1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/processor.h>
31 #include <asm/sysreg.h>
32
33 unsigned long elf_hwcap __read_mostly;
34 EXPORT_SYMBOL_GPL(elf_hwcap);
35
36 #ifdef CONFIG_COMPAT
37 #define COMPAT_ELF_HWCAP_DEFAULT \
38 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
39 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
40 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
41 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
42 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
43 COMPAT_HWCAP_LPAE)
44 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
45 unsigned int compat_elf_hwcap2 __read_mostly;
46 #endif
47
48 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
49 EXPORT_SYMBOL(cpu_hwcaps);
50
51 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
52 { \
53 .sign = SIGNED, \
54 .strict = STRICT, \
55 .type = TYPE, \
56 .shift = SHIFT, \
57 .width = WIDTH, \
58 .safe_val = SAFE_VAL, \
59 }
60
61 /* Define a feature with signed values */
62 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
63 __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
64
65 /* Define a feature with unsigned value */
66 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
67 __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
68
69 #define ARM64_FTR_END \
70 { \
71 .width = 0, \
72 }
73
74 /* meta feature for alternatives */
75 static bool __maybe_unused
76 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry);
77
78 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
79 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
80 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
81 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
82 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
83 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
84 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
85 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
86 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
87 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
88 ARM64_FTR_END,
89 };
90
91 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
92 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
93 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
94 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
95 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
96 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
97 /* Linux doesn't care about the EL3 */
98 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
99 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
100 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
101 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
102 ARM64_FTR_END,
103 };
104
105 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
106 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
107 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
108 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
109 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
110 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
111 /* Linux shouldn't care about secure memory */
112 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
113 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
114 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
115 /*
116 * Differing PARange is fine as long as all peripherals and memory are mapped
117 * within the minimum PARange of all CPUs
118 */
119 U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
120 ARM64_FTR_END,
121 };
122
123 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
124 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
125 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
126 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
127 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
128 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
130 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
131 ARM64_FTR_END,
132 };
133
134 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
135 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
136 ARM64_FTR_END,
137 };
138
139 static struct arm64_ftr_bits ftr_ctr[] = {
140 U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
141 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 30, 1, 0),
142 U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 29, 1, 1), /* DIC */
143 U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 1, 1), /* IDC */
144 U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, 24, 4, 0), /* CWG */
145 U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, 20, 4, 0), /* ERG */
146 U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
147 /*
148 * Linux can handle differing I-cache policies. Userspace JITs will
149 * make use of *minLine
150 */
151 U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0), /* L1Ip */
152 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
153 U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
154 ARM64_FTR_END,
155 };
156
157 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
158 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0), /* InnerShr */
159 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
160 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
161 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
162 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
163 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
164 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
165 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
166 ARM64_FTR_END,
167 };
168
169 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
170 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
171 U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
172 U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
173 U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
174 U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
175 U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
176 U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
177 ARM64_FTR_END,
178 };
179
180 static struct arm64_ftr_bits ftr_mvfr2[] = {
181 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
182 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
183 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
184 ARM64_FTR_END,
185 };
186
187 static struct arm64_ftr_bits ftr_dczid[] = {
188 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
189 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
190 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
191 ARM64_FTR_END,
192 };
193
194
195 static struct arm64_ftr_bits ftr_id_isar5[] = {
196 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
197 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
198 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
199 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
200 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
201 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
202 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
203 ARM64_FTR_END,
204 };
205
206 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
207 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
208 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
209 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
210 ARM64_FTR_END,
211 };
212
213 static struct arm64_ftr_bits ftr_id_pfr0[] = {
214 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
215 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
216 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
217 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
218 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
219 ARM64_FTR_END,
220 };
221
222 /*
223 * Common ftr bits for a 32bit register with all hidden, strict
224 * attributes, with 4bit feature fields and a default safe value of
225 * 0. Covers the following 32bit registers:
226 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
227 */
228 static struct arm64_ftr_bits ftr_generic_32bits[] = {
229 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
230 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
231 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
232 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
233 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
234 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
235 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
236 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
237 ARM64_FTR_END,
238 };
239
240 static struct arm64_ftr_bits ftr_generic[] = {
241 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
242 ARM64_FTR_END,
243 };
244
245 static struct arm64_ftr_bits ftr_generic32[] = {
246 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
247 ARM64_FTR_END,
248 };
249
250 static struct arm64_ftr_bits ftr_aa64raz[] = {
251 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
252 ARM64_FTR_END,
253 };
254
255 #define ARM64_FTR_REG(id, table) \
256 { \
257 .sys_id = id, \
258 .name = #id, \
259 .ftr_bits = &((table)[0]), \
260 }
261
262 static struct arm64_ftr_reg arm64_ftr_regs[] = {
263
264 /* Op1 = 0, CRn = 0, CRm = 1 */
265 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
266 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
267 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
268 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
269 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
270 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
271 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
272
273 /* Op1 = 0, CRn = 0, CRm = 2 */
274 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
275 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
276 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
277 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
278 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
279 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
280 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
281
282 /* Op1 = 0, CRn = 0, CRm = 3 */
283 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
284 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
285 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
286
287 /* Op1 = 0, CRn = 0, CRm = 4 */
288 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
289 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
290
291 /* Op1 = 0, CRn = 0, CRm = 5 */
292 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
293 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
294
295 /* Op1 = 0, CRn = 0, CRm = 6 */
296 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
297 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
298
299 /* Op1 = 0, CRn = 0, CRm = 7 */
300 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
301 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
302 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
303
304 /* Op1 = 3, CRn = 0, CRm = 0 */
305 ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
306 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
307
308 /* Op1 = 3, CRn = 14, CRm = 0 */
309 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
310 };
311
search_cmp_ftr_reg(const void * id,const void * regp)312 static int search_cmp_ftr_reg(const void *id, const void *regp)
313 {
314 return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
315 }
316
317 /*
318 * get_arm64_ftr_reg - Lookup a feature register entry using its
319 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
320 * ascending order of sys_id , we use binary search to find a matching
321 * entry.
322 *
323 * returns - Upon success, matching ftr_reg entry for id.
324 * - NULL on failure. It is upto the caller to decide
325 * the impact of a failure.
326 */
get_arm64_ftr_reg(u32 sys_id)327 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
328 {
329 return bsearch((const void *)(unsigned long)sys_id,
330 arm64_ftr_regs,
331 ARRAY_SIZE(arm64_ftr_regs),
332 sizeof(arm64_ftr_regs[0]),
333 search_cmp_ftr_reg);
334 }
335
arm64_ftr_set_value(struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)336 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
337 {
338 u64 mask = arm64_ftr_mask(ftrp);
339
340 reg &= ~mask;
341 reg |= (ftr_val << ftrp->shift) & mask;
342 return reg;
343 }
344
arm64_ftr_safe_value(struct arm64_ftr_bits * ftrp,s64 new,s64 cur)345 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
346 {
347 s64 ret = 0;
348
349 switch (ftrp->type) {
350 case FTR_EXACT:
351 ret = ftrp->safe_val;
352 break;
353 case FTR_LOWER_SAFE:
354 ret = new < cur ? new : cur;
355 break;
356 case FTR_HIGHER_OR_ZERO_SAFE:
357 if (!cur || !new)
358 break;
359 /* Fallthrough */
360 case FTR_HIGHER_SAFE:
361 ret = new > cur ? new : cur;
362 break;
363 default:
364 BUG();
365 }
366
367 return ret;
368 }
369
sort_cmp_ftr_regs(const void * a,const void * b)370 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
371 {
372 return ((const struct arm64_ftr_reg *)a)->sys_id -
373 ((const struct arm64_ftr_reg *)b)->sys_id;
374 }
375
swap_ftr_regs(void * a,void * b,int size)376 static void __init swap_ftr_regs(void *a, void *b, int size)
377 {
378 struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
379 *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
380 *(struct arm64_ftr_reg *)b = tmp;
381 }
382
sort_ftr_regs(void)383 static void __init sort_ftr_regs(void)
384 {
385 /* Keep the array sorted so that we can do the binary search */
386 sort(arm64_ftr_regs,
387 ARRAY_SIZE(arm64_ftr_regs),
388 sizeof(arm64_ftr_regs[0]),
389 sort_cmp_ftr_regs,
390 swap_ftr_regs);
391 }
392
393 /*
394 * Initialise the CPU feature register from Boot CPU values.
395 * Also initiliases the strict_mask for the register.
396 */
init_cpu_ftr_reg(u32 sys_reg,u64 new)397 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
398 {
399 u64 val = 0;
400 u64 strict_mask = ~0x0ULL;
401 struct arm64_ftr_bits *ftrp;
402 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
403
404 BUG_ON(!reg);
405
406 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
407 s64 ftr_new = arm64_ftr_value(ftrp, new);
408
409 val = arm64_ftr_set_value(ftrp, val, ftr_new);
410 if (!ftrp->strict)
411 strict_mask &= ~arm64_ftr_mask(ftrp);
412 }
413 reg->sys_val = val;
414 reg->strict_mask = strict_mask;
415 }
416
init_cpu_features(struct cpuinfo_arm64 * info)417 void __init init_cpu_features(struct cpuinfo_arm64 *info)
418 {
419 /* Before we start using the tables, make sure it is sorted */
420 sort_ftr_regs();
421
422 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
423 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
424 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
425 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
426 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
427 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
428 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
429 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
430 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
431 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
432 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
433 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
434 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
435 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
436 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
437 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
438 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
439 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
440 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
441 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
442 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
443 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
444 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
445 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
446 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
447 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
448 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
449 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
450 }
451
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)452 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
453 {
454 struct arm64_ftr_bits *ftrp;
455
456 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
457 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
458 s64 ftr_new = arm64_ftr_value(ftrp, new);
459
460 if (ftr_cur == ftr_new)
461 continue;
462 /* Find a safe value */
463 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
464 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
465 }
466
467 }
468
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)469 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
470 {
471 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
472
473 BUG_ON(!regp);
474 update_cpu_ftr_reg(regp, val);
475 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
476 return 0;
477 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
478 regp->name, boot, cpu, val);
479 return 1;
480 }
481
482 /*
483 * Update system wide CPU feature registers with the values from a
484 * non-boot CPU. Also performs SANITY checks to make sure that there
485 * aren't any insane variations from that of the boot CPU.
486 */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)487 void update_cpu_features(int cpu,
488 struct cpuinfo_arm64 *info,
489 struct cpuinfo_arm64 *boot)
490 {
491 int taint = 0;
492
493 /*
494 * The kernel can handle differing I-cache policies, but otherwise
495 * caches should look identical. Userspace JITs will make use of
496 * *minLine.
497 */
498 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
499 info->reg_ctr, boot->reg_ctr);
500
501 /*
502 * Userspace may perform DC ZVA instructions. Mismatched block sizes
503 * could result in too much or too little memory being zeroed if a
504 * process is preempted and migrated between CPUs.
505 */
506 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
507 info->reg_dczid, boot->reg_dczid);
508
509 /* If different, timekeeping will be broken (especially with KVM) */
510 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
511 info->reg_cntfrq, boot->reg_cntfrq);
512
513 /*
514 * The kernel uses self-hosted debug features and expects CPUs to
515 * support identical debug features. We presently need CTX_CMPs, WRPs,
516 * and BRPs to be identical.
517 * ID_AA64DFR1 is currently RES0.
518 */
519 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
520 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
521 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
522 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
523 /*
524 * Even in big.LITTLE, processors should be identical instruction-set
525 * wise.
526 */
527 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
528 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
529 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
530 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
531
532 /*
533 * Differing PARange support is fine as long as all peripherals and
534 * memory are mapped within the minimum PARange of all CPUs.
535 * Linux should not care about secure memory.
536 */
537 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
538 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
539 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
540 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
541 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
542 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
543
544 /*
545 * EL3 is not our concern.
546 * ID_AA64PFR1 is currently RES0.
547 */
548 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
549 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
550 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
551 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
552
553 /*
554 * If we have AArch32, we care about 32-bit features for compat. These
555 * registers should be RES0 otherwise.
556 */
557 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
558 info->reg_id_dfr0, boot->reg_id_dfr0);
559 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
560 info->reg_id_isar0, boot->reg_id_isar0);
561 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
562 info->reg_id_isar1, boot->reg_id_isar1);
563 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
564 info->reg_id_isar2, boot->reg_id_isar2);
565 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
566 info->reg_id_isar3, boot->reg_id_isar3);
567 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
568 info->reg_id_isar4, boot->reg_id_isar4);
569 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
570 info->reg_id_isar5, boot->reg_id_isar5);
571
572 /*
573 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
574 * ACTLR formats could differ across CPUs and therefore would have to
575 * be trapped for virtualization anyway.
576 */
577 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
578 info->reg_id_mmfr0, boot->reg_id_mmfr0);
579 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
580 info->reg_id_mmfr1, boot->reg_id_mmfr1);
581 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
582 info->reg_id_mmfr2, boot->reg_id_mmfr2);
583 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
584 info->reg_id_mmfr3, boot->reg_id_mmfr3);
585 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
586 info->reg_id_pfr0, boot->reg_id_pfr0);
587 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
588 info->reg_id_pfr1, boot->reg_id_pfr1);
589 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
590 info->reg_mvfr0, boot->reg_mvfr0);
591 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
592 info->reg_mvfr1, boot->reg_mvfr1);
593 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
594 info->reg_mvfr2, boot->reg_mvfr2);
595
596 /*
597 * Mismatched CPU features are a recipe for disaster. Don't even
598 * pretend to support them.
599 */
600 WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
601 "Unsupported CPU feature variation.\n");
602 }
603
read_system_reg(u32 id)604 u64 read_system_reg(u32 id)
605 {
606 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
607
608 /* We shouldn't get a request for an unsupported register */
609 BUG_ON(!regp);
610 return regp->sys_val;
611 }
612
613 #include <linux/irqchip/arm-gic-v3.h>
614
615 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)616 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
617 {
618 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
619
620 return val >= entry->min_field_value;
621 }
622
623 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry)624 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
625 {
626 u64 val;
627
628 val = read_system_reg(entry->sys_reg);
629 return feature_matches(val, entry);
630 }
631
has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities * entry)632 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
633 {
634 bool has_sre;
635
636 if (!has_cpuid_feature(entry))
637 return false;
638
639 has_sre = gic_enable_sre();
640 if (!has_sre)
641 pr_warn_once("%s present but disabled by higher exception level\n",
642 entry->desc);
643
644 return has_sre;
645 }
646
has_no_hw_prefetch(const struct arm64_cpu_capabilities * entry)647 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry)
648 {
649 u32 midr = read_cpuid_id();
650 u32 rv_min, rv_max;
651
652 /* Cavium ThunderX pass 1.x and 2.x */
653 rv_min = 0;
654 rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
655
656 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
657 }
658
659 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
660 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
661
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry)662 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry)
663 {
664 /* Forced on command line? */
665 if (__kpti_forced) {
666 pr_info_once("kernel page table isolation forced %s by command line option\n",
667 __kpti_forced > 0 ? "ON" : "OFF");
668 return __kpti_forced > 0;
669 }
670
671 /* Useful for KASLR robustness */
672 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
673 return true;
674
675 return false;
676 }
677
parse_kpti(char * str)678 static int __init parse_kpti(char *str)
679 {
680 bool enabled;
681 int ret = strtobool(str, &enabled);
682
683 if (ret)
684 return ret;
685
686 __kpti_forced = enabled ? 1 : -1;
687 return 0;
688 }
689 early_param("kpti", parse_kpti);
690 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
691
692 static const struct arm64_cpu_capabilities arm64_features[] = {
693 {
694 .desc = "GIC system register CPU interface",
695 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
696 .matches = has_useable_gicv3_cpuif,
697 .sys_reg = SYS_ID_AA64PFR0_EL1,
698 .field_pos = ID_AA64PFR0_GIC_SHIFT,
699 .sign = FTR_UNSIGNED,
700 .min_field_value = 1,
701 },
702 #ifdef CONFIG_ARM64_PAN
703 {
704 .desc = "Privileged Access Never",
705 .capability = ARM64_HAS_PAN,
706 .matches = has_cpuid_feature,
707 .sys_reg = SYS_ID_AA64MMFR1_EL1,
708 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
709 .sign = FTR_UNSIGNED,
710 .min_field_value = 1,
711 .enable = cpu_enable_pan,
712 },
713 #endif /* CONFIG_ARM64_PAN */
714 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
715 {
716 .desc = "LSE atomic instructions",
717 .capability = ARM64_HAS_LSE_ATOMICS,
718 .matches = has_cpuid_feature,
719 .sys_reg = SYS_ID_AA64ISAR0_EL1,
720 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
721 .sign = FTR_UNSIGNED,
722 .min_field_value = 2,
723 },
724 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
725 {
726 .desc = "Software prefetching using PRFM",
727 .capability = ARM64_HAS_NO_HW_PREFETCH,
728 .matches = has_no_hw_prefetch,
729 },
730 #ifdef CONFIG_ARM64_UAO
731 {
732 .desc = "User Access Override",
733 .capability = ARM64_HAS_UAO,
734 .matches = has_cpuid_feature,
735 .sys_reg = SYS_ID_AA64MMFR2_EL1,
736 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
737 .min_field_value = 1,
738 .enable = cpu_enable_uao,
739 },
740 #endif /* CONFIG_ARM64_UAO */
741 #ifdef CONFIG_ARM64_PAN
742 {
743 .capability = ARM64_ALT_PAN_NOT_UAO,
744 .matches = cpufeature_pan_not_uao,
745 },
746 #endif /* CONFIG_ARM64_PAN */
747 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
748 {
749 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
750 .matches = unmap_kernel_at_el0,
751 },
752 #endif
753 {
754 .desc = "32-bit EL0 Support",
755 .capability = ARM64_HAS_32BIT_EL0,
756 .matches = has_cpuid_feature,
757 .sys_reg = SYS_ID_AA64PFR0_EL1,
758 .field_pos = ID_AA64PFR0_EL0_SHIFT,
759 .sign = FTR_UNSIGNED,
760 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
761 },
762 {},
763 };
764
765 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
766 { \
767 .desc = #cap, \
768 .matches = has_cpuid_feature, \
769 .sys_reg = reg, \
770 .field_pos = field, \
771 .sign = s, \
772 .min_field_value = min_value, \
773 .hwcap_type = type, \
774 .hwcap = cap, \
775 }
776
777 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
778 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
779 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
780 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
781 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
782 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
783 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
784 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
785 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
786 #ifdef CONFIG_COMPAT
787 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
788 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
789 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
790 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
791 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
792 #endif
793 {},
794 };
795
cap_set_hwcap(const struct arm64_cpu_capabilities * cap)796 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
797 {
798 switch (cap->hwcap_type) {
799 case CAP_HWCAP:
800 elf_hwcap |= cap->hwcap;
801 break;
802 #ifdef CONFIG_COMPAT
803 case CAP_COMPAT_HWCAP:
804 compat_elf_hwcap |= (u32)cap->hwcap;
805 break;
806 case CAP_COMPAT_HWCAP2:
807 compat_elf_hwcap2 |= (u32)cap->hwcap;
808 break;
809 #endif
810 default:
811 WARN_ON(1);
812 break;
813 }
814 }
815
816 /* Check if we have a particular HWCAP enabled */
cpus_have_hwcap(const struct arm64_cpu_capabilities * cap)817 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
818 {
819 bool rc;
820
821 switch (cap->hwcap_type) {
822 case CAP_HWCAP:
823 rc = (elf_hwcap & cap->hwcap) != 0;
824 break;
825 #ifdef CONFIG_COMPAT
826 case CAP_COMPAT_HWCAP:
827 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
828 break;
829 case CAP_COMPAT_HWCAP2:
830 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
831 break;
832 #endif
833 default:
834 WARN_ON(1);
835 rc = false;
836 }
837
838 return rc;
839 }
840
setup_cpu_hwcaps(void)841 static void __init setup_cpu_hwcaps(void)
842 {
843 int i;
844 const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
845
846 for (i = 0; hwcaps[i].matches; i++)
847 if (hwcaps[i].matches(&hwcaps[i]))
848 cap_set_hwcap(&hwcaps[i]);
849 }
850
update_cpu_capabilities(const struct arm64_cpu_capabilities * caps,const char * info)851 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
852 const char *info)
853 {
854 int i;
855
856 for (i = 0; caps[i].matches; i++) {
857 if (!caps[i].matches(&caps[i]))
858 continue;
859
860 if (!cpus_have_cap(caps[i].capability) && caps[i].desc)
861 pr_info("%s %s\n", info, caps[i].desc);
862 cpus_set_cap(caps[i].capability);
863 }
864 }
865
866 /*
867 * Run through the enabled capabilities and enable() it on all active
868 * CPUs
869 */
870 static void __init
enable_cpu_capabilities(const struct arm64_cpu_capabilities * caps)871 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
872 {
873 int i;
874
875 for (i = 0; caps[i].matches; i++)
876 if (caps[i].enable && cpus_have_cap(caps[i].capability))
877 /*
878 * Use stop_machine() as it schedules the work allowing
879 * us to modify PSTATE, instead of on_each_cpu() which
880 * uses an IPI, giving us a PSTATE that disappears when
881 * we return.
882 */
883 stop_machine(caps[i].enable, NULL, cpu_online_mask);
884 }
885
886 #ifdef CONFIG_HOTPLUG_CPU
887
888 /*
889 * Flag to indicate if we have computed the system wide
890 * capabilities based on the boot time active CPUs. This
891 * will be used to determine if a new booting CPU should
892 * go through the verification process to make sure that it
893 * supports the system capabilities, without using a hotplug
894 * notifier.
895 */
896 static bool sys_caps_initialised;
897
set_sys_caps_initialised(void)898 static inline void set_sys_caps_initialised(void)
899 {
900 sys_caps_initialised = true;
901 }
902
903 /*
904 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
905 */
__raw_read_system_reg(u32 sys_id)906 static u64 __raw_read_system_reg(u32 sys_id)
907 {
908 switch (sys_id) {
909 case SYS_ID_PFR0_EL1: return read_cpuid(SYS_ID_PFR0_EL1);
910 case SYS_ID_PFR1_EL1: return read_cpuid(SYS_ID_PFR1_EL1);
911 case SYS_ID_DFR0_EL1: return read_cpuid(SYS_ID_DFR0_EL1);
912 case SYS_ID_MMFR0_EL1: return read_cpuid(SYS_ID_MMFR0_EL1);
913 case SYS_ID_MMFR1_EL1: return read_cpuid(SYS_ID_MMFR1_EL1);
914 case SYS_ID_MMFR2_EL1: return read_cpuid(SYS_ID_MMFR2_EL1);
915 case SYS_ID_MMFR3_EL1: return read_cpuid(SYS_ID_MMFR3_EL1);
916 case SYS_ID_ISAR0_EL1: return read_cpuid(SYS_ID_ISAR0_EL1);
917 case SYS_ID_ISAR1_EL1: return read_cpuid(SYS_ID_ISAR1_EL1);
918 case SYS_ID_ISAR2_EL1: return read_cpuid(SYS_ID_ISAR2_EL1);
919 case SYS_ID_ISAR3_EL1: return read_cpuid(SYS_ID_ISAR3_EL1);
920 case SYS_ID_ISAR4_EL1: return read_cpuid(SYS_ID_ISAR4_EL1);
921 case SYS_ID_ISAR5_EL1: return read_cpuid(SYS_ID_ISAR4_EL1);
922 case SYS_MVFR0_EL1: return read_cpuid(SYS_MVFR0_EL1);
923 case SYS_MVFR1_EL1: return read_cpuid(SYS_MVFR1_EL1);
924 case SYS_MVFR2_EL1: return read_cpuid(SYS_MVFR2_EL1);
925
926 case SYS_ID_AA64PFR0_EL1: return read_cpuid(SYS_ID_AA64PFR0_EL1);
927 case SYS_ID_AA64PFR1_EL1: return read_cpuid(SYS_ID_AA64PFR0_EL1);
928 case SYS_ID_AA64DFR0_EL1: return read_cpuid(SYS_ID_AA64DFR0_EL1);
929 case SYS_ID_AA64DFR1_EL1: return read_cpuid(SYS_ID_AA64DFR0_EL1);
930 case SYS_ID_AA64MMFR0_EL1: return read_cpuid(SYS_ID_AA64MMFR0_EL1);
931 case SYS_ID_AA64MMFR1_EL1: return read_cpuid(SYS_ID_AA64MMFR1_EL1);
932 case SYS_ID_AA64MMFR2_EL1: return read_cpuid(SYS_ID_AA64MMFR2_EL1);
933 case SYS_ID_AA64ISAR0_EL1: return read_cpuid(SYS_ID_AA64ISAR0_EL1);
934 case SYS_ID_AA64ISAR1_EL1: return read_cpuid(SYS_ID_AA64ISAR1_EL1);
935
936 case SYS_CNTFRQ_EL0: return read_cpuid(SYS_CNTFRQ_EL0);
937 case SYS_CTR_EL0: return read_cpuid(SYS_CTR_EL0);
938 case SYS_DCZID_EL0: return read_cpuid(SYS_DCZID_EL0);
939 default:
940 BUG();
941 return 0;
942 }
943 }
944
945 /*
946 * Park the CPU which doesn't have the capability as advertised
947 * by the system.
948 */
fail_incapable_cpu(char * cap_type,const struct arm64_cpu_capabilities * cap)949 static void fail_incapable_cpu(char *cap_type,
950 const struct arm64_cpu_capabilities *cap)
951 {
952 int cpu = smp_processor_id();
953
954 pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
955 /* Mark this CPU absent */
956 set_cpu_present(cpu, 0);
957
958 /* Check if we can park ourselves */
959 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
960 cpu_ops[cpu]->cpu_die(cpu);
961 asm(
962 "1: wfe\n"
963 " wfi\n"
964 " b 1b");
965 }
966
967 /*
968 * Run through the enabled system capabilities and enable() it on this CPU.
969 * The capabilities were decided based on the available CPUs at the boot time.
970 * Any new CPU should match the system wide status of the capability. If the
971 * new CPU doesn't have a capability which the system now has enabled, we
972 * cannot do anything to fix it up and could cause unexpected failures. So
973 * we park the CPU.
974 */
verify_local_cpu_capabilities(void)975 void verify_local_cpu_capabilities(void)
976 {
977 int i;
978 const struct arm64_cpu_capabilities *caps;
979
980 /*
981 * If we haven't computed the system capabilities, there is nothing
982 * to verify.
983 */
984 if (!sys_caps_initialised)
985 return;
986
987 caps = arm64_features;
988 for (i = 0; caps[i].matches; i++) {
989 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
990 continue;
991 /*
992 * If the new CPU misses an advertised feature, we cannot proceed
993 * further, park the cpu.
994 */
995 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
996 fail_incapable_cpu("arm64_features", &caps[i]);
997 if (caps[i].enable)
998 caps[i].enable(NULL);
999 }
1000
1001 for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) {
1002 if (!cpus_have_hwcap(&caps[i]))
1003 continue;
1004 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
1005 fail_incapable_cpu("arm64_hwcaps", &caps[i]);
1006 }
1007 }
1008
1009 #else /* !CONFIG_HOTPLUG_CPU */
1010
set_sys_caps_initialised(void)1011 static inline void set_sys_caps_initialised(void)
1012 {
1013 }
1014
1015 #endif /* CONFIG_HOTPLUG_CPU */
1016
setup_feature_capabilities(void)1017 static void __init setup_feature_capabilities(void)
1018 {
1019 update_cpu_capabilities(arm64_features, "detected feature:");
1020 enable_cpu_capabilities(arm64_features);
1021 }
1022
setup_cpu_features(void)1023 void __init setup_cpu_features(void)
1024 {
1025 u32 cwg;
1026 int cls;
1027
1028 /* Set the CPU feature capabilies */
1029 setup_feature_capabilities();
1030 setup_cpu_hwcaps();
1031
1032 /* Advertise that we have computed the system capabilities */
1033 set_sys_caps_initialised();
1034
1035 /*
1036 * Check for sane CTR_EL0.CWG value.
1037 */
1038 cwg = cache_type_cwg();
1039 cls = cache_line_size();
1040 if (!cwg)
1041 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1042 cls);
1043 if (L1_CACHE_BYTES < cls)
1044 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1045 L1_CACHE_BYTES, cls);
1046 }
1047
1048 static bool __maybe_unused
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities * entry)1049 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry)
1050 {
1051 return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
1052 }
1053