1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux XFRM hook function implementations.
5 *
6 * Authors: Serge Hallyn <sergeh@us.ibm.com>
7 * Trent Jaeger <jaegert@us.ibm.com>
8 *
9 * Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
10 *
11 * Granular IPSec Associations for use in MLS environments.
12 *
13 * Copyright (C) 2005 International Business Machines Corporation
14 * Copyright (C) 2006 Trusted Computer Solutions, Inc.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2,
18 * as published by the Free Software Foundation.
19 */
20
21 /*
22 * USAGE:
23 * NOTES:
24 * 1. Make sure to enable the following options in your kernel config:
25 * CONFIG_SECURITY=y
26 * CONFIG_SECURITY_NETWORK=y
27 * CONFIG_SECURITY_NETWORK_XFRM=y
28 * CONFIG_SECURITY_SELINUX=m/y
29 * ISSUES:
30 * 1. Caching packets, so they are not dropped during negotiation
31 * 2. Emulating a reasonable SO_PEERSEC across machines
32 * 3. Testing addition of sk_policy's with security context via setsockopt
33 */
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/security.h>
37 #include <linux/types.h>
38 #include <linux/slab.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/skbuff.h>
42 #include <linux/xfrm.h>
43 #include <net/xfrm.h>
44 #include <net/checksum.h>
45 #include <net/udp.h>
46 #include <linux/atomic.h>
47
48 #include "avc.h"
49 #include "objsec.h"
50 #include "xfrm.h"
51
52 /* Labeled XFRM instance counter */
53 atomic_t selinux_xfrm_refcount = ATOMIC_INIT(0);
54
55 /*
56 * Returns true if the context is an LSM/SELinux context.
57 */
selinux_authorizable_ctx(struct xfrm_sec_ctx * ctx)58 static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
59 {
60 return (ctx &&
61 (ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
62 (ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
63 }
64
65 /*
66 * Returns true if the xfrm contains a security blob for SELinux.
67 */
selinux_authorizable_xfrm(struct xfrm_state * x)68 static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
69 {
70 return selinux_authorizable_ctx(x->security);
71 }
72
73 /*
74 * Allocates a xfrm_sec_state and populates it using the supplied security
75 * xfrm_user_sec_ctx context.
76 */
selinux_xfrm_alloc_user(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * uctx,gfp_t gfp)77 static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
78 struct xfrm_user_sec_ctx *uctx,
79 gfp_t gfp)
80 {
81 int rc;
82 const struct task_security_struct *tsec = current_security();
83 struct xfrm_sec_ctx *ctx = NULL;
84 u32 str_len;
85
86 if (ctxp == NULL || uctx == NULL ||
87 uctx->ctx_doi != XFRM_SC_DOI_LSM ||
88 uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
89 return -EINVAL;
90
91 str_len = uctx->ctx_len;
92 if (str_len >= PAGE_SIZE)
93 return -ENOMEM;
94
95 ctx = kmalloc(sizeof(*ctx) + str_len + 1, gfp);
96 if (!ctx)
97 return -ENOMEM;
98
99 ctx->ctx_doi = XFRM_SC_DOI_LSM;
100 ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
101 ctx->ctx_len = str_len;
102 memcpy(ctx->ctx_str, &uctx[1], str_len);
103 ctx->ctx_str[str_len] = '\0';
104 rc = security_context_to_sid(ctx->ctx_str, str_len, &ctx->ctx_sid, gfp);
105 if (rc)
106 goto err;
107
108 rc = avc_has_perm(tsec->sid, ctx->ctx_sid,
109 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
110 if (rc)
111 goto err;
112
113 *ctxp = ctx;
114 atomic_inc(&selinux_xfrm_refcount);
115 return 0;
116
117 err:
118 kfree(ctx);
119 return rc;
120 }
121
122 /*
123 * Free the xfrm_sec_ctx structure.
124 */
selinux_xfrm_free(struct xfrm_sec_ctx * ctx)125 static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
126 {
127 if (!ctx)
128 return;
129
130 atomic_dec(&selinux_xfrm_refcount);
131 kfree(ctx);
132 }
133
134 /*
135 * Authorize the deletion of a labeled SA or policy rule.
136 */
selinux_xfrm_delete(struct xfrm_sec_ctx * ctx)137 static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
138 {
139 const struct task_security_struct *tsec = current_security();
140
141 if (!ctx)
142 return 0;
143
144 return avc_has_perm(tsec->sid, ctx->ctx_sid,
145 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
146 NULL);
147 }
148
149 /*
150 * LSM hook implementation that authorizes that a flow can use a xfrm policy
151 * rule.
152 */
selinux_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid,u8 dir)153 int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
154 {
155 int rc;
156
157 /* All flows should be treated as polmatch'ing an otherwise applicable
158 * "non-labeled" policy. This would prevent inadvertent "leaks". */
159 if (!ctx)
160 return 0;
161
162 /* Context sid is either set to label or ANY_ASSOC */
163 if (!selinux_authorizable_ctx(ctx))
164 return -EINVAL;
165
166 rc = avc_has_perm(fl_secid, ctx->ctx_sid,
167 SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
168 return (rc == -EACCES ? -ESRCH : rc);
169 }
170
171 /*
172 * LSM hook implementation that authorizes that a state matches
173 * the given policy, flow combo.
174 */
selinux_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi * fl)175 int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
176 struct xfrm_policy *xp,
177 const struct flowi *fl)
178 {
179 u32 state_sid;
180
181 if (!xp->security)
182 if (x->security)
183 /* unlabeled policy and labeled SA can't match */
184 return 0;
185 else
186 /* unlabeled policy and unlabeled SA match all flows */
187 return 1;
188 else
189 if (!x->security)
190 /* unlabeled SA and labeled policy can't match */
191 return 0;
192 else
193 if (!selinux_authorizable_xfrm(x))
194 /* Not a SELinux-labeled SA */
195 return 0;
196
197 state_sid = x->security->ctx_sid;
198
199 if (fl->flowi_secid != state_sid)
200 return 0;
201
202 /* We don't need a separate SA Vs. policy polmatch check since the SA
203 * is now of the same label as the flow and a flow Vs. policy polmatch
204 * check had already happened in selinux_xfrm_policy_lookup() above. */
205 return (avc_has_perm(fl->flowi_secid, state_sid,
206 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
207 NULL) ? 0 : 1);
208 }
209
selinux_xfrm_skb_sid_egress(struct sk_buff * skb)210 static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
211 {
212 struct dst_entry *dst = skb_dst(skb);
213 struct xfrm_state *x;
214
215 if (dst == NULL)
216 return SECSID_NULL;
217 x = dst->xfrm;
218 if (x == NULL || !selinux_authorizable_xfrm(x))
219 return SECSID_NULL;
220
221 return x->security->ctx_sid;
222 }
223
selinux_xfrm_skb_sid_ingress(struct sk_buff * skb,u32 * sid,int ckall)224 static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
225 u32 *sid, int ckall)
226 {
227 u32 sid_session = SECSID_NULL;
228 struct sec_path *sp = skb->sp;
229
230 if (sp) {
231 int i;
232
233 for (i = sp->len - 1; i >= 0; i--) {
234 struct xfrm_state *x = sp->xvec[i];
235 if (selinux_authorizable_xfrm(x)) {
236 struct xfrm_sec_ctx *ctx = x->security;
237
238 if (sid_session == SECSID_NULL) {
239 sid_session = ctx->ctx_sid;
240 if (!ckall)
241 goto out;
242 } else if (sid_session != ctx->ctx_sid) {
243 *sid = SECSID_NULL;
244 return -EINVAL;
245 }
246 }
247 }
248 }
249
250 out:
251 *sid = sid_session;
252 return 0;
253 }
254
255 /*
256 * LSM hook implementation that checks and/or returns the xfrm sid for the
257 * incoming packet.
258 */
selinux_xfrm_decode_session(struct sk_buff * skb,u32 * sid,int ckall)259 int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
260 {
261 if (skb == NULL) {
262 *sid = SECSID_NULL;
263 return 0;
264 }
265 return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
266 }
267
selinux_xfrm_skb_sid(struct sk_buff * skb,u32 * sid)268 int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
269 {
270 int rc;
271
272 rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
273 if (rc == 0 && *sid == SECSID_NULL)
274 *sid = selinux_xfrm_skb_sid_egress(skb);
275
276 return rc;
277 }
278
279 /*
280 * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
281 */
selinux_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * uctx,gfp_t gfp)282 int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
283 struct xfrm_user_sec_ctx *uctx,
284 gfp_t gfp)
285 {
286 return selinux_xfrm_alloc_user(ctxp, uctx, gfp);
287 }
288
289 /*
290 * LSM hook implementation that copies security data structure from old to new
291 * for policy cloning.
292 */
selinux_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)293 int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
294 struct xfrm_sec_ctx **new_ctxp)
295 {
296 struct xfrm_sec_ctx *new_ctx;
297
298 if (!old_ctx)
299 return 0;
300
301 new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
302 GFP_ATOMIC);
303 if (!new_ctx)
304 return -ENOMEM;
305 atomic_inc(&selinux_xfrm_refcount);
306 *new_ctxp = new_ctx;
307
308 return 0;
309 }
310
311 /*
312 * LSM hook implementation that frees xfrm_sec_ctx security information.
313 */
selinux_xfrm_policy_free(struct xfrm_sec_ctx * ctx)314 void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
315 {
316 selinux_xfrm_free(ctx);
317 }
318
319 /*
320 * LSM hook implementation that authorizes deletion of labeled policies.
321 */
selinux_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)322 int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
323 {
324 return selinux_xfrm_delete(ctx);
325 }
326
327 /*
328 * LSM hook implementation that allocates a xfrm_sec_state, populates it using
329 * the supplied security context, and assigns it to the xfrm_state.
330 */
selinux_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * uctx)331 int selinux_xfrm_state_alloc(struct xfrm_state *x,
332 struct xfrm_user_sec_ctx *uctx)
333 {
334 return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL);
335 }
336
337 /*
338 * LSM hook implementation that allocates a xfrm_sec_state and populates based
339 * on a secid.
340 */
selinux_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)341 int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
342 struct xfrm_sec_ctx *polsec, u32 secid)
343 {
344 int rc;
345 struct xfrm_sec_ctx *ctx;
346 char *ctx_str = NULL;
347 int str_len;
348
349 if (!polsec)
350 return 0;
351
352 if (secid == 0)
353 return -EINVAL;
354
355 rc = security_sid_to_context(secid, &ctx_str, &str_len);
356 if (rc)
357 return rc;
358
359 ctx = kmalloc(sizeof(*ctx) + str_len, GFP_ATOMIC);
360 if (!ctx) {
361 rc = -ENOMEM;
362 goto out;
363 }
364
365 ctx->ctx_doi = XFRM_SC_DOI_LSM;
366 ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
367 ctx->ctx_sid = secid;
368 ctx->ctx_len = str_len;
369 memcpy(ctx->ctx_str, ctx_str, str_len);
370
371 x->security = ctx;
372 atomic_inc(&selinux_xfrm_refcount);
373 out:
374 kfree(ctx_str);
375 return rc;
376 }
377
378 /*
379 * LSM hook implementation that frees xfrm_state security information.
380 */
selinux_xfrm_state_free(struct xfrm_state * x)381 void selinux_xfrm_state_free(struct xfrm_state *x)
382 {
383 selinux_xfrm_free(x->security);
384 }
385
386 /*
387 * LSM hook implementation that authorizes deletion of labeled SAs.
388 */
selinux_xfrm_state_delete(struct xfrm_state * x)389 int selinux_xfrm_state_delete(struct xfrm_state *x)
390 {
391 return selinux_xfrm_delete(x->security);
392 }
393
394 /*
395 * LSM hook that controls access to unlabelled packets. If
396 * a xfrm_state is authorizable (defined by macro) then it was
397 * already authorized by the IPSec process. If not, then
398 * we need to check for unlabelled access since this may not have
399 * gone thru the IPSec process.
400 */
selinux_xfrm_sock_rcv_skb(u32 sk_sid,struct sk_buff * skb,struct common_audit_data * ad)401 int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
402 struct common_audit_data *ad)
403 {
404 int i;
405 struct sec_path *sp = skb->sp;
406 u32 peer_sid = SECINITSID_UNLABELED;
407
408 if (sp) {
409 for (i = 0; i < sp->len; i++) {
410 struct xfrm_state *x = sp->xvec[i];
411
412 if (x && selinux_authorizable_xfrm(x)) {
413 struct xfrm_sec_ctx *ctx = x->security;
414 peer_sid = ctx->ctx_sid;
415 break;
416 }
417 }
418 }
419
420 /* This check even when there's no association involved is intended,
421 * according to Trent Jaeger, to make sure a process can't engage in
422 * non-IPsec communication unless explicitly allowed by policy. */
423 return avc_has_perm(sk_sid, peer_sid,
424 SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
425 }
426
427 /*
428 * POSTROUTE_LAST hook's XFRM processing:
429 * If we have no security association, then we need to determine
430 * whether the socket is allowed to send to an unlabelled destination.
431 * If we do have a authorizable security association, then it has already been
432 * checked in the selinux_xfrm_state_pol_flow_match hook above.
433 */
selinux_xfrm_postroute_last(u32 sk_sid,struct sk_buff * skb,struct common_audit_data * ad,u8 proto)434 int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
435 struct common_audit_data *ad, u8 proto)
436 {
437 struct dst_entry *dst;
438
439 switch (proto) {
440 case IPPROTO_AH:
441 case IPPROTO_ESP:
442 case IPPROTO_COMP:
443 /* We should have already seen this packet once before it
444 * underwent xfrm(s). No need to subject it to the unlabeled
445 * check. */
446 return 0;
447 default:
448 break;
449 }
450
451 dst = skb_dst(skb);
452 if (dst) {
453 struct dst_entry *iter;
454
455 for (iter = dst; iter != NULL; iter = iter->child) {
456 struct xfrm_state *x = iter->xfrm;
457
458 if (x && selinux_authorizable_xfrm(x))
459 return 0;
460 }
461 }
462
463 /* This check even when there's no association involved is intended,
464 * according to Trent Jaeger, to make sure a process can't engage in
465 * non-IPsec communication unless explicitly allowed by policy. */
466 return avc_has_perm(sk_sid, SECINITSID_UNLABELED,
467 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
468 }
469