• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_priv.h"
39 #include "scsi_logging.h"
40 
41 
42 #define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
43 #define SG_MEMPOOL_SIZE		2
44 
45 struct scsi_host_sg_pool {
46 	size_t		size;
47 	char		*name;
48 	struct kmem_cache	*slab;
49 	mempool_t	*pool;
50 };
51 
52 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
53 #if (SCSI_MAX_SG_SEGMENTS < 32)
54 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
55 #endif
56 static struct scsi_host_sg_pool scsi_sg_pools[] = {
57 	SP(8),
58 	SP(16),
59 #if (SCSI_MAX_SG_SEGMENTS > 32)
60 	SP(32),
61 #if (SCSI_MAX_SG_SEGMENTS > 64)
62 	SP(64),
63 #if (SCSI_MAX_SG_SEGMENTS > 128)
64 	SP(128),
65 #if (SCSI_MAX_SG_SEGMENTS > 256)
66 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
67 #endif
68 #endif
69 #endif
70 #endif
71 	SP(SCSI_MAX_SG_SEGMENTS)
72 };
73 #undef SP
74 
75 struct kmem_cache *scsi_sdb_cache;
76 
77 /*
78  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79  * not change behaviour from the previous unplug mechanism, experimentation
80  * may prove this needs changing.
81  */
82 #define SCSI_QUEUE_DELAY	3
83 
84 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87 	struct Scsi_Host *host = cmd->device->host;
88 	struct scsi_device *device = cmd->device;
89 	struct scsi_target *starget = scsi_target(device);
90 
91 	/*
92 	 * Set the appropriate busy bit for the device/host.
93 	 *
94 	 * If the host/device isn't busy, assume that something actually
95 	 * completed, and that we should be able to queue a command now.
96 	 *
97 	 * Note that the prior mid-layer assumption that any host could
98 	 * always queue at least one command is now broken.  The mid-layer
99 	 * will implement a user specifiable stall (see
100 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 	 * if a command is requeued with no other commands outstanding
102 	 * either for the device or for the host.
103 	 */
104 	switch (reason) {
105 	case SCSI_MLQUEUE_HOST_BUSY:
106 		atomic_set(&host->host_blocked, host->max_host_blocked);
107 		break;
108 	case SCSI_MLQUEUE_DEVICE_BUSY:
109 	case SCSI_MLQUEUE_EH_RETRY:
110 		atomic_set(&device->device_blocked,
111 			   device->max_device_blocked);
112 		break;
113 	case SCSI_MLQUEUE_TARGET_BUSY:
114 		atomic_set(&starget->target_blocked,
115 			   starget->max_target_blocked);
116 		break;
117 	}
118 }
119 
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122 	struct scsi_device *sdev = cmd->device;
123 	struct request_queue *q = cmd->request->q;
124 
125 	blk_mq_requeue_request(cmd->request);
126 	blk_mq_kick_requeue_list(q);
127 	put_device(&sdev->sdev_gendev);
128 }
129 
130 /**
131  * __scsi_queue_insert - private queue insertion
132  * @cmd: The SCSI command being requeued
133  * @reason:  The reason for the requeue
134  * @unbusy: Whether the queue should be unbusied
135  *
136  * This is a private queue insertion.  The public interface
137  * scsi_queue_insert() always assumes the queue should be unbusied
138  * because it's always called before the completion.  This function is
139  * for a requeue after completion, which should only occur in this
140  * file.
141  */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,int unbusy)142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
143 {
144 	struct scsi_device *device = cmd->device;
145 	struct request_queue *q = device->request_queue;
146 	unsigned long flags;
147 
148 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149 		"Inserting command %p into mlqueue\n", cmd));
150 
151 	scsi_set_blocked(cmd, reason);
152 
153 	/*
154 	 * Decrement the counters, since these commands are no longer
155 	 * active on the host/device.
156 	 */
157 	if (unbusy)
158 		scsi_device_unbusy(device);
159 
160 	/*
161 	 * Requeue this command.  It will go before all other commands
162 	 * that are already in the queue. Schedule requeue work under
163 	 * lock such that the kblockd_schedule_work() call happens
164 	 * before blk_cleanup_queue() finishes.
165 	 */
166 	cmd->result = 0;
167 	if (q->mq_ops) {
168 		scsi_mq_requeue_cmd(cmd);
169 		return;
170 	}
171 	spin_lock_irqsave(q->queue_lock, flags);
172 	blk_requeue_request(q, cmd->request);
173 	kblockd_schedule_work(&device->requeue_work);
174 	spin_unlock_irqrestore(q->queue_lock, flags);
175 }
176 
177 /*
178  * Function:    scsi_queue_insert()
179  *
180  * Purpose:     Insert a command in the midlevel queue.
181  *
182  * Arguments:   cmd    - command that we are adding to queue.
183  *              reason - why we are inserting command to queue.
184  *
185  * Lock status: Assumed that lock is not held upon entry.
186  *
187  * Returns:     Nothing.
188  *
189  * Notes:       We do this for one of two cases.  Either the host is busy
190  *              and it cannot accept any more commands for the time being,
191  *              or the device returned QUEUE_FULL and can accept no more
192  *              commands.
193  * Notes:       This could be called either from an interrupt context or a
194  *              normal process context.
195  */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)196 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
197 {
198 	__scsi_queue_insert(cmd, reason, 1);
199 }
200 /**
201  * scsi_execute - insert request and wait for the result
202  * @sdev:	scsi device
203  * @cmd:	scsi command
204  * @data_direction: data direction
205  * @buffer:	data buffer
206  * @bufflen:	len of buffer
207  * @sense:	optional sense buffer
208  * @timeout:	request timeout in seconds
209  * @retries:	number of times to retry request
210  * @flags:	or into request flags;
211  * @resid:	optional residual length
212  *
213  * returns the req->errors value which is the scsi_cmnd result
214  * field.
215  */
scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,int timeout,int retries,u64 flags,int * resid)216 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
217 		 int data_direction, void *buffer, unsigned bufflen,
218 		 unsigned char *sense, int timeout, int retries, u64 flags,
219 		 int *resid)
220 {
221 	struct request *req;
222 	int write = (data_direction == DMA_TO_DEVICE);
223 	int ret = DRIVER_ERROR << 24;
224 
225 	req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
226 	if (IS_ERR(req))
227 		return ret;
228 	blk_rq_set_block_pc(req);
229 
230 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
231 					buffer, bufflen, __GFP_RECLAIM))
232 		goto out;
233 
234 	req->cmd_len = COMMAND_SIZE(cmd[0]);
235 	memcpy(req->cmd, cmd, req->cmd_len);
236 	req->sense = sense;
237 	req->sense_len = 0;
238 	req->retries = retries;
239 	req->timeout = timeout;
240 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
241 
242 	/*
243 	 * head injection *required* here otherwise quiesce won't work
244 	 */
245 	blk_execute_rq(req->q, NULL, req, 1);
246 
247 	/*
248 	 * Some devices (USB mass-storage in particular) may transfer
249 	 * garbage data together with a residue indicating that the data
250 	 * is invalid.  Prevent the garbage from being misinterpreted
251 	 * and prevent security leaks by zeroing out the excess data.
252 	 */
253 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
254 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
255 
256 	if (resid)
257 		*resid = req->resid_len;
258 	ret = req->errors;
259  out:
260 	blk_put_request(req);
261 
262 	return ret;
263 }
264 EXPORT_SYMBOL(scsi_execute);
265 
scsi_execute_req_flags(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,struct scsi_sense_hdr * sshdr,int timeout,int retries,int * resid,u64 flags)266 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
267 		     int data_direction, void *buffer, unsigned bufflen,
268 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
269 		     int *resid, u64 flags)
270 {
271 	char *sense = NULL;
272 	int result;
273 
274 	if (sshdr) {
275 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
276 		if (!sense)
277 			return DRIVER_ERROR << 24;
278 	}
279 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
280 			      sense, timeout, retries, flags, resid);
281 	if (sshdr)
282 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
283 
284 	kfree(sense);
285 	return result;
286 }
287 EXPORT_SYMBOL(scsi_execute_req_flags);
288 
289 /*
290  * Function:    scsi_init_cmd_errh()
291  *
292  * Purpose:     Initialize cmd fields related to error handling.
293  *
294  * Arguments:   cmd	- command that is ready to be queued.
295  *
296  * Notes:       This function has the job of initializing a number of
297  *              fields related to error handling.   Typically this will
298  *              be called once for each command, as required.
299  */
scsi_init_cmd_errh(struct scsi_cmnd * cmd)300 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
301 {
302 	cmd->serial_number = 0;
303 	scsi_set_resid(cmd, 0);
304 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
305 	if (cmd->cmd_len == 0)
306 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
307 }
308 
scsi_device_unbusy(struct scsi_device * sdev)309 void scsi_device_unbusy(struct scsi_device *sdev)
310 {
311 	struct Scsi_Host *shost = sdev->host;
312 	struct scsi_target *starget = scsi_target(sdev);
313 	unsigned long flags;
314 
315 	atomic_dec(&shost->host_busy);
316 	if (starget->can_queue > 0)
317 		atomic_dec(&starget->target_busy);
318 
319 	if (unlikely(scsi_host_in_recovery(shost) &&
320 		     (shost->host_failed || shost->host_eh_scheduled))) {
321 		spin_lock_irqsave(shost->host_lock, flags);
322 		scsi_eh_wakeup(shost);
323 		spin_unlock_irqrestore(shost->host_lock, flags);
324 	}
325 
326 	atomic_dec(&sdev->device_busy);
327 }
328 
scsi_kick_queue(struct request_queue * q)329 static void scsi_kick_queue(struct request_queue *q)
330 {
331 	if (q->mq_ops)
332 		blk_mq_start_hw_queues(q);
333 	else
334 		blk_run_queue(q);
335 }
336 
337 /*
338  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
339  * and call blk_run_queue for all the scsi_devices on the target -
340  * including current_sdev first.
341  *
342  * Called with *no* scsi locks held.
343  */
scsi_single_lun_run(struct scsi_device * current_sdev)344 static void scsi_single_lun_run(struct scsi_device *current_sdev)
345 {
346 	struct Scsi_Host *shost = current_sdev->host;
347 	struct scsi_device *sdev, *tmp;
348 	struct scsi_target *starget = scsi_target(current_sdev);
349 	unsigned long flags;
350 
351 	spin_lock_irqsave(shost->host_lock, flags);
352 	starget->starget_sdev_user = NULL;
353 	spin_unlock_irqrestore(shost->host_lock, flags);
354 
355 	/*
356 	 * Call blk_run_queue for all LUNs on the target, starting with
357 	 * current_sdev. We race with others (to set starget_sdev_user),
358 	 * but in most cases, we will be first. Ideally, each LU on the
359 	 * target would get some limited time or requests on the target.
360 	 */
361 	scsi_kick_queue(current_sdev->request_queue);
362 
363 	spin_lock_irqsave(shost->host_lock, flags);
364 	if (starget->starget_sdev_user)
365 		goto out;
366 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
367 			same_target_siblings) {
368 		if (sdev == current_sdev)
369 			continue;
370 		if (scsi_device_get(sdev))
371 			continue;
372 
373 		spin_unlock_irqrestore(shost->host_lock, flags);
374 		scsi_kick_queue(sdev->request_queue);
375 		spin_lock_irqsave(shost->host_lock, flags);
376 
377 		scsi_device_put(sdev);
378 	}
379  out:
380 	spin_unlock_irqrestore(shost->host_lock, flags);
381 }
382 
scsi_device_is_busy(struct scsi_device * sdev)383 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
384 {
385 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
386 		return true;
387 	if (atomic_read(&sdev->device_blocked) > 0)
388 		return true;
389 	return false;
390 }
391 
scsi_target_is_busy(struct scsi_target * starget)392 static inline bool scsi_target_is_busy(struct scsi_target *starget)
393 {
394 	if (starget->can_queue > 0) {
395 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
396 			return true;
397 		if (atomic_read(&starget->target_blocked) > 0)
398 			return true;
399 	}
400 	return false;
401 }
402 
scsi_host_is_busy(struct Scsi_Host * shost)403 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
404 {
405 	if (shost->can_queue > 0 &&
406 	    atomic_read(&shost->host_busy) >= shost->can_queue)
407 		return true;
408 	if (atomic_read(&shost->host_blocked) > 0)
409 		return true;
410 	if (shost->host_self_blocked)
411 		return true;
412 	return false;
413 }
414 
scsi_starved_list_run(struct Scsi_Host * shost)415 static void scsi_starved_list_run(struct Scsi_Host *shost)
416 {
417 	LIST_HEAD(starved_list);
418 	struct scsi_device *sdev;
419 	unsigned long flags;
420 
421 	spin_lock_irqsave(shost->host_lock, flags);
422 	list_splice_init(&shost->starved_list, &starved_list);
423 
424 	while (!list_empty(&starved_list)) {
425 		struct request_queue *slq;
426 
427 		/*
428 		 * As long as shost is accepting commands and we have
429 		 * starved queues, call blk_run_queue. scsi_request_fn
430 		 * drops the queue_lock and can add us back to the
431 		 * starved_list.
432 		 *
433 		 * host_lock protects the starved_list and starved_entry.
434 		 * scsi_request_fn must get the host_lock before checking
435 		 * or modifying starved_list or starved_entry.
436 		 */
437 		if (scsi_host_is_busy(shost))
438 			break;
439 
440 		sdev = list_entry(starved_list.next,
441 				  struct scsi_device, starved_entry);
442 		list_del_init(&sdev->starved_entry);
443 		if (scsi_target_is_busy(scsi_target(sdev))) {
444 			list_move_tail(&sdev->starved_entry,
445 				       &shost->starved_list);
446 			continue;
447 		}
448 
449 		/*
450 		 * Once we drop the host lock, a racing scsi_remove_device()
451 		 * call may remove the sdev from the starved list and destroy
452 		 * it and the queue.  Mitigate by taking a reference to the
453 		 * queue and never touching the sdev again after we drop the
454 		 * host lock.  Note: if __scsi_remove_device() invokes
455 		 * blk_cleanup_queue() before the queue is run from this
456 		 * function then blk_run_queue() will return immediately since
457 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
458 		 */
459 		slq = sdev->request_queue;
460 		if (!blk_get_queue(slq))
461 			continue;
462 		spin_unlock_irqrestore(shost->host_lock, flags);
463 
464 		scsi_kick_queue(slq);
465 		blk_put_queue(slq);
466 
467 		spin_lock_irqsave(shost->host_lock, flags);
468 	}
469 	/* put any unprocessed entries back */
470 	list_splice(&starved_list, &shost->starved_list);
471 	spin_unlock_irqrestore(shost->host_lock, flags);
472 }
473 
474 /*
475  * Function:   scsi_run_queue()
476  *
477  * Purpose:    Select a proper request queue to serve next
478  *
479  * Arguments:  q       - last request's queue
480  *
481  * Returns:     Nothing
482  *
483  * Notes:      The previous command was completely finished, start
484  *             a new one if possible.
485  */
scsi_run_queue(struct request_queue * q)486 static void scsi_run_queue(struct request_queue *q)
487 {
488 	struct scsi_device *sdev = q->queuedata;
489 
490 	if (scsi_target(sdev)->single_lun)
491 		scsi_single_lun_run(sdev);
492 	if (!list_empty(&sdev->host->starved_list))
493 		scsi_starved_list_run(sdev->host);
494 
495 	if (q->mq_ops)
496 		blk_mq_start_stopped_hw_queues(q, false);
497 	else
498 		blk_run_queue(q);
499 }
500 
scsi_requeue_run_queue(struct work_struct * work)501 void scsi_requeue_run_queue(struct work_struct *work)
502 {
503 	struct scsi_device *sdev;
504 	struct request_queue *q;
505 
506 	sdev = container_of(work, struct scsi_device, requeue_work);
507 	q = sdev->request_queue;
508 	scsi_run_queue(q);
509 }
510 
511 /*
512  * Function:	scsi_requeue_command()
513  *
514  * Purpose:	Handle post-processing of completed commands.
515  *
516  * Arguments:	q	- queue to operate on
517  *		cmd	- command that may need to be requeued.
518  *
519  * Returns:	Nothing
520  *
521  * Notes:	After command completion, there may be blocks left
522  *		over which weren't finished by the previous command
523  *		this can be for a number of reasons - the main one is
524  *		I/O errors in the middle of the request, in which case
525  *		we need to request the blocks that come after the bad
526  *		sector.
527  * Notes:	Upon return, cmd is a stale pointer.
528  */
scsi_requeue_command(struct request_queue * q,struct scsi_cmnd * cmd)529 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
530 {
531 	struct scsi_device *sdev = cmd->device;
532 	struct request *req = cmd->request;
533 	unsigned long flags;
534 
535 	spin_lock_irqsave(q->queue_lock, flags);
536 	blk_unprep_request(req);
537 	req->special = NULL;
538 	scsi_put_command(cmd);
539 	blk_requeue_request(q, req);
540 	spin_unlock_irqrestore(q->queue_lock, flags);
541 
542 	scsi_run_queue(q);
543 
544 	put_device(&sdev->sdev_gendev);
545 }
546 
scsi_run_host_queues(struct Scsi_Host * shost)547 void scsi_run_host_queues(struct Scsi_Host *shost)
548 {
549 	struct scsi_device *sdev;
550 
551 	shost_for_each_device(sdev, shost)
552 		scsi_run_queue(sdev->request_queue);
553 }
554 
scsi_sgtable_index(unsigned short nents)555 static inline unsigned int scsi_sgtable_index(unsigned short nents)
556 {
557 	unsigned int index;
558 
559 	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
560 
561 	if (nents <= 8)
562 		index = 0;
563 	else
564 		index = get_count_order(nents) - 3;
565 
566 	return index;
567 }
568 
scsi_sg_free(struct scatterlist * sgl,unsigned int nents)569 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
570 {
571 	struct scsi_host_sg_pool *sgp;
572 
573 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
574 	mempool_free(sgl, sgp->pool);
575 }
576 
scsi_sg_alloc(unsigned int nents,gfp_t gfp_mask)577 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
578 {
579 	struct scsi_host_sg_pool *sgp;
580 
581 	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
582 	return mempool_alloc(sgp->pool, gfp_mask);
583 }
584 
scsi_free_sgtable(struct scsi_data_buffer * sdb,bool mq)585 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
586 {
587 	if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
588 		return;
589 	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
590 }
591 
scsi_alloc_sgtable(struct scsi_data_buffer * sdb,int nents,bool mq)592 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
593 {
594 	struct scatterlist *first_chunk = NULL;
595 	int ret;
596 
597 	BUG_ON(!nents);
598 
599 	if (mq) {
600 		if (nents <= SCSI_MAX_SG_SEGMENTS) {
601 			sdb->table.nents = sdb->table.orig_nents = nents;
602 			sg_init_table(sdb->table.sgl, nents);
603 			return 0;
604 		}
605 		first_chunk = sdb->table.sgl;
606 	}
607 
608 	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
609 			       first_chunk, GFP_ATOMIC, scsi_sg_alloc);
610 	if (unlikely(ret))
611 		scsi_free_sgtable(sdb, mq);
612 	return ret;
613 }
614 
scsi_uninit_cmd(struct scsi_cmnd * cmd)615 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
616 {
617 	if (cmd->request->cmd_type == REQ_TYPE_FS) {
618 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
619 
620 		if (drv->uninit_command)
621 			drv->uninit_command(cmd);
622 	}
623 }
624 
scsi_mq_free_sgtables(struct scsi_cmnd * cmd)625 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
626 {
627 	if (cmd->sdb.table.nents)
628 		scsi_free_sgtable(&cmd->sdb, true);
629 	if (cmd->request->next_rq && cmd->request->next_rq->special)
630 		scsi_free_sgtable(cmd->request->next_rq->special, true);
631 	if (scsi_prot_sg_count(cmd))
632 		scsi_free_sgtable(cmd->prot_sdb, true);
633 }
634 
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)635 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
636 {
637 	struct scsi_device *sdev = cmd->device;
638 	struct Scsi_Host *shost = sdev->host;
639 	unsigned long flags;
640 
641 	scsi_mq_free_sgtables(cmd);
642 	scsi_uninit_cmd(cmd);
643 
644 	if (shost->use_cmd_list) {
645 		BUG_ON(list_empty(&cmd->list));
646 		spin_lock_irqsave(&sdev->list_lock, flags);
647 		list_del_init(&cmd->list);
648 		spin_unlock_irqrestore(&sdev->list_lock, flags);
649 	}
650 }
651 
652 /*
653  * Function:    scsi_release_buffers()
654  *
655  * Purpose:     Free resources allocate for a scsi_command.
656  *
657  * Arguments:   cmd	- command that we are bailing.
658  *
659  * Lock status: Assumed that no lock is held upon entry.
660  *
661  * Returns:     Nothing
662  *
663  * Notes:       In the event that an upper level driver rejects a
664  *		command, we must release resources allocated during
665  *		the __init_io() function.  Primarily this would involve
666  *		the scatter-gather table.
667  */
scsi_release_buffers(struct scsi_cmnd * cmd)668 static void scsi_release_buffers(struct scsi_cmnd *cmd)
669 {
670 	if (cmd->sdb.table.nents)
671 		scsi_free_sgtable(&cmd->sdb, false);
672 
673 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
674 
675 	if (scsi_prot_sg_count(cmd))
676 		scsi_free_sgtable(cmd->prot_sdb, false);
677 }
678 
scsi_release_bidi_buffers(struct scsi_cmnd * cmd)679 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
680 {
681 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
682 
683 	scsi_free_sgtable(bidi_sdb, false);
684 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
685 	cmd->request->next_rq->special = NULL;
686 }
687 
scsi_end_request(struct request * req,int error,unsigned int bytes,unsigned int bidi_bytes)688 static bool scsi_end_request(struct request *req, int error,
689 		unsigned int bytes, unsigned int bidi_bytes)
690 {
691 	struct scsi_cmnd *cmd = req->special;
692 	struct scsi_device *sdev = cmd->device;
693 	struct request_queue *q = sdev->request_queue;
694 
695 	if (blk_update_request(req, error, bytes))
696 		return true;
697 
698 	/* Bidi request must be completed as a whole */
699 	if (unlikely(bidi_bytes) &&
700 	    blk_update_request(req->next_rq, error, bidi_bytes))
701 		return true;
702 
703 	if (blk_queue_add_random(q))
704 		add_disk_randomness(req->rq_disk);
705 
706 	if (req->mq_ctx) {
707 		/*
708 		 * In the MQ case the command gets freed by __blk_mq_end_request,
709 		 * so we have to do all cleanup that depends on it earlier.
710 		 *
711 		 * We also can't kick the queues from irq context, so we
712 		 * will have to defer it to a workqueue.
713 		 */
714 		scsi_mq_uninit_cmd(cmd);
715 
716 		__blk_mq_end_request(req, error);
717 
718 		if (scsi_target(sdev)->single_lun ||
719 		    !list_empty(&sdev->host->starved_list))
720 			kblockd_schedule_work(&sdev->requeue_work);
721 		else
722 			blk_mq_start_stopped_hw_queues(q, true);
723 	} else {
724 		unsigned long flags;
725 
726 		if (bidi_bytes)
727 			scsi_release_bidi_buffers(cmd);
728 
729 		spin_lock_irqsave(q->queue_lock, flags);
730 		blk_finish_request(req, error);
731 		spin_unlock_irqrestore(q->queue_lock, flags);
732 
733 		scsi_release_buffers(cmd);
734 
735 		scsi_put_command(cmd);
736 		scsi_run_queue(q);
737 	}
738 
739 	put_device(&sdev->sdev_gendev);
740 	return false;
741 }
742 
743 /**
744  * __scsi_error_from_host_byte - translate SCSI error code into errno
745  * @cmd:	SCSI command (unused)
746  * @result:	scsi error code
747  *
748  * Translate SCSI error code into standard UNIX errno.
749  * Return values:
750  * -ENOLINK	temporary transport failure
751  * -EREMOTEIO	permanent target failure, do not retry
752  * -EBADE	permanent nexus failure, retry on other path
753  * -ENOSPC	No write space available
754  * -ENODATA	Medium error
755  * -EIO		unspecified I/O error
756  */
__scsi_error_from_host_byte(struct scsi_cmnd * cmd,int result)757 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
758 {
759 	int error = 0;
760 
761 	switch(host_byte(result)) {
762 	case DID_TRANSPORT_FAILFAST:
763 		error = -ENOLINK;
764 		break;
765 	case DID_TARGET_FAILURE:
766 		set_host_byte(cmd, DID_OK);
767 		error = -EREMOTEIO;
768 		break;
769 	case DID_NEXUS_FAILURE:
770 		set_host_byte(cmd, DID_OK);
771 		error = -EBADE;
772 		break;
773 	case DID_ALLOC_FAILURE:
774 		set_host_byte(cmd, DID_OK);
775 		error = -ENOSPC;
776 		break;
777 	case DID_MEDIUM_ERROR:
778 		set_host_byte(cmd, DID_OK);
779 		error = -ENODATA;
780 		break;
781 	default:
782 		error = -EIO;
783 		break;
784 	}
785 
786 	return error;
787 }
788 
789 /*
790  * Function:    scsi_io_completion()
791  *
792  * Purpose:     Completion processing for block device I/O requests.
793  *
794  * Arguments:   cmd   - command that is finished.
795  *
796  * Lock status: Assumed that no lock is held upon entry.
797  *
798  * Returns:     Nothing
799  *
800  * Notes:       We will finish off the specified number of sectors.  If we
801  *		are done, the command block will be released and the queue
802  *		function will be goosed.  If we are not done then we have to
803  *		figure out what to do next:
804  *
805  *		a) We can call scsi_requeue_command().  The request
806  *		   will be unprepared and put back on the queue.  Then
807  *		   a new command will be created for it.  This should
808  *		   be used if we made forward progress, or if we want
809  *		   to switch from READ(10) to READ(6) for example.
810  *
811  *		b) We can call __scsi_queue_insert().  The request will
812  *		   be put back on the queue and retried using the same
813  *		   command as before, possibly after a delay.
814  *
815  *		c) We can call scsi_end_request() with -EIO to fail
816  *		   the remainder of the request.
817  */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)818 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
819 {
820 	int result = cmd->result;
821 	struct request_queue *q = cmd->device->request_queue;
822 	struct request *req = cmd->request;
823 	int error = 0;
824 	struct scsi_sense_hdr sshdr;
825 	bool sense_valid = false;
826 	int sense_deferred = 0, level = 0;
827 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
828 	      ACTION_DELAYED_RETRY} action;
829 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
830 
831 	if (result) {
832 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833 		if (sense_valid)
834 			sense_deferred = scsi_sense_is_deferred(&sshdr);
835 	}
836 
837 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
838 		if (result) {
839 			if (sense_valid && req->sense) {
840 				/*
841 				 * SG_IO wants current and deferred errors
842 				 */
843 				int len = 8 + cmd->sense_buffer[7];
844 
845 				if (len > SCSI_SENSE_BUFFERSIZE)
846 					len = SCSI_SENSE_BUFFERSIZE;
847 				memcpy(req->sense, cmd->sense_buffer,  len);
848 				req->sense_len = len;
849 			}
850 			if (!sense_deferred)
851 				error = __scsi_error_from_host_byte(cmd, result);
852 		}
853 		/*
854 		 * __scsi_error_from_host_byte may have reset the host_byte
855 		 */
856 		req->errors = cmd->result;
857 
858 		req->resid_len = scsi_get_resid(cmd);
859 
860 		if (scsi_bidi_cmnd(cmd)) {
861 			/*
862 			 * Bidi commands Must be complete as a whole,
863 			 * both sides at once.
864 			 */
865 			req->next_rq->resid_len = scsi_in(cmd)->resid;
866 			if (scsi_end_request(req, 0, blk_rq_bytes(req),
867 					blk_rq_bytes(req->next_rq)))
868 				BUG();
869 			return;
870 		}
871 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
872 		/*
873 		 * Certain non BLOCK_PC requests are commands that don't
874 		 * actually transfer anything (FLUSH), so cannot use
875 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
876 		 * This sets the error explicitly for the problem case.
877 		 */
878 		error = __scsi_error_from_host_byte(cmd, result);
879 	}
880 
881 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
882 	BUG_ON(blk_bidi_rq(req));
883 
884 	/*
885 	 * Next deal with any sectors which we were able to correctly
886 	 * handle.
887 	 */
888 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
889 		"%u sectors total, %d bytes done.\n",
890 		blk_rq_sectors(req), good_bytes));
891 
892 	/*
893 	 * Recovered errors need reporting, but they're always treated
894 	 * as success, so fiddle the result code here.  For BLOCK_PC
895 	 * we already took a copy of the original into rq->errors which
896 	 * is what gets returned to the user
897 	 */
898 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
899 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
900 		 * print since caller wants ATA registers. Only occurs on
901 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
902 		 */
903 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904 			;
905 		else if (!(req->cmd_flags & REQ_QUIET))
906 			scsi_print_sense(cmd);
907 		result = 0;
908 		/* BLOCK_PC may have set error */
909 		error = 0;
910 	}
911 
912 	/*
913 	 * special case: failed zero length commands always need to
914 	 * drop down into the retry code. Otherwise, if we finished
915 	 * all bytes in the request we are done now.
916 	 */
917 	if (!(blk_rq_bytes(req) == 0 && error) &&
918 	    !scsi_end_request(req, error, good_bytes, 0))
919 		return;
920 
921 	/*
922 	 * Kill remainder if no retrys.
923 	 */
924 	if (error && scsi_noretry_cmd(cmd)) {
925 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
926 			BUG();
927 		return;
928 	}
929 
930 	/*
931 	 * If there had been no error, but we have leftover bytes in the
932 	 * requeues just queue the command up again.
933 	 */
934 	if (result == 0)
935 		goto requeue;
936 
937 	error = __scsi_error_from_host_byte(cmd, result);
938 
939 	if (host_byte(result) == DID_RESET) {
940 		/* Third party bus reset or reset for error recovery
941 		 * reasons.  Just retry the command and see what
942 		 * happens.
943 		 */
944 		action = ACTION_RETRY;
945 	} else if (sense_valid && !sense_deferred) {
946 		switch (sshdr.sense_key) {
947 		case UNIT_ATTENTION:
948 			if (cmd->device->removable) {
949 				/* Detected disc change.  Set a bit
950 				 * and quietly refuse further access.
951 				 */
952 				cmd->device->changed = 1;
953 				action = ACTION_FAIL;
954 			} else {
955 				/* Must have been a power glitch, or a
956 				 * bus reset.  Could not have been a
957 				 * media change, so we just retry the
958 				 * command and see what happens.
959 				 */
960 				action = ACTION_RETRY;
961 			}
962 			break;
963 		case ILLEGAL_REQUEST:
964 			/* If we had an ILLEGAL REQUEST returned, then
965 			 * we may have performed an unsupported
966 			 * command.  The only thing this should be
967 			 * would be a ten byte read where only a six
968 			 * byte read was supported.  Also, on a system
969 			 * where READ CAPACITY failed, we may have
970 			 * read past the end of the disk.
971 			 */
972 			if ((cmd->device->use_10_for_rw &&
973 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
974 			    (cmd->cmnd[0] == READ_10 ||
975 			     cmd->cmnd[0] == WRITE_10)) {
976 				/* This will issue a new 6-byte command. */
977 				cmd->device->use_10_for_rw = 0;
978 				action = ACTION_REPREP;
979 			} else if (sshdr.asc == 0x10) /* DIX */ {
980 				action = ACTION_FAIL;
981 				error = -EILSEQ;
982 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
983 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
984 				action = ACTION_FAIL;
985 				error = -EREMOTEIO;
986 			} else
987 				action = ACTION_FAIL;
988 			break;
989 		case ABORTED_COMMAND:
990 			action = ACTION_FAIL;
991 			if (sshdr.asc == 0x10) /* DIF */
992 				error = -EILSEQ;
993 			break;
994 		case NOT_READY:
995 			/* If the device is in the process of becoming
996 			 * ready, or has a temporary blockage, retry.
997 			 */
998 			if (sshdr.asc == 0x04) {
999 				switch (sshdr.ascq) {
1000 				case 0x01: /* becoming ready */
1001 				case 0x04: /* format in progress */
1002 				case 0x05: /* rebuild in progress */
1003 				case 0x06: /* recalculation in progress */
1004 				case 0x07: /* operation in progress */
1005 				case 0x08: /* Long write in progress */
1006 				case 0x09: /* self test in progress */
1007 				case 0x11: /* notify (enable spinup) required */
1008 				case 0x14: /* space allocation in progress */
1009 					action = ACTION_DELAYED_RETRY;
1010 					break;
1011 				default:
1012 					action = ACTION_FAIL;
1013 					break;
1014 				}
1015 			} else
1016 				action = ACTION_FAIL;
1017 			break;
1018 		case VOLUME_OVERFLOW:
1019 			/* See SSC3rXX or current. */
1020 			action = ACTION_FAIL;
1021 			break;
1022 		default:
1023 			action = ACTION_FAIL;
1024 			break;
1025 		}
1026 	} else
1027 		action = ACTION_FAIL;
1028 
1029 	if (action != ACTION_FAIL &&
1030 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1031 		action = ACTION_FAIL;
1032 
1033 	switch (action) {
1034 	case ACTION_FAIL:
1035 		/* Give up and fail the remainder of the request */
1036 		if (!(req->cmd_flags & REQ_QUIET)) {
1037 			static DEFINE_RATELIMIT_STATE(_rs,
1038 					DEFAULT_RATELIMIT_INTERVAL,
1039 					DEFAULT_RATELIMIT_BURST);
1040 
1041 			if (unlikely(scsi_logging_level))
1042 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1043 						       SCSI_LOG_MLCOMPLETE_BITS);
1044 
1045 			/*
1046 			 * if logging is enabled the failure will be printed
1047 			 * in scsi_log_completion(), so avoid duplicate messages
1048 			 */
1049 			if (!level && __ratelimit(&_rs)) {
1050 				scsi_print_result(cmd, NULL, FAILED);
1051 				if (driver_byte(result) & DRIVER_SENSE)
1052 					scsi_print_sense(cmd);
1053 				scsi_print_command(cmd);
1054 			}
1055 		}
1056 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1057 			return;
1058 		/*FALLTHRU*/
1059 	case ACTION_REPREP:
1060 	requeue:
1061 		/* Unprep the request and put it back at the head of the queue.
1062 		 * A new command will be prepared and issued.
1063 		 */
1064 		if (q->mq_ops) {
1065 			cmd->request->cmd_flags &= ~REQ_DONTPREP;
1066 			scsi_mq_uninit_cmd(cmd);
1067 			scsi_mq_requeue_cmd(cmd);
1068 		} else {
1069 			scsi_release_buffers(cmd);
1070 			scsi_requeue_command(q, cmd);
1071 		}
1072 		break;
1073 	case ACTION_RETRY:
1074 		/* Retry the same command immediately */
1075 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1076 		break;
1077 	case ACTION_DELAYED_RETRY:
1078 		/* Retry the same command after a delay */
1079 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1080 		break;
1081 	}
1082 }
1083 
scsi_init_sgtable(struct request * req,struct scsi_data_buffer * sdb)1084 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1085 {
1086 	int count;
1087 
1088 	/*
1089 	 * If sg table allocation fails, requeue request later.
1090 	 */
1091 	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1092 					req->mq_ctx != NULL)))
1093 		return BLKPREP_DEFER;
1094 
1095 	/*
1096 	 * Next, walk the list, and fill in the addresses and sizes of
1097 	 * each segment.
1098 	 */
1099 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1100 	BUG_ON(count > sdb->table.nents);
1101 	sdb->table.nents = count;
1102 	sdb->length = blk_rq_bytes(req);
1103 	return BLKPREP_OK;
1104 }
1105 
1106 /*
1107  * Function:    scsi_init_io()
1108  *
1109  * Purpose:     SCSI I/O initialize function.
1110  *
1111  * Arguments:   cmd   - Command descriptor we wish to initialize
1112  *
1113  * Returns:     0 on success
1114  *		BLKPREP_DEFER if the failure is retryable
1115  *		BLKPREP_KILL if the failure is fatal
1116  */
scsi_init_io(struct scsi_cmnd * cmd)1117 int scsi_init_io(struct scsi_cmnd *cmd)
1118 {
1119 	struct scsi_device *sdev = cmd->device;
1120 	struct request *rq = cmd->request;
1121 	bool is_mq = (rq->mq_ctx != NULL);
1122 	int error = BLKPREP_KILL;
1123 
1124 	if (WARN_ON_ONCE(!rq->nr_phys_segments))
1125 		goto err_exit;
1126 
1127 	error = scsi_init_sgtable(rq, &cmd->sdb);
1128 	if (error)
1129 		goto err_exit;
1130 
1131 	if (blk_bidi_rq(rq)) {
1132 		if (!rq->q->mq_ops) {
1133 			struct scsi_data_buffer *bidi_sdb =
1134 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1135 			if (!bidi_sdb) {
1136 				error = BLKPREP_DEFER;
1137 				goto err_exit;
1138 			}
1139 
1140 			rq->next_rq->special = bidi_sdb;
1141 		}
1142 
1143 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1144 		if (error)
1145 			goto err_exit;
1146 	}
1147 
1148 	if (blk_integrity_rq(rq)) {
1149 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1150 		int ivecs, count;
1151 
1152 		if (prot_sdb == NULL) {
1153 			/*
1154 			 * This can happen if someone (e.g. multipath)
1155 			 * queues a command to a device on an adapter
1156 			 * that does not support DIX.
1157 			 */
1158 			WARN_ON_ONCE(1);
1159 			error = BLKPREP_KILL;
1160 			goto err_exit;
1161 		}
1162 
1163 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1164 
1165 		if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1166 			error = BLKPREP_DEFER;
1167 			goto err_exit;
1168 		}
1169 
1170 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1171 						prot_sdb->table.sgl);
1172 		BUG_ON(unlikely(count > ivecs));
1173 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1174 
1175 		cmd->prot_sdb = prot_sdb;
1176 		cmd->prot_sdb->table.nents = count;
1177 	}
1178 
1179 	return BLKPREP_OK;
1180 err_exit:
1181 	if (is_mq) {
1182 		scsi_mq_free_sgtables(cmd);
1183 	} else {
1184 		scsi_release_buffers(cmd);
1185 		cmd->request->special = NULL;
1186 		scsi_put_command(cmd);
1187 		put_device(&sdev->sdev_gendev);
1188 	}
1189 	return error;
1190 }
1191 EXPORT_SYMBOL(scsi_init_io);
1192 
scsi_get_cmd_from_req(struct scsi_device * sdev,struct request * req)1193 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1194 		struct request *req)
1195 {
1196 	struct scsi_cmnd *cmd;
1197 
1198 	if (!req->special) {
1199 		/* Bail if we can't get a reference to the device */
1200 		if (!get_device(&sdev->sdev_gendev))
1201 			return NULL;
1202 
1203 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1204 		if (unlikely(!cmd)) {
1205 			put_device(&sdev->sdev_gendev);
1206 			return NULL;
1207 		}
1208 		req->special = cmd;
1209 	} else {
1210 		cmd = req->special;
1211 	}
1212 
1213 	/* pull a tag out of the request if we have one */
1214 	cmd->tag = req->tag;
1215 	cmd->request = req;
1216 
1217 	cmd->cmnd = req->cmd;
1218 	cmd->prot_op = SCSI_PROT_NORMAL;
1219 
1220 	return cmd;
1221 }
1222 
scsi_setup_blk_pc_cmnd(struct scsi_device * sdev,struct request * req)1223 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1224 {
1225 	struct scsi_cmnd *cmd = req->special;
1226 
1227 	/*
1228 	 * BLOCK_PC requests may transfer data, in which case they must
1229 	 * a bio attached to them.  Or they might contain a SCSI command
1230 	 * that does not transfer data, in which case they may optionally
1231 	 * submit a request without an attached bio.
1232 	 */
1233 	if (req->bio) {
1234 		int ret = scsi_init_io(cmd);
1235 		if (unlikely(ret))
1236 			return ret;
1237 	} else {
1238 		BUG_ON(blk_rq_bytes(req));
1239 
1240 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1241 	}
1242 
1243 	cmd->cmd_len = req->cmd_len;
1244 	cmd->transfersize = blk_rq_bytes(req);
1245 	cmd->allowed = req->retries;
1246 	return BLKPREP_OK;
1247 }
1248 
1249 /*
1250  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1251  * that still need to be translated to SCSI CDBs from the ULD.
1252  */
scsi_setup_fs_cmnd(struct scsi_device * sdev,struct request * req)1253 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1254 {
1255 	struct scsi_cmnd *cmd = req->special;
1256 
1257 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1258 		int ret = sdev->handler->prep_fn(sdev, req);
1259 		if (ret != BLKPREP_OK)
1260 			return ret;
1261 	}
1262 
1263 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1264 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1265 }
1266 
scsi_setup_cmnd(struct scsi_device * sdev,struct request * req)1267 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1268 {
1269 	struct scsi_cmnd *cmd = req->special;
1270 
1271 	if (!blk_rq_bytes(req))
1272 		cmd->sc_data_direction = DMA_NONE;
1273 	else if (rq_data_dir(req) == WRITE)
1274 		cmd->sc_data_direction = DMA_TO_DEVICE;
1275 	else
1276 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1277 
1278 	switch (req->cmd_type) {
1279 	case REQ_TYPE_FS:
1280 		return scsi_setup_fs_cmnd(sdev, req);
1281 	case REQ_TYPE_BLOCK_PC:
1282 		return scsi_setup_blk_pc_cmnd(sdev, req);
1283 	default:
1284 		return BLKPREP_KILL;
1285 	}
1286 }
1287 
1288 static int
scsi_prep_state_check(struct scsi_device * sdev,struct request * req)1289 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1290 {
1291 	int ret = BLKPREP_OK;
1292 
1293 	/*
1294 	 * If the device is not in running state we will reject some
1295 	 * or all commands.
1296 	 */
1297 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1298 		switch (sdev->sdev_state) {
1299 		case SDEV_OFFLINE:
1300 		case SDEV_TRANSPORT_OFFLINE:
1301 			/*
1302 			 * If the device is offline we refuse to process any
1303 			 * commands.  The device must be brought online
1304 			 * before trying any recovery commands.
1305 			 */
1306 			sdev_printk(KERN_ERR, sdev,
1307 				    "rejecting I/O to offline device\n");
1308 			ret = BLKPREP_KILL;
1309 			break;
1310 		case SDEV_DEL:
1311 			/*
1312 			 * If the device is fully deleted, we refuse to
1313 			 * process any commands as well.
1314 			 */
1315 			sdev_printk(KERN_ERR, sdev,
1316 				    "rejecting I/O to dead device\n");
1317 			ret = BLKPREP_KILL;
1318 			break;
1319 		case SDEV_BLOCK:
1320 		case SDEV_CREATED_BLOCK:
1321 			ret = BLKPREP_DEFER;
1322 			break;
1323 		case SDEV_QUIESCE:
1324 			/*
1325 			 * If the devices is blocked we defer normal commands.
1326 			 */
1327 			if (!(req->cmd_flags & REQ_PREEMPT))
1328 				ret = BLKPREP_DEFER;
1329 			break;
1330 		default:
1331 			/*
1332 			 * For any other not fully online state we only allow
1333 			 * special commands.  In particular any user initiated
1334 			 * command is not allowed.
1335 			 */
1336 			if (!(req->cmd_flags & REQ_PREEMPT))
1337 				ret = BLKPREP_KILL;
1338 			break;
1339 		}
1340 	}
1341 	return ret;
1342 }
1343 
1344 static int
scsi_prep_return(struct request_queue * q,struct request * req,int ret)1345 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1346 {
1347 	struct scsi_device *sdev = q->queuedata;
1348 
1349 	switch (ret) {
1350 	case BLKPREP_KILL:
1351 		req->errors = DID_NO_CONNECT << 16;
1352 		/* release the command and kill it */
1353 		if (req->special) {
1354 			struct scsi_cmnd *cmd = req->special;
1355 			scsi_release_buffers(cmd);
1356 			scsi_put_command(cmd);
1357 			put_device(&sdev->sdev_gendev);
1358 			req->special = NULL;
1359 		}
1360 		break;
1361 	case BLKPREP_DEFER:
1362 		/*
1363 		 * If we defer, the blk_peek_request() returns NULL, but the
1364 		 * queue must be restarted, so we schedule a callback to happen
1365 		 * shortly.
1366 		 */
1367 		if (atomic_read(&sdev->device_busy) == 0)
1368 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1369 		break;
1370 	default:
1371 		req->cmd_flags |= REQ_DONTPREP;
1372 	}
1373 
1374 	return ret;
1375 }
1376 
scsi_prep_fn(struct request_queue * q,struct request * req)1377 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1378 {
1379 	struct scsi_device *sdev = q->queuedata;
1380 	struct scsi_cmnd *cmd;
1381 	int ret;
1382 
1383 	ret = scsi_prep_state_check(sdev, req);
1384 	if (ret != BLKPREP_OK)
1385 		goto out;
1386 
1387 	cmd = scsi_get_cmd_from_req(sdev, req);
1388 	if (unlikely(!cmd)) {
1389 		ret = BLKPREP_DEFER;
1390 		goto out;
1391 	}
1392 
1393 	ret = scsi_setup_cmnd(sdev, req);
1394 out:
1395 	return scsi_prep_return(q, req, ret);
1396 }
1397 
scsi_unprep_fn(struct request_queue * q,struct request * req)1398 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1399 {
1400 	scsi_uninit_cmd(req->special);
1401 }
1402 
1403 /*
1404  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1405  * return 0.
1406  *
1407  * Called with the queue_lock held.
1408  */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1409 static inline int scsi_dev_queue_ready(struct request_queue *q,
1410 				  struct scsi_device *sdev)
1411 {
1412 	unsigned int busy;
1413 
1414 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1415 	if (atomic_read(&sdev->device_blocked)) {
1416 		if (busy)
1417 			goto out_dec;
1418 
1419 		/*
1420 		 * unblock after device_blocked iterates to zero
1421 		 */
1422 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1423 			/*
1424 			 * For the MQ case we take care of this in the caller.
1425 			 */
1426 			if (!q->mq_ops)
1427 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1428 			goto out_dec;
1429 		}
1430 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1431 				   "unblocking device at zero depth\n"));
1432 	}
1433 
1434 	if (busy >= sdev->queue_depth)
1435 		goto out_dec;
1436 
1437 	return 1;
1438 out_dec:
1439 	atomic_dec(&sdev->device_busy);
1440 	return 0;
1441 }
1442 
1443 /*
1444  * scsi_target_queue_ready: checks if there we can send commands to target
1445  * @sdev: scsi device on starget to check.
1446  */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1447 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1448 					   struct scsi_device *sdev)
1449 {
1450 	struct scsi_target *starget = scsi_target(sdev);
1451 	unsigned int busy;
1452 
1453 	if (starget->single_lun) {
1454 		spin_lock_irq(shost->host_lock);
1455 		if (starget->starget_sdev_user &&
1456 		    starget->starget_sdev_user != sdev) {
1457 			spin_unlock_irq(shost->host_lock);
1458 			return 0;
1459 		}
1460 		starget->starget_sdev_user = sdev;
1461 		spin_unlock_irq(shost->host_lock);
1462 	}
1463 
1464 	if (starget->can_queue <= 0)
1465 		return 1;
1466 
1467 	busy = atomic_inc_return(&starget->target_busy) - 1;
1468 	if (atomic_read(&starget->target_blocked) > 0) {
1469 		if (busy)
1470 			goto starved;
1471 
1472 		/*
1473 		 * unblock after target_blocked iterates to zero
1474 		 */
1475 		if (atomic_dec_return(&starget->target_blocked) > 0)
1476 			goto out_dec;
1477 
1478 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1479 				 "unblocking target at zero depth\n"));
1480 	}
1481 
1482 	if (busy >= starget->can_queue)
1483 		goto starved;
1484 
1485 	return 1;
1486 
1487 starved:
1488 	spin_lock_irq(shost->host_lock);
1489 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1490 	spin_unlock_irq(shost->host_lock);
1491 out_dec:
1492 	if (starget->can_queue > 0)
1493 		atomic_dec(&starget->target_busy);
1494 	return 0;
1495 }
1496 
1497 /*
1498  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1499  * return 0. We must end up running the queue again whenever 0 is
1500  * returned, else IO can hang.
1501  */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev)1502 static inline int scsi_host_queue_ready(struct request_queue *q,
1503 				   struct Scsi_Host *shost,
1504 				   struct scsi_device *sdev)
1505 {
1506 	unsigned int busy;
1507 
1508 	if (scsi_host_in_recovery(shost))
1509 		return 0;
1510 
1511 	busy = atomic_inc_return(&shost->host_busy) - 1;
1512 	if (atomic_read(&shost->host_blocked) > 0) {
1513 		if (busy)
1514 			goto starved;
1515 
1516 		/*
1517 		 * unblock after host_blocked iterates to zero
1518 		 */
1519 		if (atomic_dec_return(&shost->host_blocked) > 0)
1520 			goto out_dec;
1521 
1522 		SCSI_LOG_MLQUEUE(3,
1523 			shost_printk(KERN_INFO, shost,
1524 				     "unblocking host at zero depth\n"));
1525 	}
1526 
1527 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1528 		goto starved;
1529 	if (shost->host_self_blocked)
1530 		goto starved;
1531 
1532 	/* We're OK to process the command, so we can't be starved */
1533 	if (!list_empty(&sdev->starved_entry)) {
1534 		spin_lock_irq(shost->host_lock);
1535 		if (!list_empty(&sdev->starved_entry))
1536 			list_del_init(&sdev->starved_entry);
1537 		spin_unlock_irq(shost->host_lock);
1538 	}
1539 
1540 	return 1;
1541 
1542 starved:
1543 	spin_lock_irq(shost->host_lock);
1544 	if (list_empty(&sdev->starved_entry))
1545 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1546 	spin_unlock_irq(shost->host_lock);
1547 out_dec:
1548 	atomic_dec(&shost->host_busy);
1549 	return 0;
1550 }
1551 
1552 /*
1553  * Busy state exporting function for request stacking drivers.
1554  *
1555  * For efficiency, no lock is taken to check the busy state of
1556  * shost/starget/sdev, since the returned value is not guaranteed and
1557  * may be changed after request stacking drivers call the function,
1558  * regardless of taking lock or not.
1559  *
1560  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1561  * needs to return 'not busy'. Otherwise, request stacking drivers
1562  * may hold requests forever.
1563  */
scsi_lld_busy(struct request_queue * q)1564 static int scsi_lld_busy(struct request_queue *q)
1565 {
1566 	struct scsi_device *sdev = q->queuedata;
1567 	struct Scsi_Host *shost;
1568 
1569 	if (blk_queue_dying(q))
1570 		return 0;
1571 
1572 	shost = sdev->host;
1573 
1574 	/*
1575 	 * Ignore host/starget busy state.
1576 	 * Since block layer does not have a concept of fairness across
1577 	 * multiple queues, congestion of host/starget needs to be handled
1578 	 * in SCSI layer.
1579 	 */
1580 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1581 		return 1;
1582 
1583 	return 0;
1584 }
1585 
1586 /*
1587  * Kill a request for a dead device
1588  */
scsi_kill_request(struct request * req,struct request_queue * q)1589 static void scsi_kill_request(struct request *req, struct request_queue *q)
1590 {
1591 	struct scsi_cmnd *cmd = req->special;
1592 	struct scsi_device *sdev;
1593 	struct scsi_target *starget;
1594 	struct Scsi_Host *shost;
1595 
1596 	blk_start_request(req);
1597 
1598 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1599 
1600 	sdev = cmd->device;
1601 	starget = scsi_target(sdev);
1602 	shost = sdev->host;
1603 	scsi_init_cmd_errh(cmd);
1604 	cmd->result = DID_NO_CONNECT << 16;
1605 	atomic_inc(&cmd->device->iorequest_cnt);
1606 
1607 	/*
1608 	 * SCSI request completion path will do scsi_device_unbusy(),
1609 	 * bump busy counts.  To bump the counters, we need to dance
1610 	 * with the locks as normal issue path does.
1611 	 */
1612 	atomic_inc(&sdev->device_busy);
1613 	atomic_inc(&shost->host_busy);
1614 	if (starget->can_queue > 0)
1615 		atomic_inc(&starget->target_busy);
1616 
1617 	blk_complete_request(req);
1618 }
1619 
scsi_softirq_done(struct request * rq)1620 static void scsi_softirq_done(struct request *rq)
1621 {
1622 	struct scsi_cmnd *cmd = rq->special;
1623 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1624 	int disposition;
1625 
1626 	INIT_LIST_HEAD(&cmd->eh_entry);
1627 
1628 	atomic_inc(&cmd->device->iodone_cnt);
1629 	if (cmd->result)
1630 		atomic_inc(&cmd->device->ioerr_cnt);
1631 
1632 	disposition = scsi_decide_disposition(cmd);
1633 	if (disposition != SUCCESS &&
1634 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1635 		sdev_printk(KERN_ERR, cmd->device,
1636 			    "timing out command, waited %lus\n",
1637 			    wait_for/HZ);
1638 		disposition = SUCCESS;
1639 	}
1640 
1641 	scsi_log_completion(cmd, disposition);
1642 
1643 	switch (disposition) {
1644 		case SUCCESS:
1645 			scsi_finish_command(cmd);
1646 			break;
1647 		case NEEDS_RETRY:
1648 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1649 			break;
1650 		case ADD_TO_MLQUEUE:
1651 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1652 			break;
1653 		default:
1654 			if (!scsi_eh_scmd_add(cmd, 0))
1655 				scsi_finish_command(cmd);
1656 	}
1657 }
1658 
1659 /**
1660  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1661  * @cmd: command block we are dispatching.
1662  *
1663  * Return: nonzero return request was rejected and device's queue needs to be
1664  * plugged.
1665  */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1666 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1667 {
1668 	struct Scsi_Host *host = cmd->device->host;
1669 	int rtn = 0;
1670 
1671 	atomic_inc(&cmd->device->iorequest_cnt);
1672 
1673 	/* check if the device is still usable */
1674 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1675 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1676 		 * returns an immediate error upwards, and signals
1677 		 * that the device is no longer present */
1678 		cmd->result = DID_NO_CONNECT << 16;
1679 		goto done;
1680 	}
1681 
1682 	/* Check to see if the scsi lld made this device blocked. */
1683 	if (unlikely(scsi_device_blocked(cmd->device))) {
1684 		/*
1685 		 * in blocked state, the command is just put back on
1686 		 * the device queue.  The suspend state has already
1687 		 * blocked the queue so future requests should not
1688 		 * occur until the device transitions out of the
1689 		 * suspend state.
1690 		 */
1691 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1692 			"queuecommand : device blocked\n"));
1693 		return SCSI_MLQUEUE_DEVICE_BUSY;
1694 	}
1695 
1696 	/* Store the LUN value in cmnd, if needed. */
1697 	if (cmd->device->lun_in_cdb)
1698 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1699 			       (cmd->device->lun << 5 & 0xe0);
1700 
1701 	scsi_log_send(cmd);
1702 
1703 	/*
1704 	 * Before we queue this command, check if the command
1705 	 * length exceeds what the host adapter can handle.
1706 	 */
1707 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1708 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1709 			       "queuecommand : command too long. "
1710 			       "cdb_size=%d host->max_cmd_len=%d\n",
1711 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1712 		cmd->result = (DID_ABORT << 16);
1713 		goto done;
1714 	}
1715 
1716 	if (unlikely(host->shost_state == SHOST_DEL)) {
1717 		cmd->result = (DID_NO_CONNECT << 16);
1718 		goto done;
1719 
1720 	}
1721 
1722 	trace_scsi_dispatch_cmd_start(cmd);
1723 	rtn = host->hostt->queuecommand(host, cmd);
1724 	if (rtn) {
1725 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1726 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1727 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1728 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1729 
1730 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1731 			"queuecommand : request rejected\n"));
1732 	}
1733 
1734 	return rtn;
1735  done:
1736 	cmd->scsi_done(cmd);
1737 	return 0;
1738 }
1739 
1740 /**
1741  * scsi_done - Invoke completion on finished SCSI command.
1742  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1743  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1744  *
1745  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1746  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1747  * calls blk_complete_request() for further processing.
1748  *
1749  * This function is interrupt context safe.
1750  */
scsi_done(struct scsi_cmnd * cmd)1751 static void scsi_done(struct scsi_cmnd *cmd)
1752 {
1753 	trace_scsi_dispatch_cmd_done(cmd);
1754 	blk_complete_request(cmd->request);
1755 }
1756 
1757 /*
1758  * Function:    scsi_request_fn()
1759  *
1760  * Purpose:     Main strategy routine for SCSI.
1761  *
1762  * Arguments:   q       - Pointer to actual queue.
1763  *
1764  * Returns:     Nothing
1765  *
1766  * Lock status: IO request lock assumed to be held when called.
1767  */
scsi_request_fn(struct request_queue * q)1768 static void scsi_request_fn(struct request_queue *q)
1769 	__releases(q->queue_lock)
1770 	__acquires(q->queue_lock)
1771 {
1772 	struct scsi_device *sdev = q->queuedata;
1773 	struct Scsi_Host *shost;
1774 	struct scsi_cmnd *cmd;
1775 	struct request *req;
1776 
1777 	/*
1778 	 * To start with, we keep looping until the queue is empty, or until
1779 	 * the host is no longer able to accept any more requests.
1780 	 */
1781 	shost = sdev->host;
1782 	for (;;) {
1783 		int rtn;
1784 		/*
1785 		 * get next queueable request.  We do this early to make sure
1786 		 * that the request is fully prepared even if we cannot
1787 		 * accept it.
1788 		 */
1789 		req = blk_peek_request(q);
1790 		if (!req)
1791 			break;
1792 
1793 		if (unlikely(!scsi_device_online(sdev))) {
1794 			sdev_printk(KERN_ERR, sdev,
1795 				    "rejecting I/O to offline device\n");
1796 			scsi_kill_request(req, q);
1797 			continue;
1798 		}
1799 
1800 		if (!scsi_dev_queue_ready(q, sdev))
1801 			break;
1802 
1803 		/*
1804 		 * Remove the request from the request list.
1805 		 */
1806 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1807 			blk_start_request(req);
1808 
1809 		spin_unlock_irq(q->queue_lock);
1810 		cmd = req->special;
1811 		if (unlikely(cmd == NULL)) {
1812 			printk(KERN_CRIT "impossible request in %s.\n"
1813 					 "please mail a stack trace to "
1814 					 "linux-scsi@vger.kernel.org\n",
1815 					 __func__);
1816 			blk_dump_rq_flags(req, "foo");
1817 			BUG();
1818 		}
1819 
1820 		/*
1821 		 * We hit this when the driver is using a host wide
1822 		 * tag map. For device level tag maps the queue_depth check
1823 		 * in the device ready fn would prevent us from trying
1824 		 * to allocate a tag. Since the map is a shared host resource
1825 		 * we add the dev to the starved list so it eventually gets
1826 		 * a run when a tag is freed.
1827 		 */
1828 		if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1829 			spin_lock_irq(shost->host_lock);
1830 			if (list_empty(&sdev->starved_entry))
1831 				list_add_tail(&sdev->starved_entry,
1832 					      &shost->starved_list);
1833 			spin_unlock_irq(shost->host_lock);
1834 			goto not_ready;
1835 		}
1836 
1837 		if (!scsi_target_queue_ready(shost, sdev))
1838 			goto not_ready;
1839 
1840 		if (!scsi_host_queue_ready(q, shost, sdev))
1841 			goto host_not_ready;
1842 
1843 		if (sdev->simple_tags)
1844 			cmd->flags |= SCMD_TAGGED;
1845 		else
1846 			cmd->flags &= ~SCMD_TAGGED;
1847 
1848 		/*
1849 		 * Finally, initialize any error handling parameters, and set up
1850 		 * the timers for timeouts.
1851 		 */
1852 		scsi_init_cmd_errh(cmd);
1853 
1854 		/*
1855 		 * Dispatch the command to the low-level driver.
1856 		 */
1857 		cmd->scsi_done = scsi_done;
1858 		rtn = scsi_dispatch_cmd(cmd);
1859 		if (rtn) {
1860 			scsi_queue_insert(cmd, rtn);
1861 			spin_lock_irq(q->queue_lock);
1862 			goto out_delay;
1863 		}
1864 		spin_lock_irq(q->queue_lock);
1865 	}
1866 
1867 	return;
1868 
1869  host_not_ready:
1870 	if (scsi_target(sdev)->can_queue > 0)
1871 		atomic_dec(&scsi_target(sdev)->target_busy);
1872  not_ready:
1873 	/*
1874 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1875 	 * must return with queue_lock held.
1876 	 *
1877 	 * Decrementing device_busy without checking it is OK, as all such
1878 	 * cases (host limits or settings) should run the queue at some
1879 	 * later time.
1880 	 */
1881 	spin_lock_irq(q->queue_lock);
1882 	blk_requeue_request(q, req);
1883 	atomic_dec(&sdev->device_busy);
1884 out_delay:
1885 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1886 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1887 }
1888 
prep_to_mq(int ret)1889 static inline int prep_to_mq(int ret)
1890 {
1891 	switch (ret) {
1892 	case BLKPREP_OK:
1893 		return 0;
1894 	case BLKPREP_DEFER:
1895 		return BLK_MQ_RQ_QUEUE_BUSY;
1896 	default:
1897 		return BLK_MQ_RQ_QUEUE_ERROR;
1898 	}
1899 }
1900 
scsi_mq_prep_fn(struct request * req)1901 static int scsi_mq_prep_fn(struct request *req)
1902 {
1903 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1904 	struct scsi_device *sdev = req->q->queuedata;
1905 	struct Scsi_Host *shost = sdev->host;
1906 	unsigned char *sense_buf = cmd->sense_buffer;
1907 	struct scatterlist *sg;
1908 
1909 	memset(cmd, 0, sizeof(struct scsi_cmnd));
1910 
1911 	req->special = cmd;
1912 
1913 	cmd->request = req;
1914 	cmd->device = sdev;
1915 	cmd->sense_buffer = sense_buf;
1916 
1917 	cmd->tag = req->tag;
1918 
1919 	cmd->cmnd = req->cmd;
1920 	cmd->prot_op = SCSI_PROT_NORMAL;
1921 
1922 	INIT_LIST_HEAD(&cmd->list);
1923 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1924 	cmd->jiffies_at_alloc = jiffies;
1925 
1926 	if (shost->use_cmd_list) {
1927 		spin_lock_irq(&sdev->list_lock);
1928 		list_add_tail(&cmd->list, &sdev->cmd_list);
1929 		spin_unlock_irq(&sdev->list_lock);
1930 	}
1931 
1932 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1933 	cmd->sdb.table.sgl = sg;
1934 
1935 	if (scsi_host_get_prot(shost)) {
1936 		cmd->prot_sdb = (void *)sg +
1937 			min_t(unsigned int,
1938 			      shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1939 			sizeof(struct scatterlist);
1940 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1941 
1942 		cmd->prot_sdb->table.sgl =
1943 			(struct scatterlist *)(cmd->prot_sdb + 1);
1944 	}
1945 
1946 	if (blk_bidi_rq(req)) {
1947 		struct request *next_rq = req->next_rq;
1948 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1949 
1950 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1951 		bidi_sdb->table.sgl =
1952 			(struct scatterlist *)(bidi_sdb + 1);
1953 
1954 		next_rq->special = bidi_sdb;
1955 	}
1956 
1957 	blk_mq_start_request(req);
1958 
1959 	return scsi_setup_cmnd(sdev, req);
1960 }
1961 
scsi_mq_done(struct scsi_cmnd * cmd)1962 static void scsi_mq_done(struct scsi_cmnd *cmd)
1963 {
1964 	trace_scsi_dispatch_cmd_done(cmd);
1965 	blk_mq_complete_request(cmd->request, cmd->request->errors);
1966 }
1967 
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1968 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1969 			 const struct blk_mq_queue_data *bd)
1970 {
1971 	struct request *req = bd->rq;
1972 	struct request_queue *q = req->q;
1973 	struct scsi_device *sdev = q->queuedata;
1974 	struct Scsi_Host *shost = sdev->host;
1975 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1976 	int ret;
1977 	int reason;
1978 
1979 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1980 	if (ret)
1981 		goto out;
1982 
1983 	ret = BLK_MQ_RQ_QUEUE_BUSY;
1984 	if (!get_device(&sdev->sdev_gendev))
1985 		goto out;
1986 
1987 	if (!scsi_dev_queue_ready(q, sdev))
1988 		goto out_put_device;
1989 	if (!scsi_target_queue_ready(shost, sdev))
1990 		goto out_dec_device_busy;
1991 	if (!scsi_host_queue_ready(q, shost, sdev))
1992 		goto out_dec_target_busy;
1993 
1994 
1995 	if (!(req->cmd_flags & REQ_DONTPREP)) {
1996 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1997 		if (ret)
1998 			goto out_dec_host_busy;
1999 		req->cmd_flags |= REQ_DONTPREP;
2000 	} else {
2001 		blk_mq_start_request(req);
2002 	}
2003 
2004 	if (sdev->simple_tags)
2005 		cmd->flags |= SCMD_TAGGED;
2006 	else
2007 		cmd->flags &= ~SCMD_TAGGED;
2008 
2009 	scsi_init_cmd_errh(cmd);
2010 	cmd->scsi_done = scsi_mq_done;
2011 
2012 	reason = scsi_dispatch_cmd(cmd);
2013 	if (reason) {
2014 		scsi_set_blocked(cmd, reason);
2015 		ret = BLK_MQ_RQ_QUEUE_BUSY;
2016 		goto out_dec_host_busy;
2017 	}
2018 
2019 	return BLK_MQ_RQ_QUEUE_OK;
2020 
2021 out_dec_host_busy:
2022 	atomic_dec(&shost->host_busy);
2023 out_dec_target_busy:
2024 	if (scsi_target(sdev)->can_queue > 0)
2025 		atomic_dec(&scsi_target(sdev)->target_busy);
2026 out_dec_device_busy:
2027 	atomic_dec(&sdev->device_busy);
2028 out_put_device:
2029 	put_device(&sdev->sdev_gendev);
2030 out:
2031 	switch (ret) {
2032 	case BLK_MQ_RQ_QUEUE_BUSY:
2033 		blk_mq_stop_hw_queue(hctx);
2034 		if (atomic_read(&sdev->device_busy) == 0 &&
2035 		    !scsi_device_blocked(sdev))
2036 			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2037 		break;
2038 	case BLK_MQ_RQ_QUEUE_ERROR:
2039 		/*
2040 		 * Make sure to release all allocated ressources when
2041 		 * we hit an error, as we will never see this command
2042 		 * again.
2043 		 */
2044 		if (req->cmd_flags & REQ_DONTPREP)
2045 			scsi_mq_uninit_cmd(cmd);
2046 		break;
2047 	default:
2048 		break;
2049 	}
2050 	return ret;
2051 }
2052 
scsi_timeout(struct request * req,bool reserved)2053 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2054 		bool reserved)
2055 {
2056 	if (reserved)
2057 		return BLK_EH_RESET_TIMER;
2058 	return scsi_times_out(req);
2059 }
2060 
scsi_init_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx,unsigned int numa_node)2061 static int scsi_init_request(void *data, struct request *rq,
2062 		unsigned int hctx_idx, unsigned int request_idx,
2063 		unsigned int numa_node)
2064 {
2065 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2066 
2067 	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2068 			numa_node);
2069 	if (!cmd->sense_buffer)
2070 		return -ENOMEM;
2071 	return 0;
2072 }
2073 
scsi_exit_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx)2074 static void scsi_exit_request(void *data, struct request *rq,
2075 		unsigned int hctx_idx, unsigned int request_idx)
2076 {
2077 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2078 
2079 	kfree(cmd->sense_buffer);
2080 }
2081 
scsi_calculate_bounce_limit(struct Scsi_Host * shost)2082 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2083 {
2084 	struct device *host_dev;
2085 	u64 bounce_limit = 0xffffffff;
2086 
2087 	if (shost->unchecked_isa_dma)
2088 		return BLK_BOUNCE_ISA;
2089 	/*
2090 	 * Platforms with virtual-DMA translation
2091 	 * hardware have no practical limit.
2092 	 */
2093 	if (!PCI_DMA_BUS_IS_PHYS)
2094 		return BLK_BOUNCE_ANY;
2095 
2096 	host_dev = scsi_get_device(shost);
2097 	if (host_dev && host_dev->dma_mask)
2098 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2099 
2100 	return bounce_limit;
2101 }
2102 
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)2103 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2104 {
2105 	struct device *dev = shost->dma_dev;
2106 
2107 	/*
2108 	 * this limit is imposed by hardware restrictions
2109 	 */
2110 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2111 					SCSI_MAX_SG_CHAIN_SEGMENTS));
2112 
2113 	if (scsi_host_prot_dma(shost)) {
2114 		shost->sg_prot_tablesize =
2115 			min_not_zero(shost->sg_prot_tablesize,
2116 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2117 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2118 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2119 	}
2120 
2121 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2122 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2123 	blk_queue_segment_boundary(q, shost->dma_boundary);
2124 	dma_set_seg_boundary(dev, shost->dma_boundary);
2125 
2126 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2127 
2128 	if (!shost->use_clustering)
2129 		q->limits.cluster = 0;
2130 
2131 	/*
2132 	 * set a reasonable default alignment on word boundaries: the
2133 	 * host and device may alter it using
2134 	 * blk_queue_update_dma_alignment() later.
2135 	 */
2136 	blk_queue_dma_alignment(q, 0x03);
2137 }
2138 
__scsi_alloc_queue(struct Scsi_Host * shost,request_fn_proc * request_fn)2139 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2140 					 request_fn_proc *request_fn)
2141 {
2142 	struct request_queue *q;
2143 
2144 	q = blk_init_queue(request_fn, NULL);
2145 	if (!q)
2146 		return NULL;
2147 	__scsi_init_queue(shost, q);
2148 	return q;
2149 }
2150 EXPORT_SYMBOL(__scsi_alloc_queue);
2151 
scsi_alloc_queue(struct scsi_device * sdev)2152 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2153 {
2154 	struct request_queue *q;
2155 
2156 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2157 	if (!q)
2158 		return NULL;
2159 
2160 	blk_queue_prep_rq(q, scsi_prep_fn);
2161 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2162 	blk_queue_softirq_done(q, scsi_softirq_done);
2163 	blk_queue_rq_timed_out(q, scsi_times_out);
2164 	blk_queue_lld_busy(q, scsi_lld_busy);
2165 	return q;
2166 }
2167 
2168 static struct blk_mq_ops scsi_mq_ops = {
2169 	.map_queue	= blk_mq_map_queue,
2170 	.queue_rq	= scsi_queue_rq,
2171 	.complete	= scsi_softirq_done,
2172 	.timeout	= scsi_timeout,
2173 	.init_request	= scsi_init_request,
2174 	.exit_request	= scsi_exit_request,
2175 };
2176 
scsi_mq_alloc_queue(struct scsi_device * sdev)2177 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2178 {
2179 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2180 	if (IS_ERR(sdev->request_queue))
2181 		return NULL;
2182 
2183 	sdev->request_queue->queuedata = sdev;
2184 	__scsi_init_queue(sdev->host, sdev->request_queue);
2185 	return sdev->request_queue;
2186 }
2187 
scsi_mq_setup_tags(struct Scsi_Host * shost)2188 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2189 {
2190 	unsigned int cmd_size, sgl_size, tbl_size;
2191 
2192 	tbl_size = shost->sg_tablesize;
2193 	if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2194 		tbl_size = SCSI_MAX_SG_SEGMENTS;
2195 	sgl_size = tbl_size * sizeof(struct scatterlist);
2196 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2197 	if (scsi_host_get_prot(shost))
2198 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2199 
2200 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2201 	shost->tag_set.ops = &scsi_mq_ops;
2202 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2203 	shost->tag_set.queue_depth = shost->can_queue;
2204 	shost->tag_set.cmd_size = cmd_size;
2205 	shost->tag_set.numa_node = NUMA_NO_NODE;
2206 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2207 	shost->tag_set.flags |=
2208 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2209 	shost->tag_set.driver_data = shost;
2210 
2211 	return blk_mq_alloc_tag_set(&shost->tag_set);
2212 }
2213 
scsi_mq_destroy_tags(struct Scsi_Host * shost)2214 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2215 {
2216 	blk_mq_free_tag_set(&shost->tag_set);
2217 }
2218 
2219 /**
2220  * scsi_device_from_queue - return sdev associated with a request_queue
2221  * @q: The request queue to return the sdev from
2222  *
2223  * Return the sdev associated with a request queue or NULL if the
2224  * request_queue does not reference a SCSI device.
2225  */
scsi_device_from_queue(struct request_queue * q)2226 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2227 {
2228 	struct scsi_device *sdev = NULL;
2229 
2230 	if (q->mq_ops) {
2231 		if (q->mq_ops == &scsi_mq_ops)
2232 			sdev = q->queuedata;
2233 	} else if (q->request_fn == scsi_request_fn)
2234 		sdev = q->queuedata;
2235 	if (!sdev || !get_device(&sdev->sdev_gendev))
2236 		sdev = NULL;
2237 
2238 	return sdev;
2239 }
2240 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2241 
2242 /*
2243  * Function:    scsi_block_requests()
2244  *
2245  * Purpose:     Utility function used by low-level drivers to prevent further
2246  *		commands from being queued to the device.
2247  *
2248  * Arguments:   shost       - Host in question
2249  *
2250  * Returns:     Nothing
2251  *
2252  * Lock status: No locks are assumed held.
2253  *
2254  * Notes:       There is no timer nor any other means by which the requests
2255  *		get unblocked other than the low-level driver calling
2256  *		scsi_unblock_requests().
2257  */
scsi_block_requests(struct Scsi_Host * shost)2258 void scsi_block_requests(struct Scsi_Host *shost)
2259 {
2260 	shost->host_self_blocked = 1;
2261 }
2262 EXPORT_SYMBOL(scsi_block_requests);
2263 
2264 /*
2265  * Function:    scsi_unblock_requests()
2266  *
2267  * Purpose:     Utility function used by low-level drivers to allow further
2268  *		commands from being queued to the device.
2269  *
2270  * Arguments:   shost       - Host in question
2271  *
2272  * Returns:     Nothing
2273  *
2274  * Lock status: No locks are assumed held.
2275  *
2276  * Notes:       There is no timer nor any other means by which the requests
2277  *		get unblocked other than the low-level driver calling
2278  *		scsi_unblock_requests().
2279  *
2280  *		This is done as an API function so that changes to the
2281  *		internals of the scsi mid-layer won't require wholesale
2282  *		changes to drivers that use this feature.
2283  */
scsi_unblock_requests(struct Scsi_Host * shost)2284 void scsi_unblock_requests(struct Scsi_Host *shost)
2285 {
2286 	shost->host_self_blocked = 0;
2287 	scsi_run_host_queues(shost);
2288 }
2289 EXPORT_SYMBOL(scsi_unblock_requests);
2290 
scsi_init_queue(void)2291 int __init scsi_init_queue(void)
2292 {
2293 	int i;
2294 
2295 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2296 					   sizeof(struct scsi_data_buffer),
2297 					   0, 0, NULL);
2298 	if (!scsi_sdb_cache) {
2299 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2300 		return -ENOMEM;
2301 	}
2302 
2303 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2304 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2305 		int size = sgp->size * sizeof(struct scatterlist);
2306 
2307 		sgp->slab = kmem_cache_create(sgp->name, size, 0,
2308 				SLAB_HWCACHE_ALIGN, NULL);
2309 		if (!sgp->slab) {
2310 			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2311 					sgp->name);
2312 			goto cleanup_sdb;
2313 		}
2314 
2315 		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2316 						     sgp->slab);
2317 		if (!sgp->pool) {
2318 			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2319 					sgp->name);
2320 			goto cleanup_sdb;
2321 		}
2322 	}
2323 
2324 	return 0;
2325 
2326 cleanup_sdb:
2327 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2328 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2329 		if (sgp->pool)
2330 			mempool_destroy(sgp->pool);
2331 		if (sgp->slab)
2332 			kmem_cache_destroy(sgp->slab);
2333 	}
2334 	kmem_cache_destroy(scsi_sdb_cache);
2335 
2336 	return -ENOMEM;
2337 }
2338 
scsi_exit_queue(void)2339 void scsi_exit_queue(void)
2340 {
2341 	int i;
2342 
2343 	kmem_cache_destroy(scsi_sdb_cache);
2344 
2345 	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2346 		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2347 		mempool_destroy(sgp->pool);
2348 		kmem_cache_destroy(sgp->slab);
2349 	}
2350 }
2351 
2352 /**
2353  *	scsi_mode_select - issue a mode select
2354  *	@sdev:	SCSI device to be queried
2355  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2356  *	@sp:	Save page bit (0 == don't save, 1 == save)
2357  *	@modepage: mode page being requested
2358  *	@buffer: request buffer (may not be smaller than eight bytes)
2359  *	@len:	length of request buffer.
2360  *	@timeout: command timeout
2361  *	@retries: number of retries before failing
2362  *	@data: returns a structure abstracting the mode header data
2363  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2364  *		must be SCSI_SENSE_BUFFERSIZE big.
2365  *
2366  *	Returns zero if successful; negative error number or scsi
2367  *	status on error
2368  *
2369  */
2370 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2371 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2372 		 unsigned char *buffer, int len, int timeout, int retries,
2373 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2374 {
2375 	unsigned char cmd[10];
2376 	unsigned char *real_buffer;
2377 	int ret;
2378 
2379 	memset(cmd, 0, sizeof(cmd));
2380 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2381 
2382 	if (sdev->use_10_for_ms) {
2383 		if (len > 65535)
2384 			return -EINVAL;
2385 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2386 		if (!real_buffer)
2387 			return -ENOMEM;
2388 		memcpy(real_buffer + 8, buffer, len);
2389 		len += 8;
2390 		real_buffer[0] = 0;
2391 		real_buffer[1] = 0;
2392 		real_buffer[2] = data->medium_type;
2393 		real_buffer[3] = data->device_specific;
2394 		real_buffer[4] = data->longlba ? 0x01 : 0;
2395 		real_buffer[5] = 0;
2396 		real_buffer[6] = data->block_descriptor_length >> 8;
2397 		real_buffer[7] = data->block_descriptor_length;
2398 
2399 		cmd[0] = MODE_SELECT_10;
2400 		cmd[7] = len >> 8;
2401 		cmd[8] = len;
2402 	} else {
2403 		if (len > 255 || data->block_descriptor_length > 255 ||
2404 		    data->longlba)
2405 			return -EINVAL;
2406 
2407 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2408 		if (!real_buffer)
2409 			return -ENOMEM;
2410 		memcpy(real_buffer + 4, buffer, len);
2411 		len += 4;
2412 		real_buffer[0] = 0;
2413 		real_buffer[1] = data->medium_type;
2414 		real_buffer[2] = data->device_specific;
2415 		real_buffer[3] = data->block_descriptor_length;
2416 
2417 
2418 		cmd[0] = MODE_SELECT;
2419 		cmd[4] = len;
2420 	}
2421 
2422 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2423 			       sshdr, timeout, retries, NULL);
2424 	kfree(real_buffer);
2425 	return ret;
2426 }
2427 EXPORT_SYMBOL_GPL(scsi_mode_select);
2428 
2429 /**
2430  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2431  *	@sdev:	SCSI device to be queried
2432  *	@dbd:	set if mode sense will allow block descriptors to be returned
2433  *	@modepage: mode page being requested
2434  *	@buffer: request buffer (may not be smaller than eight bytes)
2435  *	@len:	length of request buffer.
2436  *	@timeout: command timeout
2437  *	@retries: number of retries before failing
2438  *	@data: returns a structure abstracting the mode header data
2439  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2440  *		must be SCSI_SENSE_BUFFERSIZE big.
2441  *
2442  *	Returns zero if unsuccessful, or the header offset (either 4
2443  *	or 8 depending on whether a six or ten byte command was
2444  *	issued) if successful.
2445  */
2446 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2447 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2448 		  unsigned char *buffer, int len, int timeout, int retries,
2449 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2450 {
2451 	unsigned char cmd[12];
2452 	int use_10_for_ms;
2453 	int header_length;
2454 	int result, retry_count = retries;
2455 	struct scsi_sense_hdr my_sshdr;
2456 
2457 	memset(data, 0, sizeof(*data));
2458 	memset(&cmd[0], 0, 12);
2459 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2460 	cmd[2] = modepage;
2461 
2462 	/* caller might not be interested in sense, but we need it */
2463 	if (!sshdr)
2464 		sshdr = &my_sshdr;
2465 
2466  retry:
2467 	use_10_for_ms = sdev->use_10_for_ms;
2468 
2469 	if (use_10_for_ms) {
2470 		if (len < 8)
2471 			len = 8;
2472 
2473 		cmd[0] = MODE_SENSE_10;
2474 		cmd[8] = len;
2475 		header_length = 8;
2476 	} else {
2477 		if (len < 4)
2478 			len = 4;
2479 
2480 		cmd[0] = MODE_SENSE;
2481 		cmd[4] = len;
2482 		header_length = 4;
2483 	}
2484 
2485 	memset(buffer, 0, len);
2486 
2487 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2488 				  sshdr, timeout, retries, NULL);
2489 
2490 	/* This code looks awful: what it's doing is making sure an
2491 	 * ILLEGAL REQUEST sense return identifies the actual command
2492 	 * byte as the problem.  MODE_SENSE commands can return
2493 	 * ILLEGAL REQUEST if the code page isn't supported */
2494 
2495 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2496 	    (driver_byte(result) & DRIVER_SENSE)) {
2497 		if (scsi_sense_valid(sshdr)) {
2498 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2499 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2500 				/*
2501 				 * Invalid command operation code
2502 				 */
2503 				sdev->use_10_for_ms = 0;
2504 				goto retry;
2505 			}
2506 		}
2507 	}
2508 
2509 	if(scsi_status_is_good(result)) {
2510 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2511 			     (modepage == 6 || modepage == 8))) {
2512 			/* Initio breakage? */
2513 			header_length = 0;
2514 			data->length = 13;
2515 			data->medium_type = 0;
2516 			data->device_specific = 0;
2517 			data->longlba = 0;
2518 			data->block_descriptor_length = 0;
2519 		} else if(use_10_for_ms) {
2520 			data->length = buffer[0]*256 + buffer[1] + 2;
2521 			data->medium_type = buffer[2];
2522 			data->device_specific = buffer[3];
2523 			data->longlba = buffer[4] & 0x01;
2524 			data->block_descriptor_length = buffer[6]*256
2525 				+ buffer[7];
2526 		} else {
2527 			data->length = buffer[0] + 1;
2528 			data->medium_type = buffer[1];
2529 			data->device_specific = buffer[2];
2530 			data->block_descriptor_length = buffer[3];
2531 		}
2532 		data->header_length = header_length;
2533 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2534 		   scsi_sense_valid(sshdr) &&
2535 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2536 		retry_count--;
2537 		goto retry;
2538 	}
2539 
2540 	return result;
2541 }
2542 EXPORT_SYMBOL(scsi_mode_sense);
2543 
2544 /**
2545  *	scsi_test_unit_ready - test if unit is ready
2546  *	@sdev:	scsi device to change the state of.
2547  *	@timeout: command timeout
2548  *	@retries: number of retries before failing
2549  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2550  *		returning sense. Make sure that this is cleared before passing
2551  *		in.
2552  *
2553  *	Returns zero if unsuccessful or an error if TUR failed.  For
2554  *	removable media, UNIT_ATTENTION sets ->changed flag.
2555  **/
2556 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr_external)2557 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2558 		     struct scsi_sense_hdr *sshdr_external)
2559 {
2560 	char cmd[] = {
2561 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2562 	};
2563 	struct scsi_sense_hdr *sshdr;
2564 	int result;
2565 
2566 	if (!sshdr_external)
2567 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2568 	else
2569 		sshdr = sshdr_external;
2570 
2571 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2572 	do {
2573 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2574 					  timeout, retries, NULL);
2575 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2576 		    sshdr->sense_key == UNIT_ATTENTION)
2577 			sdev->changed = 1;
2578 	} while (scsi_sense_valid(sshdr) &&
2579 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2580 
2581 	if (!sshdr_external)
2582 		kfree(sshdr);
2583 	return result;
2584 }
2585 EXPORT_SYMBOL(scsi_test_unit_ready);
2586 
2587 /**
2588  *	scsi_device_set_state - Take the given device through the device state model.
2589  *	@sdev:	scsi device to change the state of.
2590  *	@state:	state to change to.
2591  *
2592  *	Returns zero if unsuccessful or an error if the requested
2593  *	transition is illegal.
2594  */
2595 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2596 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2597 {
2598 	enum scsi_device_state oldstate = sdev->sdev_state;
2599 
2600 	if (state == oldstate)
2601 		return 0;
2602 
2603 	switch (state) {
2604 	case SDEV_CREATED:
2605 		switch (oldstate) {
2606 		case SDEV_CREATED_BLOCK:
2607 			break;
2608 		default:
2609 			goto illegal;
2610 		}
2611 		break;
2612 
2613 	case SDEV_RUNNING:
2614 		switch (oldstate) {
2615 		case SDEV_CREATED:
2616 		case SDEV_OFFLINE:
2617 		case SDEV_TRANSPORT_OFFLINE:
2618 		case SDEV_QUIESCE:
2619 		case SDEV_BLOCK:
2620 			break;
2621 		default:
2622 			goto illegal;
2623 		}
2624 		break;
2625 
2626 	case SDEV_QUIESCE:
2627 		switch (oldstate) {
2628 		case SDEV_RUNNING:
2629 		case SDEV_OFFLINE:
2630 		case SDEV_TRANSPORT_OFFLINE:
2631 			break;
2632 		default:
2633 			goto illegal;
2634 		}
2635 		break;
2636 
2637 	case SDEV_OFFLINE:
2638 	case SDEV_TRANSPORT_OFFLINE:
2639 		switch (oldstate) {
2640 		case SDEV_CREATED:
2641 		case SDEV_RUNNING:
2642 		case SDEV_QUIESCE:
2643 		case SDEV_BLOCK:
2644 			break;
2645 		default:
2646 			goto illegal;
2647 		}
2648 		break;
2649 
2650 	case SDEV_BLOCK:
2651 		switch (oldstate) {
2652 		case SDEV_RUNNING:
2653 		case SDEV_CREATED_BLOCK:
2654 			break;
2655 		default:
2656 			goto illegal;
2657 		}
2658 		break;
2659 
2660 	case SDEV_CREATED_BLOCK:
2661 		switch (oldstate) {
2662 		case SDEV_CREATED:
2663 			break;
2664 		default:
2665 			goto illegal;
2666 		}
2667 		break;
2668 
2669 	case SDEV_CANCEL:
2670 		switch (oldstate) {
2671 		case SDEV_CREATED:
2672 		case SDEV_RUNNING:
2673 		case SDEV_QUIESCE:
2674 		case SDEV_OFFLINE:
2675 		case SDEV_TRANSPORT_OFFLINE:
2676 		case SDEV_BLOCK:
2677 			break;
2678 		default:
2679 			goto illegal;
2680 		}
2681 		break;
2682 
2683 	case SDEV_DEL:
2684 		switch (oldstate) {
2685 		case SDEV_CREATED:
2686 		case SDEV_RUNNING:
2687 		case SDEV_OFFLINE:
2688 		case SDEV_TRANSPORT_OFFLINE:
2689 		case SDEV_CANCEL:
2690 		case SDEV_CREATED_BLOCK:
2691 			break;
2692 		default:
2693 			goto illegal;
2694 		}
2695 		break;
2696 
2697 	}
2698 	sdev->sdev_state = state;
2699 	return 0;
2700 
2701  illegal:
2702 	SCSI_LOG_ERROR_RECOVERY(1,
2703 				sdev_printk(KERN_ERR, sdev,
2704 					    "Illegal state transition %s->%s",
2705 					    scsi_device_state_name(oldstate),
2706 					    scsi_device_state_name(state))
2707 				);
2708 	return -EINVAL;
2709 }
2710 EXPORT_SYMBOL(scsi_device_set_state);
2711 
2712 /**
2713  * 	sdev_evt_emit - emit a single SCSI device uevent
2714  *	@sdev: associated SCSI device
2715  *	@evt: event to emit
2716  *
2717  *	Send a single uevent (scsi_event) to the associated scsi_device.
2718  */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2719 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2720 {
2721 	int idx = 0;
2722 	char *envp[3];
2723 
2724 	switch (evt->evt_type) {
2725 	case SDEV_EVT_MEDIA_CHANGE:
2726 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2727 		break;
2728 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2729 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2730 		break;
2731 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2732 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2733 		break;
2734 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2735 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2736 		break;
2737 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2738 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2739 		break;
2740 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2741 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2742 		break;
2743 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2744 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2745 		break;
2746 	default:
2747 		/* do nothing */
2748 		break;
2749 	}
2750 
2751 	envp[idx++] = NULL;
2752 
2753 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2754 }
2755 
2756 /**
2757  * 	sdev_evt_thread - send a uevent for each scsi event
2758  *	@work: work struct for scsi_device
2759  *
2760  *	Dispatch queued events to their associated scsi_device kobjects
2761  *	as uevents.
2762  */
scsi_evt_thread(struct work_struct * work)2763 void scsi_evt_thread(struct work_struct *work)
2764 {
2765 	struct scsi_device *sdev;
2766 	enum scsi_device_event evt_type;
2767 	LIST_HEAD(event_list);
2768 
2769 	sdev = container_of(work, struct scsi_device, event_work);
2770 
2771 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2772 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2773 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2774 
2775 	while (1) {
2776 		struct scsi_event *evt;
2777 		struct list_head *this, *tmp;
2778 		unsigned long flags;
2779 
2780 		spin_lock_irqsave(&sdev->list_lock, flags);
2781 		list_splice_init(&sdev->event_list, &event_list);
2782 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2783 
2784 		if (list_empty(&event_list))
2785 			break;
2786 
2787 		list_for_each_safe(this, tmp, &event_list) {
2788 			evt = list_entry(this, struct scsi_event, node);
2789 			list_del(&evt->node);
2790 			scsi_evt_emit(sdev, evt);
2791 			kfree(evt);
2792 		}
2793 	}
2794 }
2795 
2796 /**
2797  * 	sdev_evt_send - send asserted event to uevent thread
2798  *	@sdev: scsi_device event occurred on
2799  *	@evt: event to send
2800  *
2801  *	Assert scsi device event asynchronously.
2802  */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2803 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2804 {
2805 	unsigned long flags;
2806 
2807 #if 0
2808 	/* FIXME: currently this check eliminates all media change events
2809 	 * for polled devices.  Need to update to discriminate between AN
2810 	 * and polled events */
2811 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2812 		kfree(evt);
2813 		return;
2814 	}
2815 #endif
2816 
2817 	spin_lock_irqsave(&sdev->list_lock, flags);
2818 	list_add_tail(&evt->node, &sdev->event_list);
2819 	schedule_work(&sdev->event_work);
2820 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2821 }
2822 EXPORT_SYMBOL_GPL(sdev_evt_send);
2823 
2824 /**
2825  * 	sdev_evt_alloc - allocate a new scsi event
2826  *	@evt_type: type of event to allocate
2827  *	@gfpflags: GFP flags for allocation
2828  *
2829  *	Allocates and returns a new scsi_event.
2830  */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2831 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2832 				  gfp_t gfpflags)
2833 {
2834 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2835 	if (!evt)
2836 		return NULL;
2837 
2838 	evt->evt_type = evt_type;
2839 	INIT_LIST_HEAD(&evt->node);
2840 
2841 	/* evt_type-specific initialization, if any */
2842 	switch (evt_type) {
2843 	case SDEV_EVT_MEDIA_CHANGE:
2844 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2845 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2846 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2847 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2848 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2849 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2850 	default:
2851 		/* do nothing */
2852 		break;
2853 	}
2854 
2855 	return evt;
2856 }
2857 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2858 
2859 /**
2860  * 	sdev_evt_send_simple - send asserted event to uevent thread
2861  *	@sdev: scsi_device event occurred on
2862  *	@evt_type: type of event to send
2863  *	@gfpflags: GFP flags for allocation
2864  *
2865  *	Assert scsi device event asynchronously, given an event type.
2866  */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2867 void sdev_evt_send_simple(struct scsi_device *sdev,
2868 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2869 {
2870 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2871 	if (!evt) {
2872 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2873 			    evt_type);
2874 		return;
2875 	}
2876 
2877 	sdev_evt_send(sdev, evt);
2878 }
2879 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2880 
2881 /**
2882  *	scsi_device_quiesce - Block user issued commands.
2883  *	@sdev:	scsi device to quiesce.
2884  *
2885  *	This works by trying to transition to the SDEV_QUIESCE state
2886  *	(which must be a legal transition).  When the device is in this
2887  *	state, only special requests will be accepted, all others will
2888  *	be deferred.  Since special requests may also be requeued requests,
2889  *	a successful return doesn't guarantee the device will be
2890  *	totally quiescent.
2891  *
2892  *	Must be called with user context, may sleep.
2893  *
2894  *	Returns zero if unsuccessful or an error if not.
2895  */
2896 int
scsi_device_quiesce(struct scsi_device * sdev)2897 scsi_device_quiesce(struct scsi_device *sdev)
2898 {
2899 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2900 	if (err)
2901 		return err;
2902 
2903 	scsi_run_queue(sdev->request_queue);
2904 	while (atomic_read(&sdev->device_busy)) {
2905 		msleep_interruptible(200);
2906 		scsi_run_queue(sdev->request_queue);
2907 	}
2908 	return 0;
2909 }
2910 EXPORT_SYMBOL(scsi_device_quiesce);
2911 
2912 /**
2913  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2914  *	@sdev:	scsi device to resume.
2915  *
2916  *	Moves the device from quiesced back to running and restarts the
2917  *	queues.
2918  *
2919  *	Must be called with user context, may sleep.
2920  */
scsi_device_resume(struct scsi_device * sdev)2921 void scsi_device_resume(struct scsi_device *sdev)
2922 {
2923 	/* check if the device state was mutated prior to resume, and if
2924 	 * so assume the state is being managed elsewhere (for example
2925 	 * device deleted during suspend)
2926 	 */
2927 	if (sdev->sdev_state != SDEV_QUIESCE ||
2928 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2929 		return;
2930 	scsi_run_queue(sdev->request_queue);
2931 }
2932 EXPORT_SYMBOL(scsi_device_resume);
2933 
2934 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2935 device_quiesce_fn(struct scsi_device *sdev, void *data)
2936 {
2937 	scsi_device_quiesce(sdev);
2938 }
2939 
2940 void
scsi_target_quiesce(struct scsi_target * starget)2941 scsi_target_quiesce(struct scsi_target *starget)
2942 {
2943 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2944 }
2945 EXPORT_SYMBOL(scsi_target_quiesce);
2946 
2947 static void
device_resume_fn(struct scsi_device * sdev,void * data)2948 device_resume_fn(struct scsi_device *sdev, void *data)
2949 {
2950 	scsi_device_resume(sdev);
2951 }
2952 
2953 void
scsi_target_resume(struct scsi_target * starget)2954 scsi_target_resume(struct scsi_target *starget)
2955 {
2956 	starget_for_each_device(starget, NULL, device_resume_fn);
2957 }
2958 EXPORT_SYMBOL(scsi_target_resume);
2959 
2960 /**
2961  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2962  * @sdev:	device to block
2963  *
2964  * Block request made by scsi lld's to temporarily stop all
2965  * scsi commands on the specified device.  Called from interrupt
2966  * or normal process context.
2967  *
2968  * Returns zero if successful or error if not
2969  *
2970  * Notes:
2971  *	This routine transitions the device to the SDEV_BLOCK state
2972  *	(which must be a legal transition).  When the device is in this
2973  *	state, all commands are deferred until the scsi lld reenables
2974  *	the device with scsi_device_unblock or device_block_tmo fires.
2975  */
2976 int
scsi_internal_device_block(struct scsi_device * sdev)2977 scsi_internal_device_block(struct scsi_device *sdev)
2978 {
2979 	struct request_queue *q = sdev->request_queue;
2980 	unsigned long flags;
2981 	int err = 0;
2982 
2983 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2984 	if (err) {
2985 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2986 
2987 		if (err)
2988 			return err;
2989 	}
2990 
2991 	/*
2992 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2993 	 * block layer from calling the midlayer with this device's
2994 	 * request queue.
2995 	 */
2996 	if (q->mq_ops) {
2997 		blk_mq_stop_hw_queues(q);
2998 	} else {
2999 		spin_lock_irqsave(q->queue_lock, flags);
3000 		blk_stop_queue(q);
3001 		spin_unlock_irqrestore(q->queue_lock, flags);
3002 	}
3003 
3004 	return 0;
3005 }
3006 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
3007 
3008 /**
3009  * scsi_internal_device_unblock - resume a device after a block request
3010  * @sdev:	device to resume
3011  * @new_state:	state to set devices to after unblocking
3012  *
3013  * Called by scsi lld's or the midlayer to restart the device queue
3014  * for the previously suspended scsi device.  Called from interrupt or
3015  * normal process context.
3016  *
3017  * Returns zero if successful or error if not.
3018  *
3019  * Notes:
3020  *	This routine transitions the device to the SDEV_RUNNING state
3021  *	or to one of the offline states (which must be a legal transition)
3022  *	allowing the midlayer to goose the queue for this device.
3023  */
3024 int
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)3025 scsi_internal_device_unblock(struct scsi_device *sdev,
3026 			     enum scsi_device_state new_state)
3027 {
3028 	struct request_queue *q = sdev->request_queue;
3029 	unsigned long flags;
3030 
3031 	/*
3032 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3033 	 * offlined states and goose the device queue if successful.
3034 	 */
3035 	if ((sdev->sdev_state == SDEV_BLOCK) ||
3036 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3037 		sdev->sdev_state = new_state;
3038 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3039 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3040 		    new_state == SDEV_OFFLINE)
3041 			sdev->sdev_state = new_state;
3042 		else
3043 			sdev->sdev_state = SDEV_CREATED;
3044 	} else if (sdev->sdev_state != SDEV_CANCEL &&
3045 		 sdev->sdev_state != SDEV_OFFLINE)
3046 		return -EINVAL;
3047 
3048 	if (q->mq_ops) {
3049 		blk_mq_start_stopped_hw_queues(q, false);
3050 	} else {
3051 		spin_lock_irqsave(q->queue_lock, flags);
3052 		blk_start_queue(q);
3053 		spin_unlock_irqrestore(q->queue_lock, flags);
3054 	}
3055 
3056 	return 0;
3057 }
3058 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3059 
3060 static void
device_block(struct scsi_device * sdev,void * data)3061 device_block(struct scsi_device *sdev, void *data)
3062 {
3063 	scsi_internal_device_block(sdev);
3064 }
3065 
3066 static int
target_block(struct device * dev,void * data)3067 target_block(struct device *dev, void *data)
3068 {
3069 	if (scsi_is_target_device(dev))
3070 		starget_for_each_device(to_scsi_target(dev), NULL,
3071 					device_block);
3072 	return 0;
3073 }
3074 
3075 void
scsi_target_block(struct device * dev)3076 scsi_target_block(struct device *dev)
3077 {
3078 	if (scsi_is_target_device(dev))
3079 		starget_for_each_device(to_scsi_target(dev), NULL,
3080 					device_block);
3081 	else
3082 		device_for_each_child(dev, NULL, target_block);
3083 }
3084 EXPORT_SYMBOL_GPL(scsi_target_block);
3085 
3086 static void
device_unblock(struct scsi_device * sdev,void * data)3087 device_unblock(struct scsi_device *sdev, void *data)
3088 {
3089 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3090 }
3091 
3092 static int
target_unblock(struct device * dev,void * data)3093 target_unblock(struct device *dev, void *data)
3094 {
3095 	if (scsi_is_target_device(dev))
3096 		starget_for_each_device(to_scsi_target(dev), data,
3097 					device_unblock);
3098 	return 0;
3099 }
3100 
3101 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)3102 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3103 {
3104 	if (scsi_is_target_device(dev))
3105 		starget_for_each_device(to_scsi_target(dev), &new_state,
3106 					device_unblock);
3107 	else
3108 		device_for_each_child(dev, &new_state, target_unblock);
3109 }
3110 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3111 
3112 /**
3113  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3114  * @sgl:	scatter-gather list
3115  * @sg_count:	number of segments in sg
3116  * @offset:	offset in bytes into sg, on return offset into the mapped area
3117  * @len:	bytes to map, on return number of bytes mapped
3118  *
3119  * Returns virtual address of the start of the mapped page
3120  */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3121 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3122 			  size_t *offset, size_t *len)
3123 {
3124 	int i;
3125 	size_t sg_len = 0, len_complete = 0;
3126 	struct scatterlist *sg;
3127 	struct page *page;
3128 
3129 	WARN_ON(!irqs_disabled());
3130 
3131 	for_each_sg(sgl, sg, sg_count, i) {
3132 		len_complete = sg_len; /* Complete sg-entries */
3133 		sg_len += sg->length;
3134 		if (sg_len > *offset)
3135 			break;
3136 	}
3137 
3138 	if (unlikely(i == sg_count)) {
3139 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3140 			"elements %d\n",
3141 		       __func__, sg_len, *offset, sg_count);
3142 		WARN_ON(1);
3143 		return NULL;
3144 	}
3145 
3146 	/* Offset starting from the beginning of first page in this sg-entry */
3147 	*offset = *offset - len_complete + sg->offset;
3148 
3149 	/* Assumption: contiguous pages can be accessed as "page + i" */
3150 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3151 	*offset &= ~PAGE_MASK;
3152 
3153 	/* Bytes in this sg-entry from *offset to the end of the page */
3154 	sg_len = PAGE_SIZE - *offset;
3155 	if (*len > sg_len)
3156 		*len = sg_len;
3157 
3158 	return kmap_atomic(page);
3159 }
3160 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3161 
3162 /**
3163  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3164  * @virt:	virtual address to be unmapped
3165  */
scsi_kunmap_atomic_sg(void * virt)3166 void scsi_kunmap_atomic_sg(void *virt)
3167 {
3168 	kunmap_atomic(virt);
3169 }
3170 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3171 
sdev_disable_disk_events(struct scsi_device * sdev)3172 void sdev_disable_disk_events(struct scsi_device *sdev)
3173 {
3174 	atomic_inc(&sdev->disk_events_disable_depth);
3175 }
3176 EXPORT_SYMBOL(sdev_disable_disk_events);
3177 
sdev_enable_disk_events(struct scsi_device * sdev)3178 void sdev_enable_disk_events(struct scsi_device *sdev)
3179 {
3180 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3181 		return;
3182 	atomic_dec(&sdev->disk_events_disable_depth);
3183 }
3184 EXPORT_SYMBOL(sdev_enable_disk_events);
3185