• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29 
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39 
40 static struct kmem_cache *f2fs_inode_cachep;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 
44 char *fault_name[FAULT_MAX] = {
45 	[FAULT_KMALLOC]		= "kmalloc",
46 	[FAULT_KVMALLOC]	= "kvmalloc",
47 	[FAULT_PAGE_ALLOC]	= "page alloc",
48 	[FAULT_PAGE_GET]	= "page get",
49 	[FAULT_ALLOC_BIO]	= "alloc bio",
50 	[FAULT_ALLOC_NID]	= "alloc nid",
51 	[FAULT_ORPHAN]		= "orphan",
52 	[FAULT_BLOCK]		= "no more block",
53 	[FAULT_DIR_DEPTH]	= "too big dir depth",
54 	[FAULT_EVICT_INODE]	= "evict_inode fail",
55 	[FAULT_TRUNCATE]	= "truncate fail",
56 	[FAULT_IO]		= "IO error",
57 	[FAULT_CHECKPOINT]	= "checkpoint error",
58 };
59 
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned int rate)60 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
61 						unsigned int rate)
62 {
63 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
64 
65 	if (rate) {
66 		atomic_set(&ffi->inject_ops, 0);
67 		ffi->inject_rate = rate;
68 		ffi->inject_type = (1 << FAULT_MAX) - 1;
69 	} else {
70 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
71 	}
72 }
73 #endif
74 
75 /* f2fs-wide shrinker description */
76 static struct shrinker f2fs_shrinker_info = {
77 	.scan_objects = f2fs_shrink_scan,
78 	.count_objects = f2fs_shrink_count,
79 	.seeks = DEFAULT_SEEKS,
80 };
81 
82 enum {
83 	Opt_gc_background,
84 	Opt_disable_roll_forward,
85 	Opt_norecovery,
86 	Opt_discard,
87 	Opt_nodiscard,
88 	Opt_noheap,
89 	Opt_heap,
90 	Opt_user_xattr,
91 	Opt_nouser_xattr,
92 	Opt_acl,
93 	Opt_noacl,
94 	Opt_active_logs,
95 	Opt_disable_ext_identify,
96 	Opt_inline_xattr,
97 	Opt_noinline_xattr,
98 	Opt_inline_xattr_size,
99 	Opt_inline_data,
100 	Opt_inline_dentry,
101 	Opt_noinline_dentry,
102 	Opt_flush_merge,
103 	Opt_noflush_merge,
104 	Opt_nobarrier,
105 	Opt_fastboot,
106 	Opt_extent_cache,
107 	Opt_noextent_cache,
108 	Opt_noinline_data,
109 	Opt_data_flush,
110 	Opt_reserve_root,
111 	Opt_resgid,
112 	Opt_resuid,
113 	Opt_mode,
114 	Opt_io_size_bits,
115 	Opt_fault_injection,
116 	Opt_lazytime,
117 	Opt_nolazytime,
118 	Opt_quota,
119 	Opt_noquota,
120 	Opt_usrquota,
121 	Opt_grpquota,
122 	Opt_prjquota,
123 	Opt_usrjquota,
124 	Opt_grpjquota,
125 	Opt_prjjquota,
126 	Opt_offusrjquota,
127 	Opt_offgrpjquota,
128 	Opt_offprjjquota,
129 	Opt_jqfmt_vfsold,
130 	Opt_jqfmt_vfsv0,
131 	Opt_jqfmt_vfsv1,
132 	Opt_whint,
133 	Opt_alloc,
134 	Opt_fsync,
135 	Opt_test_dummy_encryption,
136 	Opt_err,
137 };
138 
139 static match_table_t f2fs_tokens = {
140 	{Opt_gc_background, "background_gc=%s"},
141 	{Opt_disable_roll_forward, "disable_roll_forward"},
142 	{Opt_norecovery, "norecovery"},
143 	{Opt_discard, "discard"},
144 	{Opt_nodiscard, "nodiscard"},
145 	{Opt_noheap, "no_heap"},
146 	{Opt_heap, "heap"},
147 	{Opt_user_xattr, "user_xattr"},
148 	{Opt_nouser_xattr, "nouser_xattr"},
149 	{Opt_acl, "acl"},
150 	{Opt_noacl, "noacl"},
151 	{Opt_active_logs, "active_logs=%u"},
152 	{Opt_disable_ext_identify, "disable_ext_identify"},
153 	{Opt_inline_xattr, "inline_xattr"},
154 	{Opt_noinline_xattr, "noinline_xattr"},
155 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
156 	{Opt_inline_data, "inline_data"},
157 	{Opt_inline_dentry, "inline_dentry"},
158 	{Opt_noinline_dentry, "noinline_dentry"},
159 	{Opt_flush_merge, "flush_merge"},
160 	{Opt_noflush_merge, "noflush_merge"},
161 	{Opt_nobarrier, "nobarrier"},
162 	{Opt_fastboot, "fastboot"},
163 	{Opt_extent_cache, "extent_cache"},
164 	{Opt_noextent_cache, "noextent_cache"},
165 	{Opt_noinline_data, "noinline_data"},
166 	{Opt_data_flush, "data_flush"},
167 	{Opt_reserve_root, "reserve_root=%u"},
168 	{Opt_resgid, "resgid=%u"},
169 	{Opt_resuid, "resuid=%u"},
170 	{Opt_mode, "mode=%s"},
171 	{Opt_io_size_bits, "io_bits=%u"},
172 	{Opt_fault_injection, "fault_injection=%u"},
173 	{Opt_lazytime, "lazytime"},
174 	{Opt_nolazytime, "nolazytime"},
175 	{Opt_quota, "quota"},
176 	{Opt_noquota, "noquota"},
177 	{Opt_usrquota, "usrquota"},
178 	{Opt_grpquota, "grpquota"},
179 	{Opt_prjquota, "prjquota"},
180 	{Opt_usrjquota, "usrjquota=%s"},
181 	{Opt_grpjquota, "grpjquota=%s"},
182 	{Opt_prjjquota, "prjjquota=%s"},
183 	{Opt_offusrjquota, "usrjquota="},
184 	{Opt_offgrpjquota, "grpjquota="},
185 	{Opt_offprjjquota, "prjjquota="},
186 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
187 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
188 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
189 	{Opt_whint, "whint_mode=%s"},
190 	{Opt_alloc, "alloc_mode=%s"},
191 	{Opt_fsync, "fsync_mode=%s"},
192 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
193 	{Opt_err, NULL},
194 };
195 
f2fs_msg(struct super_block * sb,const char * level,const char * fmt,...)196 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
197 {
198 	struct va_format vaf;
199 	va_list args;
200 
201 	va_start(args, fmt);
202 	vaf.fmt = fmt;
203 	vaf.va = &args;
204 	printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
205 	va_end(args);
206 }
207 
limit_reserve_root(struct f2fs_sb_info * sbi)208 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
209 {
210 	block_t limit = (sbi->user_block_count << 1) / 1000;
211 
212 	/* limit is 0.2% */
213 	if (test_opt(sbi, RESERVE_ROOT) &&
214 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
215 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
216 		f2fs_msg(sbi->sb, KERN_INFO,
217 			"Reduce reserved blocks for root = %u",
218 			F2FS_OPTION(sbi).root_reserved_blocks);
219 	}
220 	if (!test_opt(sbi, RESERVE_ROOT) &&
221 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
222 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
223 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
224 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
225 		f2fs_msg(sbi->sb, KERN_INFO,
226 			"Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
227 				from_kuid_munged(&init_user_ns,
228 					F2FS_OPTION(sbi).s_resuid),
229 				from_kgid_munged(&init_user_ns,
230 					F2FS_OPTION(sbi).s_resgid));
231 }
232 
init_once(void * foo)233 static void init_once(void *foo)
234 {
235 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
236 
237 	inode_init_once(&fi->vfs_inode);
238 }
239 
240 #ifdef CONFIG_QUOTA
241 static const char * const quotatypes[] = INITQFNAMES;
242 #define QTYPE2NAME(t) (quotatypes[t])
f2fs_set_qf_name(struct super_block * sb,int qtype,substring_t * args)243 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
244 							substring_t *args)
245 {
246 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
247 	char *qname;
248 	int ret = -EINVAL;
249 
250 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
251 		f2fs_msg(sb, KERN_ERR,
252 			"Cannot change journaled "
253 			"quota options when quota turned on");
254 		return -EINVAL;
255 	}
256 	if (f2fs_sb_has_quota_ino(sb)) {
257 		f2fs_msg(sb, KERN_INFO,
258 			"QUOTA feature is enabled, so ignore qf_name");
259 		return 0;
260 	}
261 
262 	qname = match_strdup(args);
263 	if (!qname) {
264 		f2fs_msg(sb, KERN_ERR,
265 			"Not enough memory for storing quotafile name");
266 		return -EINVAL;
267 	}
268 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
269 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
270 			ret = 0;
271 		else
272 			f2fs_msg(sb, KERN_ERR,
273 				 "%s quota file already specified",
274 				 QTYPE2NAME(qtype));
275 		goto errout;
276 	}
277 	if (strchr(qname, '/')) {
278 		f2fs_msg(sb, KERN_ERR,
279 			"quotafile must be on filesystem root");
280 		goto errout;
281 	}
282 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
283 	set_opt(sbi, QUOTA);
284 	return 0;
285 errout:
286 	kfree(qname);
287 	return ret;
288 }
289 
f2fs_clear_qf_name(struct super_block * sb,int qtype)290 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
291 {
292 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
293 
294 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
295 		f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
296 			" when quota turned on");
297 		return -EINVAL;
298 	}
299 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
300 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
301 	return 0;
302 }
303 
f2fs_check_quota_options(struct f2fs_sb_info * sbi)304 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
305 {
306 	/*
307 	 * We do the test below only for project quotas. 'usrquota' and
308 	 * 'grpquota' mount options are allowed even without quota feature
309 	 * to support legacy quotas in quota files.
310 	 */
311 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
312 		f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
313 			 "Cannot enable project quota enforcement.");
314 		return -1;
315 	}
316 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
317 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
318 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
319 		if (test_opt(sbi, USRQUOTA) &&
320 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
321 			clear_opt(sbi, USRQUOTA);
322 
323 		if (test_opt(sbi, GRPQUOTA) &&
324 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
325 			clear_opt(sbi, GRPQUOTA);
326 
327 		if (test_opt(sbi, PRJQUOTA) &&
328 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
329 			clear_opt(sbi, PRJQUOTA);
330 
331 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
332 				test_opt(sbi, PRJQUOTA)) {
333 			f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
334 					"format mixing");
335 			return -1;
336 		}
337 
338 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
339 			f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
340 					"not specified");
341 			return -1;
342 		}
343 	}
344 
345 	if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
346 		f2fs_msg(sbi->sb, KERN_INFO,
347 			"QUOTA feature is enabled, so ignore jquota_fmt");
348 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
349 	}
350 	if (f2fs_sb_has_quota_ino(sbi->sb) && f2fs_readonly(sbi->sb)) {
351 		f2fs_msg(sbi->sb, KERN_INFO,
352 			 "Filesystem with quota feature cannot be mounted RDWR "
353 			 "without CONFIG_QUOTA");
354 		return -1;
355 	}
356 	return 0;
357 }
358 #endif
359 
parse_options(struct super_block * sb,char * options)360 static int parse_options(struct super_block *sb, char *options)
361 {
362 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
363 	struct request_queue *q;
364 	substring_t args[MAX_OPT_ARGS];
365 	char *p, *name;
366 	int arg = 0;
367 	kuid_t uid;
368 	kgid_t gid;
369 #ifdef CONFIG_QUOTA
370 	int ret;
371 #endif
372 
373 	if (!options)
374 		return 0;
375 
376 	while ((p = strsep(&options, ",")) != NULL) {
377 		int token;
378 		if (!*p)
379 			continue;
380 		/*
381 		 * Initialize args struct so we know whether arg was
382 		 * found; some options take optional arguments.
383 		 */
384 		args[0].to = args[0].from = NULL;
385 		token = match_token(p, f2fs_tokens, args);
386 
387 		switch (token) {
388 		case Opt_gc_background:
389 			name = match_strdup(&args[0]);
390 
391 			if (!name)
392 				return -ENOMEM;
393 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
394 				set_opt(sbi, BG_GC);
395 				clear_opt(sbi, FORCE_FG_GC);
396 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
397 				clear_opt(sbi, BG_GC);
398 				clear_opt(sbi, FORCE_FG_GC);
399 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
400 				set_opt(sbi, BG_GC);
401 				set_opt(sbi, FORCE_FG_GC);
402 			} else {
403 				kfree(name);
404 				return -EINVAL;
405 			}
406 			kfree(name);
407 			break;
408 		case Opt_disable_roll_forward:
409 			set_opt(sbi, DISABLE_ROLL_FORWARD);
410 			break;
411 		case Opt_norecovery:
412 			/* this option mounts f2fs with ro */
413 			set_opt(sbi, DISABLE_ROLL_FORWARD);
414 			if (!f2fs_readonly(sb))
415 				return -EINVAL;
416 			break;
417 		case Opt_discard:
418 			q = bdev_get_queue(sb->s_bdev);
419 			if (blk_queue_discard(q)) {
420 				set_opt(sbi, DISCARD);
421 			} else if (!f2fs_sb_has_blkzoned(sb)) {
422 				f2fs_msg(sb, KERN_WARNING,
423 					"mounting with \"discard\" option, but "
424 					"the device does not support discard");
425 			}
426 			break;
427 		case Opt_nodiscard:
428 			if (f2fs_sb_has_blkzoned(sb)) {
429 				f2fs_msg(sb, KERN_WARNING,
430 					"discard is required for zoned block devices");
431 				return -EINVAL;
432 			}
433 			clear_opt(sbi, DISCARD);
434 			break;
435 		case Opt_noheap:
436 			set_opt(sbi, NOHEAP);
437 			break;
438 		case Opt_heap:
439 			clear_opt(sbi, NOHEAP);
440 			break;
441 #ifdef CONFIG_F2FS_FS_XATTR
442 		case Opt_user_xattr:
443 			set_opt(sbi, XATTR_USER);
444 			break;
445 		case Opt_nouser_xattr:
446 			clear_opt(sbi, XATTR_USER);
447 			break;
448 		case Opt_inline_xattr:
449 			set_opt(sbi, INLINE_XATTR);
450 			break;
451 		case Opt_noinline_xattr:
452 			clear_opt(sbi, INLINE_XATTR);
453 			break;
454 		case Opt_inline_xattr_size:
455 			if (args->from && match_int(args, &arg))
456 				return -EINVAL;
457 			set_opt(sbi, INLINE_XATTR_SIZE);
458 			F2FS_OPTION(sbi).inline_xattr_size = arg;
459 			break;
460 #else
461 		case Opt_user_xattr:
462 			f2fs_msg(sb, KERN_INFO,
463 				"user_xattr options not supported");
464 			break;
465 		case Opt_nouser_xattr:
466 			f2fs_msg(sb, KERN_INFO,
467 				"nouser_xattr options not supported");
468 			break;
469 		case Opt_inline_xattr:
470 			f2fs_msg(sb, KERN_INFO,
471 				"inline_xattr options not supported");
472 			break;
473 		case Opt_noinline_xattr:
474 			f2fs_msg(sb, KERN_INFO,
475 				"noinline_xattr options not supported");
476 			break;
477 #endif
478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
479 		case Opt_acl:
480 			set_opt(sbi, POSIX_ACL);
481 			break;
482 		case Opt_noacl:
483 			clear_opt(sbi, POSIX_ACL);
484 			break;
485 #else
486 		case Opt_acl:
487 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
488 			break;
489 		case Opt_noacl:
490 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
491 			break;
492 #endif
493 		case Opt_active_logs:
494 			if (args->from && match_int(args, &arg))
495 				return -EINVAL;
496 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
497 				return -EINVAL;
498 			F2FS_OPTION(sbi).active_logs = arg;
499 			break;
500 		case Opt_disable_ext_identify:
501 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
502 			break;
503 		case Opt_inline_data:
504 			set_opt(sbi, INLINE_DATA);
505 			break;
506 		case Opt_inline_dentry:
507 			set_opt(sbi, INLINE_DENTRY);
508 			break;
509 		case Opt_noinline_dentry:
510 			clear_opt(sbi, INLINE_DENTRY);
511 			break;
512 		case Opt_flush_merge:
513 			set_opt(sbi, FLUSH_MERGE);
514 			break;
515 		case Opt_noflush_merge:
516 			clear_opt(sbi, FLUSH_MERGE);
517 			break;
518 		case Opt_nobarrier:
519 			set_opt(sbi, NOBARRIER);
520 			break;
521 		case Opt_fastboot:
522 			set_opt(sbi, FASTBOOT);
523 			break;
524 		case Opt_extent_cache:
525 			set_opt(sbi, EXTENT_CACHE);
526 			break;
527 		case Opt_noextent_cache:
528 			clear_opt(sbi, EXTENT_CACHE);
529 			break;
530 		case Opt_noinline_data:
531 			clear_opt(sbi, INLINE_DATA);
532 			break;
533 		case Opt_data_flush:
534 			set_opt(sbi, DATA_FLUSH);
535 			break;
536 		case Opt_reserve_root:
537 			if (args->from && match_int(args, &arg))
538 				return -EINVAL;
539 			if (test_opt(sbi, RESERVE_ROOT)) {
540 				f2fs_msg(sb, KERN_INFO,
541 					"Preserve previous reserve_root=%u",
542 					F2FS_OPTION(sbi).root_reserved_blocks);
543 			} else {
544 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
545 				set_opt(sbi, RESERVE_ROOT);
546 			}
547 			break;
548 		case Opt_resuid:
549 			if (args->from && match_int(args, &arg))
550 				return -EINVAL;
551 			uid = make_kuid(current_user_ns(), arg);
552 			if (!uid_valid(uid)) {
553 				f2fs_msg(sb, KERN_ERR,
554 					"Invalid uid value %d", arg);
555 				return -EINVAL;
556 			}
557 			F2FS_OPTION(sbi).s_resuid = uid;
558 			break;
559 		case Opt_resgid:
560 			if (args->from && match_int(args, &arg))
561 				return -EINVAL;
562 			gid = make_kgid(current_user_ns(), arg);
563 			if (!gid_valid(gid)) {
564 				f2fs_msg(sb, KERN_ERR,
565 					"Invalid gid value %d", arg);
566 				return -EINVAL;
567 			}
568 			F2FS_OPTION(sbi).s_resgid = gid;
569 			break;
570 		case Opt_mode:
571 			name = match_strdup(&args[0]);
572 
573 			if (!name)
574 				return -ENOMEM;
575 			if (strlen(name) == 8 &&
576 					!strncmp(name, "adaptive", 8)) {
577 				if (f2fs_sb_has_blkzoned(sb)) {
578 					f2fs_msg(sb, KERN_WARNING,
579 						 "adaptive mode is not allowed with "
580 						 "zoned block device feature");
581 					kfree(name);
582 					return -EINVAL;
583 				}
584 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
585 			} else if (strlen(name) == 3 &&
586 					!strncmp(name, "lfs", 3)) {
587 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
588 			} else {
589 				kfree(name);
590 				return -EINVAL;
591 			}
592 			kfree(name);
593 			break;
594 		case Opt_io_size_bits:
595 			if (args->from && match_int(args, &arg))
596 				return -EINVAL;
597 			if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
598 				f2fs_msg(sb, KERN_WARNING,
599 					"Not support %d, larger than %d",
600 					1 << arg, BIO_MAX_PAGES);
601 				return -EINVAL;
602 			}
603 			F2FS_OPTION(sbi).write_io_size_bits = arg;
604 			break;
605 		case Opt_fault_injection:
606 			if (args->from && match_int(args, &arg))
607 				return -EINVAL;
608 #ifdef CONFIG_F2FS_FAULT_INJECTION
609 			f2fs_build_fault_attr(sbi, arg);
610 			set_opt(sbi, FAULT_INJECTION);
611 #else
612 			f2fs_msg(sb, KERN_INFO,
613 				"FAULT_INJECTION was not selected");
614 #endif
615 			break;
616 		case Opt_lazytime:
617 			sb->s_flags |= MS_LAZYTIME;
618 			break;
619 		case Opt_nolazytime:
620 			sb->s_flags &= ~MS_LAZYTIME;
621 			break;
622 #ifdef CONFIG_QUOTA
623 		case Opt_quota:
624 		case Opt_usrquota:
625 			set_opt(sbi, USRQUOTA);
626 			break;
627 		case Opt_grpquota:
628 			set_opt(sbi, GRPQUOTA);
629 			break;
630 		case Opt_prjquota:
631 			set_opt(sbi, PRJQUOTA);
632 			break;
633 		case Opt_usrjquota:
634 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
635 			if (ret)
636 				return ret;
637 			break;
638 		case Opt_grpjquota:
639 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
640 			if (ret)
641 				return ret;
642 			break;
643 		case Opt_prjjquota:
644 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
645 			if (ret)
646 				return ret;
647 			break;
648 		case Opt_offusrjquota:
649 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
650 			if (ret)
651 				return ret;
652 			break;
653 		case Opt_offgrpjquota:
654 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
655 			if (ret)
656 				return ret;
657 			break;
658 		case Opt_offprjjquota:
659 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
660 			if (ret)
661 				return ret;
662 			break;
663 		case Opt_jqfmt_vfsold:
664 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
665 			break;
666 		case Opt_jqfmt_vfsv0:
667 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
668 			break;
669 		case Opt_jqfmt_vfsv1:
670 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
671 			break;
672 		case Opt_noquota:
673 			clear_opt(sbi, QUOTA);
674 			clear_opt(sbi, USRQUOTA);
675 			clear_opt(sbi, GRPQUOTA);
676 			clear_opt(sbi, PRJQUOTA);
677 			break;
678 #else
679 		case Opt_quota:
680 		case Opt_usrquota:
681 		case Opt_grpquota:
682 		case Opt_prjquota:
683 		case Opt_usrjquota:
684 		case Opt_grpjquota:
685 		case Opt_prjjquota:
686 		case Opt_offusrjquota:
687 		case Opt_offgrpjquota:
688 		case Opt_offprjjquota:
689 		case Opt_jqfmt_vfsold:
690 		case Opt_jqfmt_vfsv0:
691 		case Opt_jqfmt_vfsv1:
692 		case Opt_noquota:
693 			f2fs_msg(sb, KERN_INFO,
694 					"quota operations not supported");
695 			break;
696 #endif
697 		case Opt_whint:
698 			name = match_strdup(&args[0]);
699 			if (!name)
700 				return -ENOMEM;
701 			if (strlen(name) == 10 &&
702 					!strncmp(name, "user-based", 10)) {
703 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
704 			} else if (strlen(name) == 3 &&
705 					!strncmp(name, "off", 3)) {
706 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
707 			} else if (strlen(name) == 8 &&
708 					!strncmp(name, "fs-based", 8)) {
709 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
710 			} else {
711 				kfree(name);
712 				return -EINVAL;
713 			}
714 			kfree(name);
715 			break;
716 		case Opt_alloc:
717 			name = match_strdup(&args[0]);
718 			if (!name)
719 				return -ENOMEM;
720 
721 			if (strlen(name) == 7 &&
722 					!strncmp(name, "default", 7)) {
723 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
724 			} else if (strlen(name) == 5 &&
725 					!strncmp(name, "reuse", 5)) {
726 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
727 			} else {
728 				kfree(name);
729 				return -EINVAL;
730 			}
731 			kfree(name);
732 			break;
733 		case Opt_fsync:
734 			name = match_strdup(&args[0]);
735 			if (!name)
736 				return -ENOMEM;
737 			if (strlen(name) == 5 &&
738 					!strncmp(name, "posix", 5)) {
739 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
740 			} else if (strlen(name) == 6 &&
741 					!strncmp(name, "strict", 6)) {
742 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
743 			} else if (strlen(name) == 9 &&
744 					!strncmp(name, "nobarrier", 9)) {
745 				F2FS_OPTION(sbi).fsync_mode =
746 							FSYNC_MODE_NOBARRIER;
747 			} else {
748 				kfree(name);
749 				return -EINVAL;
750 			}
751 			kfree(name);
752 			break;
753 		case Opt_test_dummy_encryption:
754 #ifdef CONFIG_F2FS_FS_ENCRYPTION
755 			if (!f2fs_sb_has_encrypt(sb)) {
756 				f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
757 				return -EINVAL;
758 			}
759 
760 			F2FS_OPTION(sbi).test_dummy_encryption = true;
761 			f2fs_msg(sb, KERN_INFO,
762 					"Test dummy encryption mode enabled");
763 #else
764 			f2fs_msg(sb, KERN_INFO,
765 					"Test dummy encryption mount option ignored");
766 #endif
767 			break;
768 		default:
769 			f2fs_msg(sb, KERN_ERR,
770 				"Unrecognized mount option \"%s\" or missing value",
771 				p);
772 			return -EINVAL;
773 		}
774 	}
775 #ifdef CONFIG_QUOTA
776 	if (f2fs_check_quota_options(sbi))
777 		return -EINVAL;
778 #endif
779 
780 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
781 		f2fs_msg(sb, KERN_ERR,
782 				"Should set mode=lfs with %uKB-sized IO",
783 				F2FS_IO_SIZE_KB(sbi));
784 		return -EINVAL;
785 	}
786 
787 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
788 		if (!f2fs_sb_has_extra_attr(sb) ||
789 			!f2fs_sb_has_flexible_inline_xattr(sb)) {
790 			f2fs_msg(sb, KERN_ERR,
791 					"extra_attr or flexible_inline_xattr "
792 					"feature is off");
793 			return -EINVAL;
794 		}
795 		if (!test_opt(sbi, INLINE_XATTR)) {
796 			f2fs_msg(sb, KERN_ERR,
797 					"inline_xattr_size option should be "
798 					"set with inline_xattr option");
799 			return -EINVAL;
800 		}
801 		if (!F2FS_OPTION(sbi).inline_xattr_size ||
802 			F2FS_OPTION(sbi).inline_xattr_size >=
803 					DEF_ADDRS_PER_INODE -
804 					F2FS_TOTAL_EXTRA_ATTR_SIZE -
805 					DEF_INLINE_RESERVED_SIZE -
806 					DEF_MIN_INLINE_SIZE) {
807 			f2fs_msg(sb, KERN_ERR,
808 					"inline xattr size is out of range");
809 			return -EINVAL;
810 		}
811 	}
812 
813 	/* Not pass down write hints if the number of active logs is lesser
814 	 * than NR_CURSEG_TYPE.
815 	 */
816 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
817 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
818 	return 0;
819 }
820 
f2fs_alloc_inode(struct super_block * sb)821 static struct inode *f2fs_alloc_inode(struct super_block *sb)
822 {
823 	struct f2fs_inode_info *fi;
824 
825 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
826 	if (!fi)
827 		return NULL;
828 
829 	init_once((void *) fi);
830 
831 	/* Initialize f2fs-specific inode info */
832 	atomic_set(&fi->dirty_pages, 0);
833 	fi->i_current_depth = 1;
834 	init_rwsem(&fi->i_sem);
835 	INIT_LIST_HEAD(&fi->dirty_list);
836 	INIT_LIST_HEAD(&fi->gdirty_list);
837 	INIT_LIST_HEAD(&fi->inmem_ilist);
838 	INIT_LIST_HEAD(&fi->inmem_pages);
839 	mutex_init(&fi->inmem_lock);
840 	init_rwsem(&fi->dio_rwsem[READ]);
841 	init_rwsem(&fi->dio_rwsem[WRITE]);
842 	init_rwsem(&fi->i_mmap_sem);
843 	init_rwsem(&fi->i_xattr_sem);
844 
845 	/* Will be used by directory only */
846 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
847 
848 	return &fi->vfs_inode;
849 }
850 
f2fs_drop_inode(struct inode * inode)851 static int f2fs_drop_inode(struct inode *inode)
852 {
853 	int ret;
854 	/*
855 	 * This is to avoid a deadlock condition like below.
856 	 * writeback_single_inode(inode)
857 	 *  - f2fs_write_data_page
858 	 *    - f2fs_gc -> iput -> evict
859 	 *       - inode_wait_for_writeback(inode)
860 	 */
861 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
862 		if (!inode->i_nlink && !is_bad_inode(inode)) {
863 			/* to avoid evict_inode call simultaneously */
864 			atomic_inc(&inode->i_count);
865 			spin_unlock(&inode->i_lock);
866 
867 			/* some remained atomic pages should discarded */
868 			if (f2fs_is_atomic_file(inode))
869 				drop_inmem_pages(inode);
870 
871 			/* should remain fi->extent_tree for writepage */
872 			f2fs_destroy_extent_node(inode);
873 
874 			sb_start_intwrite(inode->i_sb);
875 			f2fs_i_size_write(inode, 0);
876 
877 			if (F2FS_HAS_BLOCKS(inode))
878 				f2fs_truncate(inode);
879 
880 			sb_end_intwrite(inode->i_sb);
881 
882 			spin_lock(&inode->i_lock);
883 			atomic_dec(&inode->i_count);
884 		}
885 		trace_f2fs_drop_inode(inode, 0);
886 		return 0;
887 	}
888 	ret = generic_drop_inode(inode);
889 	trace_f2fs_drop_inode(inode, ret);
890 	return ret;
891 }
892 
f2fs_inode_dirtied(struct inode * inode,bool sync)893 int f2fs_inode_dirtied(struct inode *inode, bool sync)
894 {
895 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
896 	int ret = 0;
897 
898 	spin_lock(&sbi->inode_lock[DIRTY_META]);
899 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
900 		ret = 1;
901 	} else {
902 		set_inode_flag(inode, FI_DIRTY_INODE);
903 		stat_inc_dirty_inode(sbi, DIRTY_META);
904 	}
905 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
906 		list_add_tail(&F2FS_I(inode)->gdirty_list,
907 				&sbi->inode_list[DIRTY_META]);
908 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
909 	}
910 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
911 	return ret;
912 }
913 
f2fs_inode_synced(struct inode * inode)914 void f2fs_inode_synced(struct inode *inode)
915 {
916 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
917 
918 	spin_lock(&sbi->inode_lock[DIRTY_META]);
919 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
920 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
921 		return;
922 	}
923 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
924 		list_del_init(&F2FS_I(inode)->gdirty_list);
925 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
926 	}
927 	clear_inode_flag(inode, FI_DIRTY_INODE);
928 	clear_inode_flag(inode, FI_AUTO_RECOVER);
929 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
930 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
931 }
932 
933 /*
934  * f2fs_dirty_inode() is called from __mark_inode_dirty()
935  *
936  * We should call set_dirty_inode to write the dirty inode through write_inode.
937  */
f2fs_dirty_inode(struct inode * inode,int flags)938 static void f2fs_dirty_inode(struct inode *inode, int flags)
939 {
940 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
941 
942 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
943 			inode->i_ino == F2FS_META_INO(sbi))
944 		return;
945 
946 	if (flags == I_DIRTY_TIME)
947 		return;
948 
949 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
950 		clear_inode_flag(inode, FI_AUTO_RECOVER);
951 
952 	f2fs_inode_dirtied(inode, false);
953 }
954 
f2fs_i_callback(struct rcu_head * head)955 static void f2fs_i_callback(struct rcu_head *head)
956 {
957 	struct inode *inode = container_of(head, struct inode, i_rcu);
958 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
959 }
960 
f2fs_destroy_inode(struct inode * inode)961 static void f2fs_destroy_inode(struct inode *inode)
962 {
963 	call_rcu(&inode->i_rcu, f2fs_i_callback);
964 }
965 
destroy_percpu_info(struct f2fs_sb_info * sbi)966 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
967 {
968 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
969 	percpu_counter_destroy(&sbi->total_valid_inode_count);
970 }
971 
destroy_device_list(struct f2fs_sb_info * sbi)972 static void destroy_device_list(struct f2fs_sb_info *sbi)
973 {
974 	int i;
975 
976 	for (i = 0; i < sbi->s_ndevs; i++) {
977 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
978 #ifdef CONFIG_BLK_DEV_ZONED
979 		kfree(FDEV(i).blkz_type);
980 #endif
981 	}
982 	kfree(sbi->devs);
983 }
984 
f2fs_put_super(struct super_block * sb)985 static void f2fs_put_super(struct super_block *sb)
986 {
987 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
988 	int i;
989 	bool dropped;
990 
991 	f2fs_quota_off_umount(sb);
992 
993 	/* prevent remaining shrinker jobs */
994 	mutex_lock(&sbi->umount_mutex);
995 
996 	/*
997 	 * We don't need to do checkpoint when superblock is clean.
998 	 * But, the previous checkpoint was not done by umount, it needs to do
999 	 * clean checkpoint again.
1000 	 */
1001 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1002 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1003 		struct cp_control cpc = {
1004 			.reason = CP_UMOUNT,
1005 		};
1006 		write_checkpoint(sbi, &cpc);
1007 	}
1008 
1009 	/* be sure to wait for any on-going discard commands */
1010 	dropped = f2fs_wait_discard_bios(sbi);
1011 
1012 	if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
1013 		struct cp_control cpc = {
1014 			.reason = CP_UMOUNT | CP_TRIMMED,
1015 		};
1016 		write_checkpoint(sbi, &cpc);
1017 	}
1018 
1019 	/* write_checkpoint can update stat informaion */
1020 	f2fs_destroy_stats(sbi);
1021 
1022 	/*
1023 	 * normally superblock is clean, so we need to release this.
1024 	 * In addition, EIO will skip do checkpoint, we need this as well.
1025 	 */
1026 	release_ino_entry(sbi, true);
1027 
1028 	f2fs_leave_shrinker(sbi);
1029 	mutex_unlock(&sbi->umount_mutex);
1030 
1031 	/* our cp_error case, we can wait for any writeback page */
1032 	f2fs_flush_merged_writes(sbi);
1033 
1034 	iput(sbi->node_inode);
1035 	iput(sbi->meta_inode);
1036 
1037 	/* destroy f2fs internal modules */
1038 	destroy_node_manager(sbi);
1039 	destroy_segment_manager(sbi);
1040 
1041 	kfree(sbi->ckpt);
1042 
1043 	f2fs_unregister_sysfs(sbi);
1044 
1045 	sb->s_fs_info = NULL;
1046 	if (sbi->s_chksum_driver)
1047 		crypto_free_shash(sbi->s_chksum_driver);
1048 	kfree(sbi->raw_super);
1049 
1050 	destroy_device_list(sbi);
1051 	if (sbi->write_io_dummy)
1052 		mempool_destroy(sbi->write_io_dummy);
1053 #ifdef CONFIG_QUOTA
1054 	for (i = 0; i < MAXQUOTAS; i++)
1055 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1056 #endif
1057 	destroy_percpu_info(sbi);
1058 	for (i = 0; i < NR_PAGE_TYPE; i++)
1059 		kfree(sbi->write_io[i]);
1060 	kfree(sbi);
1061 }
1062 
f2fs_sync_fs(struct super_block * sb,int sync)1063 int f2fs_sync_fs(struct super_block *sb, int sync)
1064 {
1065 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1066 	int err = 0;
1067 
1068 	if (unlikely(f2fs_cp_error(sbi)))
1069 		return 0;
1070 
1071 	trace_f2fs_sync_fs(sb, sync);
1072 
1073 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1074 		return -EAGAIN;
1075 
1076 	if (sync) {
1077 		struct cp_control cpc;
1078 
1079 		cpc.reason = __get_cp_reason(sbi);
1080 
1081 		mutex_lock(&sbi->gc_mutex);
1082 		err = write_checkpoint(sbi, &cpc);
1083 		mutex_unlock(&sbi->gc_mutex);
1084 	}
1085 	f2fs_trace_ios(NULL, 1);
1086 
1087 	return err;
1088 }
1089 
f2fs_freeze(struct super_block * sb)1090 static int f2fs_freeze(struct super_block *sb)
1091 {
1092 	if (f2fs_readonly(sb))
1093 		return 0;
1094 
1095 	/* IO error happened before */
1096 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1097 		return -EIO;
1098 
1099 	/* must be clean, since sync_filesystem() was already called */
1100 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1101 		return -EINVAL;
1102 	return 0;
1103 }
1104 
f2fs_unfreeze(struct super_block * sb)1105 static int f2fs_unfreeze(struct super_block *sb)
1106 {
1107 	return 0;
1108 }
1109 
1110 #ifdef CONFIG_QUOTA
f2fs_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)1111 static int f2fs_statfs_project(struct super_block *sb,
1112 				kprojid_t projid, struct kstatfs *buf)
1113 {
1114 	struct kqid qid;
1115 	struct dquot *dquot;
1116 	u64 limit;
1117 	u64 curblock;
1118 
1119 	qid = make_kqid_projid(projid);
1120 	dquot = dqget(sb, qid);
1121 	if (IS_ERR(dquot))
1122 		return PTR_ERR(dquot);
1123 	spin_lock(&dq_data_lock);
1124 
1125 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1126 		 dquot->dq_dqb.dqb_bsoftlimit :
1127 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1128 	if (limit && buf->f_blocks > limit) {
1129 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1130 		buf->f_blocks = limit;
1131 		buf->f_bfree = buf->f_bavail =
1132 			(buf->f_blocks > curblock) ?
1133 			 (buf->f_blocks - curblock) : 0;
1134 	}
1135 
1136 	limit = dquot->dq_dqb.dqb_isoftlimit ?
1137 		dquot->dq_dqb.dqb_isoftlimit :
1138 		dquot->dq_dqb.dqb_ihardlimit;
1139 	if (limit && buf->f_files > limit) {
1140 		buf->f_files = limit;
1141 		buf->f_ffree =
1142 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1143 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1144 	}
1145 
1146 	spin_unlock(&dq_data_lock);
1147 	dqput(dquot);
1148 	return 0;
1149 }
1150 #endif
1151 
f2fs_statfs(struct dentry * dentry,struct kstatfs * buf)1152 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1153 {
1154 	struct super_block *sb = dentry->d_sb;
1155 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1156 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1157 	block_t total_count, user_block_count, start_count;
1158 	u64 avail_node_count;
1159 
1160 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1161 	user_block_count = sbi->user_block_count;
1162 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1163 	buf->f_type = F2FS_SUPER_MAGIC;
1164 	buf->f_bsize = sbi->blocksize;
1165 
1166 	buf->f_blocks = total_count - start_count;
1167 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1168 						sbi->current_reserved_blocks;
1169 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1170 		buf->f_bavail = buf->f_bfree -
1171 				F2FS_OPTION(sbi).root_reserved_blocks;
1172 	else
1173 		buf->f_bavail = 0;
1174 
1175 	avail_node_count = sbi->total_node_count - sbi->nquota_files -
1176 						F2FS_RESERVED_NODE_NUM;
1177 
1178 	if (avail_node_count > user_block_count) {
1179 		buf->f_files = user_block_count;
1180 		buf->f_ffree = buf->f_bavail;
1181 	} else {
1182 		buf->f_files = avail_node_count;
1183 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1184 					buf->f_bavail);
1185 	}
1186 
1187 	buf->f_namelen = F2FS_NAME_LEN;
1188 	buf->f_fsid.val[0] = (u32)id;
1189 	buf->f_fsid.val[1] = (u32)(id >> 32);
1190 
1191 #ifdef CONFIG_QUOTA
1192 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1193 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1194 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1195 	}
1196 #endif
1197 	return 0;
1198 }
1199 
f2fs_show_quota_options(struct seq_file * seq,struct super_block * sb)1200 static inline void f2fs_show_quota_options(struct seq_file *seq,
1201 					   struct super_block *sb)
1202 {
1203 #ifdef CONFIG_QUOTA
1204 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1205 
1206 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1207 		char *fmtname = "";
1208 
1209 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1210 		case QFMT_VFS_OLD:
1211 			fmtname = "vfsold";
1212 			break;
1213 		case QFMT_VFS_V0:
1214 			fmtname = "vfsv0";
1215 			break;
1216 		case QFMT_VFS_V1:
1217 			fmtname = "vfsv1";
1218 			break;
1219 		}
1220 		seq_printf(seq, ",jqfmt=%s", fmtname);
1221 	}
1222 
1223 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1224 		seq_show_option(seq, "usrjquota",
1225 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1226 
1227 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1228 		seq_show_option(seq, "grpjquota",
1229 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1230 
1231 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1232 		seq_show_option(seq, "prjjquota",
1233 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1234 #endif
1235 }
1236 
f2fs_show_options(struct seq_file * seq,struct dentry * root)1237 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1238 {
1239 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1240 
1241 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1242 		if (test_opt(sbi, FORCE_FG_GC))
1243 			seq_printf(seq, ",background_gc=%s", "sync");
1244 		else
1245 			seq_printf(seq, ",background_gc=%s", "on");
1246 	} else {
1247 		seq_printf(seq, ",background_gc=%s", "off");
1248 	}
1249 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1250 		seq_puts(seq, ",disable_roll_forward");
1251 	if (test_opt(sbi, DISCARD))
1252 		seq_puts(seq, ",discard");
1253 	if (test_opt(sbi, NOHEAP))
1254 		seq_puts(seq, ",no_heap");
1255 	else
1256 		seq_puts(seq, ",heap");
1257 #ifdef CONFIG_F2FS_FS_XATTR
1258 	if (test_opt(sbi, XATTR_USER))
1259 		seq_puts(seq, ",user_xattr");
1260 	else
1261 		seq_puts(seq, ",nouser_xattr");
1262 	if (test_opt(sbi, INLINE_XATTR))
1263 		seq_puts(seq, ",inline_xattr");
1264 	else
1265 		seq_puts(seq, ",noinline_xattr");
1266 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1267 		seq_printf(seq, ",inline_xattr_size=%u",
1268 					F2FS_OPTION(sbi).inline_xattr_size);
1269 #endif
1270 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1271 	if (test_opt(sbi, POSIX_ACL))
1272 		seq_puts(seq, ",acl");
1273 	else
1274 		seq_puts(seq, ",noacl");
1275 #endif
1276 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1277 		seq_puts(seq, ",disable_ext_identify");
1278 	if (test_opt(sbi, INLINE_DATA))
1279 		seq_puts(seq, ",inline_data");
1280 	else
1281 		seq_puts(seq, ",noinline_data");
1282 	if (test_opt(sbi, INLINE_DENTRY))
1283 		seq_puts(seq, ",inline_dentry");
1284 	else
1285 		seq_puts(seq, ",noinline_dentry");
1286 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1287 		seq_puts(seq, ",flush_merge");
1288 	if (test_opt(sbi, NOBARRIER))
1289 		seq_puts(seq, ",nobarrier");
1290 	if (test_opt(sbi, FASTBOOT))
1291 		seq_puts(seq, ",fastboot");
1292 	if (test_opt(sbi, EXTENT_CACHE))
1293 		seq_puts(seq, ",extent_cache");
1294 	else
1295 		seq_puts(seq, ",noextent_cache");
1296 	if (test_opt(sbi, DATA_FLUSH))
1297 		seq_puts(seq, ",data_flush");
1298 
1299 	seq_puts(seq, ",mode=");
1300 	if (test_opt(sbi, ADAPTIVE))
1301 		seq_puts(seq, "adaptive");
1302 	else if (test_opt(sbi, LFS))
1303 		seq_puts(seq, "lfs");
1304 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1305 	if (test_opt(sbi, RESERVE_ROOT))
1306 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1307 				F2FS_OPTION(sbi).root_reserved_blocks,
1308 				from_kuid_munged(&init_user_ns,
1309 					F2FS_OPTION(sbi).s_resuid),
1310 				from_kgid_munged(&init_user_ns,
1311 					F2FS_OPTION(sbi).s_resgid));
1312 	if (F2FS_IO_SIZE_BITS(sbi))
1313 		seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1314 #ifdef CONFIG_F2FS_FAULT_INJECTION
1315 	if (test_opt(sbi, FAULT_INJECTION))
1316 		seq_printf(seq, ",fault_injection=%u",
1317 				F2FS_OPTION(sbi).fault_info.inject_rate);
1318 #endif
1319 #ifdef CONFIG_QUOTA
1320 	if (test_opt(sbi, QUOTA))
1321 		seq_puts(seq, ",quota");
1322 	if (test_opt(sbi, USRQUOTA))
1323 		seq_puts(seq, ",usrquota");
1324 	if (test_opt(sbi, GRPQUOTA))
1325 		seq_puts(seq, ",grpquota");
1326 	if (test_opt(sbi, PRJQUOTA))
1327 		seq_puts(seq, ",prjquota");
1328 #endif
1329 	f2fs_show_quota_options(seq, sbi->sb);
1330 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1331 		seq_printf(seq, ",whint_mode=%s", "user-based");
1332 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1333 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1334 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1335 	if (F2FS_OPTION(sbi).test_dummy_encryption)
1336 		seq_puts(seq, ",test_dummy_encryption");
1337 #endif
1338 
1339 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1340 		seq_printf(seq, ",alloc_mode=%s", "default");
1341 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1342 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1343 
1344 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1345 		seq_printf(seq, ",fsync_mode=%s", "posix");
1346 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1347 		seq_printf(seq, ",fsync_mode=%s", "strict");
1348 	return 0;
1349 }
1350 
default_options(struct f2fs_sb_info * sbi)1351 static void default_options(struct f2fs_sb_info *sbi)
1352 {
1353 	/* init some FS parameters */
1354 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1355 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1356 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1357 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1358 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1359 	F2FS_OPTION(sbi).test_dummy_encryption = false;
1360 	sbi->readdir_ra = 1;
1361 
1362 	set_opt(sbi, BG_GC);
1363 	set_opt(sbi, INLINE_XATTR);
1364 	set_opt(sbi, INLINE_DATA);
1365 	set_opt(sbi, INLINE_DENTRY);
1366 	set_opt(sbi, EXTENT_CACHE);
1367 	set_opt(sbi, NOHEAP);
1368 	sbi->sb->s_flags |= MS_LAZYTIME;
1369 	set_opt(sbi, FLUSH_MERGE);
1370 	if (f2fs_sb_has_blkzoned(sbi->sb)) {
1371 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1372 		set_opt(sbi, DISCARD);
1373 	} else {
1374 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1375 	}
1376 
1377 #ifdef CONFIG_F2FS_FS_XATTR
1378 	set_opt(sbi, XATTR_USER);
1379 #endif
1380 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1381 	set_opt(sbi, POSIX_ACL);
1382 #endif
1383 
1384 #ifdef CONFIG_F2FS_FAULT_INJECTION
1385 	f2fs_build_fault_attr(sbi, 0);
1386 #endif
1387 }
1388 
1389 #ifdef CONFIG_QUOTA
1390 static int f2fs_enable_quotas(struct super_block *sb);
1391 #endif
f2fs_remount(struct super_block * sb,int * flags,char * data)1392 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1393 {
1394 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1395 	struct f2fs_mount_info org_mount_opt;
1396 	unsigned long old_sb_flags;
1397 	int err;
1398 	bool need_restart_gc = false;
1399 	bool need_stop_gc = false;
1400 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1401 #ifdef CONFIG_QUOTA
1402 	int i, j;
1403 #endif
1404 
1405 	/*
1406 	 * Save the old mount options in case we
1407 	 * need to restore them.
1408 	 */
1409 	org_mount_opt = sbi->mount_opt;
1410 	old_sb_flags = sb->s_flags;
1411 
1412 #ifdef CONFIG_QUOTA
1413 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1414 	for (i = 0; i < MAXQUOTAS; i++) {
1415 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1416 			org_mount_opt.s_qf_names[i] =
1417 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1418 				GFP_KERNEL);
1419 			if (!org_mount_opt.s_qf_names[i]) {
1420 				for (j = 0; j < i; j++)
1421 					kfree(org_mount_opt.s_qf_names[j]);
1422 				return -ENOMEM;
1423 			}
1424 		} else {
1425 			org_mount_opt.s_qf_names[i] = NULL;
1426 		}
1427 	}
1428 #endif
1429 
1430 	/* recover superblocks we couldn't write due to previous RO mount */
1431 	if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1432 		err = f2fs_commit_super(sbi, false);
1433 		f2fs_msg(sb, KERN_INFO,
1434 			"Try to recover all the superblocks, ret: %d", err);
1435 		if (!err)
1436 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1437 	}
1438 
1439 	default_options(sbi);
1440 
1441 	/* parse mount options */
1442 	err = parse_options(sb, data);
1443 	if (err)
1444 		goto restore_opts;
1445 
1446 	/*
1447 	 * Previous and new state of filesystem is RO,
1448 	 * so skip checking GC and FLUSH_MERGE conditions.
1449 	 */
1450 	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1451 		goto skip;
1452 
1453 #ifdef CONFIG_QUOTA
1454 	if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
1455 		err = dquot_suspend(sb, -1);
1456 		if (err < 0)
1457 			goto restore_opts;
1458 	} else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1459 		/* dquot_resume needs RW */
1460 		sb->s_flags &= ~MS_RDONLY;
1461 		if (sb_any_quota_suspended(sb)) {
1462 			dquot_resume(sb, -1);
1463 		} else if (f2fs_sb_has_quota_ino(sb)) {
1464 			err = f2fs_enable_quotas(sb);
1465 			if (err)
1466 				goto restore_opts;
1467 		}
1468 	}
1469 #endif
1470 	/* disallow enable/disable extent_cache dynamically */
1471 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1472 		err = -EINVAL;
1473 		f2fs_msg(sbi->sb, KERN_WARNING,
1474 				"switch extent_cache option is not allowed");
1475 		goto restore_opts;
1476 	}
1477 
1478 	/*
1479 	 * We stop the GC thread if FS is mounted as RO
1480 	 * or if background_gc = off is passed in mount
1481 	 * option. Also sync the filesystem.
1482 	 */
1483 	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1484 		if (sbi->gc_thread) {
1485 			stop_gc_thread(sbi);
1486 			need_restart_gc = true;
1487 		}
1488 	} else if (!sbi->gc_thread) {
1489 		err = start_gc_thread(sbi);
1490 		if (err)
1491 			goto restore_opts;
1492 		need_stop_gc = true;
1493 	}
1494 
1495 	if (*flags & MS_RDONLY ||
1496 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1497 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1498 		sync_inodes_sb(sb);
1499 
1500 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1501 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1502 		f2fs_sync_fs(sb, 1);
1503 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1504 	}
1505 
1506 	/*
1507 	 * We stop issue flush thread if FS is mounted as RO
1508 	 * or if flush_merge is not passed in mount option.
1509 	 */
1510 	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1511 		clear_opt(sbi, FLUSH_MERGE);
1512 		destroy_flush_cmd_control(sbi, false);
1513 	} else {
1514 		err = create_flush_cmd_control(sbi);
1515 		if (err)
1516 			goto restore_gc;
1517 	}
1518 skip:
1519 #ifdef CONFIG_QUOTA
1520 	/* Release old quota file names */
1521 	for (i = 0; i < MAXQUOTAS; i++)
1522 		kfree(org_mount_opt.s_qf_names[i]);
1523 #endif
1524 	/* Update the POSIXACL Flag */
1525 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1526 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1527 
1528 	limit_reserve_root(sbi);
1529 	return 0;
1530 restore_gc:
1531 	if (need_restart_gc) {
1532 		if (start_gc_thread(sbi))
1533 			f2fs_msg(sbi->sb, KERN_WARNING,
1534 				"background gc thread has stopped");
1535 	} else if (need_stop_gc) {
1536 		stop_gc_thread(sbi);
1537 	}
1538 restore_opts:
1539 #ifdef CONFIG_QUOTA
1540 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1541 	for (i = 0; i < MAXQUOTAS; i++) {
1542 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1543 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1544 	}
1545 #endif
1546 	sbi->mount_opt = org_mount_opt;
1547 	sb->s_flags = old_sb_flags;
1548 	return err;
1549 }
1550 
1551 #ifdef CONFIG_QUOTA
1552 /* Read data from quotafile */
f2fs_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)1553 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1554 			       size_t len, loff_t off)
1555 {
1556 	struct inode *inode = sb_dqopt(sb)->files[type];
1557 	struct address_space *mapping = inode->i_mapping;
1558 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1559 	int offset = off & (sb->s_blocksize - 1);
1560 	int tocopy;
1561 	size_t toread;
1562 	loff_t i_size = i_size_read(inode);
1563 	struct page *page;
1564 	char *kaddr;
1565 
1566 	if (off > i_size)
1567 		return 0;
1568 
1569 	if (off + len > i_size)
1570 		len = i_size - off;
1571 	toread = len;
1572 	while (toread > 0) {
1573 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1574 repeat:
1575 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1576 		if (IS_ERR(page)) {
1577 			if (PTR_ERR(page) == -ENOMEM) {
1578 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1579 				goto repeat;
1580 			}
1581 			return PTR_ERR(page);
1582 		}
1583 
1584 		lock_page(page);
1585 
1586 		if (unlikely(page->mapping != mapping)) {
1587 			f2fs_put_page(page, 1);
1588 			goto repeat;
1589 		}
1590 		if (unlikely(!PageUptodate(page))) {
1591 			f2fs_put_page(page, 1);
1592 			return -EIO;
1593 		}
1594 
1595 		kaddr = kmap_atomic(page);
1596 		memcpy(data, kaddr + offset, tocopy);
1597 		kunmap_atomic(kaddr);
1598 		f2fs_put_page(page, 1);
1599 
1600 		offset = 0;
1601 		toread -= tocopy;
1602 		data += tocopy;
1603 		blkidx++;
1604 	}
1605 	return len;
1606 }
1607 
1608 /* Write to quotafile */
f2fs_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)1609 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1610 				const char *data, size_t len, loff_t off)
1611 {
1612 	struct inode *inode = sb_dqopt(sb)->files[type];
1613 	struct address_space *mapping = inode->i_mapping;
1614 	const struct address_space_operations *a_ops = mapping->a_ops;
1615 	int offset = off & (sb->s_blocksize - 1);
1616 	size_t towrite = len;
1617 	struct page *page;
1618 	char *kaddr;
1619 	int err = 0;
1620 	int tocopy;
1621 
1622 	while (towrite > 0) {
1623 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1624 								towrite);
1625 retry:
1626 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1627 							&page, NULL);
1628 		if (unlikely(err)) {
1629 			if (err == -ENOMEM) {
1630 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1631 				goto retry;
1632 			}
1633 			break;
1634 		}
1635 
1636 		kaddr = kmap_atomic(page);
1637 		memcpy(kaddr + offset, data, tocopy);
1638 		kunmap_atomic(kaddr);
1639 		flush_dcache_page(page);
1640 
1641 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1642 						page, NULL);
1643 		offset = 0;
1644 		towrite -= tocopy;
1645 		off += tocopy;
1646 		data += tocopy;
1647 		cond_resched();
1648 	}
1649 
1650 	if (len == towrite)
1651 		return err;
1652 	inode->i_mtime = inode->i_ctime = current_time(inode);
1653 	f2fs_mark_inode_dirty_sync(inode, false);
1654 	return len - towrite;
1655 }
1656 
f2fs_get_dquots(struct inode * inode)1657 static struct dquot **f2fs_get_dquots(struct inode *inode)
1658 {
1659 	return F2FS_I(inode)->i_dquot;
1660 }
1661 
f2fs_get_reserved_space(struct inode * inode)1662 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1663 {
1664 	return &F2FS_I(inode)->i_reserved_quota;
1665 }
1666 
f2fs_quota_on_mount(struct f2fs_sb_info * sbi,int type)1667 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1668 {
1669 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1670 					F2FS_OPTION(sbi).s_jquota_fmt, type);
1671 }
1672 
f2fs_enable_quota_files(struct f2fs_sb_info * sbi,bool rdonly)1673 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1674 {
1675 	int enabled = 0;
1676 	int i, err;
1677 
1678 	if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1679 		err = f2fs_enable_quotas(sbi->sb);
1680 		if (err) {
1681 			f2fs_msg(sbi->sb, KERN_ERR,
1682 					"Cannot turn on quota_ino: %d", err);
1683 			return 0;
1684 		}
1685 		return 1;
1686 	}
1687 
1688 	for (i = 0; i < MAXQUOTAS; i++) {
1689 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1690 			err = f2fs_quota_on_mount(sbi, i);
1691 			if (!err) {
1692 				enabled = 1;
1693 				continue;
1694 			}
1695 			f2fs_msg(sbi->sb, KERN_ERR,
1696 				"Cannot turn on quotas: %d on %d", err, i);
1697 		}
1698 	}
1699 	return enabled;
1700 }
1701 
f2fs_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)1702 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1703 			     unsigned int flags)
1704 {
1705 	struct inode *qf_inode;
1706 	unsigned long qf_inum;
1707 	int err;
1708 
1709 	BUG_ON(!f2fs_sb_has_quota_ino(sb));
1710 
1711 	qf_inum = f2fs_qf_ino(sb, type);
1712 	if (!qf_inum)
1713 		return -EPERM;
1714 
1715 	qf_inode = f2fs_iget(sb, qf_inum);
1716 	if (IS_ERR(qf_inode)) {
1717 		f2fs_msg(sb, KERN_ERR,
1718 			"Bad quota inode %u:%lu", type, qf_inum);
1719 		return PTR_ERR(qf_inode);
1720 	}
1721 
1722 	/* Don't account quota for quota files to avoid recursion */
1723 	qf_inode->i_flags |= S_NOQUOTA;
1724 	err = dquot_enable(qf_inode, type, format_id, flags);
1725 	iput(qf_inode);
1726 	return err;
1727 }
1728 
f2fs_enable_quotas(struct super_block * sb)1729 static int f2fs_enable_quotas(struct super_block *sb)
1730 {
1731 	int type, err = 0;
1732 	unsigned long qf_inum;
1733 	bool quota_mopt[MAXQUOTAS] = {
1734 		test_opt(F2FS_SB(sb), USRQUOTA),
1735 		test_opt(F2FS_SB(sb), GRPQUOTA),
1736 		test_opt(F2FS_SB(sb), PRJQUOTA),
1737 	};
1738 
1739 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1740 	for (type = 0; type < MAXQUOTAS; type++) {
1741 		qf_inum = f2fs_qf_ino(sb, type);
1742 		if (qf_inum) {
1743 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1744 				DQUOT_USAGE_ENABLED |
1745 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1746 			if (err) {
1747 				f2fs_msg(sb, KERN_ERR,
1748 					"Failed to enable quota tracking "
1749 					"(type=%d, err=%d). Please run "
1750 					"fsck to fix.", type, err);
1751 				for (type--; type >= 0; type--)
1752 					dquot_quota_off(sb, type);
1753 				return err;
1754 			}
1755 		}
1756 	}
1757 	return 0;
1758 }
1759 
f2fs_quota_sync(struct super_block * sb,int type)1760 static int f2fs_quota_sync(struct super_block *sb, int type)
1761 {
1762 	struct quota_info *dqopt = sb_dqopt(sb);
1763 	int cnt;
1764 	int ret;
1765 
1766 	ret = dquot_writeback_dquots(sb, type);
1767 	if (ret)
1768 		return ret;
1769 
1770 	/*
1771 	 * Now when everything is written we can discard the pagecache so
1772 	 * that userspace sees the changes.
1773 	 */
1774 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1775 		if (type != -1 && cnt != type)
1776 			continue;
1777 		if (!sb_has_quota_active(sb, cnt))
1778 			continue;
1779 
1780 		ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1781 		if (ret)
1782 			return ret;
1783 
1784 		inode_lock(dqopt->files[cnt]);
1785 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1786 		inode_unlock(dqopt->files[cnt]);
1787 	}
1788 	return 0;
1789 }
1790 
f2fs_quota_on(struct super_block * sb,int type,int format_id,struct path * path)1791 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1792 							struct path *path)
1793 {
1794 	struct inode *inode;
1795 	int err;
1796 
1797 	err = f2fs_quota_sync(sb, type);
1798 	if (err)
1799 		return err;
1800 
1801 	err = dquot_quota_on(sb, type, format_id, path);
1802 	if (err)
1803 		return err;
1804 
1805 	inode = d_inode(path->dentry);
1806 
1807 	inode_lock(inode);
1808 	F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1809 	inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1810 					S_NOATIME | S_IMMUTABLE);
1811 	inode_unlock(inode);
1812 	f2fs_mark_inode_dirty_sync(inode, false);
1813 
1814 	return 0;
1815 }
1816 
f2fs_quota_off(struct super_block * sb,int type)1817 static int f2fs_quota_off(struct super_block *sb, int type)
1818 {
1819 	struct inode *inode = sb_dqopt(sb)->files[type];
1820 	int err;
1821 
1822 	if (!inode || !igrab(inode))
1823 		return dquot_quota_off(sb, type);
1824 
1825 	f2fs_quota_sync(sb, type);
1826 
1827 	err = dquot_quota_off(sb, type);
1828 	if (err || f2fs_sb_has_quota_ino(sb))
1829 		goto out_put;
1830 
1831 	inode_lock(inode);
1832 	F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1833 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1834 	inode_unlock(inode);
1835 	f2fs_mark_inode_dirty_sync(inode, false);
1836 out_put:
1837 	iput(inode);
1838 	return err;
1839 }
1840 
f2fs_quota_off_umount(struct super_block * sb)1841 void f2fs_quota_off_umount(struct super_block *sb)
1842 {
1843 	int type;
1844 
1845 	for (type = 0; type < MAXQUOTAS; type++)
1846 		f2fs_quota_off(sb, type);
1847 }
1848 
1849 #if 0
1850 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1851 {
1852 	*projid = F2FS_I(inode)->i_projid;
1853 	return 0;
1854 }
1855 #endif
1856 
1857 static const struct dquot_operations f2fs_quota_operations = {
1858 	.get_reserved_space = f2fs_get_reserved_space,
1859 	.write_dquot	= dquot_commit,
1860 	.acquire_dquot	= dquot_acquire,
1861 	.release_dquot	= dquot_release,
1862 	.mark_dirty	= dquot_mark_dquot_dirty,
1863 	.write_info	= dquot_commit_info,
1864 	.alloc_dquot	= dquot_alloc,
1865 	.destroy_dquot	= dquot_destroy,
1866 #if 0
1867 	.get_projid	= f2fs_get_projid,
1868 	.get_next_id	= dquot_get_next_id,
1869 #endif
1870 };
1871 
1872 static const struct quotactl_ops f2fs_quotactl_ops = {
1873 	.quota_on	= f2fs_quota_on,
1874 	.quota_off	= f2fs_quota_off,
1875 	.quota_sync	= f2fs_quota_sync,
1876 	.get_state	= dquot_get_state,
1877 	.set_info	= dquot_set_dqinfo,
1878 	.get_dqblk	= dquot_get_dqblk,
1879 	.set_dqblk	= dquot_set_dqblk,
1880 };
1881 #else
f2fs_quota_off_umount(struct super_block * sb)1882 void f2fs_quota_off_umount(struct super_block *sb)
1883 {
1884 }
1885 #endif
1886 
1887 static const struct super_operations f2fs_sops = {
1888 	.alloc_inode	= f2fs_alloc_inode,
1889 	.drop_inode	= f2fs_drop_inode,
1890 	.destroy_inode	= f2fs_destroy_inode,
1891 	.write_inode	= f2fs_write_inode,
1892 	.dirty_inode	= f2fs_dirty_inode,
1893 	.show_options	= f2fs_show_options,
1894 #ifdef CONFIG_QUOTA
1895 	.quota_read	= f2fs_quota_read,
1896 	.quota_write	= f2fs_quota_write,
1897 	.get_dquots	= f2fs_get_dquots,
1898 #endif
1899 	.evict_inode	= f2fs_evict_inode,
1900 	.put_super	= f2fs_put_super,
1901 	.sync_fs	= f2fs_sync_fs,
1902 	.freeze_fs	= f2fs_freeze,
1903 	.unfreeze_fs	= f2fs_unfreeze,
1904 	.statfs		= f2fs_statfs,
1905 	.remount_fs	= f2fs_remount,
1906 };
1907 
1908 #ifdef CONFIG_F2FS_FS_ENCRYPTION
f2fs_get_context(struct inode * inode,void * ctx,size_t len)1909 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1910 {
1911 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1912 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1913 				ctx, len, NULL);
1914 }
1915 
f2fs_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1916 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1917 							void *fs_data)
1918 {
1919 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1920 
1921 	/*
1922 	 * Encrypting the root directory is not allowed because fsck
1923 	 * expects lost+found directory to exist and remain unencrypted
1924 	 * if LOST_FOUND feature is enabled.
1925 	 *
1926 	 */
1927 	if (f2fs_sb_has_lost_found(sbi->sb) &&
1928 			inode->i_ino == F2FS_ROOT_INO(sbi))
1929 		return -EPERM;
1930 
1931 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1932 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1933 				ctx, len, fs_data, XATTR_CREATE);
1934 }
1935 
f2fs_dummy_context(struct inode * inode)1936 static bool f2fs_dummy_context(struct inode *inode)
1937 {
1938 	return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
1939 }
1940 
f2fs_max_namelen(struct inode * inode)1941 static unsigned f2fs_max_namelen(struct inode *inode)
1942 {
1943 	return S_ISLNK(inode->i_mode) ?
1944 			inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1945 }
1946 
1947 static const struct fscrypt_operations f2fs_cryptops = {
1948 	.key_prefix	= "f2fs:",
1949 	.get_context	= f2fs_get_context,
1950 	.set_context	= f2fs_set_context,
1951 	.dummy_context	= f2fs_dummy_context,
1952 	.empty_dir	= f2fs_empty_dir,
1953 	.max_namelen	= f2fs_max_namelen,
1954 };
1955 #endif
1956 
f2fs_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1957 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1958 		u64 ino, u32 generation)
1959 {
1960 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1961 	struct inode *inode;
1962 
1963 	if (check_nid_range(sbi, ino))
1964 		return ERR_PTR(-ESTALE);
1965 
1966 	/*
1967 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
1968 	 * However f2fs_iget currently does appropriate checks to handle stale
1969 	 * inodes so everything is OK.
1970 	 */
1971 	inode = f2fs_iget(sb, ino);
1972 	if (IS_ERR(inode))
1973 		return ERR_CAST(inode);
1974 	if (unlikely(generation && inode->i_generation != generation)) {
1975 		/* we didn't find the right inode.. */
1976 		iput(inode);
1977 		return ERR_PTR(-ESTALE);
1978 	}
1979 	return inode;
1980 }
1981 
f2fs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1982 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1983 		int fh_len, int fh_type)
1984 {
1985 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1986 				    f2fs_nfs_get_inode);
1987 }
1988 
f2fs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1989 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1990 		int fh_len, int fh_type)
1991 {
1992 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1993 				    f2fs_nfs_get_inode);
1994 }
1995 
1996 static const struct export_operations f2fs_export_ops = {
1997 	.fh_to_dentry = f2fs_fh_to_dentry,
1998 	.fh_to_parent = f2fs_fh_to_parent,
1999 	.get_parent = f2fs_get_parent,
2000 };
2001 
max_file_blocks(void)2002 static loff_t max_file_blocks(void)
2003 {
2004 	loff_t result = 0;
2005 	loff_t leaf_count = ADDRS_PER_BLOCK;
2006 
2007 	/*
2008 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2009 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2010 	 * space in inode.i_addr, it will be more safe to reassign
2011 	 * result as zero.
2012 	 */
2013 
2014 	/* two direct node blocks */
2015 	result += (leaf_count * 2);
2016 
2017 	/* two indirect node blocks */
2018 	leaf_count *= NIDS_PER_BLOCK;
2019 	result += (leaf_count * 2);
2020 
2021 	/* one double indirect node block */
2022 	leaf_count *= NIDS_PER_BLOCK;
2023 	result += leaf_count;
2024 
2025 	return result;
2026 }
2027 
__f2fs_commit_super(struct buffer_head * bh,struct f2fs_super_block * super)2028 static int __f2fs_commit_super(struct buffer_head *bh,
2029 			struct f2fs_super_block *super)
2030 {
2031 	lock_buffer(bh);
2032 	if (super)
2033 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2034 	set_buffer_dirty(bh);
2035 	unlock_buffer(bh);
2036 
2037 	/* it's rare case, we can do fua all the time */
2038 	return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
2039 }
2040 
sanity_check_area_boundary(struct f2fs_sb_info * sbi,struct buffer_head * bh)2041 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2042 					struct buffer_head *bh)
2043 {
2044 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2045 					(bh->b_data + F2FS_SUPER_OFFSET);
2046 	struct super_block *sb = sbi->sb;
2047 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2048 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2049 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2050 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2051 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2052 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2053 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2054 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2055 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2056 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2057 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2058 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2059 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2060 	u64 main_end_blkaddr = main_blkaddr +
2061 				(segment_count_main << log_blocks_per_seg);
2062 	u64 seg_end_blkaddr = segment0_blkaddr +
2063 				(segment_count << log_blocks_per_seg);
2064 
2065 	if (segment0_blkaddr != cp_blkaddr) {
2066 		f2fs_msg(sb, KERN_INFO,
2067 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2068 			segment0_blkaddr, cp_blkaddr);
2069 		return true;
2070 	}
2071 
2072 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2073 							sit_blkaddr) {
2074 		f2fs_msg(sb, KERN_INFO,
2075 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2076 			cp_blkaddr, sit_blkaddr,
2077 			segment_count_ckpt << log_blocks_per_seg);
2078 		return true;
2079 	}
2080 
2081 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2082 							nat_blkaddr) {
2083 		f2fs_msg(sb, KERN_INFO,
2084 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2085 			sit_blkaddr, nat_blkaddr,
2086 			segment_count_sit << log_blocks_per_seg);
2087 		return true;
2088 	}
2089 
2090 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2091 							ssa_blkaddr) {
2092 		f2fs_msg(sb, KERN_INFO,
2093 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2094 			nat_blkaddr, ssa_blkaddr,
2095 			segment_count_nat << log_blocks_per_seg);
2096 		return true;
2097 	}
2098 
2099 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2100 							main_blkaddr) {
2101 		f2fs_msg(sb, KERN_INFO,
2102 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2103 			ssa_blkaddr, main_blkaddr,
2104 			segment_count_ssa << log_blocks_per_seg);
2105 		return true;
2106 	}
2107 
2108 	if (main_end_blkaddr > seg_end_blkaddr) {
2109 		f2fs_msg(sb, KERN_INFO,
2110 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2111 			main_blkaddr,
2112 			segment0_blkaddr +
2113 				(segment_count << log_blocks_per_seg),
2114 			segment_count_main << log_blocks_per_seg);
2115 		return true;
2116 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2117 		int err = 0;
2118 		char *res;
2119 
2120 		/* fix in-memory information all the time */
2121 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2122 				segment0_blkaddr) >> log_blocks_per_seg);
2123 
2124 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2125 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2126 			res = "internally";
2127 		} else {
2128 			err = __f2fs_commit_super(bh, NULL);
2129 			res = err ? "failed" : "done";
2130 		}
2131 		f2fs_msg(sb, KERN_INFO,
2132 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
2133 			res, main_blkaddr,
2134 			segment0_blkaddr +
2135 				(segment_count << log_blocks_per_seg),
2136 			segment_count_main << log_blocks_per_seg);
2137 		if (err)
2138 			return true;
2139 	}
2140 	return false;
2141 }
2142 
sanity_check_raw_super(struct f2fs_sb_info * sbi,struct buffer_head * bh)2143 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2144 				struct buffer_head *bh)
2145 {
2146 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2147 					(bh->b_data + F2FS_SUPER_OFFSET);
2148 	struct super_block *sb = sbi->sb;
2149 	unsigned int blocksize;
2150 
2151 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2152 		f2fs_msg(sb, KERN_INFO,
2153 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
2154 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2155 		return 1;
2156 	}
2157 
2158 	/* Currently, support only 4KB page cache size */
2159 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2160 		f2fs_msg(sb, KERN_INFO,
2161 			"Invalid page_cache_size (%lu), supports only 4KB\n",
2162 			PAGE_SIZE);
2163 		return 1;
2164 	}
2165 
2166 	/* Currently, support only 4KB block size */
2167 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2168 	if (blocksize != F2FS_BLKSIZE) {
2169 		f2fs_msg(sb, KERN_INFO,
2170 			"Invalid blocksize (%u), supports only 4KB\n",
2171 			blocksize);
2172 		return 1;
2173 	}
2174 
2175 	/* check log blocks per segment */
2176 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2177 		f2fs_msg(sb, KERN_INFO,
2178 			"Invalid log blocks per segment (%u)\n",
2179 			le32_to_cpu(raw_super->log_blocks_per_seg));
2180 		return 1;
2181 	}
2182 
2183 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2184 	if (le32_to_cpu(raw_super->log_sectorsize) >
2185 				F2FS_MAX_LOG_SECTOR_SIZE ||
2186 		le32_to_cpu(raw_super->log_sectorsize) <
2187 				F2FS_MIN_LOG_SECTOR_SIZE) {
2188 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2189 			le32_to_cpu(raw_super->log_sectorsize));
2190 		return 1;
2191 	}
2192 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2193 		le32_to_cpu(raw_super->log_sectorsize) !=
2194 			F2FS_MAX_LOG_SECTOR_SIZE) {
2195 		f2fs_msg(sb, KERN_INFO,
2196 			"Invalid log sectors per block(%u) log sectorsize(%u)",
2197 			le32_to_cpu(raw_super->log_sectors_per_block),
2198 			le32_to_cpu(raw_super->log_sectorsize));
2199 		return 1;
2200 	}
2201 
2202 	/* check reserved ino info */
2203 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2204 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2205 		le32_to_cpu(raw_super->root_ino) != 3) {
2206 		f2fs_msg(sb, KERN_INFO,
2207 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2208 			le32_to_cpu(raw_super->node_ino),
2209 			le32_to_cpu(raw_super->meta_ino),
2210 			le32_to_cpu(raw_super->root_ino));
2211 		return 1;
2212 	}
2213 
2214 	if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
2215 		f2fs_msg(sb, KERN_INFO,
2216 			"Invalid segment count (%u)",
2217 			le32_to_cpu(raw_super->segment_count));
2218 		return 1;
2219 	}
2220 
2221 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2222 	if (sanity_check_area_boundary(sbi, bh))
2223 		return 1;
2224 
2225 	return 0;
2226 }
2227 
sanity_check_ckpt(struct f2fs_sb_info * sbi)2228 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
2229 {
2230 	unsigned int total, fsmeta;
2231 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2232 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2233 	unsigned int ovp_segments, reserved_segments;
2234 	unsigned int main_segs, blocks_per_seg;
2235 	unsigned int sit_segs, nat_segs;
2236 	unsigned int sit_bitmap_size, nat_bitmap_size;
2237 	unsigned int log_blocks_per_seg;
2238 	int i, j;
2239 
2240 	total = le32_to_cpu(raw_super->segment_count);
2241 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2242 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2243 	fsmeta += sit_segs;
2244 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2245 	fsmeta += nat_segs;
2246 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2247 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2248 
2249 	if (unlikely(fsmeta >= total))
2250 		return 1;
2251 
2252 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2253 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2254 
2255 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2256 			ovp_segments == 0 || reserved_segments == 0)) {
2257 		f2fs_msg(sbi->sb, KERN_ERR,
2258 			"Wrong layout: check mkfs.f2fs version");
2259 		return 1;
2260 	}
2261 
2262 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2263 	blocks_per_seg = sbi->blocks_per_seg;
2264 
2265 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2266 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2267 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2268 			return 1;
2269 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2270 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2271 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2272 				f2fs_msg(sbi->sb, KERN_ERR,
2273 					"Node segment (%u, %u) has the same "
2274 					"segno: %u", i, j,
2275 					le32_to_cpu(ckpt->cur_node_segno[i]));
2276 				return 1;
2277 			}
2278 		}
2279 	}
2280 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2281 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2282 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2283 			return 1;
2284 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2285 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2286 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2287 				f2fs_msg(sbi->sb, KERN_ERR,
2288 					"Data segment (%u, %u) has the same "
2289 					"segno: %u", i, j,
2290 					le32_to_cpu(ckpt->cur_data_segno[i]));
2291 				return 1;
2292 			}
2293 		}
2294 	}
2295 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2296 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2297 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2298 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2299 				f2fs_msg(sbi->sb, KERN_ERR,
2300 					"Node segment (%u) and Data segment (%u)"
2301 					" has the same segno: %u", i, j,
2302 					le32_to_cpu(ckpt->cur_node_segno[i]));
2303 				return 1;
2304 			}
2305 		}
2306 	}
2307 
2308 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2309 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2310 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2311 
2312 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2313 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2314 		f2fs_msg(sbi->sb, KERN_ERR,
2315 			"Wrong bitmap size: sit: %u, nat:%u",
2316 			sit_bitmap_size, nat_bitmap_size);
2317 		return 1;
2318 	}
2319 
2320 	if (unlikely(f2fs_cp_error(sbi))) {
2321 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2322 		return 1;
2323 	}
2324 	return 0;
2325 }
2326 
init_sb_info(struct f2fs_sb_info * sbi)2327 static void init_sb_info(struct f2fs_sb_info *sbi)
2328 {
2329 	struct f2fs_super_block *raw_super = sbi->raw_super;
2330 	int i, j;
2331 
2332 	sbi->log_sectors_per_block =
2333 		le32_to_cpu(raw_super->log_sectors_per_block);
2334 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2335 	sbi->blocksize = 1 << sbi->log_blocksize;
2336 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2337 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2338 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2339 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2340 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2341 	sbi->total_node_count =
2342 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2343 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2344 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2345 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2346 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2347 	sbi->cur_victim_sec = NULL_SECNO;
2348 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2349 
2350 	sbi->dir_level = DEF_DIR_LEVEL;
2351 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2352 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2353 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2354 
2355 	for (i = 0; i < NR_COUNT_TYPE; i++)
2356 		atomic_set(&sbi->nr_pages[i], 0);
2357 
2358 	atomic_set(&sbi->wb_sync_req, 0);
2359 
2360 	INIT_LIST_HEAD(&sbi->s_list);
2361 	mutex_init(&sbi->umount_mutex);
2362 	for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2363 		for (j = HOT; j < NR_TEMP_TYPE; j++)
2364 			mutex_init(&sbi->wio_mutex[i][j]);
2365 	spin_lock_init(&sbi->cp_lock);
2366 
2367 	sbi->dirty_device = 0;
2368 	spin_lock_init(&sbi->dev_lock);
2369 
2370 	init_rwsem(&sbi->sb_lock);
2371 }
2372 
init_percpu_info(struct f2fs_sb_info * sbi)2373 static int init_percpu_info(struct f2fs_sb_info *sbi)
2374 {
2375 	int err;
2376 
2377 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2378 	if (err)
2379 		return err;
2380 
2381 	return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2382 								GFP_KERNEL);
2383 }
2384 
2385 #ifdef CONFIG_BLK_DEV_ZONED
init_blkz_info(struct f2fs_sb_info * sbi,int devi)2386 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2387 {
2388 	struct block_device *bdev = FDEV(devi).bdev;
2389 	sector_t nr_sectors = bdev->bd_part->nr_sects;
2390 	sector_t sector = 0;
2391 	struct blk_zone *zones;
2392 	unsigned int i, nr_zones;
2393 	unsigned int n = 0;
2394 	int err = -EIO;
2395 
2396 	if (!f2fs_sb_has_blkzoned(sbi->sb))
2397 		return 0;
2398 
2399 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2400 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2401 		return -EINVAL;
2402 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2403 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2404 				__ilog2_u32(sbi->blocks_per_blkz))
2405 		return -EINVAL;
2406 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2407 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2408 					sbi->log_blocks_per_blkz;
2409 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2410 		FDEV(devi).nr_blkz++;
2411 
2412 	FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2413 								GFP_KERNEL);
2414 	if (!FDEV(devi).blkz_type)
2415 		return -ENOMEM;
2416 
2417 #define F2FS_REPORT_NR_ZONES   4096
2418 
2419 	zones = f2fs_kzalloc(sbi, sizeof(struct blk_zone) *
2420 				F2FS_REPORT_NR_ZONES, GFP_KERNEL);
2421 	if (!zones)
2422 		return -ENOMEM;
2423 
2424 	/* Get block zones type */
2425 	while (zones && sector < nr_sectors) {
2426 
2427 		nr_zones = F2FS_REPORT_NR_ZONES;
2428 		err = blkdev_report_zones(bdev, sector,
2429 					  zones, &nr_zones,
2430 					  GFP_KERNEL);
2431 		if (err)
2432 			break;
2433 		if (!nr_zones) {
2434 			err = -EIO;
2435 			break;
2436 		}
2437 
2438 		for (i = 0; i < nr_zones; i++) {
2439 			FDEV(devi).blkz_type[n] = zones[i].type;
2440 			sector += zones[i].len;
2441 			n++;
2442 		}
2443 	}
2444 
2445 	kfree(zones);
2446 
2447 	return err;
2448 }
2449 #endif
2450 
2451 /*
2452  * Read f2fs raw super block.
2453  * Because we have two copies of super block, so read both of them
2454  * to get the first valid one. If any one of them is broken, we pass
2455  * them recovery flag back to the caller.
2456  */
read_raw_super_block(struct f2fs_sb_info * sbi,struct f2fs_super_block ** raw_super,int * valid_super_block,int * recovery)2457 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2458 			struct f2fs_super_block **raw_super,
2459 			int *valid_super_block, int *recovery)
2460 {
2461 	struct super_block *sb = sbi->sb;
2462 	int block;
2463 	struct buffer_head *bh;
2464 	struct f2fs_super_block *super;
2465 	int err = 0;
2466 
2467 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2468 	if (!super)
2469 		return -ENOMEM;
2470 
2471 	for (block = 0; block < 2; block++) {
2472 		bh = sb_bread(sb, block);
2473 		if (!bh) {
2474 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2475 				block + 1);
2476 			err = -EIO;
2477 			continue;
2478 		}
2479 
2480 		/* sanity checking of raw super */
2481 		if (sanity_check_raw_super(sbi, bh)) {
2482 			f2fs_msg(sb, KERN_ERR,
2483 				"Can't find valid F2FS filesystem in %dth superblock",
2484 				block + 1);
2485 			err = -EINVAL;
2486 			brelse(bh);
2487 			continue;
2488 		}
2489 
2490 		if (!*raw_super) {
2491 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2492 							sizeof(*super));
2493 			*valid_super_block = block;
2494 			*raw_super = super;
2495 		}
2496 		brelse(bh);
2497 	}
2498 
2499 	/* Fail to read any one of the superblocks*/
2500 	if (err < 0)
2501 		*recovery = 1;
2502 
2503 	/* No valid superblock */
2504 	if (!*raw_super)
2505 		kfree(super);
2506 	else
2507 		err = 0;
2508 
2509 	return err;
2510 }
2511 
f2fs_commit_super(struct f2fs_sb_info * sbi,bool recover)2512 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2513 {
2514 	struct buffer_head *bh;
2515 	int err;
2516 
2517 	if ((recover && f2fs_readonly(sbi->sb)) ||
2518 				bdev_read_only(sbi->sb->s_bdev)) {
2519 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2520 		return -EROFS;
2521 	}
2522 
2523 	/* write back-up superblock first */
2524 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2525 	if (!bh)
2526 		return -EIO;
2527 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2528 	brelse(bh);
2529 
2530 	/* if we are in recovery path, skip writing valid superblock */
2531 	if (recover || err)
2532 		return err;
2533 
2534 	/* write current valid superblock */
2535 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
2536 	if (!bh)
2537 		return -EIO;
2538 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2539 	brelse(bh);
2540 	return err;
2541 }
2542 
f2fs_scan_devices(struct f2fs_sb_info * sbi)2543 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2544 {
2545 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2546 	unsigned int max_devices = MAX_DEVICES;
2547 	int i;
2548 
2549 	/* Initialize single device information */
2550 	if (!RDEV(0).path[0]) {
2551 #ifdef CONFIG_BLK_DEV_ZONED
2552 		if (!bdev_is_zoned(sbi->sb->s_bdev))
2553 			return 0;
2554 		max_devices = 1;
2555 #else
2556 		return 0;
2557 #endif
2558 	}
2559 
2560 	/*
2561 	 * Initialize multiple devices information, or single
2562 	 * zoned block device information.
2563 	 */
2564 	sbi->devs = f2fs_kzalloc(sbi, sizeof(struct f2fs_dev_info) *
2565 						max_devices, GFP_KERNEL);
2566 	if (!sbi->devs)
2567 		return -ENOMEM;
2568 
2569 	for (i = 0; i < max_devices; i++) {
2570 
2571 		if (i > 0 && !RDEV(i).path[0])
2572 			break;
2573 
2574 		if (max_devices == 1) {
2575 			/* Single zoned block device mount */
2576 			FDEV(0).bdev =
2577 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2578 					sbi->sb->s_mode, sbi->sb->s_type);
2579 		} else {
2580 			/* Multi-device mount */
2581 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2582 			FDEV(i).total_segments =
2583 				le32_to_cpu(RDEV(i).total_segments);
2584 			if (i == 0) {
2585 				FDEV(i).start_blk = 0;
2586 				FDEV(i).end_blk = FDEV(i).start_blk +
2587 				    (FDEV(i).total_segments <<
2588 				    sbi->log_blocks_per_seg) - 1 +
2589 				    le32_to_cpu(raw_super->segment0_blkaddr);
2590 			} else {
2591 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2592 				FDEV(i).end_blk = FDEV(i).start_blk +
2593 					(FDEV(i).total_segments <<
2594 					sbi->log_blocks_per_seg) - 1;
2595 			}
2596 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2597 					sbi->sb->s_mode, sbi->sb->s_type);
2598 		}
2599 		if (IS_ERR(FDEV(i).bdev))
2600 			return PTR_ERR(FDEV(i).bdev);
2601 
2602 		/* to release errored devices */
2603 		sbi->s_ndevs = i + 1;
2604 
2605 #ifdef CONFIG_BLK_DEV_ZONED
2606 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2607 				!f2fs_sb_has_blkzoned(sbi->sb)) {
2608 			f2fs_msg(sbi->sb, KERN_ERR,
2609 				"Zoned block device feature not enabled\n");
2610 			return -EINVAL;
2611 		}
2612 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2613 			if (init_blkz_info(sbi, i)) {
2614 				f2fs_msg(sbi->sb, KERN_ERR,
2615 					"Failed to initialize F2FS blkzone information");
2616 				return -EINVAL;
2617 			}
2618 			if (max_devices == 1)
2619 				break;
2620 			f2fs_msg(sbi->sb, KERN_INFO,
2621 				"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2622 				i, FDEV(i).path,
2623 				FDEV(i).total_segments,
2624 				FDEV(i).start_blk, FDEV(i).end_blk,
2625 				bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2626 				"Host-aware" : "Host-managed");
2627 			continue;
2628 		}
2629 #endif
2630 		f2fs_msg(sbi->sb, KERN_INFO,
2631 			"Mount Device [%2d]: %20s, %8u, %8x - %8x",
2632 				i, FDEV(i).path,
2633 				FDEV(i).total_segments,
2634 				FDEV(i).start_blk, FDEV(i).end_blk);
2635 	}
2636 	f2fs_msg(sbi->sb, KERN_INFO,
2637 			"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2638 	return 0;
2639 }
2640 
f2fs_tuning_parameters(struct f2fs_sb_info * sbi)2641 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
2642 {
2643 	struct f2fs_sm_info *sm_i = SM_I(sbi);
2644 
2645 	/* adjust parameters according to the volume size */
2646 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
2647 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2648 		sm_i->dcc_info->discard_granularity = 1;
2649 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
2650 	}
2651 }
2652 
f2fs_fill_super(struct super_block * sb,void * data,int silent)2653 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2654 {
2655 	struct f2fs_sb_info *sbi;
2656 	struct f2fs_super_block *raw_super;
2657 	struct inode *root;
2658 	int err;
2659 	bool retry = true, need_fsck = false;
2660 	char *options = NULL;
2661 	int recovery, i, valid_super_block;
2662 	struct curseg_info *seg_i;
2663 
2664 try_onemore:
2665 	err = -EINVAL;
2666 	raw_super = NULL;
2667 	valid_super_block = -1;
2668 	recovery = 0;
2669 
2670 	/* allocate memory for f2fs-specific super block info */
2671 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2672 	if (!sbi)
2673 		return -ENOMEM;
2674 
2675 	sbi->sb = sb;
2676 
2677 	/* Load the checksum driver */
2678 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2679 	if (IS_ERR(sbi->s_chksum_driver)) {
2680 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2681 		err = PTR_ERR(sbi->s_chksum_driver);
2682 		sbi->s_chksum_driver = NULL;
2683 		goto free_sbi;
2684 	}
2685 
2686 	/* set a block size */
2687 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2688 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2689 		goto free_sbi;
2690 	}
2691 
2692 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2693 								&recovery);
2694 	if (err)
2695 		goto free_sbi;
2696 
2697 	sb->s_fs_info = sbi;
2698 	sbi->raw_super = raw_super;
2699 
2700 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2701 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2702 
2703 	/* precompute checksum seed for metadata */
2704 	if (f2fs_sb_has_inode_chksum(sb))
2705 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2706 						sizeof(raw_super->uuid));
2707 
2708 	/*
2709 	 * The BLKZONED feature indicates that the drive was formatted with
2710 	 * zone alignment optimization. This is optional for host-aware
2711 	 * devices, but mandatory for host-managed zoned block devices.
2712 	 */
2713 #ifndef CONFIG_BLK_DEV_ZONED
2714 	if (f2fs_sb_has_blkzoned(sb)) {
2715 		f2fs_msg(sb, KERN_ERR,
2716 			 "Zoned block device support is not enabled\n");
2717 		err = -EOPNOTSUPP;
2718 		goto free_sb_buf;
2719 	}
2720 #endif
2721 	default_options(sbi);
2722 	/* parse mount options */
2723 	options = kstrdup((const char *)data, GFP_KERNEL);
2724 	if (data && !options) {
2725 		err = -ENOMEM;
2726 		goto free_sb_buf;
2727 	}
2728 
2729 	err = parse_options(sb, options);
2730 	if (err)
2731 		goto free_options;
2732 
2733 	sbi->max_file_blocks = max_file_blocks();
2734 	sb->s_maxbytes = sbi->max_file_blocks <<
2735 				le32_to_cpu(raw_super->log_blocksize);
2736 	sb->s_max_links = F2FS_LINK_MAX;
2737 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2738 
2739 #ifdef CONFIG_QUOTA
2740 	sb->dq_op = &f2fs_quota_operations;
2741 	if (f2fs_sb_has_quota_ino(sb))
2742 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
2743 	else
2744 		sb->s_qcop = &f2fs_quotactl_ops;
2745 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2746 
2747 	if (f2fs_sb_has_quota_ino(sbi->sb)) {
2748 		for (i = 0; i < MAXQUOTAS; i++) {
2749 			if (f2fs_qf_ino(sbi->sb, i))
2750 				sbi->nquota_files++;
2751 		}
2752 	}
2753 #endif
2754 
2755 	sb->s_op = &f2fs_sops;
2756 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2757 	sb->s_cop = &f2fs_cryptops;
2758 #endif
2759 	sb->s_xattr = f2fs_xattr_handlers;
2760 	sb->s_export_op = &f2fs_export_ops;
2761 	sb->s_magic = F2FS_SUPER_MAGIC;
2762 	sb->s_time_gran = 1;
2763 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2764 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
2765 	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2766 	sb->s_iflags |= SB_I_CGROUPWB;
2767 
2768 	/* init f2fs-specific super block info */
2769 	sbi->valid_super_block = valid_super_block;
2770 	mutex_init(&sbi->gc_mutex);
2771 	mutex_init(&sbi->cp_mutex);
2772 	init_rwsem(&sbi->node_write);
2773 	init_rwsem(&sbi->node_change);
2774 
2775 	/* disallow all the data/node/meta page writes */
2776 	set_sbi_flag(sbi, SBI_POR_DOING);
2777 	spin_lock_init(&sbi->stat_lock);
2778 
2779 	/* init iostat info */
2780 	spin_lock_init(&sbi->iostat_lock);
2781 	sbi->iostat_enable = false;
2782 
2783 	for (i = 0; i < NR_PAGE_TYPE; i++) {
2784 		int n = (i == META) ? 1: NR_TEMP_TYPE;
2785 		int j;
2786 
2787 		sbi->write_io[i] = f2fs_kmalloc(sbi,
2788 					n * sizeof(struct f2fs_bio_info),
2789 					GFP_KERNEL);
2790 		if (!sbi->write_io[i]) {
2791 			err = -ENOMEM;
2792 			goto free_options;
2793 		}
2794 
2795 		for (j = HOT; j < n; j++) {
2796 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
2797 			sbi->write_io[i][j].sbi = sbi;
2798 			sbi->write_io[i][j].bio = NULL;
2799 			spin_lock_init(&sbi->write_io[i][j].io_lock);
2800 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2801 		}
2802 	}
2803 
2804 	init_rwsem(&sbi->cp_rwsem);
2805 	init_waitqueue_head(&sbi->cp_wait);
2806 	init_sb_info(sbi);
2807 
2808 	err = init_percpu_info(sbi);
2809 	if (err)
2810 		goto free_bio_info;
2811 
2812 	if (F2FS_IO_SIZE(sbi) > 1) {
2813 		sbi->write_io_dummy =
2814 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2815 		if (!sbi->write_io_dummy) {
2816 			err = -ENOMEM;
2817 			goto free_percpu;
2818 		}
2819 	}
2820 
2821 	/* get an inode for meta space */
2822 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2823 	if (IS_ERR(sbi->meta_inode)) {
2824 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2825 		err = PTR_ERR(sbi->meta_inode);
2826 		goto free_io_dummy;
2827 	}
2828 
2829 	err = get_valid_checkpoint(sbi);
2830 	if (err) {
2831 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2832 		goto free_meta_inode;
2833 	}
2834 
2835 	/* Initialize device list */
2836 	err = f2fs_scan_devices(sbi);
2837 	if (err) {
2838 		f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2839 		goto free_devices;
2840 	}
2841 
2842 	sbi->total_valid_node_count =
2843 				le32_to_cpu(sbi->ckpt->valid_node_count);
2844 	percpu_counter_set(&sbi->total_valid_inode_count,
2845 				le32_to_cpu(sbi->ckpt->valid_inode_count));
2846 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2847 	sbi->total_valid_block_count =
2848 				le64_to_cpu(sbi->ckpt->valid_block_count);
2849 	sbi->last_valid_block_count = sbi->total_valid_block_count;
2850 	sbi->reserved_blocks = 0;
2851 	sbi->current_reserved_blocks = 0;
2852 	limit_reserve_root(sbi);
2853 
2854 	for (i = 0; i < NR_INODE_TYPE; i++) {
2855 		INIT_LIST_HEAD(&sbi->inode_list[i]);
2856 		spin_lock_init(&sbi->inode_lock[i]);
2857 	}
2858 
2859 	init_extent_cache_info(sbi);
2860 
2861 	init_ino_entry_info(sbi);
2862 
2863 	/* setup f2fs internal modules */
2864 	err = build_segment_manager(sbi);
2865 	if (err) {
2866 		f2fs_msg(sb, KERN_ERR,
2867 			"Failed to initialize F2FS segment manager");
2868 		goto free_sm;
2869 	}
2870 	err = build_node_manager(sbi);
2871 	if (err) {
2872 		f2fs_msg(sb, KERN_ERR,
2873 			"Failed to initialize F2FS node manager");
2874 		goto free_nm;
2875 	}
2876 
2877 	/* For write statistics */
2878 	if (sb->s_bdev->bd_part)
2879 		sbi->sectors_written_start =
2880 			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2881 
2882 	/* Read accumulated write IO statistics if exists */
2883 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2884 	if (__exist_node_summaries(sbi))
2885 		sbi->kbytes_written =
2886 			le64_to_cpu(seg_i->journal->info.kbytes_written);
2887 
2888 	build_gc_manager(sbi);
2889 
2890 	/* get an inode for node space */
2891 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2892 	if (IS_ERR(sbi->node_inode)) {
2893 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2894 		err = PTR_ERR(sbi->node_inode);
2895 		goto free_nm;
2896 	}
2897 
2898 	err = f2fs_build_stats(sbi);
2899 	if (err)
2900 		goto free_node_inode;
2901 
2902 	/* read root inode and dentry */
2903 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2904 	if (IS_ERR(root)) {
2905 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2906 		err = PTR_ERR(root);
2907 		goto free_stats;
2908 	}
2909 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2910 		iput(root);
2911 		err = -EINVAL;
2912 		goto free_node_inode;
2913 	}
2914 
2915 	sb->s_root = d_make_root(root); /* allocate root dentry */
2916 	if (!sb->s_root) {
2917 		err = -ENOMEM;
2918 		goto free_root_inode;
2919 	}
2920 
2921 	err = f2fs_register_sysfs(sbi);
2922 	if (err)
2923 		goto free_root_inode;
2924 
2925 #ifdef CONFIG_QUOTA
2926 	/*
2927 	 * Turn on quotas which were not enabled for read-only mounts if
2928 	 * filesystem has quota feature, so that they are updated correctly.
2929 	 */
2930 	if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
2931 		err = f2fs_enable_quotas(sb);
2932 		if (err) {
2933 			f2fs_msg(sb, KERN_ERR,
2934 				"Cannot turn on quotas: error %d", err);
2935 			goto free_sysfs;
2936 		}
2937 	}
2938 #endif
2939 	/* if there are nt orphan nodes free them */
2940 	err = recover_orphan_inodes(sbi);
2941 	if (err)
2942 		goto free_meta;
2943 
2944 	/* recover fsynced data */
2945 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2946 		/*
2947 		 * mount should be failed, when device has readonly mode, and
2948 		 * previous checkpoint was not done by clean system shutdown.
2949 		 */
2950 		if (bdev_read_only(sb->s_bdev) &&
2951 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2952 			err = -EROFS;
2953 			goto free_meta;
2954 		}
2955 
2956 		if (need_fsck)
2957 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2958 
2959 		if (!retry)
2960 			goto skip_recovery;
2961 
2962 		err = recover_fsync_data(sbi, false);
2963 		if (err < 0) {
2964 			need_fsck = true;
2965 			f2fs_msg(sb, KERN_ERR,
2966 				"Cannot recover all fsync data errno=%d", err);
2967 			goto free_meta;
2968 		}
2969 	} else {
2970 		err = recover_fsync_data(sbi, true);
2971 
2972 		if (!f2fs_readonly(sb) && err > 0) {
2973 			err = -EINVAL;
2974 			f2fs_msg(sb, KERN_ERR,
2975 				"Need to recover fsync data");
2976 			goto free_meta;
2977 		}
2978 	}
2979 skip_recovery:
2980 	/* recover_fsync_data() cleared this already */
2981 	clear_sbi_flag(sbi, SBI_POR_DOING);
2982 
2983 	/*
2984 	 * If filesystem is not mounted as read-only then
2985 	 * do start the gc_thread.
2986 	 */
2987 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2988 		/* After POR, we can run background GC thread.*/
2989 		err = start_gc_thread(sbi);
2990 		if (err)
2991 			goto free_meta;
2992 	}
2993 	kfree(options);
2994 
2995 	/* recover broken superblock */
2996 	if (recovery) {
2997 		err = f2fs_commit_super(sbi, true);
2998 		f2fs_msg(sb, KERN_INFO,
2999 			"Try to recover %dth superblock, ret: %d",
3000 			sbi->valid_super_block ? 1 : 2, err);
3001 	}
3002 
3003 	f2fs_join_shrinker(sbi);
3004 
3005 	f2fs_tuning_parameters(sbi);
3006 
3007 	f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
3008 				cur_cp_version(F2FS_CKPT(sbi)));
3009 	f2fs_update_time(sbi, CP_TIME);
3010 	f2fs_update_time(sbi, REQ_TIME);
3011 	return 0;
3012 
3013 free_meta:
3014 #ifdef CONFIG_QUOTA
3015 	if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
3016 		f2fs_quota_off_umount(sbi->sb);
3017 #endif
3018 	f2fs_sync_inode_meta(sbi);
3019 	/*
3020 	 * Some dirty meta pages can be produced by recover_orphan_inodes()
3021 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3022 	 * followed by write_checkpoint() through f2fs_write_node_pages(), which
3023 	 * falls into an infinite loop in sync_meta_pages().
3024 	 */
3025 	truncate_inode_pages_final(META_MAPPING(sbi));
3026 #ifdef CONFIG_QUOTA
3027 free_sysfs:
3028 #endif
3029 	f2fs_unregister_sysfs(sbi);
3030 free_root_inode:
3031 	dput(sb->s_root);
3032 	sb->s_root = NULL;
3033 free_stats:
3034 	f2fs_destroy_stats(sbi);
3035 free_node_inode:
3036 	release_ino_entry(sbi, true);
3037 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3038 	iput(sbi->node_inode);
3039 free_nm:
3040 	destroy_node_manager(sbi);
3041 free_sm:
3042 	destroy_segment_manager(sbi);
3043 free_devices:
3044 	destroy_device_list(sbi);
3045 	kfree(sbi->ckpt);
3046 free_meta_inode:
3047 	make_bad_inode(sbi->meta_inode);
3048 	iput(sbi->meta_inode);
3049 free_io_dummy:
3050 	mempool_destroy(sbi->write_io_dummy);
3051 free_percpu:
3052 	destroy_percpu_info(sbi);
3053 free_bio_info:
3054 	for (i = 0; i < NR_PAGE_TYPE; i++)
3055 		kfree(sbi->write_io[i]);
3056 free_options:
3057 #ifdef CONFIG_QUOTA
3058 	for (i = 0; i < MAXQUOTAS; i++)
3059 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3060 #endif
3061 	kfree(options);
3062 free_sb_buf:
3063 	kfree(raw_super);
3064 free_sbi:
3065 	if (sbi->s_chksum_driver)
3066 		crypto_free_shash(sbi->s_chksum_driver);
3067 	kfree(sbi);
3068 
3069 	/* give only one another chance */
3070 	if (retry) {
3071 		retry = false;
3072 		shrink_dcache_sb(sb);
3073 		goto try_onemore;
3074 	}
3075 	return err;
3076 }
3077 
f2fs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)3078 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3079 			const char *dev_name, void *data)
3080 {
3081 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3082 }
3083 
kill_f2fs_super(struct super_block * sb)3084 static void kill_f2fs_super(struct super_block *sb)
3085 {
3086 	if (sb->s_root) {
3087 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
3088 		stop_gc_thread(F2FS_SB(sb));
3089 		stop_discard_thread(F2FS_SB(sb));
3090 	}
3091 	kill_block_super(sb);
3092 }
3093 
3094 static struct file_system_type f2fs_fs_type = {
3095 	.owner		= THIS_MODULE,
3096 	.name		= "f2fs",
3097 	.mount		= f2fs_mount,
3098 	.kill_sb	= kill_f2fs_super,
3099 	.fs_flags	= FS_REQUIRES_DEV,
3100 };
3101 MODULE_ALIAS_FS("f2fs");
3102 
init_inodecache(void)3103 static int __init init_inodecache(void)
3104 {
3105 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3106 			sizeof(struct f2fs_inode_info), 0,
3107 			SLAB_RECLAIM_ACCOUNT, NULL);
3108 	if (!f2fs_inode_cachep)
3109 		return -ENOMEM;
3110 	return 0;
3111 }
3112 
destroy_inodecache(void)3113 static void destroy_inodecache(void)
3114 {
3115 	/*
3116 	 * Make sure all delayed rcu free inodes are flushed before we
3117 	 * destroy cache.
3118 	 */
3119 	rcu_barrier();
3120 	kmem_cache_destroy(f2fs_inode_cachep);
3121 }
3122 
init_f2fs_fs(void)3123 static int __init init_f2fs_fs(void)
3124 {
3125 	int err;
3126 
3127 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3128 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3129 				PAGE_SIZE, F2FS_BLKSIZE);
3130 		return -EINVAL;
3131 	}
3132 
3133 	f2fs_build_trace_ios();
3134 
3135 	err = init_inodecache();
3136 	if (err)
3137 		goto fail;
3138 	err = create_node_manager_caches();
3139 	if (err)
3140 		goto free_inodecache;
3141 	err = create_segment_manager_caches();
3142 	if (err)
3143 		goto free_node_manager_caches;
3144 	err = create_checkpoint_caches();
3145 	if (err)
3146 		goto free_segment_manager_caches;
3147 	err = create_extent_cache();
3148 	if (err)
3149 		goto free_checkpoint_caches;
3150 	err = f2fs_init_sysfs();
3151 	if (err)
3152 		goto free_extent_cache;
3153 	err = register_shrinker(&f2fs_shrinker_info);
3154 	if (err)
3155 		goto free_sysfs;
3156 	err = register_filesystem(&f2fs_fs_type);
3157 	if (err)
3158 		goto free_shrinker;
3159 	err = f2fs_create_root_stats();
3160 	if (err)
3161 		goto free_filesystem;
3162 	err = f2fs_init_post_read_processing();
3163 	if (err)
3164 		goto free_root_stats;
3165 	return 0;
3166 
3167 free_root_stats:
3168 	f2fs_destroy_root_stats();
3169 free_filesystem:
3170 	unregister_filesystem(&f2fs_fs_type);
3171 free_shrinker:
3172 	unregister_shrinker(&f2fs_shrinker_info);
3173 free_sysfs:
3174 	f2fs_exit_sysfs();
3175 free_extent_cache:
3176 	destroy_extent_cache();
3177 free_checkpoint_caches:
3178 	destroy_checkpoint_caches();
3179 free_segment_manager_caches:
3180 	destroy_segment_manager_caches();
3181 free_node_manager_caches:
3182 	destroy_node_manager_caches();
3183 free_inodecache:
3184 	destroy_inodecache();
3185 fail:
3186 	return err;
3187 }
3188 
exit_f2fs_fs(void)3189 static void __exit exit_f2fs_fs(void)
3190 {
3191 	f2fs_destroy_post_read_processing();
3192 	f2fs_destroy_root_stats();
3193 	unregister_filesystem(&f2fs_fs_type);
3194 	unregister_shrinker(&f2fs_shrinker_info);
3195 	f2fs_exit_sysfs();
3196 	destroy_extent_cache();
3197 	destroy_checkpoint_caches();
3198 	destroy_segment_manager_caches();
3199 	destroy_node_manager_caches();
3200 	destroy_inodecache();
3201 	f2fs_destroy_trace_ios();
3202 }
3203 
3204 module_init(init_f2fs_fs)
3205 module_exit(exit_f2fs_fs)
3206 
3207 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3208 MODULE_DESCRIPTION("Flash Friendly File System");
3209 MODULE_LICENSE("GPL");
3210 
3211