1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
giveup_fpu_maybe_transactional(struct task_struct * tsk)78 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79 {
80 /*
81 * If we are saving the current thread's registers, and the
82 * thread is in a transactional state, set the TIF_RESTORE_TM
83 * bit so that we know to restore the registers before
84 * returning to userspace.
85 */
86 if (tsk == current && tsk->thread.regs &&
87 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 !test_thread_flag(TIF_RESTORE_TM)) {
89 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
90 set_thread_flag(TIF_RESTORE_TM);
91 }
92
93 giveup_fpu(tsk);
94 }
95
giveup_altivec_maybe_transactional(struct task_struct * tsk)96 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97 {
98 /*
99 * If we are saving the current thread's registers, and the
100 * thread is in a transactional state, set the TIF_RESTORE_TM
101 * bit so that we know to restore the registers before
102 * returning to userspace.
103 */
104 if (tsk == current && tsk->thread.regs &&
105 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 !test_thread_flag(TIF_RESTORE_TM)) {
107 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
108 set_thread_flag(TIF_RESTORE_TM);
109 }
110
111 giveup_altivec(tsk);
112 }
113
114 #else
115 #define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118
119 #ifdef CONFIG_PPC_FPU
120 /*
121 * Make sure the floating-point register state in the
122 * the thread_struct is up to date for task tsk.
123 */
flush_fp_to_thread(struct task_struct * tsk)124 void flush_fp_to_thread(struct task_struct *tsk)
125 {
126 if (tsk->thread.regs) {
127 /*
128 * We need to disable preemption here because if we didn't,
129 * another process could get scheduled after the regs->msr
130 * test but before we have finished saving the FP registers
131 * to the thread_struct. That process could take over the
132 * FPU, and then when we get scheduled again we would store
133 * bogus values for the remaining FP registers.
134 */
135 preempt_disable();
136 if (tsk->thread.regs->msr & MSR_FP) {
137 #ifdef CONFIG_SMP
138 /*
139 * This should only ever be called for current or
140 * for a stopped child process. Since we save away
141 * the FP register state on context switch on SMP,
142 * there is something wrong if a stopped child appears
143 * to still have its FP state in the CPU registers.
144 */
145 BUG_ON(tsk != current);
146 #endif
147 giveup_fpu_maybe_transactional(tsk);
148 }
149 preempt_enable();
150 }
151 }
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153 #endif /* CONFIG_PPC_FPU */
154
enable_kernel_fp(void)155 void enable_kernel_fp(void)
156 {
157 WARN_ON(preemptible());
158
159 #ifdef CONFIG_SMP
160 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161 giveup_fpu_maybe_transactional(current);
162 else
163 giveup_fpu(NULL); /* just enables FP for kernel */
164 #else
165 giveup_fpu_maybe_transactional(last_task_used_math);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_fp);
169
170 #ifdef CONFIG_ALTIVEC
enable_kernel_altivec(void)171 void enable_kernel_altivec(void)
172 {
173 WARN_ON(preemptible());
174
175 #ifdef CONFIG_SMP
176 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177 giveup_altivec_maybe_transactional(current);
178 else
179 giveup_altivec_notask();
180 #else
181 giveup_altivec_maybe_transactional(last_task_used_altivec);
182 #endif /* CONFIG_SMP */
183 }
184 EXPORT_SYMBOL(enable_kernel_altivec);
185
186 /*
187 * Make sure the VMX/Altivec register state in the
188 * the thread_struct is up to date for task tsk.
189 */
flush_altivec_to_thread(struct task_struct * tsk)190 void flush_altivec_to_thread(struct task_struct *tsk)
191 {
192 if (tsk->thread.regs) {
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_VEC) {
195 #ifdef CONFIG_SMP
196 BUG_ON(tsk != current);
197 #endif
198 giveup_altivec_maybe_transactional(tsk);
199 }
200 preempt_enable();
201 }
202 }
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 #endif /* CONFIG_ALTIVEC */
205
206 #ifdef CONFIG_VSX
enable_kernel_vsx(void)207 void enable_kernel_vsx(void)
208 {
209 WARN_ON(preemptible());
210
211 #ifdef CONFIG_SMP
212 if (current->thread.regs &&
213 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)))
214 giveup_vsx(current);
215 else
216 giveup_vsx(NULL); /* just enable vsx for kernel - force */
217 #else
218 giveup_vsx(last_task_used_vsx);
219 #endif /* CONFIG_SMP */
220 }
221 EXPORT_SYMBOL(enable_kernel_vsx);
222
giveup_vsx(struct task_struct * tsk)223 void giveup_vsx(struct task_struct *tsk)
224 {
225 giveup_fpu_maybe_transactional(tsk);
226 giveup_altivec_maybe_transactional(tsk);
227 __giveup_vsx(tsk);
228 }
229 EXPORT_SYMBOL(giveup_vsx);
230
flush_vsx_to_thread(struct task_struct * tsk)231 void flush_vsx_to_thread(struct task_struct *tsk)
232 {
233 if (tsk->thread.regs) {
234 preempt_disable();
235 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
236 #ifdef CONFIG_SMP
237 BUG_ON(tsk != current);
238 #endif
239 giveup_vsx(tsk);
240 }
241 preempt_enable();
242 }
243 }
244 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
245 #endif /* CONFIG_VSX */
246
247 #ifdef CONFIG_SPE
248
enable_kernel_spe(void)249 void enable_kernel_spe(void)
250 {
251 WARN_ON(preemptible());
252
253 #ifdef CONFIG_SMP
254 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
255 giveup_spe(current);
256 else
257 giveup_spe(NULL); /* just enable SPE for kernel - force */
258 #else
259 giveup_spe(last_task_used_spe);
260 #endif /* __SMP __ */
261 }
262 EXPORT_SYMBOL(enable_kernel_spe);
263
flush_spe_to_thread(struct task_struct * tsk)264 void flush_spe_to_thread(struct task_struct *tsk)
265 {
266 if (tsk->thread.regs) {
267 preempt_disable();
268 if (tsk->thread.regs->msr & MSR_SPE) {
269 #ifdef CONFIG_SMP
270 BUG_ON(tsk != current);
271 #endif
272 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
273 giveup_spe(tsk);
274 }
275 preempt_enable();
276 }
277 }
278 #endif /* CONFIG_SPE */
279
280 #ifndef CONFIG_SMP
281 /*
282 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
283 * and the current task has some state, discard it.
284 */
discard_lazy_cpu_state(void)285 void discard_lazy_cpu_state(void)
286 {
287 preempt_disable();
288 if (last_task_used_math == current)
289 last_task_used_math = NULL;
290 #ifdef CONFIG_ALTIVEC
291 if (last_task_used_altivec == current)
292 last_task_used_altivec = NULL;
293 #endif /* CONFIG_ALTIVEC */
294 #ifdef CONFIG_VSX
295 if (last_task_used_vsx == current)
296 last_task_used_vsx = NULL;
297 #endif /* CONFIG_VSX */
298 #ifdef CONFIG_SPE
299 if (last_task_used_spe == current)
300 last_task_used_spe = NULL;
301 #endif
302 preempt_enable();
303 }
304 #endif /* CONFIG_SMP */
305
306 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
do_send_trap(struct pt_regs * regs,unsigned long address,unsigned long error_code,int signal_code,int breakpt)307 void do_send_trap(struct pt_regs *regs, unsigned long address,
308 unsigned long error_code, int signal_code, int breakpt)
309 {
310 siginfo_t info;
311
312 current->thread.trap_nr = signal_code;
313 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
314 11, SIGSEGV) == NOTIFY_STOP)
315 return;
316
317 /* Deliver the signal to userspace */
318 info.si_signo = SIGTRAP;
319 info.si_errno = breakpt; /* breakpoint or watchpoint id */
320 info.si_code = signal_code;
321 info.si_addr = (void __user *)address;
322 force_sig_info(SIGTRAP, &info, current);
323 }
324 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
do_break(struct pt_regs * regs,unsigned long address,unsigned long error_code)325 void do_break (struct pt_regs *regs, unsigned long address,
326 unsigned long error_code)
327 {
328 siginfo_t info;
329
330 current->thread.trap_nr = TRAP_HWBKPT;
331 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
332 11, SIGSEGV) == NOTIFY_STOP)
333 return;
334
335 if (debugger_break_match(regs))
336 return;
337
338 /* Clear the breakpoint */
339 hw_breakpoint_disable();
340
341 /* Deliver the signal to userspace */
342 info.si_signo = SIGTRAP;
343 info.si_errno = 0;
344 info.si_code = TRAP_HWBKPT;
345 info.si_addr = (void __user *)address;
346 force_sig_info(SIGTRAP, &info, current);
347 }
348 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
349
350 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
351
352 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
353 /*
354 * Set the debug registers back to their default "safe" values.
355 */
set_debug_reg_defaults(struct thread_struct * thread)356 static void set_debug_reg_defaults(struct thread_struct *thread)
357 {
358 thread->debug.iac1 = thread->debug.iac2 = 0;
359 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
360 thread->debug.iac3 = thread->debug.iac4 = 0;
361 #endif
362 thread->debug.dac1 = thread->debug.dac2 = 0;
363 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
364 thread->debug.dvc1 = thread->debug.dvc2 = 0;
365 #endif
366 thread->debug.dbcr0 = 0;
367 #ifdef CONFIG_BOOKE
368 /*
369 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
370 */
371 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
372 DBCR1_IAC3US | DBCR1_IAC4US;
373 /*
374 * Force Data Address Compare User/Supervisor bits to be User-only
375 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
376 */
377 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
378 #else
379 thread->debug.dbcr1 = 0;
380 #endif
381 }
382
prime_debug_regs(struct debug_reg * debug)383 static void prime_debug_regs(struct debug_reg *debug)
384 {
385 /*
386 * We could have inherited MSR_DE from userspace, since
387 * it doesn't get cleared on exception entry. Make sure
388 * MSR_DE is clear before we enable any debug events.
389 */
390 mtmsr(mfmsr() & ~MSR_DE);
391
392 mtspr(SPRN_IAC1, debug->iac1);
393 mtspr(SPRN_IAC2, debug->iac2);
394 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
395 mtspr(SPRN_IAC3, debug->iac3);
396 mtspr(SPRN_IAC4, debug->iac4);
397 #endif
398 mtspr(SPRN_DAC1, debug->dac1);
399 mtspr(SPRN_DAC2, debug->dac2);
400 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
401 mtspr(SPRN_DVC1, debug->dvc1);
402 mtspr(SPRN_DVC2, debug->dvc2);
403 #endif
404 mtspr(SPRN_DBCR0, debug->dbcr0);
405 mtspr(SPRN_DBCR1, debug->dbcr1);
406 #ifdef CONFIG_BOOKE
407 mtspr(SPRN_DBCR2, debug->dbcr2);
408 #endif
409 }
410 /*
411 * Unless neither the old or new thread are making use of the
412 * debug registers, set the debug registers from the values
413 * stored in the new thread.
414 */
switch_booke_debug_regs(struct debug_reg * new_debug)415 void switch_booke_debug_regs(struct debug_reg *new_debug)
416 {
417 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
418 || (new_debug->dbcr0 & DBCR0_IDM))
419 prime_debug_regs(new_debug);
420 }
421 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
422 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
423 #ifndef CONFIG_HAVE_HW_BREAKPOINT
set_debug_reg_defaults(struct thread_struct * thread)424 static void set_debug_reg_defaults(struct thread_struct *thread)
425 {
426 thread->hw_brk.address = 0;
427 thread->hw_brk.type = 0;
428 set_breakpoint(&thread->hw_brk);
429 }
430 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
431 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
432
433 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
__set_dabr(unsigned long dabr,unsigned long dabrx)434 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
435 {
436 mtspr(SPRN_DAC1, dabr);
437 #ifdef CONFIG_PPC_47x
438 isync();
439 #endif
440 return 0;
441 }
442 #elif defined(CONFIG_PPC_BOOK3S)
__set_dabr(unsigned long dabr,unsigned long dabrx)443 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
444 {
445 mtspr(SPRN_DABR, dabr);
446 if (cpu_has_feature(CPU_FTR_DABRX))
447 mtspr(SPRN_DABRX, dabrx);
448 return 0;
449 }
450 #else
__set_dabr(unsigned long dabr,unsigned long dabrx)451 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
452 {
453 return -EINVAL;
454 }
455 #endif
456
set_dabr(struct arch_hw_breakpoint * brk)457 static inline int set_dabr(struct arch_hw_breakpoint *brk)
458 {
459 unsigned long dabr, dabrx;
460
461 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
462 dabrx = ((brk->type >> 3) & 0x7);
463
464 if (ppc_md.set_dabr)
465 return ppc_md.set_dabr(dabr, dabrx);
466
467 return __set_dabr(dabr, dabrx);
468 }
469
set_dawr(struct arch_hw_breakpoint * brk)470 static inline int set_dawr(struct arch_hw_breakpoint *brk)
471 {
472 unsigned long dawr, dawrx, mrd;
473
474 dawr = brk->address;
475
476 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
477 << (63 - 58); //* read/write bits */
478 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
479 << (63 - 59); //* translate */
480 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
481 >> 3; //* PRIM bits */
482 /* dawr length is stored in field MDR bits 48:53. Matches range in
483 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
484 0b111111=64DW.
485 brk->len is in bytes.
486 This aligns up to double word size, shifts and does the bias.
487 */
488 mrd = ((brk->len + 7) >> 3) - 1;
489 dawrx |= (mrd & 0x3f) << (63 - 53);
490
491 if (ppc_md.set_dawr)
492 return ppc_md.set_dawr(dawr, dawrx);
493 mtspr(SPRN_DAWR, dawr);
494 mtspr(SPRN_DAWRX, dawrx);
495 return 0;
496 }
497
__set_breakpoint(struct arch_hw_breakpoint * brk)498 void __set_breakpoint(struct arch_hw_breakpoint *brk)
499 {
500 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk));
501
502 if (cpu_has_feature(CPU_FTR_DAWR))
503 set_dawr(brk);
504 else
505 set_dabr(brk);
506 }
507
set_breakpoint(struct arch_hw_breakpoint * brk)508 void set_breakpoint(struct arch_hw_breakpoint *brk)
509 {
510 preempt_disable();
511 __set_breakpoint(brk);
512 preempt_enable();
513 }
514
515 #ifdef CONFIG_PPC64
516 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
517 #endif
518
hw_brk_match(struct arch_hw_breakpoint * a,struct arch_hw_breakpoint * b)519 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
520 struct arch_hw_breakpoint *b)
521 {
522 if (a->address != b->address)
523 return false;
524 if (a->type != b->type)
525 return false;
526 if (a->len != b->len)
527 return false;
528 return true;
529 }
530
531 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_reclaim_thread(struct thread_struct * thr,struct thread_info * ti,uint8_t cause)532 static void tm_reclaim_thread(struct thread_struct *thr,
533 struct thread_info *ti, uint8_t cause)
534 {
535 unsigned long msr_diff = 0;
536
537 /*
538 * If FP/VSX registers have been already saved to the
539 * thread_struct, move them to the transact_fp array.
540 * We clear the TIF_RESTORE_TM bit since after the reclaim
541 * the thread will no longer be transactional.
542 */
543 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
544 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
545 if (msr_diff & MSR_FP)
546 memcpy(&thr->transact_fp, &thr->fp_state,
547 sizeof(struct thread_fp_state));
548 if (msr_diff & MSR_VEC)
549 memcpy(&thr->transact_vr, &thr->vr_state,
550 sizeof(struct thread_vr_state));
551 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
552 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
553 }
554
555 /*
556 * Use the current MSR TM suspended bit to track if we have
557 * checkpointed state outstanding.
558 * On signal delivery, we'd normally reclaim the checkpointed
559 * state to obtain stack pointer (see:get_tm_stackpointer()).
560 * This will then directly return to userspace without going
561 * through __switch_to(). However, if the stack frame is bad,
562 * we need to exit this thread which calls __switch_to() which
563 * will again attempt to reclaim the already saved tm state.
564 * Hence we need to check that we've not already reclaimed
565 * this state.
566 * We do this using the current MSR, rather tracking it in
567 * some specific thread_struct bit, as it has the additional
568 * benifit of checking for a potential TM bad thing exception.
569 */
570 if (!MSR_TM_SUSPENDED(mfmsr()))
571 return;
572
573 tm_reclaim(thr, thr->regs->msr, cause);
574
575 /* Having done the reclaim, we now have the checkpointed
576 * FP/VSX values in the registers. These might be valid
577 * even if we have previously called enable_kernel_fp() or
578 * flush_fp_to_thread(), so update thr->regs->msr to
579 * indicate their current validity.
580 */
581 thr->regs->msr |= msr_diff;
582 }
583
tm_reclaim_current(uint8_t cause)584 void tm_reclaim_current(uint8_t cause)
585 {
586 tm_enable();
587 tm_reclaim_thread(¤t->thread, current_thread_info(), cause);
588 }
589
tm_reclaim_task(struct task_struct * tsk)590 static inline void tm_reclaim_task(struct task_struct *tsk)
591 {
592 /* We have to work out if we're switching from/to a task that's in the
593 * middle of a transaction.
594 *
595 * In switching we need to maintain a 2nd register state as
596 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
597 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
598 * (current) FPRs into oldtask->thread.transact_fpr[].
599 *
600 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
601 */
602 struct thread_struct *thr = &tsk->thread;
603
604 if (!thr->regs)
605 return;
606
607 if (!MSR_TM_ACTIVE(thr->regs->msr))
608 goto out_and_saveregs;
609
610 /* Stash the original thread MSR, as giveup_fpu et al will
611 * modify it. We hold onto it to see whether the task used
612 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
613 * ckpt_regs.msr is already set.
614 */
615 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
616 thr->ckpt_regs.msr = thr->regs->msr;
617
618 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
619 "ccr=%lx, msr=%lx, trap=%lx)\n",
620 tsk->pid, thr->regs->nip,
621 thr->regs->ccr, thr->regs->msr,
622 thr->regs->trap);
623
624 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
625
626 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
627 tsk->pid);
628
629 out_and_saveregs:
630 /* Always save the regs here, even if a transaction's not active.
631 * This context-switches a thread's TM info SPRs. We do it here to
632 * be consistent with the restore path (in recheckpoint) which
633 * cannot happen later in _switch().
634 */
635 tm_save_sprs(thr);
636 }
637
638 extern void __tm_recheckpoint(struct thread_struct *thread,
639 unsigned long orig_msr);
640
tm_recheckpoint(struct thread_struct * thread,unsigned long orig_msr)641 void tm_recheckpoint(struct thread_struct *thread,
642 unsigned long orig_msr)
643 {
644 unsigned long flags;
645
646 /* We really can't be interrupted here as the TEXASR registers can't
647 * change and later in the trecheckpoint code, we have a userspace R1.
648 * So let's hard disable over this region.
649 */
650 local_irq_save(flags);
651 hard_irq_disable();
652
653 /* The TM SPRs are restored here, so that TEXASR.FS can be set
654 * before the trecheckpoint and no explosion occurs.
655 */
656 tm_restore_sprs(thread);
657
658 __tm_recheckpoint(thread, orig_msr);
659
660 local_irq_restore(flags);
661 }
662
tm_recheckpoint_new_task(struct task_struct * new)663 static inline void tm_recheckpoint_new_task(struct task_struct *new)
664 {
665 unsigned long msr;
666
667 if (!cpu_has_feature(CPU_FTR_TM))
668 return;
669
670 /* Recheckpoint the registers of the thread we're about to switch to.
671 *
672 * If the task was using FP, we non-lazily reload both the original and
673 * the speculative FP register states. This is because the kernel
674 * doesn't see if/when a TM rollback occurs, so if we take an FP
675 * unavoidable later, we are unable to determine which set of FP regs
676 * need to be restored.
677 */
678 if (!new->thread.regs)
679 return;
680
681 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
682 tm_restore_sprs(&new->thread);
683 return;
684 }
685 msr = new->thread.ckpt_regs.msr;
686 /* Recheckpoint to restore original checkpointed register state. */
687 TM_DEBUG("*** tm_recheckpoint of pid %d "
688 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
689 new->pid, new->thread.regs->msr, msr);
690
691 /* This loads the checkpointed FP/VEC state, if used */
692 tm_recheckpoint(&new->thread, msr);
693
694 /* This loads the speculative FP/VEC state, if used */
695 if (msr & MSR_FP) {
696 do_load_up_transact_fpu(&new->thread);
697 new->thread.regs->msr |=
698 (MSR_FP | new->thread.fpexc_mode);
699 }
700 #ifdef CONFIG_ALTIVEC
701 if (msr & MSR_VEC) {
702 do_load_up_transact_altivec(&new->thread);
703 new->thread.regs->msr |= MSR_VEC;
704 }
705 #endif
706 /* We may as well turn on VSX too since all the state is restored now */
707 if (msr & MSR_VSX)
708 new->thread.regs->msr |= MSR_VSX;
709
710 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
711 "(kernel msr 0x%lx)\n",
712 new->pid, mfmsr());
713 }
714
__switch_to_tm(struct task_struct * prev)715 static inline void __switch_to_tm(struct task_struct *prev)
716 {
717 if (cpu_has_feature(CPU_FTR_TM)) {
718 tm_enable();
719 tm_reclaim_task(prev);
720 }
721 }
722
723 /*
724 * This is called if we are on the way out to userspace and the
725 * TIF_RESTORE_TM flag is set. It checks if we need to reload
726 * FP and/or vector state and does so if necessary.
727 * If userspace is inside a transaction (whether active or
728 * suspended) and FP/VMX/VSX instructions have ever been enabled
729 * inside that transaction, then we have to keep them enabled
730 * and keep the FP/VMX/VSX state loaded while ever the transaction
731 * continues. The reason is that if we didn't, and subsequently
732 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
733 * we don't know whether it's the same transaction, and thus we
734 * don't know which of the checkpointed state and the transactional
735 * state to use.
736 */
restore_tm_state(struct pt_regs * regs)737 void restore_tm_state(struct pt_regs *regs)
738 {
739 unsigned long msr_diff;
740
741 clear_thread_flag(TIF_RESTORE_TM);
742 if (!MSR_TM_ACTIVE(regs->msr))
743 return;
744
745 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
746 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
747 if (msr_diff & MSR_FP) {
748 fp_enable();
749 load_fp_state(¤t->thread.fp_state);
750 regs->msr |= current->thread.fpexc_mode;
751 }
752 if (msr_diff & MSR_VEC) {
753 vec_enable();
754 load_vr_state(¤t->thread.vr_state);
755 }
756 regs->msr |= msr_diff;
757 }
758
759 #else
760 #define tm_recheckpoint_new_task(new)
761 #define __switch_to_tm(prev)
762 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
763
__switch_to(struct task_struct * prev,struct task_struct * new)764 struct task_struct *__switch_to(struct task_struct *prev,
765 struct task_struct *new)
766 {
767 struct thread_struct *new_thread, *old_thread;
768 struct task_struct *last;
769 #ifdef CONFIG_PPC_BOOK3S_64
770 struct ppc64_tlb_batch *batch;
771 #endif
772
773 WARN_ON(!irqs_disabled());
774
775 /* Back up the TAR and DSCR across context switches.
776 * Note that the TAR is not available for use in the kernel. (To
777 * provide this, the TAR should be backed up/restored on exception
778 * entry/exit instead, and be in pt_regs. FIXME, this should be in
779 * pt_regs anyway (for debug).)
780 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
781 * these will change them.
782 */
783 save_early_sprs(&prev->thread);
784
785 __switch_to_tm(prev);
786
787 #ifdef CONFIG_SMP
788 /* avoid complexity of lazy save/restore of fpu
789 * by just saving it every time we switch out if
790 * this task used the fpu during the last quantum.
791 *
792 * If it tries to use the fpu again, it'll trap and
793 * reload its fp regs. So we don't have to do a restore
794 * every switch, just a save.
795 * -- Cort
796 */
797 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
798 giveup_fpu(prev);
799 #ifdef CONFIG_ALTIVEC
800 /*
801 * If the previous thread used altivec in the last quantum
802 * (thus changing altivec regs) then save them.
803 * We used to check the VRSAVE register but not all apps
804 * set it, so we don't rely on it now (and in fact we need
805 * to save & restore VSCR even if VRSAVE == 0). -- paulus
806 *
807 * On SMP we always save/restore altivec regs just to avoid the
808 * complexity of changing processors.
809 * -- Cort
810 */
811 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
812 giveup_altivec(prev);
813 #endif /* CONFIG_ALTIVEC */
814 #ifdef CONFIG_VSX
815 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
816 /* VMX and FPU registers are already save here */
817 __giveup_vsx(prev);
818 #endif /* CONFIG_VSX */
819 #ifdef CONFIG_SPE
820 /*
821 * If the previous thread used spe in the last quantum
822 * (thus changing spe regs) then save them.
823 *
824 * On SMP we always save/restore spe regs just to avoid the
825 * complexity of changing processors.
826 */
827 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
828 giveup_spe(prev);
829 #endif /* CONFIG_SPE */
830
831 #else /* CONFIG_SMP */
832 #ifdef CONFIG_ALTIVEC
833 /* Avoid the trap. On smp this this never happens since
834 * we don't set last_task_used_altivec -- Cort
835 */
836 if (new->thread.regs && last_task_used_altivec == new)
837 new->thread.regs->msr |= MSR_VEC;
838 #endif /* CONFIG_ALTIVEC */
839 #ifdef CONFIG_VSX
840 if (new->thread.regs && last_task_used_vsx == new)
841 new->thread.regs->msr |= MSR_VSX;
842 #endif /* CONFIG_VSX */
843 #ifdef CONFIG_SPE
844 /* Avoid the trap. On smp this this never happens since
845 * we don't set last_task_used_spe
846 */
847 if (new->thread.regs && last_task_used_spe == new)
848 new->thread.regs->msr |= MSR_SPE;
849 #endif /* CONFIG_SPE */
850
851 #endif /* CONFIG_SMP */
852
853 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
854 switch_booke_debug_regs(&new->thread.debug);
855 #else
856 /*
857 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
858 * schedule DABR
859 */
860 #ifndef CONFIG_HAVE_HW_BREAKPOINT
861 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk)))
862 __set_breakpoint(&new->thread.hw_brk);
863 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
864 #endif
865
866
867 new_thread = &new->thread;
868 old_thread = ¤t->thread;
869
870 #ifdef CONFIG_PPC64
871 /*
872 * Collect processor utilization data per process
873 */
874 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
875 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
876 long unsigned start_tb, current_tb;
877 start_tb = old_thread->start_tb;
878 cu->current_tb = current_tb = mfspr(SPRN_PURR);
879 old_thread->accum_tb += (current_tb - start_tb);
880 new_thread->start_tb = current_tb;
881 }
882 #endif /* CONFIG_PPC64 */
883
884 #ifdef CONFIG_PPC_BOOK3S_64
885 batch = this_cpu_ptr(&ppc64_tlb_batch);
886 if (batch->active) {
887 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
888 if (batch->index)
889 __flush_tlb_pending(batch);
890 batch->active = 0;
891 }
892 #endif /* CONFIG_PPC_BOOK3S_64 */
893
894 /*
895 * We can't take a PMU exception inside _switch() since there is a
896 * window where the kernel stack SLB and the kernel stack are out
897 * of sync. Hard disable here.
898 */
899 hard_irq_disable();
900
901 tm_recheckpoint_new_task(new);
902
903 last = _switch(old_thread, new_thread);
904
905 #ifdef CONFIG_PPC_BOOK3S_64
906 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
907 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
908 batch = this_cpu_ptr(&ppc64_tlb_batch);
909 batch->active = 1;
910 }
911 #endif /* CONFIG_PPC_BOOK3S_64 */
912
913 return last;
914 }
915
916 static int instructions_to_print = 16;
917
show_instructions(struct pt_regs * regs)918 static void show_instructions(struct pt_regs *regs)
919 {
920 int i;
921 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
922 sizeof(int));
923
924 printk("Instruction dump:");
925
926 for (i = 0; i < instructions_to_print; i++) {
927 int instr;
928
929 if (!(i % 8))
930 printk("\n");
931
932 #if !defined(CONFIG_BOOKE)
933 /* If executing with the IMMU off, adjust pc rather
934 * than print XXXXXXXX.
935 */
936 if (!(regs->msr & MSR_IR))
937 pc = (unsigned long)phys_to_virt(pc);
938 #endif
939
940 if (!__kernel_text_address(pc) ||
941 probe_kernel_address((unsigned int __user *)pc, instr)) {
942 printk(KERN_CONT "XXXXXXXX ");
943 } else {
944 if (regs->nip == pc)
945 printk(KERN_CONT "<%08x> ", instr);
946 else
947 printk(KERN_CONT "%08x ", instr);
948 }
949
950 pc += sizeof(int);
951 }
952
953 printk("\n");
954 }
955
956 static struct regbit {
957 unsigned long bit;
958 const char *name;
959 } msr_bits[] = {
960 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
961 {MSR_SF, "SF"},
962 {MSR_HV, "HV"},
963 #endif
964 {MSR_VEC, "VEC"},
965 {MSR_VSX, "VSX"},
966 #ifdef CONFIG_BOOKE
967 {MSR_CE, "CE"},
968 #endif
969 {MSR_EE, "EE"},
970 {MSR_PR, "PR"},
971 {MSR_FP, "FP"},
972 {MSR_ME, "ME"},
973 #ifdef CONFIG_BOOKE
974 {MSR_DE, "DE"},
975 #else
976 {MSR_SE, "SE"},
977 {MSR_BE, "BE"},
978 #endif
979 {MSR_IR, "IR"},
980 {MSR_DR, "DR"},
981 {MSR_PMM, "PMM"},
982 #ifndef CONFIG_BOOKE
983 {MSR_RI, "RI"},
984 {MSR_LE, "LE"},
985 #endif
986 {0, NULL}
987 };
988
printbits(unsigned long val,struct regbit * bits)989 static void printbits(unsigned long val, struct regbit *bits)
990 {
991 const char *sep = "";
992
993 printk("<");
994 for (; bits->bit; ++bits)
995 if (val & bits->bit) {
996 printk("%s%s", sep, bits->name);
997 sep = ",";
998 }
999 printk(">");
1000 }
1001
1002 #ifdef CONFIG_PPC64
1003 #define REG "%016lx"
1004 #define REGS_PER_LINE 4
1005 #define LAST_VOLATILE 13
1006 #else
1007 #define REG "%08lx"
1008 #define REGS_PER_LINE 8
1009 #define LAST_VOLATILE 12
1010 #endif
1011
show_regs(struct pt_regs * regs)1012 void show_regs(struct pt_regs * regs)
1013 {
1014 int i, trap;
1015
1016 show_regs_print_info(KERN_DEFAULT);
1017
1018 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1019 regs->nip, regs->link, regs->ctr);
1020 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1021 regs, regs->trap, print_tainted(), init_utsname()->release);
1022 printk("MSR: "REG" ", regs->msr);
1023 printbits(regs->msr, msr_bits);
1024 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1025 trap = TRAP(regs);
1026 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1027 printk("CFAR: "REG" ", regs->orig_gpr3);
1028 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1029 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1030 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1031 #else
1032 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1033 #endif
1034 #ifdef CONFIG_PPC64
1035 printk("SOFTE: %ld ", regs->softe);
1036 #endif
1037 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1038 if (MSR_TM_ACTIVE(regs->msr))
1039 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1040 #endif
1041
1042 for (i = 0; i < 32; i++) {
1043 if ((i % REGS_PER_LINE) == 0)
1044 printk("\nGPR%02d: ", i);
1045 printk(REG " ", regs->gpr[i]);
1046 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1047 break;
1048 }
1049 printk("\n");
1050 #ifdef CONFIG_KALLSYMS
1051 /*
1052 * Lookup NIP late so we have the best change of getting the
1053 * above info out without failing
1054 */
1055 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1056 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1057 #endif
1058 show_stack(current, (unsigned long *) regs->gpr[1]);
1059 if (!user_mode(regs))
1060 show_instructions(regs);
1061 }
1062
exit_thread(void)1063 void exit_thread(void)
1064 {
1065 discard_lazy_cpu_state();
1066 }
1067
flush_thread(void)1068 void flush_thread(void)
1069 {
1070 discard_lazy_cpu_state();
1071
1072 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1073 flush_ptrace_hw_breakpoint(current);
1074 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1075 set_debug_reg_defaults(¤t->thread);
1076 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1077 }
1078
1079 void
release_thread(struct task_struct * t)1080 release_thread(struct task_struct *t)
1081 {
1082 }
1083
1084 /*
1085 * this gets called so that we can store coprocessor state into memory and
1086 * copy the current task into the new thread.
1087 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1088 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1089 {
1090 flush_fp_to_thread(src);
1091 flush_altivec_to_thread(src);
1092 flush_vsx_to_thread(src);
1093 flush_spe_to_thread(src);
1094 /*
1095 * Flush TM state out so we can copy it. __switch_to_tm() does this
1096 * flush but it removes the checkpointed state from the current CPU and
1097 * transitions the CPU out of TM mode. Hence we need to call
1098 * tm_recheckpoint_new_task() (on the same task) to restore the
1099 * checkpointed state back and the TM mode.
1100 */
1101 __switch_to_tm(src);
1102 tm_recheckpoint_new_task(src);
1103
1104 *dst = *src;
1105
1106 clear_task_ebb(dst);
1107
1108 return 0;
1109 }
1110
setup_ksp_vsid(struct task_struct * p,unsigned long sp)1111 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1112 {
1113 #ifdef CONFIG_PPC_STD_MMU_64
1114 unsigned long sp_vsid;
1115 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1116
1117 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1118 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1119 << SLB_VSID_SHIFT_1T;
1120 else
1121 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1122 << SLB_VSID_SHIFT;
1123 sp_vsid |= SLB_VSID_KERNEL | llp;
1124 p->thread.ksp_vsid = sp_vsid;
1125 #endif
1126 }
1127
1128 /*
1129 * Copy a thread..
1130 */
1131
1132 /*
1133 * Copy architecture-specific thread state
1134 */
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long kthread_arg,struct task_struct * p)1135 int copy_thread(unsigned long clone_flags, unsigned long usp,
1136 unsigned long kthread_arg, struct task_struct *p)
1137 {
1138 struct pt_regs *childregs, *kregs;
1139 extern void ret_from_fork(void);
1140 extern void ret_from_kernel_thread(void);
1141 void (*f)(void);
1142 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1143
1144 /* Copy registers */
1145 sp -= sizeof(struct pt_regs);
1146 childregs = (struct pt_regs *) sp;
1147 if (unlikely(p->flags & PF_KTHREAD)) {
1148 /* kernel thread */
1149 struct thread_info *ti = (void *)task_stack_page(p);
1150 memset(childregs, 0, sizeof(struct pt_regs));
1151 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1152 /* function */
1153 if (usp)
1154 childregs->gpr[14] = ppc_function_entry((void *)usp);
1155 #ifdef CONFIG_PPC64
1156 clear_tsk_thread_flag(p, TIF_32BIT);
1157 childregs->softe = 1;
1158 #endif
1159 childregs->gpr[15] = kthread_arg;
1160 p->thread.regs = NULL; /* no user register state */
1161 ti->flags |= _TIF_RESTOREALL;
1162 f = ret_from_kernel_thread;
1163 } else {
1164 /* user thread */
1165 struct pt_regs *regs = current_pt_regs();
1166 CHECK_FULL_REGS(regs);
1167 *childregs = *regs;
1168 if (usp)
1169 childregs->gpr[1] = usp;
1170 p->thread.regs = childregs;
1171 childregs->gpr[3] = 0; /* Result from fork() */
1172 if (clone_flags & CLONE_SETTLS) {
1173 #ifdef CONFIG_PPC64
1174 if (!is_32bit_task())
1175 childregs->gpr[13] = childregs->gpr[6];
1176 else
1177 #endif
1178 childregs->gpr[2] = childregs->gpr[6];
1179 }
1180
1181 f = ret_from_fork;
1182 }
1183 sp -= STACK_FRAME_OVERHEAD;
1184
1185 /*
1186 * The way this works is that at some point in the future
1187 * some task will call _switch to switch to the new task.
1188 * That will pop off the stack frame created below and start
1189 * the new task running at ret_from_fork. The new task will
1190 * do some house keeping and then return from the fork or clone
1191 * system call, using the stack frame created above.
1192 */
1193 ((unsigned long *)sp)[0] = 0;
1194 sp -= sizeof(struct pt_regs);
1195 kregs = (struct pt_regs *) sp;
1196 sp -= STACK_FRAME_OVERHEAD;
1197 p->thread.ksp = sp;
1198 #ifdef CONFIG_PPC32
1199 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1200 _ALIGN_UP(sizeof(struct thread_info), 16);
1201 #endif
1202 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1203 p->thread.ptrace_bps[0] = NULL;
1204 #endif
1205
1206 p->thread.fp_save_area = NULL;
1207 #ifdef CONFIG_ALTIVEC
1208 p->thread.vr_save_area = NULL;
1209 #endif
1210
1211 setup_ksp_vsid(p, sp);
1212
1213 #ifdef CONFIG_PPC64
1214 if (cpu_has_feature(CPU_FTR_DSCR)) {
1215 p->thread.dscr_inherit = current->thread.dscr_inherit;
1216 p->thread.dscr = current->thread.dscr;
1217 }
1218 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1219 p->thread.ppr = INIT_PPR;
1220 #endif
1221 kregs->nip = ppc_function_entry(f);
1222 return 0;
1223 }
1224
1225 /*
1226 * Set up a thread for executing a new program
1227 */
start_thread(struct pt_regs * regs,unsigned long start,unsigned long sp)1228 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1229 {
1230 #ifdef CONFIG_PPC64
1231 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1232 #endif
1233
1234 /*
1235 * If we exec out of a kernel thread then thread.regs will not be
1236 * set. Do it now.
1237 */
1238 if (!current->thread.regs) {
1239 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1240 current->thread.regs = regs - 1;
1241 }
1242
1243 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1244 /*
1245 * Clear any transactional state, we're exec()ing. The cause is
1246 * not important as there will never be a recheckpoint so it's not
1247 * user visible.
1248 */
1249 if (MSR_TM_SUSPENDED(mfmsr()))
1250 tm_reclaim_current(0);
1251 #endif
1252
1253 memset(regs->gpr, 0, sizeof(regs->gpr));
1254 regs->ctr = 0;
1255 regs->link = 0;
1256 regs->xer = 0;
1257 regs->ccr = 0;
1258 regs->gpr[1] = sp;
1259
1260 /*
1261 * We have just cleared all the nonvolatile GPRs, so make
1262 * FULL_REGS(regs) return true. This is necessary to allow
1263 * ptrace to examine the thread immediately after exec.
1264 */
1265 regs->trap &= ~1UL;
1266
1267 #ifdef CONFIG_PPC32
1268 regs->mq = 0;
1269 regs->nip = start;
1270 regs->msr = MSR_USER;
1271 #else
1272 if (!is_32bit_task()) {
1273 unsigned long entry;
1274
1275 if (is_elf2_task()) {
1276 /* Look ma, no function descriptors! */
1277 entry = start;
1278
1279 /*
1280 * Ulrich says:
1281 * The latest iteration of the ABI requires that when
1282 * calling a function (at its global entry point),
1283 * the caller must ensure r12 holds the entry point
1284 * address (so that the function can quickly
1285 * establish addressability).
1286 */
1287 regs->gpr[12] = start;
1288 /* Make sure that's restored on entry to userspace. */
1289 set_thread_flag(TIF_RESTOREALL);
1290 } else {
1291 unsigned long toc;
1292
1293 /* start is a relocated pointer to the function
1294 * descriptor for the elf _start routine. The first
1295 * entry in the function descriptor is the entry
1296 * address of _start and the second entry is the TOC
1297 * value we need to use.
1298 */
1299 __get_user(entry, (unsigned long __user *)start);
1300 __get_user(toc, (unsigned long __user *)start+1);
1301
1302 /* Check whether the e_entry function descriptor entries
1303 * need to be relocated before we can use them.
1304 */
1305 if (load_addr != 0) {
1306 entry += load_addr;
1307 toc += load_addr;
1308 }
1309 regs->gpr[2] = toc;
1310 }
1311 regs->nip = entry;
1312 regs->msr = MSR_USER64;
1313 } else {
1314 regs->nip = start;
1315 regs->gpr[2] = 0;
1316 regs->msr = MSR_USER32;
1317 }
1318 #endif
1319 discard_lazy_cpu_state();
1320 #ifdef CONFIG_VSX
1321 current->thread.used_vsr = 0;
1322 #endif
1323 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1324 current->thread.fp_save_area = NULL;
1325 #ifdef CONFIG_ALTIVEC
1326 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1327 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1328 current->thread.vr_save_area = NULL;
1329 current->thread.vrsave = 0;
1330 current->thread.used_vr = 0;
1331 #endif /* CONFIG_ALTIVEC */
1332 #ifdef CONFIG_SPE
1333 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1334 current->thread.acc = 0;
1335 current->thread.spefscr = 0;
1336 current->thread.used_spe = 0;
1337 #endif /* CONFIG_SPE */
1338 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1339 if (cpu_has_feature(CPU_FTR_TM))
1340 regs->msr |= MSR_TM;
1341 current->thread.tm_tfhar = 0;
1342 current->thread.tm_texasr = 0;
1343 current->thread.tm_tfiar = 0;
1344 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1345 }
1346 EXPORT_SYMBOL(start_thread);
1347
1348 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1349 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1350
set_fpexc_mode(struct task_struct * tsk,unsigned int val)1351 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1352 {
1353 struct pt_regs *regs = tsk->thread.regs;
1354
1355 /* This is a bit hairy. If we are an SPE enabled processor
1356 * (have embedded fp) we store the IEEE exception enable flags in
1357 * fpexc_mode. fpexc_mode is also used for setting FP exception
1358 * mode (asyn, precise, disabled) for 'Classic' FP. */
1359 if (val & PR_FP_EXC_SW_ENABLE) {
1360 #ifdef CONFIG_SPE
1361 if (cpu_has_feature(CPU_FTR_SPE)) {
1362 /*
1363 * When the sticky exception bits are set
1364 * directly by userspace, it must call prctl
1365 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1366 * in the existing prctl settings) or
1367 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1368 * the bits being set). <fenv.h> functions
1369 * saving and restoring the whole
1370 * floating-point environment need to do so
1371 * anyway to restore the prctl settings from
1372 * the saved environment.
1373 */
1374 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1375 tsk->thread.fpexc_mode = val &
1376 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1377 return 0;
1378 } else {
1379 return -EINVAL;
1380 }
1381 #else
1382 return -EINVAL;
1383 #endif
1384 }
1385
1386 /* on a CONFIG_SPE this does not hurt us. The bits that
1387 * __pack_fe01 use do not overlap with bits used for
1388 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1389 * on CONFIG_SPE implementations are reserved so writing to
1390 * them does not change anything */
1391 if (val > PR_FP_EXC_PRECISE)
1392 return -EINVAL;
1393 tsk->thread.fpexc_mode = __pack_fe01(val);
1394 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1395 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1396 | tsk->thread.fpexc_mode;
1397 return 0;
1398 }
1399
get_fpexc_mode(struct task_struct * tsk,unsigned long adr)1400 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1401 {
1402 unsigned int val;
1403
1404 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1405 #ifdef CONFIG_SPE
1406 if (cpu_has_feature(CPU_FTR_SPE)) {
1407 /*
1408 * When the sticky exception bits are set
1409 * directly by userspace, it must call prctl
1410 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1411 * in the existing prctl settings) or
1412 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1413 * the bits being set). <fenv.h> functions
1414 * saving and restoring the whole
1415 * floating-point environment need to do so
1416 * anyway to restore the prctl settings from
1417 * the saved environment.
1418 */
1419 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1420 val = tsk->thread.fpexc_mode;
1421 } else
1422 return -EINVAL;
1423 #else
1424 return -EINVAL;
1425 #endif
1426 else
1427 val = __unpack_fe01(tsk->thread.fpexc_mode);
1428 return put_user(val, (unsigned int __user *) adr);
1429 }
1430
set_endian(struct task_struct * tsk,unsigned int val)1431 int set_endian(struct task_struct *tsk, unsigned int val)
1432 {
1433 struct pt_regs *regs = tsk->thread.regs;
1434
1435 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1436 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1437 return -EINVAL;
1438
1439 if (regs == NULL)
1440 return -EINVAL;
1441
1442 if (val == PR_ENDIAN_BIG)
1443 regs->msr &= ~MSR_LE;
1444 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1445 regs->msr |= MSR_LE;
1446 else
1447 return -EINVAL;
1448
1449 return 0;
1450 }
1451
get_endian(struct task_struct * tsk,unsigned long adr)1452 int get_endian(struct task_struct *tsk, unsigned long adr)
1453 {
1454 struct pt_regs *regs = tsk->thread.regs;
1455 unsigned int val;
1456
1457 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1458 !cpu_has_feature(CPU_FTR_REAL_LE))
1459 return -EINVAL;
1460
1461 if (regs == NULL)
1462 return -EINVAL;
1463
1464 if (regs->msr & MSR_LE) {
1465 if (cpu_has_feature(CPU_FTR_REAL_LE))
1466 val = PR_ENDIAN_LITTLE;
1467 else
1468 val = PR_ENDIAN_PPC_LITTLE;
1469 } else
1470 val = PR_ENDIAN_BIG;
1471
1472 return put_user(val, (unsigned int __user *)adr);
1473 }
1474
set_unalign_ctl(struct task_struct * tsk,unsigned int val)1475 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1476 {
1477 tsk->thread.align_ctl = val;
1478 return 0;
1479 }
1480
get_unalign_ctl(struct task_struct * tsk,unsigned long adr)1481 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1482 {
1483 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1484 }
1485
valid_irq_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)1486 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1487 unsigned long nbytes)
1488 {
1489 unsigned long stack_page;
1490 unsigned long cpu = task_cpu(p);
1491
1492 /*
1493 * Avoid crashing if the stack has overflowed and corrupted
1494 * task_cpu(p), which is in the thread_info struct.
1495 */
1496 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1497 stack_page = (unsigned long) hardirq_ctx[cpu];
1498 if (sp >= stack_page + sizeof(struct thread_struct)
1499 && sp <= stack_page + THREAD_SIZE - nbytes)
1500 return 1;
1501
1502 stack_page = (unsigned long) softirq_ctx[cpu];
1503 if (sp >= stack_page + sizeof(struct thread_struct)
1504 && sp <= stack_page + THREAD_SIZE - nbytes)
1505 return 1;
1506 }
1507 return 0;
1508 }
1509
validate_sp(unsigned long sp,struct task_struct * p,unsigned long nbytes)1510 int validate_sp(unsigned long sp, struct task_struct *p,
1511 unsigned long nbytes)
1512 {
1513 unsigned long stack_page = (unsigned long)task_stack_page(p);
1514
1515 if (sp >= stack_page + sizeof(struct thread_struct)
1516 && sp <= stack_page + THREAD_SIZE - nbytes)
1517 return 1;
1518
1519 return valid_irq_stack(sp, p, nbytes);
1520 }
1521
1522 EXPORT_SYMBOL(validate_sp);
1523
get_wchan(struct task_struct * p)1524 unsigned long get_wchan(struct task_struct *p)
1525 {
1526 unsigned long ip, sp;
1527 int count = 0;
1528
1529 if (!p || p == current || p->state == TASK_RUNNING)
1530 return 0;
1531
1532 sp = p->thread.ksp;
1533 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1534 return 0;
1535
1536 do {
1537 sp = *(unsigned long *)sp;
1538 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1539 return 0;
1540 if (count > 0) {
1541 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1542 if (!in_sched_functions(ip))
1543 return ip;
1544 }
1545 } while (count++ < 16);
1546 return 0;
1547 }
1548
1549 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1550
show_stack(struct task_struct * tsk,unsigned long * stack)1551 void show_stack(struct task_struct *tsk, unsigned long *stack)
1552 {
1553 unsigned long sp, ip, lr, newsp;
1554 int count = 0;
1555 int firstframe = 1;
1556 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1557 int curr_frame = current->curr_ret_stack;
1558 extern void return_to_handler(void);
1559 unsigned long rth = (unsigned long)return_to_handler;
1560 #endif
1561
1562 sp = (unsigned long) stack;
1563 if (tsk == NULL)
1564 tsk = current;
1565 if (sp == 0) {
1566 if (tsk == current)
1567 sp = current_stack_pointer();
1568 else
1569 sp = tsk->thread.ksp;
1570 }
1571
1572 lr = 0;
1573 printk("Call Trace:\n");
1574 do {
1575 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1576 return;
1577
1578 stack = (unsigned long *) sp;
1579 newsp = stack[0];
1580 ip = stack[STACK_FRAME_LR_SAVE];
1581 if (!firstframe || ip != lr) {
1582 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1583 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1584 if ((ip == rth) && curr_frame >= 0) {
1585 printk(" (%pS)",
1586 (void *)current->ret_stack[curr_frame].ret);
1587 curr_frame--;
1588 }
1589 #endif
1590 if (firstframe)
1591 printk(" (unreliable)");
1592 printk("\n");
1593 }
1594 firstframe = 0;
1595
1596 /*
1597 * See if this is an exception frame.
1598 * We look for the "regshere" marker in the current frame.
1599 */
1600 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1601 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1602 struct pt_regs *regs = (struct pt_regs *)
1603 (sp + STACK_FRAME_OVERHEAD);
1604 lr = regs->link;
1605 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1606 regs->trap, (void *)regs->nip, (void *)lr);
1607 firstframe = 1;
1608 }
1609
1610 sp = newsp;
1611 } while (count++ < kstack_depth_to_print);
1612 }
1613
1614 #ifdef CONFIG_PPC64
1615 /* Called with hard IRQs off */
__ppc64_runlatch_on(void)1616 void notrace __ppc64_runlatch_on(void)
1617 {
1618 struct thread_info *ti = current_thread_info();
1619 unsigned long ctrl;
1620
1621 ctrl = mfspr(SPRN_CTRLF);
1622 ctrl |= CTRL_RUNLATCH;
1623 mtspr(SPRN_CTRLT, ctrl);
1624
1625 ti->local_flags |= _TLF_RUNLATCH;
1626 }
1627
1628 /* Called with hard IRQs off */
__ppc64_runlatch_off(void)1629 void notrace __ppc64_runlatch_off(void)
1630 {
1631 struct thread_info *ti = current_thread_info();
1632 unsigned long ctrl;
1633
1634 ti->local_flags &= ~_TLF_RUNLATCH;
1635
1636 ctrl = mfspr(SPRN_CTRLF);
1637 ctrl &= ~CTRL_RUNLATCH;
1638 mtspr(SPRN_CTRLT, ctrl);
1639 }
1640 #endif /* CONFIG_PPC64 */
1641
arch_align_stack(unsigned long sp)1642 unsigned long arch_align_stack(unsigned long sp)
1643 {
1644 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1645 sp -= get_random_int() & ~PAGE_MASK;
1646 return sp & ~0xf;
1647 }
1648
brk_rnd(void)1649 static inline unsigned long brk_rnd(void)
1650 {
1651 unsigned long rnd = 0;
1652
1653 /* 8MB for 32bit, 1GB for 64bit */
1654 if (is_32bit_task())
1655 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1656 else
1657 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1658
1659 return rnd << PAGE_SHIFT;
1660 }
1661
arch_randomize_brk(struct mm_struct * mm)1662 unsigned long arch_randomize_brk(struct mm_struct *mm)
1663 {
1664 unsigned long base = mm->brk;
1665 unsigned long ret;
1666
1667 #ifdef CONFIG_PPC_STD_MMU_64
1668 /*
1669 * If we are using 1TB segments and we are allowed to randomise
1670 * the heap, we can put it above 1TB so it is backed by a 1TB
1671 * segment. Otherwise the heap will be in the bottom 1TB
1672 * which always uses 256MB segments and this may result in a
1673 * performance penalty.
1674 */
1675 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1676 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1677 #endif
1678
1679 ret = PAGE_ALIGN(base + brk_rnd());
1680
1681 if (ret < mm->brk)
1682 return mm->brk;
1683
1684 return ret;
1685 }
1686
1687