• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60 
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67 
68 extern unsigned long _get_SP(void);
69 
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76 
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
giveup_fpu_maybe_transactional(struct task_struct * tsk)78 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79 {
80 	/*
81 	 * If we are saving the current thread's registers, and the
82 	 * thread is in a transactional state, set the TIF_RESTORE_TM
83 	 * bit so that we know to restore the registers before
84 	 * returning to userspace.
85 	 */
86 	if (tsk == current && tsk->thread.regs &&
87 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 	    !test_thread_flag(TIF_RESTORE_TM)) {
89 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
90 		set_thread_flag(TIF_RESTORE_TM);
91 	}
92 
93 	giveup_fpu(tsk);
94 }
95 
giveup_altivec_maybe_transactional(struct task_struct * tsk)96 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97 {
98 	/*
99 	 * If we are saving the current thread's registers, and the
100 	 * thread is in a transactional state, set the TIF_RESTORE_TM
101 	 * bit so that we know to restore the registers before
102 	 * returning to userspace.
103 	 */
104 	if (tsk == current && tsk->thread.regs &&
105 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 	    !test_thread_flag(TIF_RESTORE_TM)) {
107 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
108 		set_thread_flag(TIF_RESTORE_TM);
109 	}
110 
111 	giveup_altivec(tsk);
112 }
113 
114 #else
115 #define giveup_fpu_maybe_transactional(tsk)	giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk)	giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118 
119 #ifdef CONFIG_PPC_FPU
120 /*
121  * Make sure the floating-point register state in the
122  * the thread_struct is up to date for task tsk.
123  */
flush_fp_to_thread(struct task_struct * tsk)124 void flush_fp_to_thread(struct task_struct *tsk)
125 {
126 	if (tsk->thread.regs) {
127 		/*
128 		 * We need to disable preemption here because if we didn't,
129 		 * another process could get scheduled after the regs->msr
130 		 * test but before we have finished saving the FP registers
131 		 * to the thread_struct.  That process could take over the
132 		 * FPU, and then when we get scheduled again we would store
133 		 * bogus values for the remaining FP registers.
134 		 */
135 		preempt_disable();
136 		if (tsk->thread.regs->msr & MSR_FP) {
137 #ifdef CONFIG_SMP
138 			/*
139 			 * This should only ever be called for current or
140 			 * for a stopped child process.  Since we save away
141 			 * the FP register state on context switch on SMP,
142 			 * there is something wrong if a stopped child appears
143 			 * to still have its FP state in the CPU registers.
144 			 */
145 			BUG_ON(tsk != current);
146 #endif
147 			giveup_fpu_maybe_transactional(tsk);
148 		}
149 		preempt_enable();
150 	}
151 }
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153 #endif /* CONFIG_PPC_FPU */
154 
enable_kernel_fp(void)155 void enable_kernel_fp(void)
156 {
157 	WARN_ON(preemptible());
158 
159 #ifdef CONFIG_SMP
160 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161 		giveup_fpu_maybe_transactional(current);
162 	else
163 		giveup_fpu(NULL);	/* just enables FP for kernel */
164 #else
165 	giveup_fpu_maybe_transactional(last_task_used_math);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_fp);
169 
170 #ifdef CONFIG_ALTIVEC
enable_kernel_altivec(void)171 void enable_kernel_altivec(void)
172 {
173 	WARN_ON(preemptible());
174 
175 #ifdef CONFIG_SMP
176 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177 		giveup_altivec_maybe_transactional(current);
178 	else
179 		giveup_altivec_notask();
180 #else
181 	giveup_altivec_maybe_transactional(last_task_used_altivec);
182 #endif /* CONFIG_SMP */
183 }
184 EXPORT_SYMBOL(enable_kernel_altivec);
185 
186 /*
187  * Make sure the VMX/Altivec register state in the
188  * the thread_struct is up to date for task tsk.
189  */
flush_altivec_to_thread(struct task_struct * tsk)190 void flush_altivec_to_thread(struct task_struct *tsk)
191 {
192 	if (tsk->thread.regs) {
193 		preempt_disable();
194 		if (tsk->thread.regs->msr & MSR_VEC) {
195 #ifdef CONFIG_SMP
196 			BUG_ON(tsk != current);
197 #endif
198 			giveup_altivec_maybe_transactional(tsk);
199 		}
200 		preempt_enable();
201 	}
202 }
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 #endif /* CONFIG_ALTIVEC */
205 
206 #ifdef CONFIG_VSX
enable_kernel_vsx(void)207 void enable_kernel_vsx(void)
208 {
209 	WARN_ON(preemptible());
210 
211 #ifdef CONFIG_SMP
212 	if (current->thread.regs &&
213 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)))
214 		giveup_vsx(current);
215 	else
216 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
217 #else
218 	giveup_vsx(last_task_used_vsx);
219 #endif /* CONFIG_SMP */
220 }
221 EXPORT_SYMBOL(enable_kernel_vsx);
222 
giveup_vsx(struct task_struct * tsk)223 void giveup_vsx(struct task_struct *tsk)
224 {
225 	giveup_fpu_maybe_transactional(tsk);
226 	giveup_altivec_maybe_transactional(tsk);
227 	__giveup_vsx(tsk);
228 }
229 EXPORT_SYMBOL(giveup_vsx);
230 
flush_vsx_to_thread(struct task_struct * tsk)231 void flush_vsx_to_thread(struct task_struct *tsk)
232 {
233 	if (tsk->thread.regs) {
234 		preempt_disable();
235 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
236 #ifdef CONFIG_SMP
237 			BUG_ON(tsk != current);
238 #endif
239 			giveup_vsx(tsk);
240 		}
241 		preempt_enable();
242 	}
243 }
244 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
245 #endif /* CONFIG_VSX */
246 
247 #ifdef CONFIG_SPE
248 
enable_kernel_spe(void)249 void enable_kernel_spe(void)
250 {
251 	WARN_ON(preemptible());
252 
253 #ifdef CONFIG_SMP
254 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
255 		giveup_spe(current);
256 	else
257 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
258 #else
259 	giveup_spe(last_task_used_spe);
260 #endif /* __SMP __ */
261 }
262 EXPORT_SYMBOL(enable_kernel_spe);
263 
flush_spe_to_thread(struct task_struct * tsk)264 void flush_spe_to_thread(struct task_struct *tsk)
265 {
266 	if (tsk->thread.regs) {
267 		preempt_disable();
268 		if (tsk->thread.regs->msr & MSR_SPE) {
269 #ifdef CONFIG_SMP
270 			BUG_ON(tsk != current);
271 #endif
272 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
273 			giveup_spe(tsk);
274 		}
275 		preempt_enable();
276 	}
277 }
278 #endif /* CONFIG_SPE */
279 
280 #ifndef CONFIG_SMP
281 /*
282  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
283  * and the current task has some state, discard it.
284  */
discard_lazy_cpu_state(void)285 void discard_lazy_cpu_state(void)
286 {
287 	preempt_disable();
288 	if (last_task_used_math == current)
289 		last_task_used_math = NULL;
290 #ifdef CONFIG_ALTIVEC
291 	if (last_task_used_altivec == current)
292 		last_task_used_altivec = NULL;
293 #endif /* CONFIG_ALTIVEC */
294 #ifdef CONFIG_VSX
295 	if (last_task_used_vsx == current)
296 		last_task_used_vsx = NULL;
297 #endif /* CONFIG_VSX */
298 #ifdef CONFIG_SPE
299 	if (last_task_used_spe == current)
300 		last_task_used_spe = NULL;
301 #endif
302 	preempt_enable();
303 }
304 #endif /* CONFIG_SMP */
305 
306 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
do_send_trap(struct pt_regs * regs,unsigned long address,unsigned long error_code,int signal_code,int breakpt)307 void do_send_trap(struct pt_regs *regs, unsigned long address,
308 		  unsigned long error_code, int signal_code, int breakpt)
309 {
310 	siginfo_t info;
311 
312 	current->thread.trap_nr = signal_code;
313 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
314 			11, SIGSEGV) == NOTIFY_STOP)
315 		return;
316 
317 	/* Deliver the signal to userspace */
318 	info.si_signo = SIGTRAP;
319 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
320 	info.si_code = signal_code;
321 	info.si_addr = (void __user *)address;
322 	force_sig_info(SIGTRAP, &info, current);
323 }
324 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
do_break(struct pt_regs * regs,unsigned long address,unsigned long error_code)325 void do_break (struct pt_regs *regs, unsigned long address,
326 		    unsigned long error_code)
327 {
328 	siginfo_t info;
329 
330 	current->thread.trap_nr = TRAP_HWBKPT;
331 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
332 			11, SIGSEGV) == NOTIFY_STOP)
333 		return;
334 
335 	if (debugger_break_match(regs))
336 		return;
337 
338 	/* Clear the breakpoint */
339 	hw_breakpoint_disable();
340 
341 	/* Deliver the signal to userspace */
342 	info.si_signo = SIGTRAP;
343 	info.si_errno = 0;
344 	info.si_code = TRAP_HWBKPT;
345 	info.si_addr = (void __user *)address;
346 	force_sig_info(SIGTRAP, &info, current);
347 }
348 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
349 
350 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
351 
352 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
353 /*
354  * Set the debug registers back to their default "safe" values.
355  */
set_debug_reg_defaults(struct thread_struct * thread)356 static void set_debug_reg_defaults(struct thread_struct *thread)
357 {
358 	thread->debug.iac1 = thread->debug.iac2 = 0;
359 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
360 	thread->debug.iac3 = thread->debug.iac4 = 0;
361 #endif
362 	thread->debug.dac1 = thread->debug.dac2 = 0;
363 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
364 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
365 #endif
366 	thread->debug.dbcr0 = 0;
367 #ifdef CONFIG_BOOKE
368 	/*
369 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
370 	 */
371 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
372 			DBCR1_IAC3US | DBCR1_IAC4US;
373 	/*
374 	 * Force Data Address Compare User/Supervisor bits to be User-only
375 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
376 	 */
377 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
378 #else
379 	thread->debug.dbcr1 = 0;
380 #endif
381 }
382 
prime_debug_regs(struct debug_reg * debug)383 static void prime_debug_regs(struct debug_reg *debug)
384 {
385 	/*
386 	 * We could have inherited MSR_DE from userspace, since
387 	 * it doesn't get cleared on exception entry.  Make sure
388 	 * MSR_DE is clear before we enable any debug events.
389 	 */
390 	mtmsr(mfmsr() & ~MSR_DE);
391 
392 	mtspr(SPRN_IAC1, debug->iac1);
393 	mtspr(SPRN_IAC2, debug->iac2);
394 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
395 	mtspr(SPRN_IAC3, debug->iac3);
396 	mtspr(SPRN_IAC4, debug->iac4);
397 #endif
398 	mtspr(SPRN_DAC1, debug->dac1);
399 	mtspr(SPRN_DAC2, debug->dac2);
400 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
401 	mtspr(SPRN_DVC1, debug->dvc1);
402 	mtspr(SPRN_DVC2, debug->dvc2);
403 #endif
404 	mtspr(SPRN_DBCR0, debug->dbcr0);
405 	mtspr(SPRN_DBCR1, debug->dbcr1);
406 #ifdef CONFIG_BOOKE
407 	mtspr(SPRN_DBCR2, debug->dbcr2);
408 #endif
409 }
410 /*
411  * Unless neither the old or new thread are making use of the
412  * debug registers, set the debug registers from the values
413  * stored in the new thread.
414  */
switch_booke_debug_regs(struct debug_reg * new_debug)415 void switch_booke_debug_regs(struct debug_reg *new_debug)
416 {
417 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
418 		|| (new_debug->dbcr0 & DBCR0_IDM))
419 			prime_debug_regs(new_debug);
420 }
421 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
422 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
423 #ifndef CONFIG_HAVE_HW_BREAKPOINT
set_debug_reg_defaults(struct thread_struct * thread)424 static void set_debug_reg_defaults(struct thread_struct *thread)
425 {
426 	thread->hw_brk.address = 0;
427 	thread->hw_brk.type = 0;
428 	set_breakpoint(&thread->hw_brk);
429 }
430 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
431 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
432 
433 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
__set_dabr(unsigned long dabr,unsigned long dabrx)434 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
435 {
436 	mtspr(SPRN_DAC1, dabr);
437 #ifdef CONFIG_PPC_47x
438 	isync();
439 #endif
440 	return 0;
441 }
442 #elif defined(CONFIG_PPC_BOOK3S)
__set_dabr(unsigned long dabr,unsigned long dabrx)443 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
444 {
445 	mtspr(SPRN_DABR, dabr);
446 	if (cpu_has_feature(CPU_FTR_DABRX))
447 		mtspr(SPRN_DABRX, dabrx);
448 	return 0;
449 }
450 #else
__set_dabr(unsigned long dabr,unsigned long dabrx)451 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
452 {
453 	return -EINVAL;
454 }
455 #endif
456 
set_dabr(struct arch_hw_breakpoint * brk)457 static inline int set_dabr(struct arch_hw_breakpoint *brk)
458 {
459 	unsigned long dabr, dabrx;
460 
461 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
462 	dabrx = ((brk->type >> 3) & 0x7);
463 
464 	if (ppc_md.set_dabr)
465 		return ppc_md.set_dabr(dabr, dabrx);
466 
467 	return __set_dabr(dabr, dabrx);
468 }
469 
set_dawr(struct arch_hw_breakpoint * brk)470 static inline int set_dawr(struct arch_hw_breakpoint *brk)
471 {
472 	unsigned long dawr, dawrx, mrd;
473 
474 	dawr = brk->address;
475 
476 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
477 		                   << (63 - 58); //* read/write bits */
478 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
479 		                   << (63 - 59); //* translate */
480 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
481 		                   >> 3; //* PRIM bits */
482 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
483 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
484 	   0b111111=64DW.
485 	   brk->len is in bytes.
486 	   This aligns up to double word size, shifts and does the bias.
487 	*/
488 	mrd = ((brk->len + 7) >> 3) - 1;
489 	dawrx |= (mrd & 0x3f) << (63 - 53);
490 
491 	if (ppc_md.set_dawr)
492 		return ppc_md.set_dawr(dawr, dawrx);
493 	mtspr(SPRN_DAWR, dawr);
494 	mtspr(SPRN_DAWRX, dawrx);
495 	return 0;
496 }
497 
__set_breakpoint(struct arch_hw_breakpoint * brk)498 void __set_breakpoint(struct arch_hw_breakpoint *brk)
499 {
500 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
501 
502 	if (cpu_has_feature(CPU_FTR_DAWR))
503 		set_dawr(brk);
504 	else
505 		set_dabr(brk);
506 }
507 
set_breakpoint(struct arch_hw_breakpoint * brk)508 void set_breakpoint(struct arch_hw_breakpoint *brk)
509 {
510 	preempt_disable();
511 	__set_breakpoint(brk);
512 	preempt_enable();
513 }
514 
515 #ifdef CONFIG_PPC64
516 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
517 #endif
518 
hw_brk_match(struct arch_hw_breakpoint * a,struct arch_hw_breakpoint * b)519 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
520 			      struct arch_hw_breakpoint *b)
521 {
522 	if (a->address != b->address)
523 		return false;
524 	if (a->type != b->type)
525 		return false;
526 	if (a->len != b->len)
527 		return false;
528 	return true;
529 }
530 
531 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_reclaim_thread(struct thread_struct * thr,struct thread_info * ti,uint8_t cause)532 static void tm_reclaim_thread(struct thread_struct *thr,
533 			      struct thread_info *ti, uint8_t cause)
534 {
535 	unsigned long msr_diff = 0;
536 
537 	/*
538 	 * If FP/VSX registers have been already saved to the
539 	 * thread_struct, move them to the transact_fp array.
540 	 * We clear the TIF_RESTORE_TM bit since after the reclaim
541 	 * the thread will no longer be transactional.
542 	 */
543 	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
544 		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
545 		if (msr_diff & MSR_FP)
546 			memcpy(&thr->transact_fp, &thr->fp_state,
547 			       sizeof(struct thread_fp_state));
548 		if (msr_diff & MSR_VEC)
549 			memcpy(&thr->transact_vr, &thr->vr_state,
550 			       sizeof(struct thread_vr_state));
551 		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
552 		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
553 	}
554 
555 	/*
556 	 * Use the current MSR TM suspended bit to track if we have
557 	 * checkpointed state outstanding.
558 	 * On signal delivery, we'd normally reclaim the checkpointed
559 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
560 	 * This will then directly return to userspace without going
561 	 * through __switch_to(). However, if the stack frame is bad,
562 	 * we need to exit this thread which calls __switch_to() which
563 	 * will again attempt to reclaim the already saved tm state.
564 	 * Hence we need to check that we've not already reclaimed
565 	 * this state.
566 	 * We do this using the current MSR, rather tracking it in
567 	 * some specific thread_struct bit, as it has the additional
568 	 * benifit of checking for a potential TM bad thing exception.
569 	 */
570 	if (!MSR_TM_SUSPENDED(mfmsr()))
571 		return;
572 
573 	tm_reclaim(thr, thr->regs->msr, cause);
574 
575 	/* Having done the reclaim, we now have the checkpointed
576 	 * FP/VSX values in the registers.  These might be valid
577 	 * even if we have previously called enable_kernel_fp() or
578 	 * flush_fp_to_thread(), so update thr->regs->msr to
579 	 * indicate their current validity.
580 	 */
581 	thr->regs->msr |= msr_diff;
582 }
583 
tm_reclaim_current(uint8_t cause)584 void tm_reclaim_current(uint8_t cause)
585 {
586 	tm_enable();
587 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
588 }
589 
tm_reclaim_task(struct task_struct * tsk)590 static inline void tm_reclaim_task(struct task_struct *tsk)
591 {
592 	/* We have to work out if we're switching from/to a task that's in the
593 	 * middle of a transaction.
594 	 *
595 	 * In switching we need to maintain a 2nd register state as
596 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
597 	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
598 	 * (current) FPRs into oldtask->thread.transact_fpr[].
599 	 *
600 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
601 	 */
602 	struct thread_struct *thr = &tsk->thread;
603 
604 	if (!thr->regs)
605 		return;
606 
607 	if (!MSR_TM_ACTIVE(thr->regs->msr))
608 		goto out_and_saveregs;
609 
610 	/* Stash the original thread MSR, as giveup_fpu et al will
611 	 * modify it.  We hold onto it to see whether the task used
612 	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
613 	 * ckpt_regs.msr is already set.
614 	 */
615 	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
616 		thr->ckpt_regs.msr = thr->regs->msr;
617 
618 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
619 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
620 		 tsk->pid, thr->regs->nip,
621 		 thr->regs->ccr, thr->regs->msr,
622 		 thr->regs->trap);
623 
624 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
625 
626 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
627 		 tsk->pid);
628 
629 out_and_saveregs:
630 	/* Always save the regs here, even if a transaction's not active.
631 	 * This context-switches a thread's TM info SPRs.  We do it here to
632 	 * be consistent with the restore path (in recheckpoint) which
633 	 * cannot happen later in _switch().
634 	 */
635 	tm_save_sprs(thr);
636 }
637 
638 extern void __tm_recheckpoint(struct thread_struct *thread,
639 			      unsigned long orig_msr);
640 
tm_recheckpoint(struct thread_struct * thread,unsigned long orig_msr)641 void tm_recheckpoint(struct thread_struct *thread,
642 		     unsigned long orig_msr)
643 {
644 	unsigned long flags;
645 
646 	/* We really can't be interrupted here as the TEXASR registers can't
647 	 * change and later in the trecheckpoint code, we have a userspace R1.
648 	 * So let's hard disable over this region.
649 	 */
650 	local_irq_save(flags);
651 	hard_irq_disable();
652 
653 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
654 	 * before the trecheckpoint and no explosion occurs.
655 	 */
656 	tm_restore_sprs(thread);
657 
658 	__tm_recheckpoint(thread, orig_msr);
659 
660 	local_irq_restore(flags);
661 }
662 
tm_recheckpoint_new_task(struct task_struct * new)663 static inline void tm_recheckpoint_new_task(struct task_struct *new)
664 {
665 	unsigned long msr;
666 
667 	if (!cpu_has_feature(CPU_FTR_TM))
668 		return;
669 
670 	/* Recheckpoint the registers of the thread we're about to switch to.
671 	 *
672 	 * If the task was using FP, we non-lazily reload both the original and
673 	 * the speculative FP register states.  This is because the kernel
674 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
675 	 * unavoidable later, we are unable to determine which set of FP regs
676 	 * need to be restored.
677 	 */
678 	if (!new->thread.regs)
679 		return;
680 
681 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
682 		tm_restore_sprs(&new->thread);
683 		return;
684 	}
685 	msr = new->thread.ckpt_regs.msr;
686 	/* Recheckpoint to restore original checkpointed register state. */
687 	TM_DEBUG("*** tm_recheckpoint of pid %d "
688 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
689 		 new->pid, new->thread.regs->msr, msr);
690 
691 	/* This loads the checkpointed FP/VEC state, if used */
692 	tm_recheckpoint(&new->thread, msr);
693 
694 	/* This loads the speculative FP/VEC state, if used */
695 	if (msr & MSR_FP) {
696 		do_load_up_transact_fpu(&new->thread);
697 		new->thread.regs->msr |=
698 			(MSR_FP | new->thread.fpexc_mode);
699 	}
700 #ifdef CONFIG_ALTIVEC
701 	if (msr & MSR_VEC) {
702 		do_load_up_transact_altivec(&new->thread);
703 		new->thread.regs->msr |= MSR_VEC;
704 	}
705 #endif
706 	/* We may as well turn on VSX too since all the state is restored now */
707 	if (msr & MSR_VSX)
708 		new->thread.regs->msr |= MSR_VSX;
709 
710 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
711 		 "(kernel msr 0x%lx)\n",
712 		 new->pid, mfmsr());
713 }
714 
__switch_to_tm(struct task_struct * prev)715 static inline void __switch_to_tm(struct task_struct *prev)
716 {
717 	if (cpu_has_feature(CPU_FTR_TM)) {
718 		tm_enable();
719 		tm_reclaim_task(prev);
720 	}
721 }
722 
723 /*
724  * This is called if we are on the way out to userspace and the
725  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
726  * FP and/or vector state and does so if necessary.
727  * If userspace is inside a transaction (whether active or
728  * suspended) and FP/VMX/VSX instructions have ever been enabled
729  * inside that transaction, then we have to keep them enabled
730  * and keep the FP/VMX/VSX state loaded while ever the transaction
731  * continues.  The reason is that if we didn't, and subsequently
732  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
733  * we don't know whether it's the same transaction, and thus we
734  * don't know which of the checkpointed state and the transactional
735  * state to use.
736  */
restore_tm_state(struct pt_regs * regs)737 void restore_tm_state(struct pt_regs *regs)
738 {
739 	unsigned long msr_diff;
740 
741 	clear_thread_flag(TIF_RESTORE_TM);
742 	if (!MSR_TM_ACTIVE(regs->msr))
743 		return;
744 
745 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
746 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
747 	if (msr_diff & MSR_FP) {
748 		fp_enable();
749 		load_fp_state(&current->thread.fp_state);
750 		regs->msr |= current->thread.fpexc_mode;
751 	}
752 	if (msr_diff & MSR_VEC) {
753 		vec_enable();
754 		load_vr_state(&current->thread.vr_state);
755 	}
756 	regs->msr |= msr_diff;
757 }
758 
759 #else
760 #define tm_recheckpoint_new_task(new)
761 #define __switch_to_tm(prev)
762 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
763 
__switch_to(struct task_struct * prev,struct task_struct * new)764 struct task_struct *__switch_to(struct task_struct *prev,
765 	struct task_struct *new)
766 {
767 	struct thread_struct *new_thread, *old_thread;
768 	struct task_struct *last;
769 #ifdef CONFIG_PPC_BOOK3S_64
770 	struct ppc64_tlb_batch *batch;
771 #endif
772 
773 	WARN_ON(!irqs_disabled());
774 
775 	/* Back up the TAR and DSCR across context switches.
776 	 * Note that the TAR is not available for use in the kernel.  (To
777 	 * provide this, the TAR should be backed up/restored on exception
778 	 * entry/exit instead, and be in pt_regs.  FIXME, this should be in
779 	 * pt_regs anyway (for debug).)
780 	 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
781 	 * these will change them.
782 	 */
783 	save_early_sprs(&prev->thread);
784 
785 	__switch_to_tm(prev);
786 
787 #ifdef CONFIG_SMP
788 	/* avoid complexity of lazy save/restore of fpu
789 	 * by just saving it every time we switch out if
790 	 * this task used the fpu during the last quantum.
791 	 *
792 	 * If it tries to use the fpu again, it'll trap and
793 	 * reload its fp regs.  So we don't have to do a restore
794 	 * every switch, just a save.
795 	 *  -- Cort
796 	 */
797 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
798 		giveup_fpu(prev);
799 #ifdef CONFIG_ALTIVEC
800 	/*
801 	 * If the previous thread used altivec in the last quantum
802 	 * (thus changing altivec regs) then save them.
803 	 * We used to check the VRSAVE register but not all apps
804 	 * set it, so we don't rely on it now (and in fact we need
805 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
806 	 *
807 	 * On SMP we always save/restore altivec regs just to avoid the
808 	 * complexity of changing processors.
809 	 *  -- Cort
810 	 */
811 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
812 		giveup_altivec(prev);
813 #endif /* CONFIG_ALTIVEC */
814 #ifdef CONFIG_VSX
815 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
816 		/* VMX and FPU registers are already save here */
817 		__giveup_vsx(prev);
818 #endif /* CONFIG_VSX */
819 #ifdef CONFIG_SPE
820 	/*
821 	 * If the previous thread used spe in the last quantum
822 	 * (thus changing spe regs) then save them.
823 	 *
824 	 * On SMP we always save/restore spe regs just to avoid the
825 	 * complexity of changing processors.
826 	 */
827 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
828 		giveup_spe(prev);
829 #endif /* CONFIG_SPE */
830 
831 #else  /* CONFIG_SMP */
832 #ifdef CONFIG_ALTIVEC
833 	/* Avoid the trap.  On smp this this never happens since
834 	 * we don't set last_task_used_altivec -- Cort
835 	 */
836 	if (new->thread.regs && last_task_used_altivec == new)
837 		new->thread.regs->msr |= MSR_VEC;
838 #endif /* CONFIG_ALTIVEC */
839 #ifdef CONFIG_VSX
840 	if (new->thread.regs && last_task_used_vsx == new)
841 		new->thread.regs->msr |= MSR_VSX;
842 #endif /* CONFIG_VSX */
843 #ifdef CONFIG_SPE
844 	/* Avoid the trap.  On smp this this never happens since
845 	 * we don't set last_task_used_spe
846 	 */
847 	if (new->thread.regs && last_task_used_spe == new)
848 		new->thread.regs->msr |= MSR_SPE;
849 #endif /* CONFIG_SPE */
850 
851 #endif /* CONFIG_SMP */
852 
853 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
854 	switch_booke_debug_regs(&new->thread.debug);
855 #else
856 /*
857  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
858  * schedule DABR
859  */
860 #ifndef CONFIG_HAVE_HW_BREAKPOINT
861 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
862 		__set_breakpoint(&new->thread.hw_brk);
863 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
864 #endif
865 
866 
867 	new_thread = &new->thread;
868 	old_thread = &current->thread;
869 
870 #ifdef CONFIG_PPC64
871 	/*
872 	 * Collect processor utilization data per process
873 	 */
874 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
875 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
876 		long unsigned start_tb, current_tb;
877 		start_tb = old_thread->start_tb;
878 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
879 		old_thread->accum_tb += (current_tb - start_tb);
880 		new_thread->start_tb = current_tb;
881 	}
882 #endif /* CONFIG_PPC64 */
883 
884 #ifdef CONFIG_PPC_BOOK3S_64
885 	batch = this_cpu_ptr(&ppc64_tlb_batch);
886 	if (batch->active) {
887 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
888 		if (batch->index)
889 			__flush_tlb_pending(batch);
890 		batch->active = 0;
891 	}
892 #endif /* CONFIG_PPC_BOOK3S_64 */
893 
894 	/*
895 	 * We can't take a PMU exception inside _switch() since there is a
896 	 * window where the kernel stack SLB and the kernel stack are out
897 	 * of sync. Hard disable here.
898 	 */
899 	hard_irq_disable();
900 
901 	tm_recheckpoint_new_task(new);
902 
903 	last = _switch(old_thread, new_thread);
904 
905 #ifdef CONFIG_PPC_BOOK3S_64
906 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
907 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
908 		batch = this_cpu_ptr(&ppc64_tlb_batch);
909 		batch->active = 1;
910 	}
911 #endif /* CONFIG_PPC_BOOK3S_64 */
912 
913 	return last;
914 }
915 
916 static int instructions_to_print = 16;
917 
show_instructions(struct pt_regs * regs)918 static void show_instructions(struct pt_regs *regs)
919 {
920 	int i;
921 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
922 			sizeof(int));
923 
924 	printk("Instruction dump:");
925 
926 	for (i = 0; i < instructions_to_print; i++) {
927 		int instr;
928 
929 		if (!(i % 8))
930 			printk("\n");
931 
932 #if !defined(CONFIG_BOOKE)
933 		/* If executing with the IMMU off, adjust pc rather
934 		 * than print XXXXXXXX.
935 		 */
936 		if (!(regs->msr & MSR_IR))
937 			pc = (unsigned long)phys_to_virt(pc);
938 #endif
939 
940 		if (!__kernel_text_address(pc) ||
941 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
942 			printk(KERN_CONT "XXXXXXXX ");
943 		} else {
944 			if (regs->nip == pc)
945 				printk(KERN_CONT "<%08x> ", instr);
946 			else
947 				printk(KERN_CONT "%08x ", instr);
948 		}
949 
950 		pc += sizeof(int);
951 	}
952 
953 	printk("\n");
954 }
955 
956 static struct regbit {
957 	unsigned long bit;
958 	const char *name;
959 } msr_bits[] = {
960 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
961 	{MSR_SF,	"SF"},
962 	{MSR_HV,	"HV"},
963 #endif
964 	{MSR_VEC,	"VEC"},
965 	{MSR_VSX,	"VSX"},
966 #ifdef CONFIG_BOOKE
967 	{MSR_CE,	"CE"},
968 #endif
969 	{MSR_EE,	"EE"},
970 	{MSR_PR,	"PR"},
971 	{MSR_FP,	"FP"},
972 	{MSR_ME,	"ME"},
973 #ifdef CONFIG_BOOKE
974 	{MSR_DE,	"DE"},
975 #else
976 	{MSR_SE,	"SE"},
977 	{MSR_BE,	"BE"},
978 #endif
979 	{MSR_IR,	"IR"},
980 	{MSR_DR,	"DR"},
981 	{MSR_PMM,	"PMM"},
982 #ifndef CONFIG_BOOKE
983 	{MSR_RI,	"RI"},
984 	{MSR_LE,	"LE"},
985 #endif
986 	{0,		NULL}
987 };
988 
printbits(unsigned long val,struct regbit * bits)989 static void printbits(unsigned long val, struct regbit *bits)
990 {
991 	const char *sep = "";
992 
993 	printk("<");
994 	for (; bits->bit; ++bits)
995 		if (val & bits->bit) {
996 			printk("%s%s", sep, bits->name);
997 			sep = ",";
998 		}
999 	printk(">");
1000 }
1001 
1002 #ifdef CONFIG_PPC64
1003 #define REG		"%016lx"
1004 #define REGS_PER_LINE	4
1005 #define LAST_VOLATILE	13
1006 #else
1007 #define REG		"%08lx"
1008 #define REGS_PER_LINE	8
1009 #define LAST_VOLATILE	12
1010 #endif
1011 
show_regs(struct pt_regs * regs)1012 void show_regs(struct pt_regs * regs)
1013 {
1014 	int i, trap;
1015 
1016 	show_regs_print_info(KERN_DEFAULT);
1017 
1018 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1019 	       regs->nip, regs->link, regs->ctr);
1020 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1021 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1022 	printk("MSR: "REG" ", regs->msr);
1023 	printbits(regs->msr, msr_bits);
1024 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1025 	trap = TRAP(regs);
1026 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1027 		printk("CFAR: "REG" ", regs->orig_gpr3);
1028 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1029 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1030 		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1031 #else
1032 		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1033 #endif
1034 #ifdef CONFIG_PPC64
1035 	printk("SOFTE: %ld ", regs->softe);
1036 #endif
1037 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1038 	if (MSR_TM_ACTIVE(regs->msr))
1039 		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1040 #endif
1041 
1042 	for (i = 0;  i < 32;  i++) {
1043 		if ((i % REGS_PER_LINE) == 0)
1044 			printk("\nGPR%02d: ", i);
1045 		printk(REG " ", regs->gpr[i]);
1046 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1047 			break;
1048 	}
1049 	printk("\n");
1050 #ifdef CONFIG_KALLSYMS
1051 	/*
1052 	 * Lookup NIP late so we have the best change of getting the
1053 	 * above info out without failing
1054 	 */
1055 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1056 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1057 #endif
1058 	show_stack(current, (unsigned long *) regs->gpr[1]);
1059 	if (!user_mode(regs))
1060 		show_instructions(regs);
1061 }
1062 
exit_thread(void)1063 void exit_thread(void)
1064 {
1065 	discard_lazy_cpu_state();
1066 }
1067 
flush_thread(void)1068 void flush_thread(void)
1069 {
1070 	discard_lazy_cpu_state();
1071 
1072 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1073 	flush_ptrace_hw_breakpoint(current);
1074 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1075 	set_debug_reg_defaults(&current->thread);
1076 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1077 }
1078 
1079 void
release_thread(struct task_struct * t)1080 release_thread(struct task_struct *t)
1081 {
1082 }
1083 
1084 /*
1085  * this gets called so that we can store coprocessor state into memory and
1086  * copy the current task into the new thread.
1087  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1088 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1089 {
1090 	flush_fp_to_thread(src);
1091 	flush_altivec_to_thread(src);
1092 	flush_vsx_to_thread(src);
1093 	flush_spe_to_thread(src);
1094 	/*
1095 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1096 	 * flush but it removes the checkpointed state from the current CPU and
1097 	 * transitions the CPU out of TM mode.  Hence we need to call
1098 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1099 	 * checkpointed state back and the TM mode.
1100 	 */
1101 	__switch_to_tm(src);
1102 	tm_recheckpoint_new_task(src);
1103 
1104 	*dst = *src;
1105 
1106 	clear_task_ebb(dst);
1107 
1108 	return 0;
1109 }
1110 
setup_ksp_vsid(struct task_struct * p,unsigned long sp)1111 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1112 {
1113 #ifdef CONFIG_PPC_STD_MMU_64
1114 	unsigned long sp_vsid;
1115 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1116 
1117 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1118 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1119 			<< SLB_VSID_SHIFT_1T;
1120 	else
1121 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1122 			<< SLB_VSID_SHIFT;
1123 	sp_vsid |= SLB_VSID_KERNEL | llp;
1124 	p->thread.ksp_vsid = sp_vsid;
1125 #endif
1126 }
1127 
1128 /*
1129  * Copy a thread..
1130  */
1131 
1132 /*
1133  * Copy architecture-specific thread state
1134  */
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long kthread_arg,struct task_struct * p)1135 int copy_thread(unsigned long clone_flags, unsigned long usp,
1136 		unsigned long kthread_arg, struct task_struct *p)
1137 {
1138 	struct pt_regs *childregs, *kregs;
1139 	extern void ret_from_fork(void);
1140 	extern void ret_from_kernel_thread(void);
1141 	void (*f)(void);
1142 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1143 
1144 	/* Copy registers */
1145 	sp -= sizeof(struct pt_regs);
1146 	childregs = (struct pt_regs *) sp;
1147 	if (unlikely(p->flags & PF_KTHREAD)) {
1148 		/* kernel thread */
1149 		struct thread_info *ti = (void *)task_stack_page(p);
1150 		memset(childregs, 0, sizeof(struct pt_regs));
1151 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1152 		/* function */
1153 		if (usp)
1154 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1155 #ifdef CONFIG_PPC64
1156 		clear_tsk_thread_flag(p, TIF_32BIT);
1157 		childregs->softe = 1;
1158 #endif
1159 		childregs->gpr[15] = kthread_arg;
1160 		p->thread.regs = NULL;	/* no user register state */
1161 		ti->flags |= _TIF_RESTOREALL;
1162 		f = ret_from_kernel_thread;
1163 	} else {
1164 		/* user thread */
1165 		struct pt_regs *regs = current_pt_regs();
1166 		CHECK_FULL_REGS(regs);
1167 		*childregs = *regs;
1168 		if (usp)
1169 			childregs->gpr[1] = usp;
1170 		p->thread.regs = childregs;
1171 		childregs->gpr[3] = 0;  /* Result from fork() */
1172 		if (clone_flags & CLONE_SETTLS) {
1173 #ifdef CONFIG_PPC64
1174 			if (!is_32bit_task())
1175 				childregs->gpr[13] = childregs->gpr[6];
1176 			else
1177 #endif
1178 				childregs->gpr[2] = childregs->gpr[6];
1179 		}
1180 
1181 		f = ret_from_fork;
1182 	}
1183 	sp -= STACK_FRAME_OVERHEAD;
1184 
1185 	/*
1186 	 * The way this works is that at some point in the future
1187 	 * some task will call _switch to switch to the new task.
1188 	 * That will pop off the stack frame created below and start
1189 	 * the new task running at ret_from_fork.  The new task will
1190 	 * do some house keeping and then return from the fork or clone
1191 	 * system call, using the stack frame created above.
1192 	 */
1193 	((unsigned long *)sp)[0] = 0;
1194 	sp -= sizeof(struct pt_regs);
1195 	kregs = (struct pt_regs *) sp;
1196 	sp -= STACK_FRAME_OVERHEAD;
1197 	p->thread.ksp = sp;
1198 #ifdef CONFIG_PPC32
1199 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1200 				_ALIGN_UP(sizeof(struct thread_info), 16);
1201 #endif
1202 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1203 	p->thread.ptrace_bps[0] = NULL;
1204 #endif
1205 
1206 	p->thread.fp_save_area = NULL;
1207 #ifdef CONFIG_ALTIVEC
1208 	p->thread.vr_save_area = NULL;
1209 #endif
1210 
1211 	setup_ksp_vsid(p, sp);
1212 
1213 #ifdef CONFIG_PPC64
1214 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1215 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1216 		p->thread.dscr = current->thread.dscr;
1217 	}
1218 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1219 		p->thread.ppr = INIT_PPR;
1220 #endif
1221 	kregs->nip = ppc_function_entry(f);
1222 	return 0;
1223 }
1224 
1225 /*
1226  * Set up a thread for executing a new program
1227  */
start_thread(struct pt_regs * regs,unsigned long start,unsigned long sp)1228 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1229 {
1230 #ifdef CONFIG_PPC64
1231 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1232 #endif
1233 
1234 	/*
1235 	 * If we exec out of a kernel thread then thread.regs will not be
1236 	 * set.  Do it now.
1237 	 */
1238 	if (!current->thread.regs) {
1239 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1240 		current->thread.regs = regs - 1;
1241 	}
1242 
1243 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1244 	/*
1245 	 * Clear any transactional state, we're exec()ing. The cause is
1246 	 * not important as there will never be a recheckpoint so it's not
1247 	 * user visible.
1248 	 */
1249 	if (MSR_TM_SUSPENDED(mfmsr()))
1250 		tm_reclaim_current(0);
1251 #endif
1252 
1253 	memset(regs->gpr, 0, sizeof(regs->gpr));
1254 	regs->ctr = 0;
1255 	regs->link = 0;
1256 	regs->xer = 0;
1257 	regs->ccr = 0;
1258 	regs->gpr[1] = sp;
1259 
1260 	/*
1261 	 * We have just cleared all the nonvolatile GPRs, so make
1262 	 * FULL_REGS(regs) return true.  This is necessary to allow
1263 	 * ptrace to examine the thread immediately after exec.
1264 	 */
1265 	regs->trap &= ~1UL;
1266 
1267 #ifdef CONFIG_PPC32
1268 	regs->mq = 0;
1269 	regs->nip = start;
1270 	regs->msr = MSR_USER;
1271 #else
1272 	if (!is_32bit_task()) {
1273 		unsigned long entry;
1274 
1275 		if (is_elf2_task()) {
1276 			/* Look ma, no function descriptors! */
1277 			entry = start;
1278 
1279 			/*
1280 			 * Ulrich says:
1281 			 *   The latest iteration of the ABI requires that when
1282 			 *   calling a function (at its global entry point),
1283 			 *   the caller must ensure r12 holds the entry point
1284 			 *   address (so that the function can quickly
1285 			 *   establish addressability).
1286 			 */
1287 			regs->gpr[12] = start;
1288 			/* Make sure that's restored on entry to userspace. */
1289 			set_thread_flag(TIF_RESTOREALL);
1290 		} else {
1291 			unsigned long toc;
1292 
1293 			/* start is a relocated pointer to the function
1294 			 * descriptor for the elf _start routine.  The first
1295 			 * entry in the function descriptor is the entry
1296 			 * address of _start and the second entry is the TOC
1297 			 * value we need to use.
1298 			 */
1299 			__get_user(entry, (unsigned long __user *)start);
1300 			__get_user(toc, (unsigned long __user *)start+1);
1301 
1302 			/* Check whether the e_entry function descriptor entries
1303 			 * need to be relocated before we can use them.
1304 			 */
1305 			if (load_addr != 0) {
1306 				entry += load_addr;
1307 				toc   += load_addr;
1308 			}
1309 			regs->gpr[2] = toc;
1310 		}
1311 		regs->nip = entry;
1312 		regs->msr = MSR_USER64;
1313 	} else {
1314 		regs->nip = start;
1315 		regs->gpr[2] = 0;
1316 		regs->msr = MSR_USER32;
1317 	}
1318 #endif
1319 	discard_lazy_cpu_state();
1320 #ifdef CONFIG_VSX
1321 	current->thread.used_vsr = 0;
1322 #endif
1323 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1324 	current->thread.fp_save_area = NULL;
1325 #ifdef CONFIG_ALTIVEC
1326 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1327 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1328 	current->thread.vr_save_area = NULL;
1329 	current->thread.vrsave = 0;
1330 	current->thread.used_vr = 0;
1331 #endif /* CONFIG_ALTIVEC */
1332 #ifdef CONFIG_SPE
1333 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1334 	current->thread.acc = 0;
1335 	current->thread.spefscr = 0;
1336 	current->thread.used_spe = 0;
1337 #endif /* CONFIG_SPE */
1338 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1339 	if (cpu_has_feature(CPU_FTR_TM))
1340 		regs->msr |= MSR_TM;
1341 	current->thread.tm_tfhar = 0;
1342 	current->thread.tm_texasr = 0;
1343 	current->thread.tm_tfiar = 0;
1344 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1345 }
1346 EXPORT_SYMBOL(start_thread);
1347 
1348 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1349 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1350 
set_fpexc_mode(struct task_struct * tsk,unsigned int val)1351 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1352 {
1353 	struct pt_regs *regs = tsk->thread.regs;
1354 
1355 	/* This is a bit hairy.  If we are an SPE enabled  processor
1356 	 * (have embedded fp) we store the IEEE exception enable flags in
1357 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1358 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1359 	if (val & PR_FP_EXC_SW_ENABLE) {
1360 #ifdef CONFIG_SPE
1361 		if (cpu_has_feature(CPU_FTR_SPE)) {
1362 			/*
1363 			 * When the sticky exception bits are set
1364 			 * directly by userspace, it must call prctl
1365 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1366 			 * in the existing prctl settings) or
1367 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1368 			 * the bits being set).  <fenv.h> functions
1369 			 * saving and restoring the whole
1370 			 * floating-point environment need to do so
1371 			 * anyway to restore the prctl settings from
1372 			 * the saved environment.
1373 			 */
1374 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1375 			tsk->thread.fpexc_mode = val &
1376 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1377 			return 0;
1378 		} else {
1379 			return -EINVAL;
1380 		}
1381 #else
1382 		return -EINVAL;
1383 #endif
1384 	}
1385 
1386 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1387 	 * __pack_fe01 use do not overlap with bits used for
1388 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1389 	 * on CONFIG_SPE implementations are reserved so writing to
1390 	 * them does not change anything */
1391 	if (val > PR_FP_EXC_PRECISE)
1392 		return -EINVAL;
1393 	tsk->thread.fpexc_mode = __pack_fe01(val);
1394 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1395 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1396 			| tsk->thread.fpexc_mode;
1397 	return 0;
1398 }
1399 
get_fpexc_mode(struct task_struct * tsk,unsigned long adr)1400 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1401 {
1402 	unsigned int val;
1403 
1404 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1405 #ifdef CONFIG_SPE
1406 		if (cpu_has_feature(CPU_FTR_SPE)) {
1407 			/*
1408 			 * When the sticky exception bits are set
1409 			 * directly by userspace, it must call prctl
1410 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1411 			 * in the existing prctl settings) or
1412 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1413 			 * the bits being set).  <fenv.h> functions
1414 			 * saving and restoring the whole
1415 			 * floating-point environment need to do so
1416 			 * anyway to restore the prctl settings from
1417 			 * the saved environment.
1418 			 */
1419 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1420 			val = tsk->thread.fpexc_mode;
1421 		} else
1422 			return -EINVAL;
1423 #else
1424 		return -EINVAL;
1425 #endif
1426 	else
1427 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1428 	return put_user(val, (unsigned int __user *) adr);
1429 }
1430 
set_endian(struct task_struct * tsk,unsigned int val)1431 int set_endian(struct task_struct *tsk, unsigned int val)
1432 {
1433 	struct pt_regs *regs = tsk->thread.regs;
1434 
1435 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1436 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1437 		return -EINVAL;
1438 
1439 	if (regs == NULL)
1440 		return -EINVAL;
1441 
1442 	if (val == PR_ENDIAN_BIG)
1443 		regs->msr &= ~MSR_LE;
1444 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1445 		regs->msr |= MSR_LE;
1446 	else
1447 		return -EINVAL;
1448 
1449 	return 0;
1450 }
1451 
get_endian(struct task_struct * tsk,unsigned long adr)1452 int get_endian(struct task_struct *tsk, unsigned long adr)
1453 {
1454 	struct pt_regs *regs = tsk->thread.regs;
1455 	unsigned int val;
1456 
1457 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1458 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1459 		return -EINVAL;
1460 
1461 	if (regs == NULL)
1462 		return -EINVAL;
1463 
1464 	if (regs->msr & MSR_LE) {
1465 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1466 			val = PR_ENDIAN_LITTLE;
1467 		else
1468 			val = PR_ENDIAN_PPC_LITTLE;
1469 	} else
1470 		val = PR_ENDIAN_BIG;
1471 
1472 	return put_user(val, (unsigned int __user *)adr);
1473 }
1474 
set_unalign_ctl(struct task_struct * tsk,unsigned int val)1475 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1476 {
1477 	tsk->thread.align_ctl = val;
1478 	return 0;
1479 }
1480 
get_unalign_ctl(struct task_struct * tsk,unsigned long adr)1481 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1482 {
1483 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1484 }
1485 
valid_irq_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)1486 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1487 				  unsigned long nbytes)
1488 {
1489 	unsigned long stack_page;
1490 	unsigned long cpu = task_cpu(p);
1491 
1492 	/*
1493 	 * Avoid crashing if the stack has overflowed and corrupted
1494 	 * task_cpu(p), which is in the thread_info struct.
1495 	 */
1496 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1497 		stack_page = (unsigned long) hardirq_ctx[cpu];
1498 		if (sp >= stack_page + sizeof(struct thread_struct)
1499 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1500 			return 1;
1501 
1502 		stack_page = (unsigned long) softirq_ctx[cpu];
1503 		if (sp >= stack_page + sizeof(struct thread_struct)
1504 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1505 			return 1;
1506 	}
1507 	return 0;
1508 }
1509 
validate_sp(unsigned long sp,struct task_struct * p,unsigned long nbytes)1510 int validate_sp(unsigned long sp, struct task_struct *p,
1511 		       unsigned long nbytes)
1512 {
1513 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1514 
1515 	if (sp >= stack_page + sizeof(struct thread_struct)
1516 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1517 		return 1;
1518 
1519 	return valid_irq_stack(sp, p, nbytes);
1520 }
1521 
1522 EXPORT_SYMBOL(validate_sp);
1523 
get_wchan(struct task_struct * p)1524 unsigned long get_wchan(struct task_struct *p)
1525 {
1526 	unsigned long ip, sp;
1527 	int count = 0;
1528 
1529 	if (!p || p == current || p->state == TASK_RUNNING)
1530 		return 0;
1531 
1532 	sp = p->thread.ksp;
1533 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1534 		return 0;
1535 
1536 	do {
1537 		sp = *(unsigned long *)sp;
1538 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1539 			return 0;
1540 		if (count > 0) {
1541 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1542 			if (!in_sched_functions(ip))
1543 				return ip;
1544 		}
1545 	} while (count++ < 16);
1546 	return 0;
1547 }
1548 
1549 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1550 
show_stack(struct task_struct * tsk,unsigned long * stack)1551 void show_stack(struct task_struct *tsk, unsigned long *stack)
1552 {
1553 	unsigned long sp, ip, lr, newsp;
1554 	int count = 0;
1555 	int firstframe = 1;
1556 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1557 	int curr_frame = current->curr_ret_stack;
1558 	extern void return_to_handler(void);
1559 	unsigned long rth = (unsigned long)return_to_handler;
1560 #endif
1561 
1562 	sp = (unsigned long) stack;
1563 	if (tsk == NULL)
1564 		tsk = current;
1565 	if (sp == 0) {
1566 		if (tsk == current)
1567 			sp = current_stack_pointer();
1568 		else
1569 			sp = tsk->thread.ksp;
1570 	}
1571 
1572 	lr = 0;
1573 	printk("Call Trace:\n");
1574 	do {
1575 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1576 			return;
1577 
1578 		stack = (unsigned long *) sp;
1579 		newsp = stack[0];
1580 		ip = stack[STACK_FRAME_LR_SAVE];
1581 		if (!firstframe || ip != lr) {
1582 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1583 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1584 			if ((ip == rth) && curr_frame >= 0) {
1585 				printk(" (%pS)",
1586 				       (void *)current->ret_stack[curr_frame].ret);
1587 				curr_frame--;
1588 			}
1589 #endif
1590 			if (firstframe)
1591 				printk(" (unreliable)");
1592 			printk("\n");
1593 		}
1594 		firstframe = 0;
1595 
1596 		/*
1597 		 * See if this is an exception frame.
1598 		 * We look for the "regshere" marker in the current frame.
1599 		 */
1600 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1601 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1602 			struct pt_regs *regs = (struct pt_regs *)
1603 				(sp + STACK_FRAME_OVERHEAD);
1604 			lr = regs->link;
1605 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1606 			       regs->trap, (void *)regs->nip, (void *)lr);
1607 			firstframe = 1;
1608 		}
1609 
1610 		sp = newsp;
1611 	} while (count++ < kstack_depth_to_print);
1612 }
1613 
1614 #ifdef CONFIG_PPC64
1615 /* Called with hard IRQs off */
__ppc64_runlatch_on(void)1616 void notrace __ppc64_runlatch_on(void)
1617 {
1618 	struct thread_info *ti = current_thread_info();
1619 	unsigned long ctrl;
1620 
1621 	ctrl = mfspr(SPRN_CTRLF);
1622 	ctrl |= CTRL_RUNLATCH;
1623 	mtspr(SPRN_CTRLT, ctrl);
1624 
1625 	ti->local_flags |= _TLF_RUNLATCH;
1626 }
1627 
1628 /* Called with hard IRQs off */
__ppc64_runlatch_off(void)1629 void notrace __ppc64_runlatch_off(void)
1630 {
1631 	struct thread_info *ti = current_thread_info();
1632 	unsigned long ctrl;
1633 
1634 	ti->local_flags &= ~_TLF_RUNLATCH;
1635 
1636 	ctrl = mfspr(SPRN_CTRLF);
1637 	ctrl &= ~CTRL_RUNLATCH;
1638 	mtspr(SPRN_CTRLT, ctrl);
1639 }
1640 #endif /* CONFIG_PPC64 */
1641 
arch_align_stack(unsigned long sp)1642 unsigned long arch_align_stack(unsigned long sp)
1643 {
1644 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1645 		sp -= get_random_int() & ~PAGE_MASK;
1646 	return sp & ~0xf;
1647 }
1648 
brk_rnd(void)1649 static inline unsigned long brk_rnd(void)
1650 {
1651         unsigned long rnd = 0;
1652 
1653 	/* 8MB for 32bit, 1GB for 64bit */
1654 	if (is_32bit_task())
1655 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1656 	else
1657 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1658 
1659 	return rnd << PAGE_SHIFT;
1660 }
1661 
arch_randomize_brk(struct mm_struct * mm)1662 unsigned long arch_randomize_brk(struct mm_struct *mm)
1663 {
1664 	unsigned long base = mm->brk;
1665 	unsigned long ret;
1666 
1667 #ifdef CONFIG_PPC_STD_MMU_64
1668 	/*
1669 	 * If we are using 1TB segments and we are allowed to randomise
1670 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1671 	 * segment. Otherwise the heap will be in the bottom 1TB
1672 	 * which always uses 256MB segments and this may result in a
1673 	 * performance penalty.
1674 	 */
1675 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1676 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1677 #endif
1678 
1679 	ret = PAGE_ALIGN(base + brk_rnd());
1680 
1681 	if (ret < mm->brk)
1682 		return mm->brk;
1683 
1684 	return ret;
1685 }
1686 
1687