• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * hcd.h - DesignWare HS OTG Controller host-mode declarations
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 #ifndef __DWC2_HCD_H__
37 #define __DWC2_HCD_H__
38 
39 /*
40  * This file contains the structures, constants, and interfaces for the
41  * Host Contoller Driver (HCD)
42  *
43  * The Host Controller Driver (HCD) is responsible for translating requests
44  * from the USB Driver into the appropriate actions on the DWC_otg controller.
45  * It isolates the USBD from the specifics of the controller by providing an
46  * API to the USBD.
47  */
48 
49 struct dwc2_qh;
50 
51 /**
52  * struct dwc2_host_chan - Software host channel descriptor
53  *
54  * @hc_num:             Host channel number, used for register address lookup
55  * @dev_addr:           Address of the device
56  * @ep_num:             Endpoint of the device
57  * @ep_is_in:           Endpoint direction
58  * @speed:              Device speed. One of the following values:
59  *                       - USB_SPEED_LOW
60  *                       - USB_SPEED_FULL
61  *                       - USB_SPEED_HIGH
62  * @ep_type:            Endpoint type. One of the following values:
63  *                       - USB_ENDPOINT_XFER_CONTROL: 0
64  *                       - USB_ENDPOINT_XFER_ISOC:    1
65  *                       - USB_ENDPOINT_XFER_BULK:    2
66  *                       - USB_ENDPOINT_XFER_INTR:    3
67  * @max_packet:         Max packet size in bytes
68  * @data_pid_start:     PID for initial transaction.
69  *                       0: DATA0
70  *                       1: DATA2
71  *                       2: DATA1
72  *                       3: MDATA (non-Control EP),
73  *                          SETUP (Control EP)
74  * @multi_count:        Number of additional periodic transactions per
75  *                      (micro)frame
76  * @xfer_buf:           Pointer to current transfer buffer position
77  * @xfer_dma:           DMA address of xfer_buf
78  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
79  *                      DWORD aligned
80  * @xfer_len:           Total number of bytes to transfer
81  * @xfer_count:         Number of bytes transferred so far
82  * @start_pkt_count:    Packet count at start of transfer
83  * @xfer_started:       True if the transfer has been started
84  * @ping:               True if a PING request should be issued on this channel
85  * @error_state:        True if the error count for this transaction is non-zero
86  * @halt_on_queue:      True if this channel should be halted the next time a
87  *                      request is queued for the channel. This is necessary in
88  *                      slave mode if no request queue space is available when
89  *                      an attempt is made to halt the channel.
90  * @halt_pending:       True if the host channel has been halted, but the core
91  *                      is not finished flushing queued requests
92  * @do_split:           Enable split for the channel
93  * @complete_split:     Enable complete split
94  * @hub_addr:           Address of high speed hub for the split
95  * @hub_port:           Port of the low/full speed device for the split
96  * @xact_pos:           Split transaction position. One of the following values:
97  *                       - DWC2_HCSPLT_XACTPOS_MID
98  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
99  *                       - DWC2_HCSPLT_XACTPOS_END
100  *                       - DWC2_HCSPLT_XACTPOS_ALL
101  * @requests:           Number of requests issued for this channel since it was
102  *                      assigned to the current transfer (not counting PINGs)
103  * @schinfo:            Scheduling micro-frame bitmap
104  * @ntd:                Number of transfer descriptors for the transfer
105  * @halt_status:        Reason for halting the host channel
106  * @hcint               Contents of the HCINT register when the interrupt came
107  * @qh:                 QH for the transfer being processed by this channel
108  * @hc_list_entry:      For linking to list of host channels
109  * @desc_list_addr:     Current QH's descriptor list DMA address
110  *
111  * This structure represents the state of a single host channel when acting in
112  * host mode. It contains the data items needed to transfer packets to an
113  * endpoint via a host channel.
114  */
115 struct dwc2_host_chan {
116 	u8 hc_num;
117 
118 	unsigned dev_addr:7;
119 	unsigned ep_num:4;
120 	unsigned ep_is_in:1;
121 	unsigned speed:4;
122 	unsigned ep_type:2;
123 	unsigned max_packet:11;
124 	unsigned data_pid_start:2;
125 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
126 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
127 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
128 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
129 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
130 
131 	unsigned multi_count:2;
132 
133 	u8 *xfer_buf;
134 	dma_addr_t xfer_dma;
135 	dma_addr_t align_buf;
136 	u32 xfer_len;
137 	u32 xfer_count;
138 	u16 start_pkt_count;
139 	u8 xfer_started;
140 	u8 do_ping;
141 	u8 error_state;
142 	u8 halt_on_queue;
143 	u8 halt_pending;
144 	u8 do_split;
145 	u8 complete_split;
146 	u8 hub_addr;
147 	u8 hub_port;
148 	u8 xact_pos;
149 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
150 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
151 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
152 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
153 
154 	u8 requests;
155 	u8 schinfo;
156 	u16 ntd;
157 	enum dwc2_halt_status halt_status;
158 	u32 hcint;
159 	struct dwc2_qh *qh;
160 	struct list_head hc_list_entry;
161 	dma_addr_t desc_list_addr;
162 };
163 
164 struct dwc2_hcd_pipe_info {
165 	u8 dev_addr;
166 	u8 ep_num;
167 	u8 pipe_type;
168 	u8 pipe_dir;
169 	u16 mps;
170 };
171 
172 struct dwc2_hcd_iso_packet_desc {
173 	u32 offset;
174 	u32 length;
175 	u32 actual_length;
176 	u32 status;
177 };
178 
179 struct dwc2_qtd;
180 
181 struct dwc2_hcd_urb {
182 	void *priv;
183 	struct dwc2_qtd *qtd;
184 	void *buf;
185 	dma_addr_t dma;
186 	void *setup_packet;
187 	dma_addr_t setup_dma;
188 	u32 length;
189 	u32 actual_length;
190 	u32 status;
191 	u32 error_count;
192 	u32 packet_count;
193 	u32 flags;
194 	u16 interval;
195 	struct dwc2_hcd_pipe_info pipe_info;
196 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
197 };
198 
199 /* Phases for control transfers */
200 enum dwc2_control_phase {
201 	DWC2_CONTROL_SETUP,
202 	DWC2_CONTROL_DATA,
203 	DWC2_CONTROL_STATUS,
204 };
205 
206 /* Transaction types */
207 enum dwc2_transaction_type {
208 	DWC2_TRANSACTION_NONE,
209 	DWC2_TRANSACTION_PERIODIC,
210 	DWC2_TRANSACTION_NON_PERIODIC,
211 	DWC2_TRANSACTION_ALL,
212 };
213 
214 /**
215  * struct dwc2_qh - Software queue head structure
216  *
217  * @ep_type:            Endpoint type. One of the following values:
218  *                       - USB_ENDPOINT_XFER_CONTROL
219  *                       - USB_ENDPOINT_XFER_BULK
220  *                       - USB_ENDPOINT_XFER_INT
221  *                       - USB_ENDPOINT_XFER_ISOC
222  * @ep_is_in:           Endpoint direction
223  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
224  * @dev_speed:          Device speed. One of the following values:
225  *                       - USB_SPEED_LOW
226  *                       - USB_SPEED_FULL
227  *                       - USB_SPEED_HIGH
228  * @data_toggle:        Determines the PID of the next data packet for
229  *                      non-controltransfers. Ignored for control transfers.
230  *                      One of the following values:
231  *                       - DWC2_HC_PID_DATA0
232  *                       - DWC2_HC_PID_DATA1
233  * @ping_state:         Ping state
234  * @do_split:           Full/low speed endpoint on high-speed hub requires split
235  * @td_first:           Index of first activated isochronous transfer descriptor
236  * @td_last:            Index of last activated isochronous transfer descriptor
237  * @usecs:              Bandwidth in microseconds per (micro)frame
238  * @interval:           Interval between transfers in (micro)frames
239  * @sched_frame:        (Micro)frame to initialize a periodic transfer.
240  *                      The transfer executes in the following (micro)frame.
241  * @frame_usecs:        Internal variable used by the microframe scheduler
242  * @start_split_frame:  (Micro)frame at which last start split was initialized
243  * @ntd:                Actual number of transfer descriptors in a list
244  * @dw_align_buf:       Used instead of original buffer if its physical address
245  *                      is not dword-aligned
246  * @dw_align_buf_size:  Size of dw_align_buf
247  * @dw_align_buf_dma:   DMA address for dw_align_buf
248  * @qtd_list:           List of QTDs for this QH
249  * @channel:            Host channel currently processing transfers for this QH
250  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
251  *                      schedule
252  * @desc_list:          List of transfer descriptors
253  * @desc_list_dma:      Physical address of desc_list
254  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
255  *                      descriptor and indicates original XferSize value for the
256  *                      descriptor
257  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
258  *
259  * A Queue Head (QH) holds the static characteristics of an endpoint and
260  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
261  * be entered in either the non-periodic or periodic schedule.
262  */
263 struct dwc2_qh {
264 	u8 ep_type;
265 	u8 ep_is_in;
266 	u16 maxp;
267 	u8 dev_speed;
268 	u8 data_toggle;
269 	u8 ping_state;
270 	u8 do_split;
271 	u8 td_first;
272 	u8 td_last;
273 	u16 usecs;
274 	u16 interval;
275 	u16 sched_frame;
276 	u16 frame_usecs[8];
277 	u16 start_split_frame;
278 	u16 ntd;
279 	u8 *dw_align_buf;
280 	int dw_align_buf_size;
281 	dma_addr_t dw_align_buf_dma;
282 	struct list_head qtd_list;
283 	struct dwc2_host_chan *channel;
284 	struct list_head qh_list_entry;
285 	struct dwc2_hcd_dma_desc *desc_list;
286 	dma_addr_t desc_list_dma;
287 	u32 *n_bytes;
288 	unsigned tt_buffer_dirty:1;
289 };
290 
291 /**
292  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
293  *
294  * @control_phase:      Current phase for control transfers (Setup, Data, or
295  *                      Status)
296  * @in_process:         Indicates if this QTD is currently processed by HW
297  * @data_toggle:        Determines the PID of the next data packet for the
298  *                      data phase of control transfers. Ignored for other
299  *                      transfer types. One of the following values:
300  *                       - DWC2_HC_PID_DATA0
301  *                       - DWC2_HC_PID_DATA1
302  * @complete_split:     Keeps track of the current split type for FS/LS
303  *                      endpoints on a HS Hub
304  * @isoc_split_pos:     Position of the ISOC split in full/low speed
305  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
306  *                      transfer. A frame descriptor describes the buffer
307  *                      position and length of the data to be transferred in the
308  *                      next scheduled (micro)frame of an isochronous transfer.
309  *                      It also holds status for that transaction. The frame
310  *                      index starts at 0.
311  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
312  *                      current frame
313  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
314  * @error_count:        Holds the number of bus errors that have occurred for
315  *                      a transaction within this transfer
316  * @n_desc:             Number of DMA descriptors for this QTD
317  * @isoc_frame_index_last: Last activated frame (packet) index, used in
318  *                      descriptor DMA mode only
319  * @urb:                URB for this transfer
320  * @qh:                 Queue head for this QTD
321  * @qtd_list_entry:     For linking to the QH's list of QTDs
322  *
323  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
324  * interrupt, or isochronous transfer. A single QTD is created for each URB
325  * (of one of these types) submitted to the HCD. The transfer associated with
326  * a QTD may require one or multiple transactions.
327  *
328  * A QTD is linked to a Queue Head, which is entered in either the
329  * non-periodic or periodic schedule for execution. When a QTD is chosen for
330  * execution, some or all of its transactions may be executed. After
331  * execution, the state of the QTD is updated. The QTD may be retired if all
332  * its transactions are complete or if an error occurred. Otherwise, it
333  * remains in the schedule so more transactions can be executed later.
334  */
335 struct dwc2_qtd {
336 	enum dwc2_control_phase control_phase;
337 	u8 in_process;
338 	u8 data_toggle;
339 	u8 complete_split;
340 	u8 isoc_split_pos;
341 	u16 isoc_frame_index;
342 	u16 isoc_split_offset;
343 	u32 ssplit_out_xfer_count;
344 	u8 error_count;
345 	u8 n_desc;
346 	u16 isoc_frame_index_last;
347 	struct dwc2_hcd_urb *urb;
348 	struct dwc2_qh *qh;
349 	struct list_head qtd_list_entry;
350 };
351 
352 #ifdef DEBUG
353 struct hc_xfer_info {
354 	struct dwc2_hsotg *hsotg;
355 	struct dwc2_host_chan *chan;
356 };
357 #endif
358 
359 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
dwc2_hsotg_to_hcd(struct dwc2_hsotg * hsotg)360 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
361 {
362 	return (struct usb_hcd *)hsotg->priv;
363 }
364 
365 /*
366  * Inline used to disable one channel interrupt. Channel interrupts are
367  * disabled when the channel is halted or released by the interrupt handler.
368  * There is no need to handle further interrupts of that type until the
369  * channel is re-assigned. In fact, subsequent handling may cause crashes
370  * because the channel structures are cleaned up when the channel is released.
371  */
disable_hc_int(struct dwc2_hsotg * hsotg,int chnum,u32 intr)372 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
373 {
374 	u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
375 
376 	mask &= ~intr;
377 	dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
378 }
379 
380 /*
381  * Returns the mode of operation, host or device
382  */
dwc2_is_host_mode(struct dwc2_hsotg * hsotg)383 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
384 {
385 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
386 }
dwc2_is_device_mode(struct dwc2_hsotg * hsotg)387 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
388 {
389 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
390 }
391 
392 /*
393  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
394  * are read as 1, they won't clear when written back.
395  */
dwc2_read_hprt0(struct dwc2_hsotg * hsotg)396 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
397 {
398 	u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
399 
400 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
401 	return hprt0;
402 }
403 
dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info * pipe)404 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
405 {
406 	return pipe->ep_num;
407 }
408 
dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info * pipe)409 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
410 {
411 	return pipe->pipe_type;
412 }
413 
dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info * pipe)414 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
415 {
416 	return pipe->mps;
417 }
418 
dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info * pipe)419 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
420 {
421 	return pipe->dev_addr;
422 }
423 
dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info * pipe)424 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
425 {
426 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
427 }
428 
dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info * pipe)429 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
430 {
431 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
432 }
433 
dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info * pipe)434 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
435 {
436 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
437 }
438 
dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info * pipe)439 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
440 {
441 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
442 }
443 
dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info * pipe)444 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
445 {
446 	return pipe->pipe_dir == USB_DIR_IN;
447 }
448 
dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info * pipe)449 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
450 {
451 	return !dwc2_hcd_is_pipe_in(pipe);
452 }
453 
454 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq);
455 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
456 
457 /* Transaction Execution Functions */
458 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
459 						struct dwc2_hsotg *hsotg);
460 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
461 					enum dwc2_transaction_type tr_type);
462 
463 /* Schedule Queue Functions */
464 /* Implemented in hcd_queue.c */
465 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
466 extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
467 					  struct dwc2_hcd_urb *urb,
468 					  gfp_t mem_flags);
469 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
470 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
471 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
472 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
473 				   int sched_csplit);
474 
475 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
476 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
477 			    struct dwc2_qh *qh);
478 
479 /* Unlinks and frees a QTD */
dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg * hsotg,struct dwc2_qtd * qtd,struct dwc2_qh * qh)480 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
481 						struct dwc2_qtd *qtd,
482 						struct dwc2_qh *qh)
483 {
484 	list_del(&qtd->qtd_list_entry);
485 	kfree(qtd);
486 }
487 
488 /* Descriptor DMA support functions */
489 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
490 				     struct dwc2_qh *qh);
491 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
492 					struct dwc2_host_chan *chan, int chnum,
493 					enum dwc2_halt_status halt_status);
494 
495 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
496 				 gfp_t mem_flags);
497 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
498 
499 /* Check if QH is non-periodic */
500 #define dwc2_qh_is_non_per(_qh_ptr_) \
501 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
502 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
503 
504 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
dbg_hc(struct dwc2_host_chan * hc)505 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
dbg_qh(struct dwc2_qh * qh)506 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
dbg_urb(struct urb * urb)507 static inline bool dbg_urb(struct urb *urb) { return true; }
dbg_perio(void)508 static inline bool dbg_perio(void) { return true; }
509 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
dbg_hc(struct dwc2_host_chan * hc)510 static inline bool dbg_hc(struct dwc2_host_chan *hc)
511 {
512 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
513 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
514 }
515 
dbg_qh(struct dwc2_qh * qh)516 static inline bool dbg_qh(struct dwc2_qh *qh)
517 {
518 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
519 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
520 }
521 
dbg_urb(struct urb * urb)522 static inline bool dbg_urb(struct urb *urb)
523 {
524 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
525 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
526 }
527 
dbg_perio(void)528 static inline bool dbg_perio(void) { return false; }
529 #endif
530 
531 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
532 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
533 
534 /* Packet size for any kind of endpoint descriptor */
535 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
536 
537 /*
538  * Returns true if frame1 is less than or equal to frame2. The comparison is
539  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
540  * frame number when the max frame number is reached.
541  */
dwc2_frame_num_le(u16 frame1,u16 frame2)542 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
543 {
544 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
545 }
546 
547 /*
548  * Returns true if frame1 is greater than frame2. The comparison is done
549  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
550  * number when the max frame number is reached.
551  */
dwc2_frame_num_gt(u16 frame1,u16 frame2)552 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
553 {
554 	return (frame1 != frame2) &&
555 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
556 }
557 
558 /*
559  * Increments frame by the amount specified by inc. The addition is done
560  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
561  */
dwc2_frame_num_inc(u16 frame,u16 inc)562 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
563 {
564 	return (frame + inc) & HFNUM_MAX_FRNUM;
565 }
566 
dwc2_full_frame_num(u16 frame)567 static inline u16 dwc2_full_frame_num(u16 frame)
568 {
569 	return (frame & HFNUM_MAX_FRNUM) >> 3;
570 }
571 
dwc2_micro_frame_num(u16 frame)572 static inline u16 dwc2_micro_frame_num(u16 frame)
573 {
574 	return frame & 0x7;
575 }
576 
577 /*
578  * Returns the Core Interrupt Status register contents, ANDed with the Core
579  * Interrupt Mask register contents
580  */
dwc2_read_core_intr(struct dwc2_hsotg * hsotg)581 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
582 {
583 	return dwc2_readl(hsotg->regs + GINTSTS) &
584 	       dwc2_readl(hsotg->regs + GINTMSK);
585 }
586 
dwc2_hcd_urb_get_status(struct dwc2_hcd_urb * dwc2_urb)587 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
588 {
589 	return dwc2_urb->status;
590 }
591 
dwc2_hcd_urb_get_actual_length(struct dwc2_hcd_urb * dwc2_urb)592 static inline u32 dwc2_hcd_urb_get_actual_length(
593 		struct dwc2_hcd_urb *dwc2_urb)
594 {
595 	return dwc2_urb->actual_length;
596 }
597 
dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb * dwc2_urb)598 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
599 {
600 	return dwc2_urb->error_count;
601 }
602 
dwc2_hcd_urb_set_iso_desc_params(struct dwc2_hcd_urb * dwc2_urb,int desc_num,u32 offset,u32 length)603 static inline void dwc2_hcd_urb_set_iso_desc_params(
604 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
605 		u32 length)
606 {
607 	dwc2_urb->iso_descs[desc_num].offset = offset;
608 	dwc2_urb->iso_descs[desc_num].length = length;
609 }
610 
dwc2_hcd_urb_get_iso_desc_status(struct dwc2_hcd_urb * dwc2_urb,int desc_num)611 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
612 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
613 {
614 	return dwc2_urb->iso_descs[desc_num].status;
615 }
616 
dwc2_hcd_urb_get_iso_desc_actual_length(struct dwc2_hcd_urb * dwc2_urb,int desc_num)617 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
618 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
619 {
620 	return dwc2_urb->iso_descs[desc_num].actual_length;
621 }
622 
dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep)623 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
624 						  struct usb_host_endpoint *ep)
625 {
626 	struct dwc2_qh *qh = ep->hcpriv;
627 
628 	if (qh && !list_empty(&qh->qh_list_entry))
629 		return 1;
630 
631 	return 0;
632 }
633 
dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep)634 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
635 					    struct usb_host_endpoint *ep)
636 {
637 	struct dwc2_qh *qh = ep->hcpriv;
638 
639 	if (!qh) {
640 		WARN_ON(1);
641 		return 0;
642 	}
643 
644 	return qh->usecs;
645 }
646 
647 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
648 				      struct dwc2_host_chan *chan, int chnum,
649 				      struct dwc2_qtd *qtd);
650 
651 /* HCD Core API */
652 
653 /**
654  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
655  *
656  * @hsotg: The DWC2 HCD
657  *
658  * Returns IRQ_HANDLED if interrupt is handled
659  * Return IRQ_NONE if interrupt is not handled
660  */
661 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
662 
663 /**
664  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
665  *
666  * @hsotg: The DWC2 HCD
667  */
668 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
669 
670 /**
671  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
672  * and 0 otherwise
673  *
674  * @hsotg: The DWC2 HCD
675  */
676 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
677 
678 /**
679  * dwc2_hcd_dump_state() - Dumps hsotg state
680  *
681  * @hsotg: The DWC2 HCD
682  *
683  * NOTE: This function will be removed once the peripheral controller code
684  * is integrated and the driver is stable
685  */
686 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
687 
688 /**
689  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
690  *
691  * @hsotg: The DWC2 HCD
692  *
693  * This can be used to determine average interrupt latency. Frame remaining is
694  * also shown for start transfer and two additional sample points.
695  *
696  * NOTE: This function will be removed once the peripheral controller code
697  * is integrated and the driver is stable
698  */
699 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
700 
701 /* URB interface */
702 
703 /* Transfer flags */
704 #define URB_GIVEBACK_ASAP	0x1
705 #define URB_SEND_ZERO_PACKET	0x2
706 
707 /* Host driver callbacks */
708 
709 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
710 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
711 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
712 			       int *hub_addr, int *hub_port);
713 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
714 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
715 			       int status);
716 
717 #ifdef DEBUG
718 /*
719  * Macro to sample the remaining PHY clocks left in the current frame. This
720  * may be used during debugging to determine the average time it takes to
721  * execute sections of code. There are two possible sample points, "a" and
722  * "b", so the _letter_ argument must be one of these values.
723  *
724  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
725  * example, "cat /sys/devices/lm0/hcd_frrem".
726  */
727 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
728 do {									\
729 	struct hfnum_data _hfnum_;					\
730 	struct dwc2_qtd *_qtd_;						\
731 									\
732 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
733 			   qtd_list_entry);				\
734 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
735 	    (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) {	\
736 		_hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM);	\
737 		switch (_hfnum_.b.frnum & 0x7) {			\
738 		case 7:							\
739 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
740 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
741 				_hfnum_.b.frrem;			\
742 			break;						\
743 		case 0:							\
744 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
745 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
746 				_hfnum_.b.frrem;			\
747 			break;						\
748 		default:						\
749 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
750 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
751 				_hfnum_.b.frrem;			\
752 			break;						\
753 		}							\
754 	}								\
755 } while (0)
756 #else
757 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
758 #endif
759 
760 #endif /* __DWC2_HCD_H__ */
761