
1130
1131 if (blk_bidi_rq(rq)) {
1132 if (!rq->q->mq_ops) {
1133 struct scsi_data_buffer *bidi_sdb =
1134 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1135 if (!bidi_sdb) {
1136 error = BLKPREP_DEFER;
1137 goto err_exit;
1138 }
1139
1140 rq->next_rq->special = bidi_sdb;
1141 }
1142
1143 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1144 if (error)
1145 goto err_exit;
1146 }
1147
1148 if (blk_integrity_rq(rq)) {
1149 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1150 int ivecs, count;
1151
1152 if (prot_sdb == NULL) {
1153 /*
1154 * This can happen if someone (e.g. multipath)
1155 * queues a command to a device on an adapter
1156 * that does not support DIX.
1157 */
1158 WARN_ON_ONCE(1);
1159 error = BLKPREP_KILL;
1160 goto err_exit;
1161 }
1162
1163 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1164
1165 if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1166 error = BLKPREP_DEFER;
1167 goto err_exit;
1168 }
1169
1170 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1171 prot_sdb->table.sgl);
1172 BUG_ON(unlikely(count > ivecs));
1173 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1174
1175 cmd->prot_sdb = prot_sdb;
1176 cmd->prot_sdb->table.nents = count;
1177 }
1178
1179 return BLKPREP_OK;
1180 err_exit:
1181 if (is_mq) {
1182 scsi_mq_free_sgtables(cmd);
1183 } else {
1184 scsi_release_buffers(cmd);
1185 cmd->request->special = NULL;
1186 scsi_put_command(cmd);
1187 put_device(&sdev->sdev_gendev);
1188 }
1189 return error;
1190 }
1191 EXPORT_SYMBOL(scsi_init_io);
1192
scsi_get_cmd_from_req(struct scsi_device * sdev,struct request * req)1193 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1194 struct request *req)
1195 {
1196 struct scsi_cmnd *cmd;
1197
1198 if (!req->special) {
1199 /* Bail if we can't get a reference to the device */
1200 if (!get_device(&sdev->sdev_gendev))
1201 return NULL;
1202
1203 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1204 if (unlikely(!cmd)) {
1205 put_device(&sdev->sdev_gendev);
1206 return NULL;
1207 }
1208 req->special = cmd;
1209 } else {
1210 cmd = req->special;
1211 }
1212
1213 /* pull a tag out of the request if we have one */
1214 cmd->tag = req->tag;
1215 cmd->request = req;
1216
1217 cmd->cmnd = req->cmd;
1218 cmd->prot_op = SCSI_PROT_NORMAL;
1219
1220 return cmd;
1221 }
1222
scsi_setup_blk_pc_cmnd(struct scsi_device * sdev,struct request * req)1223 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1224 {
1225 struct scsi_cmnd *cmd = req->special;
1226
1227 /*
1228 * BLOCK_PC requests may transfer data, in which case they must
1229 * a bio attached to them. Or they might contain a SCSI command
1230 * that does not transfer data, in which case they may optionally
1231 * submit a request without an attached bio.
1232 */
1233 if (req->bio) {
1234 int ret = scsi_init_io(cmd);
1235 if (unlikely(ret))
1236 return ret;
1237 } else {
1238 BUG_ON(blk_rq_bytes(req));
1239
1240 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1241 }
1242
1243 cmd->cmd_len = req->cmd_len;
1244 cmd->transfersize = blk_rq_bytes(req);
1245 cmd->allowed = req->retries;
1246 return BLKPREP_OK;
1247 }
1248
1249 /*
1250 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1251 * that still need to be translated to SCSI CDBs from the ULD.
1252 */
scsi_setup_fs_cmnd(struct scsi_device * sdev,struct request * req)1253 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1254 {
1255 struct scsi_cmnd *cmd = req->special;
1256
1257 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1258 int ret = sdev->handler->prep_fn(sdev, req);
1259 if (ret != BLKPREP_OK)
1260 return ret;
1261 }
1262
1263 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1264 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1265 }
1266
scsi_setup_cmnd(struct scsi_device * sdev,struct request * req)1267 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1268 {
1269 struct scsi_cmnd *cmd = req->special;
1270
1271 if (!blk_rq_bytes(req))
1272 cmd->sc_data_direction = DMA_NONE;
1273 else if (rq_data_dir(req) == WRITE)
1274 cmd->sc_data_direction = DMA_TO_DEVICE;
1275 else
1276 cmd->sc_data_direction = DMA_FROM_DEVICE;
1277
1278 switch (req->cmd_type) {
1279 case REQ_TYPE_FS:
1280 return scsi_setup_fs_cmnd(sdev, req);
1281 case REQ_TYPE_BLOCK_PC:
1282 return scsi_setup_blk_pc_cmnd(sdev, req);
1283 default:
1284 return BLKPREP_KILL;
1285 }
1286 }
1287
1288 static int
scsi_prep_state_check(struct scsi_device * sdev,struct request * req)1289 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1290 {
1291 int ret = BLKPREP_OK;
1292
1293 /*
1294 * If the device is not in running state we will reject some
1295 * or all commands.
1296 */
1297 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1298 switch (sdev->sdev_state) {
1299 case SDEV_OFFLINE:
1300 case SDEV_TRANSPORT_OFFLINE:
1301 /*
1302 * If the device is offline we refuse to process any
1303 * commands. The device must be brought online
1304 * before trying any recovery commands.
1305 */
1306 sdev_printk(KERN_ERR, sdev,
1307 "rejecting I/O to offline device\n");
1308 ret = BLKPREP_KILL;
1309 break;
1310 case SDEV_DEL:
1311 /*
1312 * If the device is fully deleted, we refuse to
1313 * process any commands as well.
1314 */
1315 sdev_printk(KERN_ERR, sdev,
1316 "rejecting I/O to dead device\n");
1317 ret = BLKPREP_KILL;
1318 break;
1319 case SDEV_BLOCK:
1320 case SDEV_CREATED_BLOCK:
1321 ret = BLKPREP_DEFER;
1322 break;
1323 case SDEV_QUIESCE:
1324 /*
1325 * If the devices is blocked we defer normal commands.
1326 */
1327 if (!(req->cmd_flags & REQ_PREEMPT))
1328 ret = BLKPREP_DEFER;
1329 break;
1330 default:
1331 /*
1332 * For any other not fully online state we only allow
1333 * special commands. In particular any user initiated
1334 * command is not allowed.
1335 */
1336 if (!(req->cmd_flags & REQ_PREEMPT))
1337 ret = BLKPREP_KILL;
1338 break;
1339 }
1340 }
1341 return ret;
1342 }
1343
1344 static int
scsi_prep_return(struct request_queue * q,struct request * req,int ret)1345 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1346 {
1347 struct scsi_device *sdev = q->queuedata;
1348
1349 switch (ret) {
1350 case BLKPREP_KILL:
1351 req->errors = DID_NO_CONNECT << 16;
1352 /* release the command and kill it */
1353 if (req->special) {
1354 struct scsi_cmnd *cmd = req->special;
1355 scsi_release_buffers(cmd);
1356 scsi_put_command(cmd);
1357 put_device(&sdev->sdev_gendev);
1358 req->special = NULL;
1359 }
1360 break;
1361 case BLKPREP_DEFER:
1362 /*
1363 * If we defer, the blk_peek_request() returns NULL, but the
1364 * queue must be restarted, so we schedule a callback to happen
1365 * shortly.
1366 */
1367 if (atomic_read(&sdev->device_busy) == 0)
1368 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1369 break;
1370 default:
1371 req->cmd_flags |= REQ_DONTPREP;
1372 }
1373
1374 return ret;
1375 }
1376
scsi_prep_fn(struct request_queue * q,struct request * req)1377 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1378 {
1379 struct scsi_device *sdev = q->queuedata;
1380 struct scsi_cmnd *cmd;
1381 int ret;
1382
1383 ret = scsi_prep_state_check(sdev, req);
1384 if (ret != BLKPREP_OK)
1385 goto out;
1386
1387 cmd = scsi_get_cmd_from_req(sdev, req);
1388 if (unlikely(!cmd)) {
1389 ret = BLKPREP_DEFER;
1390 goto out;
1391 }
1392
1393 ret = scsi_setup_cmnd(sdev, req);
1394 out:
1395 return scsi_prep_return(q, req, ret);
1396 }
1397
scsi_unprep_fn(struct request_queue * q,struct request * req)1398 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1399 {
1400 scsi_uninit_cmd(req->special);
1401 }
1402
1403 /*
1404 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1405 * return 0.
1406 *
1407 * Called with the queue_lock held.
1408 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1409 static inline int scsi_dev_queue_ready(struct request_queue *q,
1410 struct scsi_device *sdev)
1411 {
1412 unsigned int busy;
1413
1414 busy = atomic_inc_return(&sdev->device_busy) - 1;
1415 if (atomic_read(&sdev->device_blocked)) {
1416 if (busy)
1417 goto out_dec;
1418
1419 /*
1420 * unblock after device_blocked iterates to zero
1421 */
1422 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1423 /*
1424 * For the MQ case we take care of this in the caller.
1425 */
1426 if (!q->mq_ops)
1427 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1428 goto out_dec;
1429 }
1430 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1431 "unblocking device at zero depth\n"));
1432 }
1433
1434 if (busy >= sdev->queue_depth)
1435 goto out_dec;
1436
1437 return 1;
1438 out_dec:
1439 atomic_dec(&sdev->device_busy);
1440 return 0;
1441 }
1442
1443 /*
1444 * scsi_target_queue_ready: checks if there we can send commands to target
1445 * @sdev: scsi device on starget to check.
1446 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1447 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1448 struct scsi_device *sdev)
1449 {
1450 struct scsi_target *starget = scsi_target(sdev);
1451 unsigned int busy;
1452
1453 if (starget->single_lun) {
1454 spin_lock_irq(shost->host_lock);
1455 if (starget->starget_sdev_user &&
1456 starget->starget_sdev_user != sdev) {
1457 spin_unlock_irq(shost->host_lock);
1458 return 0;
1459 }
1460 starget->starget_sdev_user = sdev;
1461 spin_unlock_irq(shost->host_lock);
1462 }
1463
1464 if (starget->can_queue <= 0)
1465 return 1;
1466
1467 busy = atomic_inc_return(&starget->target_busy) - 1;
1468 if (atomic_read(&starget->target_blocked) > 0) {
1469 if (busy)
1470 goto starved;
1471
1472 /*
1473 * unblock after target_blocked iterates to zero
1474 */
1475 if (atomic_dec_return(&starget->target_blocked) > 0)
1476 goto out_dec;
1477
1478 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1479 "unblocking target at zero depth\n"));
1480 }
1481
1482 if (busy >= starget->can_queue)
1483 goto starved;
1484
1485 return 1;
1486
1487 starved:
1488 spin_lock_irq(shost->host_lock);
1489 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1490 spin_unlock_irq(shost->host_lock);
1491 out_dec:
1492 if (starget->can_queue > 0)
1493 atomic_dec(&starget->target_busy);
1494 return 0;
1495 }
1496
1497 /*
1498 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1499 * return 0. We must end up running the queue again whenever 0 is
1500 * returned, else IO can hang.
1501 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev)1502 static inline int scsi_host_queue_ready(struct request_queue *q,
1503 struct Scsi_Host *shost,
1504 struct scsi_device *sdev)
1505 {
1506 unsigned int busy;
1507
1508 if (scsi_host_in_recovery(shost))
1509 return 0;
1510
1511 busy = atomic_inc_return(&shost->host_busy) - 1;
1512 if (atomic_read(&shost->host_blocked) > 0) {
1513 if (busy)
1514 goto starved;
1515
1516 /*
1517 * unblock after host_blocked iterates to zero
1518 */
1519 if (atomic_dec_return(&shost->host_blocked) > 0)
1520 goto out_dec;
1521
1522 SCSI_LOG_MLQUEUE(3,
1523 shost_printk(KERN_INFO, shost,
1524 "unblocking host at zero depth\n"));
1525 }
1526
1527 if (shost->can_queue > 0 && busy >= shost->can_queue)
1528 goto starved;
1529 if (shost->host_self_blocked)
1530 goto starved;
1531
1532 /* We're OK to process the command, so we can't be starved */
1533 if (!list_empty(&sdev->starved_entry)) {
1534 spin_lock_irq(shost->host_lock);
1535 if (!list_empty(&sdev->starved_entry))
1536 list_del_init(&sdev->starved_entry);
1537 spin_unlock_irq(shost->host_lock);
1538 }
1539
1540 return 1;
1541
1542 starved:
1543 spin_lock_irq(shost->host_lock);
1544 if (list_empty(&sdev->starved_entry))
1545 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1546 spin_unlock_irq(shost->host_lock);
1547 out_dec:
1548 atomic_dec(&shost->host_busy);
1549 return 0;
1550 }
1551
1552 /*
1553 * Busy state exporting function for request stacking drivers.
1554 *
1555 * For efficiency, no lock is taken to check the busy state of
1556 * shost/starget/sdev, since the returned value is not guaranteed and
1557 * may be changed after request stacking drivers call the function,
1558 * regardless of taking lock or not.
1559 *
1560 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1561 * needs to return 'not busy'. Otherwise, request stacking drivers
1562 * may hold requests forever.
1563 */
scsi_lld_busy(struct request_queue * q)1564 static int scsi_lld_busy(struct request_queue *q)
1565 {
1566 struct scsi_device *sdev = q->queuedata;
1567 struct Scsi_Host *shost;
1568
1569 if (blk_queue_dying(q))
1570 return 0;
1571
1572 shost = sdev->host;
1573
1574 /*
1575 * Ignore host/starget busy state.
1576 * Since block layer does not have a concept of fairness across
1577 * multiple queues, congestion of host/starget needs to be handled
1578 * in SCSI layer.
1579 */
1580 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1581 return 1;
1582
1583 return 0;
1584 }
1585
1586 /*
1587 * Kill a request for a dead device
1588 */
scsi_kill_request(struct request * req,struct request_queue * q)1589 static void scsi_kill_request(struct request *req, struct request_queue *q)
1590 {
1591 struct scsi_cmnd *cmd = req->special;
1592 struct scsi_device *sdev;
1593 struct scsi_target *starget;
1594 struct Scsi_Host *shost;
1595
1596 blk_start_request(req);
1597
1598 scmd_printk(KERN_INFO, cmd, "killing request\n");
1599
1600 sdev = cmd->device;
1601 starget = scsi_target(sdev);
1602 shost = sdev->host;
1603 scsi_init_cmd_errh(cmd);
1604 cmd->result = DID_NO_CONNECT << 16;
1605 atomic_inc(&cmd->device->iorequest_cnt);
1606
1607 /*
1608 * SCSI request completion path will do scsi_device_unbusy(),
1609 * bump busy counts. To bump the counters, we need to dance
1610 * with the locks as normal issue path does.
1611 */
1612 atomic_inc(&sdev->device_busy);
1613 atomic_inc(&shost->host_busy);
1614 if (starget->can_queue > 0)
1615 atomic_inc(&starget->target_busy);
1616
1617 blk_complete_request(req);
1618 }
1619
scsi_softirq_done(struct request * rq)1620 static void scsi_softirq_done(struct request *rq)
1621 {
1622 struct scsi_cmnd *cmd = rq->special;
1623 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1624 int disposition;
1625
1626 INIT_LIST_HEAD(&cmd->eh_entry);
1627
1628 atomic_inc(&cmd->device->iodone_cnt);
1629 if (cmd->result)
1630 atomic_inc(&cmd->device->ioerr_cnt);
1631
1632 disposition = scsi_decide_disposition(cmd);
1633 if (disposition != SUCCESS &&
1634 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1635 sdev_printk(KERN_ERR, cmd->device,
1636 "timing out command, waited %lus\n",
1637 wait_for/HZ);
1638 disposition = SUCCESS;
1639 }
1640
1641 scsi_log_completion(cmd, disposition);
1642
1643 switch (disposition) {
1644 case SUCCESS:
1645 scsi_finish_command(cmd);
1646 break;
1647 case NEEDS_RETRY:
1648 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1649 break;
1650 case ADD_TO_MLQUEUE:
1651 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1652 break;
1653 default:
1654 if (!scsi_eh_scmd_add(cmd, 0))
1655 scsi_finish_command(cmd);
1656 }
1657 }
1658
1659 /**
1660 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1661 * @cmd: command block we are dispatching.
1662 *
1663 * Return: nonzero return request was rejected and device's queue needs to be
1664 * plugged.
1665 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1666 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1667 {
1668 struct Scsi_Host *host = cmd->device->host;
1669 int rtn = 0;
1670
1671 atomic_inc(&cmd->device->iorequest_cnt);
1672
1673 /* check if the device is still usable */
1674 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1675 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1676 * returns an immediate error upwards, and signals
1677 * that the device is no longer present */
1678 cmd->result = DID_NO_CONNECT << 16;
1679 goto done;
1680 }
1681
1682 /* Check to see if the scsi lld made this device blocked. */
1683 if (unlikely(scsi_device_blocked(cmd->device))) {
1684 /*
1685 * in blocked state, the command is just put back on
1686 * the device queue. The suspend state has already
1687 * blocked the queue so future requests should not
1688 * occur until the device transitions out of the
1689 * suspend state.
1690 */
1691 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1692 "queuecommand : device blocked\n"));
1693 return SCSI_MLQUEUE_DEVICE_BUSY;
1694 }
1695
1696 /* Store the LUN value in cmnd, if needed. */
1697 if (cmd->device->lun_in_cdb)
1698 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1699 (cmd->device->lun << 5 & 0xe0);
1700
1701 scsi_log_send(cmd);
1702
1703 /*
1704 * Before we queue this command, check if the command
1705 * length exceeds what the host adapter can handle.
1706 */
1707 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1708 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1709 "queuecommand : command too long. "
1710 "cdb_size=%d host->max_cmd_len=%d\n",
1711 cmd->cmd_len, cmd->device->host->max_cmd_len));
1712 cmd->result = (DID_ABORT << 16);
1713 goto done;
1714 }
1715
1716 if (unlikely(host->shost_state == SHOST_DEL)) {
1717 cmd->result = (DID_NO_CONNECT << 16);
1718 goto done;
1719
1720 }
1721
1722 trace_scsi_dispatch_cmd_start(cmd);
1723 rtn = host->hostt->queuecommand(host, cmd);
1724 if (rtn) {
1725 trace_scsi_dispatch_cmd_error(cmd, rtn);
1726 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1727 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1728 rtn = SCSI_MLQUEUE_HOST_BUSY;
1729
1730 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1731 "queuecommand : request rejected\n"));
1732 }
1733
1734 return rtn;
1735 done:
1736 cmd->scsi_done(cmd);
1737 return 0;
1738 }
1739
1740 /**
1741 * scsi_done - Invoke completion on finished SCSI command.
1742 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1743 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1744 *
1745 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1746 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1747 * calls blk_complete_request() for further processing.
1748 *
1749 * This function is interrupt context safe.
1750 */
scsi_done(struct scsi_cmnd * cmd)1751 static void scsi_done(struct scsi_cmnd *cmd)
1752 {
1753 trace_scsi_dispatch_cmd_done(cmd);
1754 blk_complete_request(cmd->request);
1755 }
1756
1757 /*
1758 * Function: scsi_request_fn()
1759 *
1760 * Purpose: Main strategy routine for SCSI.
1761 *
1762 * Arguments: q - Pointer to actual queue.
1763 *
1764 * Returns: Nothing
1765 *
1766 * Lock status: IO request lock assumed to be held when called.
1767 */
scsi_request_fn(struct request_queue * q)1768 static void scsi_request_fn(struct request_queue *q)
1769 __releases(q->queue_lock)
1770 __acquires(q->queue_lock)
1771 {
1772 struct scsi_device *sdev = q->queuedata;
1773 struct Scsi_Host *shost;
1774 struct scsi_cmnd *cmd;
1775 struct request *req;
1776
1777 /*
1778 * To start with, we keep looping until the queue is empty, or until
1779 * the host is no longer able to accept any more requests.
1780 */
1781 shost = sdev->host;
1782 for (;;) {
1783 int rtn;
1784 /*
1785 * get next queueable request. We do this early to make sure
1786 * that the request is fully prepared even if we cannot
1787 * accept it.
1788 */
1789 req = blk_peek_request(q);
1790 if (!req)
1791 break;
1792
1793 if (unlikely(!scsi_device_online(sdev))) {
1794 sdev_printk(KERN_ERR, sdev,
1795 "rejecting I/O to offline device\n");
1796 scsi_kill_request(req, q);
1797 continue;
1798 }
1799
1800 if (!scsi_dev_queue_ready(q, sdev))
1801 break;
1802
1803 /*
1804 * Remove the request from the request list.
1805 */
1806 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1807 blk_start_request(req);
1808
1809 spin_unlock_irq(q->queue_lock);
1810 cmd = req->special;
1811 if (unlikely(cmd == NULL)) {
1812 printk(KERN_CRIT "impossible request in %s.\n"
1813 "please mail a stack trace to "
1814 "linux-scsi@vger.kernel.org\n",
1815 __func__);
1816 blk_dump_rq_flags(req, "foo");
1817 BUG();
1818 }
1819
1820 /*
1821 * We hit this when the driver is using a host wide
1822 * tag map. For device level tag maps the queue_depth check
1823 * in the device ready fn would prevent us from trying
1824 * to allocate a tag. Since the map is a shared host resource
1825 * we add the dev to the starved list so it eventually gets
1826 * a run when a tag is freed.
1827 */
1828 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1829 spin_lock_irq(shost->host_lock);
1830 if (list_empty(&sdev->starved_entry))
1831 list_add_tail(&sdev->starved_entry,
1832 &shost->starved_list);
1833 spin_unlock_irq(shost->host_lock);
1834 goto not_ready;
1835 }
1836
1837 if (!scsi_target_queue_ready(shost, sdev))
1838 goto not_ready;
1839
1840 if (!scsi_host_queue_ready(q, shost, sdev))
1841 goto host_not_ready;
1842
1843 if (sdev->simple_tags)
1844 cmd->flags |= SCMD_TAGGED;
1845 else
1846 cmd->flags &= ~SCMD_TAGGED;
1847
1848 /*
1849 * Finally, initialize any error handling parameters, and set up
1850 * the timers for timeouts.
1851 */
1852 scsi_init_cmd_errh(cmd);
1853
1854 /*
1855 * Dispatch the command to the low-level driver.
1856 */
1857 cmd->scsi_done = scsi_done;
1858 rtn = scsi_dispatch_cmd(cmd);
1859 if (rtn) {
1860 scsi_queue_insert(cmd, rtn);
1861 spin_lock_irq(q->queue_lock);
1862 goto out_delay;
1863 }
1864 spin_lock_irq(q->queue_lock);
1865 }
1866
1867 return;
1868
1869 host_not_ready:
1870 if (scsi_target(sdev)->can_queue > 0)
1871 atomic_dec(&scsi_target(sdev)->target_busy);
1872 not_ready:
1873 /*
1874 * lock q, handle tag, requeue req, and decrement device_busy. We
1875 * must return with queue_lock held.
1876 *
1877 * Decrementing device_busy without checking it is OK, as all such
1878 * cases (host limits or settings) should run the queue at some
1879 * later time.
1880 */
1881 spin_lock_irq(q->queue_lock);
1882 blk_requeue_request(q, req);
1883 atomic_dec(&sdev->device_busy);
1884 out_delay:
1885 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1886 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1887 }
1888
prep_to_mq(int ret)1889 static inline int prep_to_mq(int ret)
1890 {
1891 switch (ret) {
1892 case BLKPREP_OK:
1893 return 0;
1894 case BLKPREP_DEFER:
1895 return BLK_MQ_RQ_QUEUE_BUSY;
1896 default:
1897 return BLK_MQ_RQ_QUEUE_ERROR;
1898 }
1899 }
1900
scsi_mq_prep_fn(struct request * req)1901 static int scsi_mq_prep_fn(struct request *req)
1902 {
1903 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1904 struct scsi_device *sdev = req->q->queuedata;
1905 struct Scsi_Host *shost = sdev->host;
1906 unsigned char *sense_buf = cmd->sense_buffer;
1907 struct scatterlist *sg;
1908
1909 memset(cmd, 0, sizeof(struct scsi_cmnd));
1910
1911 req->special = cmd;
1912
1913 cmd->request = req;
1914 cmd->device = sdev;
1915 cmd->sense_buffer = sense_buf;
1916
1917 cmd->tag = req->tag;
1918
1919 cmd->cmnd = req->cmd;
1920 cmd->prot_op = SCSI_PROT_NORMAL;
1921
1922 INIT_LIST_HEAD(&cmd->list);
1923 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1924 cmd->jiffies_at_alloc = jiffies;
1925
1926 if (shost->use_cmd_list) {
1927 spin_lock_irq(&sdev->list_lock);
1928 list_add_tail(&cmd->list, &sdev->cmd_list);
1929 spin_unlock_irq(&sdev->list_lock);
1930 }
1931
1932 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1933 cmd->sdb.table.sgl = sg;
1934
1935 if (scsi_host_get_prot(shost)) {
1936 cmd->prot_sdb = (void *)sg +
1937 min_t(unsigned int,
1938 shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1939 sizeof(struct scatterlist);
1940 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1941
1942 cmd->prot_sdb->table.sgl =
1943 (struct scatterlist *)(cmd->prot_sdb + 1);
1944 }
1945
1946 if (blk_bidi_rq(req)) {
1947 struct request *next_rq = req->next_rq;
1948 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1949
1950 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1951 bidi_sdb->table.sgl =
1952 (struct scatterlist *)(bidi_sdb + 1);
1953
1954 next_rq->special = bidi_sdb;
1955 }
1956
1957 blk_mq_start_request(req);
1958
1959 return scsi_setup_cmnd(sdev, req);
1960 }
1961
scsi_mq_done(struct scsi_cmnd * cmd)1962 static void scsi_mq_done(struct scsi_cmnd *cmd)
1963 {
1964 trace_scsi_dispatch_cmd_done(cmd);
1965 blk_mq_complete_request(cmd->request, cmd->request->errors);
1966 }
1967
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1968 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1969 const struct blk_mq_queue_data *bd)
1970 {
1971 struct request *req = bd->rq;
1972 struct request_queue *q = req->q;
1973 struct scsi_device *sdev = q->queuedata;
1974 struct Scsi_Host *shost = sdev->host;
1975 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1976 int ret;
1977 int reason;
1978
1979 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1980 if (ret)
1981 goto out;
1982
1983 ret = BLK_MQ_RQ_QUEUE_BUSY;
1984 if (!get_device(&sdev->sdev_gendev))
1985 goto out;
1986
1987 if (!scsi_dev_queue_ready(q, sdev))
1988 goto out_put_device;
1989 if (!scsi_target_queue_ready(shost, sdev))
1990 goto out_dec_device_busy;
1991 if (!scsi_host_queue_ready(q, shost, sdev))
1992 goto out_dec_target_busy;
1993
1994
1995 if (!(req->cmd_flags & REQ_DONTPREP)) {
1996 ret = prep_to_mq(scsi_mq_prep_fn(req));
1997 if (ret)
1998 goto out_dec_host_busy;
1999 req->cmd_flags |= REQ_DONTPREP;
2000 } else {
2001 blk_mq_start_request(req);
2002 }
2003
2004 if (sdev->simple_tags)
2005 cmd->flags |= SCMD_TAGGED;
2006 else
2007 cmd->flags &= ~SCMD_TAGGED;
2008
2009 scsi_init_cmd_errh(cmd);
2010 cmd->scsi_done = scsi_mq_done;
2011
2012 reason = scsi_dispatch_cmd(cmd);
2013 if (reason) {
2014 scsi_set_blocked(cmd, reason);
2015 ret = BLK_MQ_RQ_QUEUE_BUSY;
2016 goto out_dec_host_busy;
2017 }
2018
2019 return BLK_MQ_RQ_QUEUE_OK;
2020
2021 out_dec_host_busy:
2022 atomic_dec(&shost->host_busy);
2023 out_dec_target_busy:
2024 if (scsi_target(sdev)->can_queue > 0)
2025 atomic_dec(&scsi_target(sdev)->target_busy);
2026 out_dec_device_busy:
2027 atomic_dec(&sdev->device_busy);
2028 out_put_device:
2029 put_device(&sdev->sdev_gendev);
2030 out:
2031 switch (ret) {
2032 case BLK_MQ_RQ_QUEUE_BUSY:
2033 blk_mq_stop_hw_queue(hctx);
2034 if (atomic_read(&sdev->device_busy) == 0 &&
2035 !scsi_device_blocked(sdev))
2036 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2037 break;
2038 case BLK_MQ_RQ_QUEUE_ERROR:
2039 /*
2040 * Make sure to release all allocated ressources when
2041 * we hit an error, as we will never see this command
2042 * again.
2043 */
2044 if (req->cmd_flags & REQ_DONTPREP)
2045 scsi_mq_uninit_cmd(cmd);
2046 break;
2047 default:
2048 break;
2049 }
2050 return ret;
2051 }
2052
scsi_timeout(struct request * req,bool reserved)2053 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2054 bool reserved)
2055 {
2056 if (reserved)
2057 return BLK_EH_RESET_TIMER;
2058 return scsi_times_out(req);
2059 }
2060
scsi_init_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx,unsigned int numa_node)2061 static int scsi_init_request(void *data, struct request *rq,
2062 unsigned int hctx_idx, unsigned int request_idx,
2063 unsigned int numa_node)
2064 {
2065 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2066
2067 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2068 numa_node);
2069 if (!cmd->sense_buffer)
2070 return -ENOMEM;
2071 return 0;
2072 }
2073
scsi_exit_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx)2074 static void scsi_exit_request(void *data, struct request *rq,
2075 unsigned int hctx_idx, unsigned int request_idx)
2076 {
2077 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2078
2079 kfree(cmd->sense_buffer);
2080 }
2081
scsi_calculate_bounce_limit(struct Scsi_Host * shost)2082 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2083 {
2084 struct device *host_dev;
2085 u64 bounce_limit = 0xffffffff;
2086
2087 if (shost->unchecked_isa_dma)
2088 return BLK_BOUNCE_ISA;
2089 /*
2090 * Platforms with virtual-DMA translation
2091 * hardware have no practical limit.
2092 */
2093 if (!PCI_DMA_BUS_IS_PHYS)
2094 return BLK_BOUNCE_ANY;
2095
2096 host_dev = scsi_get_device(shost);
2097 if (host_dev && host_dev->dma_mask)
2098 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2099
2100 return bounce_limit;
2101 }
2102
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)2103 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2104 {
2105 struct device *dev = shost->dma_dev;
2106
2107 /*
2108 * this limit is imposed by hardware restrictions
2109 */
2110 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2111 SCSI_MAX_SG_CHAIN_SEGMENTS));
2112
2113 if (scsi_host_prot_dma(shost)) {
2114 shost->sg_prot_tablesize =
2115 min_not_zero(shost->sg_prot_tablesize,
2116 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2117 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2118 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2119 }
2120
2121 blk_queue_max_hw_sectors(q, shost->max_sectors);
2122 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2123 blk_queue_segment_boundary(q, shost->dma_boundary);
2124 dma_set_seg_boundary(dev, shost->dma_boundary);
2125
2126 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2127
2128 if (!shost->use_clustering)
2129 q->limits.cluster = 0;
2130
2131 /*
2132 * set a reasonable default alignment on word boundaries: the
2133 * host and device may alter it using
2134 * blk_queue_update_dma_alignment() later.
2135 */
2136 blk_queue_dma_alignment(q, 0x03);
2137 }
2138
__scsi_alloc_queue(struct Scsi_Host * shost,request_fn_proc * request_fn)2139 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2140 request_fn_proc *request_fn)
2141 {
2142 struct request_queue *q;
2143
2144 q = blk_init_queue(request_fn, NULL);
2145 if (!q)
2146 return NULL;
2147 __scsi_init_queue(shost, q);
2148 return q;
2149 }
2150 EXPORT_SYMBOL(__scsi_alloc_queue);
2151
scsi_alloc_queue(struct scsi_device * sdev)2152 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2153 {
2154 struct request_queue *q;
2155
2156 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2157 if (!q)
2158 return NULL;
2159
2160 blk_queue_prep_rq(q, scsi_prep_fn);
2161 blk_queue_unprep_rq(q, scsi_unprep_fn);
2162 blk_queue_softirq_done(q, scsi_softirq_done);
2163 blk_queue_rq_timed_out(q, scsi_times_out);
2164 blk_queue_lld_busy(q, scsi_lld_busy);
2165 return q;
2166 }
2167
2168 static struct blk_mq_ops scsi_mq_ops = {
2169 .map_queue = blk_mq_map_queue,
2170 .queue_rq = scsi_queue_rq,
2171 .complete = scsi_softirq_done,
2172 .timeout = scsi_timeout,
2173 .init_request = scsi_init_request,
2174 .exit_request = scsi_exit_request,
2175 };
2176
scsi_mq_alloc_queue(struct scsi_device * sdev)2177 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2178 {
2179 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2180 if (IS_ERR(sdev->request_queue))
2181 return NULL;
2182
2183 sdev->request_queue->queuedata = sdev;
2184 __scsi_init_queue(sdev->host, sdev->request_queue);
2185 return sdev->request_queue;
2186 }
2187
scsi_mq_setup_tags(struct Scsi_Host * shost)2188 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2189 {
2190 unsigned int cmd_size, sgl_size, tbl_size;
2191
2192 tbl_size = shost->sg_tablesize;
2193 if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2194 tbl_size = SCSI_MAX_SG_SEGMENTS;
2195 sgl_size = tbl_size * sizeof(struct scatterlist);
2196 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2197 if (scsi_host_get_prot(shost))
2198 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2199
2200 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2201 shost->tag_set.ops = &scsi_mq_ops;
2202 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2203 shost->tag_set.queue_depth = shost->can_queue;
2204 shost->tag_set.cmd_size = cmd_size;
2205 shost->tag_set.numa_node = NUMA_NO_NODE;
2206 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2207 shost->tag_set.flags |=
2208 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2209 shost->tag_set.driver_data = shost;
2210
2211 return blk_mq_alloc_tag_set(&shost->tag_set);
2212 }
2213
scsi_mq_destroy_tags(struct Scsi_Host * shost)2214 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2215 {
2216 blk_mq_free_tag_set(&shost->tag_set);
2217 }
2218
2219 /**
2220 * scsi_device_from_queue - return sdev associated with a request_queue
2221 * @q: The request queue to return the sdev from
2222 *
2223 * Return the sdev associated with a request queue or NULL if the
2224 * request_queue does not reference a SCSI device.
2225 */
scsi_device_from_queue(struct request_queue * q)2226 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2227 {
2228 struct scsi_device *sdev = NULL;
2229
2230 if (q->mq_ops) {
2231 if (q->mq_ops == &scsi_mq_ops)
2232 sdev = q->queuedata;
2233 } else if (q->request_fn == scsi_request_fn)
2234 sdev = q->queuedata;
2235 if (!sdev || !get_device(&sdev->sdev_gendev))
2236 sdev = NULL;
2237
2238 return sdev;
2239 }
2240 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2241
2242 /*
2243 * Function: scsi_block_requests()
2244 *
2245 * Purpose: Utility function used by low-level drivers to prevent further
2246 * commands from being queued to the device.
2247 *
2248 * Arguments: shost - Host in question
2249 *
2250 * Returns: Nothing
2251 *
2252 * Lock status: No locks are assumed held.
2253 *
2254 * Notes: There is no timer nor any other means by which the requests
2255 * get unblocked other than the low-level driver calling
2256 * scsi_unblock_requests().
2257 */
scsi_block_requests(struct Scsi_Host * shost)2258 void scsi_block_requests(struct Scsi_Host *shost)
2259 {
2260 shost->host_self_blocked = 1;
2261 }
2262 EXPORT_SYMBOL(scsi_block_requests);
2263
2264 /*
2265 * Function: scsi_unblock_requests()
2266 *
2267 * Purpose: Utility function used by low-level drivers to allow further
2268 * commands from being queued to the device.
2269 *
2270 * Arguments: shost - Host in question
2271 *
2272 * Returns: Nothing
2273 *
2274 * Lock status: No locks are assumed held.
2275 *
2276 * Notes: There is no timer nor any other means by which the requests
2277 * get unblocked other than the low-level driver calling
2278 * scsi_unblock_requests().
2279 *
2280 * This is done as an API function so that changes to the
2281 * internals of the scsi mid-layer won't require wholesale
2282 * changes to drivers that use this feature.
2283 */
scsi_unblock_requests(struct Scsi_Host * shost)2284 void scsi_unblock_requests(struct Scsi_Host *shost)
2285 {
2286 shost->host_self_blocked = 0;
2287 scsi_run_host_queues(shost);
2288 }
2289 EXPORT_SYMBOL(scsi_unblock_requests);
2290
scsi_init_queue(void)2291 int __init scsi_init_queue(void)
2292 {
2293 int i;
2294
2295 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2296 sizeof(struct scsi_data_buffer),
2297 0, 0, NULL);
2298 if (!scsi_sdb_cache) {
2299 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2300 return -ENOMEM;
2301 }
2302
2303 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2304 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2305 int size = sgp->size * sizeof(struct scatterlist);
2306
2307 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2308 SLAB_HWCACHE_ALIGN, NULL);
2309 if (!sgp->slab) {
2310 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2311 sgp->name);
2312 goto cleanup_sdb;
2313 }
2314
2315 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2316 sgp->slab);
2317 if (!sgp->pool) {
2318 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2319 sgp->name);
2320 goto cleanup_sdb;
2321 }
2322 }
2323
2324 return 0;
2325
2326 cleanup_sdb:
2327 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2328 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2329 if (sgp->pool)
2330 mempool_destroy(sgp->pool);
2331 if (sgp->slab)
2332 kmem_cache_destroy(sgp->slab);
2333 }
2334 kmem_cache_destroy(scsi_sdb_cache);
2335
2336 return -ENOMEM;
2337 }
2338
scsi_exit_queue(void)2339 void scsi_exit_queue(void)
2340 {
2341 int i;
2342
2343 kmem_cache_destroy(scsi_sdb_cache);
2344
2345 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2346 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2347 mempool_destroy(sgp->pool);
2348 kmem_cache_destroy(sgp->slab);
2349 }
2350 }
2351
2352 /**
2353 * scsi_mode_select - issue a mode select
2354 * @sdev: SCSI device to be queried
2355 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2356 * @sp: Save page bit (0 == don't save, 1 == save)
2357 * @modepage: mode page being requested
2358 * @buffer: request buffer (may not be smaller than eight bytes)
2359 * @len: length of request buffer.
2360 * @timeout: command timeout
2361 * @retries: number of retries before failing
2362 * @data: returns a structure abstracting the mode header data
2363 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2364 * must be SCSI_SENSE_BUFFERSIZE big.
2365 *
2366 * Returns zero if successful; negative error number or scsi
2367 * status on error
2368 *
2369 */
2370 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2371 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2372 unsigned char *buffer, int len, int timeout, int retries,
2373 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2374 {
2375 unsigned char cmd[10];
2376 unsigned char *real_buffer;
2377 int ret;
2378
2379 memset(cmd, 0, sizeof(cmd));
2380 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2381
2382 if (sdev->use_10_for_ms) {
2383 if (len > 65535)
2384 return -EINVAL;
2385 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2386 if (!real_buffer)
2387 return -ENOMEM;
2388 memcpy(real_buffer + 8, buffer, len);
2389 len += 8;
2390 real_buffer[0] = 0;
2391 real_buffer[1] = 0;
2392 real_buffer[2] = data->medium_type;
2393 real_buffer[3] = data->device_specific;
2394 real_buffer[4] = data->longlba ? 0x01 : 0;
2395 real_buffer[5] = 0;
2396 real_buffer[6] = data->block_descriptor_length >> 8;
2397 real_buffer[7] = data->block_descriptor_length;
2398
2399 cmd[0] = MODE_SELECT_10;
2400 cmd[7] = len >> 8;
2401 cmd[8] = len;
2402 } else {
2403 if (len > 255 || data->block_descriptor_length > 255 ||
2404 data->longlba)
2405 return -EINVAL;
2406
2407 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2408 if (!real_buffer)
2409 return -ENOMEM;
2410 memcpy(real_buffer + 4, buffer, len);
2411 len += 4;
2412 real_buffer[0] = 0;
2413 real_buffer[1] = data->medium_type;
2414 real_buffer[2] = data->device_specific;
2415 real_buffer[3] = data->block_descriptor_length;
2416
2417
2418 cmd[0] = MODE_SELECT;
2419 cmd[4] = len;
2420 }
2421
2422 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2423 sshdr, timeout, retries, NULL);
2424 kfree(real_buffer);
2425 return ret;
2426 }
2427 EXPORT_SYMBOL_GPL(scsi_mode_select);
2428
2429 /**
2430 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2431 * @sdev: SCSI device to be queried
2432 * @dbd: set if mode sense will allow block descriptors to be returned
2433 * @modepage: mode page being requested
2434 * @buffer: request buffer (may not be smaller than eight bytes)
2435 * @len: length of request buffer.
2436 * @timeout: command timeout
2437 * @retries: number of retries before failing
2438 * @data: returns a structure abstracting the mode header data
2439 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2440 * must be SCSI_SENSE_BUFFERSIZE big.
2441 *
2442 * Returns zero if unsuccessful, or the header offset (either 4
2443 * or 8 depending on whether a six or ten byte command was
2444 * issued) if successful.
2445 */
2446 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2447 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2448 unsigned char *buffer, int len, int timeout, int retries,
2449 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2450 {
2451 unsigned char cmd[12];
2452 int use_10_for_ms;
2453 int header_length;
2454 int result, retry_count = retries;
2455 struct scsi_sense_hdr my_sshdr;
2456
2457 memset(data, 0, sizeof(*data));
2458 memset(&cmd[0], 0, 12);
2459 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2460 cmd[2] = modepage;
2461
2462 /* caller might not be interested in sense, but we need it */
2463 if (!sshdr)
2464 sshdr = &my_sshdr;
2465
2466 retry:
2467 use_10_for_ms = sdev->use_10_for_ms;
2468
2469 if (use_10_for_ms) {
2470 if (len < 8)
2471 len = 8;
2472
2473 cmd[0] = MODE_SENSE_10;
2474 cmd[8] = len;
2475 header_length = 8;
2476 } else {
2477 if (len < 4)
2478 len = 4;
2479
2480 cmd[0] = MODE_SENSE;
2481 cmd[4] = len;
2482 header_length = 4;
2483 }
2484
2485 memset(buffer, 0, len);
2486
2487 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2488 sshdr, timeout, retries, NULL);
2489
2490 /* This code looks awful: what it's doing is making sure an
2491 * ILLEGAL REQUEST sense return identifies the actual command
2492 * byte as the problem. MODE_SENSE commands can return
2493 * ILLEGAL REQUEST if the code page isn't supported */
2494
2495 if (use_10_for_ms && !scsi_status_is_good(result) &&
2496 (driver_byte(result) & DRIVER_SENSE)) {
2497 if (scsi_sense_valid(sshdr)) {
2498 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2499 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2500 /*
2501 * Invalid command operation code
2502 */
2503 sdev->use_10_for_ms = 0;
2504 goto retry;
2505 }
2506 }
2507 }
2508
2509 if(scsi_status_is_good(result)) {
2510 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2511 (modepage == 6 || modepage == 8))) {
2512 /* Initio breakage? */
2513 header_length = 0;
2514 data->length = 13;
2515 data->medium_type = 0;
2516 data->device_specific = 0;
2517 data->longlba = 0;
2518 data->block_descriptor_length = 0;
2519 } else if(use_10_for_ms) {
2520 data->length = buffer[0]*256 + buffer[1] + 2;
2521 data->medium_type = buffer[2];
2522 data->device_specific = buffer[3];
2523 data->longlba = buffer[4] & 0x01;
2524 data->block_descriptor_length = buffer[6]*256
2525 + buffer[7];
2526 } else {
2527 data->length = buffer[0] + 1;
2528 data->medium_type = buffer[1];
2529 data->device_specific = buffer[2];
2530 data->block_descriptor_length = buffer[3];
2531 }
2532 data->header_length = header_length;
2533 } else if ((status_byte(result) == CHECK_CONDITION) &&
2534 scsi_sense_valid(sshdr) &&
2535 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2536 retry_count--;
2537 goto retry;
2538 }
2539
2540 return result;
2541 }
2542 EXPORT_SYMBOL(scsi_mode_sense);
2543
2544 /**
2545 * scsi_test_unit_ready - test if unit is ready
2546 * @sdev: scsi device to change the state of.
2547 * @timeout: command timeout
2548 * @retries: number of retries before failing
2549 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2550 * returning sense. Make sure that this is cleared before passing
2551 * in.
2552 *
2553 * Returns zero if unsuccessful or an error if TUR failed. For
2554 * removable media, UNIT_ATTENTION sets ->changed flag.
2555 **/
2556 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr_external)2557 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2558 struct scsi_sense_hdr *sshdr_external)
2559 {
2560 char cmd[] = {
2561 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2562 };
2563 struct scsi_sense_hdr *sshdr;
2564 int result;
2565
2566 if (!sshdr_external)
2567 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2568 else
2569 sshdr = sshdr_external;
2570
2571 /* try to eat the UNIT_ATTENTION if there are enough retries */
2572 do {
2573 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2574 timeout, retries, NULL);
2575 if (sdev->removable && scsi_sense_valid(sshdr) &&
2576 sshdr->sense_key == UNIT_ATTENTION)
2577 sdev->changed = 1;
2578 } while (scsi_sense_valid(sshdr) &&
2579 sshdr->sense_key == UNIT_ATTENTION && --retries);
2580
2581 if (!sshdr_external)
2582 kfree(sshdr);
2583 return result;
2584 }
2585 EXPORT_SYMBOL(scsi_test_unit_ready);
2586
2587 /**
2588 * scsi_device_set_state - Take the given device through the device state model.
2589 * @sdev: scsi device to change the state of.
2590 * @state: state to change to.
2591 *
2592 * Returns zero if unsuccessful or an error if the requested
2593 * transition is illegal.
2594 */
2595 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2596 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2597 {
2598 enum scsi_device_state oldstate = sdev->sdev_state;
2599
2600 if (state == oldstate)
2601 return 0;
2602
2603 switch (state) {
2604 case SDEV_CREATED:
2605 switch (oldstate) {
2606 case SDEV_CREATED_BLOCK:
2607 break;
2608 default:
2609 goto illegal;
2610 }
2611 break;
2612
2613 case SDEV_RUNNING:
2614 switch (oldstate) {
2615 case SDEV_CREATED:
2616 case SDEV_OFFLINE:
2617 case SDEV_TRANSPORT_OFFLINE:
2618 case SDEV_QUIESCE:
2619 case SDEV_BLOCK:
2620 break;
2621 default:
2622 goto illegal;
2623 }
2624 break;
2625
2626 case SDEV_QUIESCE:
2627 switch (oldstate) {
2628 case SDEV_RUNNING:
2629 case SDEV_OFFLINE:
2630 case SDEV_TRANSPORT_OFFLINE:
2631 break;
2632 default:
2633 goto illegal;
2634 }
2635 break;
2636
2637 case SDEV_OFFLINE:
2638 case SDEV_TRANSPORT_OFFLINE:
2639 switch (oldstate) {
2640 case SDEV_CREATED:
2641 case SDEV_RUNNING:
2642 case SDEV_QUIESCE:
2643 case SDEV_BLOCK:
2644 break;
2645 default:
2646 goto illegal;
2647 }
2648 break;
2649
2650 case SDEV_BLOCK:
2651 switch (oldstate) {
2652 case SDEV_RUNNING:
2653 case SDEV_CREATED_BLOCK:
2654 break;
2655 default:
2656 goto illegal;
2657 }
2658 break;
2659
2660 case SDEV_CREATED_BLOCK:
2661 switch (oldstate) {
2662 case SDEV_CREATED:
2663 break;
2664 default:
2665 goto illegal;
2666 }
2667 break;
2668
2669 case SDEV_CANCEL:
2670 switch (oldstate) {
2671 case SDEV_CREATED:
2672 case SDEV_RUNNING:
2673 case SDEV_QUIESCE:
2674 case SDEV_OFFLINE:
2675 case SDEV_TRANSPORT_OFFLINE:
2676 case SDEV_BLOCK:
2677 break;
2678 default:
2679 goto illegal;
2680 }
2681 break;
2682
2683 case SDEV_DEL:
2684 switch (oldstate) {
2685 case SDEV_CREATED:
2686 case SDEV_RUNNING:
2687 case SDEV_OFFLINE:
2688 case SDEV_TRANSPORT_OFFLINE:
2689 case SDEV_CANCEL:
2690 case SDEV_CREATED_BLOCK:
2691 break;
2692 default:
2693 goto illegal;
2694 }
2695 break;
2696
2697 }
2698 sdev->sdev_state = state;
2699 return 0;
2700
2701 illegal:
2702 SCSI_LOG_ERROR_RECOVERY(1,
2703 sdev_printk(KERN_ERR, sdev,
2704 "Illegal state transition %s->%s",
2705 scsi_device_state_name(oldstate),
2706 scsi_device_state_name(state))
2707 );
2708 return -EINVAL;
2709 }
2710 EXPORT_SYMBOL(scsi_device_set_state);
2711
2712 /**
2713 * sdev_evt_emit - emit a single SCSI device uevent
2714 * @sdev: associated SCSI device
2715 * @evt: event to emit
2716 *
2717 * Send a single uevent (scsi_event) to the associated scsi_device.
2718 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2719 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2720 {
2721 int idx = 0;
2722 char *envp[3];
2723
2724 switch (evt->evt_type) {
2725 case SDEV_EVT_MEDIA_CHANGE:
2726 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2727 break;
2728 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2729 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2730 break;
2731 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2732 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2733 break;
2734 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2735 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2736 break;
2737 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2738 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2739 break;
2740 case SDEV_EVT_LUN_CHANGE_REPORTED:
2741 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2742 break;
2743 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2744 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2745 break;
2746 default:
2747 /* do nothing */
2748 break;
2749 }
2750
2751 envp[idx++] = NULL;
2752
2753 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2754 }
2755
2756 /**
2757 * sdev_evt_thread - send a uevent for each scsi event
2758 * @work: work struct for scsi_device
2759 *
2760 * Dispatch queued events to their associated scsi_device kobjects
2761 * as uevents.
2762 */
scsi_evt_thread(struct work_struct * work)2763 void scsi_evt_thread(struct work_struct *work)
2764 {
2765 struct scsi_device *sdev;
2766 enum scsi_device_event evt_type;
2767 LIST_HEAD(event_list);
2768
2769 sdev = container_of(work, struct scsi_device, event_work);
2770
2771 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2772 if (test_and_clear_bit(evt_type, sdev->pending_events))
2773 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2774
2775 while (1) {
2776 struct scsi_event *evt;
2777 struct list_head *this, *tmp;
2778 unsigned long flags;
2779
2780 spin_lock_irqsave(&sdev->list_lock, flags);
2781 list_splice_init(&sdev->event_list, &event_list);
2782 spin_unlock_irqrestore(&sdev->list_lock, flags);
2783
2784 if (list_empty(&event_list))
2785 break;
2786
2787 list_for_each_safe(this, tmp, &event_list) {
2788 evt = list_entry(this, struct scsi_event, node);
2789 list_del(&evt->node);
2790 scsi_evt_emit(sdev, evt);
2791 kfree(evt);
2792 }
2793 }
2794 }
2795
2796 /**
2797 * sdev_evt_send - send asserted event to uevent thread
2798 * @sdev: scsi_device event occurred on
2799 * @evt: event to send
2800 *
2801 * Assert scsi device event asynchronously.
2802 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2803 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2804 {
2805 unsigned long flags;
2806
2807 #if 0
2808 /* FIXME: currently this check eliminates all media change events
2809 * for polled devices. Need to update to discriminate between AN
2810 * and polled events */
2811 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2812 kfree(evt);
2813 return;
2814 }
2815 #endif
2816
2817 spin_lock_irqsave(&sdev->list_lock, flags);
2818 list_add_tail(&evt->node, &sdev->event_list);
2819 schedule_work(&sdev->event_work);
2820 spin_unlock_irqrestore(&sdev->list_lock, flags);
2821 }
2822 EXPORT_SYMBOL_GPL(sdev_evt_send);
2823
2824 /**
2825 * sdev_evt_alloc - allocate a new scsi event
2826 * @evt_type: type of event to allocate
2827 * @gfpflags: GFP flags for allocation
2828 *
2829 * Allocates and returns a new scsi_event.
2830 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2831 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2832 gfp_t gfpflags)
2833 {
2834 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2835 if (!evt)
2836 return NULL;
2837
2838 evt->evt_type = evt_type;
2839 INIT_LIST_HEAD(&evt->node);
2840
2841 /* evt_type-specific initialization, if any */
2842 switch (evt_type) {
2843 case SDEV_EVT_MEDIA_CHANGE:
2844 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2845 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2846 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2847 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2848 case SDEV_EVT_LUN_CHANGE_REPORTED:
2849 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2850 default:
2851 /* do nothing */
2852 break;
2853 }
2854
2855 return evt;
2856 }
2857 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2858
2859 /**
2860 * sdev_evt_send_simple - send asserted event to uevent thread
2861 * @sdev: scsi_device event occurred on
2862 * @evt_type: type of event to send
2863 * @gfpflags: GFP flags for allocation
2864 *
2865 * Assert scsi device event asynchronously, given an event type.
2866 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2867 void sdev_evt_send_simple(struct scsi_device *sdev,
2868 enum scsi_device_event evt_type, gfp_t gfpflags)
2869 {
2870 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2871 if (!evt) {
2872 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2873 evt_type);
2874 return;
2875 }
2876
2877 sdev_evt_send(sdev, evt);
2878 }
2879 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2880
2881 /**
2882 * scsi_device_quiesce - Block user issued commands.
2883 * @sdev: scsi device to quiesce.
2884 *
2885 * This works by trying to transition to the SDEV_QUIESCE state
2886 * (which must be a legal transition). When the device is in this
2887 * state, only special requests will be accepted, all others will
2888 * be deferred. Since special requests may also be requeued requests,
2889 * a successful return doesn't guarantee the device will be
2890 * totally quiescent.
2891 *
2892 * Must be called with user context, may sleep.
2893 *
2894 * Returns zero if unsuccessful or an error if not.
2895 */
2896 int
scsi_device_quiesce(struct scsi_device * sdev)2897 scsi_device_quiesce(struct scsi_device *sdev)
2898 {
2899 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2900 if (err)
2901 return err;
2902
2903 scsi_run_queue(sdev->request_queue);
2904 while (atomic_read(&sdev->device_busy)) {
2905 msleep_interruptible(200);
2906 scsi_run_queue(sdev->request_queue);
2907 }
2908 return 0;
2909 }
2910 EXPORT_SYMBOL(scsi_device_quiesce);
2911
2912 /**
2913 * scsi_device_resume - Restart user issued commands to a quiesced device.
2914 * @sdev: scsi device to resume.
2915 *
2916 * Moves the device from quiesced back to running and restarts the
2917 * queues.
2918 *
2919 * Must be called with user context, may sleep.
2920 */
scsi_device_resume(struct scsi_device * sdev)2921 void scsi_device_resume(struct scsi_device *sdev)
2922 {
2923 /* check if the device state was mutated prior to resume, and if
2924 * so assume the state is being managed elsewhere (for example
2925 * device deleted during suspend)
2926 */
2927 if (sdev->sdev_state != SDEV_QUIESCE ||
2928 scsi_device_set_state(sdev, SDEV_RUNNING))
2929 return;
2930 scsi_run_queue(sdev->request_queue);
2931 }
2932 EXPORT_SYMBOL(scsi_device_resume);
2933
2934 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2935 device_quiesce_fn(struct scsi_device *sdev, void *data)
2936 {
2937 scsi_device_quiesce(sdev);
2938 }
2939
2940 void
scsi_target_quiesce(struct scsi_target * starget)2941 scsi_target_quiesce(struct scsi_target *starget)
2942 {
2943 starget_for_each_device(starget, NULL, device_quiesce_fn);
2944 }
2945 EXPORT_SYMBOL(scsi_target_quiesce);
2946
2947 static void
device_resume_fn(struct scsi_device * sdev,void * data)2948 device_resume_fn(struct scsi_device *sdev, void *data)
2949 {
2950 scsi_device_resume(sdev);
2951 }
2952
2953 void
scsi_target_resume(struct scsi_target * starget)2954 scsi_target_resume(struct scsi_target *starget)
2955 {
2956 starget_for_each_device(starget, NULL, device_resume_fn);
2957 }
2958 EXPORT_SYMBOL(scsi_target_resume);
2959
2960 /**
2961 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2962 * @sdev: device to block
2963 *
2964 * Block request made by scsi lld's to temporarily stop all
2965 * scsi commands on the specified device. Called from interrupt
2966 * or normal process context.
2967 *
2968 * Returns zero if successful or error if not
2969 *
2970 * Notes:
2971 * This routine transitions the device to the SDEV_BLOCK state
2972 * (which must be a legal transition). When the device is in this
2973 * state, all commands are deferred until the scsi lld reenables
2974 * the device with scsi_device_unblock or device_block_tmo fires.
2975 */
2976 int
scsi_internal_device_block(struct scsi_device * sdev)2977 scsi_internal_device_block(struct scsi_device *sdev)
2978 {
2979 struct request_queue *q = sdev->request_queue;
2980 unsigned long flags;
2981 int err = 0;
2982
2983 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2984 if (err) {
2985 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2986
2987 if (err)
2988 return err;
2989 }
2990
2991 /*
2992 * The device has transitioned to SDEV_BLOCK. Stop the
2993 * block layer from calling the midlayer with this device's
2994 * request queue.
2995 */
2996 if (q->mq_ops) {
2997 blk_mq_stop_hw_queues(q);
2998 } else {
2999 spin_lock_irqsave(q->queue_lock, flags);
3000 blk_stop_queue(q);
3001 spin_unlock_irqrestore(q->queue_lock, flags);
3002 }
3003
3004 return 0;
3005 }
3006 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
3007
3008 /**
3009 * scsi_internal_device_unblock - resume a device after a block request
3010 * @sdev: device to resume
3011 * @new_state: state to set devices to after unblocking
3012 *
3013 * Called by scsi lld's or the midlayer to restart the device queue
3014 * for the previously suspended scsi device. Called from interrupt or
3015 * normal process context.
3016 *
3017 * Returns zero if successful or error if not.
3018 *
3019 * Notes:
3020 * This routine transitions the device to the SDEV_RUNNING state
3021 * or to one of the offline states (which must be a legal transition)
3022 * allowing the midlayer to goose the queue for this device.
3023 */
3024 int
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)3025 scsi_internal_device_unblock(struct scsi_device *sdev,
3026 enum scsi_device_state new_state)
3027 {
3028 struct request_queue *q = sdev->request_queue;
3029 unsigned long flags;
3030
3031 /*
3032 * Try to transition the scsi device to SDEV_RUNNING or one of the
3033 * offlined states and goose the device queue if successful.
3034 */
3035 if ((sdev->sdev_state == SDEV_BLOCK) ||
3036 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3037 sdev->sdev_state = new_state;
3038 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3039 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3040 new_state == SDEV_OFFLINE)
3041 sdev->sdev_state = new_state;
3042 else
3043 sdev->sdev_state = SDEV_CREATED;
3044 } else if (sdev->sdev_state != SDEV_CANCEL &&
3045 sdev->sdev_state != SDEV_OFFLINE)
3046 return -EINVAL;
3047
3048 if (q->mq_ops) {
3049 blk_mq_start_stopped_hw_queues(q, false);
3050 } else {
3051 spin_lock_irqsave(q->queue_lock, flags);
3052 blk_start_queue(q);
3053 spin_unlock_irqrestore(q->queue_lock, flags);
3054 }
3055
3056 return 0;
3057 }
3058 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3059
3060 static void
device_block(struct scsi_device * sdev,void * data)3061 device_block(struct scsi_device *sdev, void *data)
3062 {
3063 scsi_internal_device_block(sdev);
3064 }
3065
3066 static int
target_block(struct device * dev,void * data)3067 target_block(struct device *dev, void *data)
3068 {
3069 if (scsi_is_target_device(dev))
3070 starget_for_each_device(to_scsi_target(dev), NULL,
3071 device_block);
3072 return 0;
3073 }
3074
3075 void
scsi_target_block(struct device * dev)3076 scsi_target_block(struct device *dev)
3077 {
3078 if (scsi_is_target_device(dev))
3079 starget_for_each_device(to_scsi_target(dev), NULL,
3080 device_block);
3081 else
3082 device_for_each_child(dev, NULL, target_block);
3083 }
3084 EXPORT_SYMBOL_GPL(scsi_target_block);
3085
3086 static void
device_unblock(struct scsi_device * sdev,void * data)3087 device_unblock(struct scsi_device *sdev, void *data)
3088 {
3089 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3090 }
3091
3092 static int
target_unblock(struct device * dev,void * data)3093 target_unblock(struct device *dev, void *data)
3094 {
3095 if (scsi_is_target_device(dev))
3096 starget_for_each_device(to_scsi_target(dev), data,
3097 device_unblock);
3098 return 0;
3099 }
3100
3101 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)3102 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3103 {
3104 if (scsi_is_target_device(dev))
3105 starget_for_each_device(to_scsi_target(dev), &new_state,
3106 device_unblock);
3107 else
3108 device_for_each_child(dev, &new_state, target_unblock);
3109 }
3110 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3111
3112 /**
3113 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3114 * @sgl: scatter-gather list
3115 * @sg_count: number of segments in sg
3116 * @offset: offset in bytes into sg, on return offset into the mapped area
3117 * @len: bytes to map, on return number of bytes mapped
3118 *
3119 * Returns virtual address of the start of the mapped page
3120 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3121 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3122 size_t *offset, size_t *len)
3123 {
3124 int i;
3125 size_t sg_len = 0, len_complete = 0;
3126 struct scatterlist *sg;
3127 struct page *page;
3128
3129 WARN_ON(!irqs_disabled());
3130
3131 for_each_sg(sgl, sg, sg_count, i) {
3132 len_complete = sg_len; /* Complete sg-entries */
3133 sg_len += sg->length;
3134 if (sg_len > *offset)
3135 break;
3136 }
3137
3138 if (unlikely(i == sg_count)) {
3139 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3140 "elements %d\n",
3141 __func__, sg_len, *offset, sg_count);
3142 WARN_ON(1);
3143 return NULL;
3144 }
3145
3146 /* Offset starting from the beginning of first page in this sg-entry */
3147 *offset = *offset - len_complete + sg->offset;
3148
3149 /* Assumption: contiguous pages can be accessed as "page + i" */
3150 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3151 *offset &= ~PAGE_MASK;
3152
3153 /* Bytes in this sg-entry from *offset to the end of the page */
3154 sg_len = PAGE_SIZE - *offset;
3155 if (*len > sg_len)
3156 *len = sg_len;
3157
3158 return kmap_atomic(page);
3159 }
3160 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3161
3162 /**
3163 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3164 * @virt: virtual address to be unmapped
3165 */
scsi_kunmap_atomic_sg(void * virt)3166 void scsi_kunmap_atomic_sg(void *virt)
3167 {
3168 kunmap_atomic(virt);
3169 }
3170 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3171
sdev_disable_disk_events(struct scsi_device * sdev)3172 void sdev_disable_disk_events(struct scsi_device *sdev)
3173 {
3174 atomic_inc(&sdev->disk_events_disable_depth);
3175 }
3176 EXPORT_SYMBOL(sdev_disable_disk_events);
3177
sdev_enable_disk_events(struct scsi_device * sdev)3178 void sdev_enable_disk_events(struct scsi_device *sdev)
3179 {
3180 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3181 return;
3182 atomic_dec(&sdev->disk_events_disable_depth);
3183 }
3184 EXPORT_SYMBOL(sdev_enable_disk_events);
3185