• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #define pr_fmt(fmt) "CPU features: " fmt
20 
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/processor.h>
31 #include <asm/sysreg.h>
32 
33 unsigned long elf_hwcap __read_mostly;
34 EXPORT_SYMBOL_GPL(elf_hwcap);
35 
36 #ifdef CONFIG_COMPAT
37 #define COMPAT_ELF_HWCAP_DEFAULT	\
38 				(COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
39 				 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
40 				 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
41 				 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
42 				 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
43 				 COMPAT_HWCAP_LPAE)
44 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
45 unsigned int compat_elf_hwcap2 __read_mostly;
46 #endif
47 
48 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
49 EXPORT_SYMBOL(cpu_hwcaps);
50 
51 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
52 	{						\
53 		.sign = SIGNED,				\
54 		.strict = STRICT,			\
55 		.type = TYPE,				\
56 		.shift = SHIFT,				\
57 		.width = WIDTH,				\
58 		.safe_val = SAFE_VAL,			\
59 	}
60 
61 /* Define a feature with signed values */
62 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
63 	__ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
64 
65 /* Define a feature with unsigned value */
66 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
67 	__ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
68 
69 #define ARM64_FTR_END					\
70 	{						\
71 		.width = 0,				\
72 	}
73 
74 /* meta feature for alternatives */
75 static bool __maybe_unused
76 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry);
77 
78 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
79 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
80 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
81 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
82 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
83 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
84 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
85 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
86 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
87 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* RAZ */
88 	ARM64_FTR_END,
89 };
90 
91 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
92 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
93 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
94 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
95 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
96 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
97 	/* Linux doesn't care about the EL3 */
98 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
99 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
100 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
101 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
102 	ARM64_FTR_END,
103 };
104 
105 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
106 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
107 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
108 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
109 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
110 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
111 	/* Linux shouldn't care about secure memory */
112 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
113 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
114 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
115 	/*
116 	 * Differing PARange is fine as long as all peripherals and memory are mapped
117 	 * within the minimum PARange of all CPUs
118 	 */
119 	U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
120 	ARM64_FTR_END,
121 };
122 
123 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
124 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
125 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
126 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
127 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
128 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
129 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
130 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
131 	ARM64_FTR_END,
132 };
133 
134 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
135 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
136 	ARM64_FTR_END,
137 };
138 
139 static struct arm64_ftr_bits ftr_ctr[] = {
140 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),	/* RES1 */
141 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 30, 1, 0),
142 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 29, 1, 1),	/* DIC */
143 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 1, 1),	/* IDC */
144 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, 24, 4, 0),	/* CWG */
145 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, 20, 4, 0),	/* ERG */
146 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),	/* DminLine */
147 	/*
148 	 * Linux can handle differing I-cache policies. Userspace JITs will
149 	 * make use of *minLine
150 	 */
151 	U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),	/* L1Ip */
152 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),	/* RAZ */
153 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* IminLine */
154 	ARM64_FTR_END,
155 };
156 
157 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
158 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),	/* InnerShr */
159 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),	/* FCSE */
160 	ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),	/* AuxReg */
161 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),	/* TCM */
162 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* ShareLvl */
163 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),	/* OuterShr */
164 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),	/* PMSA */
165 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),	/* VMSA */
166 	ARM64_FTR_END,
167 };
168 
169 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
170 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
171 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
172 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
173 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
174 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
175 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
176 	U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
177 	ARM64_FTR_END,
178 };
179 
180 static struct arm64_ftr_bits ftr_mvfr2[] = {
181 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
182 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* FPMisc */
183 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* SIMDMisc */
184 	ARM64_FTR_END,
185 };
186 
187 static struct arm64_ftr_bits ftr_dczid[] = {
188 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),	/* RAZ */
189 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),		/* DZP */
190 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),	/* BS */
191 	ARM64_FTR_END,
192 };
193 
194 
195 static struct arm64_ftr_bits ftr_id_isar5[] = {
196 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
197 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),	/* RAZ */
198 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
199 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
200 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
201 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
202 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
203 	ARM64_FTR_END,
204 };
205 
206 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
207 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),	/* RAZ */
208 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* ac2 */
209 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* RAZ */
210 	ARM64_FTR_END,
211 };
212 
213 static struct arm64_ftr_bits ftr_id_pfr0[] = {
214 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),	/* RAZ */
215 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),	/* State3 */
216 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),		/* State2 */
217 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),		/* State1 */
218 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),		/* State0 */
219 	ARM64_FTR_END,
220 };
221 
222 /*
223  * Common ftr bits for a 32bit register with all hidden, strict
224  * attributes, with 4bit feature fields and a default safe value of
225  * 0. Covers the following 32bit registers:
226  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
227  */
228 static struct arm64_ftr_bits ftr_generic_32bits[] = {
229 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
230 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
231 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
232 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
233 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
234 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
235 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
236 	ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
237 	ARM64_FTR_END,
238 };
239 
240 static struct arm64_ftr_bits ftr_generic[] = {
241 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
242 	ARM64_FTR_END,
243 };
244 
245 static struct arm64_ftr_bits ftr_generic32[] = {
246 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
247 	ARM64_FTR_END,
248 };
249 
250 static struct arm64_ftr_bits ftr_aa64raz[] = {
251 	ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
252 	ARM64_FTR_END,
253 };
254 
255 #define ARM64_FTR_REG(id, table)		\
256 	{					\
257 		.sys_id = id,			\
258 		.name = #id,			\
259 		.ftr_bits = &((table)[0]),	\
260 	}
261 
262 static struct arm64_ftr_reg arm64_ftr_regs[] = {
263 
264 	/* Op1 = 0, CRn = 0, CRm = 1 */
265 	ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
266 	ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
267 	ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
268 	ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
269 	ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
270 	ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
271 	ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
272 
273 	/* Op1 = 0, CRn = 0, CRm = 2 */
274 	ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
275 	ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
276 	ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
277 	ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
278 	ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
279 	ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
280 	ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
281 
282 	/* Op1 = 0, CRn = 0, CRm = 3 */
283 	ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
284 	ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
285 	ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
286 
287 	/* Op1 = 0, CRn = 0, CRm = 4 */
288 	ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
289 	ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
290 
291 	/* Op1 = 0, CRn = 0, CRm = 5 */
292 	ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
293 	ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
294 
295 	/* Op1 = 0, CRn = 0, CRm = 6 */
296 	ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
297 	ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
298 
299 	/* Op1 = 0, CRn = 0, CRm = 7 */
300 	ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
301 	ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
302 	ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
303 
304 	/* Op1 = 3, CRn = 0, CRm = 0 */
305 	ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
306 	ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
307 
308 	/* Op1 = 3, CRn = 14, CRm = 0 */
309 	ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
310 };
311 
search_cmp_ftr_reg(const void * id,const void * regp)312 static int search_cmp_ftr_reg(const void *id, const void *regp)
313 {
314 	return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
315 }
316 
317 /*
318  * get_arm64_ftr_reg - Lookup a feature register entry using its
319  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
320  * ascending order of sys_id , we use binary search to find a matching
321  * entry.
322  *
323  * returns - Upon success,  matching ftr_reg entry for id.
324  *         - NULL on failure. It is upto the caller to decide
325  *	     the impact of a failure.
326  */
get_arm64_ftr_reg(u32 sys_id)327 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
328 {
329 	return bsearch((const void *)(unsigned long)sys_id,
330 			arm64_ftr_regs,
331 			ARRAY_SIZE(arm64_ftr_regs),
332 			sizeof(arm64_ftr_regs[0]),
333 			search_cmp_ftr_reg);
334 }
335 
arm64_ftr_set_value(struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)336 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
337 {
338 	u64 mask = arm64_ftr_mask(ftrp);
339 
340 	reg &= ~mask;
341 	reg |= (ftr_val << ftrp->shift) & mask;
342 	return reg;
343 }
344 
arm64_ftr_safe_value(struct arm64_ftr_bits * ftrp,s64 new,s64 cur)345 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
346 {
347 	s64 ret = 0;
348 
349 	switch (ftrp->type) {
350 	case FTR_EXACT:
351 		ret = ftrp->safe_val;
352 		break;
353 	case FTR_LOWER_SAFE:
354 		ret = new < cur ? new : cur;
355 		break;
356 	case FTR_HIGHER_OR_ZERO_SAFE:
357 		if (!cur || !new)
358 			break;
359 		/* Fallthrough */
360 	case FTR_HIGHER_SAFE:
361 		ret = new > cur ? new : cur;
362 		break;
363 	default:
364 		BUG();
365 	}
366 
367 	return ret;
368 }
369 
sort_cmp_ftr_regs(const void * a,const void * b)370 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
371 {
372 	return ((const struct arm64_ftr_reg *)a)->sys_id -
373 		 ((const struct arm64_ftr_reg *)b)->sys_id;
374 }
375 
swap_ftr_regs(void * a,void * b,int size)376 static void __init swap_ftr_regs(void *a, void *b, int size)
377 {
378 	struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
379 	*(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
380 	*(struct arm64_ftr_reg *)b = tmp;
381 }
382 
sort_ftr_regs(void)383 static void __init sort_ftr_regs(void)
384 {
385 	/* Keep the array sorted so that we can do the binary search */
386 	sort(arm64_ftr_regs,
387 		ARRAY_SIZE(arm64_ftr_regs),
388 		sizeof(arm64_ftr_regs[0]),
389 		sort_cmp_ftr_regs,
390 		swap_ftr_regs);
391 }
392 
393 /*
394  * Initialise the CPU feature register from Boot CPU values.
395  * Also initiliases the strict_mask for the register.
396  */
init_cpu_ftr_reg(u32 sys_reg,u64 new)397 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
398 {
399 	u64 val = 0;
400 	u64 strict_mask = ~0x0ULL;
401 	struct arm64_ftr_bits *ftrp;
402 	struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
403 
404 	BUG_ON(!reg);
405 
406 	for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
407 		s64 ftr_new = arm64_ftr_value(ftrp, new);
408 
409 		val = arm64_ftr_set_value(ftrp, val, ftr_new);
410 		if (!ftrp->strict)
411 			strict_mask &= ~arm64_ftr_mask(ftrp);
412 	}
413 	reg->sys_val = val;
414 	reg->strict_mask = strict_mask;
415 }
416 
init_cpu_features(struct cpuinfo_arm64 * info)417 void __init init_cpu_features(struct cpuinfo_arm64 *info)
418 {
419 	/* Before we start using the tables, make sure it is sorted */
420 	sort_ftr_regs();
421 
422 	init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
423 	init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
424 	init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
425 	init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
426 	init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
427 	init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
428 	init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
429 	init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
430 	init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
431 	init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
432 	init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
433 	init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
434 	init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
435 	init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
436 	init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
437 	init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
438 	init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
439 	init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
440 	init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
441 	init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
442 	init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
443 	init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
444 	init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
445 	init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
446 	init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
447 	init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
448 	init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
449 	init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
450 }
451 
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)452 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
453 {
454 	struct arm64_ftr_bits *ftrp;
455 
456 	for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
457 		s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
458 		s64 ftr_new = arm64_ftr_value(ftrp, new);
459 
460 		if (ftr_cur == ftr_new)
461 			continue;
462 		/* Find a safe value */
463 		ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
464 		reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
465 	}
466 
467 }
468 
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)469 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
470 {
471 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
472 
473 	BUG_ON(!regp);
474 	update_cpu_ftr_reg(regp, val);
475 	if ((boot & regp->strict_mask) == (val & regp->strict_mask))
476 		return 0;
477 	pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
478 			regp->name, boot, cpu, val);
479 	return 1;
480 }
481 
482 /*
483  * Update system wide CPU feature registers with the values from a
484  * non-boot CPU. Also performs SANITY checks to make sure that there
485  * aren't any insane variations from that of the boot CPU.
486  */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)487 void update_cpu_features(int cpu,
488 			 struct cpuinfo_arm64 *info,
489 			 struct cpuinfo_arm64 *boot)
490 {
491 	int taint = 0;
492 
493 	/*
494 	 * The kernel can handle differing I-cache policies, but otherwise
495 	 * caches should look identical. Userspace JITs will make use of
496 	 * *minLine.
497 	 */
498 	taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
499 				      info->reg_ctr, boot->reg_ctr);
500 
501 	/*
502 	 * Userspace may perform DC ZVA instructions. Mismatched block sizes
503 	 * could result in too much or too little memory being zeroed if a
504 	 * process is preempted and migrated between CPUs.
505 	 */
506 	taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
507 				      info->reg_dczid, boot->reg_dczid);
508 
509 	/* If different, timekeeping will be broken (especially with KVM) */
510 	taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
511 				      info->reg_cntfrq, boot->reg_cntfrq);
512 
513 	/*
514 	 * The kernel uses self-hosted debug features and expects CPUs to
515 	 * support identical debug features. We presently need CTX_CMPs, WRPs,
516 	 * and BRPs to be identical.
517 	 * ID_AA64DFR1 is currently RES0.
518 	 */
519 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
520 				      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
521 	taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
522 				      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
523 	/*
524 	 * Even in big.LITTLE, processors should be identical instruction-set
525 	 * wise.
526 	 */
527 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
528 				      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
529 	taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
530 				      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
531 
532 	/*
533 	 * Differing PARange support is fine as long as all peripherals and
534 	 * memory are mapped within the minimum PARange of all CPUs.
535 	 * Linux should not care about secure memory.
536 	 */
537 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
538 				      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
539 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
540 				      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
541 	taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
542 				      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
543 
544 	/*
545 	 * EL3 is not our concern.
546 	 * ID_AA64PFR1 is currently RES0.
547 	 */
548 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
549 				      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
550 	taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
551 				      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
552 
553 	/*
554 	 * If we have AArch32, we care about 32-bit features for compat. These
555 	 * registers should be RES0 otherwise.
556 	 */
557 	taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
558 					info->reg_id_dfr0, boot->reg_id_dfr0);
559 	taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
560 					info->reg_id_isar0, boot->reg_id_isar0);
561 	taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
562 					info->reg_id_isar1, boot->reg_id_isar1);
563 	taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
564 					info->reg_id_isar2, boot->reg_id_isar2);
565 	taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
566 					info->reg_id_isar3, boot->reg_id_isar3);
567 	taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
568 					info->reg_id_isar4, boot->reg_id_isar4);
569 	taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
570 					info->reg_id_isar5, boot->reg_id_isar5);
571 
572 	/*
573 	 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
574 	 * ACTLR formats could differ across CPUs and therefore would have to
575 	 * be trapped for virtualization anyway.
576 	 */
577 	taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
578 					info->reg_id_mmfr0, boot->reg_id_mmfr0);
579 	taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
580 					info->reg_id_mmfr1, boot->reg_id_mmfr1);
581 	taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
582 					info->reg_id_mmfr2, boot->reg_id_mmfr2);
583 	taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
584 					info->reg_id_mmfr3, boot->reg_id_mmfr3);
585 	taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
586 					info->reg_id_pfr0, boot->reg_id_pfr0);
587 	taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
588 					info->reg_id_pfr1, boot->reg_id_pfr1);
589 	taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
590 					info->reg_mvfr0, boot->reg_mvfr0);
591 	taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
592 					info->reg_mvfr1, boot->reg_mvfr1);
593 	taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
594 					info->reg_mvfr2, boot->reg_mvfr2);
595 
596 	/*
597 	 * Mismatched CPU features are a recipe for disaster. Don't even
598 	 * pretend to support them.
599 	 */
600 	WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
601 			"Unsupported CPU feature variation.\n");
602 }
603 
read_system_reg(u32 id)604 u64 read_system_reg(u32 id)
605 {
606 	struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
607 
608 	/* We shouldn't get a request for an unsupported register */
609 	BUG_ON(!regp);
610 	return regp->sys_val;
611 }
612 
613 #include <linux/irqchip/arm-gic-v3.h>
614 
615 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)616 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
617 {
618 	int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
619 
620 	return val >= entry->min_field_value;
621 }
622 
623 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry)624 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
625 {
626 	u64 val;
627 
628 	val = read_system_reg(entry->sys_reg);
629 	return feature_matches(val, entry);
630 }
631 
has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities * entry)632 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
633 {
634 	bool has_sre;
635 
636 	if (!has_cpuid_feature(entry))
637 		return false;
638 
639 	has_sre = gic_enable_sre();
640 	if (!has_sre)
641 		pr_warn_once("%s present but disabled by higher exception level\n",
642 			     entry->desc);
643 
644 	return has_sre;
645 }
646 
has_no_hw_prefetch(const struct arm64_cpu_capabilities * entry)647 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry)
648 {
649 	u32 midr = read_cpuid_id();
650 	u32 rv_min, rv_max;
651 
652 	/* Cavium ThunderX pass 1.x and 2.x */
653 	rv_min = 0;
654 	rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
655 
656 	return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
657 }
658 
659 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
660 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
661 
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry)662 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry)
663 {
664 	/* Forced on command line? */
665 	if (__kpti_forced) {
666 		pr_info_once("kernel page table isolation forced %s by command line option\n",
667 			     __kpti_forced > 0 ? "ON" : "OFF");
668 		return __kpti_forced > 0;
669 	}
670 
671 	/* Useful for KASLR robustness */
672 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
673 		return true;
674 
675 	return false;
676 }
677 
parse_kpti(char * str)678 static int __init parse_kpti(char *str)
679 {
680 	bool enabled;
681 	int ret = strtobool(str, &enabled);
682 
683 	if (ret)
684 		return ret;
685 
686 	__kpti_forced = enabled ? 1 : -1;
687 	return 0;
688 }
689 early_param("kpti", parse_kpti);
690 #endif	/* CONFIG_UNMAP_KERNEL_AT_EL0 */
691 
692 static const struct arm64_cpu_capabilities arm64_features[] = {
693 	{
694 		.desc = "GIC system register CPU interface",
695 		.capability = ARM64_HAS_SYSREG_GIC_CPUIF,
696 		.matches = has_useable_gicv3_cpuif,
697 		.sys_reg = SYS_ID_AA64PFR0_EL1,
698 		.field_pos = ID_AA64PFR0_GIC_SHIFT,
699 		.sign = FTR_UNSIGNED,
700 		.min_field_value = 1,
701 	},
702 #ifdef CONFIG_ARM64_PAN
703 	{
704 		.desc = "Privileged Access Never",
705 		.capability = ARM64_HAS_PAN,
706 		.matches = has_cpuid_feature,
707 		.sys_reg = SYS_ID_AA64MMFR1_EL1,
708 		.field_pos = ID_AA64MMFR1_PAN_SHIFT,
709 		.sign = FTR_UNSIGNED,
710 		.min_field_value = 1,
711 		.enable = cpu_enable_pan,
712 	},
713 #endif /* CONFIG_ARM64_PAN */
714 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
715 	{
716 		.desc = "LSE atomic instructions",
717 		.capability = ARM64_HAS_LSE_ATOMICS,
718 		.matches = has_cpuid_feature,
719 		.sys_reg = SYS_ID_AA64ISAR0_EL1,
720 		.field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
721 		.sign = FTR_UNSIGNED,
722 		.min_field_value = 2,
723 	},
724 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
725 	{
726 		.desc = "Software prefetching using PRFM",
727 		.capability = ARM64_HAS_NO_HW_PREFETCH,
728 		.matches = has_no_hw_prefetch,
729 	},
730 #ifdef CONFIG_ARM64_UAO
731 	{
732 		.desc = "User Access Override",
733 		.capability = ARM64_HAS_UAO,
734 		.matches = has_cpuid_feature,
735 		.sys_reg = SYS_ID_AA64MMFR2_EL1,
736 		.field_pos = ID_AA64MMFR2_UAO_SHIFT,
737 		.min_field_value = 1,
738 		.enable = cpu_enable_uao,
739 	},
740 #endif /* CONFIG_ARM64_UAO */
741 #ifdef CONFIG_ARM64_PAN
742 	{
743 		.capability = ARM64_ALT_PAN_NOT_UAO,
744 		.matches = cpufeature_pan_not_uao,
745 	},
746 #endif /* CONFIG_ARM64_PAN */
747 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
748 	{
749 		.capability = ARM64_UNMAP_KERNEL_AT_EL0,
750 		.matches = unmap_kernel_at_el0,
751 	},
752 #endif
753 	{
754 		.desc = "32-bit EL0 Support",
755 		.capability = ARM64_HAS_32BIT_EL0,
756 		.matches = has_cpuid_feature,
757 		.sys_reg = SYS_ID_AA64PFR0_EL1,
758 		.field_pos = ID_AA64PFR0_EL0_SHIFT,
759 		.sign = FTR_UNSIGNED,
760 		.min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
761 	},
762 	{},
763 };
764 
765 #define HWCAP_CAP(reg, field, s, min_value, type, cap)	\
766 	{							\
767 		.desc = #cap,					\
768 		.matches = has_cpuid_feature,			\
769 		.sys_reg = reg,					\
770 		.field_pos = field,				\
771 		.sign = s,					\
772 		.min_field_value = min_value,			\
773 		.hwcap_type = type,				\
774 		.hwcap = cap,					\
775 	}
776 
777 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
778 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
779 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
780 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
781 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
782 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
783 	HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
784 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
785 	HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
786 #ifdef CONFIG_COMPAT
787 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
788 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
789 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
790 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
791 	HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
792 #endif
793 	{},
794 };
795 
cap_set_hwcap(const struct arm64_cpu_capabilities * cap)796 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
797 {
798 	switch (cap->hwcap_type) {
799 	case CAP_HWCAP:
800 		elf_hwcap |= cap->hwcap;
801 		break;
802 #ifdef CONFIG_COMPAT
803 	case CAP_COMPAT_HWCAP:
804 		compat_elf_hwcap |= (u32)cap->hwcap;
805 		break;
806 	case CAP_COMPAT_HWCAP2:
807 		compat_elf_hwcap2 |= (u32)cap->hwcap;
808 		break;
809 #endif
810 	default:
811 		WARN_ON(1);
812 		break;
813 	}
814 }
815 
816 /* Check if we have a particular HWCAP enabled */
cpus_have_hwcap(const struct arm64_cpu_capabilities * cap)817 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
818 {
819 	bool rc;
820 
821 	switch (cap->hwcap_type) {
822 	case CAP_HWCAP:
823 		rc = (elf_hwcap & cap->hwcap) != 0;
824 		break;
825 #ifdef CONFIG_COMPAT
826 	case CAP_COMPAT_HWCAP:
827 		rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
828 		break;
829 	case CAP_COMPAT_HWCAP2:
830 		rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
831 		break;
832 #endif
833 	default:
834 		WARN_ON(1);
835 		rc = false;
836 	}
837 
838 	return rc;
839 }
840 
setup_cpu_hwcaps(void)841 static void __init setup_cpu_hwcaps(void)
842 {
843 	int i;
844 	const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
845 
846 	for (i = 0; hwcaps[i].matches; i++)
847 		if (hwcaps[i].matches(&hwcaps[i]))
848 			cap_set_hwcap(&hwcaps[i]);
849 }
850 
update_cpu_capabilities(const struct arm64_cpu_capabilities * caps,const char * info)851 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
852 			    const char *info)
853 {
854 	int i;
855 
856 	for (i = 0; caps[i].matches; i++) {
857 		if (!caps[i].matches(&caps[i]))
858 			continue;
859 
860 		if (!cpus_have_cap(caps[i].capability) && caps[i].desc)
861 			pr_info("%s %s\n", info, caps[i].desc);
862 		cpus_set_cap(caps[i].capability);
863 	}
864 }
865 
866 /*
867  * Run through the enabled capabilities and enable() it on all active
868  * CPUs
869  */
870 static void __init
enable_cpu_capabilities(const struct arm64_cpu_capabilities * caps)871 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
872 {
873 	int i;
874 
875 	for (i = 0; caps[i].matches; i++)
876 		if (caps[i].enable && cpus_have_cap(caps[i].capability))
877 			/*
878 			 * Use stop_machine() as it schedules the work allowing
879 			 * us to modify PSTATE, instead of on_each_cpu() which
880 			 * uses an IPI, giving us a PSTATE that disappears when
881 			 * we return.
882 			 */
883 			stop_machine(caps[i].enable, NULL, cpu_online_mask);
884 }
885 
886 #ifdef CONFIG_HOTPLUG_CPU
887 
888 /*
889  * Flag to indicate if we have computed the system wide
890  * capabilities based on the boot time active CPUs. This
891  * will be used to determine if a new booting CPU should
892  * go through the verification process to make sure that it
893  * supports the system capabilities, without using a hotplug
894  * notifier.
895  */
896 static bool sys_caps_initialised;
897 
set_sys_caps_initialised(void)898 static inline void set_sys_caps_initialised(void)
899 {
900 	sys_caps_initialised = true;
901 }
902 
903 /*
904  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
905  */
__raw_read_system_reg(u32 sys_id)906 static u64 __raw_read_system_reg(u32 sys_id)
907 {
908 	switch (sys_id) {
909 	case SYS_ID_PFR0_EL1:		return read_cpuid(SYS_ID_PFR0_EL1);
910 	case SYS_ID_PFR1_EL1:		return read_cpuid(SYS_ID_PFR1_EL1);
911 	case SYS_ID_DFR0_EL1:		return read_cpuid(SYS_ID_DFR0_EL1);
912 	case SYS_ID_MMFR0_EL1:		return read_cpuid(SYS_ID_MMFR0_EL1);
913 	case SYS_ID_MMFR1_EL1:		return read_cpuid(SYS_ID_MMFR1_EL1);
914 	case SYS_ID_MMFR2_EL1:		return read_cpuid(SYS_ID_MMFR2_EL1);
915 	case SYS_ID_MMFR3_EL1:		return read_cpuid(SYS_ID_MMFR3_EL1);
916 	case SYS_ID_ISAR0_EL1:		return read_cpuid(SYS_ID_ISAR0_EL1);
917 	case SYS_ID_ISAR1_EL1:		return read_cpuid(SYS_ID_ISAR1_EL1);
918 	case SYS_ID_ISAR2_EL1:		return read_cpuid(SYS_ID_ISAR2_EL1);
919 	case SYS_ID_ISAR3_EL1:		return read_cpuid(SYS_ID_ISAR3_EL1);
920 	case SYS_ID_ISAR4_EL1:		return read_cpuid(SYS_ID_ISAR4_EL1);
921 	case SYS_ID_ISAR5_EL1:		return read_cpuid(SYS_ID_ISAR4_EL1);
922 	case SYS_MVFR0_EL1:		return read_cpuid(SYS_MVFR0_EL1);
923 	case SYS_MVFR1_EL1:		return read_cpuid(SYS_MVFR1_EL1);
924 	case SYS_MVFR2_EL1:		return read_cpuid(SYS_MVFR2_EL1);
925 
926 	case SYS_ID_AA64PFR0_EL1:	return read_cpuid(SYS_ID_AA64PFR0_EL1);
927 	case SYS_ID_AA64PFR1_EL1:	return read_cpuid(SYS_ID_AA64PFR0_EL1);
928 	case SYS_ID_AA64DFR0_EL1:	return read_cpuid(SYS_ID_AA64DFR0_EL1);
929 	case SYS_ID_AA64DFR1_EL1:	return read_cpuid(SYS_ID_AA64DFR0_EL1);
930 	case SYS_ID_AA64MMFR0_EL1:	return read_cpuid(SYS_ID_AA64MMFR0_EL1);
931 	case SYS_ID_AA64MMFR1_EL1:	return read_cpuid(SYS_ID_AA64MMFR1_EL1);
932 	case SYS_ID_AA64MMFR2_EL1:	return read_cpuid(SYS_ID_AA64MMFR2_EL1);
933 	case SYS_ID_AA64ISAR0_EL1:	return read_cpuid(SYS_ID_AA64ISAR0_EL1);
934 	case SYS_ID_AA64ISAR1_EL1:	return read_cpuid(SYS_ID_AA64ISAR1_EL1);
935 
936 	case SYS_CNTFRQ_EL0:		return read_cpuid(SYS_CNTFRQ_EL0);
937 	case SYS_CTR_EL0:		return read_cpuid(SYS_CTR_EL0);
938 	case SYS_DCZID_EL0:		return read_cpuid(SYS_DCZID_EL0);
939 	default:
940 		BUG();
941 		return 0;
942 	}
943 }
944 
945 /*
946  * Park the CPU which doesn't have the capability as advertised
947  * by the system.
948  */
fail_incapable_cpu(char * cap_type,const struct arm64_cpu_capabilities * cap)949 static void fail_incapable_cpu(char *cap_type,
950 				 const struct arm64_cpu_capabilities *cap)
951 {
952 	int cpu = smp_processor_id();
953 
954 	pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
955 	/* Mark this CPU absent */
956 	set_cpu_present(cpu, 0);
957 
958 	/* Check if we can park ourselves */
959 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
960 		cpu_ops[cpu]->cpu_die(cpu);
961 	asm(
962 	"1:	wfe\n"
963 	"	wfi\n"
964 	"	b	1b");
965 }
966 
967 /*
968  * Run through the enabled system capabilities and enable() it on this CPU.
969  * The capabilities were decided based on the available CPUs at the boot time.
970  * Any new CPU should match the system wide status of the capability. If the
971  * new CPU doesn't have a capability which the system now has enabled, we
972  * cannot do anything to fix it up and could cause unexpected failures. So
973  * we park the CPU.
974  */
verify_local_cpu_capabilities(void)975 void verify_local_cpu_capabilities(void)
976 {
977 	int i;
978 	const struct arm64_cpu_capabilities *caps;
979 
980 	/*
981 	 * If we haven't computed the system capabilities, there is nothing
982 	 * to verify.
983 	 */
984 	if (!sys_caps_initialised)
985 		return;
986 
987 	caps = arm64_features;
988 	for (i = 0; caps[i].matches; i++) {
989 		if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
990 			continue;
991 		/*
992 		 * If the new CPU misses an advertised feature, we cannot proceed
993 		 * further, park the cpu.
994 		 */
995 		if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
996 			fail_incapable_cpu("arm64_features", &caps[i]);
997 		if (caps[i].enable)
998 			caps[i].enable(NULL);
999 	}
1000 
1001 	for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) {
1002 		if (!cpus_have_hwcap(&caps[i]))
1003 			continue;
1004 		if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
1005 			fail_incapable_cpu("arm64_hwcaps", &caps[i]);
1006 	}
1007 }
1008 
1009 #else	/* !CONFIG_HOTPLUG_CPU */
1010 
set_sys_caps_initialised(void)1011 static inline void set_sys_caps_initialised(void)
1012 {
1013 }
1014 
1015 #endif	/* CONFIG_HOTPLUG_CPU */
1016 
setup_feature_capabilities(void)1017 static void __init setup_feature_capabilities(void)
1018 {
1019 	update_cpu_capabilities(arm64_features, "detected feature:");
1020 	enable_cpu_capabilities(arm64_features);
1021 }
1022 
setup_cpu_features(void)1023 void __init setup_cpu_features(void)
1024 {
1025 	u32 cwg;
1026 	int cls;
1027 
1028 	/* Set the CPU feature capabilies */
1029 	setup_feature_capabilities();
1030 	setup_cpu_hwcaps();
1031 
1032 	/* Advertise that we have computed the system capabilities */
1033 	set_sys_caps_initialised();
1034 
1035 	/*
1036 	 * Check for sane CTR_EL0.CWG value.
1037 	 */
1038 	cwg = cache_type_cwg();
1039 	cls = cache_line_size();
1040 	if (!cwg)
1041 		pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1042 			cls);
1043 	if (L1_CACHE_BYTES < cls)
1044 		pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1045 			L1_CACHE_BYTES, cls);
1046 }
1047 
1048 static bool __maybe_unused
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities * entry)1049 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry)
1050 {
1051 	return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
1052 }
1053