1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14
15 #include <linux/compiler.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/irqflags.h>
19
20 #include <asm/addrspace.h>
21 #include <asm/bug.h>
22 #include <asm/byteorder.h>
23 #include <asm/cpu.h>
24 #include <asm/cpu-features.h>
25 #include <asm-generic/iomap.h>
26 #include <asm/page.h>
27 #include <asm/pgtable-bits.h>
28 #include <asm/processor.h>
29 #include <asm/string.h>
30
31 #include <ioremap.h>
32 #include <mangle-port.h>
33
34 /*
35 * Slowdown I/O port space accesses for antique hardware.
36 */
37 #undef CONF_SLOWDOWN_IO
38
39 /*
40 * Raw operations are never swapped in software. OTOH values that raw
41 * operations are working on may or may not have been swapped by the bus
42 * hardware. An example use would be for flash memory that's used for
43 * execute in place.
44 */
45 # define __raw_ioswabb(a, x) (x)
46 # define __raw_ioswabw(a, x) (x)
47 # define __raw_ioswabl(a, x) (x)
48 # define __raw_ioswabq(a, x) (x)
49 # define ____raw_ioswabq(a, x) (x)
50
51 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
52
53 #define IO_SPACE_LIMIT 0xffff
54
55 /*
56 * On MIPS I/O ports are memory mapped, so we access them using normal
57 * load/store instructions. mips_io_port_base is the virtual address to
58 * which all ports are being mapped. For sake of efficiency some code
59 * assumes that this is an address that can be loaded with a single lui
60 * instruction, so the lower 16 bits must be zero. Should be true on
61 * on any sane architecture; generic code does not use this assumption.
62 */
63 extern unsigned long mips_io_port_base;
64
set_io_port_base(unsigned long base)65 static inline void set_io_port_base(unsigned long base)
66 {
67 mips_io_port_base = base;
68 }
69
70 /*
71 * Thanks to James van Artsdalen for a better timing-fix than
72 * the two short jumps: using outb's to a nonexistent port seems
73 * to guarantee better timings even on fast machines.
74 *
75 * On the other hand, I'd like to be sure of a non-existent port:
76 * I feel a bit unsafe about using 0x80 (should be safe, though)
77 *
78 * Linus
79 *
80 */
81
82 #define __SLOW_DOWN_IO \
83 __asm__ __volatile__( \
84 "sb\t$0,0x80(%0)" \
85 : : "r" (mips_io_port_base));
86
87 #ifdef CONF_SLOWDOWN_IO
88 #ifdef REALLY_SLOW_IO
89 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
90 #else
91 #define SLOW_DOWN_IO __SLOW_DOWN_IO
92 #endif
93 #else
94 #define SLOW_DOWN_IO
95 #endif
96
97 /*
98 * virt_to_phys - map virtual addresses to physical
99 * @address: address to remap
100 *
101 * The returned physical address is the physical (CPU) mapping for
102 * the memory address given. It is only valid to use this function on
103 * addresses directly mapped or allocated via kmalloc.
104 *
105 * This function does not give bus mappings for DMA transfers. In
106 * almost all conceivable cases a device driver should not be using
107 * this function
108 */
virt_to_phys(volatile const void * address)109 static inline unsigned long virt_to_phys(volatile const void *address)
110 {
111 return __pa(address);
112 }
113
114 /*
115 * phys_to_virt - map physical address to virtual
116 * @address: address to remap
117 *
118 * The returned virtual address is a current CPU mapping for
119 * the memory address given. It is only valid to use this function on
120 * addresses that have a kernel mapping
121 *
122 * This function does not handle bus mappings for DMA transfers. In
123 * almost all conceivable cases a device driver should not be using
124 * this function
125 */
phys_to_virt(unsigned long address)126 static inline void * phys_to_virt(unsigned long address)
127 {
128 return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
129 }
130
131 /*
132 * ISA I/O bus memory addresses are 1:1 with the physical address.
133 */
isa_virt_to_bus(volatile void * address)134 static inline unsigned long isa_virt_to_bus(volatile void *address)
135 {
136 return virt_to_phys(address);
137 }
138
isa_bus_to_virt(unsigned long address)139 static inline void *isa_bus_to_virt(unsigned long address)
140 {
141 return phys_to_virt(address);
142 }
143
144 #define isa_page_to_bus page_to_phys
145
146 /*
147 * However PCI ones are not necessarily 1:1 and therefore these interfaces
148 * are forbidden in portable PCI drivers.
149 *
150 * Allow them for x86 for legacy drivers, though.
151 */
152 #define virt_to_bus virt_to_phys
153 #define bus_to_virt phys_to_virt
154
155 /*
156 * Change "struct page" to physical address.
157 */
158 #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
159
160 extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
161 extern void __iounmap(const volatile void __iomem *addr);
162
163 #ifndef CONFIG_PCI
164 struct pci_dev;
pci_iounmap(struct pci_dev * dev,void __iomem * addr)165 static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
166 #endif
167
__ioremap_mode(phys_addr_t offset,unsigned long size,unsigned long flags)168 static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
169 unsigned long flags)
170 {
171 void __iomem *addr = plat_ioremap(offset, size, flags);
172
173 if (addr)
174 return addr;
175
176 #define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
177
178 if (cpu_has_64bit_addresses) {
179 u64 base = UNCAC_BASE;
180
181 /*
182 * R10000 supports a 2 bit uncached attribute therefore
183 * UNCAC_BASE may not equal IO_BASE.
184 */
185 if (flags == _CACHE_UNCACHED)
186 base = (u64) IO_BASE;
187 return (void __iomem *) (unsigned long) (base + offset);
188 } else if (__builtin_constant_p(offset) &&
189 __builtin_constant_p(size) && __builtin_constant_p(flags)) {
190 phys_addr_t phys_addr, last_addr;
191
192 phys_addr = fixup_bigphys_addr(offset, size);
193
194 /* Don't allow wraparound or zero size. */
195 last_addr = phys_addr + size - 1;
196 if (!size || last_addr < phys_addr)
197 return NULL;
198
199 /*
200 * Map uncached objects in the low 512MB of address
201 * space using KSEG1.
202 */
203 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
204 flags == _CACHE_UNCACHED)
205 return (void __iomem *)
206 (unsigned long)CKSEG1ADDR(phys_addr);
207 }
208
209 return __ioremap(offset, size, flags);
210
211 #undef __IS_LOW512
212 }
213
214 /*
215 * ioremap - map bus memory into CPU space
216 * @offset: bus address of the memory
217 * @size: size of the resource to map
218 *
219 * ioremap performs a platform specific sequence of operations to
220 * make bus memory CPU accessible via the readb/readw/readl/writeb/
221 * writew/writel functions and the other mmio helpers. The returned
222 * address is not guaranteed to be usable directly as a virtual
223 * address.
224 */
225 #define ioremap(offset, size) \
226 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
227
228 /*
229 * ioremap_nocache - map bus memory into CPU space
230 * @offset: bus address of the memory
231 * @size: size of the resource to map
232 *
233 * ioremap_nocache performs a platform specific sequence of operations to
234 * make bus memory CPU accessible via the readb/readw/readl/writeb/
235 * writew/writel functions and the other mmio helpers. The returned
236 * address is not guaranteed to be usable directly as a virtual
237 * address.
238 *
239 * This version of ioremap ensures that the memory is marked uncachable
240 * on the CPU as well as honouring existing caching rules from things like
241 * the PCI bus. Note that there are other caches and buffers on many
242 * busses. In particular driver authors should read up on PCI writes
243 *
244 * It's useful if some control registers are in such an area and
245 * write combining or read caching is not desirable:
246 */
247 #define ioremap_nocache(offset, size) \
248 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
249 #define ioremap_uc ioremap_nocache
250
251 /*
252 * ioremap_cachable - map bus memory into CPU space
253 * @offset: bus address of the memory
254 * @size: size of the resource to map
255 *
256 * ioremap_nocache performs a platform specific sequence of operations to
257 * make bus memory CPU accessible via the readb/readw/readl/writeb/
258 * writew/writel functions and the other mmio helpers. The returned
259 * address is not guaranteed to be usable directly as a virtual
260 * address.
261 *
262 * This version of ioremap ensures that the memory is marked cachable by
263 * the CPU. Also enables full write-combining. Useful for some
264 * memory-like regions on I/O busses.
265 */
266 #define ioremap_cachable(offset, size) \
267 __ioremap_mode((offset), (size), _page_cachable_default)
268
269 /*
270 * These two are MIPS specific ioremap variant. ioremap_cacheable_cow
271 * requests a cachable mapping, ioremap_uncached_accelerated requests a
272 * mapping using the uncached accelerated mode which isn't supported on
273 * all processors.
274 */
275 #define ioremap_cacheable_cow(offset, size) \
276 __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
277 #define ioremap_uncached_accelerated(offset, size) \
278 __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
279
iounmap(const volatile void __iomem * addr)280 static inline void iounmap(const volatile void __iomem *addr)
281 {
282 if (plat_iounmap(addr))
283 return;
284
285 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
286
287 if (cpu_has_64bit_addresses ||
288 (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
289 return;
290
291 __iounmap(addr);
292
293 #undef __IS_KSEG1
294 }
295
296 #ifdef CONFIG_CPU_CAVIUM_OCTEON
297 #define war_octeon_io_reorder_wmb() wmb()
298 #else
299 #define war_octeon_io_reorder_wmb() do { } while (0)
300 #endif
301
302 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
303 \
304 static inline void pfx##write##bwlq(type val, \
305 volatile void __iomem *mem) \
306 { \
307 volatile type *__mem; \
308 type __val; \
309 \
310 war_octeon_io_reorder_wmb(); \
311 \
312 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
313 \
314 __val = pfx##ioswab##bwlq(__mem, val); \
315 \
316 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
317 *__mem = __val; \
318 else if (cpu_has_64bits) { \
319 unsigned long __flags; \
320 type __tmp; \
321 \
322 if (irq) \
323 local_irq_save(__flags); \
324 __asm__ __volatile__( \
325 ".set arch=r4000" "\t\t# __writeq""\n\t" \
326 "dsll32 %L0, %L0, 0" "\n\t" \
327 "dsrl32 %L0, %L0, 0" "\n\t" \
328 "dsll32 %M0, %M0, 0" "\n\t" \
329 "or %L0, %L0, %M0" "\n\t" \
330 "sd %L0, %2" "\n\t" \
331 ".set mips0" "\n" \
332 : "=r" (__tmp) \
333 : "0" (__val), "m" (*__mem)); \
334 if (irq) \
335 local_irq_restore(__flags); \
336 } else \
337 BUG(); \
338 } \
339 \
340 static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
341 { \
342 volatile type *__mem; \
343 type __val; \
344 \
345 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
346 \
347 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
348 __val = *__mem; \
349 else if (cpu_has_64bits) { \
350 unsigned long __flags; \
351 \
352 if (irq) \
353 local_irq_save(__flags); \
354 __asm__ __volatile__( \
355 ".set arch=r4000" "\t\t# __readq" "\n\t" \
356 "ld %L0, %1" "\n\t" \
357 "dsra32 %M0, %L0, 0" "\n\t" \
358 "sll %L0, %L0, 0" "\n\t" \
359 ".set mips0" "\n" \
360 : "=r" (__val) \
361 : "m" (*__mem)); \
362 if (irq) \
363 local_irq_restore(__flags); \
364 } else { \
365 __val = 0; \
366 BUG(); \
367 } \
368 \
369 return pfx##ioswab##bwlq(__mem, __val); \
370 }
371
372 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
373 \
374 static inline void pfx##out##bwlq##p(type val, unsigned long port) \
375 { \
376 volatile type *__addr; \
377 type __val; \
378 \
379 war_octeon_io_reorder_wmb(); \
380 \
381 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
382 \
383 __val = pfx##ioswab##bwlq(__addr, val); \
384 \
385 /* Really, we want this to be atomic */ \
386 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
387 \
388 *__addr = __val; \
389 slow; \
390 } \
391 \
392 static inline type pfx##in##bwlq##p(unsigned long port) \
393 { \
394 volatile type *__addr; \
395 type __val; \
396 \
397 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
398 \
399 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
400 \
401 __val = *__addr; \
402 slow; \
403 \
404 /* prevent prefetching of coherent DMA data prematurely */ \
405 rmb(); \
406 return pfx##ioswab##bwlq(__addr, __val); \
407 }
408
409 #define __BUILD_MEMORY_PFX(bus, bwlq, type) \
410 \
411 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
412
413 #define BUILDIO_MEM(bwlq, type) \
414 \
415 __BUILD_MEMORY_PFX(__raw_, bwlq, type) \
416 __BUILD_MEMORY_PFX(, bwlq, type) \
417 __BUILD_MEMORY_PFX(__mem_, bwlq, type) \
418
BUILDIO_MEM(b,u8)419 BUILDIO_MEM(b, u8)
420 BUILDIO_MEM(w, u16)
421 BUILDIO_MEM(l, u32)
422 BUILDIO_MEM(q, u64)
423
424 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \
425 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
426 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
427
428 #define BUILDIO_IOPORT(bwlq, type) \
429 __BUILD_IOPORT_PFX(, bwlq, type) \
430 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
431
432 BUILDIO_IOPORT(b, u8)
433 BUILDIO_IOPORT(w, u16)
434 BUILDIO_IOPORT(l, u32)
435 #ifdef CONFIG_64BIT
436 BUILDIO_IOPORT(q, u64)
437 #endif
438
439 #define __BUILDIO(bwlq, type) \
440 \
441 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
442
443 __BUILDIO(q, u64)
444
445 #define readb_relaxed readb
446 #define readw_relaxed readw
447 #define readl_relaxed readl
448 #define readq_relaxed readq
449
450 #define writeb_relaxed writeb
451 #define writew_relaxed writew
452 #define writel_relaxed writel
453 #define writeq_relaxed writeq
454
455 #define readb_be(addr) \
456 __raw_readb((__force unsigned *)(addr))
457 #define readw_be(addr) \
458 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
459 #define readl_be(addr) \
460 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
461 #define readq_be(addr) \
462 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
463
464 #define writeb_be(val, addr) \
465 __raw_writeb((val), (__force unsigned *)(addr))
466 #define writew_be(val, addr) \
467 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
468 #define writel_be(val, addr) \
469 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
470 #define writeq_be(val, addr) \
471 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
472
473 /*
474 * Some code tests for these symbols
475 */
476 #define readq readq
477 #define writeq writeq
478
479 #define __BUILD_MEMORY_STRING(bwlq, type) \
480 \
481 static inline void writes##bwlq(volatile void __iomem *mem, \
482 const void *addr, unsigned int count) \
483 { \
484 const volatile type *__addr = addr; \
485 \
486 while (count--) { \
487 __mem_write##bwlq(*__addr, mem); \
488 __addr++; \
489 } \
490 } \
491 \
492 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
493 unsigned int count) \
494 { \
495 volatile type *__addr = addr; \
496 \
497 while (count--) { \
498 *__addr = __mem_read##bwlq(mem); \
499 __addr++; \
500 } \
501 }
502
503 #define __BUILD_IOPORT_STRING(bwlq, type) \
504 \
505 static inline void outs##bwlq(unsigned long port, const void *addr, \
506 unsigned int count) \
507 { \
508 const volatile type *__addr = addr; \
509 \
510 while (count--) { \
511 __mem_out##bwlq(*__addr, port); \
512 __addr++; \
513 } \
514 } \
515 \
516 static inline void ins##bwlq(unsigned long port, void *addr, \
517 unsigned int count) \
518 { \
519 volatile type *__addr = addr; \
520 \
521 while (count--) { \
522 *__addr = __mem_in##bwlq(port); \
523 __addr++; \
524 } \
525 }
526
527 #define BUILDSTRING(bwlq, type) \
528 \
529 __BUILD_MEMORY_STRING(bwlq, type) \
530 __BUILD_IOPORT_STRING(bwlq, type)
531
532 BUILDSTRING(b, u8)
533 BUILDSTRING(w, u16)
534 BUILDSTRING(l, u32)
535 #ifdef CONFIG_64BIT
536 BUILDSTRING(q, u64)
537 #endif
538
539
540 #ifdef CONFIG_CPU_CAVIUM_OCTEON
541 #define mmiowb() wmb()
542 #else
543 /* Depends on MIPS II instruction set */
544 #define mmiowb() asm volatile ("sync" ::: "memory")
545 #endif
546
547 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
548 {
549 memset((void __force *) addr, val, count);
550 }
memcpy_fromio(void * dst,const volatile void __iomem * src,int count)551 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
552 {
553 memcpy(dst, (void __force *) src, count);
554 }
memcpy_toio(volatile void __iomem * dst,const void * src,int count)555 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
556 {
557 memcpy((void __force *) dst, src, count);
558 }
559
560 /*
561 * The caches on some architectures aren't dma-coherent and have need to
562 * handle this in software. There are three types of operations that
563 * can be applied to dma buffers.
564 *
565 * - dma_cache_wback_inv(start, size) makes caches and coherent by
566 * writing the content of the caches back to memory, if necessary.
567 * The function also invalidates the affected part of the caches as
568 * necessary before DMA transfers from outside to memory.
569 * - dma_cache_wback(start, size) makes caches and coherent by
570 * writing the content of the caches back to memory, if necessary.
571 * The function also invalidates the affected part of the caches as
572 * necessary before DMA transfers from outside to memory.
573 * - dma_cache_inv(start, size) invalidates the affected parts of the
574 * caches. Dirty lines of the caches may be written back or simply
575 * be discarded. This operation is necessary before dma operations
576 * to the memory.
577 *
578 * This API used to be exported; it now is for arch code internal use only.
579 */
580 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
581
582 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
583 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
584 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
585
586 #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
587 #define dma_cache_wback(start, size) _dma_cache_wback(start, size)
588 #define dma_cache_inv(start, size) _dma_cache_inv(start, size)
589
590 #else /* Sane hardware */
591
592 #define dma_cache_wback_inv(start,size) \
593 do { (void) (start); (void) (size); } while (0)
594 #define dma_cache_wback(start,size) \
595 do { (void) (start); (void) (size); } while (0)
596 #define dma_cache_inv(start,size) \
597 do { (void) (start); (void) (size); } while (0)
598
599 #endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
600
601 /*
602 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
603 * Avoid interrupt mucking, just adjust the address for 4-byte access.
604 * Assume the addresses are 8-byte aligned.
605 */
606 #ifdef __MIPSEB__
607 #define __CSR_32_ADJUST 4
608 #else
609 #define __CSR_32_ADJUST 0
610 #endif
611
612 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
613 #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
614
615 /*
616 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
617 * access
618 */
619 #define xlate_dev_mem_ptr(p) __va(p)
620
621 /*
622 * Convert a virtual cached pointer to an uncached pointer
623 */
624 #define xlate_dev_kmem_ptr(p) p
625
626 #endif /* _ASM_IO_H */
627