• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2015 Intel Corporation.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * BSD LICENSE
20  *
21  * Copyright(c) 2015 Intel Corporation.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  *
27  *  - Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  *  - Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in
31  *    the documentation and/or other materials provided with the
32  *    distribution.
33  *  - Neither the name of Intel Corporation nor the names of its
34  *    contributors may be used to endorse or promote products derived
35  *    from this software without specific prior written permission.
36  *
37  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48  *
49  */
50 
51 #include <linux/spinlock.h>
52 #include <linux/seqlock.h>
53 #include <linux/netdevice.h>
54 #include <linux/moduleparam.h>
55 #include <linux/bitops.h>
56 #include <linux/timer.h>
57 #include <linux/vmalloc.h>
58 #include <linux/highmem.h>
59 
60 #include "hfi.h"
61 #include "common.h"
62 #include "qp.h"
63 #include "sdma.h"
64 #include "iowait.h"
65 #include "trace.h"
66 
67 /* must be a power of 2 >= 64 <= 32768 */
68 #define SDMA_DESCQ_CNT 2048
69 #define SDMA_DESC_INTR 64
70 #define INVALID_TAIL 0xffff
71 
72 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
73 module_param(sdma_descq_cnt, uint, S_IRUGO);
74 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
75 
76 static uint sdma_idle_cnt = 250;
77 module_param(sdma_idle_cnt, uint, S_IRUGO);
78 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
79 
80 uint mod_num_sdma;
81 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
82 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
83 
84 static uint sdma_desct_intr = SDMA_DESC_INTR;
85 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
86 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
87 
88 #define SDMA_WAIT_BATCH_SIZE 20
89 /* max wait time for a SDMA engine to indicate it has halted */
90 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
91 /* all SDMA engine errors that cause a halt */
92 
93 #define SD(name) SEND_DMA_##name
94 #define ALL_SDMA_ENG_HALT_ERRS \
95 	(SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
96 	| SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
97 	| SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
98 	| SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
99 	| SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
100 	| SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
101 	| SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
102 	| SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
103 	| SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
104 	| SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
105 	| SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
106 	| SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
107 	| SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
108 	| SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
109 	| SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
110 	| SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
111 	| SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
112 	| SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
113 
114 /* sdma_sendctrl operations */
115 #define SDMA_SENDCTRL_OP_ENABLE    (1U << 0)
116 #define SDMA_SENDCTRL_OP_INTENABLE (1U << 1)
117 #define SDMA_SENDCTRL_OP_HALT      (1U << 2)
118 #define SDMA_SENDCTRL_OP_CLEANUP   (1U << 3)
119 
120 /* handle long defines */
121 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
122 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
123 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
124 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
125 
126 static const char * const sdma_state_names[] = {
127 	[sdma_state_s00_hw_down]                = "s00_HwDown",
128 	[sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
129 	[sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
130 	[sdma_state_s20_idle]                   = "s20_Idle",
131 	[sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
132 	[sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
133 	[sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
134 	[sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
135 	[sdma_state_s80_hw_freeze]		= "s80_HwFreeze",
136 	[sdma_state_s82_freeze_sw_clean]	= "s82_FreezeSwClean",
137 	[sdma_state_s99_running]                = "s99_Running",
138 };
139 
140 static const char * const sdma_event_names[] = {
141 	[sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
142 	[sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
143 	[sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
144 	[sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
145 	[sdma_event_e30_go_running]   = "e30_GoRunning",
146 	[sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
147 	[sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
148 	[sdma_event_e60_hw_halted]    = "e60_HwHalted",
149 	[sdma_event_e70_go_idle]      = "e70_GoIdle",
150 	[sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
151 	[sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
152 	[sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
153 	[sdma_event_e85_link_down]    = "e85_LinkDown",
154 	[sdma_event_e90_sw_halted]    = "e90_SwHalted",
155 };
156 
157 static const struct sdma_set_state_action sdma_action_table[] = {
158 	[sdma_state_s00_hw_down] = {
159 		.go_s99_running_tofalse = 1,
160 		.op_enable = 0,
161 		.op_intenable = 0,
162 		.op_halt = 0,
163 		.op_cleanup = 0,
164 	},
165 	[sdma_state_s10_hw_start_up_halt_wait] = {
166 		.op_enable = 0,
167 		.op_intenable = 0,
168 		.op_halt = 1,
169 		.op_cleanup = 0,
170 	},
171 	[sdma_state_s15_hw_start_up_clean_wait] = {
172 		.op_enable = 0,
173 		.op_intenable = 1,
174 		.op_halt = 0,
175 		.op_cleanup = 1,
176 	},
177 	[sdma_state_s20_idle] = {
178 		.op_enable = 0,
179 		.op_intenable = 1,
180 		.op_halt = 0,
181 		.op_cleanup = 0,
182 	},
183 	[sdma_state_s30_sw_clean_up_wait] = {
184 		.op_enable = 0,
185 		.op_intenable = 0,
186 		.op_halt = 0,
187 		.op_cleanup = 0,
188 	},
189 	[sdma_state_s40_hw_clean_up_wait] = {
190 		.op_enable = 0,
191 		.op_intenable = 0,
192 		.op_halt = 0,
193 		.op_cleanup = 1,
194 	},
195 	[sdma_state_s50_hw_halt_wait] = {
196 		.op_enable = 0,
197 		.op_intenable = 0,
198 		.op_halt = 0,
199 		.op_cleanup = 0,
200 	},
201 	[sdma_state_s60_idle_halt_wait] = {
202 		.go_s99_running_tofalse = 1,
203 		.op_enable = 0,
204 		.op_intenable = 0,
205 		.op_halt = 1,
206 		.op_cleanup = 0,
207 	},
208 	[sdma_state_s80_hw_freeze] = {
209 		.op_enable = 0,
210 		.op_intenable = 0,
211 		.op_halt = 0,
212 		.op_cleanup = 0,
213 	},
214 	[sdma_state_s82_freeze_sw_clean] = {
215 		.op_enable = 0,
216 		.op_intenable = 0,
217 		.op_halt = 0,
218 		.op_cleanup = 0,
219 	},
220 	[sdma_state_s99_running] = {
221 		.op_enable = 1,
222 		.op_intenable = 1,
223 		.op_halt = 0,
224 		.op_cleanup = 0,
225 		.go_s99_running_totrue = 1,
226 	},
227 };
228 
229 #define SDMA_TAIL_UPDATE_THRESH 0x1F
230 
231 /* declare all statics here rather than keep sorting */
232 static void sdma_complete(struct kref *);
233 static void sdma_finalput(struct sdma_state *);
234 static void sdma_get(struct sdma_state *);
235 static void sdma_hw_clean_up_task(unsigned long);
236 static void sdma_put(struct sdma_state *);
237 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
238 static void sdma_start_hw_clean_up(struct sdma_engine *);
239 static void sdma_start_sw_clean_up(struct sdma_engine *);
240 static void sdma_sw_clean_up_task(unsigned long);
241 static void sdma_sendctrl(struct sdma_engine *, unsigned);
242 static void init_sdma_regs(struct sdma_engine *, u32, uint);
243 static void sdma_process_event(
244 	struct sdma_engine *sde,
245 	enum sdma_events event);
246 static void __sdma_process_event(
247 	struct sdma_engine *sde,
248 	enum sdma_events event);
249 static void dump_sdma_state(struct sdma_engine *sde);
250 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
251 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail);
252 static void sdma_flush_descq(struct sdma_engine *sde);
253 
254 /**
255  * sdma_state_name() - return state string from enum
256  * @state: state
257  */
sdma_state_name(enum sdma_states state)258 static const char *sdma_state_name(enum sdma_states state)
259 {
260 	return sdma_state_names[state];
261 }
262 
sdma_get(struct sdma_state * ss)263 static void sdma_get(struct sdma_state *ss)
264 {
265 	kref_get(&ss->kref);
266 }
267 
sdma_complete(struct kref * kref)268 static void sdma_complete(struct kref *kref)
269 {
270 	struct sdma_state *ss =
271 		container_of(kref, struct sdma_state, kref);
272 
273 	complete(&ss->comp);
274 }
275 
sdma_put(struct sdma_state * ss)276 static void sdma_put(struct sdma_state *ss)
277 {
278 	kref_put(&ss->kref, sdma_complete);
279 }
280 
sdma_finalput(struct sdma_state * ss)281 static void sdma_finalput(struct sdma_state *ss)
282 {
283 	sdma_put(ss);
284 	wait_for_completion(&ss->comp);
285 }
286 
write_sde_csr(struct sdma_engine * sde,u32 offset0,u64 value)287 static inline void write_sde_csr(
288 	struct sdma_engine *sde,
289 	u32 offset0,
290 	u64 value)
291 {
292 	write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
293 }
294 
read_sde_csr(struct sdma_engine * sde,u32 offset0)295 static inline u64 read_sde_csr(
296 	struct sdma_engine *sde,
297 	u32 offset0)
298 {
299 	return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
300 }
301 
302 /*
303  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
304  * sdma engine 'sde' to drop to 0.
305  */
sdma_wait_for_packet_egress(struct sdma_engine * sde,int pause)306 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
307 					int pause)
308 {
309 	u64 off = 8 * sde->this_idx;
310 	struct hfi1_devdata *dd = sde->dd;
311 	int lcnt = 0;
312 	u64 reg_prev;
313 	u64 reg = 0;
314 
315 	while (1) {
316 		reg_prev = reg;
317 		reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
318 
319 		reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
320 		reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
321 		if (reg == 0)
322 			break;
323 		/* counter is reest if accupancy count changes */
324 		if (reg != reg_prev)
325 			lcnt = 0;
326 		if (lcnt++ > 500) {
327 			/* timed out - bounce the link */
328 			dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
329 				  __func__, sde->this_idx, (u32)reg);
330 			queue_work(dd->pport->hfi1_wq,
331 				&dd->pport->link_bounce_work);
332 			break;
333 		}
334 		udelay(1);
335 	}
336 }
337 
338 /*
339  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
340  * and pause for credit return.
341  */
sdma_wait(struct hfi1_devdata * dd)342 void sdma_wait(struct hfi1_devdata *dd)
343 {
344 	int i;
345 
346 	for (i = 0; i < dd->num_sdma; i++) {
347 		struct sdma_engine *sde = &dd->per_sdma[i];
348 
349 		sdma_wait_for_packet_egress(sde, 0);
350 	}
351 }
352 
sdma_set_desc_cnt(struct sdma_engine * sde,unsigned cnt)353 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
354 {
355 	u64 reg;
356 
357 	if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
358 		return;
359 	reg = cnt;
360 	reg &= SD(DESC_CNT_CNT_MASK);
361 	reg <<= SD(DESC_CNT_CNT_SHIFT);
362 	write_sde_csr(sde, SD(DESC_CNT), reg);
363 }
364 
365 /*
366  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
367  *
368  * Depending on timing there can be txreqs in two places:
369  * - in the descq ring
370  * - in the flush list
371  *
372  * To avoid ordering issues the descq ring needs to be flushed
373  * first followed by the flush list.
374  *
375  * This routine is called from two places
376  * - From a work queue item
377  * - Directly from the state machine just before setting the
378  *   state to running
379  *
380  * Must be called with head_lock held
381  *
382  */
sdma_flush(struct sdma_engine * sde)383 static void sdma_flush(struct sdma_engine *sde)
384 {
385 	struct sdma_txreq *txp, *txp_next;
386 	LIST_HEAD(flushlist);
387 	unsigned long flags;
388 
389 	/* flush from head to tail */
390 	sdma_flush_descq(sde);
391 	spin_lock_irqsave(&sde->flushlist_lock, flags);
392 	/* copy flush list */
393 	list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
394 		list_del_init(&txp->list);
395 		list_add_tail(&txp->list, &flushlist);
396 	}
397 	spin_unlock_irqrestore(&sde->flushlist_lock, flags);
398 	/* flush from flush list */
399 	list_for_each_entry_safe(txp, txp_next, &flushlist, list) {
400 		int drained = 0;
401 		/* protect against complete modifying */
402 		struct iowait *wait = txp->wait;
403 
404 		list_del_init(&txp->list);
405 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
406 		trace_hfi1_sdma_out_sn(sde, txp->sn);
407 		if (WARN_ON_ONCE(sde->head_sn != txp->sn))
408 			dd_dev_err(sde->dd, "expected %llu got %llu\n",
409 				sde->head_sn, txp->sn);
410 		sde->head_sn++;
411 #endif
412 		sdma_txclean(sde->dd, txp);
413 		if (wait)
414 			drained = atomic_dec_and_test(&wait->sdma_busy);
415 		if (txp->complete)
416 			(*txp->complete)(txp, SDMA_TXREQ_S_ABORTED, drained);
417 		if (wait && drained)
418 			iowait_drain_wakeup(wait);
419 	}
420 }
421 
422 /*
423  * Fields a work request for flushing the descq ring
424  * and the flush list
425  *
426  * If the engine has been brought to running during
427  * the scheduling delay, the flush is ignored, assuming
428  * that the process of bringing the engine to running
429  * would have done this flush prior to going to running.
430  *
431  */
sdma_field_flush(struct work_struct * work)432 static void sdma_field_flush(struct work_struct *work)
433 {
434 	unsigned long flags;
435 	struct sdma_engine *sde =
436 		container_of(work, struct sdma_engine, flush_worker);
437 
438 	write_seqlock_irqsave(&sde->head_lock, flags);
439 	if (!__sdma_running(sde))
440 		sdma_flush(sde);
441 	write_sequnlock_irqrestore(&sde->head_lock, flags);
442 }
443 
sdma_err_halt_wait(struct work_struct * work)444 static void sdma_err_halt_wait(struct work_struct *work)
445 {
446 	struct sdma_engine *sde = container_of(work, struct sdma_engine,
447 						err_halt_worker);
448 	u64 statuscsr;
449 	unsigned long timeout;
450 
451 	timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
452 	while (1) {
453 		statuscsr = read_sde_csr(sde, SD(STATUS));
454 		statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
455 		if (statuscsr)
456 			break;
457 		if (time_after(jiffies, timeout)) {
458 			dd_dev_err(sde->dd,
459 				"SDMA engine %d - timeout waiting for engine to halt\n",
460 				sde->this_idx);
461 			/*
462 			 * Continue anyway.  This could happen if there was
463 			 * an uncorrectable error in the wrong spot.
464 			 */
465 			break;
466 		}
467 		usleep_range(80, 120);
468 	}
469 
470 	sdma_process_event(sde, sdma_event_e15_hw_halt_done);
471 }
472 
sdma_start_err_halt_wait(struct sdma_engine * sde)473 static void sdma_start_err_halt_wait(struct sdma_engine *sde)
474 {
475 	schedule_work(&sde->err_halt_worker);
476 }
477 
478 
sdma_err_progress_check_schedule(struct sdma_engine * sde)479 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
480 {
481 	if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
482 
483 		unsigned index;
484 		struct hfi1_devdata *dd = sde->dd;
485 
486 		for (index = 0; index < dd->num_sdma; index++) {
487 			struct sdma_engine *curr_sdma = &dd->per_sdma[index];
488 
489 			if (curr_sdma != sde)
490 				curr_sdma->progress_check_head =
491 							curr_sdma->descq_head;
492 		}
493 		dd_dev_err(sde->dd,
494 			   "SDMA engine %d - check scheduled\n",
495 				sde->this_idx);
496 		mod_timer(&sde->err_progress_check_timer, jiffies + 10);
497 	}
498 }
499 
sdma_err_progress_check(unsigned long data)500 static void sdma_err_progress_check(unsigned long data)
501 {
502 	unsigned index;
503 	struct sdma_engine *sde = (struct sdma_engine *)data;
504 
505 	dd_dev_err(sde->dd, "SDE progress check event\n");
506 	for (index = 0; index < sde->dd->num_sdma; index++) {
507 		struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
508 		unsigned long flags;
509 
510 		/* check progress on each engine except the current one */
511 		if (curr_sde == sde)
512 			continue;
513 		/*
514 		 * We must lock interrupts when acquiring sde->lock,
515 		 * to avoid a deadlock if interrupt triggers and spins on
516 		 * the same lock on same CPU
517 		 */
518 		spin_lock_irqsave(&curr_sde->tail_lock, flags);
519 		write_seqlock(&curr_sde->head_lock);
520 
521 		/* skip non-running queues */
522 		if (curr_sde->state.current_state != sdma_state_s99_running) {
523 			write_sequnlock(&curr_sde->head_lock);
524 			spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
525 			continue;
526 		}
527 
528 		if ((curr_sde->descq_head != curr_sde->descq_tail) &&
529 		    (curr_sde->descq_head ==
530 				curr_sde->progress_check_head))
531 			__sdma_process_event(curr_sde,
532 					     sdma_event_e90_sw_halted);
533 		write_sequnlock(&curr_sde->head_lock);
534 		spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
535 	}
536 	schedule_work(&sde->err_halt_worker);
537 }
538 
sdma_hw_clean_up_task(unsigned long opaque)539 static void sdma_hw_clean_up_task(unsigned long opaque)
540 {
541 	struct sdma_engine *sde = (struct sdma_engine *) opaque;
542 	u64 statuscsr;
543 
544 	while (1) {
545 #ifdef CONFIG_SDMA_VERBOSITY
546 		dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
547 			   sde->this_idx, slashstrip(__FILE__), __LINE__,
548 			__func__);
549 #endif
550 		statuscsr = read_sde_csr(sde, SD(STATUS));
551 		statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
552 		if (statuscsr)
553 			break;
554 		udelay(10);
555 	}
556 
557 	sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
558 }
559 
get_txhead(struct sdma_engine * sde)560 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
561 {
562 	smp_read_barrier_depends(); /* see sdma_update_tail() */
563 	return sde->tx_ring[sde->tx_head & sde->sdma_mask];
564 }
565 
566 /*
567  * flush ring for recovery
568  */
sdma_flush_descq(struct sdma_engine * sde)569 static void sdma_flush_descq(struct sdma_engine *sde)
570 {
571 	u16 head, tail;
572 	int progress = 0;
573 	struct sdma_txreq *txp = get_txhead(sde);
574 
575 	/* The reason for some of the complexity of this code is that
576 	 * not all descriptors have corresponding txps.  So, we have to
577 	 * be able to skip over descs until we wander into the range of
578 	 * the next txp on the list.
579 	 */
580 	head = sde->descq_head & sde->sdma_mask;
581 	tail = sde->descq_tail & sde->sdma_mask;
582 	while (head != tail) {
583 		/* advance head, wrap if needed */
584 		head = ++sde->descq_head & sde->sdma_mask;
585 		/* if now past this txp's descs, do the callback */
586 		if (txp && txp->next_descq_idx == head) {
587 			int drained = 0;
588 			/* protect against complete modifying */
589 			struct iowait *wait = txp->wait;
590 
591 			/* remove from list */
592 			sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
593 			if (wait)
594 				drained = atomic_dec_and_test(&wait->sdma_busy);
595 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
596 			trace_hfi1_sdma_out_sn(sde, txp->sn);
597 			if (WARN_ON_ONCE(sde->head_sn != txp->sn))
598 				dd_dev_err(sde->dd, "expected %llu got %llu\n",
599 					sde->head_sn, txp->sn);
600 			sde->head_sn++;
601 #endif
602 			sdma_txclean(sde->dd, txp);
603 			trace_hfi1_sdma_progress(sde, head, tail, txp);
604 			if (txp->complete)
605 				(*txp->complete)(
606 					txp,
607 					SDMA_TXREQ_S_ABORTED,
608 					drained);
609 			if (wait && drained)
610 				iowait_drain_wakeup(wait);
611 			/* see if there is another txp */
612 			txp = get_txhead(sde);
613 		}
614 		progress++;
615 	}
616 	if (progress)
617 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
618 }
619 
sdma_sw_clean_up_task(unsigned long opaque)620 static void sdma_sw_clean_up_task(unsigned long opaque)
621 {
622 	struct sdma_engine *sde = (struct sdma_engine *) opaque;
623 	unsigned long flags;
624 
625 	spin_lock_irqsave(&sde->tail_lock, flags);
626 	write_seqlock(&sde->head_lock);
627 
628 	/*
629 	 * At this point, the following should always be true:
630 	 * - We are halted, so no more descriptors are getting retired.
631 	 * - We are not running, so no one is submitting new work.
632 	 * - Only we can send the e40_sw_cleaned, so we can't start
633 	 *   running again until we say so.  So, the active list and
634 	 *   descq are ours to play with.
635 	 */
636 
637 
638 	/*
639 	 * In the error clean up sequence, software clean must be called
640 	 * before the hardware clean so we can use the hardware head in
641 	 * the progress routine.  A hardware clean or SPC unfreeze will
642 	 * reset the hardware head.
643 	 *
644 	 * Process all retired requests. The progress routine will use the
645 	 * latest physical hardware head - we are not running so speed does
646 	 * not matter.
647 	 */
648 	sdma_make_progress(sde, 0);
649 
650 	sdma_flush(sde);
651 
652 	/*
653 	 * Reset our notion of head and tail.
654 	 * Note that the HW registers have been reset via an earlier
655 	 * clean up.
656 	 */
657 	sde->descq_tail = 0;
658 	sde->descq_head = 0;
659 	sde->desc_avail = sdma_descq_freecnt(sde);
660 	*sde->head_dma = 0;
661 
662 	__sdma_process_event(sde, sdma_event_e40_sw_cleaned);
663 
664 	write_sequnlock(&sde->head_lock);
665 	spin_unlock_irqrestore(&sde->tail_lock, flags);
666 }
667 
sdma_sw_tear_down(struct sdma_engine * sde)668 static void sdma_sw_tear_down(struct sdma_engine *sde)
669 {
670 	struct sdma_state *ss = &sde->state;
671 
672 	/* Releasing this reference means the state machine has stopped. */
673 	sdma_put(ss);
674 
675 	/* stop waiting for all unfreeze events to complete */
676 	atomic_set(&sde->dd->sdma_unfreeze_count, -1);
677 	wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
678 }
679 
sdma_start_hw_clean_up(struct sdma_engine * sde)680 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
681 {
682 	tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
683 }
684 
sdma_start_sw_clean_up(struct sdma_engine * sde)685 static void sdma_start_sw_clean_up(struct sdma_engine *sde)
686 {
687 	tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
688 }
689 
sdma_set_state(struct sdma_engine * sde,enum sdma_states next_state)690 static void sdma_set_state(struct sdma_engine *sde,
691 	enum sdma_states next_state)
692 {
693 	struct sdma_state *ss = &sde->state;
694 	const struct sdma_set_state_action *action = sdma_action_table;
695 	unsigned op = 0;
696 
697 	trace_hfi1_sdma_state(
698 		sde,
699 		sdma_state_names[ss->current_state],
700 		sdma_state_names[next_state]);
701 
702 	/* debugging bookkeeping */
703 	ss->previous_state = ss->current_state;
704 	ss->previous_op = ss->current_op;
705 	ss->current_state = next_state;
706 
707 	if (ss->previous_state != sdma_state_s99_running
708 		&& next_state == sdma_state_s99_running)
709 		sdma_flush(sde);
710 
711 	if (action[next_state].op_enable)
712 		op |= SDMA_SENDCTRL_OP_ENABLE;
713 
714 	if (action[next_state].op_intenable)
715 		op |= SDMA_SENDCTRL_OP_INTENABLE;
716 
717 	if (action[next_state].op_halt)
718 		op |= SDMA_SENDCTRL_OP_HALT;
719 
720 	if (action[next_state].op_cleanup)
721 		op |= SDMA_SENDCTRL_OP_CLEANUP;
722 
723 	if (action[next_state].go_s99_running_tofalse)
724 		ss->go_s99_running = 0;
725 
726 	if (action[next_state].go_s99_running_totrue)
727 		ss->go_s99_running = 1;
728 
729 	ss->current_op = op;
730 	sdma_sendctrl(sde, ss->current_op);
731 }
732 
733 /**
734  * sdma_get_descq_cnt() - called when device probed
735  *
736  * Return a validated descq count.
737  *
738  * This is currently only used in the verbs initialization to build the tx
739  * list.
740  *
741  * This will probably be deleted in favor of a more scalable approach to
742  * alloc tx's.
743  *
744  */
sdma_get_descq_cnt(void)745 u16 sdma_get_descq_cnt(void)
746 {
747 	u16 count = sdma_descq_cnt;
748 
749 	if (!count)
750 		return SDMA_DESCQ_CNT;
751 	/* count must be a power of 2 greater than 64 and less than
752 	 * 32768.   Otherwise return default.
753 	 */
754 	if (!is_power_of_2(count))
755 		return SDMA_DESCQ_CNT;
756 	if (count < 64 || count > 32768)
757 		return SDMA_DESCQ_CNT;
758 	return count;
759 }
760 
761 /**
762  * sdma_select_engine_vl() - select sdma engine
763  * @dd: devdata
764  * @selector: a spreading factor
765  * @vl: this vl
766  *
767  *
768  * This function returns an engine based on the selector and a vl.  The
769  * mapping fields are protected by RCU.
770  */
sdma_select_engine_vl(struct hfi1_devdata * dd,u32 selector,u8 vl)771 struct sdma_engine *sdma_select_engine_vl(
772 	struct hfi1_devdata *dd,
773 	u32 selector,
774 	u8 vl)
775 {
776 	struct sdma_vl_map *m;
777 	struct sdma_map_elem *e;
778 	struct sdma_engine *rval;
779 
780 	if (WARN_ON(vl > 8))
781 		return NULL;
782 
783 	rcu_read_lock();
784 	m = rcu_dereference(dd->sdma_map);
785 	if (unlikely(!m)) {
786 		rcu_read_unlock();
787 		return NULL;
788 	}
789 	e = m->map[vl & m->mask];
790 	rval = e->sde[selector & e->mask];
791 	rcu_read_unlock();
792 
793 	trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
794 	return rval;
795 }
796 
797 /**
798  * sdma_select_engine_sc() - select sdma engine
799  * @dd: devdata
800  * @selector: a spreading factor
801  * @sc5: the 5 bit sc
802  *
803  *
804  * This function returns an engine based on the selector and an sc.
805  */
sdma_select_engine_sc(struct hfi1_devdata * dd,u32 selector,u8 sc5)806 struct sdma_engine *sdma_select_engine_sc(
807 	struct hfi1_devdata *dd,
808 	u32 selector,
809 	u8 sc5)
810 {
811 	u8 vl = sc_to_vlt(dd, sc5);
812 
813 	return sdma_select_engine_vl(dd, selector, vl);
814 }
815 
816 /*
817  * Free the indicated map struct
818  */
sdma_map_free(struct sdma_vl_map * m)819 static void sdma_map_free(struct sdma_vl_map *m)
820 {
821 	int i;
822 
823 	for (i = 0; m && i < m->actual_vls; i++)
824 		kfree(m->map[i]);
825 	kfree(m);
826 }
827 
828 /*
829  * Handle RCU callback
830  */
sdma_map_rcu_callback(struct rcu_head * list)831 static void sdma_map_rcu_callback(struct rcu_head *list)
832 {
833 	struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
834 
835 	sdma_map_free(m);
836 }
837 
838 /**
839  * sdma_map_init - called when # vls change
840  * @dd: hfi1_devdata
841  * @port: port number
842  * @num_vls: number of vls
843  * @vl_engines: per vl engine mapping (optional)
844  *
845  * This routine changes the mapping based on the number of vls.
846  *
847  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
848  * implies auto computing the loading and giving each VLs a uniform
849  * distribution of engines per VL.
850  *
851  * The auto algorithm computes the sde_per_vl and the number of extra
852  * engines.  Any extra engines are added from the last VL on down.
853  *
854  * rcu locking is used here to control access to the mapping fields.
855  *
856  * If either the num_vls or num_sdma are non-power of 2, the array sizes
857  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
858  * up to the next highest power of 2 and the first entry is reused
859  * in a round robin fashion.
860  *
861  * If an error occurs the map change is not done and the mapping is
862  * not changed.
863  *
864  */
sdma_map_init(struct hfi1_devdata * dd,u8 port,u8 num_vls,u8 * vl_engines)865 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
866 {
867 	int i, j;
868 	int extra, sde_per_vl;
869 	int engine = 0;
870 	u8 lvl_engines[OPA_MAX_VLS];
871 	struct sdma_vl_map *oldmap, *newmap;
872 
873 	if (!(dd->flags & HFI1_HAS_SEND_DMA))
874 		return 0;
875 
876 	if (!vl_engines) {
877 		/* truncate divide */
878 		sde_per_vl = dd->num_sdma / num_vls;
879 		/* extras */
880 		extra = dd->num_sdma % num_vls;
881 		vl_engines = lvl_engines;
882 		/* add extras from last vl down */
883 		for (i = num_vls - 1; i >= 0; i--, extra--)
884 			vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
885 	}
886 	/* build new map */
887 	newmap = kzalloc(
888 		sizeof(struct sdma_vl_map) +
889 			roundup_pow_of_two(num_vls) *
890 			sizeof(struct sdma_map_elem *),
891 		GFP_KERNEL);
892 	if (!newmap)
893 		goto bail;
894 	newmap->actual_vls = num_vls;
895 	newmap->vls = roundup_pow_of_two(num_vls);
896 	newmap->mask = (1 << ilog2(newmap->vls)) - 1;
897 	for (i = 0; i < newmap->vls; i++) {
898 		/* save for wrap around */
899 		int first_engine = engine;
900 
901 		if (i < newmap->actual_vls) {
902 			int sz = roundup_pow_of_two(vl_engines[i]);
903 
904 			/* only allocate once */
905 			newmap->map[i] = kzalloc(
906 				sizeof(struct sdma_map_elem) +
907 					sz * sizeof(struct sdma_engine *),
908 				GFP_KERNEL);
909 			if (!newmap->map[i])
910 				goto bail;
911 			newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
912 			/* assign engines */
913 			for (j = 0; j < sz; j++) {
914 				newmap->map[i]->sde[j] =
915 					&dd->per_sdma[engine];
916 				if (++engine >= first_engine + vl_engines[i])
917 					/* wrap back to first engine */
918 					engine = first_engine;
919 			}
920 		} else {
921 			/* just re-use entry without allocating */
922 			newmap->map[i] = newmap->map[i % num_vls];
923 		}
924 		engine = first_engine + vl_engines[i];
925 	}
926 	/* newmap in hand, save old map */
927 	spin_lock_irq(&dd->sde_map_lock);
928 	oldmap = rcu_dereference_protected(dd->sdma_map,
929 			lockdep_is_held(&dd->sde_map_lock));
930 
931 	/* publish newmap */
932 	rcu_assign_pointer(dd->sdma_map, newmap);
933 
934 	spin_unlock_irq(&dd->sde_map_lock);
935 	/* success, free any old map after grace period */
936 	if (oldmap)
937 		call_rcu(&oldmap->list, sdma_map_rcu_callback);
938 	return 0;
939 bail:
940 	/* free any partial allocation */
941 	sdma_map_free(newmap);
942 	return -ENOMEM;
943 }
944 
945 /*
946  * Clean up allocated memory.
947  *
948  * This routine is can be called regardless of the success of sdma_init()
949  *
950  */
sdma_clean(struct hfi1_devdata * dd,size_t num_engines)951 static void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
952 {
953 	size_t i;
954 	struct sdma_engine *sde;
955 
956 	if (dd->sdma_pad_dma) {
957 		dma_free_coherent(&dd->pcidev->dev, 4,
958 				  (void *)dd->sdma_pad_dma,
959 				  dd->sdma_pad_phys);
960 		dd->sdma_pad_dma = NULL;
961 		dd->sdma_pad_phys = 0;
962 	}
963 	if (dd->sdma_heads_dma) {
964 		dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
965 				  (void *)dd->sdma_heads_dma,
966 				  dd->sdma_heads_phys);
967 		dd->sdma_heads_dma = NULL;
968 		dd->sdma_heads_phys = 0;
969 	}
970 	for (i = 0; dd->per_sdma && i < num_engines; ++i) {
971 		sde = &dd->per_sdma[i];
972 
973 		sde->head_dma = NULL;
974 		sde->head_phys = 0;
975 
976 		if (sde->descq) {
977 			dma_free_coherent(
978 				&dd->pcidev->dev,
979 				sde->descq_cnt * sizeof(u64[2]),
980 				sde->descq,
981 				sde->descq_phys
982 			);
983 			sde->descq = NULL;
984 			sde->descq_phys = 0;
985 		}
986 		kvfree(sde->tx_ring);
987 		sde->tx_ring = NULL;
988 	}
989 	spin_lock_irq(&dd->sde_map_lock);
990 	kfree(rcu_access_pointer(dd->sdma_map));
991 	RCU_INIT_POINTER(dd->sdma_map, NULL);
992 	spin_unlock_irq(&dd->sde_map_lock);
993 	synchronize_rcu();
994 	kfree(dd->per_sdma);
995 	dd->per_sdma = NULL;
996 }
997 
998 /**
999  * sdma_init() - called when device probed
1000  * @dd: hfi1_devdata
1001  * @port: port number (currently only zero)
1002  *
1003  * sdma_init initializes the specified number of engines.
1004  *
1005  * The code initializes each sde, its csrs.  Interrupts
1006  * are not required to be enabled.
1007  *
1008  * Returns:
1009  * 0 - success, -errno on failure
1010  */
sdma_init(struct hfi1_devdata * dd,u8 port)1011 int sdma_init(struct hfi1_devdata *dd, u8 port)
1012 {
1013 	unsigned this_idx;
1014 	struct sdma_engine *sde;
1015 	u16 descq_cnt;
1016 	void *curr_head;
1017 	struct hfi1_pportdata *ppd = dd->pport + port;
1018 	u32 per_sdma_credits;
1019 	uint idle_cnt = sdma_idle_cnt;
1020 	size_t num_engines = dd->chip_sdma_engines;
1021 
1022 	if (!HFI1_CAP_IS_KSET(SDMA)) {
1023 		HFI1_CAP_CLEAR(SDMA_AHG);
1024 		return 0;
1025 	}
1026 	if (mod_num_sdma &&
1027 		/* can't exceed chip support */
1028 		mod_num_sdma <= dd->chip_sdma_engines &&
1029 		/* count must be >= vls */
1030 		mod_num_sdma >= num_vls)
1031 		num_engines = mod_num_sdma;
1032 
1033 	dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1034 	dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", dd->chip_sdma_engines);
1035 	dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1036 		dd->chip_sdma_mem_size);
1037 
1038 	per_sdma_credits =
1039 		dd->chip_sdma_mem_size/(num_engines * SDMA_BLOCK_SIZE);
1040 
1041 	/* set up freeze waitqueue */
1042 	init_waitqueue_head(&dd->sdma_unfreeze_wq);
1043 	atomic_set(&dd->sdma_unfreeze_count, 0);
1044 
1045 	descq_cnt = sdma_get_descq_cnt();
1046 	dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1047 		num_engines, descq_cnt);
1048 
1049 	/* alloc memory for array of send engines */
1050 	dd->per_sdma = kcalloc(num_engines, sizeof(*dd->per_sdma), GFP_KERNEL);
1051 	if (!dd->per_sdma)
1052 		return -ENOMEM;
1053 
1054 	idle_cnt = ns_to_cclock(dd, idle_cnt);
1055 	if (!sdma_desct_intr)
1056 		sdma_desct_intr = SDMA_DESC_INTR;
1057 
1058 	/* Allocate memory for SendDMA descriptor FIFOs */
1059 	for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1060 		sde = &dd->per_sdma[this_idx];
1061 		sde->dd = dd;
1062 		sde->ppd = ppd;
1063 		sde->this_idx = this_idx;
1064 		sde->descq_cnt = descq_cnt;
1065 		sde->desc_avail = sdma_descq_freecnt(sde);
1066 		sde->sdma_shift = ilog2(descq_cnt);
1067 		sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1068 		sde->descq_full_count = 0;
1069 
1070 		/* Create a mask for all 3 chip interrupt sources */
1071 		sde->imask = (u64)1 << (0*TXE_NUM_SDMA_ENGINES + this_idx)
1072 			| (u64)1 << (1*TXE_NUM_SDMA_ENGINES + this_idx)
1073 			| (u64)1 << (2*TXE_NUM_SDMA_ENGINES + this_idx);
1074 		/* Create a mask specifically for sdma_idle */
1075 		sde->idle_mask =
1076 			(u64)1 << (2*TXE_NUM_SDMA_ENGINES + this_idx);
1077 		/* Create a mask specifically for sdma_progress */
1078 		sde->progress_mask =
1079 			(u64)1 << (TXE_NUM_SDMA_ENGINES + this_idx);
1080 		spin_lock_init(&sde->tail_lock);
1081 		seqlock_init(&sde->head_lock);
1082 		spin_lock_init(&sde->senddmactrl_lock);
1083 		spin_lock_init(&sde->flushlist_lock);
1084 		/* insure there is always a zero bit */
1085 		sde->ahg_bits = 0xfffffffe00000000ULL;
1086 
1087 		sdma_set_state(sde, sdma_state_s00_hw_down);
1088 
1089 		/* set up reference counting */
1090 		kref_init(&sde->state.kref);
1091 		init_completion(&sde->state.comp);
1092 
1093 		INIT_LIST_HEAD(&sde->flushlist);
1094 		INIT_LIST_HEAD(&sde->dmawait);
1095 
1096 		sde->tail_csr =
1097 			get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1098 
1099 		if (idle_cnt)
1100 			dd->default_desc1 =
1101 				SDMA_DESC1_HEAD_TO_HOST_FLAG;
1102 		else
1103 			dd->default_desc1 =
1104 				SDMA_DESC1_INT_REQ_FLAG;
1105 
1106 		tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1107 			(unsigned long)sde);
1108 
1109 		tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1110 			(unsigned long)sde);
1111 		INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1112 		INIT_WORK(&sde->flush_worker, sdma_field_flush);
1113 
1114 		sde->progress_check_head = 0;
1115 
1116 		setup_timer(&sde->err_progress_check_timer,
1117 			    sdma_err_progress_check, (unsigned long)sde);
1118 
1119 		sde->descq = dma_zalloc_coherent(
1120 			&dd->pcidev->dev,
1121 			descq_cnt * sizeof(u64[2]),
1122 			&sde->descq_phys,
1123 			GFP_KERNEL
1124 		);
1125 		if (!sde->descq)
1126 			goto bail;
1127 		sde->tx_ring =
1128 			kcalloc(descq_cnt, sizeof(struct sdma_txreq *),
1129 				GFP_KERNEL);
1130 		if (!sde->tx_ring)
1131 			sde->tx_ring =
1132 				vzalloc(
1133 					sizeof(struct sdma_txreq *) *
1134 					descq_cnt);
1135 		if (!sde->tx_ring)
1136 			goto bail;
1137 	}
1138 
1139 	dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1140 	/* Allocate memory for DMA of head registers to memory */
1141 	dd->sdma_heads_dma = dma_zalloc_coherent(
1142 		&dd->pcidev->dev,
1143 		dd->sdma_heads_size,
1144 		&dd->sdma_heads_phys,
1145 		GFP_KERNEL
1146 	);
1147 	if (!dd->sdma_heads_dma) {
1148 		dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1149 		goto bail;
1150 	}
1151 
1152 	/* Allocate memory for pad */
1153 	dd->sdma_pad_dma = dma_zalloc_coherent(
1154 		&dd->pcidev->dev,
1155 		sizeof(u32),
1156 		&dd->sdma_pad_phys,
1157 		GFP_KERNEL
1158 	);
1159 	if (!dd->sdma_pad_dma) {
1160 		dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1161 		goto bail;
1162 	}
1163 
1164 	/* assign each engine to different cacheline and init registers */
1165 	curr_head = (void *)dd->sdma_heads_dma;
1166 	for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1167 		unsigned long phys_offset;
1168 
1169 		sde = &dd->per_sdma[this_idx];
1170 
1171 		sde->head_dma = curr_head;
1172 		curr_head += L1_CACHE_BYTES;
1173 		phys_offset = (unsigned long)sde->head_dma -
1174 			      (unsigned long)dd->sdma_heads_dma;
1175 		sde->head_phys = dd->sdma_heads_phys + phys_offset;
1176 		init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1177 	}
1178 	dd->flags |= HFI1_HAS_SEND_DMA;
1179 	dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1180 	dd->num_sdma = num_engines;
1181 	if (sdma_map_init(dd, port, ppd->vls_operational, NULL))
1182 		goto bail;
1183 	dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1184 	return 0;
1185 
1186 bail:
1187 	sdma_clean(dd, num_engines);
1188 	return -ENOMEM;
1189 }
1190 
1191 /**
1192  * sdma_all_running() - called when the link goes up
1193  * @dd: hfi1_devdata
1194  *
1195  * This routine moves all engines to the running state.
1196  */
sdma_all_running(struct hfi1_devdata * dd)1197 void sdma_all_running(struct hfi1_devdata *dd)
1198 {
1199 	struct sdma_engine *sde;
1200 	unsigned int i;
1201 
1202 	/* move all engines to running */
1203 	for (i = 0; i < dd->num_sdma; ++i) {
1204 		sde = &dd->per_sdma[i];
1205 		sdma_process_event(sde, sdma_event_e30_go_running);
1206 	}
1207 }
1208 
1209 /**
1210  * sdma_all_idle() - called when the link goes down
1211  * @dd: hfi1_devdata
1212  *
1213  * This routine moves all engines to the idle state.
1214  */
sdma_all_idle(struct hfi1_devdata * dd)1215 void sdma_all_idle(struct hfi1_devdata *dd)
1216 {
1217 	struct sdma_engine *sde;
1218 	unsigned int i;
1219 
1220 	/* idle all engines */
1221 	for (i = 0; i < dd->num_sdma; ++i) {
1222 		sde = &dd->per_sdma[i];
1223 		sdma_process_event(sde, sdma_event_e70_go_idle);
1224 	}
1225 }
1226 
1227 /**
1228  * sdma_start() - called to kick off state processing for all engines
1229  * @dd: hfi1_devdata
1230  *
1231  * This routine is for kicking off the state processing for all required
1232  * sdma engines.  Interrupts need to be working at this point.
1233  *
1234  */
sdma_start(struct hfi1_devdata * dd)1235 void sdma_start(struct hfi1_devdata *dd)
1236 {
1237 	unsigned i;
1238 	struct sdma_engine *sde;
1239 
1240 	/* kick off the engines state processing */
1241 	for (i = 0; i < dd->num_sdma; ++i) {
1242 		sde = &dd->per_sdma[i];
1243 		sdma_process_event(sde, sdma_event_e10_go_hw_start);
1244 	}
1245 }
1246 
1247 /**
1248  * sdma_exit() - used when module is removed
1249  * @dd: hfi1_devdata
1250  */
sdma_exit(struct hfi1_devdata * dd)1251 void sdma_exit(struct hfi1_devdata *dd)
1252 {
1253 	unsigned this_idx;
1254 	struct sdma_engine *sde;
1255 
1256 	for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1257 			++this_idx) {
1258 
1259 		sde = &dd->per_sdma[this_idx];
1260 		if (!list_empty(&sde->dmawait))
1261 			dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1262 				sde->this_idx);
1263 		sdma_process_event(sde, sdma_event_e00_go_hw_down);
1264 
1265 		del_timer_sync(&sde->err_progress_check_timer);
1266 
1267 		/*
1268 		 * This waits for the state machine to exit so it is not
1269 		 * necessary to kill the sdma_sw_clean_up_task to make sure
1270 		 * it is not running.
1271 		 */
1272 		sdma_finalput(&sde->state);
1273 	}
1274 	sdma_clean(dd, dd->num_sdma);
1275 }
1276 
1277 /*
1278  * unmap the indicated descriptor
1279  */
sdma_unmap_desc(struct hfi1_devdata * dd,struct sdma_desc * descp)1280 static inline void sdma_unmap_desc(
1281 	struct hfi1_devdata *dd,
1282 	struct sdma_desc *descp)
1283 {
1284 	switch (sdma_mapping_type(descp)) {
1285 	case SDMA_MAP_SINGLE:
1286 		dma_unmap_single(
1287 			&dd->pcidev->dev,
1288 			sdma_mapping_addr(descp),
1289 			sdma_mapping_len(descp),
1290 			DMA_TO_DEVICE);
1291 		break;
1292 	case SDMA_MAP_PAGE:
1293 		dma_unmap_page(
1294 			&dd->pcidev->dev,
1295 			sdma_mapping_addr(descp),
1296 			sdma_mapping_len(descp),
1297 			DMA_TO_DEVICE);
1298 		break;
1299 	}
1300 }
1301 
1302 /*
1303  * return the mode as indicated by the first
1304  * descriptor in the tx.
1305  */
ahg_mode(struct sdma_txreq * tx)1306 static inline u8 ahg_mode(struct sdma_txreq *tx)
1307 {
1308 	return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1309 		>> SDMA_DESC1_HEADER_MODE_SHIFT;
1310 }
1311 
1312 /**
1313  * sdma_txclean() - clean tx of mappings, descp *kmalloc's
1314  * @dd: hfi1_devdata for unmapping
1315  * @tx: tx request to clean
1316  *
1317  * This is used in the progress routine to clean the tx or
1318  * by the ULP to toss an in-process tx build.
1319  *
1320  * The code can be called multiple times without issue.
1321  *
1322  */
sdma_txclean(struct hfi1_devdata * dd,struct sdma_txreq * tx)1323 void sdma_txclean(
1324 	struct hfi1_devdata *dd,
1325 	struct sdma_txreq *tx)
1326 {
1327 	u16 i;
1328 
1329 	if (tx->num_desc) {
1330 		u8 skip = 0, mode = ahg_mode(tx);
1331 
1332 		/* unmap first */
1333 		sdma_unmap_desc(dd, &tx->descp[0]);
1334 		/* determine number of AHG descriptors to skip */
1335 		if (mode > SDMA_AHG_APPLY_UPDATE1)
1336 			skip = mode >> 1;
1337 		for (i = 1 + skip; i < tx->num_desc; i++)
1338 			sdma_unmap_desc(dd, &tx->descp[i]);
1339 		tx->num_desc = 0;
1340 	}
1341 	kfree(tx->coalesce_buf);
1342 	tx->coalesce_buf = NULL;
1343 	/* kmalloc'ed descp */
1344 	if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1345 		tx->desc_limit = ARRAY_SIZE(tx->descs);
1346 		kfree(tx->descp);
1347 	}
1348 }
1349 
sdma_gethead(struct sdma_engine * sde)1350 static inline u16 sdma_gethead(struct sdma_engine *sde)
1351 {
1352 	struct hfi1_devdata *dd = sde->dd;
1353 	int use_dmahead;
1354 	u16 hwhead;
1355 
1356 #ifdef CONFIG_SDMA_VERBOSITY
1357 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1358 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1359 #endif
1360 
1361 retry:
1362 	use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1363 					(dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1364 	hwhead = use_dmahead ?
1365 		(u16) le64_to_cpu(*sde->head_dma) :
1366 		(u16) read_sde_csr(sde, SD(HEAD));
1367 
1368 	if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1369 		u16 cnt;
1370 		u16 swtail;
1371 		u16 swhead;
1372 		int sane;
1373 
1374 		swhead = sde->descq_head & sde->sdma_mask;
1375 		/* this code is really bad for cache line trading */
1376 		swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1377 		cnt = sde->descq_cnt;
1378 
1379 		if (swhead < swtail)
1380 			/* not wrapped */
1381 			sane = (hwhead >= swhead) & (hwhead <= swtail);
1382 		else if (swhead > swtail)
1383 			/* wrapped around */
1384 			sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1385 				(hwhead <= swtail);
1386 		else
1387 			/* empty */
1388 			sane = (hwhead == swhead);
1389 
1390 		if (unlikely(!sane)) {
1391 			dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1392 				sde->this_idx,
1393 				use_dmahead ? "dma" : "kreg",
1394 				hwhead, swhead, swtail, cnt);
1395 			if (use_dmahead) {
1396 				/* try one more time, using csr */
1397 				use_dmahead = 0;
1398 				goto retry;
1399 			}
1400 			/* proceed as if no progress */
1401 			hwhead = swhead;
1402 		}
1403 	}
1404 	return hwhead;
1405 }
1406 
1407 /*
1408  * This is called when there are send DMA descriptors that might be
1409  * available.
1410  *
1411  * This is called with head_lock held.
1412  */
sdma_desc_avail(struct sdma_engine * sde,unsigned avail)1413 static void sdma_desc_avail(struct sdma_engine *sde, unsigned avail)
1414 {
1415 	struct iowait *wait, *nw;
1416 	struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1417 	unsigned i, n = 0, seq;
1418 	struct sdma_txreq *stx;
1419 	struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1420 
1421 #ifdef CONFIG_SDMA_VERBOSITY
1422 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1423 		   slashstrip(__FILE__), __LINE__, __func__);
1424 	dd_dev_err(sde->dd, "avail: %u\n", avail);
1425 #endif
1426 
1427 	do {
1428 		seq = read_seqbegin(&dev->iowait_lock);
1429 		if (!list_empty(&sde->dmawait)) {
1430 			/* at least one item */
1431 			write_seqlock(&dev->iowait_lock);
1432 			/* Harvest waiters wanting DMA descriptors */
1433 			list_for_each_entry_safe(
1434 					wait,
1435 					nw,
1436 					&sde->dmawait,
1437 					list) {
1438 				u16 num_desc = 0;
1439 
1440 				if (!wait->wakeup)
1441 					continue;
1442 				if (n == ARRAY_SIZE(waits))
1443 					break;
1444 				if (!list_empty(&wait->tx_head)) {
1445 					stx = list_first_entry(
1446 						&wait->tx_head,
1447 						struct sdma_txreq,
1448 						list);
1449 					num_desc = stx->num_desc;
1450 				}
1451 				if (num_desc > avail)
1452 					break;
1453 				avail -= num_desc;
1454 				list_del_init(&wait->list);
1455 				waits[n++] = wait;
1456 			}
1457 			write_sequnlock(&dev->iowait_lock);
1458 			break;
1459 		}
1460 	} while (read_seqretry(&dev->iowait_lock, seq));
1461 
1462 	for (i = 0; i < n; i++)
1463 		waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1464 }
1465 
1466 /* head_lock must be held */
sdma_make_progress(struct sdma_engine * sde,u64 status)1467 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1468 {
1469 	struct sdma_txreq *txp = NULL;
1470 	int progress = 0;
1471 	u16 hwhead, swhead, swtail;
1472 	int idle_check_done = 0;
1473 
1474 	hwhead = sdma_gethead(sde);
1475 
1476 	/* The reason for some of the complexity of this code is that
1477 	 * not all descriptors have corresponding txps.  So, we have to
1478 	 * be able to skip over descs until we wander into the range of
1479 	 * the next txp on the list.
1480 	 */
1481 
1482 retry:
1483 	txp = get_txhead(sde);
1484 	swhead = sde->descq_head & sde->sdma_mask;
1485 	trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1486 	while (swhead != hwhead) {
1487 		/* advance head, wrap if needed */
1488 		swhead = ++sde->descq_head & sde->sdma_mask;
1489 
1490 		/* if now past this txp's descs, do the callback */
1491 		if (txp && txp->next_descq_idx == swhead) {
1492 			int drained = 0;
1493 			/* protect against complete modifying */
1494 			struct iowait *wait = txp->wait;
1495 
1496 			/* remove from list */
1497 			sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1498 			if (wait)
1499 				drained = atomic_dec_and_test(&wait->sdma_busy);
1500 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
1501 			trace_hfi1_sdma_out_sn(sde, txp->sn);
1502 			if (WARN_ON_ONCE(sde->head_sn != txp->sn))
1503 				dd_dev_err(sde->dd, "expected %llu got %llu\n",
1504 					sde->head_sn, txp->sn);
1505 			sde->head_sn++;
1506 #endif
1507 			sdma_txclean(sde->dd, txp);
1508 			if (txp->complete)
1509 				(*txp->complete)(
1510 					txp,
1511 					SDMA_TXREQ_S_OK,
1512 					drained);
1513 			if (wait && drained)
1514 				iowait_drain_wakeup(wait);
1515 			/* see if there is another txp */
1516 			txp = get_txhead(sde);
1517 		}
1518 		trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1519 		progress++;
1520 	}
1521 
1522 	/*
1523 	 * The SDMA idle interrupt is not guaranteed to be ordered with respect
1524 	 * to updates to the the dma_head location in host memory. The head
1525 	 * value read might not be fully up to date. If there are pending
1526 	 * descriptors and the SDMA idle interrupt fired then read from the
1527 	 * CSR SDMA head instead to get the latest value from the hardware.
1528 	 * The hardware SDMA head should be read at most once in this invocation
1529 	 * of sdma_make_progress(..) which is ensured by idle_check_done flag
1530 	 */
1531 	if ((status & sde->idle_mask) && !idle_check_done) {
1532 		swtail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1533 		if (swtail != hwhead) {
1534 			hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1535 			idle_check_done = 1;
1536 			goto retry;
1537 		}
1538 	}
1539 
1540 	sde->last_status = status;
1541 	if (progress)
1542 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1543 }
1544 
1545 /*
1546  * sdma_engine_interrupt() - interrupt handler for engine
1547  * @sde: sdma engine
1548  * @status: sdma interrupt reason
1549  *
1550  * Status is a mask of the 3 possible interrupts for this engine.  It will
1551  * contain bits _only_ for this SDMA engine.  It will contain at least one
1552  * bit, it may contain more.
1553  */
sdma_engine_interrupt(struct sdma_engine * sde,u64 status)1554 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1555 {
1556 	trace_hfi1_sdma_engine_interrupt(sde, status);
1557 	write_seqlock(&sde->head_lock);
1558 	sdma_set_desc_cnt(sde, sdma_desct_intr);
1559 	sdma_make_progress(sde, status);
1560 	write_sequnlock(&sde->head_lock);
1561 }
1562 
1563 /**
1564  * sdma_engine_error() - error handler for engine
1565  * @sde: sdma engine
1566  * @status: sdma interrupt reason
1567  */
sdma_engine_error(struct sdma_engine * sde,u64 status)1568 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1569 {
1570 	unsigned long flags;
1571 
1572 #ifdef CONFIG_SDMA_VERBOSITY
1573 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1574 		   sde->this_idx,
1575 		   (unsigned long long)status,
1576 		   sdma_state_names[sde->state.current_state]);
1577 #endif
1578 	spin_lock_irqsave(&sde->tail_lock, flags);
1579 	write_seqlock(&sde->head_lock);
1580 	if (status & ALL_SDMA_ENG_HALT_ERRS)
1581 		__sdma_process_event(sde, sdma_event_e60_hw_halted);
1582 	if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1583 		dd_dev_err(sde->dd,
1584 			"SDMA (%u) engine error: 0x%llx state %s\n",
1585 			sde->this_idx,
1586 			(unsigned long long)status,
1587 			sdma_state_names[sde->state.current_state]);
1588 		dump_sdma_state(sde);
1589 	}
1590 	write_sequnlock(&sde->head_lock);
1591 	spin_unlock_irqrestore(&sde->tail_lock, flags);
1592 }
1593 
sdma_sendctrl(struct sdma_engine * sde,unsigned op)1594 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1595 {
1596 	u64 set_senddmactrl = 0;
1597 	u64 clr_senddmactrl = 0;
1598 	unsigned long flags;
1599 
1600 #ifdef CONFIG_SDMA_VERBOSITY
1601 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1602 		   sde->this_idx,
1603 		   (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1604 		   (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1605 		   (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1606 		   (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1607 #endif
1608 
1609 	if (op & SDMA_SENDCTRL_OP_ENABLE)
1610 		set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1611 	else
1612 		clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1613 
1614 	if (op & SDMA_SENDCTRL_OP_INTENABLE)
1615 		set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1616 	else
1617 		clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1618 
1619 	if (op & SDMA_SENDCTRL_OP_HALT)
1620 		set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1621 	else
1622 		clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1623 
1624 	spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1625 
1626 	sde->p_senddmactrl |= set_senddmactrl;
1627 	sde->p_senddmactrl &= ~clr_senddmactrl;
1628 
1629 	if (op & SDMA_SENDCTRL_OP_CLEANUP)
1630 		write_sde_csr(sde, SD(CTRL),
1631 			sde->p_senddmactrl |
1632 			SD(CTRL_SDMA_CLEANUP_SMASK));
1633 	else
1634 		write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1635 
1636 	spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1637 
1638 #ifdef CONFIG_SDMA_VERBOSITY
1639 	sdma_dumpstate(sde);
1640 #endif
1641 }
1642 
sdma_setlengen(struct sdma_engine * sde)1643 static void sdma_setlengen(struct sdma_engine *sde)
1644 {
1645 #ifdef CONFIG_SDMA_VERBOSITY
1646 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1647 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1648 #endif
1649 
1650 	/*
1651 	 * Set SendDmaLenGen and clear-then-set the MSB of the generation
1652 	 * count to enable generation checking and load the internal
1653 	 * generation counter.
1654 	 */
1655 	write_sde_csr(sde, SD(LEN_GEN),
1656 		(sde->descq_cnt/64) << SD(LEN_GEN_LENGTH_SHIFT)
1657 	);
1658 	write_sde_csr(sde, SD(LEN_GEN),
1659 		((sde->descq_cnt/64) << SD(LEN_GEN_LENGTH_SHIFT))
1660 		| (4ULL << SD(LEN_GEN_GENERATION_SHIFT))
1661 	);
1662 }
1663 
sdma_update_tail(struct sdma_engine * sde,u16 tail)1664 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
1665 {
1666 	/* Commit writes to memory and advance the tail on the chip */
1667 	smp_wmb(); /* see get_txhead() */
1668 	writeq(tail, sde->tail_csr);
1669 }
1670 
1671 /*
1672  * This is called when changing to state s10_hw_start_up_halt_wait as
1673  * a result of send buffer errors or send DMA descriptor errors.
1674  */
sdma_hw_start_up(struct sdma_engine * sde)1675 static void sdma_hw_start_up(struct sdma_engine *sde)
1676 {
1677 	u64 reg;
1678 
1679 #ifdef CONFIG_SDMA_VERBOSITY
1680 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1681 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1682 #endif
1683 
1684 	sdma_setlengen(sde);
1685 	sdma_update_tail(sde, 0); /* Set SendDmaTail */
1686 	*sde->head_dma = 0;
1687 
1688 	reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
1689 	      SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
1690 	write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
1691 }
1692 
1693 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
1694 (r &= ~SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1695 
1696 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
1697 (r |= SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
1698 /*
1699  * set_sdma_integrity
1700  *
1701  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
1702  */
set_sdma_integrity(struct sdma_engine * sde)1703 static void set_sdma_integrity(struct sdma_engine *sde)
1704 {
1705 	struct hfi1_devdata *dd = sde->dd;
1706 	u64 reg;
1707 
1708 	if (unlikely(HFI1_CAP_IS_KSET(NO_INTEGRITY)))
1709 		return;
1710 
1711 	reg = hfi1_pkt_base_sdma_integrity(dd);
1712 
1713 	if (HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
1714 		CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
1715 	else
1716 		SET_STATIC_RATE_CONTROL_SMASK(reg);
1717 
1718 	write_sde_csr(sde, SD(CHECK_ENABLE), reg);
1719 }
1720 
1721 
init_sdma_regs(struct sdma_engine * sde,u32 credits,uint idle_cnt)1722 static void init_sdma_regs(
1723 	struct sdma_engine *sde,
1724 	u32 credits,
1725 	uint idle_cnt)
1726 {
1727 	u8 opval, opmask;
1728 #ifdef CONFIG_SDMA_VERBOSITY
1729 	struct hfi1_devdata *dd = sde->dd;
1730 
1731 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1732 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1733 #endif
1734 
1735 	write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
1736 	sdma_setlengen(sde);
1737 	sdma_update_tail(sde, 0); /* Set SendDmaTail */
1738 	write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
1739 	write_sde_csr(sde, SD(DESC_CNT), 0);
1740 	write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
1741 	write_sde_csr(sde, SD(MEMORY),
1742 		((u64)credits <<
1743 			SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
1744 		((u64)(credits * sde->this_idx) <<
1745 			SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
1746 	write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
1747 	set_sdma_integrity(sde);
1748 	opmask = OPCODE_CHECK_MASK_DISABLED;
1749 	opval = OPCODE_CHECK_VAL_DISABLED;
1750 	write_sde_csr(sde, SD(CHECK_OPCODE),
1751 		(opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
1752 		(opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
1753 }
1754 
1755 #ifdef CONFIG_SDMA_VERBOSITY
1756 
1757 #define sdma_dumpstate_helper0(reg) do { \
1758 		csr = read_csr(sde->dd, reg); \
1759 		dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
1760 	} while (0)
1761 
1762 #define sdma_dumpstate_helper(reg) do { \
1763 		csr = read_sde_csr(sde, reg); \
1764 		dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
1765 			#reg, sde->this_idx, csr); \
1766 	} while (0)
1767 
1768 #define sdma_dumpstate_helper2(reg) do { \
1769 		csr = read_csr(sde->dd, reg + (8 * i)); \
1770 		dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
1771 				#reg, i, csr); \
1772 	} while (0)
1773 
sdma_dumpstate(struct sdma_engine * sde)1774 void sdma_dumpstate(struct sdma_engine *sde)
1775 {
1776 	u64 csr;
1777 	unsigned i;
1778 
1779 	sdma_dumpstate_helper(SD(CTRL));
1780 	sdma_dumpstate_helper(SD(STATUS));
1781 	sdma_dumpstate_helper0(SD(ERR_STATUS));
1782 	sdma_dumpstate_helper0(SD(ERR_MASK));
1783 	sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
1784 	sdma_dumpstate_helper(SD(ENG_ERR_MASK));
1785 
1786 	for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
1787 		sdma_dumpstate_helper2(CCE_INT_STATUS);
1788 		sdma_dumpstate_helper2(CCE_INT_MASK);
1789 		sdma_dumpstate_helper2(CCE_INT_BLOCKED);
1790 	}
1791 
1792 	sdma_dumpstate_helper(SD(TAIL));
1793 	sdma_dumpstate_helper(SD(HEAD));
1794 	sdma_dumpstate_helper(SD(PRIORITY_THLD));
1795 	sdma_dumpstate_helper(SD(IDLE_CNT));
1796 	sdma_dumpstate_helper(SD(RELOAD_CNT));
1797 	sdma_dumpstate_helper(SD(DESC_CNT));
1798 	sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
1799 	sdma_dumpstate_helper(SD(MEMORY));
1800 	sdma_dumpstate_helper0(SD(ENGINES));
1801 	sdma_dumpstate_helper0(SD(MEM_SIZE));
1802 	/* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
1803 	sdma_dumpstate_helper(SD(BASE_ADDR));
1804 	sdma_dumpstate_helper(SD(LEN_GEN));
1805 	sdma_dumpstate_helper(SD(HEAD_ADDR));
1806 	sdma_dumpstate_helper(SD(CHECK_ENABLE));
1807 	sdma_dumpstate_helper(SD(CHECK_VL));
1808 	sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
1809 	sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
1810 	sdma_dumpstate_helper(SD(CHECK_SLID));
1811 	sdma_dumpstate_helper(SD(CHECK_OPCODE));
1812 }
1813 #endif
1814 
dump_sdma_state(struct sdma_engine * sde)1815 static void dump_sdma_state(struct sdma_engine *sde)
1816 {
1817 	struct hw_sdma_desc *descq;
1818 	struct hw_sdma_desc *descqp;
1819 	u64 desc[2];
1820 	u64 addr;
1821 	u8 gen;
1822 	u16 len;
1823 	u16 head, tail, cnt;
1824 
1825 	head = sde->descq_head & sde->sdma_mask;
1826 	tail = sde->descq_tail & sde->sdma_mask;
1827 	cnt = sdma_descq_freecnt(sde);
1828 	descq = sde->descq;
1829 
1830 	dd_dev_err(sde->dd,
1831 		"SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
1832 		sde->this_idx,
1833 		head,
1834 		tail,
1835 		cnt,
1836 		!list_empty(&sde->flushlist));
1837 
1838 	/* print info for each entry in the descriptor queue */
1839 	while (head != tail) {
1840 		char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1841 
1842 		descqp = &sde->descq[head];
1843 		desc[0] = le64_to_cpu(descqp->qw[0]);
1844 		desc[1] = le64_to_cpu(descqp->qw[1]);
1845 		flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1846 		flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1847 				'H' : '-';
1848 		flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1849 		flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1850 		addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1851 			& SDMA_DESC0_PHY_ADDR_MASK;
1852 		gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1853 			& SDMA_DESC1_GENERATION_MASK;
1854 		len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1855 			& SDMA_DESC0_BYTE_COUNT_MASK;
1856 		dd_dev_err(sde->dd,
1857 			"SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1858 			 head, flags, addr, gen, len);
1859 		dd_dev_err(sde->dd,
1860 			"\tdesc0:0x%016llx desc1 0x%016llx\n",
1861 			 desc[0], desc[1]);
1862 		if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1863 			dd_dev_err(sde->dd,
1864 				"\taidx: %u amode: %u alen: %u\n",
1865 				(u8)((desc[1] & SDMA_DESC1_HEADER_INDEX_SMASK)
1866 					>> SDMA_DESC1_HEADER_INDEX_SHIFT),
1867 				(u8)((desc[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1868 					>> SDMA_DESC1_HEADER_MODE_SHIFT),
1869 				(u8)((desc[1] & SDMA_DESC1_HEADER_DWS_SMASK)
1870 					>> SDMA_DESC1_HEADER_DWS_SHIFT));
1871 		head++;
1872 		head &= sde->sdma_mask;
1873 	}
1874 }
1875 
1876 #define SDE_FMT \
1877 	"SDE %u STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
1878 /**
1879  * sdma_seqfile_dump_sde() - debugfs dump of sde
1880  * @s: seq file
1881  * @sde: send dma engine to dump
1882  *
1883  * This routine dumps the sde to the indicated seq file.
1884  */
sdma_seqfile_dump_sde(struct seq_file * s,struct sdma_engine * sde)1885 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
1886 {
1887 	u16 head, tail;
1888 	struct hw_sdma_desc *descqp;
1889 	u64 desc[2];
1890 	u64 addr;
1891 	u8 gen;
1892 	u16 len;
1893 
1894 	head = sde->descq_head & sde->sdma_mask;
1895 	tail = ACCESS_ONCE(sde->descq_tail) & sde->sdma_mask;
1896 	seq_printf(s, SDE_FMT, sde->this_idx,
1897 		sdma_state_name(sde->state.current_state),
1898 		(unsigned long long)read_sde_csr(sde, SD(CTRL)),
1899 		(unsigned long long)read_sde_csr(sde, SD(STATUS)),
1900 		(unsigned long long)read_sde_csr(sde,
1901 			SD(ENG_ERR_STATUS)),
1902 		(unsigned long long)read_sde_csr(sde, SD(TAIL)),
1903 		tail,
1904 		(unsigned long long)read_sde_csr(sde, SD(HEAD)),
1905 		head,
1906 		(unsigned long long)le64_to_cpu(*sde->head_dma),
1907 		(unsigned long long)read_sde_csr(sde, SD(MEMORY)),
1908 		(unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
1909 		(unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
1910 		(unsigned long long)sde->last_status,
1911 		(unsigned long long)sde->ahg_bits,
1912 		sde->tx_tail,
1913 		sde->tx_head,
1914 		sde->descq_tail,
1915 		sde->descq_head,
1916 		   !list_empty(&sde->flushlist),
1917 		sde->descq_full_count,
1918 		(unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
1919 
1920 	/* print info for each entry in the descriptor queue */
1921 	while (head != tail) {
1922 		char flags[6] = { 'x', 'x', 'x', 'x', 0 };
1923 
1924 		descqp = &sde->descq[head];
1925 		desc[0] = le64_to_cpu(descqp->qw[0]);
1926 		desc[1] = le64_to_cpu(descqp->qw[1]);
1927 		flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
1928 		flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
1929 				'H' : '-';
1930 		flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
1931 		flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
1932 		addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
1933 			& SDMA_DESC0_PHY_ADDR_MASK;
1934 		gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
1935 			& SDMA_DESC1_GENERATION_MASK;
1936 		len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
1937 			& SDMA_DESC0_BYTE_COUNT_MASK;
1938 		seq_printf(s,
1939 			"\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
1940 			head, flags, addr, gen, len);
1941 		if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
1942 			seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
1943 				(u8)((desc[1] & SDMA_DESC1_HEADER_INDEX_SMASK)
1944 					>> SDMA_DESC1_HEADER_INDEX_SHIFT),
1945 				(u8)((desc[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1946 					>> SDMA_DESC1_HEADER_MODE_SHIFT));
1947 		head = (head + 1) & sde->sdma_mask;
1948 	}
1949 }
1950 
1951 /*
1952  * add the generation number into
1953  * the qw1 and return
1954  */
add_gen(struct sdma_engine * sde,u64 qw1)1955 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
1956 {
1957 	u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
1958 
1959 	qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
1960 	qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
1961 			<< SDMA_DESC1_GENERATION_SHIFT;
1962 	return qw1;
1963 }
1964 
1965 /*
1966  * This routine submits the indicated tx
1967  *
1968  * Space has already been guaranteed and
1969  * tail side of ring is locked.
1970  *
1971  * The hardware tail update is done
1972  * in the caller and that is facilitated
1973  * by returning the new tail.
1974  *
1975  * There is special case logic for ahg
1976  * to not add the generation number for
1977  * up to 2 descriptors that follow the
1978  * first descriptor.
1979  *
1980  */
submit_tx(struct sdma_engine * sde,struct sdma_txreq * tx)1981 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
1982 {
1983 	int i;
1984 	u16 tail;
1985 	struct sdma_desc *descp = tx->descp;
1986 	u8 skip = 0, mode = ahg_mode(tx);
1987 
1988 	tail = sde->descq_tail & sde->sdma_mask;
1989 	sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
1990 	sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
1991 	trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
1992 				   tail, &sde->descq[tail]);
1993 	tail = ++sde->descq_tail & sde->sdma_mask;
1994 	descp++;
1995 	if (mode > SDMA_AHG_APPLY_UPDATE1)
1996 		skip = mode >> 1;
1997 	for (i = 1; i < tx->num_desc; i++, descp++) {
1998 		u64 qw1;
1999 
2000 		sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2001 		if (skip) {
2002 			/* edits don't have generation */
2003 			qw1 = descp->qw[1];
2004 			skip--;
2005 		} else {
2006 			/* replace generation with real one for non-edits */
2007 			qw1 = add_gen(sde, descp->qw[1]);
2008 		}
2009 		sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2010 		trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2011 					   tail, &sde->descq[tail]);
2012 		tail = ++sde->descq_tail & sde->sdma_mask;
2013 	}
2014 	tx->next_descq_idx = tail;
2015 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2016 	tx->sn = sde->tail_sn++;
2017 	trace_hfi1_sdma_in_sn(sde, tx->sn);
2018 	WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2019 #endif
2020 	sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2021 	sde->desc_avail -= tx->num_desc;
2022 	return tail;
2023 }
2024 
2025 /*
2026  * Check for progress
2027  */
sdma_check_progress(struct sdma_engine * sde,struct iowait * wait,struct sdma_txreq * tx)2028 static int sdma_check_progress(
2029 	struct sdma_engine *sde,
2030 	struct iowait *wait,
2031 	struct sdma_txreq *tx)
2032 {
2033 	int ret;
2034 
2035 	sde->desc_avail = sdma_descq_freecnt(sde);
2036 	if (tx->num_desc <= sde->desc_avail)
2037 		return -EAGAIN;
2038 	/* pulse the head_lock */
2039 	if (wait && wait->sleep) {
2040 		unsigned seq;
2041 
2042 		seq = raw_seqcount_begin(
2043 			(const seqcount_t *)&sde->head_lock.seqcount);
2044 		ret = wait->sleep(sde, wait, tx, seq);
2045 		if (ret == -EAGAIN)
2046 			sde->desc_avail = sdma_descq_freecnt(sde);
2047 	} else
2048 		ret = -EBUSY;
2049 	return ret;
2050 }
2051 
2052 /**
2053  * sdma_send_txreq() - submit a tx req to ring
2054  * @sde: sdma engine to use
2055  * @wait: wait structure to use when full (may be NULL)
2056  * @tx: sdma_txreq to submit
2057  *
2058  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2059  * the packet will be queued to the list in wait.
2060  *
2061  * Return:
2062  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2063  * ring (wait == NULL)
2064  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2065  */
sdma_send_txreq(struct sdma_engine * sde,struct iowait * wait,struct sdma_txreq * tx)2066 int sdma_send_txreq(struct sdma_engine *sde,
2067 		    struct iowait *wait,
2068 		    struct sdma_txreq *tx)
2069 {
2070 	int ret = 0;
2071 	u16 tail;
2072 	unsigned long flags;
2073 
2074 	/* user should have supplied entire packet */
2075 	if (unlikely(tx->tlen))
2076 		return -EINVAL;
2077 	tx->wait = wait;
2078 	spin_lock_irqsave(&sde->tail_lock, flags);
2079 retry:
2080 	if (unlikely(!__sdma_running(sde)))
2081 		goto unlock_noconn;
2082 	if (unlikely(tx->num_desc > sde->desc_avail))
2083 		goto nodesc;
2084 	tail = submit_tx(sde, tx);
2085 	if (wait)
2086 		atomic_inc(&wait->sdma_busy);
2087 	sdma_update_tail(sde, tail);
2088 unlock:
2089 	spin_unlock_irqrestore(&sde->tail_lock, flags);
2090 	return ret;
2091 unlock_noconn:
2092 	if (wait)
2093 		atomic_inc(&wait->sdma_busy);
2094 	tx->next_descq_idx = 0;
2095 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2096 	tx->sn = sde->tail_sn++;
2097 	trace_hfi1_sdma_in_sn(sde, tx->sn);
2098 #endif
2099 	spin_lock(&sde->flushlist_lock);
2100 	list_add_tail(&tx->list, &sde->flushlist);
2101 	spin_unlock(&sde->flushlist_lock);
2102 	if (wait) {
2103 		wait->tx_count++;
2104 		wait->count += tx->num_desc;
2105 	}
2106 	schedule_work(&sde->flush_worker);
2107 	ret = -ECOMM;
2108 	goto unlock;
2109 nodesc:
2110 	ret = sdma_check_progress(sde, wait, tx);
2111 	if (ret == -EAGAIN) {
2112 		ret = 0;
2113 		goto retry;
2114 	}
2115 	sde->descq_full_count++;
2116 	goto unlock;
2117 }
2118 
2119 /**
2120  * sdma_send_txlist() - submit a list of tx req to ring
2121  * @sde: sdma engine to use
2122  * @wait: wait structure to use when full (may be NULL)
2123  * @tx_list: list of sdma_txreqs to submit
2124  *
2125  * The call submits the list into the ring.
2126  *
2127  * If the iowait structure is non-NULL and not equal to the iowait list
2128  * the unprocessed part of the list  will be appended to the list in wait.
2129  *
2130  * In all cases, the tx_list will be updated so the head of the tx_list is
2131  * the list of descriptors that have yet to be transmitted.
2132  *
2133  * The intent of this call is to provide a more efficient
2134  * way of submitting multiple packets to SDMA while holding the tail
2135  * side locking.
2136  *
2137  * Return:
2138  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring
2139  * (wait == NULL)
2140  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2141  */
sdma_send_txlist(struct sdma_engine * sde,struct iowait * wait,struct list_head * tx_list)2142 int sdma_send_txlist(struct sdma_engine *sde,
2143 		    struct iowait *wait,
2144 		    struct list_head *tx_list)
2145 {
2146 	struct sdma_txreq *tx, *tx_next;
2147 	int ret = 0;
2148 	unsigned long flags;
2149 	u16 tail = INVALID_TAIL;
2150 	int count = 0;
2151 
2152 	spin_lock_irqsave(&sde->tail_lock, flags);
2153 retry:
2154 	list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2155 		tx->wait = wait;
2156 		if (unlikely(!__sdma_running(sde)))
2157 			goto unlock_noconn;
2158 		if (unlikely(tx->num_desc > sde->desc_avail))
2159 			goto nodesc;
2160 		if (unlikely(tx->tlen)) {
2161 			ret = -EINVAL;
2162 			goto update_tail;
2163 		}
2164 		list_del_init(&tx->list);
2165 		tail = submit_tx(sde, tx);
2166 		count++;
2167 		if (tail != INVALID_TAIL &&
2168 		    (count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2169 			sdma_update_tail(sde, tail);
2170 			tail = INVALID_TAIL;
2171 		}
2172 	}
2173 update_tail:
2174 	if (wait)
2175 		atomic_add(count, &wait->sdma_busy);
2176 	if (tail != INVALID_TAIL)
2177 		sdma_update_tail(sde, tail);
2178 	spin_unlock_irqrestore(&sde->tail_lock, flags);
2179 	return ret;
2180 unlock_noconn:
2181 	spin_lock(&sde->flushlist_lock);
2182 	list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2183 		tx->wait = wait;
2184 		list_del_init(&tx->list);
2185 		if (wait)
2186 			atomic_inc(&wait->sdma_busy);
2187 		tx->next_descq_idx = 0;
2188 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2189 		tx->sn = sde->tail_sn++;
2190 		trace_hfi1_sdma_in_sn(sde, tx->sn);
2191 #endif
2192 		list_add_tail(&tx->list, &sde->flushlist);
2193 		if (wait) {
2194 			wait->tx_count++;
2195 			wait->count += tx->num_desc;
2196 		}
2197 	}
2198 	spin_unlock(&sde->flushlist_lock);
2199 	schedule_work(&sde->flush_worker);
2200 	ret = -ECOMM;
2201 	goto update_tail;
2202 nodesc:
2203 	ret = sdma_check_progress(sde, wait, tx);
2204 	if (ret == -EAGAIN) {
2205 		ret = 0;
2206 		goto retry;
2207 	}
2208 	sde->descq_full_count++;
2209 	goto update_tail;
2210 }
2211 
sdma_process_event(struct sdma_engine * sde,enum sdma_events event)2212 static void sdma_process_event(struct sdma_engine *sde,
2213 	enum sdma_events event)
2214 {
2215 	unsigned long flags;
2216 
2217 	spin_lock_irqsave(&sde->tail_lock, flags);
2218 	write_seqlock(&sde->head_lock);
2219 
2220 	__sdma_process_event(sde, event);
2221 
2222 	if (sde->state.current_state == sdma_state_s99_running)
2223 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2224 
2225 	write_sequnlock(&sde->head_lock);
2226 	spin_unlock_irqrestore(&sde->tail_lock, flags);
2227 }
2228 
__sdma_process_event(struct sdma_engine * sde,enum sdma_events event)2229 static void __sdma_process_event(struct sdma_engine *sde,
2230 	enum sdma_events event)
2231 {
2232 	struct sdma_state *ss = &sde->state;
2233 	int need_progress = 0;
2234 
2235 	/* CONFIG SDMA temporary */
2236 #ifdef CONFIG_SDMA_VERBOSITY
2237 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2238 		   sdma_state_names[ss->current_state],
2239 		   sdma_event_names[event]);
2240 #endif
2241 
2242 	switch (ss->current_state) {
2243 	case sdma_state_s00_hw_down:
2244 		switch (event) {
2245 		case sdma_event_e00_go_hw_down:
2246 			break;
2247 		case sdma_event_e30_go_running:
2248 			/*
2249 			 * If down, but running requested (usually result
2250 			 * of link up, then we need to start up.
2251 			 * This can happen when hw down is requested while
2252 			 * bringing the link up with traffic active on
2253 			 * 7220, e.g. */
2254 			ss->go_s99_running = 1;
2255 			/* fall through and start dma engine */
2256 		case sdma_event_e10_go_hw_start:
2257 			/* This reference means the state machine is started */
2258 			sdma_get(&sde->state);
2259 			sdma_set_state(sde,
2260 				sdma_state_s10_hw_start_up_halt_wait);
2261 			break;
2262 		case sdma_event_e15_hw_halt_done:
2263 			break;
2264 		case sdma_event_e25_hw_clean_up_done:
2265 			break;
2266 		case sdma_event_e40_sw_cleaned:
2267 			sdma_sw_tear_down(sde);
2268 			break;
2269 		case sdma_event_e50_hw_cleaned:
2270 			break;
2271 		case sdma_event_e60_hw_halted:
2272 			break;
2273 		case sdma_event_e70_go_idle:
2274 			break;
2275 		case sdma_event_e80_hw_freeze:
2276 			break;
2277 		case sdma_event_e81_hw_frozen:
2278 			break;
2279 		case sdma_event_e82_hw_unfreeze:
2280 			break;
2281 		case sdma_event_e85_link_down:
2282 			break;
2283 		case sdma_event_e90_sw_halted:
2284 			break;
2285 		}
2286 		break;
2287 
2288 	case sdma_state_s10_hw_start_up_halt_wait:
2289 		switch (event) {
2290 		case sdma_event_e00_go_hw_down:
2291 			sdma_set_state(sde, sdma_state_s00_hw_down);
2292 			sdma_sw_tear_down(sde);
2293 			break;
2294 		case sdma_event_e10_go_hw_start:
2295 			break;
2296 		case sdma_event_e15_hw_halt_done:
2297 			sdma_set_state(sde,
2298 				sdma_state_s15_hw_start_up_clean_wait);
2299 			sdma_start_hw_clean_up(sde);
2300 			break;
2301 		case sdma_event_e25_hw_clean_up_done:
2302 			break;
2303 		case sdma_event_e30_go_running:
2304 			ss->go_s99_running = 1;
2305 			break;
2306 		case sdma_event_e40_sw_cleaned:
2307 			break;
2308 		case sdma_event_e50_hw_cleaned:
2309 			break;
2310 		case sdma_event_e60_hw_halted:
2311 			sdma_start_err_halt_wait(sde);
2312 			break;
2313 		case sdma_event_e70_go_idle:
2314 			ss->go_s99_running = 0;
2315 			break;
2316 		case sdma_event_e80_hw_freeze:
2317 			break;
2318 		case sdma_event_e81_hw_frozen:
2319 			break;
2320 		case sdma_event_e82_hw_unfreeze:
2321 			break;
2322 		case sdma_event_e85_link_down:
2323 			break;
2324 		case sdma_event_e90_sw_halted:
2325 			break;
2326 		}
2327 		break;
2328 
2329 	case sdma_state_s15_hw_start_up_clean_wait:
2330 		switch (event) {
2331 		case sdma_event_e00_go_hw_down:
2332 			sdma_set_state(sde, sdma_state_s00_hw_down);
2333 			sdma_sw_tear_down(sde);
2334 			break;
2335 		case sdma_event_e10_go_hw_start:
2336 			break;
2337 		case sdma_event_e15_hw_halt_done:
2338 			break;
2339 		case sdma_event_e25_hw_clean_up_done:
2340 			sdma_hw_start_up(sde);
2341 			sdma_set_state(sde, ss->go_s99_running ?
2342 				       sdma_state_s99_running :
2343 				       sdma_state_s20_idle);
2344 			break;
2345 		case sdma_event_e30_go_running:
2346 			ss->go_s99_running = 1;
2347 			break;
2348 		case sdma_event_e40_sw_cleaned:
2349 			break;
2350 		case sdma_event_e50_hw_cleaned:
2351 			break;
2352 		case sdma_event_e60_hw_halted:
2353 			break;
2354 		case sdma_event_e70_go_idle:
2355 			ss->go_s99_running = 0;
2356 			break;
2357 		case sdma_event_e80_hw_freeze:
2358 			break;
2359 		case sdma_event_e81_hw_frozen:
2360 			break;
2361 		case sdma_event_e82_hw_unfreeze:
2362 			break;
2363 		case sdma_event_e85_link_down:
2364 			break;
2365 		case sdma_event_e90_sw_halted:
2366 			break;
2367 		}
2368 		break;
2369 
2370 	case sdma_state_s20_idle:
2371 		switch (event) {
2372 		case sdma_event_e00_go_hw_down:
2373 			sdma_set_state(sde, sdma_state_s00_hw_down);
2374 			sdma_sw_tear_down(sde);
2375 			break;
2376 		case sdma_event_e10_go_hw_start:
2377 			break;
2378 		case sdma_event_e15_hw_halt_done:
2379 			break;
2380 		case sdma_event_e25_hw_clean_up_done:
2381 			break;
2382 		case sdma_event_e30_go_running:
2383 			sdma_set_state(sde, sdma_state_s99_running);
2384 			ss->go_s99_running = 1;
2385 			break;
2386 		case sdma_event_e40_sw_cleaned:
2387 			break;
2388 		case sdma_event_e50_hw_cleaned:
2389 			break;
2390 		case sdma_event_e60_hw_halted:
2391 			sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2392 			sdma_start_err_halt_wait(sde);
2393 			break;
2394 		case sdma_event_e70_go_idle:
2395 			break;
2396 		case sdma_event_e85_link_down:
2397 			/* fall through */
2398 		case sdma_event_e80_hw_freeze:
2399 			sdma_set_state(sde, sdma_state_s80_hw_freeze);
2400 			atomic_dec(&sde->dd->sdma_unfreeze_count);
2401 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2402 			break;
2403 		case sdma_event_e81_hw_frozen:
2404 			break;
2405 		case sdma_event_e82_hw_unfreeze:
2406 			break;
2407 		case sdma_event_e90_sw_halted:
2408 			break;
2409 		}
2410 		break;
2411 
2412 	case sdma_state_s30_sw_clean_up_wait:
2413 		switch (event) {
2414 		case sdma_event_e00_go_hw_down:
2415 			sdma_set_state(sde, sdma_state_s00_hw_down);
2416 			break;
2417 		case sdma_event_e10_go_hw_start:
2418 			break;
2419 		case sdma_event_e15_hw_halt_done:
2420 			break;
2421 		case sdma_event_e25_hw_clean_up_done:
2422 			break;
2423 		case sdma_event_e30_go_running:
2424 			ss->go_s99_running = 1;
2425 			break;
2426 		case sdma_event_e40_sw_cleaned:
2427 			sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2428 			sdma_start_hw_clean_up(sde);
2429 			break;
2430 		case sdma_event_e50_hw_cleaned:
2431 			break;
2432 		case sdma_event_e60_hw_halted:
2433 			break;
2434 		case sdma_event_e70_go_idle:
2435 			ss->go_s99_running = 0;
2436 			break;
2437 		case sdma_event_e80_hw_freeze:
2438 			break;
2439 		case sdma_event_e81_hw_frozen:
2440 			break;
2441 		case sdma_event_e82_hw_unfreeze:
2442 			break;
2443 		case sdma_event_e85_link_down:
2444 			ss->go_s99_running = 0;
2445 			break;
2446 		case sdma_event_e90_sw_halted:
2447 			break;
2448 		}
2449 		break;
2450 
2451 	case sdma_state_s40_hw_clean_up_wait:
2452 		switch (event) {
2453 		case sdma_event_e00_go_hw_down:
2454 			sdma_set_state(sde, sdma_state_s00_hw_down);
2455 			sdma_start_sw_clean_up(sde);
2456 			break;
2457 		case sdma_event_e10_go_hw_start:
2458 			break;
2459 		case sdma_event_e15_hw_halt_done:
2460 			break;
2461 		case sdma_event_e25_hw_clean_up_done:
2462 			sdma_hw_start_up(sde);
2463 			sdma_set_state(sde, ss->go_s99_running ?
2464 				       sdma_state_s99_running :
2465 				       sdma_state_s20_idle);
2466 			break;
2467 		case sdma_event_e30_go_running:
2468 			ss->go_s99_running = 1;
2469 			break;
2470 		case sdma_event_e40_sw_cleaned:
2471 			break;
2472 		case sdma_event_e50_hw_cleaned:
2473 			break;
2474 		case sdma_event_e60_hw_halted:
2475 			break;
2476 		case sdma_event_e70_go_idle:
2477 			ss->go_s99_running = 0;
2478 			break;
2479 		case sdma_event_e80_hw_freeze:
2480 			break;
2481 		case sdma_event_e81_hw_frozen:
2482 			break;
2483 		case sdma_event_e82_hw_unfreeze:
2484 			break;
2485 		case sdma_event_e85_link_down:
2486 			ss->go_s99_running = 0;
2487 			break;
2488 		case sdma_event_e90_sw_halted:
2489 			break;
2490 		}
2491 		break;
2492 
2493 	case sdma_state_s50_hw_halt_wait:
2494 		switch (event) {
2495 		case sdma_event_e00_go_hw_down:
2496 			sdma_set_state(sde, sdma_state_s00_hw_down);
2497 			sdma_start_sw_clean_up(sde);
2498 			break;
2499 		case sdma_event_e10_go_hw_start:
2500 			break;
2501 		case sdma_event_e15_hw_halt_done:
2502 			sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2503 			sdma_start_sw_clean_up(sde);
2504 			break;
2505 		case sdma_event_e25_hw_clean_up_done:
2506 			break;
2507 		case sdma_event_e30_go_running:
2508 			ss->go_s99_running = 1;
2509 			break;
2510 		case sdma_event_e40_sw_cleaned:
2511 			break;
2512 		case sdma_event_e50_hw_cleaned:
2513 			break;
2514 		case sdma_event_e60_hw_halted:
2515 			sdma_start_err_halt_wait(sde);
2516 			break;
2517 		case sdma_event_e70_go_idle:
2518 			ss->go_s99_running = 0;
2519 			break;
2520 		case sdma_event_e80_hw_freeze:
2521 			break;
2522 		case sdma_event_e81_hw_frozen:
2523 			break;
2524 		case sdma_event_e82_hw_unfreeze:
2525 			break;
2526 		case sdma_event_e85_link_down:
2527 			ss->go_s99_running = 0;
2528 			break;
2529 		case sdma_event_e90_sw_halted:
2530 			break;
2531 		}
2532 		break;
2533 
2534 	case sdma_state_s60_idle_halt_wait:
2535 		switch (event) {
2536 		case sdma_event_e00_go_hw_down:
2537 			sdma_set_state(sde, sdma_state_s00_hw_down);
2538 			sdma_start_sw_clean_up(sde);
2539 			break;
2540 		case sdma_event_e10_go_hw_start:
2541 			break;
2542 		case sdma_event_e15_hw_halt_done:
2543 			sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2544 			sdma_start_sw_clean_up(sde);
2545 			break;
2546 		case sdma_event_e25_hw_clean_up_done:
2547 			break;
2548 		case sdma_event_e30_go_running:
2549 			ss->go_s99_running = 1;
2550 			break;
2551 		case sdma_event_e40_sw_cleaned:
2552 			break;
2553 		case sdma_event_e50_hw_cleaned:
2554 			break;
2555 		case sdma_event_e60_hw_halted:
2556 			sdma_start_err_halt_wait(sde);
2557 			break;
2558 		case sdma_event_e70_go_idle:
2559 			ss->go_s99_running = 0;
2560 			break;
2561 		case sdma_event_e80_hw_freeze:
2562 			break;
2563 		case sdma_event_e81_hw_frozen:
2564 			break;
2565 		case sdma_event_e82_hw_unfreeze:
2566 			break;
2567 		case sdma_event_e85_link_down:
2568 			break;
2569 		case sdma_event_e90_sw_halted:
2570 			break;
2571 		}
2572 		break;
2573 
2574 	case sdma_state_s80_hw_freeze:
2575 		switch (event) {
2576 		case sdma_event_e00_go_hw_down:
2577 			sdma_set_state(sde, sdma_state_s00_hw_down);
2578 			sdma_start_sw_clean_up(sde);
2579 			break;
2580 		case sdma_event_e10_go_hw_start:
2581 			break;
2582 		case sdma_event_e15_hw_halt_done:
2583 			break;
2584 		case sdma_event_e25_hw_clean_up_done:
2585 			break;
2586 		case sdma_event_e30_go_running:
2587 			ss->go_s99_running = 1;
2588 			break;
2589 		case sdma_event_e40_sw_cleaned:
2590 			break;
2591 		case sdma_event_e50_hw_cleaned:
2592 			break;
2593 		case sdma_event_e60_hw_halted:
2594 			break;
2595 		case sdma_event_e70_go_idle:
2596 			ss->go_s99_running = 0;
2597 			break;
2598 		case sdma_event_e80_hw_freeze:
2599 			break;
2600 		case sdma_event_e81_hw_frozen:
2601 			sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2602 			sdma_start_sw_clean_up(sde);
2603 			break;
2604 		case sdma_event_e82_hw_unfreeze:
2605 			break;
2606 		case sdma_event_e85_link_down:
2607 			break;
2608 		case sdma_event_e90_sw_halted:
2609 			break;
2610 		}
2611 		break;
2612 
2613 	case sdma_state_s82_freeze_sw_clean:
2614 		switch (event) {
2615 		case sdma_event_e00_go_hw_down:
2616 			sdma_set_state(sde, sdma_state_s00_hw_down);
2617 			sdma_start_sw_clean_up(sde);
2618 			break;
2619 		case sdma_event_e10_go_hw_start:
2620 			break;
2621 		case sdma_event_e15_hw_halt_done:
2622 			break;
2623 		case sdma_event_e25_hw_clean_up_done:
2624 			break;
2625 		case sdma_event_e30_go_running:
2626 			ss->go_s99_running = 1;
2627 			break;
2628 		case sdma_event_e40_sw_cleaned:
2629 			/* notify caller this engine is done cleaning */
2630 			atomic_dec(&sde->dd->sdma_unfreeze_count);
2631 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2632 			break;
2633 		case sdma_event_e50_hw_cleaned:
2634 			break;
2635 		case sdma_event_e60_hw_halted:
2636 			break;
2637 		case sdma_event_e70_go_idle:
2638 			ss->go_s99_running = 0;
2639 			break;
2640 		case sdma_event_e80_hw_freeze:
2641 			break;
2642 		case sdma_event_e81_hw_frozen:
2643 			break;
2644 		case sdma_event_e82_hw_unfreeze:
2645 			sdma_hw_start_up(sde);
2646 			sdma_set_state(sde, ss->go_s99_running ?
2647 				       sdma_state_s99_running :
2648 				       sdma_state_s20_idle);
2649 			break;
2650 		case sdma_event_e85_link_down:
2651 			break;
2652 		case sdma_event_e90_sw_halted:
2653 			break;
2654 		}
2655 		break;
2656 
2657 	case sdma_state_s99_running:
2658 		switch (event) {
2659 		case sdma_event_e00_go_hw_down:
2660 			sdma_set_state(sde, sdma_state_s00_hw_down);
2661 			sdma_start_sw_clean_up(sde);
2662 			break;
2663 		case sdma_event_e10_go_hw_start:
2664 			break;
2665 		case sdma_event_e15_hw_halt_done:
2666 			break;
2667 		case sdma_event_e25_hw_clean_up_done:
2668 			break;
2669 		case sdma_event_e30_go_running:
2670 			break;
2671 		case sdma_event_e40_sw_cleaned:
2672 			break;
2673 		case sdma_event_e50_hw_cleaned:
2674 			break;
2675 		case sdma_event_e60_hw_halted:
2676 			need_progress = 1;
2677 			sdma_err_progress_check_schedule(sde);
2678 		case sdma_event_e90_sw_halted:
2679 			/*
2680 			* SW initiated halt does not perform engines
2681 			* progress check
2682 			*/
2683 			sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2684 			sdma_start_err_halt_wait(sde);
2685 			break;
2686 		case sdma_event_e70_go_idle:
2687 			sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
2688 			break;
2689 		case sdma_event_e85_link_down:
2690 			ss->go_s99_running = 0;
2691 			/* fall through */
2692 		case sdma_event_e80_hw_freeze:
2693 			sdma_set_state(sde, sdma_state_s80_hw_freeze);
2694 			atomic_dec(&sde->dd->sdma_unfreeze_count);
2695 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2696 			break;
2697 		case sdma_event_e81_hw_frozen:
2698 			break;
2699 		case sdma_event_e82_hw_unfreeze:
2700 			break;
2701 		}
2702 		break;
2703 	}
2704 
2705 	ss->last_event = event;
2706 	if (need_progress)
2707 		sdma_make_progress(sde, 0);
2708 }
2709 
2710 /*
2711  * _extend_sdma_tx_descs() - helper to extend txreq
2712  *
2713  * This is called once the initial nominal allocation
2714  * of descriptors in the sdma_txreq is exhausted.
2715  *
2716  * The code will bump the allocation up to the max
2717  * of MAX_DESC (64) descriptors. There doesn't seem
2718  * much point in an interim step. The last descriptor
2719  * is reserved for coalesce buffer in order to support
2720  * cases where input packet has >MAX_DESC iovecs.
2721  *
2722  */
_extend_sdma_tx_descs(struct hfi1_devdata * dd,struct sdma_txreq * tx)2723 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2724 {
2725 	int i;
2726 
2727 	/* Handle last descriptor */
2728 	if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
2729 		/* if tlen is 0, it is for padding, release last descriptor */
2730 		if (!tx->tlen) {
2731 			tx->desc_limit = MAX_DESC;
2732 		} else if (!tx->coalesce_buf) {
2733 			/* allocate coalesce buffer with space for padding */
2734 			tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
2735 						   GFP_ATOMIC);
2736 			if (!tx->coalesce_buf)
2737 				return -ENOMEM;
2738 
2739 			tx->coalesce_idx = 0;
2740 		}
2741 		return 0;
2742 	}
2743 
2744 	if (unlikely(tx->num_desc == MAX_DESC))
2745 		return -ENOMEM;
2746 
2747 	tx->descp = kmalloc_array(
2748 			MAX_DESC,
2749 			sizeof(struct sdma_desc),
2750 			GFP_ATOMIC);
2751 	if (!tx->descp)
2752 		return -ENOMEM;
2753 
2754 	/* reserve last descriptor for coalescing */
2755 	tx->desc_limit = MAX_DESC - 1;
2756 	/* copy ones already built */
2757 	for (i = 0; i < tx->num_desc; i++)
2758 		tx->descp[i] = tx->descs[i];
2759 	return 0;
2760 }
2761 
2762 /*
2763  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
2764  *
2765  * This is called once the initial nominal allocation of descriptors
2766  * in the sdma_txreq is exhausted.
2767  *
2768  * This function calls _extend_sdma_tx_descs to extend or allocate
2769  * coalesce buffer. If there is a allocated coalesce buffer, it will
2770  * copy the input packet data into the coalesce buffer. It also adds
2771  * coalesce buffer descriptor once whe whole packet is received.
2772  *
2773  * Return:
2774  * <0 - error
2775  * 0 - coalescing, don't populate descriptor
2776  * 1 - continue with populating descriptor
2777  */
ext_coal_sdma_tx_descs(struct hfi1_devdata * dd,struct sdma_txreq * tx,int type,void * kvaddr,struct page * page,unsigned long offset,u16 len)2778 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
2779 			   int type, void *kvaddr, struct page *page,
2780 			   unsigned long offset, u16 len)
2781 {
2782 	int pad_len, rval;
2783 	dma_addr_t addr;
2784 
2785 	rval = _extend_sdma_tx_descs(dd, tx);
2786 	if (rval) {
2787 		sdma_txclean(dd, tx);
2788 		return rval;
2789 	}
2790 
2791 	/* If coalesce buffer is allocated, copy data into it */
2792 	if (tx->coalesce_buf) {
2793 		if (type == SDMA_MAP_NONE) {
2794 			sdma_txclean(dd, tx);
2795 			return -EINVAL;
2796 		}
2797 
2798 		if (type == SDMA_MAP_PAGE) {
2799 			kvaddr = kmap(page);
2800 			kvaddr += offset;
2801 		} else if (WARN_ON(!kvaddr)) {
2802 			sdma_txclean(dd, tx);
2803 			return -EINVAL;
2804 		}
2805 
2806 		memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
2807 		tx->coalesce_idx += len;
2808 		if (type == SDMA_MAP_PAGE)
2809 			kunmap(page);
2810 
2811 		/* If there is more data, return */
2812 		if (tx->tlen - tx->coalesce_idx)
2813 			return 0;
2814 
2815 		/* Whole packet is received; add any padding */
2816 		pad_len = tx->packet_len & (sizeof(u32) - 1);
2817 		if (pad_len) {
2818 			pad_len = sizeof(u32) - pad_len;
2819 			memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
2820 			/* padding is taken care of for coalescing case */
2821 			tx->packet_len += pad_len;
2822 			tx->tlen += pad_len;
2823 		}
2824 
2825 		/* dma map the coalesce buffer */
2826 		addr = dma_map_single(&dd->pcidev->dev,
2827 				      tx->coalesce_buf,
2828 				      tx->tlen,
2829 				      DMA_TO_DEVICE);
2830 
2831 		if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
2832 			sdma_txclean(dd, tx);
2833 			return -ENOSPC;
2834 		}
2835 
2836 		/* Add descriptor for coalesce buffer */
2837 		tx->desc_limit = MAX_DESC;
2838 		return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
2839 					 addr, tx->tlen);
2840 	}
2841 
2842 	return 1;
2843 }
2844 
2845 /* Update sdes when the lmc changes */
sdma_update_lmc(struct hfi1_devdata * dd,u64 mask,u32 lid)2846 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
2847 {
2848 	struct sdma_engine *sde;
2849 	int i;
2850 	u64 sreg;
2851 
2852 	sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
2853 		SD(CHECK_SLID_MASK_SHIFT)) |
2854 		(((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
2855 		SD(CHECK_SLID_VALUE_SHIFT));
2856 
2857 	for (i = 0; i < dd->num_sdma; i++) {
2858 		hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
2859 			  i, (u32)sreg);
2860 		sde = &dd->per_sdma[i];
2861 		write_sde_csr(sde, SD(CHECK_SLID), sreg);
2862 	}
2863 }
2864 
2865 /* tx not dword sized - pad */
_pad_sdma_tx_descs(struct hfi1_devdata * dd,struct sdma_txreq * tx)2866 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
2867 {
2868 	int rval = 0;
2869 
2870 	tx->num_desc++;
2871 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
2872 		rval = _extend_sdma_tx_descs(dd, tx);
2873 		if (rval) {
2874 			sdma_txclean(dd, tx);
2875 			return rval;
2876 		}
2877 	}
2878 	/* finish the one just added */
2879 	make_tx_sdma_desc(
2880 		tx,
2881 		SDMA_MAP_NONE,
2882 		dd->sdma_pad_phys,
2883 		sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
2884 	_sdma_close_tx(dd, tx);
2885 	return rval;
2886 }
2887 
2888 /*
2889  * Add ahg to the sdma_txreq
2890  *
2891  * The logic will consume up to 3
2892  * descriptors at the beginning of
2893  * sdma_txreq.
2894  */
_sdma_txreq_ahgadd(struct sdma_txreq * tx,u8 num_ahg,u8 ahg_entry,u32 * ahg,u8 ahg_hlen)2895 void _sdma_txreq_ahgadd(
2896 	struct sdma_txreq *tx,
2897 	u8 num_ahg,
2898 	u8 ahg_entry,
2899 	u32 *ahg,
2900 	u8 ahg_hlen)
2901 {
2902 	u32 i, shift = 0, desc = 0;
2903 	u8 mode;
2904 
2905 	WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
2906 	/* compute mode */
2907 	if (num_ahg == 1)
2908 		mode = SDMA_AHG_APPLY_UPDATE1;
2909 	else if (num_ahg <= 5)
2910 		mode = SDMA_AHG_APPLY_UPDATE2;
2911 	else
2912 		mode = SDMA_AHG_APPLY_UPDATE3;
2913 	tx->num_desc++;
2914 	/* initialize to consumed descriptors to zero */
2915 	switch (mode) {
2916 	case SDMA_AHG_APPLY_UPDATE3:
2917 		tx->num_desc++;
2918 		tx->descs[2].qw[0] = 0;
2919 		tx->descs[2].qw[1] = 0;
2920 		/* FALLTHROUGH */
2921 	case SDMA_AHG_APPLY_UPDATE2:
2922 		tx->num_desc++;
2923 		tx->descs[1].qw[0] = 0;
2924 		tx->descs[1].qw[1] = 0;
2925 		break;
2926 	}
2927 	ahg_hlen >>= 2;
2928 	tx->descs[0].qw[1] |=
2929 		(((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
2930 			<< SDMA_DESC1_HEADER_INDEX_SHIFT) |
2931 		(((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
2932 			<< SDMA_DESC1_HEADER_DWS_SHIFT) |
2933 		(((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
2934 			<< SDMA_DESC1_HEADER_MODE_SHIFT) |
2935 		(((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
2936 			<< SDMA_DESC1_HEADER_UPDATE1_SHIFT);
2937 	for (i = 0; i < (num_ahg - 1); i++) {
2938 		if (!shift && !(i & 2))
2939 			desc++;
2940 		tx->descs[desc].qw[!!(i & 2)] |=
2941 			(((u64)ahg[i + 1])
2942 				<< shift);
2943 		shift = (shift + 32) & 63;
2944 	}
2945 }
2946 
2947 /**
2948  * sdma_ahg_alloc - allocate an AHG entry
2949  * @sde: engine to allocate from
2950  *
2951  * Return:
2952  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
2953  * -ENOSPC if an entry is not available
2954  */
sdma_ahg_alloc(struct sdma_engine * sde)2955 int sdma_ahg_alloc(struct sdma_engine *sde)
2956 {
2957 	int nr;
2958 	int oldbit;
2959 
2960 	if (!sde) {
2961 		trace_hfi1_ahg_allocate(sde, -EINVAL);
2962 		return -EINVAL;
2963 	}
2964 	while (1) {
2965 		nr = ffz(ACCESS_ONCE(sde->ahg_bits));
2966 		if (nr > 31) {
2967 			trace_hfi1_ahg_allocate(sde, -ENOSPC);
2968 			return -ENOSPC;
2969 		}
2970 		oldbit = test_and_set_bit(nr, &sde->ahg_bits);
2971 		if (!oldbit)
2972 			break;
2973 		cpu_relax();
2974 	}
2975 	trace_hfi1_ahg_allocate(sde, nr);
2976 	return nr;
2977 }
2978 
2979 /**
2980  * sdma_ahg_free - free an AHG entry
2981  * @sde: engine to return AHG entry
2982  * @ahg_index: index to free
2983  *
2984  * This routine frees the indicate AHG entry.
2985  */
sdma_ahg_free(struct sdma_engine * sde,int ahg_index)2986 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
2987 {
2988 	if (!sde)
2989 		return;
2990 	trace_hfi1_ahg_deallocate(sde, ahg_index);
2991 	if (ahg_index < 0 || ahg_index > 31)
2992 		return;
2993 	clear_bit(ahg_index, &sde->ahg_bits);
2994 }
2995 
2996 /*
2997  * SPC freeze handling for SDMA engines.  Called when the driver knows
2998  * the SPC is going into a freeze but before the freeze is fully
2999  * settled.  Generally an error interrupt.
3000  *
3001  * This event will pull the engine out of running so no more entries can be
3002  * added to the engine's queue.
3003  */
sdma_freeze_notify(struct hfi1_devdata * dd,int link_down)3004 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3005 {
3006 	int i;
3007 	enum sdma_events event = link_down ? sdma_event_e85_link_down :
3008 					     sdma_event_e80_hw_freeze;
3009 
3010 	/* set up the wait but do not wait here */
3011 	atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3012 
3013 	/* tell all engines to stop running and wait */
3014 	for (i = 0; i < dd->num_sdma; i++)
3015 		sdma_process_event(&dd->per_sdma[i], event);
3016 
3017 	/* sdma_freeze() will wait for all engines to have stopped */
3018 }
3019 
3020 /*
3021  * SPC freeze handling for SDMA engines.  Called when the driver knows
3022  * the SPC is fully frozen.
3023  */
sdma_freeze(struct hfi1_devdata * dd)3024 void sdma_freeze(struct hfi1_devdata *dd)
3025 {
3026 	int i;
3027 	int ret;
3028 
3029 	/*
3030 	 * Make sure all engines have moved out of the running state before
3031 	 * continuing.
3032 	 */
3033 	ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3034 				atomic_read(&dd->sdma_unfreeze_count) <= 0);
3035 	/* interrupted or count is negative, then unloading - just exit */
3036 	if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3037 		return;
3038 
3039 	/* set up the count for the next wait */
3040 	atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3041 
3042 	/* tell all engines that the SPC is frozen, they can start cleaning */
3043 	for (i = 0; i < dd->num_sdma; i++)
3044 		sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3045 
3046 	/*
3047 	 * Wait for everyone to finish software clean before exiting.  The
3048 	 * software clean will read engine CSRs, so must be completed before
3049 	 * the next step, which will clear the engine CSRs.
3050 	 */
3051 	(void) wait_event_interruptible(dd->sdma_unfreeze_wq,
3052 				atomic_read(&dd->sdma_unfreeze_count) <= 0);
3053 	/* no need to check results - done no matter what */
3054 }
3055 
3056 /*
3057  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3058  *
3059  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3060  * that is left is a software clean.  We could do it after the SPC is fully
3061  * frozen, but then we'd have to add another state to wait for the unfreeze.
3062  * Instead, just defer the software clean until the unfreeze step.
3063  */
sdma_unfreeze(struct hfi1_devdata * dd)3064 void sdma_unfreeze(struct hfi1_devdata *dd)
3065 {
3066 	int i;
3067 
3068 	/* tell all engines start freeze clean up */
3069 	for (i = 0; i < dd->num_sdma; i++)
3070 		sdma_process_event(&dd->per_sdma[i],
3071 					sdma_event_e82_hw_unfreeze);
3072 }
3073 
3074 /**
3075  * _sdma_engine_progress_schedule() - schedule progress on engine
3076  * @sde: sdma_engine to schedule progress
3077  *
3078  */
_sdma_engine_progress_schedule(struct sdma_engine * sde)3079 void _sdma_engine_progress_schedule(
3080 	struct sdma_engine *sde)
3081 {
3082 	trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3083 	/* assume we have selected a good cpu */
3084 	write_csr(sde->dd,
3085 		  CCE_INT_FORCE + (8*(IS_SDMA_START/64)), sde->progress_mask);
3086 }
3087