1 /*
2 * hcd.h - DesignWare HS OTG Controller host-mode declarations
3 *
4 * Copyright (C) 2004-2013 Synopsys, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
18 *
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 */
36 #ifndef __DWC2_HCD_H__
37 #define __DWC2_HCD_H__
38
39 /*
40 * This file contains the structures, constants, and interfaces for the
41 * Host Contoller Driver (HCD)
42 *
43 * The Host Controller Driver (HCD) is responsible for translating requests
44 * from the USB Driver into the appropriate actions on the DWC_otg controller.
45 * It isolates the USBD from the specifics of the controller by providing an
46 * API to the USBD.
47 */
48
49 struct dwc2_qh;
50
51 /**
52 * struct dwc2_host_chan - Software host channel descriptor
53 *
54 * @hc_num: Host channel number, used for register address lookup
55 * @dev_addr: Address of the device
56 * @ep_num: Endpoint of the device
57 * @ep_is_in: Endpoint direction
58 * @speed: Device speed. One of the following values:
59 * - USB_SPEED_LOW
60 * - USB_SPEED_FULL
61 * - USB_SPEED_HIGH
62 * @ep_type: Endpoint type. One of the following values:
63 * - USB_ENDPOINT_XFER_CONTROL: 0
64 * - USB_ENDPOINT_XFER_ISOC: 1
65 * - USB_ENDPOINT_XFER_BULK: 2
66 * - USB_ENDPOINT_XFER_INTR: 3
67 * @max_packet: Max packet size in bytes
68 * @data_pid_start: PID for initial transaction.
69 * 0: DATA0
70 * 1: DATA2
71 * 2: DATA1
72 * 3: MDATA (non-Control EP),
73 * SETUP (Control EP)
74 * @multi_count: Number of additional periodic transactions per
75 * (micro)frame
76 * @xfer_buf: Pointer to current transfer buffer position
77 * @xfer_dma: DMA address of xfer_buf
78 * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
79 * DWORD aligned
80 * @xfer_len: Total number of bytes to transfer
81 * @xfer_count: Number of bytes transferred so far
82 * @start_pkt_count: Packet count at start of transfer
83 * @xfer_started: True if the transfer has been started
84 * @ping: True if a PING request should be issued on this channel
85 * @error_state: True if the error count for this transaction is non-zero
86 * @halt_on_queue: True if this channel should be halted the next time a
87 * request is queued for the channel. This is necessary in
88 * slave mode if no request queue space is available when
89 * an attempt is made to halt the channel.
90 * @halt_pending: True if the host channel has been halted, but the core
91 * is not finished flushing queued requests
92 * @do_split: Enable split for the channel
93 * @complete_split: Enable complete split
94 * @hub_addr: Address of high speed hub for the split
95 * @hub_port: Port of the low/full speed device for the split
96 * @xact_pos: Split transaction position. One of the following values:
97 * - DWC2_HCSPLT_XACTPOS_MID
98 * - DWC2_HCSPLT_XACTPOS_BEGIN
99 * - DWC2_HCSPLT_XACTPOS_END
100 * - DWC2_HCSPLT_XACTPOS_ALL
101 * @requests: Number of requests issued for this channel since it was
102 * assigned to the current transfer (not counting PINGs)
103 * @schinfo: Scheduling micro-frame bitmap
104 * @ntd: Number of transfer descriptors for the transfer
105 * @halt_status: Reason for halting the host channel
106 * @hcint Contents of the HCINT register when the interrupt came
107 * @qh: QH for the transfer being processed by this channel
108 * @hc_list_entry: For linking to list of host channels
109 * @desc_list_addr: Current QH's descriptor list DMA address
110 *
111 * This structure represents the state of a single host channel when acting in
112 * host mode. It contains the data items needed to transfer packets to an
113 * endpoint via a host channel.
114 */
115 struct dwc2_host_chan {
116 u8 hc_num;
117
118 unsigned dev_addr:7;
119 unsigned ep_num:4;
120 unsigned ep_is_in:1;
121 unsigned speed:4;
122 unsigned ep_type:2;
123 unsigned max_packet:11;
124 unsigned data_pid_start:2;
125 #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
126 #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
127 #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
128 #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
129 #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
130
131 unsigned multi_count:2;
132
133 u8 *xfer_buf;
134 dma_addr_t xfer_dma;
135 dma_addr_t align_buf;
136 u32 xfer_len;
137 u32 xfer_count;
138 u16 start_pkt_count;
139 u8 xfer_started;
140 u8 do_ping;
141 u8 error_state;
142 u8 halt_on_queue;
143 u8 halt_pending;
144 u8 do_split;
145 u8 complete_split;
146 u8 hub_addr;
147 u8 hub_port;
148 u8 xact_pos;
149 #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
150 #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
151 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
152 #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
153
154 u8 requests;
155 u8 schinfo;
156 u16 ntd;
157 enum dwc2_halt_status halt_status;
158 u32 hcint;
159 struct dwc2_qh *qh;
160 struct list_head hc_list_entry;
161 dma_addr_t desc_list_addr;
162 };
163
164 struct dwc2_hcd_pipe_info {
165 u8 dev_addr;
166 u8 ep_num;
167 u8 pipe_type;
168 u8 pipe_dir;
169 u16 mps;
170 };
171
172 struct dwc2_hcd_iso_packet_desc {
173 u32 offset;
174 u32 length;
175 u32 actual_length;
176 u32 status;
177 };
178
179 struct dwc2_qtd;
180
181 struct dwc2_hcd_urb {
182 void *priv;
183 struct dwc2_qtd *qtd;
184 void *buf;
185 dma_addr_t dma;
186 void *setup_packet;
187 dma_addr_t setup_dma;
188 u32 length;
189 u32 actual_length;
190 u32 status;
191 u32 error_count;
192 u32 packet_count;
193 u32 flags;
194 u16 interval;
195 struct dwc2_hcd_pipe_info pipe_info;
196 struct dwc2_hcd_iso_packet_desc iso_descs[0];
197 };
198
199 /* Phases for control transfers */
200 enum dwc2_control_phase {
201 DWC2_CONTROL_SETUP,
202 DWC2_CONTROL_DATA,
203 DWC2_CONTROL_STATUS,
204 };
205
206 /* Transaction types */
207 enum dwc2_transaction_type {
208 DWC2_TRANSACTION_NONE,
209 DWC2_TRANSACTION_PERIODIC,
210 DWC2_TRANSACTION_NON_PERIODIC,
211 DWC2_TRANSACTION_ALL,
212 };
213
214 /**
215 * struct dwc2_qh - Software queue head structure
216 *
217 * @ep_type: Endpoint type. One of the following values:
218 * - USB_ENDPOINT_XFER_CONTROL
219 * - USB_ENDPOINT_XFER_BULK
220 * - USB_ENDPOINT_XFER_INT
221 * - USB_ENDPOINT_XFER_ISOC
222 * @ep_is_in: Endpoint direction
223 * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
224 * @dev_speed: Device speed. One of the following values:
225 * - USB_SPEED_LOW
226 * - USB_SPEED_FULL
227 * - USB_SPEED_HIGH
228 * @data_toggle: Determines the PID of the next data packet for
229 * non-controltransfers. Ignored for control transfers.
230 * One of the following values:
231 * - DWC2_HC_PID_DATA0
232 * - DWC2_HC_PID_DATA1
233 * @ping_state: Ping state
234 * @do_split: Full/low speed endpoint on high-speed hub requires split
235 * @td_first: Index of first activated isochronous transfer descriptor
236 * @td_last: Index of last activated isochronous transfer descriptor
237 * @usecs: Bandwidth in microseconds per (micro)frame
238 * @interval: Interval between transfers in (micro)frames
239 * @sched_frame: (Micro)frame to initialize a periodic transfer.
240 * The transfer executes in the following (micro)frame.
241 * @frame_usecs: Internal variable used by the microframe scheduler
242 * @start_split_frame: (Micro)frame at which last start split was initialized
243 * @ntd: Actual number of transfer descriptors in a list
244 * @dw_align_buf: Used instead of original buffer if its physical address
245 * is not dword-aligned
246 * @dw_align_buf_size: Size of dw_align_buf
247 * @dw_align_buf_dma: DMA address for dw_align_buf
248 * @qtd_list: List of QTDs for this QH
249 * @channel: Host channel currently processing transfers for this QH
250 * @qh_list_entry: Entry for QH in either the periodic or non-periodic
251 * schedule
252 * @desc_list: List of transfer descriptors
253 * @desc_list_dma: Physical address of desc_list
254 * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
255 * descriptor and indicates original XferSize value for the
256 * descriptor
257 * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
258 *
259 * A Queue Head (QH) holds the static characteristics of an endpoint and
260 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
261 * be entered in either the non-periodic or periodic schedule.
262 */
263 struct dwc2_qh {
264 u8 ep_type;
265 u8 ep_is_in;
266 u16 maxp;
267 u8 dev_speed;
268 u8 data_toggle;
269 u8 ping_state;
270 u8 do_split;
271 u8 td_first;
272 u8 td_last;
273 u16 usecs;
274 u16 interval;
275 u16 sched_frame;
276 u16 frame_usecs[8];
277 u16 start_split_frame;
278 u16 ntd;
279 u8 *dw_align_buf;
280 int dw_align_buf_size;
281 dma_addr_t dw_align_buf_dma;
282 struct list_head qtd_list;
283 struct dwc2_host_chan *channel;
284 struct list_head qh_list_entry;
285 struct dwc2_hcd_dma_desc *desc_list;
286 dma_addr_t desc_list_dma;
287 u32 *n_bytes;
288 unsigned tt_buffer_dirty:1;
289 };
290
291 /**
292 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
293 *
294 * @control_phase: Current phase for control transfers (Setup, Data, or
295 * Status)
296 * @in_process: Indicates if this QTD is currently processed by HW
297 * @data_toggle: Determines the PID of the next data packet for the
298 * data phase of control transfers. Ignored for other
299 * transfer types. One of the following values:
300 * - DWC2_HC_PID_DATA0
301 * - DWC2_HC_PID_DATA1
302 * @complete_split: Keeps track of the current split type for FS/LS
303 * endpoints on a HS Hub
304 * @isoc_split_pos: Position of the ISOC split in full/low speed
305 * @isoc_frame_index: Index of the next frame descriptor for an isochronous
306 * transfer. A frame descriptor describes the buffer
307 * position and length of the data to be transferred in the
308 * next scheduled (micro)frame of an isochronous transfer.
309 * It also holds status for that transaction. The frame
310 * index starts at 0.
311 * @isoc_split_offset: Position of the ISOC split in the buffer for the
312 * current frame
313 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
314 * @error_count: Holds the number of bus errors that have occurred for
315 * a transaction within this transfer
316 * @n_desc: Number of DMA descriptors for this QTD
317 * @isoc_frame_index_last: Last activated frame (packet) index, used in
318 * descriptor DMA mode only
319 * @urb: URB for this transfer
320 * @qh: Queue head for this QTD
321 * @qtd_list_entry: For linking to the QH's list of QTDs
322 *
323 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
324 * interrupt, or isochronous transfer. A single QTD is created for each URB
325 * (of one of these types) submitted to the HCD. The transfer associated with
326 * a QTD may require one or multiple transactions.
327 *
328 * A QTD is linked to a Queue Head, which is entered in either the
329 * non-periodic or periodic schedule for execution. When a QTD is chosen for
330 * execution, some or all of its transactions may be executed. After
331 * execution, the state of the QTD is updated. The QTD may be retired if all
332 * its transactions are complete or if an error occurred. Otherwise, it
333 * remains in the schedule so more transactions can be executed later.
334 */
335 struct dwc2_qtd {
336 enum dwc2_control_phase control_phase;
337 u8 in_process;
338 u8 data_toggle;
339 u8 complete_split;
340 u8 isoc_split_pos;
341 u16 isoc_frame_index;
342 u16 isoc_split_offset;
343 u32 ssplit_out_xfer_count;
344 u8 error_count;
345 u8 n_desc;
346 u16 isoc_frame_index_last;
347 struct dwc2_hcd_urb *urb;
348 struct dwc2_qh *qh;
349 struct list_head qtd_list_entry;
350 };
351
352 #ifdef DEBUG
353 struct hc_xfer_info {
354 struct dwc2_hsotg *hsotg;
355 struct dwc2_host_chan *chan;
356 };
357 #endif
358
359 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
dwc2_hsotg_to_hcd(struct dwc2_hsotg * hsotg)360 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
361 {
362 return (struct usb_hcd *)hsotg->priv;
363 }
364
365 /*
366 * Inline used to disable one channel interrupt. Channel interrupts are
367 * disabled when the channel is halted or released by the interrupt handler.
368 * There is no need to handle further interrupts of that type until the
369 * channel is re-assigned. In fact, subsequent handling may cause crashes
370 * because the channel structures are cleaned up when the channel is released.
371 */
disable_hc_int(struct dwc2_hsotg * hsotg,int chnum,u32 intr)372 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
373 {
374 u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
375
376 mask &= ~intr;
377 dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
378 }
379
380 /*
381 * Returns the mode of operation, host or device
382 */
dwc2_is_host_mode(struct dwc2_hsotg * hsotg)383 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
384 {
385 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
386 }
dwc2_is_device_mode(struct dwc2_hsotg * hsotg)387 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
388 {
389 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
390 }
391
392 /*
393 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
394 * are read as 1, they won't clear when written back.
395 */
dwc2_read_hprt0(struct dwc2_hsotg * hsotg)396 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
397 {
398 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
399
400 hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
401 return hprt0;
402 }
403
dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info * pipe)404 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
405 {
406 return pipe->ep_num;
407 }
408
dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info * pipe)409 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
410 {
411 return pipe->pipe_type;
412 }
413
dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info * pipe)414 static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
415 {
416 return pipe->mps;
417 }
418
dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info * pipe)419 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
420 {
421 return pipe->dev_addr;
422 }
423
dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info * pipe)424 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
425 {
426 return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
427 }
428
dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info * pipe)429 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
430 {
431 return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
432 }
433
dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info * pipe)434 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
435 {
436 return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
437 }
438
dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info * pipe)439 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
440 {
441 return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
442 }
443
dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info * pipe)444 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
445 {
446 return pipe->pipe_dir == USB_DIR_IN;
447 }
448
dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info * pipe)449 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
450 {
451 return !dwc2_hcd_is_pipe_in(pipe);
452 }
453
454 extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq);
455 extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
456
457 /* Transaction Execution Functions */
458 extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
459 struct dwc2_hsotg *hsotg);
460 extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
461 enum dwc2_transaction_type tr_type);
462
463 /* Schedule Queue Functions */
464 /* Implemented in hcd_queue.c */
465 extern void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg);
466 extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
467 struct dwc2_hcd_urb *urb,
468 gfp_t mem_flags);
469 extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
470 extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
471 extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
472 extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
473 int sched_csplit);
474
475 extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
476 extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
477 struct dwc2_qh *qh);
478
479 /* Unlinks and frees a QTD */
dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg * hsotg,struct dwc2_qtd * qtd,struct dwc2_qh * qh)480 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
481 struct dwc2_qtd *qtd,
482 struct dwc2_qh *qh)
483 {
484 list_del(&qtd->qtd_list_entry);
485 kfree(qtd);
486 }
487
488 /* Descriptor DMA support functions */
489 extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
490 struct dwc2_qh *qh);
491 extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
492 struct dwc2_host_chan *chan, int chnum,
493 enum dwc2_halt_status halt_status);
494
495 extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
496 gfp_t mem_flags);
497 extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
498
499 /* Check if QH is non-periodic */
500 #define dwc2_qh_is_non_per(_qh_ptr_) \
501 ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
502 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
503
504 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
dbg_hc(struct dwc2_host_chan * hc)505 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
dbg_qh(struct dwc2_qh * qh)506 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
dbg_urb(struct urb * urb)507 static inline bool dbg_urb(struct urb *urb) { return true; }
dbg_perio(void)508 static inline bool dbg_perio(void) { return true; }
509 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
dbg_hc(struct dwc2_host_chan * hc)510 static inline bool dbg_hc(struct dwc2_host_chan *hc)
511 {
512 return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
513 hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
514 }
515
dbg_qh(struct dwc2_qh * qh)516 static inline bool dbg_qh(struct dwc2_qh *qh)
517 {
518 return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
519 qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
520 }
521
dbg_urb(struct urb * urb)522 static inline bool dbg_urb(struct urb *urb)
523 {
524 return usb_pipetype(urb->pipe) == PIPE_BULK ||
525 usb_pipetype(urb->pipe) == PIPE_CONTROL;
526 }
527
dbg_perio(void)528 static inline bool dbg_perio(void) { return false; }
529 #endif
530
531 /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
532 #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
533
534 /* Packet size for any kind of endpoint descriptor */
535 #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
536
537 /*
538 * Returns true if frame1 is less than or equal to frame2. The comparison is
539 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
540 * frame number when the max frame number is reached.
541 */
dwc2_frame_num_le(u16 frame1,u16 frame2)542 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
543 {
544 return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
545 }
546
547 /*
548 * Returns true if frame1 is greater than frame2. The comparison is done
549 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
550 * number when the max frame number is reached.
551 */
dwc2_frame_num_gt(u16 frame1,u16 frame2)552 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
553 {
554 return (frame1 != frame2) &&
555 ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
556 }
557
558 /*
559 * Increments frame by the amount specified by inc. The addition is done
560 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
561 */
dwc2_frame_num_inc(u16 frame,u16 inc)562 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
563 {
564 return (frame + inc) & HFNUM_MAX_FRNUM;
565 }
566
dwc2_full_frame_num(u16 frame)567 static inline u16 dwc2_full_frame_num(u16 frame)
568 {
569 return (frame & HFNUM_MAX_FRNUM) >> 3;
570 }
571
dwc2_micro_frame_num(u16 frame)572 static inline u16 dwc2_micro_frame_num(u16 frame)
573 {
574 return frame & 0x7;
575 }
576
577 /*
578 * Returns the Core Interrupt Status register contents, ANDed with the Core
579 * Interrupt Mask register contents
580 */
dwc2_read_core_intr(struct dwc2_hsotg * hsotg)581 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
582 {
583 return dwc2_readl(hsotg->regs + GINTSTS) &
584 dwc2_readl(hsotg->regs + GINTMSK);
585 }
586
dwc2_hcd_urb_get_status(struct dwc2_hcd_urb * dwc2_urb)587 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
588 {
589 return dwc2_urb->status;
590 }
591
dwc2_hcd_urb_get_actual_length(struct dwc2_hcd_urb * dwc2_urb)592 static inline u32 dwc2_hcd_urb_get_actual_length(
593 struct dwc2_hcd_urb *dwc2_urb)
594 {
595 return dwc2_urb->actual_length;
596 }
597
dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb * dwc2_urb)598 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
599 {
600 return dwc2_urb->error_count;
601 }
602
dwc2_hcd_urb_set_iso_desc_params(struct dwc2_hcd_urb * dwc2_urb,int desc_num,u32 offset,u32 length)603 static inline void dwc2_hcd_urb_set_iso_desc_params(
604 struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
605 u32 length)
606 {
607 dwc2_urb->iso_descs[desc_num].offset = offset;
608 dwc2_urb->iso_descs[desc_num].length = length;
609 }
610
dwc2_hcd_urb_get_iso_desc_status(struct dwc2_hcd_urb * dwc2_urb,int desc_num)611 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
612 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
613 {
614 return dwc2_urb->iso_descs[desc_num].status;
615 }
616
dwc2_hcd_urb_get_iso_desc_actual_length(struct dwc2_hcd_urb * dwc2_urb,int desc_num)617 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
618 struct dwc2_hcd_urb *dwc2_urb, int desc_num)
619 {
620 return dwc2_urb->iso_descs[desc_num].actual_length;
621 }
622
dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep)623 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
624 struct usb_host_endpoint *ep)
625 {
626 struct dwc2_qh *qh = ep->hcpriv;
627
628 if (qh && !list_empty(&qh->qh_list_entry))
629 return 1;
630
631 return 0;
632 }
633
dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep)634 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
635 struct usb_host_endpoint *ep)
636 {
637 struct dwc2_qh *qh = ep->hcpriv;
638
639 if (!qh) {
640 WARN_ON(1);
641 return 0;
642 }
643
644 return qh->usecs;
645 }
646
647 extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
648 struct dwc2_host_chan *chan, int chnum,
649 struct dwc2_qtd *qtd);
650
651 /* HCD Core API */
652
653 /**
654 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
655 *
656 * @hsotg: The DWC2 HCD
657 *
658 * Returns IRQ_HANDLED if interrupt is handled
659 * Return IRQ_NONE if interrupt is not handled
660 */
661 extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
662
663 /**
664 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
665 *
666 * @hsotg: The DWC2 HCD
667 */
668 extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
669
670 /**
671 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
672 * and 0 otherwise
673 *
674 * @hsotg: The DWC2 HCD
675 */
676 extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
677
678 /**
679 * dwc2_hcd_dump_state() - Dumps hsotg state
680 *
681 * @hsotg: The DWC2 HCD
682 *
683 * NOTE: This function will be removed once the peripheral controller code
684 * is integrated and the driver is stable
685 */
686 extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
687
688 /**
689 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
690 *
691 * @hsotg: The DWC2 HCD
692 *
693 * This can be used to determine average interrupt latency. Frame remaining is
694 * also shown for start transfer and two additional sample points.
695 *
696 * NOTE: This function will be removed once the peripheral controller code
697 * is integrated and the driver is stable
698 */
699 extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
700
701 /* URB interface */
702
703 /* Transfer flags */
704 #define URB_GIVEBACK_ASAP 0x1
705 #define URB_SEND_ZERO_PACKET 0x2
706
707 /* Host driver callbacks */
708
709 extern void dwc2_host_start(struct dwc2_hsotg *hsotg);
710 extern void dwc2_host_disconnect(struct dwc2_hsotg *hsotg);
711 extern void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
712 int *hub_addr, int *hub_port);
713 extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
714 extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
715 int status);
716
717 #ifdef DEBUG
718 /*
719 * Macro to sample the remaining PHY clocks left in the current frame. This
720 * may be used during debugging to determine the average time it takes to
721 * execute sections of code. There are two possible sample points, "a" and
722 * "b", so the _letter_ argument must be one of these values.
723 *
724 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
725 * example, "cat /sys/devices/lm0/hcd_frrem".
726 */
727 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
728 do { \
729 struct hfnum_data _hfnum_; \
730 struct dwc2_qtd *_qtd_; \
731 \
732 _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
733 qtd_list_entry); \
734 if (usb_pipeint(_qtd_->urb->pipe) && \
735 (_qh_)->start_split_frame != 0 && !_qtd_->complete_split) { \
736 _hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM); \
737 switch (_hfnum_.b.frnum & 0x7) { \
738 case 7: \
739 (_hcd_)->hfnum_7_samples_##_letter_++; \
740 (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
741 _hfnum_.b.frrem; \
742 break; \
743 case 0: \
744 (_hcd_)->hfnum_0_samples_##_letter_++; \
745 (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
746 _hfnum_.b.frrem; \
747 break; \
748 default: \
749 (_hcd_)->hfnum_other_samples_##_letter_++; \
750 (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
751 _hfnum_.b.frrem; \
752 break; \
753 } \
754 } \
755 } while (0)
756 #else
757 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
758 #endif
759
760 #endif /* __DWC2_HCD_H__ */
761