• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *	Support for enhanced MLS infrastructure.
10  *	Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *	Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *	This program is free software; you can redistribute it and/or modify
39  *	it under the terms of the GNU General Public License as published by
40  *	the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56 
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72 
73 int selinux_android_netlink_route;
74 int selinux_policycap_netpeer;
75 int selinux_policycap_openperm;
76 int selinux_policycap_alwaysnetwork;
77 
78 static DEFINE_RWLOCK(policy_rwlock);
79 
80 static struct sidtab sidtab;
81 struct policydb policydb;
82 int ss_initialized;
83 
84 /*
85  * The largest sequence number that has been used when
86  * providing an access decision to the access vector cache.
87  * The sequence number only changes when a policy change
88  * occurs.
89  */
90 static u32 latest_granting;
91 
92 /* Forward declaration. */
93 static int context_struct_to_string(struct context *context, char **scontext,
94 				    u32 *scontext_len);
95 
96 static void context_struct_compute_av(struct context *scontext,
97 					struct context *tcontext,
98 					u16 tclass,
99 					struct av_decision *avd,
100 					struct extended_perms *xperms);
101 
102 struct selinux_mapping {
103 	u16 value; /* policy value */
104 	unsigned num_perms;
105 	u32 perms[sizeof(u32) * 8];
106 };
107 
108 static struct selinux_mapping *current_mapping;
109 static u16 current_mapping_size;
110 
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_mapping ** out_map_p,u16 * out_map_size)111 static int selinux_set_mapping(struct policydb *pol,
112 			       struct security_class_mapping *map,
113 			       struct selinux_mapping **out_map_p,
114 			       u16 *out_map_size)
115 {
116 	struct selinux_mapping *out_map = NULL;
117 	size_t size = sizeof(struct selinux_mapping);
118 	u16 i, j;
119 	unsigned k;
120 	bool print_unknown_handle = false;
121 
122 	/* Find number of classes in the input mapping */
123 	if (!map)
124 		return -EINVAL;
125 	i = 0;
126 	while (map[i].name)
127 		i++;
128 
129 	/* Allocate space for the class records, plus one for class zero */
130 	out_map = kcalloc(++i, size, GFP_ATOMIC);
131 	if (!out_map)
132 		return -ENOMEM;
133 
134 	/* Store the raw class and permission values */
135 	j = 0;
136 	while (map[j].name) {
137 		struct security_class_mapping *p_in = map + (j++);
138 		struct selinux_mapping *p_out = out_map + j;
139 
140 		/* An empty class string skips ahead */
141 		if (!strcmp(p_in->name, "")) {
142 			p_out->num_perms = 0;
143 			continue;
144 		}
145 
146 		p_out->value = string_to_security_class(pol, p_in->name);
147 		if (!p_out->value) {
148 			printk(KERN_INFO
149 			       "SELinux:  Class %s not defined in policy.\n",
150 			       p_in->name);
151 			if (pol->reject_unknown)
152 				goto err;
153 			p_out->num_perms = 0;
154 			print_unknown_handle = true;
155 			continue;
156 		}
157 
158 		k = 0;
159 		while (p_in->perms[k]) {
160 			/* An empty permission string skips ahead */
161 			if (!*p_in->perms[k]) {
162 				k++;
163 				continue;
164 			}
165 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
166 							    p_in->perms[k]);
167 			if (!p_out->perms[k]) {
168 				printk(KERN_INFO
169 				       "SELinux:  Permission %s in class %s not defined in policy.\n",
170 				       p_in->perms[k], p_in->name);
171 				if (pol->reject_unknown)
172 					goto err;
173 				print_unknown_handle = true;
174 			}
175 
176 			k++;
177 		}
178 		p_out->num_perms = k;
179 	}
180 
181 	if (print_unknown_handle)
182 		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
183 		       pol->allow_unknown ? "allowed" : "denied");
184 
185 	*out_map_p = out_map;
186 	*out_map_size = i;
187 	return 0;
188 err:
189 	kfree(out_map);
190 	return -EINVAL;
191 }
192 
193 /*
194  * Get real, policy values from mapped values
195  */
196 
unmap_class(u16 tclass)197 static u16 unmap_class(u16 tclass)
198 {
199 	if (tclass < current_mapping_size)
200 		return current_mapping[tclass].value;
201 
202 	return tclass;
203 }
204 
205 /*
206  * Get kernel value for class from its policy value
207  */
map_class(u16 pol_value)208 static u16 map_class(u16 pol_value)
209 {
210 	u16 i;
211 
212 	for (i = 1; i < current_mapping_size; i++) {
213 		if (current_mapping[i].value == pol_value)
214 			return i;
215 	}
216 
217 	return SECCLASS_NULL;
218 }
219 
map_decision(u16 tclass,struct av_decision * avd,int allow_unknown)220 static void map_decision(u16 tclass, struct av_decision *avd,
221 			 int allow_unknown)
222 {
223 	if (tclass < current_mapping_size) {
224 		unsigned i, n = current_mapping[tclass].num_perms;
225 		u32 result;
226 
227 		for (i = 0, result = 0; i < n; i++) {
228 			if (avd->allowed & current_mapping[tclass].perms[i])
229 				result |= 1<<i;
230 			if (allow_unknown && !current_mapping[tclass].perms[i])
231 				result |= 1<<i;
232 		}
233 		avd->allowed = result;
234 
235 		for (i = 0, result = 0; i < n; i++)
236 			if (avd->auditallow & current_mapping[tclass].perms[i])
237 				result |= 1<<i;
238 		avd->auditallow = result;
239 
240 		for (i = 0, result = 0; i < n; i++) {
241 			if (avd->auditdeny & current_mapping[tclass].perms[i])
242 				result |= 1<<i;
243 			if (!allow_unknown && !current_mapping[tclass].perms[i])
244 				result |= 1<<i;
245 		}
246 		/*
247 		 * In case the kernel has a bug and requests a permission
248 		 * between num_perms and the maximum permission number, we
249 		 * should audit that denial
250 		 */
251 		for (; i < (sizeof(u32)*8); i++)
252 			result |= 1<<i;
253 		avd->auditdeny = result;
254 	}
255 }
256 
security_mls_enabled(void)257 int security_mls_enabled(void)
258 {
259 	return policydb.mls_enabled;
260 }
261 
262 /*
263  * Return the boolean value of a constraint expression
264  * when it is applied to the specified source and target
265  * security contexts.
266  *
267  * xcontext is a special beast...  It is used by the validatetrans rules
268  * only.  For these rules, scontext is the context before the transition,
269  * tcontext is the context after the transition, and xcontext is the context
270  * of the process performing the transition.  All other callers of
271  * constraint_expr_eval should pass in NULL for xcontext.
272  */
constraint_expr_eval(struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)273 static int constraint_expr_eval(struct context *scontext,
274 				struct context *tcontext,
275 				struct context *xcontext,
276 				struct constraint_expr *cexpr)
277 {
278 	u32 val1, val2;
279 	struct context *c;
280 	struct role_datum *r1, *r2;
281 	struct mls_level *l1, *l2;
282 	struct constraint_expr *e;
283 	int s[CEXPR_MAXDEPTH];
284 	int sp = -1;
285 
286 	for (e = cexpr; e; e = e->next) {
287 		switch (e->expr_type) {
288 		case CEXPR_NOT:
289 			BUG_ON(sp < 0);
290 			s[sp] = !s[sp];
291 			break;
292 		case CEXPR_AND:
293 			BUG_ON(sp < 1);
294 			sp--;
295 			s[sp] &= s[sp + 1];
296 			break;
297 		case CEXPR_OR:
298 			BUG_ON(sp < 1);
299 			sp--;
300 			s[sp] |= s[sp + 1];
301 			break;
302 		case CEXPR_ATTR:
303 			if (sp == (CEXPR_MAXDEPTH - 1))
304 				return 0;
305 			switch (e->attr) {
306 			case CEXPR_USER:
307 				val1 = scontext->user;
308 				val2 = tcontext->user;
309 				break;
310 			case CEXPR_TYPE:
311 				val1 = scontext->type;
312 				val2 = tcontext->type;
313 				break;
314 			case CEXPR_ROLE:
315 				val1 = scontext->role;
316 				val2 = tcontext->role;
317 				r1 = policydb.role_val_to_struct[val1 - 1];
318 				r2 = policydb.role_val_to_struct[val2 - 1];
319 				switch (e->op) {
320 				case CEXPR_DOM:
321 					s[++sp] = ebitmap_get_bit(&r1->dominates,
322 								  val2 - 1);
323 					continue;
324 				case CEXPR_DOMBY:
325 					s[++sp] = ebitmap_get_bit(&r2->dominates,
326 								  val1 - 1);
327 					continue;
328 				case CEXPR_INCOMP:
329 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
330 								    val2 - 1) &&
331 						   !ebitmap_get_bit(&r2->dominates,
332 								    val1 - 1));
333 					continue;
334 				default:
335 					break;
336 				}
337 				break;
338 			case CEXPR_L1L2:
339 				l1 = &(scontext->range.level[0]);
340 				l2 = &(tcontext->range.level[0]);
341 				goto mls_ops;
342 			case CEXPR_L1H2:
343 				l1 = &(scontext->range.level[0]);
344 				l2 = &(tcontext->range.level[1]);
345 				goto mls_ops;
346 			case CEXPR_H1L2:
347 				l1 = &(scontext->range.level[1]);
348 				l2 = &(tcontext->range.level[0]);
349 				goto mls_ops;
350 			case CEXPR_H1H2:
351 				l1 = &(scontext->range.level[1]);
352 				l2 = &(tcontext->range.level[1]);
353 				goto mls_ops;
354 			case CEXPR_L1H1:
355 				l1 = &(scontext->range.level[0]);
356 				l2 = &(scontext->range.level[1]);
357 				goto mls_ops;
358 			case CEXPR_L2H2:
359 				l1 = &(tcontext->range.level[0]);
360 				l2 = &(tcontext->range.level[1]);
361 				goto mls_ops;
362 mls_ops:
363 			switch (e->op) {
364 			case CEXPR_EQ:
365 				s[++sp] = mls_level_eq(l1, l2);
366 				continue;
367 			case CEXPR_NEQ:
368 				s[++sp] = !mls_level_eq(l1, l2);
369 				continue;
370 			case CEXPR_DOM:
371 				s[++sp] = mls_level_dom(l1, l2);
372 				continue;
373 			case CEXPR_DOMBY:
374 				s[++sp] = mls_level_dom(l2, l1);
375 				continue;
376 			case CEXPR_INCOMP:
377 				s[++sp] = mls_level_incomp(l2, l1);
378 				continue;
379 			default:
380 				BUG();
381 				return 0;
382 			}
383 			break;
384 			default:
385 				BUG();
386 				return 0;
387 			}
388 
389 			switch (e->op) {
390 			case CEXPR_EQ:
391 				s[++sp] = (val1 == val2);
392 				break;
393 			case CEXPR_NEQ:
394 				s[++sp] = (val1 != val2);
395 				break;
396 			default:
397 				BUG();
398 				return 0;
399 			}
400 			break;
401 		case CEXPR_NAMES:
402 			if (sp == (CEXPR_MAXDEPTH-1))
403 				return 0;
404 			c = scontext;
405 			if (e->attr & CEXPR_TARGET)
406 				c = tcontext;
407 			else if (e->attr & CEXPR_XTARGET) {
408 				c = xcontext;
409 				if (!c) {
410 					BUG();
411 					return 0;
412 				}
413 			}
414 			if (e->attr & CEXPR_USER)
415 				val1 = c->user;
416 			else if (e->attr & CEXPR_ROLE)
417 				val1 = c->role;
418 			else if (e->attr & CEXPR_TYPE)
419 				val1 = c->type;
420 			else {
421 				BUG();
422 				return 0;
423 			}
424 
425 			switch (e->op) {
426 			case CEXPR_EQ:
427 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
428 				break;
429 			case CEXPR_NEQ:
430 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
431 				break;
432 			default:
433 				BUG();
434 				return 0;
435 			}
436 			break;
437 		default:
438 			BUG();
439 			return 0;
440 		}
441 	}
442 
443 	BUG_ON(sp != 0);
444 	return s[0];
445 }
446 
447 /*
448  * security_dump_masked_av - dumps masked permissions during
449  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
450  */
dump_masked_av_helper(void * k,void * d,void * args)451 static int dump_masked_av_helper(void *k, void *d, void *args)
452 {
453 	struct perm_datum *pdatum = d;
454 	char **permission_names = args;
455 
456 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
457 
458 	permission_names[pdatum->value - 1] = (char *)k;
459 
460 	return 0;
461 }
462 
security_dump_masked_av(struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)463 static void security_dump_masked_av(struct context *scontext,
464 				    struct context *tcontext,
465 				    u16 tclass,
466 				    u32 permissions,
467 				    const char *reason)
468 {
469 	struct common_datum *common_dat;
470 	struct class_datum *tclass_dat;
471 	struct audit_buffer *ab;
472 	char *tclass_name;
473 	char *scontext_name = NULL;
474 	char *tcontext_name = NULL;
475 	char *permission_names[32];
476 	int index;
477 	u32 length;
478 	bool need_comma = false;
479 
480 	if (!permissions)
481 		return;
482 
483 	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
484 	tclass_dat = policydb.class_val_to_struct[tclass - 1];
485 	common_dat = tclass_dat->comdatum;
486 
487 	/* init permission_names */
488 	if (common_dat &&
489 	    hashtab_map(common_dat->permissions.table,
490 			dump_masked_av_helper, permission_names) < 0)
491 		goto out;
492 
493 	if (hashtab_map(tclass_dat->permissions.table,
494 			dump_masked_av_helper, permission_names) < 0)
495 		goto out;
496 
497 	/* get scontext/tcontext in text form */
498 	if (context_struct_to_string(scontext,
499 				     &scontext_name, &length) < 0)
500 		goto out;
501 
502 	if (context_struct_to_string(tcontext,
503 				     &tcontext_name, &length) < 0)
504 		goto out;
505 
506 	/* audit a message */
507 	ab = audit_log_start(current->audit_context,
508 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
509 	if (!ab)
510 		goto out;
511 
512 	audit_log_format(ab, "op=security_compute_av reason=%s "
513 			 "scontext=%s tcontext=%s tclass=%s perms=",
514 			 reason, scontext_name, tcontext_name, tclass_name);
515 
516 	for (index = 0; index < 32; index++) {
517 		u32 mask = (1 << index);
518 
519 		if ((mask & permissions) == 0)
520 			continue;
521 
522 		audit_log_format(ab, "%s%s",
523 				 need_comma ? "," : "",
524 				 permission_names[index]
525 				 ? permission_names[index] : "????");
526 		need_comma = true;
527 	}
528 	audit_log_end(ab);
529 out:
530 	/* release scontext/tcontext */
531 	kfree(tcontext_name);
532 	kfree(scontext_name);
533 
534 	return;
535 }
536 
537 /*
538  * security_boundary_permission - drops violated permissions
539  * on boundary constraint.
540  */
type_attribute_bounds_av(struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)541 static void type_attribute_bounds_av(struct context *scontext,
542 				     struct context *tcontext,
543 				     u16 tclass,
544 				     struct av_decision *avd)
545 {
546 	struct context lo_scontext;
547 	struct context lo_tcontext;
548 	struct av_decision lo_avd;
549 	struct type_datum *source;
550 	struct type_datum *target;
551 	u32 masked = 0;
552 
553 	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
554 				    scontext->type - 1);
555 	BUG_ON(!source);
556 
557 	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
558 				    tcontext->type - 1);
559 	BUG_ON(!target);
560 
561 	if (source->bounds) {
562 		memset(&lo_avd, 0, sizeof(lo_avd));
563 
564 		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
565 		lo_scontext.type = source->bounds;
566 
567 		context_struct_compute_av(&lo_scontext,
568 					  tcontext,
569 					  tclass,
570 					  &lo_avd,
571 					  NULL);
572 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
573 			return;		/* no masked permission */
574 		masked = ~lo_avd.allowed & avd->allowed;
575 	}
576 
577 	if (target->bounds) {
578 		memset(&lo_avd, 0, sizeof(lo_avd));
579 
580 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
581 		lo_tcontext.type = target->bounds;
582 
583 		context_struct_compute_av(scontext,
584 					  &lo_tcontext,
585 					  tclass,
586 					  &lo_avd,
587 					  NULL);
588 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
589 			return;		/* no masked permission */
590 		masked = ~lo_avd.allowed & avd->allowed;
591 	}
592 
593 	if (source->bounds && target->bounds) {
594 		memset(&lo_avd, 0, sizeof(lo_avd));
595 		/*
596 		 * lo_scontext and lo_tcontext are already
597 		 * set up.
598 		 */
599 
600 		context_struct_compute_av(&lo_scontext,
601 					  &lo_tcontext,
602 					  tclass,
603 					  &lo_avd,
604 					  NULL);
605 		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
606 			return;		/* no masked permission */
607 		masked = ~lo_avd.allowed & avd->allowed;
608 	}
609 
610 	if (masked) {
611 		/* mask violated permissions */
612 		avd->allowed &= ~masked;
613 
614 		/* audit masked permissions */
615 		security_dump_masked_av(scontext, tcontext,
616 					tclass, masked, "bounds");
617 	}
618 }
619 
620 /*
621  * flag which drivers have permissions
622  * only looking for ioctl based extended permssions
623  */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)624 void services_compute_xperms_drivers(
625 		struct extended_perms *xperms,
626 		struct avtab_node *node)
627 {
628 	unsigned int i;
629 
630 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
631 		/* if one or more driver has all permissions allowed */
632 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
633 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
634 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
635 		/* if allowing permissions within a driver */
636 		security_xperm_set(xperms->drivers.p,
637 					node->datum.u.xperms->driver);
638 	}
639 
640 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
641 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
642 		xperms->len = 1;
643 }
644 
645 /*
646  * Compute access vectors and extended permissions based on a context
647  * structure pair for the permissions in a particular class.
648  */
context_struct_compute_av(struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)649 static void context_struct_compute_av(struct context *scontext,
650 					struct context *tcontext,
651 					u16 tclass,
652 					struct av_decision *avd,
653 					struct extended_perms *xperms)
654 {
655 	struct constraint_node *constraint;
656 	struct role_allow *ra;
657 	struct avtab_key avkey;
658 	struct avtab_node *node;
659 	struct class_datum *tclass_datum;
660 	struct ebitmap *sattr, *tattr;
661 	struct ebitmap_node *snode, *tnode;
662 	unsigned int i, j;
663 
664 	avd->allowed = 0;
665 	avd->auditallow = 0;
666 	avd->auditdeny = 0xffffffff;
667 	if (xperms) {
668 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
669 		xperms->len = 0;
670 	}
671 
672 	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
673 		if (printk_ratelimit())
674 			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
675 		return;
676 	}
677 
678 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
679 
680 	/*
681 	 * If a specific type enforcement rule was defined for
682 	 * this permission check, then use it.
683 	 */
684 	avkey.target_class = tclass;
685 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
686 	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
687 	BUG_ON(!sattr);
688 	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
689 	BUG_ON(!tattr);
690 	ebitmap_for_each_positive_bit(sattr, snode, i) {
691 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
692 			avkey.source_type = i + 1;
693 			avkey.target_type = j + 1;
694 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
695 			     node;
696 			     node = avtab_search_node_next(node, avkey.specified)) {
697 				if (node->key.specified == AVTAB_ALLOWED)
698 					avd->allowed |= node->datum.u.data;
699 				else if (node->key.specified == AVTAB_AUDITALLOW)
700 					avd->auditallow |= node->datum.u.data;
701 				else if (node->key.specified == AVTAB_AUDITDENY)
702 					avd->auditdeny &= node->datum.u.data;
703 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
704 					services_compute_xperms_drivers(xperms, node);
705 			}
706 
707 			/* Check conditional av table for additional permissions */
708 			cond_compute_av(&policydb.te_cond_avtab, &avkey,
709 					avd, xperms);
710 
711 		}
712 	}
713 
714 	/*
715 	 * Remove any permissions prohibited by a constraint (this includes
716 	 * the MLS policy).
717 	 */
718 	constraint = tclass_datum->constraints;
719 	while (constraint) {
720 		if ((constraint->permissions & (avd->allowed)) &&
721 		    !constraint_expr_eval(scontext, tcontext, NULL,
722 					  constraint->expr)) {
723 			avd->allowed &= ~(constraint->permissions);
724 		}
725 		constraint = constraint->next;
726 	}
727 
728 	/*
729 	 * If checking process transition permission and the
730 	 * role is changing, then check the (current_role, new_role)
731 	 * pair.
732 	 */
733 	if (tclass == policydb.process_class &&
734 	    (avd->allowed & policydb.process_trans_perms) &&
735 	    scontext->role != tcontext->role) {
736 		for (ra = policydb.role_allow; ra; ra = ra->next) {
737 			if (scontext->role == ra->role &&
738 			    tcontext->role == ra->new_role)
739 				break;
740 		}
741 		if (!ra)
742 			avd->allowed &= ~policydb.process_trans_perms;
743 	}
744 
745 	/*
746 	 * If the given source and target types have boundary
747 	 * constraint, lazy checks have to mask any violated
748 	 * permission and notice it to userspace via audit.
749 	 */
750 	type_attribute_bounds_av(scontext, tcontext,
751 				 tclass, avd);
752 }
753 
security_validtrans_handle_fail(struct context * ocontext,struct context * ncontext,struct context * tcontext,u16 tclass)754 static int security_validtrans_handle_fail(struct context *ocontext,
755 					   struct context *ncontext,
756 					   struct context *tcontext,
757 					   u16 tclass)
758 {
759 	char *o = NULL, *n = NULL, *t = NULL;
760 	u32 olen, nlen, tlen;
761 
762 	if (context_struct_to_string(ocontext, &o, &olen))
763 		goto out;
764 	if (context_struct_to_string(ncontext, &n, &nlen))
765 		goto out;
766 	if (context_struct_to_string(tcontext, &t, &tlen))
767 		goto out;
768 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
769 		  "op=security_validate_transition seresult=denied"
770 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
771 		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
772 out:
773 	kfree(o);
774 	kfree(n);
775 	kfree(t);
776 
777 	if (!selinux_enforcing)
778 		return 0;
779 	return -EPERM;
780 }
781 
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)782 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
783 				 u16 orig_tclass)
784 {
785 	struct context *ocontext;
786 	struct context *ncontext;
787 	struct context *tcontext;
788 	struct class_datum *tclass_datum;
789 	struct constraint_node *constraint;
790 	u16 tclass;
791 	int rc = 0;
792 
793 	if (!ss_initialized)
794 		return 0;
795 
796 	read_lock(&policy_rwlock);
797 
798 	tclass = unmap_class(orig_tclass);
799 
800 	if (!tclass || tclass > policydb.p_classes.nprim) {
801 		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
802 			__func__, tclass);
803 		rc = -EINVAL;
804 		goto out;
805 	}
806 	tclass_datum = policydb.class_val_to_struct[tclass - 1];
807 
808 	ocontext = sidtab_search(&sidtab, oldsid);
809 	if (!ocontext) {
810 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
811 			__func__, oldsid);
812 		rc = -EINVAL;
813 		goto out;
814 	}
815 
816 	ncontext = sidtab_search(&sidtab, newsid);
817 	if (!ncontext) {
818 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
819 			__func__, newsid);
820 		rc = -EINVAL;
821 		goto out;
822 	}
823 
824 	tcontext = sidtab_search(&sidtab, tasksid);
825 	if (!tcontext) {
826 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
827 			__func__, tasksid);
828 		rc = -EINVAL;
829 		goto out;
830 	}
831 
832 	constraint = tclass_datum->validatetrans;
833 	while (constraint) {
834 		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
835 					  constraint->expr)) {
836 			rc = security_validtrans_handle_fail(ocontext, ncontext,
837 							     tcontext, tclass);
838 			goto out;
839 		}
840 		constraint = constraint->next;
841 	}
842 
843 out:
844 	read_unlock(&policy_rwlock);
845 	return rc;
846 }
847 
848 /*
849  * security_bounded_transition - check whether the given
850  * transition is directed to bounded, or not.
851  * It returns 0, if @newsid is bounded by @oldsid.
852  * Otherwise, it returns error code.
853  *
854  * @oldsid : current security identifier
855  * @newsid : destinated security identifier
856  */
security_bounded_transition(u32 old_sid,u32 new_sid)857 int security_bounded_transition(u32 old_sid, u32 new_sid)
858 {
859 	struct context *old_context, *new_context;
860 	struct type_datum *type;
861 	int index;
862 	int rc;
863 
864 	if (!ss_initialized)
865 		return 0;
866 
867 	read_lock(&policy_rwlock);
868 
869 	rc = -EINVAL;
870 	old_context = sidtab_search(&sidtab, old_sid);
871 	if (!old_context) {
872 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
873 		       __func__, old_sid);
874 		goto out;
875 	}
876 
877 	rc = -EINVAL;
878 	new_context = sidtab_search(&sidtab, new_sid);
879 	if (!new_context) {
880 		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
881 		       __func__, new_sid);
882 		goto out;
883 	}
884 
885 	rc = 0;
886 	/* type/domain unchanged */
887 	if (old_context->type == new_context->type)
888 		goto out;
889 
890 	index = new_context->type;
891 	while (true) {
892 		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
893 					  index - 1);
894 		BUG_ON(!type);
895 
896 		/* not bounded anymore */
897 		rc = -EPERM;
898 		if (!type->bounds)
899 			break;
900 
901 		/* @newsid is bounded by @oldsid */
902 		rc = 0;
903 		if (type->bounds == old_context->type)
904 			break;
905 
906 		index = type->bounds;
907 	}
908 
909 	if (rc) {
910 		char *old_name = NULL;
911 		char *new_name = NULL;
912 		u32 length;
913 
914 		if (!context_struct_to_string(old_context,
915 					      &old_name, &length) &&
916 		    !context_struct_to_string(new_context,
917 					      &new_name, &length)) {
918 			audit_log(current->audit_context,
919 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
920 				  "op=security_bounded_transition "
921 				  "seresult=denied "
922 				  "oldcontext=%s newcontext=%s",
923 				  old_name, new_name);
924 		}
925 		kfree(new_name);
926 		kfree(old_name);
927 	}
928 out:
929 	read_unlock(&policy_rwlock);
930 
931 	return rc;
932 }
933 
avd_init(struct av_decision * avd)934 static void avd_init(struct av_decision *avd)
935 {
936 	avd->allowed = 0;
937 	avd->auditallow = 0;
938 	avd->auditdeny = 0xffffffff;
939 	avd->seqno = latest_granting;
940 	avd->flags = 0;
941 }
942 
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)943 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
944 					struct avtab_node *node)
945 {
946 	unsigned int i;
947 
948 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
949 		if (xpermd->driver != node->datum.u.xperms->driver)
950 			return;
951 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
952 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
953 					xpermd->driver))
954 			return;
955 	} else {
956 		BUG();
957 	}
958 
959 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
960 		xpermd->used |= XPERMS_ALLOWED;
961 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
962 			memset(xpermd->allowed->p, 0xff,
963 					sizeof(xpermd->allowed->p));
964 		}
965 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
966 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
967 				xpermd->allowed->p[i] |=
968 					node->datum.u.xperms->perms.p[i];
969 		}
970 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
971 		xpermd->used |= XPERMS_AUDITALLOW;
972 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
973 			memset(xpermd->auditallow->p, 0xff,
974 					sizeof(xpermd->auditallow->p));
975 		}
976 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
977 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
978 				xpermd->auditallow->p[i] |=
979 					node->datum.u.xperms->perms.p[i];
980 		}
981 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
982 		xpermd->used |= XPERMS_DONTAUDIT;
983 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
984 			memset(xpermd->dontaudit->p, 0xff,
985 					sizeof(xpermd->dontaudit->p));
986 		}
987 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
988 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
989 				xpermd->dontaudit->p[i] |=
990 					node->datum.u.xperms->perms.p[i];
991 		}
992 	} else {
993 		BUG();
994 	}
995 }
996 
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)997 void security_compute_xperms_decision(u32 ssid,
998 				u32 tsid,
999 				u16 orig_tclass,
1000 				u8 driver,
1001 				struct extended_perms_decision *xpermd)
1002 {
1003 	u16 tclass;
1004 	struct context *scontext, *tcontext;
1005 	struct avtab_key avkey;
1006 	struct avtab_node *node;
1007 	struct ebitmap *sattr, *tattr;
1008 	struct ebitmap_node *snode, *tnode;
1009 	unsigned int i, j;
1010 
1011 	xpermd->driver = driver;
1012 	xpermd->used = 0;
1013 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1014 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1015 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1016 
1017 	read_lock(&policy_rwlock);
1018 	if (!ss_initialized)
1019 		goto allow;
1020 
1021 	scontext = sidtab_search(&sidtab, ssid);
1022 	if (!scontext) {
1023 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1024 		       __func__, ssid);
1025 		goto out;
1026 	}
1027 
1028 	tcontext = sidtab_search(&sidtab, tsid);
1029 	if (!tcontext) {
1030 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1031 		       __func__, tsid);
1032 		goto out;
1033 	}
1034 
1035 	tclass = unmap_class(orig_tclass);
1036 	if (unlikely(orig_tclass && !tclass)) {
1037 		if (policydb.allow_unknown)
1038 			goto allow;
1039 		goto out;
1040 	}
1041 
1042 
1043 	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1044 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1045 		goto out;
1046 	}
1047 
1048 	avkey.target_class = tclass;
1049 	avkey.specified = AVTAB_XPERMS;
1050 	sattr = flex_array_get(policydb.type_attr_map_array,
1051 				scontext->type - 1);
1052 	BUG_ON(!sattr);
1053 	tattr = flex_array_get(policydb.type_attr_map_array,
1054 				tcontext->type - 1);
1055 	BUG_ON(!tattr);
1056 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1057 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1058 			avkey.source_type = i + 1;
1059 			avkey.target_type = j + 1;
1060 			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
1061 			     node;
1062 			     node = avtab_search_node_next(node, avkey.specified))
1063 				services_compute_xperms_decision(xpermd, node);
1064 
1065 			cond_compute_xperms(&policydb.te_cond_avtab,
1066 						&avkey, xpermd);
1067 		}
1068 	}
1069 out:
1070 	read_unlock(&policy_rwlock);
1071 	return;
1072 allow:
1073 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1074 	goto out;
1075 }
1076 
1077 /**
1078  * security_compute_av - Compute access vector decisions.
1079  * @ssid: source security identifier
1080  * @tsid: target security identifier
1081  * @tclass: target security class
1082  * @avd: access vector decisions
1083  * @xperms: extended permissions
1084  *
1085  * Compute a set of access vector decisions based on the
1086  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1087  */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1088 void security_compute_av(u32 ssid,
1089 			 u32 tsid,
1090 			 u16 orig_tclass,
1091 			 struct av_decision *avd,
1092 			 struct extended_perms *xperms)
1093 {
1094 	u16 tclass;
1095 	struct context *scontext = NULL, *tcontext = NULL;
1096 
1097 	read_lock(&policy_rwlock);
1098 	avd_init(avd);
1099 	xperms->len = 0;
1100 	if (!ss_initialized)
1101 		goto allow;
1102 
1103 	scontext = sidtab_search(&sidtab, ssid);
1104 	if (!scontext) {
1105 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1106 		       __func__, ssid);
1107 		goto out;
1108 	}
1109 
1110 	/* permissive domain? */
1111 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1112 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1113 
1114 	tcontext = sidtab_search(&sidtab, tsid);
1115 	if (!tcontext) {
1116 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1117 		       __func__, tsid);
1118 		goto out;
1119 	}
1120 
1121 	tclass = unmap_class(orig_tclass);
1122 	if (unlikely(orig_tclass && !tclass)) {
1123 		if (policydb.allow_unknown)
1124 			goto allow;
1125 		goto out;
1126 	}
1127 	context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1128 	map_decision(orig_tclass, avd, policydb.allow_unknown);
1129 out:
1130 	read_unlock(&policy_rwlock);
1131 	return;
1132 allow:
1133 	avd->allowed = 0xffffffff;
1134 	goto out;
1135 }
1136 
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1137 void security_compute_av_user(u32 ssid,
1138 			      u32 tsid,
1139 			      u16 tclass,
1140 			      struct av_decision *avd)
1141 {
1142 	struct context *scontext = NULL, *tcontext = NULL;
1143 
1144 	read_lock(&policy_rwlock);
1145 	avd_init(avd);
1146 	if (!ss_initialized)
1147 		goto allow;
1148 
1149 	scontext = sidtab_search(&sidtab, ssid);
1150 	if (!scontext) {
1151 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1152 		       __func__, ssid);
1153 		goto out;
1154 	}
1155 
1156 	/* permissive domain? */
1157 	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1158 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1159 
1160 	tcontext = sidtab_search(&sidtab, tsid);
1161 	if (!tcontext) {
1162 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1163 		       __func__, tsid);
1164 		goto out;
1165 	}
1166 
1167 	if (unlikely(!tclass)) {
1168 		if (policydb.allow_unknown)
1169 			goto allow;
1170 		goto out;
1171 	}
1172 
1173 	context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
1174  out:
1175 	read_unlock(&policy_rwlock);
1176 	return;
1177 allow:
1178 	avd->allowed = 0xffffffff;
1179 	goto out;
1180 }
1181 
1182 /*
1183  * Write the security context string representation of
1184  * the context structure `context' into a dynamically
1185  * allocated string of the correct size.  Set `*scontext'
1186  * to point to this string and set `*scontext_len' to
1187  * the length of the string.
1188  */
context_struct_to_string(struct context * context,char ** scontext,u32 * scontext_len)1189 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1190 {
1191 	char *scontextp;
1192 
1193 	if (scontext)
1194 		*scontext = NULL;
1195 	*scontext_len = 0;
1196 
1197 	if (context->len) {
1198 		*scontext_len = context->len;
1199 		if (scontext) {
1200 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1201 			if (!(*scontext))
1202 				return -ENOMEM;
1203 		}
1204 		return 0;
1205 	}
1206 
1207 	/* Compute the size of the context. */
1208 	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1209 	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1210 	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1211 	*scontext_len += mls_compute_context_len(context);
1212 
1213 	if (!scontext)
1214 		return 0;
1215 
1216 	/* Allocate space for the context; caller must free this space. */
1217 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1218 	if (!scontextp)
1219 		return -ENOMEM;
1220 	*scontext = scontextp;
1221 
1222 	/*
1223 	 * Copy the user name, role name and type name into the context.
1224 	 */
1225 	scontextp += sprintf(scontextp, "%s:%s:%s",
1226 		sym_name(&policydb, SYM_USERS, context->user - 1),
1227 		sym_name(&policydb, SYM_ROLES, context->role - 1),
1228 		sym_name(&policydb, SYM_TYPES, context->type - 1));
1229 
1230 	mls_sid_to_context(context, &scontextp);
1231 
1232 	*scontextp = 0;
1233 
1234 	return 0;
1235 }
1236 
1237 #include "initial_sid_to_string.h"
1238 
security_get_initial_sid_context(u32 sid)1239 const char *security_get_initial_sid_context(u32 sid)
1240 {
1241 	if (unlikely(sid > SECINITSID_NUM))
1242 		return NULL;
1243 	return initial_sid_to_string[sid];
1244 }
1245 
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force)1246 static int security_sid_to_context_core(u32 sid, char **scontext,
1247 					u32 *scontext_len, int force)
1248 {
1249 	struct context *context;
1250 	int rc = 0;
1251 
1252 	if (scontext)
1253 		*scontext = NULL;
1254 	*scontext_len  = 0;
1255 
1256 	if (!ss_initialized) {
1257 		if (sid <= SECINITSID_NUM) {
1258 			char *scontextp;
1259 
1260 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1261 			if (!scontext)
1262 				goto out;
1263 			scontextp = kmemdup(initial_sid_to_string[sid],
1264 					    *scontext_len, GFP_ATOMIC);
1265 			if (!scontextp) {
1266 				rc = -ENOMEM;
1267 				goto out;
1268 			}
1269 			*scontext = scontextp;
1270 			goto out;
1271 		}
1272 		printk(KERN_ERR "SELinux: %s:  called before initial "
1273 		       "load_policy on unknown SID %d\n", __func__, sid);
1274 		rc = -EINVAL;
1275 		goto out;
1276 	}
1277 	read_lock(&policy_rwlock);
1278 	if (force)
1279 		context = sidtab_search_force(&sidtab, sid);
1280 	else
1281 		context = sidtab_search(&sidtab, sid);
1282 	if (!context) {
1283 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1284 			__func__, sid);
1285 		rc = -EINVAL;
1286 		goto out_unlock;
1287 	}
1288 	rc = context_struct_to_string(context, scontext, scontext_len);
1289 out_unlock:
1290 	read_unlock(&policy_rwlock);
1291 out:
1292 	return rc;
1293 
1294 }
1295 
1296 /**
1297  * security_sid_to_context - Obtain a context for a given SID.
1298  * @sid: security identifier, SID
1299  * @scontext: security context
1300  * @scontext_len: length in bytes
1301  *
1302  * Write the string representation of the context associated with @sid
1303  * into a dynamically allocated string of the correct size.  Set @scontext
1304  * to point to this string and set @scontext_len to the length of the string.
1305  */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1306 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1307 {
1308 	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1309 }
1310 
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1311 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1312 {
1313 	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1314 }
1315 
1316 /*
1317  * Caveat:  Mutates scontext.
1318  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,u32 scontext_len,struct context * ctx,u32 def_sid)1319 static int string_to_context_struct(struct policydb *pol,
1320 				    struct sidtab *sidtabp,
1321 				    char *scontext,
1322 				    u32 scontext_len,
1323 				    struct context *ctx,
1324 				    u32 def_sid)
1325 {
1326 	struct role_datum *role;
1327 	struct type_datum *typdatum;
1328 	struct user_datum *usrdatum;
1329 	char *scontextp, *p, oldc;
1330 	int rc = 0;
1331 
1332 	context_init(ctx);
1333 
1334 	/* Parse the security context. */
1335 
1336 	rc = -EINVAL;
1337 	scontextp = (char *) scontext;
1338 
1339 	/* Extract the user. */
1340 	p = scontextp;
1341 	while (*p && *p != ':')
1342 		p++;
1343 
1344 	if (*p == 0)
1345 		goto out;
1346 
1347 	*p++ = 0;
1348 
1349 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1350 	if (!usrdatum)
1351 		goto out;
1352 
1353 	ctx->user = usrdatum->value;
1354 
1355 	/* Extract role. */
1356 	scontextp = p;
1357 	while (*p && *p != ':')
1358 		p++;
1359 
1360 	if (*p == 0)
1361 		goto out;
1362 
1363 	*p++ = 0;
1364 
1365 	role = hashtab_search(pol->p_roles.table, scontextp);
1366 	if (!role)
1367 		goto out;
1368 	ctx->role = role->value;
1369 
1370 	/* Extract type. */
1371 	scontextp = p;
1372 	while (*p && *p != ':')
1373 		p++;
1374 	oldc = *p;
1375 	*p++ = 0;
1376 
1377 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1378 	if (!typdatum || typdatum->attribute)
1379 		goto out;
1380 
1381 	ctx->type = typdatum->value;
1382 
1383 	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1384 	if (rc)
1385 		goto out;
1386 
1387 	rc = -EINVAL;
1388 	if ((p - scontext) < scontext_len)
1389 		goto out;
1390 
1391 	/* Check the validity of the new context. */
1392 	if (!policydb_context_isvalid(pol, ctx))
1393 		goto out;
1394 	rc = 0;
1395 out:
1396 	if (rc)
1397 		context_destroy(ctx);
1398 	return rc;
1399 }
1400 
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1401 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1402 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1403 					int force)
1404 {
1405 	char *scontext2, *str = NULL;
1406 	struct context context;
1407 	int rc = 0;
1408 
1409 	/* An empty security context is never valid. */
1410 	if (!scontext_len)
1411 		return -EINVAL;
1412 
1413 	/* Copy the string to allow changes and ensure a NUL terminator */
1414 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1415 	if (!scontext2)
1416 		return -ENOMEM;
1417 
1418 	if (!ss_initialized) {
1419 		int i;
1420 
1421 		for (i = 1; i < SECINITSID_NUM; i++) {
1422 			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1423 				*sid = i;
1424 				goto out;
1425 			}
1426 		}
1427 		*sid = SECINITSID_KERNEL;
1428 		goto out;
1429 	}
1430 	*sid = SECSID_NULL;
1431 
1432 	if (force) {
1433 		/* Save another copy for storing in uninterpreted form */
1434 		rc = -ENOMEM;
1435 		str = kstrdup(scontext2, gfp_flags);
1436 		if (!str)
1437 			goto out;
1438 	}
1439 
1440 	read_lock(&policy_rwlock);
1441 	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1442 				      scontext_len, &context, def_sid);
1443 	if (rc == -EINVAL && force) {
1444 		context.str = str;
1445 		context.len = strlen(str) + 1;
1446 		str = NULL;
1447 	} else if (rc)
1448 		goto out_unlock;
1449 	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1450 	context_destroy(&context);
1451 out_unlock:
1452 	read_unlock(&policy_rwlock);
1453 out:
1454 	kfree(scontext2);
1455 	kfree(str);
1456 	return rc;
1457 }
1458 
1459 /**
1460  * security_context_to_sid - Obtain a SID for a given security context.
1461  * @scontext: security context
1462  * @scontext_len: length in bytes
1463  * @sid: security identifier, SID
1464  * @gfp: context for the allocation
1465  *
1466  * Obtains a SID associated with the security context that
1467  * has the string representation specified by @scontext.
1468  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1469  * memory is available, or 0 on success.
1470  */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1471 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1472 			    gfp_t gfp)
1473 {
1474 	return security_context_to_sid_core(scontext, scontext_len,
1475 					    sid, SECSID_NULL, gfp, 0);
1476 }
1477 
security_context_str_to_sid(const char * scontext,u32 * sid,gfp_t gfp)1478 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1479 {
1480 	return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
1481 }
1482 
1483 /**
1484  * security_context_to_sid_default - Obtain a SID for a given security context,
1485  * falling back to specified default if needed.
1486  *
1487  * @scontext: security context
1488  * @scontext_len: length in bytes
1489  * @sid: security identifier, SID
1490  * @def_sid: default SID to assign on error
1491  *
1492  * Obtains a SID associated with the security context that
1493  * has the string representation specified by @scontext.
1494  * The default SID is passed to the MLS layer to be used to allow
1495  * kernel labeling of the MLS field if the MLS field is not present
1496  * (for upgrading to MLS without full relabel).
1497  * Implicitly forces adding of the context even if it cannot be mapped yet.
1498  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1499  * memory is available, or 0 on success.
1500  */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1501 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1502 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1503 {
1504 	return security_context_to_sid_core(scontext, scontext_len,
1505 					    sid, def_sid, gfp_flags, 1);
1506 }
1507 
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1508 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1509 				  u32 *sid)
1510 {
1511 	return security_context_to_sid_core(scontext, scontext_len,
1512 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1513 }
1514 
compute_sid_handle_invalid_context(struct context * scontext,struct context * tcontext,u16 tclass,struct context * newcontext)1515 static int compute_sid_handle_invalid_context(
1516 	struct context *scontext,
1517 	struct context *tcontext,
1518 	u16 tclass,
1519 	struct context *newcontext)
1520 {
1521 	char *s = NULL, *t = NULL, *n = NULL;
1522 	u32 slen, tlen, nlen;
1523 
1524 	if (context_struct_to_string(scontext, &s, &slen))
1525 		goto out;
1526 	if (context_struct_to_string(tcontext, &t, &tlen))
1527 		goto out;
1528 	if (context_struct_to_string(newcontext, &n, &nlen))
1529 		goto out;
1530 	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1531 		  "op=security_compute_sid invalid_context=%s"
1532 		  " scontext=%s"
1533 		  " tcontext=%s"
1534 		  " tclass=%s",
1535 		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1536 out:
1537 	kfree(s);
1538 	kfree(t);
1539 	kfree(n);
1540 	if (!selinux_enforcing)
1541 		return 0;
1542 	return -EACCES;
1543 }
1544 
filename_compute_type(struct policydb * p,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1545 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1546 				  u32 stype, u32 ttype, u16 tclass,
1547 				  const char *objname)
1548 {
1549 	struct filename_trans ft;
1550 	struct filename_trans_datum *otype;
1551 
1552 	/*
1553 	 * Most filename trans rules are going to live in specific directories
1554 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1555 	 * if the ttype does not contain any rules.
1556 	 */
1557 	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1558 		return;
1559 
1560 	ft.stype = stype;
1561 	ft.ttype = ttype;
1562 	ft.tclass = tclass;
1563 	ft.name = objname;
1564 
1565 	otype = hashtab_search(p->filename_trans, &ft);
1566 	if (otype)
1567 		newcontext->type = otype->otype;
1568 }
1569 
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1570 static int security_compute_sid(u32 ssid,
1571 				u32 tsid,
1572 				u16 orig_tclass,
1573 				u32 specified,
1574 				const char *objname,
1575 				u32 *out_sid,
1576 				bool kern)
1577 {
1578 	struct class_datum *cladatum = NULL;
1579 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1580 	struct role_trans *roletr = NULL;
1581 	struct avtab_key avkey;
1582 	struct avtab_datum *avdatum;
1583 	struct avtab_node *node;
1584 	u16 tclass;
1585 	int rc = 0;
1586 	bool sock;
1587 
1588 	if (!ss_initialized) {
1589 		switch (orig_tclass) {
1590 		case SECCLASS_PROCESS: /* kernel value */
1591 			*out_sid = ssid;
1592 			break;
1593 		default:
1594 			*out_sid = tsid;
1595 			break;
1596 		}
1597 		goto out;
1598 	}
1599 
1600 	context_init(&newcontext);
1601 
1602 	read_lock(&policy_rwlock);
1603 
1604 	if (kern) {
1605 		tclass = unmap_class(orig_tclass);
1606 		sock = security_is_socket_class(orig_tclass);
1607 	} else {
1608 		tclass = orig_tclass;
1609 		sock = security_is_socket_class(map_class(tclass));
1610 	}
1611 
1612 	scontext = sidtab_search(&sidtab, ssid);
1613 	if (!scontext) {
1614 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1615 		       __func__, ssid);
1616 		rc = -EINVAL;
1617 		goto out_unlock;
1618 	}
1619 	tcontext = sidtab_search(&sidtab, tsid);
1620 	if (!tcontext) {
1621 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1622 		       __func__, tsid);
1623 		rc = -EINVAL;
1624 		goto out_unlock;
1625 	}
1626 
1627 	if (tclass && tclass <= policydb.p_classes.nprim)
1628 		cladatum = policydb.class_val_to_struct[tclass - 1];
1629 
1630 	/* Set the user identity. */
1631 	switch (specified) {
1632 	case AVTAB_TRANSITION:
1633 	case AVTAB_CHANGE:
1634 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1635 			newcontext.user = tcontext->user;
1636 		} else {
1637 			/* notice this gets both DEFAULT_SOURCE and unset */
1638 			/* Use the process user identity. */
1639 			newcontext.user = scontext->user;
1640 		}
1641 		break;
1642 	case AVTAB_MEMBER:
1643 		/* Use the related object owner. */
1644 		newcontext.user = tcontext->user;
1645 		break;
1646 	}
1647 
1648 	/* Set the role to default values. */
1649 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1650 		newcontext.role = scontext->role;
1651 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1652 		newcontext.role = tcontext->role;
1653 	} else {
1654 		if ((tclass == policydb.process_class) || (sock == true))
1655 			newcontext.role = scontext->role;
1656 		else
1657 			newcontext.role = OBJECT_R_VAL;
1658 	}
1659 
1660 	/* Set the type to default values. */
1661 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1662 		newcontext.type = scontext->type;
1663 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1664 		newcontext.type = tcontext->type;
1665 	} else {
1666 		if ((tclass == policydb.process_class) || (sock == true)) {
1667 			/* Use the type of process. */
1668 			newcontext.type = scontext->type;
1669 		} else {
1670 			/* Use the type of the related object. */
1671 			newcontext.type = tcontext->type;
1672 		}
1673 	}
1674 
1675 	/* Look for a type transition/member/change rule. */
1676 	avkey.source_type = scontext->type;
1677 	avkey.target_type = tcontext->type;
1678 	avkey.target_class = tclass;
1679 	avkey.specified = specified;
1680 	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1681 
1682 	/* If no permanent rule, also check for enabled conditional rules */
1683 	if (!avdatum) {
1684 		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1685 		for (; node; node = avtab_search_node_next(node, specified)) {
1686 			if (node->key.specified & AVTAB_ENABLED) {
1687 				avdatum = &node->datum;
1688 				break;
1689 			}
1690 		}
1691 	}
1692 
1693 	if (avdatum) {
1694 		/* Use the type from the type transition/member/change rule. */
1695 		newcontext.type = avdatum->u.data;
1696 	}
1697 
1698 	/* if we have a objname this is a file trans check so check those rules */
1699 	if (objname)
1700 		filename_compute_type(&policydb, &newcontext, scontext->type,
1701 				      tcontext->type, tclass, objname);
1702 
1703 	/* Check for class-specific changes. */
1704 	if (specified & AVTAB_TRANSITION) {
1705 		/* Look for a role transition rule. */
1706 		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1707 			if ((roletr->role == scontext->role) &&
1708 			    (roletr->type == tcontext->type) &&
1709 			    (roletr->tclass == tclass)) {
1710 				/* Use the role transition rule. */
1711 				newcontext.role = roletr->new_role;
1712 				break;
1713 			}
1714 		}
1715 	}
1716 
1717 	/* Set the MLS attributes.
1718 	   This is done last because it may allocate memory. */
1719 	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1720 			     &newcontext, sock);
1721 	if (rc)
1722 		goto out_unlock;
1723 
1724 	/* Check the validity of the context. */
1725 	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1726 		rc = compute_sid_handle_invalid_context(scontext,
1727 							tcontext,
1728 							tclass,
1729 							&newcontext);
1730 		if (rc)
1731 			goto out_unlock;
1732 	}
1733 	/* Obtain the sid for the context. */
1734 	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1735 out_unlock:
1736 	read_unlock(&policy_rwlock);
1737 	context_destroy(&newcontext);
1738 out:
1739 	return rc;
1740 }
1741 
1742 /**
1743  * security_transition_sid - Compute the SID for a new subject/object.
1744  * @ssid: source security identifier
1745  * @tsid: target security identifier
1746  * @tclass: target security class
1747  * @out_sid: security identifier for new subject/object
1748  *
1749  * Compute a SID to use for labeling a new subject or object in the
1750  * class @tclass based on a SID pair (@ssid, @tsid).
1751  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1752  * if insufficient memory is available, or %0 if the new SID was
1753  * computed successfully.
1754  */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1755 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1756 			    const struct qstr *qstr, u32 *out_sid)
1757 {
1758 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1759 				    qstr ? qstr->name : NULL, out_sid, true);
1760 }
1761 
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1762 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1763 				 const char *objname, u32 *out_sid)
1764 {
1765 	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1766 				    objname, out_sid, false);
1767 }
1768 
1769 /**
1770  * security_member_sid - Compute the SID for member selection.
1771  * @ssid: source security identifier
1772  * @tsid: target security identifier
1773  * @tclass: target security class
1774  * @out_sid: security identifier for selected member
1775  *
1776  * Compute a SID to use when selecting a member of a polyinstantiated
1777  * object of class @tclass based on a SID pair (@ssid, @tsid).
1778  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1779  * if insufficient memory is available, or %0 if the SID was
1780  * computed successfully.
1781  */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1782 int security_member_sid(u32 ssid,
1783 			u32 tsid,
1784 			u16 tclass,
1785 			u32 *out_sid)
1786 {
1787 	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1788 				    out_sid, false);
1789 }
1790 
1791 /**
1792  * security_change_sid - Compute the SID for object relabeling.
1793  * @ssid: source security identifier
1794  * @tsid: target security identifier
1795  * @tclass: target security class
1796  * @out_sid: security identifier for selected member
1797  *
1798  * Compute a SID to use for relabeling an object of class @tclass
1799  * based on a SID pair (@ssid, @tsid).
1800  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1801  * if insufficient memory is available, or %0 if the SID was
1802  * computed successfully.
1803  */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1804 int security_change_sid(u32 ssid,
1805 			u32 tsid,
1806 			u16 tclass,
1807 			u32 *out_sid)
1808 {
1809 	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1810 				    out_sid, false);
1811 }
1812 
1813 /* Clone the SID into the new SID table. */
clone_sid(u32 sid,struct context * context,void * arg)1814 static int clone_sid(u32 sid,
1815 		     struct context *context,
1816 		     void *arg)
1817 {
1818 	struct sidtab *s = arg;
1819 
1820 	if (sid > SECINITSID_NUM)
1821 		return sidtab_insert(s, sid, context);
1822 	else
1823 		return 0;
1824 }
1825 
convert_context_handle_invalid_context(struct context * context)1826 static inline int convert_context_handle_invalid_context(struct context *context)
1827 {
1828 	char *s;
1829 	u32 len;
1830 
1831 	if (selinux_enforcing)
1832 		return -EINVAL;
1833 
1834 	if (!context_struct_to_string(context, &s, &len)) {
1835 		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1836 		kfree(s);
1837 	}
1838 	return 0;
1839 }
1840 
1841 struct convert_context_args {
1842 	struct policydb *oldp;
1843 	struct policydb *newp;
1844 };
1845 
1846 /*
1847  * Convert the values in the security context
1848  * structure `c' from the values specified
1849  * in the policy `p->oldp' to the values specified
1850  * in the policy `p->newp'.  Verify that the
1851  * context is valid under the new policy.
1852  */
convert_context(u32 key,struct context * c,void * p)1853 static int convert_context(u32 key,
1854 			   struct context *c,
1855 			   void *p)
1856 {
1857 	struct convert_context_args *args;
1858 	struct context oldc;
1859 	struct ocontext *oc;
1860 	struct mls_range *range;
1861 	struct role_datum *role;
1862 	struct type_datum *typdatum;
1863 	struct user_datum *usrdatum;
1864 	char *s;
1865 	u32 len;
1866 	int rc = 0;
1867 
1868 	if (key <= SECINITSID_NUM)
1869 		goto out;
1870 
1871 	args = p;
1872 
1873 	if (c->str) {
1874 		struct context ctx;
1875 
1876 		rc = -ENOMEM;
1877 		s = kstrdup(c->str, GFP_KERNEL);
1878 		if (!s)
1879 			goto out;
1880 
1881 		rc = string_to_context_struct(args->newp, NULL, s,
1882 					      c->len, &ctx, SECSID_NULL);
1883 		kfree(s);
1884 		if (!rc) {
1885 			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1886 			       c->str);
1887 			/* Replace string with mapped representation. */
1888 			kfree(c->str);
1889 			memcpy(c, &ctx, sizeof(*c));
1890 			goto out;
1891 		} else if (rc == -EINVAL) {
1892 			/* Retain string representation for later mapping. */
1893 			rc = 0;
1894 			goto out;
1895 		} else {
1896 			/* Other error condition, e.g. ENOMEM. */
1897 			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1898 			       c->str, -rc);
1899 			goto out;
1900 		}
1901 	}
1902 
1903 	rc = context_cpy(&oldc, c);
1904 	if (rc)
1905 		goto out;
1906 
1907 	/* Convert the user. */
1908 	rc = -EINVAL;
1909 	usrdatum = hashtab_search(args->newp->p_users.table,
1910 				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1911 	if (!usrdatum)
1912 		goto bad;
1913 	c->user = usrdatum->value;
1914 
1915 	/* Convert the role. */
1916 	rc = -EINVAL;
1917 	role = hashtab_search(args->newp->p_roles.table,
1918 			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1919 	if (!role)
1920 		goto bad;
1921 	c->role = role->value;
1922 
1923 	/* Convert the type. */
1924 	rc = -EINVAL;
1925 	typdatum = hashtab_search(args->newp->p_types.table,
1926 				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1927 	if (!typdatum)
1928 		goto bad;
1929 	c->type = typdatum->value;
1930 
1931 	/* Convert the MLS fields if dealing with MLS policies */
1932 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1933 		rc = mls_convert_context(args->oldp, args->newp, c);
1934 		if (rc)
1935 			goto bad;
1936 	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1937 		/*
1938 		 * Switching between MLS and non-MLS policy:
1939 		 * free any storage used by the MLS fields in the
1940 		 * context for all existing entries in the sidtab.
1941 		 */
1942 		mls_context_destroy(c);
1943 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1944 		/*
1945 		 * Switching between non-MLS and MLS policy:
1946 		 * ensure that the MLS fields of the context for all
1947 		 * existing entries in the sidtab are filled in with a
1948 		 * suitable default value, likely taken from one of the
1949 		 * initial SIDs.
1950 		 */
1951 		oc = args->newp->ocontexts[OCON_ISID];
1952 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1953 			oc = oc->next;
1954 		rc = -EINVAL;
1955 		if (!oc) {
1956 			printk(KERN_ERR "SELinux:  unable to look up"
1957 				" the initial SIDs list\n");
1958 			goto bad;
1959 		}
1960 		range = &oc->context[0].range;
1961 		rc = mls_range_set(c, range);
1962 		if (rc)
1963 			goto bad;
1964 	}
1965 
1966 	/* Check the validity of the new context. */
1967 	if (!policydb_context_isvalid(args->newp, c)) {
1968 		rc = convert_context_handle_invalid_context(&oldc);
1969 		if (rc)
1970 			goto bad;
1971 	}
1972 
1973 	context_destroy(&oldc);
1974 
1975 	rc = 0;
1976 out:
1977 	return rc;
1978 bad:
1979 	/* Map old representation to string and save it. */
1980 	rc = context_struct_to_string(&oldc, &s, &len);
1981 	if (rc)
1982 		return rc;
1983 	context_destroy(&oldc);
1984 	context_destroy(c);
1985 	c->str = s;
1986 	c->len = len;
1987 	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1988 	       c->str);
1989 	rc = 0;
1990 	goto out;
1991 }
1992 
security_load_policycaps(void)1993 static void security_load_policycaps(void)
1994 {
1995 	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1996 						  POLICYDB_CAPABILITY_NETPEER);
1997 	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1998 						  POLICYDB_CAPABILITY_OPENPERM);
1999 	selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
2000 						  POLICYDB_CAPABILITY_ALWAYSNETWORK);
2001 
2002 	selinux_android_netlink_route = policydb.android_netlink_route;
2003 	selinux_nlmsg_init();
2004 }
2005 
2006 static int security_preserve_bools(struct policydb *p);
2007 
2008 /**
2009  * security_load_policy - Load a security policy configuration.
2010  * @data: binary policy data
2011  * @len: length of data in bytes
2012  *
2013  * Load a new set of security policy configuration data,
2014  * validate it and convert the SID table as necessary.
2015  * This function will flush the access vector cache after
2016  * loading the new policy.
2017  */
security_load_policy(void * data,size_t len)2018 int security_load_policy(void *data, size_t len)
2019 {
2020 	struct policydb *oldpolicydb, *newpolicydb;
2021 	struct sidtab oldsidtab, newsidtab;
2022 	struct selinux_mapping *oldmap, *map = NULL;
2023 	struct convert_context_args args;
2024 	u32 seqno;
2025 	u16 map_size;
2026 	int rc = 0;
2027 	struct policy_file file = { data, len }, *fp = &file;
2028 
2029 	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2030 	if (!oldpolicydb) {
2031 		rc = -ENOMEM;
2032 		goto out;
2033 	}
2034 	newpolicydb = oldpolicydb + 1;
2035 
2036 	if (!ss_initialized) {
2037 		avtab_cache_init();
2038 		rc = policydb_read(&policydb, fp);
2039 		if (rc) {
2040 			avtab_cache_destroy();
2041 			goto out;
2042 		}
2043 
2044 		policydb.len = len;
2045 		rc = selinux_set_mapping(&policydb, secclass_map,
2046 					 &current_mapping,
2047 					 &current_mapping_size);
2048 		if (rc) {
2049 			policydb_destroy(&policydb);
2050 			avtab_cache_destroy();
2051 			goto out;
2052 		}
2053 
2054 		rc = policydb_load_isids(&policydb, &sidtab);
2055 		if (rc) {
2056 			policydb_destroy(&policydb);
2057 			avtab_cache_destroy();
2058 			goto out;
2059 		}
2060 
2061 		security_load_policycaps();
2062 		ss_initialized = 1;
2063 		seqno = ++latest_granting;
2064 		selinux_complete_init();
2065 		avc_ss_reset(seqno);
2066 		selnl_notify_policyload(seqno);
2067 		selinux_status_update_policyload(seqno);
2068 		selinux_netlbl_cache_invalidate();
2069 		selinux_xfrm_notify_policyload();
2070 		goto out;
2071 	}
2072 
2073 #if 0
2074 	sidtab_hash_eval(&sidtab, "sids");
2075 #endif
2076 
2077 	rc = policydb_read(newpolicydb, fp);
2078 	if (rc)
2079 		goto out;
2080 
2081 	newpolicydb->len = len;
2082 	/* If switching between different policy types, log MLS status */
2083 	if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2084 		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2085 	else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2086 		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2087 
2088 	rc = policydb_load_isids(newpolicydb, &newsidtab);
2089 	if (rc) {
2090 		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2091 		policydb_destroy(newpolicydb);
2092 		goto out;
2093 	}
2094 
2095 	rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2096 	if (rc)
2097 		goto err;
2098 
2099 	rc = security_preserve_bools(newpolicydb);
2100 	if (rc) {
2101 		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2102 		goto err;
2103 	}
2104 
2105 	/* Clone the SID table. */
2106 	sidtab_shutdown(&sidtab);
2107 
2108 	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2109 	if (rc)
2110 		goto err;
2111 
2112 	/*
2113 	 * Convert the internal representations of contexts
2114 	 * in the new SID table.
2115 	 */
2116 	args.oldp = &policydb;
2117 	args.newp = newpolicydb;
2118 	rc = sidtab_map(&newsidtab, convert_context, &args);
2119 	if (rc) {
2120 		printk(KERN_ERR "SELinux:  unable to convert the internal"
2121 			" representation of contexts in the new SID"
2122 			" table\n");
2123 		goto err;
2124 	}
2125 
2126 	/* Save the old policydb and SID table to free later. */
2127 	memcpy(oldpolicydb, &policydb, sizeof(policydb));
2128 	sidtab_set(&oldsidtab, &sidtab);
2129 
2130 	/* Install the new policydb and SID table. */
2131 	write_lock_irq(&policy_rwlock);
2132 	memcpy(&policydb, newpolicydb, sizeof(policydb));
2133 	sidtab_set(&sidtab, &newsidtab);
2134 	security_load_policycaps();
2135 	oldmap = current_mapping;
2136 	current_mapping = map;
2137 	current_mapping_size = map_size;
2138 	seqno = ++latest_granting;
2139 	write_unlock_irq(&policy_rwlock);
2140 
2141 	/* Free the old policydb and SID table. */
2142 	policydb_destroy(oldpolicydb);
2143 	sidtab_destroy(&oldsidtab);
2144 	kfree(oldmap);
2145 
2146 	avc_ss_reset(seqno);
2147 	selnl_notify_policyload(seqno);
2148 	selinux_status_update_policyload(seqno);
2149 	selinux_netlbl_cache_invalidate();
2150 	selinux_xfrm_notify_policyload();
2151 
2152 	rc = 0;
2153 	goto out;
2154 
2155 err:
2156 	kfree(map);
2157 	sidtab_destroy(&newsidtab);
2158 	policydb_destroy(newpolicydb);
2159 
2160 out:
2161 	kfree(oldpolicydb);
2162 	return rc;
2163 }
2164 
security_policydb_len(void)2165 size_t security_policydb_len(void)
2166 {
2167 	size_t len;
2168 
2169 	read_lock(&policy_rwlock);
2170 	len = policydb.len;
2171 	read_unlock(&policy_rwlock);
2172 
2173 	return len;
2174 }
2175 
2176 /**
2177  * security_port_sid - Obtain the SID for a port.
2178  * @protocol: protocol number
2179  * @port: port number
2180  * @out_sid: security identifier
2181  */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2182 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2183 {
2184 	struct ocontext *c;
2185 	int rc = 0;
2186 
2187 	read_lock(&policy_rwlock);
2188 
2189 	c = policydb.ocontexts[OCON_PORT];
2190 	while (c) {
2191 		if (c->u.port.protocol == protocol &&
2192 		    c->u.port.low_port <= port &&
2193 		    c->u.port.high_port >= port)
2194 			break;
2195 		c = c->next;
2196 	}
2197 
2198 	if (c) {
2199 		if (!c->sid[0]) {
2200 			rc = sidtab_context_to_sid(&sidtab,
2201 						   &c->context[0],
2202 						   &c->sid[0]);
2203 			if (rc)
2204 				goto out;
2205 		}
2206 		*out_sid = c->sid[0];
2207 	} else {
2208 		*out_sid = SECINITSID_PORT;
2209 	}
2210 
2211 out:
2212 	read_unlock(&policy_rwlock);
2213 	return rc;
2214 }
2215 
2216 /**
2217  * security_netif_sid - Obtain the SID for a network interface.
2218  * @name: interface name
2219  * @if_sid: interface SID
2220  */
security_netif_sid(char * name,u32 * if_sid)2221 int security_netif_sid(char *name, u32 *if_sid)
2222 {
2223 	int rc = 0;
2224 	struct ocontext *c;
2225 
2226 	read_lock(&policy_rwlock);
2227 
2228 	c = policydb.ocontexts[OCON_NETIF];
2229 	while (c) {
2230 		if (strcmp(name, c->u.name) == 0)
2231 			break;
2232 		c = c->next;
2233 	}
2234 
2235 	if (c) {
2236 		if (!c->sid[0] || !c->sid[1]) {
2237 			rc = sidtab_context_to_sid(&sidtab,
2238 						  &c->context[0],
2239 						  &c->sid[0]);
2240 			if (rc)
2241 				goto out;
2242 			rc = sidtab_context_to_sid(&sidtab,
2243 						   &c->context[1],
2244 						   &c->sid[1]);
2245 			if (rc)
2246 				goto out;
2247 		}
2248 		*if_sid = c->sid[0];
2249 	} else
2250 		*if_sid = SECINITSID_NETIF;
2251 
2252 out:
2253 	read_unlock(&policy_rwlock);
2254 	return rc;
2255 }
2256 
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2257 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2258 {
2259 	int i, fail = 0;
2260 
2261 	for (i = 0; i < 4; i++)
2262 		if (addr[i] != (input[i] & mask[i])) {
2263 			fail = 1;
2264 			break;
2265 		}
2266 
2267 	return !fail;
2268 }
2269 
2270 /**
2271  * security_node_sid - Obtain the SID for a node (host).
2272  * @domain: communication domain aka address family
2273  * @addrp: address
2274  * @addrlen: address length in bytes
2275  * @out_sid: security identifier
2276  */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2277 int security_node_sid(u16 domain,
2278 		      void *addrp,
2279 		      u32 addrlen,
2280 		      u32 *out_sid)
2281 {
2282 	int rc;
2283 	struct ocontext *c;
2284 
2285 	read_lock(&policy_rwlock);
2286 
2287 	switch (domain) {
2288 	case AF_INET: {
2289 		u32 addr;
2290 
2291 		rc = -EINVAL;
2292 		if (addrlen != sizeof(u32))
2293 			goto out;
2294 
2295 		addr = *((u32 *)addrp);
2296 
2297 		c = policydb.ocontexts[OCON_NODE];
2298 		while (c) {
2299 			if (c->u.node.addr == (addr & c->u.node.mask))
2300 				break;
2301 			c = c->next;
2302 		}
2303 		break;
2304 	}
2305 
2306 	case AF_INET6:
2307 		rc = -EINVAL;
2308 		if (addrlen != sizeof(u64) * 2)
2309 			goto out;
2310 		c = policydb.ocontexts[OCON_NODE6];
2311 		while (c) {
2312 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2313 						c->u.node6.mask))
2314 				break;
2315 			c = c->next;
2316 		}
2317 		break;
2318 
2319 	default:
2320 		rc = 0;
2321 		*out_sid = SECINITSID_NODE;
2322 		goto out;
2323 	}
2324 
2325 	if (c) {
2326 		if (!c->sid[0]) {
2327 			rc = sidtab_context_to_sid(&sidtab,
2328 						   &c->context[0],
2329 						   &c->sid[0]);
2330 			if (rc)
2331 				goto out;
2332 		}
2333 		*out_sid = c->sid[0];
2334 	} else {
2335 		*out_sid = SECINITSID_NODE;
2336 	}
2337 
2338 	rc = 0;
2339 out:
2340 	read_unlock(&policy_rwlock);
2341 	return rc;
2342 }
2343 
2344 #define SIDS_NEL 25
2345 
2346 /**
2347  * security_get_user_sids - Obtain reachable SIDs for a user.
2348  * @fromsid: starting SID
2349  * @username: username
2350  * @sids: array of reachable SIDs for user
2351  * @nel: number of elements in @sids
2352  *
2353  * Generate the set of SIDs for legal security contexts
2354  * for a given user that can be reached by @fromsid.
2355  * Set *@sids to point to a dynamically allocated
2356  * array containing the set of SIDs.  Set *@nel to the
2357  * number of elements in the array.
2358  */
2359 
security_get_user_sids(u32 fromsid,char * username,u32 ** sids,u32 * nel)2360 int security_get_user_sids(u32 fromsid,
2361 			   char *username,
2362 			   u32 **sids,
2363 			   u32 *nel)
2364 {
2365 	struct context *fromcon, usercon;
2366 	u32 *mysids = NULL, *mysids2, sid;
2367 	u32 mynel = 0, maxnel = SIDS_NEL;
2368 	struct user_datum *user;
2369 	struct role_datum *role;
2370 	struct ebitmap_node *rnode, *tnode;
2371 	int rc = 0, i, j;
2372 
2373 	*sids = NULL;
2374 	*nel = 0;
2375 
2376 	if (!ss_initialized)
2377 		goto out;
2378 
2379 	read_lock(&policy_rwlock);
2380 
2381 	context_init(&usercon);
2382 
2383 	rc = -EINVAL;
2384 	fromcon = sidtab_search(&sidtab, fromsid);
2385 	if (!fromcon)
2386 		goto out_unlock;
2387 
2388 	rc = -EINVAL;
2389 	user = hashtab_search(policydb.p_users.table, username);
2390 	if (!user)
2391 		goto out_unlock;
2392 
2393 	usercon.user = user->value;
2394 
2395 	rc = -ENOMEM;
2396 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2397 	if (!mysids)
2398 		goto out_unlock;
2399 
2400 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2401 		role = policydb.role_val_to_struct[i];
2402 		usercon.role = i + 1;
2403 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2404 			usercon.type = j + 1;
2405 
2406 			if (mls_setup_user_range(fromcon, user, &usercon))
2407 				continue;
2408 
2409 			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2410 			if (rc)
2411 				goto out_unlock;
2412 			if (mynel < maxnel) {
2413 				mysids[mynel++] = sid;
2414 			} else {
2415 				rc = -ENOMEM;
2416 				maxnel += SIDS_NEL;
2417 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2418 				if (!mysids2)
2419 					goto out_unlock;
2420 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2421 				kfree(mysids);
2422 				mysids = mysids2;
2423 				mysids[mynel++] = sid;
2424 			}
2425 		}
2426 	}
2427 	rc = 0;
2428 out_unlock:
2429 	read_unlock(&policy_rwlock);
2430 	if (rc || !mynel) {
2431 		kfree(mysids);
2432 		goto out;
2433 	}
2434 
2435 	rc = -ENOMEM;
2436 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2437 	if (!mysids2) {
2438 		kfree(mysids);
2439 		goto out;
2440 	}
2441 	for (i = 0, j = 0; i < mynel; i++) {
2442 		struct av_decision dummy_avd;
2443 		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2444 					  SECCLASS_PROCESS, /* kernel value */
2445 					  PROCESS__TRANSITION, AVC_STRICT,
2446 					  &dummy_avd);
2447 		if (!rc)
2448 			mysids2[j++] = mysids[i];
2449 		cond_resched();
2450 	}
2451 	rc = 0;
2452 	kfree(mysids);
2453 	*sids = mysids2;
2454 	*nel = j;
2455 out:
2456 	return rc;
2457 }
2458 
2459 /**
2460  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2461  * @fstype: filesystem type
2462  * @path: path from root of mount
2463  * @sclass: file security class
2464  * @sid: SID for path
2465  *
2466  * Obtain a SID to use for a file in a filesystem that
2467  * cannot support xattr or use a fixed labeling behavior like
2468  * transition SIDs or task SIDs.
2469  *
2470  * The caller must acquire the policy_rwlock before calling this function.
2471  */
__security_genfs_sid(const char * fstype,char * path,u16 orig_sclass,u32 * sid)2472 static inline int __security_genfs_sid(const char *fstype,
2473 				       char *path,
2474 				       u16 orig_sclass,
2475 				       u32 *sid)
2476 {
2477 	int len;
2478 	u16 sclass;
2479 	struct genfs *genfs;
2480 	struct ocontext *c;
2481 	int rc, cmp = 0;
2482 
2483 	while (path[0] == '/' && path[1] == '/')
2484 		path++;
2485 
2486 	sclass = unmap_class(orig_sclass);
2487 	*sid = SECINITSID_UNLABELED;
2488 
2489 	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2490 		cmp = strcmp(fstype, genfs->fstype);
2491 		if (cmp <= 0)
2492 			break;
2493 	}
2494 
2495 	rc = -ENOENT;
2496 	if (!genfs || cmp)
2497 		goto out;
2498 
2499 	for (c = genfs->head; c; c = c->next) {
2500 		len = strlen(c->u.name);
2501 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2502 		    (strncmp(c->u.name, path, len) == 0))
2503 			break;
2504 	}
2505 
2506 	rc = -ENOENT;
2507 	if (!c)
2508 		goto out;
2509 
2510 	if (!c->sid[0]) {
2511 		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2512 		if (rc)
2513 			goto out;
2514 	}
2515 
2516 	*sid = c->sid[0];
2517 	rc = 0;
2518 out:
2519 	return rc;
2520 }
2521 
2522 /**
2523  * security_genfs_sid - Obtain a SID for a file in a filesystem
2524  * @fstype: filesystem type
2525  * @path: path from root of mount
2526  * @sclass: file security class
2527  * @sid: SID for path
2528  *
2529  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2530  * it afterward.
2531  */
security_genfs_sid(const char * fstype,char * path,u16 orig_sclass,u32 * sid)2532 int security_genfs_sid(const char *fstype,
2533 		       char *path,
2534 		       u16 orig_sclass,
2535 		       u32 *sid)
2536 {
2537 	int retval;
2538 
2539 	read_lock(&policy_rwlock);
2540 	retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2541 	read_unlock(&policy_rwlock);
2542 	return retval;
2543 }
2544 
2545 /**
2546  * security_fs_use - Determine how to handle labeling for a filesystem.
2547  * @sb: superblock in question
2548  */
security_fs_use(struct super_block * sb)2549 int security_fs_use(struct super_block *sb)
2550 {
2551 	int rc = 0;
2552 	struct ocontext *c;
2553 	struct superblock_security_struct *sbsec = sb->s_security;
2554 	const char *fstype = sb->s_type->name;
2555 
2556 	read_lock(&policy_rwlock);
2557 
2558 	c = policydb.ocontexts[OCON_FSUSE];
2559 	while (c) {
2560 		if (strcmp(fstype, c->u.name) == 0)
2561 			break;
2562 		c = c->next;
2563 	}
2564 
2565 	if (c) {
2566 		sbsec->behavior = c->v.behavior;
2567 		if (!c->sid[0]) {
2568 			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2569 						   &c->sid[0]);
2570 			if (rc)
2571 				goto out;
2572 		}
2573 		sbsec->sid = c->sid[0];
2574 	} else {
2575 		rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2576 					  &sbsec->sid);
2577 		if (rc) {
2578 			sbsec->behavior = SECURITY_FS_USE_NONE;
2579 			rc = 0;
2580 		} else {
2581 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2582 		}
2583 	}
2584 
2585 out:
2586 	read_unlock(&policy_rwlock);
2587 	return rc;
2588 }
2589 
security_get_bools(int * len,char *** names,int ** values)2590 int security_get_bools(int *len, char ***names, int **values)
2591 {
2592 	int i, rc;
2593 
2594 	read_lock(&policy_rwlock);
2595 	*names = NULL;
2596 	*values = NULL;
2597 
2598 	rc = 0;
2599 	*len = policydb.p_bools.nprim;
2600 	if (!*len)
2601 		goto out;
2602 
2603 	rc = -ENOMEM;
2604 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2605 	if (!*names)
2606 		goto err;
2607 
2608 	rc = -ENOMEM;
2609 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2610 	if (!*values)
2611 		goto err;
2612 
2613 	for (i = 0; i < *len; i++) {
2614 		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2615 
2616 		rc = -ENOMEM;
2617 		(*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
2618 		if (!(*names)[i])
2619 			goto err;
2620 	}
2621 	rc = 0;
2622 out:
2623 	read_unlock(&policy_rwlock);
2624 	return rc;
2625 err:
2626 	if (*names) {
2627 		for (i = 0; i < *len; i++)
2628 			kfree((*names)[i]);
2629 		kfree(*names);
2630 	}
2631 	kfree(*values);
2632 	*len = 0;
2633 	*names = NULL;
2634 	*values = NULL;
2635 	goto out;
2636 }
2637 
2638 
security_set_bools(int len,int * values)2639 int security_set_bools(int len, int *values)
2640 {
2641 	int i, rc;
2642 	int lenp, seqno = 0;
2643 	struct cond_node *cur;
2644 
2645 	write_lock_irq(&policy_rwlock);
2646 
2647 	rc = -EFAULT;
2648 	lenp = policydb.p_bools.nprim;
2649 	if (len != lenp)
2650 		goto out;
2651 
2652 	for (i = 0; i < len; i++) {
2653 		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2654 			audit_log(current->audit_context, GFP_ATOMIC,
2655 				AUDIT_MAC_CONFIG_CHANGE,
2656 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2657 				sym_name(&policydb, SYM_BOOLS, i),
2658 				!!values[i],
2659 				policydb.bool_val_to_struct[i]->state,
2660 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2661 				audit_get_sessionid(current));
2662 		}
2663 		if (values[i])
2664 			policydb.bool_val_to_struct[i]->state = 1;
2665 		else
2666 			policydb.bool_val_to_struct[i]->state = 0;
2667 	}
2668 
2669 	for (cur = policydb.cond_list; cur; cur = cur->next) {
2670 		rc = evaluate_cond_node(&policydb, cur);
2671 		if (rc)
2672 			goto out;
2673 	}
2674 
2675 	seqno = ++latest_granting;
2676 	rc = 0;
2677 out:
2678 	write_unlock_irq(&policy_rwlock);
2679 	if (!rc) {
2680 		avc_ss_reset(seqno);
2681 		selnl_notify_policyload(seqno);
2682 		selinux_status_update_policyload(seqno);
2683 		selinux_xfrm_notify_policyload();
2684 	}
2685 	return rc;
2686 }
2687 
security_get_bool_value(int bool)2688 int security_get_bool_value(int bool)
2689 {
2690 	int rc;
2691 	int len;
2692 
2693 	read_lock(&policy_rwlock);
2694 
2695 	rc = -EFAULT;
2696 	len = policydb.p_bools.nprim;
2697 	if (bool >= len)
2698 		goto out;
2699 
2700 	rc = policydb.bool_val_to_struct[bool]->state;
2701 out:
2702 	read_unlock(&policy_rwlock);
2703 	return rc;
2704 }
2705 
security_preserve_bools(struct policydb * p)2706 static int security_preserve_bools(struct policydb *p)
2707 {
2708 	int rc, nbools = 0, *bvalues = NULL, i;
2709 	char **bnames = NULL;
2710 	struct cond_bool_datum *booldatum;
2711 	struct cond_node *cur;
2712 
2713 	rc = security_get_bools(&nbools, &bnames, &bvalues);
2714 	if (rc)
2715 		goto out;
2716 	for (i = 0; i < nbools; i++) {
2717 		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2718 		if (booldatum)
2719 			booldatum->state = bvalues[i];
2720 	}
2721 	for (cur = p->cond_list; cur; cur = cur->next) {
2722 		rc = evaluate_cond_node(p, cur);
2723 		if (rc)
2724 			goto out;
2725 	}
2726 
2727 out:
2728 	if (bnames) {
2729 		for (i = 0; i < nbools; i++)
2730 			kfree(bnames[i]);
2731 	}
2732 	kfree(bnames);
2733 	kfree(bvalues);
2734 	return rc;
2735 }
2736 
2737 /*
2738  * security_sid_mls_copy() - computes a new sid based on the given
2739  * sid and the mls portion of mls_sid.
2740  */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)2741 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2742 {
2743 	struct context *context1;
2744 	struct context *context2;
2745 	struct context newcon;
2746 	char *s;
2747 	u32 len;
2748 	int rc;
2749 
2750 	rc = 0;
2751 	if (!ss_initialized || !policydb.mls_enabled) {
2752 		*new_sid = sid;
2753 		goto out;
2754 	}
2755 
2756 	context_init(&newcon);
2757 
2758 	read_lock(&policy_rwlock);
2759 
2760 	rc = -EINVAL;
2761 	context1 = sidtab_search(&sidtab, sid);
2762 	if (!context1) {
2763 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2764 			__func__, sid);
2765 		goto out_unlock;
2766 	}
2767 
2768 	rc = -EINVAL;
2769 	context2 = sidtab_search(&sidtab, mls_sid);
2770 	if (!context2) {
2771 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2772 			__func__, mls_sid);
2773 		goto out_unlock;
2774 	}
2775 
2776 	newcon.user = context1->user;
2777 	newcon.role = context1->role;
2778 	newcon.type = context1->type;
2779 	rc = mls_context_cpy(&newcon, context2);
2780 	if (rc)
2781 		goto out_unlock;
2782 
2783 	/* Check the validity of the new context. */
2784 	if (!policydb_context_isvalid(&policydb, &newcon)) {
2785 		rc = convert_context_handle_invalid_context(&newcon);
2786 		if (rc) {
2787 			if (!context_struct_to_string(&newcon, &s, &len)) {
2788 				audit_log(current->audit_context,
2789 					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
2790 					  "op=security_sid_mls_copy "
2791 					  "invalid_context=%s", s);
2792 				kfree(s);
2793 			}
2794 			goto out_unlock;
2795 		}
2796 	}
2797 
2798 	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2799 out_unlock:
2800 	read_unlock(&policy_rwlock);
2801 	context_destroy(&newcon);
2802 out:
2803 	return rc;
2804 }
2805 
2806 /**
2807  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2808  * @nlbl_sid: NetLabel SID
2809  * @nlbl_type: NetLabel labeling protocol type
2810  * @xfrm_sid: XFRM SID
2811  *
2812  * Description:
2813  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2814  * resolved into a single SID it is returned via @peer_sid and the function
2815  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2816  * returns a negative value.  A table summarizing the behavior is below:
2817  *
2818  *                                 | function return |      @sid
2819  *   ------------------------------+-----------------+-----------------
2820  *   no peer labels                |        0        |    SECSID_NULL
2821  *   single peer label             |        0        |    <peer_label>
2822  *   multiple, consistent labels   |        0        |    <peer_label>
2823  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2824  *
2825  */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)2826 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2827 				 u32 xfrm_sid,
2828 				 u32 *peer_sid)
2829 {
2830 	int rc;
2831 	struct context *nlbl_ctx;
2832 	struct context *xfrm_ctx;
2833 
2834 	*peer_sid = SECSID_NULL;
2835 
2836 	/* handle the common (which also happens to be the set of easy) cases
2837 	 * right away, these two if statements catch everything involving a
2838 	 * single or absent peer SID/label */
2839 	if (xfrm_sid == SECSID_NULL) {
2840 		*peer_sid = nlbl_sid;
2841 		return 0;
2842 	}
2843 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2844 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2845 	 * is present */
2846 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2847 		*peer_sid = xfrm_sid;
2848 		return 0;
2849 	}
2850 
2851 	/* we don't need to check ss_initialized here since the only way both
2852 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2853 	 * security server was initialized and ss_initialized was true */
2854 	if (!policydb.mls_enabled)
2855 		return 0;
2856 
2857 	read_lock(&policy_rwlock);
2858 
2859 	rc = -EINVAL;
2860 	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2861 	if (!nlbl_ctx) {
2862 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2863 		       __func__, nlbl_sid);
2864 		goto out;
2865 	}
2866 	rc = -EINVAL;
2867 	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2868 	if (!xfrm_ctx) {
2869 		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2870 		       __func__, xfrm_sid);
2871 		goto out;
2872 	}
2873 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2874 	if (rc)
2875 		goto out;
2876 
2877 	/* at present NetLabel SIDs/labels really only carry MLS
2878 	 * information so if the MLS portion of the NetLabel SID
2879 	 * matches the MLS portion of the labeled XFRM SID/label
2880 	 * then pass along the XFRM SID as it is the most
2881 	 * expressive */
2882 	*peer_sid = xfrm_sid;
2883 out:
2884 	read_unlock(&policy_rwlock);
2885 	return rc;
2886 }
2887 
get_classes_callback(void * k,void * d,void * args)2888 static int get_classes_callback(void *k, void *d, void *args)
2889 {
2890 	struct class_datum *datum = d;
2891 	char *name = k, **classes = args;
2892 	int value = datum->value - 1;
2893 
2894 	classes[value] = kstrdup(name, GFP_ATOMIC);
2895 	if (!classes[value])
2896 		return -ENOMEM;
2897 
2898 	return 0;
2899 }
2900 
security_get_classes(char *** classes,int * nclasses)2901 int security_get_classes(char ***classes, int *nclasses)
2902 {
2903 	int rc;
2904 
2905 	read_lock(&policy_rwlock);
2906 
2907 	rc = -ENOMEM;
2908 	*nclasses = policydb.p_classes.nprim;
2909 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2910 	if (!*classes)
2911 		goto out;
2912 
2913 	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2914 			*classes);
2915 	if (rc) {
2916 		int i;
2917 		for (i = 0; i < *nclasses; i++)
2918 			kfree((*classes)[i]);
2919 		kfree(*classes);
2920 	}
2921 
2922 out:
2923 	read_unlock(&policy_rwlock);
2924 	return rc;
2925 }
2926 
get_permissions_callback(void * k,void * d,void * args)2927 static int get_permissions_callback(void *k, void *d, void *args)
2928 {
2929 	struct perm_datum *datum = d;
2930 	char *name = k, **perms = args;
2931 	int value = datum->value - 1;
2932 
2933 	perms[value] = kstrdup(name, GFP_ATOMIC);
2934 	if (!perms[value])
2935 		return -ENOMEM;
2936 
2937 	return 0;
2938 }
2939 
security_get_permissions(char * class,char *** perms,int * nperms)2940 int security_get_permissions(char *class, char ***perms, int *nperms)
2941 {
2942 	int rc, i;
2943 	struct class_datum *match;
2944 
2945 	read_lock(&policy_rwlock);
2946 
2947 	rc = -EINVAL;
2948 	match = hashtab_search(policydb.p_classes.table, class);
2949 	if (!match) {
2950 		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2951 			__func__, class);
2952 		goto out;
2953 	}
2954 
2955 	rc = -ENOMEM;
2956 	*nperms = match->permissions.nprim;
2957 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2958 	if (!*perms)
2959 		goto out;
2960 
2961 	if (match->comdatum) {
2962 		rc = hashtab_map(match->comdatum->permissions.table,
2963 				get_permissions_callback, *perms);
2964 		if (rc)
2965 			goto err;
2966 	}
2967 
2968 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2969 			*perms);
2970 	if (rc)
2971 		goto err;
2972 
2973 out:
2974 	read_unlock(&policy_rwlock);
2975 	return rc;
2976 
2977 err:
2978 	read_unlock(&policy_rwlock);
2979 	for (i = 0; i < *nperms; i++)
2980 		kfree((*perms)[i]);
2981 	kfree(*perms);
2982 	return rc;
2983 }
2984 
security_get_reject_unknown(void)2985 int security_get_reject_unknown(void)
2986 {
2987 	return policydb.reject_unknown;
2988 }
2989 
security_get_allow_unknown(void)2990 int security_get_allow_unknown(void)
2991 {
2992 	return policydb.allow_unknown;
2993 }
2994 
2995 /**
2996  * security_policycap_supported - Check for a specific policy capability
2997  * @req_cap: capability
2998  *
2999  * Description:
3000  * This function queries the currently loaded policy to see if it supports the
3001  * capability specified by @req_cap.  Returns true (1) if the capability is
3002  * supported, false (0) if it isn't supported.
3003  *
3004  */
security_policycap_supported(unsigned int req_cap)3005 int security_policycap_supported(unsigned int req_cap)
3006 {
3007 	int rc;
3008 
3009 	read_lock(&policy_rwlock);
3010 	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3011 	read_unlock(&policy_rwlock);
3012 
3013 	return rc;
3014 }
3015 
3016 struct selinux_audit_rule {
3017 	u32 au_seqno;
3018 	struct context au_ctxt;
3019 };
3020 
selinux_audit_rule_free(void * vrule)3021 void selinux_audit_rule_free(void *vrule)
3022 {
3023 	struct selinux_audit_rule *rule = vrule;
3024 
3025 	if (rule) {
3026 		context_destroy(&rule->au_ctxt);
3027 		kfree(rule);
3028 	}
3029 }
3030 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3031 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3032 {
3033 	struct selinux_audit_rule *tmprule;
3034 	struct role_datum *roledatum;
3035 	struct type_datum *typedatum;
3036 	struct user_datum *userdatum;
3037 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3038 	int rc = 0;
3039 
3040 	*rule = NULL;
3041 
3042 	if (!ss_initialized)
3043 		return -EOPNOTSUPP;
3044 
3045 	switch (field) {
3046 	case AUDIT_SUBJ_USER:
3047 	case AUDIT_SUBJ_ROLE:
3048 	case AUDIT_SUBJ_TYPE:
3049 	case AUDIT_OBJ_USER:
3050 	case AUDIT_OBJ_ROLE:
3051 	case AUDIT_OBJ_TYPE:
3052 		/* only 'equals' and 'not equals' fit user, role, and type */
3053 		if (op != Audit_equal && op != Audit_not_equal)
3054 			return -EINVAL;
3055 		break;
3056 	case AUDIT_SUBJ_SEN:
3057 	case AUDIT_SUBJ_CLR:
3058 	case AUDIT_OBJ_LEV_LOW:
3059 	case AUDIT_OBJ_LEV_HIGH:
3060 		/* we do not allow a range, indicated by the presence of '-' */
3061 		if (strchr(rulestr, '-'))
3062 			return -EINVAL;
3063 		break;
3064 	default:
3065 		/* only the above fields are valid */
3066 		return -EINVAL;
3067 	}
3068 
3069 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3070 	if (!tmprule)
3071 		return -ENOMEM;
3072 
3073 	context_init(&tmprule->au_ctxt);
3074 
3075 	read_lock(&policy_rwlock);
3076 
3077 	tmprule->au_seqno = latest_granting;
3078 
3079 	switch (field) {
3080 	case AUDIT_SUBJ_USER:
3081 	case AUDIT_OBJ_USER:
3082 		rc = -EINVAL;
3083 		userdatum = hashtab_search(policydb.p_users.table, rulestr);
3084 		if (!userdatum)
3085 			goto out;
3086 		tmprule->au_ctxt.user = userdatum->value;
3087 		break;
3088 	case AUDIT_SUBJ_ROLE:
3089 	case AUDIT_OBJ_ROLE:
3090 		rc = -EINVAL;
3091 		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3092 		if (!roledatum)
3093 			goto out;
3094 		tmprule->au_ctxt.role = roledatum->value;
3095 		break;
3096 	case AUDIT_SUBJ_TYPE:
3097 	case AUDIT_OBJ_TYPE:
3098 		rc = -EINVAL;
3099 		typedatum = hashtab_search(policydb.p_types.table, rulestr);
3100 		if (!typedatum)
3101 			goto out;
3102 		tmprule->au_ctxt.type = typedatum->value;
3103 		break;
3104 	case AUDIT_SUBJ_SEN:
3105 	case AUDIT_SUBJ_CLR:
3106 	case AUDIT_OBJ_LEV_LOW:
3107 	case AUDIT_OBJ_LEV_HIGH:
3108 		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
3109 		if (rc)
3110 			goto out;
3111 		break;
3112 	}
3113 	rc = 0;
3114 out:
3115 	read_unlock(&policy_rwlock);
3116 
3117 	if (rc) {
3118 		selinux_audit_rule_free(tmprule);
3119 		tmprule = NULL;
3120 	}
3121 
3122 	*rule = tmprule;
3123 
3124 	return rc;
3125 }
3126 
3127 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3128 int selinux_audit_rule_known(struct audit_krule *rule)
3129 {
3130 	int i;
3131 
3132 	for (i = 0; i < rule->field_count; i++) {
3133 		struct audit_field *f = &rule->fields[i];
3134 		switch (f->type) {
3135 		case AUDIT_SUBJ_USER:
3136 		case AUDIT_SUBJ_ROLE:
3137 		case AUDIT_SUBJ_TYPE:
3138 		case AUDIT_SUBJ_SEN:
3139 		case AUDIT_SUBJ_CLR:
3140 		case AUDIT_OBJ_USER:
3141 		case AUDIT_OBJ_ROLE:
3142 		case AUDIT_OBJ_TYPE:
3143 		case AUDIT_OBJ_LEV_LOW:
3144 		case AUDIT_OBJ_LEV_HIGH:
3145 			return 1;
3146 		}
3147 	}
3148 
3149 	return 0;
3150 }
3151 
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule,struct audit_context * actx)3152 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3153 			     struct audit_context *actx)
3154 {
3155 	struct context *ctxt;
3156 	struct mls_level *level;
3157 	struct selinux_audit_rule *rule = vrule;
3158 	int match = 0;
3159 
3160 	if (unlikely(!rule)) {
3161 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3162 		return -ENOENT;
3163 	}
3164 
3165 	read_lock(&policy_rwlock);
3166 
3167 	if (rule->au_seqno < latest_granting) {
3168 		match = -ESTALE;
3169 		goto out;
3170 	}
3171 
3172 	ctxt = sidtab_search(&sidtab, sid);
3173 	if (unlikely(!ctxt)) {
3174 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3175 			  sid);
3176 		match = -ENOENT;
3177 		goto out;
3178 	}
3179 
3180 	/* a field/op pair that is not caught here will simply fall through
3181 	   without a match */
3182 	switch (field) {
3183 	case AUDIT_SUBJ_USER:
3184 	case AUDIT_OBJ_USER:
3185 		switch (op) {
3186 		case Audit_equal:
3187 			match = (ctxt->user == rule->au_ctxt.user);
3188 			break;
3189 		case Audit_not_equal:
3190 			match = (ctxt->user != rule->au_ctxt.user);
3191 			break;
3192 		}
3193 		break;
3194 	case AUDIT_SUBJ_ROLE:
3195 	case AUDIT_OBJ_ROLE:
3196 		switch (op) {
3197 		case Audit_equal:
3198 			match = (ctxt->role == rule->au_ctxt.role);
3199 			break;
3200 		case Audit_not_equal:
3201 			match = (ctxt->role != rule->au_ctxt.role);
3202 			break;
3203 		}
3204 		break;
3205 	case AUDIT_SUBJ_TYPE:
3206 	case AUDIT_OBJ_TYPE:
3207 		switch (op) {
3208 		case Audit_equal:
3209 			match = (ctxt->type == rule->au_ctxt.type);
3210 			break;
3211 		case Audit_not_equal:
3212 			match = (ctxt->type != rule->au_ctxt.type);
3213 			break;
3214 		}
3215 		break;
3216 	case AUDIT_SUBJ_SEN:
3217 	case AUDIT_SUBJ_CLR:
3218 	case AUDIT_OBJ_LEV_LOW:
3219 	case AUDIT_OBJ_LEV_HIGH:
3220 		level = ((field == AUDIT_SUBJ_SEN ||
3221 			  field == AUDIT_OBJ_LEV_LOW) ?
3222 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3223 		switch (op) {
3224 		case Audit_equal:
3225 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3226 					     level);
3227 			break;
3228 		case Audit_not_equal:
3229 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3230 					      level);
3231 			break;
3232 		case Audit_lt:
3233 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3234 					       level) &&
3235 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3236 					       level));
3237 			break;
3238 		case Audit_le:
3239 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3240 					      level);
3241 			break;
3242 		case Audit_gt:
3243 			match = (mls_level_dom(level,
3244 					      &rule->au_ctxt.range.level[0]) &&
3245 				 !mls_level_eq(level,
3246 					       &rule->au_ctxt.range.level[0]));
3247 			break;
3248 		case Audit_ge:
3249 			match = mls_level_dom(level,
3250 					      &rule->au_ctxt.range.level[0]);
3251 			break;
3252 		}
3253 	}
3254 
3255 out:
3256 	read_unlock(&policy_rwlock);
3257 	return match;
3258 }
3259 
3260 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3261 
aurule_avc_callback(u32 event)3262 static int aurule_avc_callback(u32 event)
3263 {
3264 	int err = 0;
3265 
3266 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3267 		err = aurule_callback();
3268 	return err;
3269 }
3270 
aurule_init(void)3271 static int __init aurule_init(void)
3272 {
3273 	int err;
3274 
3275 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3276 	if (err)
3277 		panic("avc_add_callback() failed, error %d\n", err);
3278 
3279 	return err;
3280 }
3281 __initcall(aurule_init);
3282 
3283 #ifdef CONFIG_NETLABEL
3284 /**
3285  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3286  * @secattr: the NetLabel packet security attributes
3287  * @sid: the SELinux SID
3288  *
3289  * Description:
3290  * Attempt to cache the context in @ctx, which was derived from the packet in
3291  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3292  * already been initialized.
3293  *
3294  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3295 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3296 				      u32 sid)
3297 {
3298 	u32 *sid_cache;
3299 
3300 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3301 	if (sid_cache == NULL)
3302 		return;
3303 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3304 	if (secattr->cache == NULL) {
3305 		kfree(sid_cache);
3306 		return;
3307 	}
3308 
3309 	*sid_cache = sid;
3310 	secattr->cache->free = kfree;
3311 	secattr->cache->data = sid_cache;
3312 	secattr->flags |= NETLBL_SECATTR_CACHE;
3313 }
3314 
3315 /**
3316  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3317  * @secattr: the NetLabel packet security attributes
3318  * @sid: the SELinux SID
3319  *
3320  * Description:
3321  * Convert the given NetLabel security attributes in @secattr into a
3322  * SELinux SID.  If the @secattr field does not contain a full SELinux
3323  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3324  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3325  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3326  * conversion for future lookups.  Returns zero on success, negative values on
3327  * failure.
3328  *
3329  */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3330 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3331 				   u32 *sid)
3332 {
3333 	int rc;
3334 	struct context *ctx;
3335 	struct context ctx_new;
3336 
3337 	if (!ss_initialized) {
3338 		*sid = SECSID_NULL;
3339 		return 0;
3340 	}
3341 
3342 	read_lock(&policy_rwlock);
3343 
3344 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3345 		*sid = *(u32 *)secattr->cache->data;
3346 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3347 		*sid = secattr->attr.secid;
3348 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3349 		rc = -EIDRM;
3350 		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3351 		if (ctx == NULL)
3352 			goto out;
3353 
3354 		context_init(&ctx_new);
3355 		ctx_new.user = ctx->user;
3356 		ctx_new.role = ctx->role;
3357 		ctx_new.type = ctx->type;
3358 		mls_import_netlbl_lvl(&ctx_new, secattr);
3359 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3360 			rc = mls_import_netlbl_cat(&ctx_new, secattr);
3361 			if (rc)
3362 				goto out;
3363 		}
3364 		rc = -EIDRM;
3365 		if (!mls_context_isvalid(&policydb, &ctx_new))
3366 			goto out_free;
3367 
3368 		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3369 		if (rc)
3370 			goto out_free;
3371 
3372 		security_netlbl_cache_add(secattr, *sid);
3373 
3374 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3375 	} else
3376 		*sid = SECSID_NULL;
3377 
3378 	read_unlock(&policy_rwlock);
3379 	return 0;
3380 out_free:
3381 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3382 out:
3383 	read_unlock(&policy_rwlock);
3384 	return rc;
3385 }
3386 
3387 /**
3388  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3389  * @sid: the SELinux SID
3390  * @secattr: the NetLabel packet security attributes
3391  *
3392  * Description:
3393  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3394  * Returns zero on success, negative values on failure.
3395  *
3396  */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3397 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3398 {
3399 	int rc;
3400 	struct context *ctx;
3401 
3402 	if (!ss_initialized)
3403 		return 0;
3404 
3405 	read_lock(&policy_rwlock);
3406 
3407 	rc = -ENOENT;
3408 	ctx = sidtab_search(&sidtab, sid);
3409 	if (ctx == NULL)
3410 		goto out;
3411 
3412 	rc = -ENOMEM;
3413 	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3414 				  GFP_ATOMIC);
3415 	if (secattr->domain == NULL)
3416 		goto out;
3417 
3418 	secattr->attr.secid = sid;
3419 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3420 	mls_export_netlbl_lvl(ctx, secattr);
3421 	rc = mls_export_netlbl_cat(ctx, secattr);
3422 out:
3423 	read_unlock(&policy_rwlock);
3424 	return rc;
3425 }
3426 #endif /* CONFIG_NETLABEL */
3427 
3428 /**
3429  * security_read_policy - read the policy.
3430  * @data: binary policy data
3431  * @len: length of data in bytes
3432  *
3433  */
security_read_policy(void ** data,size_t * len)3434 int security_read_policy(void **data, size_t *len)
3435 {
3436 	int rc;
3437 	struct policy_file fp;
3438 
3439 	if (!ss_initialized)
3440 		return -EINVAL;
3441 
3442 	*len = security_policydb_len();
3443 
3444 	*data = vmalloc_user(*len);
3445 	if (!*data)
3446 		return -ENOMEM;
3447 
3448 	fp.data = *data;
3449 	fp.len = *len;
3450 
3451 	read_lock(&policy_rwlock);
3452 	rc = policydb_write(&policydb, &fp);
3453 	read_unlock(&policy_rwlock);
3454 
3455 	if (rc)
3456 		return rc;
3457 
3458 	*len = (unsigned long)fp.data - (unsigned long)*data;
3459 	return 0;
3460 
3461 }
3462