• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005-2012 Imagination Technologies Ltd.
3  *
4  * This file contains the architecture-dependant parts of system setup.
5  *
6  */
7 
8 #include <linux/export.h>
9 #include <linux/bootmem.h>
10 #include <linux/console.h>
11 #include <linux/cpu.h>
12 #include <linux/delay.h>
13 #include <linux/errno.h>
14 #include <linux/fs.h>
15 #include <linux/genhd.h>
16 #include <linux/init.h>
17 #include <linux/initrd.h>
18 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/memblock.h>
21 #include <linux/mm.h>
22 #include <linux/of_fdt.h>
23 #include <linux/of_platform.h>
24 #include <linux/pfn.h>
25 #include <linux/root_dev.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/start_kernel.h>
29 #include <linux/string.h>
30 
31 #include <asm/cachepart.h>
32 #include <asm/clock.h>
33 #include <asm/core_reg.h>
34 #include <asm/cpu.h>
35 #include <asm/da.h>
36 #include <asm/highmem.h>
37 #include <asm/hwthread.h>
38 #include <asm/l2cache.h>
39 #include <asm/mach/arch.h>
40 #include <asm/metag_mem.h>
41 #include <asm/metag_regs.h>
42 #include <asm/mmu.h>
43 #include <asm/mmzone.h>
44 #include <asm/processor.h>
45 #include <asm/sections.h>
46 #include <asm/setup.h>
47 #include <asm/traps.h>
48 
49 /* Priv protect as many registers as possible. */
50 #define DEFAULT_PRIV	(TXPRIVEXT_COPRO_BITS		| \
51 			 TXPRIVEXT_TXTRIGGER_BIT	| \
52 			 TXPRIVEXT_TXGBLCREG_BIT	| \
53 			 TXPRIVEXT_ILOCK_BIT		| \
54 			 TXPRIVEXT_TXITACCYC_BIT	| \
55 			 TXPRIVEXT_TXDIVTIME_BIT	| \
56 			 TXPRIVEXT_TXAMAREGX_BIT	| \
57 			 TXPRIVEXT_TXTIMERI_BIT		| \
58 			 TXPRIVEXT_TXSTATUS_BIT		| \
59 			 TXPRIVEXT_TXDISABLE_BIT)
60 
61 /* Meta2 specific bits. */
62 #ifdef CONFIG_METAG_META12
63 #define META2_PRIV	0
64 #else
65 #define META2_PRIV	(TXPRIVEXT_TXTIMER_BIT		| \
66 			 TXPRIVEXT_TRACE_BIT)
67 #endif
68 
69 /* Unaligned access checking bits. */
70 #ifdef CONFIG_METAG_UNALIGNED
71 #define UNALIGNED_PRIV	TXPRIVEXT_ALIGNREW_BIT
72 #else
73 #define UNALIGNED_PRIV	0
74 #endif
75 
76 #define PRIV_BITS 	(DEFAULT_PRIV			| \
77 			 META2_PRIV			| \
78 			 UNALIGNED_PRIV)
79 
80 /*
81  * Protect access to:
82  * 0x06000000-0x07ffffff Direct mapped region
83  * 0x05000000-0x05ffffff MMU table region (Meta1)
84  * 0x04400000-0x047fffff Cache flush region
85  * 0x84000000-0x87ffffff Core cache memory region (Meta2)
86  *
87  * Allow access to:
88  * 0x80000000-0x81ffffff Core code memory region (Meta2)
89  */
90 #ifdef CONFIG_METAG_META12
91 #define PRIVSYSR_BITS	TXPRIVSYSR_ALL_BITS
92 #else
93 #define PRIVSYSR_BITS	(TXPRIVSYSR_ALL_BITS & ~TXPRIVSYSR_CORECODE_BIT)
94 #endif
95 
96 /* Protect all 0x02xxxxxx and 0x048xxxxx. */
97 #define PIOREG_BITS	0xffffffff
98 
99 /*
100  * Protect all 0x04000xx0 (system events)
101  * except write combiner flush and write fence (system events 4 and 5).
102  */
103 #define PSYREG_BITS	0xfffffffb
104 
105 
106 extern char _heap_start[];
107 
108 #ifdef CONFIG_DA_CONSOLE
109 /* Our early channel based console driver */
110 extern struct console dash_console;
111 #endif
112 
113 const struct machine_desc *machine_desc __initdata;
114 
115 /*
116  * Map a Linux CPU number to a hardware thread ID
117  * In SMP this will be setup with the correct mapping at startup; in UP this
118  * will map to the HW thread on which we are running.
119  */
120 u8 cpu_2_hwthread_id[NR_CPUS] __read_mostly = {
121 	[0 ... NR_CPUS-1] = BAD_HWTHREAD_ID
122 };
123 EXPORT_SYMBOL_GPL(cpu_2_hwthread_id);
124 
125 /*
126  * Map a hardware thread ID to a Linux CPU number
127  * In SMP this will be fleshed out with the correct CPU ID for a particular
128  * hardware thread. In UP this will be initialised with the boot CPU ID.
129  */
130 u8 hwthread_id_2_cpu[4] __read_mostly = {
131 	[0 ... 3] = BAD_CPU_ID
132 };
133 
134 /* The relative offset of the MMU mapped memory (from ldlk or bootloader)
135  * to the real physical memory.  This is needed as we have to use the
136  * physical addresses in the MMU tables (pte entries), and not the virtual
137  * addresses.
138  * This variable is used in the __pa() and __va() macros, and should
139  * probably only be used via them.
140  */
141 unsigned int meta_memoffset;
142 EXPORT_SYMBOL(meta_memoffset);
143 
144 static char __initdata *original_cmd_line;
145 
146 DEFINE_PER_CPU(PTBI, pTBI);
147 
148 /*
149  * Mapping are specified as "CPU_ID:HWTHREAD_ID", e.g.
150  *
151  *	"hwthread_map=0:1,1:2,2:3,3:0"
152  *
153  *	Linux CPU ID	HWTHREAD_ID
154  *	---------------------------
155  *	    0		      1
156  *	    1		      2
157  *	    2		      3
158  *	    3		      0
159  */
parse_hwthread_map(char * p)160 static int __init parse_hwthread_map(char *p)
161 {
162 	int cpu;
163 
164 	while (*p) {
165 		cpu = (*p++) - '0';
166 		if (cpu < 0 || cpu > 9)
167 			goto err_cpu;
168 
169 		p++;		/* skip semi-colon */
170 		cpu_2_hwthread_id[cpu] = (*p++) - '0';
171 		if (cpu_2_hwthread_id[cpu] >= 4)
172 			goto err_thread;
173 		hwthread_id_2_cpu[cpu_2_hwthread_id[cpu]] = cpu;
174 
175 		if (*p == ',')
176 			p++;		/* skip comma */
177 	}
178 
179 	return 0;
180 err_cpu:
181 	pr_err("%s: hwthread_map cpu argument out of range\n", __func__);
182 	return -EINVAL;
183 err_thread:
184 	pr_err("%s: hwthread_map thread argument out of range\n", __func__);
185 	return -EINVAL;
186 }
187 early_param("hwthread_map", parse_hwthread_map);
188 
dump_machine_table(void)189 void __init dump_machine_table(void)
190 {
191 	struct machine_desc *p;
192 	const char **compat;
193 
194 	pr_info("Available machine support:\n\tNAME\t\tCOMPATIBLE LIST\n");
195 	for_each_machine_desc(p) {
196 		pr_info("\t%s\t[", p->name);
197 		for (compat = p->dt_compat; compat && *compat; ++compat)
198 			printk(" '%s'", *compat);
199 		printk(" ]\n");
200 	}
201 
202 	pr_info("\nPlease check your kernel config and/or bootloader.\n");
203 
204 	hard_processor_halt(HALT_PANIC);
205 }
206 
207 #ifdef CONFIG_METAG_HALT_ON_PANIC
metag_panic_event(struct notifier_block * this,unsigned long event,void * ptr)208 static int metag_panic_event(struct notifier_block *this, unsigned long event,
209 			     void *ptr)
210 {
211 	hard_processor_halt(HALT_PANIC);
212 	return NOTIFY_DONE;
213 }
214 
215 static struct notifier_block metag_panic_block = {
216 	metag_panic_event,
217 	NULL,
218 	0
219 };
220 #endif
221 
setup_arch(char ** cmdline_p)222 void __init setup_arch(char **cmdline_p)
223 {
224 	unsigned long start_pfn;
225 	unsigned long text_start = (unsigned long)(&_stext);
226 	unsigned long cpu = smp_processor_id();
227 	unsigned long heap_start, heap_end;
228 	unsigned long start_pte;
229 	PTBI _pTBI;
230 	PTBISEG p_heap;
231 	int heap_id, i;
232 
233 	metag_cache_probe();
234 
235 	metag_da_probe();
236 #ifdef CONFIG_DA_CONSOLE
237 	if (metag_da_enabled()) {
238 		/* An early channel based console driver */
239 		register_console(&dash_console);
240 		add_preferred_console("ttyDA", 1, NULL);
241 	}
242 #endif
243 
244 	/* try interpreting the argument as a device tree */
245 	machine_desc = setup_machine_fdt(original_cmd_line);
246 	/* if it doesn't look like a device tree it must be a command line */
247 	if (!machine_desc) {
248 #ifdef CONFIG_METAG_BUILTIN_DTB
249 		/* try the embedded device tree */
250 		machine_desc = setup_machine_fdt(__dtb_start);
251 		if (!machine_desc)
252 			panic("Invalid embedded device tree.");
253 #else
254 		/* use the default machine description */
255 		machine_desc = default_machine_desc();
256 #endif
257 #ifndef CONFIG_CMDLINE_FORCE
258 		/* append the bootloader cmdline to any builtin fdt cmdline */
259 		if (boot_command_line[0] && original_cmd_line[0])
260 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
261 		strlcat(boot_command_line, original_cmd_line,
262 			COMMAND_LINE_SIZE);
263 #endif
264 	}
265 	setup_meta_clocks(machine_desc->clocks);
266 
267 	*cmdline_p = boot_command_line;
268 	parse_early_param();
269 
270 	/*
271 	 * Make sure we don't alias in dcache or icache
272 	 */
273 	check_for_cache_aliasing(cpu);
274 
275 
276 #ifdef CONFIG_METAG_HALT_ON_PANIC
277 	atomic_notifier_chain_register(&panic_notifier_list,
278 				       &metag_panic_block);
279 #endif
280 
281 #ifdef CONFIG_DUMMY_CONSOLE
282 	conswitchp = &dummy_con;
283 #endif
284 
285 	if (!(__core_reg_get(TXSTATUS) & TXSTATUS_PSTAT_BIT))
286 		panic("Privilege must be enabled for this thread.");
287 
288 	_pTBI = __TBI(TBID_ISTAT_BIT);
289 
290 	per_cpu(pTBI, cpu) = _pTBI;
291 
292 	if (!per_cpu(pTBI, cpu))
293 		panic("No TBI found!");
294 
295 	/*
296 	 * Initialize all interrupt vectors to our copy of __TBIUnExpXXX,
297 	 * rather than the version from the bootloader. This makes call
298 	 * stacks easier to understand and may allow us to unmap the
299 	 * bootloader at some point.
300 	 */
301 	for (i = 0; i <= TBID_SIGNUM_MAX; i++)
302 		_pTBI->fnSigs[i] = __TBIUnExpXXX;
303 
304 	/* A Meta requirement is that the kernel is loaded (virtually)
305 	 * at the PAGE_OFFSET.
306 	 */
307 	if (PAGE_OFFSET != text_start)
308 		panic("Kernel not loaded at PAGE_OFFSET (%#x) but at %#lx.",
309 		      PAGE_OFFSET, text_start);
310 
311 	start_pte = mmu_read_second_level_page(text_start);
312 
313 	/*
314 	 * Kernel pages should have the PRIV bit set by the bootloader.
315 	 */
316 	if (!(start_pte & _PAGE_KERNEL))
317 		panic("kernel pte does not have PRIV set");
318 
319 	/*
320 	 * See __pa and __va in include/asm/page.h.
321 	 * This value is negative when running in local space but the
322 	 * calculations work anyway.
323 	 */
324 	meta_memoffset = text_start - (start_pte & PAGE_MASK);
325 
326 	/* Now lets look at the heap space */
327 	heap_id = (__TBIThreadId() & TBID_THREAD_BITS)
328 		+ TBID_SEG(0, TBID_SEGSCOPE_LOCAL, TBID_SEGTYPE_HEAP);
329 
330 	p_heap = __TBIFindSeg(NULL, heap_id);
331 
332 	if (!p_heap)
333 		panic("Could not find heap from TBI!");
334 
335 	/* The heap begins at the first full page after the kernel data. */
336 	heap_start = (unsigned long) &_heap_start;
337 
338 	/* The heap ends at the end of the heap segment specified with
339 	 * ldlk.
340 	 */
341 	if (is_global_space(text_start)) {
342 		pr_debug("WARNING: running in global space!\n");
343 		heap_end = (unsigned long)p_heap->pGAddr + p_heap->Bytes;
344 	} else {
345 		heap_end = (unsigned long)p_heap->pLAddr + p_heap->Bytes;
346 	}
347 
348 	ROOT_DEV = Root_RAM0;
349 
350 	/* init_mm is the mm struct used for the first task.  It is then
351 	 * cloned for all other tasks spawned from that task.
352 	 *
353 	 * Note - we are using the virtual addresses here.
354 	 */
355 	init_mm.start_code = (unsigned long)(&_stext);
356 	init_mm.end_code = (unsigned long)(&_etext);
357 	init_mm.end_data = (unsigned long)(&_edata);
358 	init_mm.brk = (unsigned long)heap_start;
359 
360 	min_low_pfn = PFN_UP(__pa(text_start));
361 	max_low_pfn = PFN_DOWN(__pa(heap_end));
362 
363 	pfn_base = min_low_pfn;
364 
365 	/* Round max_pfn up to a 4Mb boundary. The free_bootmem_node()
366 	 * call later makes sure to keep the rounded up pages marked reserved.
367 	 */
368 	max_pfn = max_low_pfn + ((1 << MAX_ORDER) - 1);
369 	max_pfn &= ~((1 << MAX_ORDER) - 1);
370 
371 	start_pfn = PFN_UP(__pa(heap_start));
372 
373 	if (min_low_pfn & ((1 << MAX_ORDER) - 1)) {
374 		/* Theoretically, we could expand the space that the
375 		 * bootmem allocator covers - much as we do for the
376 		 * 'high' address, and then tell the bootmem system
377 		 * that the lowest chunk is 'not available'.  Right
378 		 * now it is just much easier to constrain the
379 		 * user to always MAX_ORDER align their kernel space.
380 		 */
381 
382 		panic("Kernel must be %d byte aligned, currently at %#lx.",
383 		      1 << (MAX_ORDER + PAGE_SHIFT),
384 		      min_low_pfn << PAGE_SHIFT);
385 	}
386 
387 #ifdef CONFIG_HIGHMEM
388 	highstart_pfn = highend_pfn = max_pfn;
389 	high_memory = (void *) __va(PFN_PHYS(highstart_pfn));
390 #else
391 	high_memory = (void *)__va(PFN_PHYS(max_pfn));
392 #endif
393 
394 	paging_init(heap_end);
395 
396 	setup_priv();
397 
398 	/* Setup the boot cpu's mapping. The rest will be setup below. */
399 	cpu_2_hwthread_id[smp_processor_id()] = hard_processor_id();
400 	hwthread_id_2_cpu[hard_processor_id()] = smp_processor_id();
401 
402 	unflatten_and_copy_device_tree();
403 
404 #ifdef CONFIG_SMP
405 	smp_init_cpus();
406 #endif
407 
408 	if (machine_desc->init_early)
409 		machine_desc->init_early();
410 }
411 
customize_machine(void)412 static int __init customize_machine(void)
413 {
414 	/* customizes platform devices, or adds new ones */
415 	if (machine_desc->init_machine)
416 		machine_desc->init_machine();
417 	else
418 		of_platform_populate(NULL, of_default_bus_match_table, NULL,
419 				     NULL);
420 	return 0;
421 }
422 arch_initcall(customize_machine);
423 
init_machine_late(void)424 static int __init init_machine_late(void)
425 {
426 	if (machine_desc->init_late)
427 		machine_desc->init_late();
428 	return 0;
429 }
430 late_initcall(init_machine_late);
431 
432 #ifdef CONFIG_PROC_FS
433 /*
434  *	Get CPU information for use by the procfs.
435  */
get_cpu_capabilities(unsigned int txenable)436 static const char *get_cpu_capabilities(unsigned int txenable)
437 {
438 #ifdef CONFIG_METAG_META21
439 	/* See CORE_ID in META HTP.GP TRM - Architecture Overview 2.1.238 */
440 	int coreid = metag_in32(METAC_CORE_ID);
441 	unsigned int dsp_type = (coreid >> 3) & 7;
442 	unsigned int fpu_type = (coreid >> 7) & 3;
443 
444 	switch (dsp_type | fpu_type << 3) {
445 	case (0x00): return "EDSP";
446 	case (0x01): return "DSP";
447 	case (0x08): return "EDSP+LFPU";
448 	case (0x09): return "DSP+LFPU";
449 	case (0x10): return "EDSP+FPU";
450 	case (0x11): return "DSP+FPU";
451 	}
452 	return "UNKNOWN";
453 
454 #else
455 	if (!(txenable & TXENABLE_CLASS_BITS))
456 		return "DSP";
457 	else
458 		return "";
459 #endif
460 }
461 
show_cpuinfo(struct seq_file * m,void * v)462 static int show_cpuinfo(struct seq_file *m, void *v)
463 {
464 	const char *cpu;
465 	unsigned int txenable, thread_id, major, minor;
466 	unsigned long clockfreq = get_coreclock();
467 #ifdef CONFIG_SMP
468 	int i;
469 	unsigned long lpj;
470 #endif
471 
472 	cpu = "META";
473 
474 	txenable = __core_reg_get(TXENABLE);
475 	major = (txenable & TXENABLE_MAJOR_REV_BITS) >> TXENABLE_MAJOR_REV_S;
476 	minor = (txenable & TXENABLE_MINOR_REV_BITS) >> TXENABLE_MINOR_REV_S;
477 	thread_id = (txenable >> 8) & 0x3;
478 
479 #ifdef CONFIG_SMP
480 	for_each_online_cpu(i) {
481 		lpj = per_cpu(cpu_data, i).loops_per_jiffy;
482 		txenable = core_reg_read(TXUCT_ID, TXENABLE_REGNUM,
483 							cpu_2_hwthread_id[i]);
484 
485 		seq_printf(m, "CPU:\t\t%s %d.%d (thread %d)\n"
486 			      "Clocking:\t%lu.%1luMHz\n"
487 			      "BogoMips:\t%lu.%02lu\n"
488 			      "Calibration:\t%lu loops\n"
489 			      "Capabilities:\t%s\n\n",
490 			      cpu, major, minor, i,
491 			      clockfreq / 1000000, (clockfreq / 100000) % 10,
492 			      lpj / (500000 / HZ), (lpj / (5000 / HZ)) % 100,
493 			      lpj,
494 			      get_cpu_capabilities(txenable));
495 	}
496 #else
497 	seq_printf(m, "CPU:\t\t%s %d.%d (thread %d)\n"
498 		   "Clocking:\t%lu.%1luMHz\n"
499 		   "BogoMips:\t%lu.%02lu\n"
500 		   "Calibration:\t%lu loops\n"
501 		   "Capabilities:\t%s\n",
502 		   cpu, major, minor, thread_id,
503 		   clockfreq / 1000000, (clockfreq / 100000) % 10,
504 		   loops_per_jiffy / (500000 / HZ),
505 		   (loops_per_jiffy / (5000 / HZ)) % 100,
506 		   loops_per_jiffy,
507 		   get_cpu_capabilities(txenable));
508 #endif /* CONFIG_SMP */
509 
510 #ifdef CONFIG_METAG_L2C
511 	if (meta_l2c_is_present()) {
512 		seq_printf(m, "L2 cache:\t%s\n"
513 			      "L2 cache size:\t%d KB\n",
514 			      meta_l2c_is_enabled() ? "enabled" : "disabled",
515 			      meta_l2c_size() >> 10);
516 	}
517 #endif
518 	return 0;
519 }
520 
c_start(struct seq_file * m,loff_t * pos)521 static void *c_start(struct seq_file *m, loff_t *pos)
522 {
523 	return (void *)(*pos == 0);
524 }
c_next(struct seq_file * m,void * v,loff_t * pos)525 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
526 {
527 	return NULL;
528 }
c_stop(struct seq_file * m,void * v)529 static void c_stop(struct seq_file *m, void *v)
530 {
531 }
532 const struct seq_operations cpuinfo_op = {
533 	.start = c_start,
534 	.next  = c_next,
535 	.stop  = c_stop,
536 	.show  = show_cpuinfo,
537 };
538 #endif /* CONFIG_PROC_FS */
539 
metag_start_kernel(char * args)540 void __init metag_start_kernel(char *args)
541 {
542 	/* Zero the timer register so timestamps are from the point at
543 	 * which the kernel started running.
544 	 */
545 	__core_reg_set(TXTIMER, 0);
546 
547 	/* Clear the bss. */
548 	memset(__bss_start, 0,
549 	       (unsigned long)__bss_stop - (unsigned long)__bss_start);
550 
551 	/* Remember where these are for use in setup_arch */
552 	original_cmd_line = args;
553 
554 	current_thread_info()->cpu = hard_processor_id();
555 
556 	start_kernel();
557 }
558 
559 /**
560  * setup_priv() - Set up privilege protection registers.
561  *
562  * Set up privilege protection registers such as TXPRIVEXT to prevent userland
563  * from touching our precious registers and sensitive memory areas.
564  */
setup_priv(void)565 void setup_priv(void)
566 {
567 	unsigned int offset = hard_processor_id() << TXPRIVREG_STRIDE_S;
568 
569 	__core_reg_set(TXPRIVEXT, PRIV_BITS);
570 
571 	metag_out32(PRIVSYSR_BITS, T0PRIVSYSR + offset);
572 	metag_out32(PIOREG_BITS,   T0PIOREG   + offset);
573 	metag_out32(PSYREG_BITS,   T0PSYREG   + offset);
574 }
575 
pTBI_get(unsigned int cpu)576 PTBI pTBI_get(unsigned int cpu)
577 {
578 	return per_cpu(pTBI, cpu);
579 }
580 EXPORT_SYMBOL(pTBI_get);
581 
582 #if defined(CONFIG_METAG_DSP) && defined(CONFIG_METAG_FPU)
583 static char capabilities[] = "dsp fpu";
584 #elif defined(CONFIG_METAG_DSP)
585 static char capabilities[] = "dsp";
586 #elif defined(CONFIG_METAG_FPU)
587 static char capabilities[] = "fpu";
588 #else
589 static char capabilities[] = "";
590 #endif
591 
592 static struct ctl_table caps_kern_table[] = {
593 	{
594 		.procname	= "capabilities",
595 		.data		= capabilities,
596 		.maxlen		= sizeof(capabilities),
597 		.mode		= 0444,
598 		.proc_handler	= proc_dostring,
599 	},
600 	{}
601 };
602 
603 static struct ctl_table caps_root_table[] = {
604 	{
605 		.procname	= "kernel",
606 		.mode		= 0555,
607 		.child		= caps_kern_table,
608 	},
609 	{}
610 };
611 
capabilities_register_sysctl(void)612 static int __init capabilities_register_sysctl(void)
613 {
614 	struct ctl_table_header *caps_table_header;
615 
616 	caps_table_header = register_sysctl_table(caps_root_table);
617 	if (!caps_table_header) {
618 		pr_err("Unable to register CAPABILITIES sysctl\n");
619 		return -ENOMEM;
620 	}
621 
622 	return 0;
623 }
624 
625 core_initcall(capabilities_register_sysctl);
626