1 /*
2 * linux/arch/alpha/kernel/smp.c
3 *
4 * 2001-07-09 Phil Ezolt (Phillip.Ezolt@compaq.com)
5 * Renamed modified smp_call_function to smp_call_function_on_cpu()
6 * Created an function that conforms to the old calling convention
7 * of smp_call_function().
8 *
9 * This is helpful for DCPI.
10 *
11 */
12
13 #include <linux/errno.h>
14 #include <linux/kernel.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/threads.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/init.h>
24 #include <linux/delay.h>
25 #include <linux/spinlock.h>
26 #include <linux/irq.h>
27 #include <linux/cache.h>
28 #include <linux/profile.h>
29 #include <linux/bitops.h>
30 #include <linux/cpu.h>
31
32 #include <asm/hwrpb.h>
33 #include <asm/ptrace.h>
34 #include <linux/atomic.h>
35
36 #include <asm/io.h>
37 #include <asm/irq.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/mmu_context.h>
41 #include <asm/tlbflush.h>
42
43 #include "proto.h"
44 #include "irq_impl.h"
45
46
47 #define DEBUG_SMP 0
48 #if DEBUG_SMP
49 #define DBGS(args) printk args
50 #else
51 #define DBGS(args)
52 #endif
53
54 /* A collection of per-processor data. */
55 struct cpuinfo_alpha cpu_data[NR_CPUS];
56 EXPORT_SYMBOL(cpu_data);
57
58 /* A collection of single bit ipi messages. */
59 static struct {
60 unsigned long bits ____cacheline_aligned;
61 } ipi_data[NR_CPUS] __cacheline_aligned;
62
63 enum ipi_message_type {
64 IPI_RESCHEDULE,
65 IPI_CALL_FUNC,
66 IPI_CPU_STOP,
67 };
68
69 /* Set to a secondary's cpuid when it comes online. */
70 static int smp_secondary_alive = 0;
71
72 int smp_num_probed; /* Internal processor count */
73 int smp_num_cpus = 1; /* Number that came online. */
74 EXPORT_SYMBOL(smp_num_cpus);
75
76 /*
77 * Called by both boot and secondaries to move global data into
78 * per-processor storage.
79 */
80 static inline void __init
smp_store_cpu_info(int cpuid)81 smp_store_cpu_info(int cpuid)
82 {
83 cpu_data[cpuid].loops_per_jiffy = loops_per_jiffy;
84 cpu_data[cpuid].last_asn = ASN_FIRST_VERSION;
85 cpu_data[cpuid].need_new_asn = 0;
86 cpu_data[cpuid].asn_lock = 0;
87 }
88
89 /*
90 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
91 */
92 static inline void __init
smp_setup_percpu_timer(int cpuid)93 smp_setup_percpu_timer(int cpuid)
94 {
95 cpu_data[cpuid].prof_counter = 1;
96 cpu_data[cpuid].prof_multiplier = 1;
97 }
98
99 static void __init
wait_boot_cpu_to_stop(int cpuid)100 wait_boot_cpu_to_stop(int cpuid)
101 {
102 unsigned long stop = jiffies + 10*HZ;
103
104 while (time_before(jiffies, stop)) {
105 if (!smp_secondary_alive)
106 return;
107 barrier();
108 }
109
110 printk("wait_boot_cpu_to_stop: FAILED on CPU %d, hanging now\n", cpuid);
111 for (;;)
112 barrier();
113 }
114
115 /*
116 * Where secondaries begin a life of C.
117 */
118 void
smp_callin(void)119 smp_callin(void)
120 {
121 int cpuid = hard_smp_processor_id();
122
123 if (cpu_online(cpuid)) {
124 printk("??, cpu 0x%x already present??\n", cpuid);
125 BUG();
126 }
127 set_cpu_online(cpuid, true);
128
129 /* Turn on machine checks. */
130 wrmces(7);
131
132 /* Set trap vectors. */
133 trap_init();
134
135 /* Set interrupt vector. */
136 wrent(entInt, 0);
137
138 /* Get our local ticker going. */
139 smp_setup_percpu_timer(cpuid);
140 init_clockevent();
141
142 /* Call platform-specific callin, if specified */
143 if (alpha_mv.smp_callin)
144 alpha_mv.smp_callin();
145
146 /* All kernel threads share the same mm context. */
147 atomic_inc(&init_mm.mm_count);
148 current->active_mm = &init_mm;
149
150 /* inform the notifiers about the new cpu */
151 notify_cpu_starting(cpuid);
152
153 /* Must have completely accurate bogos. */
154 local_irq_enable();
155
156 /* Wait boot CPU to stop with irq enabled before running
157 calibrate_delay. */
158 wait_boot_cpu_to_stop(cpuid);
159 mb();
160 calibrate_delay();
161
162 smp_store_cpu_info(cpuid);
163 /* Allow master to continue only after we written loops_per_jiffy. */
164 wmb();
165 smp_secondary_alive = 1;
166
167 DBGS(("smp_callin: commencing CPU %d current %p active_mm %p\n",
168 cpuid, current, current->active_mm));
169
170 preempt_disable();
171 cpu_startup_entry(CPUHP_ONLINE);
172 }
173
174 /* Wait until hwrpb->txrdy is clear for cpu. Return -1 on timeout. */
175 static int
wait_for_txrdy(unsigned long cpumask)176 wait_for_txrdy (unsigned long cpumask)
177 {
178 unsigned long timeout;
179
180 if (!(hwrpb->txrdy & cpumask))
181 return 0;
182
183 timeout = jiffies + 10*HZ;
184 while (time_before(jiffies, timeout)) {
185 if (!(hwrpb->txrdy & cpumask))
186 return 0;
187 udelay(10);
188 barrier();
189 }
190
191 return -1;
192 }
193
194 /*
195 * Send a message to a secondary's console. "START" is one such
196 * interesting message. ;-)
197 */
198 static void
send_secondary_console_msg(char * str,int cpuid)199 send_secondary_console_msg(char *str, int cpuid)
200 {
201 struct percpu_struct *cpu;
202 register char *cp1, *cp2;
203 unsigned long cpumask;
204 size_t len;
205
206 cpu = (struct percpu_struct *)
207 ((char*)hwrpb
208 + hwrpb->processor_offset
209 + cpuid * hwrpb->processor_size);
210
211 cpumask = (1UL << cpuid);
212 if (wait_for_txrdy(cpumask))
213 goto timeout;
214
215 cp2 = str;
216 len = strlen(cp2);
217 *(unsigned int *)&cpu->ipc_buffer[0] = len;
218 cp1 = (char *) &cpu->ipc_buffer[1];
219 memcpy(cp1, cp2, len);
220
221 /* atomic test and set */
222 wmb();
223 set_bit(cpuid, &hwrpb->rxrdy);
224
225 if (wait_for_txrdy(cpumask))
226 goto timeout;
227 return;
228
229 timeout:
230 printk("Processor %x not ready\n", cpuid);
231 }
232
233 /*
234 * A secondary console wants to send a message. Receive it.
235 */
236 static void
recv_secondary_console_msg(void)237 recv_secondary_console_msg(void)
238 {
239 int mycpu, i, cnt;
240 unsigned long txrdy = hwrpb->txrdy;
241 char *cp1, *cp2, buf[80];
242 struct percpu_struct *cpu;
243
244 DBGS(("recv_secondary_console_msg: TXRDY 0x%lx.\n", txrdy));
245
246 mycpu = hard_smp_processor_id();
247
248 for (i = 0; i < NR_CPUS; i++) {
249 if (!(txrdy & (1UL << i)))
250 continue;
251
252 DBGS(("recv_secondary_console_msg: "
253 "TXRDY contains CPU %d.\n", i));
254
255 cpu = (struct percpu_struct *)
256 ((char*)hwrpb
257 + hwrpb->processor_offset
258 + i * hwrpb->processor_size);
259
260 DBGS(("recv_secondary_console_msg: on %d from %d"
261 " HALT_REASON 0x%lx FLAGS 0x%lx\n",
262 mycpu, i, cpu->halt_reason, cpu->flags));
263
264 cnt = cpu->ipc_buffer[0] >> 32;
265 if (cnt <= 0 || cnt >= 80)
266 strcpy(buf, "<<< BOGUS MSG >>>");
267 else {
268 cp1 = (char *) &cpu->ipc_buffer[1];
269 cp2 = buf;
270 memcpy(cp2, cp1, cnt);
271 cp2[cnt] = '\0';
272
273 while ((cp2 = strchr(cp2, '\r')) != 0) {
274 *cp2 = ' ';
275 if (cp2[1] == '\n')
276 cp2[1] = ' ';
277 }
278 }
279
280 DBGS((KERN_INFO "recv_secondary_console_msg: on %d "
281 "message is '%s'\n", mycpu, buf));
282 }
283
284 hwrpb->txrdy = 0;
285 }
286
287 /*
288 * Convince the console to have a secondary cpu begin execution.
289 */
290 static int
secondary_cpu_start(int cpuid,struct task_struct * idle)291 secondary_cpu_start(int cpuid, struct task_struct *idle)
292 {
293 struct percpu_struct *cpu;
294 struct pcb_struct *hwpcb, *ipcb;
295 unsigned long timeout;
296
297 cpu = (struct percpu_struct *)
298 ((char*)hwrpb
299 + hwrpb->processor_offset
300 + cpuid * hwrpb->processor_size);
301 hwpcb = (struct pcb_struct *) cpu->hwpcb;
302 ipcb = &task_thread_info(idle)->pcb;
303
304 /* Initialize the CPU's HWPCB to something just good enough for
305 us to get started. Immediately after starting, we'll swpctx
306 to the target idle task's pcb. Reuse the stack in the mean
307 time. Precalculate the target PCBB. */
308 hwpcb->ksp = (unsigned long)ipcb + sizeof(union thread_union) - 16;
309 hwpcb->usp = 0;
310 hwpcb->ptbr = ipcb->ptbr;
311 hwpcb->pcc = 0;
312 hwpcb->asn = 0;
313 hwpcb->unique = virt_to_phys(ipcb);
314 hwpcb->flags = ipcb->flags;
315 hwpcb->res1 = hwpcb->res2 = 0;
316
317 #if 0
318 DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx UNIQUE 0x%lx\n",
319 hwpcb->ksp, hwpcb->ptbr, hwrpb->vptb, hwpcb->unique));
320 #endif
321 DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n",
322 cpuid, idle->state, ipcb->flags));
323
324 /* Setup HWRPB fields that SRM uses to activate secondary CPU */
325 hwrpb->CPU_restart = __smp_callin;
326 hwrpb->CPU_restart_data = (unsigned long) __smp_callin;
327
328 /* Recalculate and update the HWRPB checksum */
329 hwrpb_update_checksum(hwrpb);
330
331 /*
332 * Send a "start" command to the specified processor.
333 */
334
335 /* SRM III 3.4.1.3 */
336 cpu->flags |= 0x22; /* turn on Context Valid and Restart Capable */
337 cpu->flags &= ~1; /* turn off Bootstrap In Progress */
338 wmb();
339
340 send_secondary_console_msg("START\r\n", cpuid);
341
342 /* Wait 10 seconds for an ACK from the console. */
343 timeout = jiffies + 10*HZ;
344 while (time_before(jiffies, timeout)) {
345 if (cpu->flags & 1)
346 goto started;
347 udelay(10);
348 barrier();
349 }
350 printk(KERN_ERR "SMP: Processor %d failed to start.\n", cpuid);
351 return -1;
352
353 started:
354 DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid));
355 return 0;
356 }
357
358 /*
359 * Bring one cpu online.
360 */
361 static int
smp_boot_one_cpu(int cpuid,struct task_struct * idle)362 smp_boot_one_cpu(int cpuid, struct task_struct *idle)
363 {
364 unsigned long timeout;
365
366 /* Signal the secondary to wait a moment. */
367 smp_secondary_alive = -1;
368
369 /* Whirrr, whirrr, whirrrrrrrrr... */
370 if (secondary_cpu_start(cpuid, idle))
371 return -1;
372
373 /* Notify the secondary CPU it can run calibrate_delay. */
374 mb();
375 smp_secondary_alive = 0;
376
377 /* We've been acked by the console; wait one second for
378 the task to start up for real. */
379 timeout = jiffies + 1*HZ;
380 while (time_before(jiffies, timeout)) {
381 if (smp_secondary_alive == 1)
382 goto alive;
383 udelay(10);
384 barrier();
385 }
386
387 /* We failed to boot the CPU. */
388
389 printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid);
390 return -1;
391
392 alive:
393 /* Another "Red Snapper". */
394 return 0;
395 }
396
397 /*
398 * Called from setup_arch. Detect an SMP system and which processors
399 * are present.
400 */
401 void __init
setup_smp(void)402 setup_smp(void)
403 {
404 struct percpu_struct *cpubase, *cpu;
405 unsigned long i;
406
407 if (boot_cpuid != 0) {
408 printk(KERN_WARNING "SMP: Booting off cpu %d instead of 0?\n",
409 boot_cpuid);
410 }
411
412 if (hwrpb->nr_processors > 1) {
413 int boot_cpu_palrev;
414
415 DBGS(("setup_smp: nr_processors %ld\n",
416 hwrpb->nr_processors));
417
418 cpubase = (struct percpu_struct *)
419 ((char*)hwrpb + hwrpb->processor_offset);
420 boot_cpu_palrev = cpubase->pal_revision;
421
422 for (i = 0; i < hwrpb->nr_processors; i++) {
423 cpu = (struct percpu_struct *)
424 ((char *)cpubase + i*hwrpb->processor_size);
425 if ((cpu->flags & 0x1cc) == 0x1cc) {
426 smp_num_probed++;
427 set_cpu_possible(i, true);
428 set_cpu_present(i, true);
429 cpu->pal_revision = boot_cpu_palrev;
430 }
431
432 DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n",
433 i, cpu->flags, cpu->type));
434 DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n",
435 i, cpu->pal_revision));
436 }
437 } else {
438 smp_num_probed = 1;
439 }
440
441 printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_mask = %lx\n",
442 smp_num_probed, cpumask_bits(cpu_present_mask)[0]);
443 }
444
445 /*
446 * Called by smp_init prepare the secondaries
447 */
448 void __init
smp_prepare_cpus(unsigned int max_cpus)449 smp_prepare_cpus(unsigned int max_cpus)
450 {
451 /* Take care of some initial bookkeeping. */
452 memset(ipi_data, 0, sizeof(ipi_data));
453
454 current_thread_info()->cpu = boot_cpuid;
455
456 smp_store_cpu_info(boot_cpuid);
457 smp_setup_percpu_timer(boot_cpuid);
458
459 /* Nothing to do on a UP box, or when told not to. */
460 if (smp_num_probed == 1 || max_cpus == 0) {
461 init_cpu_possible(cpumask_of(boot_cpuid));
462 init_cpu_present(cpumask_of(boot_cpuid));
463 printk(KERN_INFO "SMP mode deactivated.\n");
464 return;
465 }
466
467 printk(KERN_INFO "SMP starting up secondaries.\n");
468
469 smp_num_cpus = smp_num_probed;
470 }
471
472 void
smp_prepare_boot_cpu(void)473 smp_prepare_boot_cpu(void)
474 {
475 }
476
477 int
__cpu_up(unsigned int cpu,struct task_struct * tidle)478 __cpu_up(unsigned int cpu, struct task_struct *tidle)
479 {
480 smp_boot_one_cpu(cpu, tidle);
481
482 return cpu_online(cpu) ? 0 : -ENOSYS;
483 }
484
485 void __init
smp_cpus_done(unsigned int max_cpus)486 smp_cpus_done(unsigned int max_cpus)
487 {
488 int cpu;
489 unsigned long bogosum = 0;
490
491 for(cpu = 0; cpu < NR_CPUS; cpu++)
492 if (cpu_online(cpu))
493 bogosum += cpu_data[cpu].loops_per_jiffy;
494
495 printk(KERN_INFO "SMP: Total of %d processors activated "
496 "(%lu.%02lu BogoMIPS).\n",
497 num_online_cpus(),
498 (bogosum + 2500) / (500000/HZ),
499 ((bogosum + 2500) / (5000/HZ)) % 100);
500 }
501
502 int
setup_profiling_timer(unsigned int multiplier)503 setup_profiling_timer(unsigned int multiplier)
504 {
505 return -EINVAL;
506 }
507
508 static void
send_ipi_message(const struct cpumask * to_whom,enum ipi_message_type operation)509 send_ipi_message(const struct cpumask *to_whom, enum ipi_message_type operation)
510 {
511 int i;
512
513 mb();
514 for_each_cpu(i, to_whom)
515 set_bit(operation, &ipi_data[i].bits);
516
517 mb();
518 for_each_cpu(i, to_whom)
519 wripir(i);
520 }
521
522 void
handle_ipi(struct pt_regs * regs)523 handle_ipi(struct pt_regs *regs)
524 {
525 int this_cpu = smp_processor_id();
526 unsigned long *pending_ipis = &ipi_data[this_cpu].bits;
527 unsigned long ops;
528
529 #if 0
530 DBGS(("handle_ipi: on CPU %d ops 0x%lx PC 0x%lx\n",
531 this_cpu, *pending_ipis, regs->pc));
532 #endif
533
534 mb(); /* Order interrupt and bit testing. */
535 while ((ops = xchg(pending_ipis, 0)) != 0) {
536 mb(); /* Order bit clearing and data access. */
537 do {
538 unsigned long which;
539
540 which = ops & -ops;
541 ops &= ~which;
542 which = __ffs(which);
543
544 switch (which) {
545 case IPI_RESCHEDULE:
546 scheduler_ipi();
547 break;
548
549 case IPI_CALL_FUNC:
550 generic_smp_call_function_interrupt();
551 break;
552
553 case IPI_CPU_STOP:
554 halt();
555
556 default:
557 printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n",
558 this_cpu, which);
559 break;
560 }
561 } while (ops);
562
563 mb(); /* Order data access and bit testing. */
564 }
565
566 cpu_data[this_cpu].ipi_count++;
567
568 if (hwrpb->txrdy)
569 recv_secondary_console_msg();
570 }
571
572 void
smp_send_reschedule(int cpu)573 smp_send_reschedule(int cpu)
574 {
575 #ifdef DEBUG_IPI_MSG
576 if (cpu == hard_smp_processor_id())
577 printk(KERN_WARNING
578 "smp_send_reschedule: Sending IPI to self.\n");
579 #endif
580 send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
581 }
582
583 void
smp_send_stop(void)584 smp_send_stop(void)
585 {
586 cpumask_t to_whom;
587 cpumask_copy(&to_whom, cpu_online_mask);
588 cpumask_clear_cpu(smp_processor_id(), &to_whom);
589 #ifdef DEBUG_IPI_MSG
590 if (hard_smp_processor_id() != boot_cpu_id)
591 printk(KERN_WARNING "smp_send_stop: Not on boot cpu.\n");
592 #endif
593 send_ipi_message(&to_whom, IPI_CPU_STOP);
594 }
595
arch_send_call_function_ipi_mask(const struct cpumask * mask)596 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
597 {
598 send_ipi_message(mask, IPI_CALL_FUNC);
599 }
600
arch_send_call_function_single_ipi(int cpu)601 void arch_send_call_function_single_ipi(int cpu)
602 {
603 send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC);
604 }
605
606 static void
ipi_imb(void * ignored)607 ipi_imb(void *ignored)
608 {
609 imb();
610 }
611
612 void
smp_imb(void)613 smp_imb(void)
614 {
615 /* Must wait other processors to flush their icache before continue. */
616 if (on_each_cpu(ipi_imb, NULL, 1))
617 printk(KERN_CRIT "smp_imb: timed out\n");
618 }
619 EXPORT_SYMBOL(smp_imb);
620
621 static void
ipi_flush_tlb_all(void * ignored)622 ipi_flush_tlb_all(void *ignored)
623 {
624 tbia();
625 }
626
627 void
flush_tlb_all(void)628 flush_tlb_all(void)
629 {
630 /* Although we don't have any data to pass, we do want to
631 synchronize with the other processors. */
632 if (on_each_cpu(ipi_flush_tlb_all, NULL, 1)) {
633 printk(KERN_CRIT "flush_tlb_all: timed out\n");
634 }
635 }
636
637 #define asn_locked() (cpu_data[smp_processor_id()].asn_lock)
638
639 static void
ipi_flush_tlb_mm(void * x)640 ipi_flush_tlb_mm(void *x)
641 {
642 struct mm_struct *mm = (struct mm_struct *) x;
643 if (mm == current->active_mm && !asn_locked())
644 flush_tlb_current(mm);
645 else
646 flush_tlb_other(mm);
647 }
648
649 void
flush_tlb_mm(struct mm_struct * mm)650 flush_tlb_mm(struct mm_struct *mm)
651 {
652 preempt_disable();
653
654 if (mm == current->active_mm) {
655 flush_tlb_current(mm);
656 if (atomic_read(&mm->mm_users) <= 1) {
657 int cpu, this_cpu = smp_processor_id();
658 for (cpu = 0; cpu < NR_CPUS; cpu++) {
659 if (!cpu_online(cpu) || cpu == this_cpu)
660 continue;
661 if (mm->context[cpu])
662 mm->context[cpu] = 0;
663 }
664 preempt_enable();
665 return;
666 }
667 }
668
669 if (smp_call_function(ipi_flush_tlb_mm, mm, 1)) {
670 printk(KERN_CRIT "flush_tlb_mm: timed out\n");
671 }
672
673 preempt_enable();
674 }
675 EXPORT_SYMBOL(flush_tlb_mm);
676
677 struct flush_tlb_page_struct {
678 struct vm_area_struct *vma;
679 struct mm_struct *mm;
680 unsigned long addr;
681 };
682
683 static void
ipi_flush_tlb_page(void * x)684 ipi_flush_tlb_page(void *x)
685 {
686 struct flush_tlb_page_struct *data = (struct flush_tlb_page_struct *)x;
687 struct mm_struct * mm = data->mm;
688
689 if (mm == current->active_mm && !asn_locked())
690 flush_tlb_current_page(mm, data->vma, data->addr);
691 else
692 flush_tlb_other(mm);
693 }
694
695 void
flush_tlb_page(struct vm_area_struct * vma,unsigned long addr)696 flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
697 {
698 struct flush_tlb_page_struct data;
699 struct mm_struct *mm = vma->vm_mm;
700
701 preempt_disable();
702
703 if (mm == current->active_mm) {
704 flush_tlb_current_page(mm, vma, addr);
705 if (atomic_read(&mm->mm_users) <= 1) {
706 int cpu, this_cpu = smp_processor_id();
707 for (cpu = 0; cpu < NR_CPUS; cpu++) {
708 if (!cpu_online(cpu) || cpu == this_cpu)
709 continue;
710 if (mm->context[cpu])
711 mm->context[cpu] = 0;
712 }
713 preempt_enable();
714 return;
715 }
716 }
717
718 data.vma = vma;
719 data.mm = mm;
720 data.addr = addr;
721
722 if (smp_call_function(ipi_flush_tlb_page, &data, 1)) {
723 printk(KERN_CRIT "flush_tlb_page: timed out\n");
724 }
725
726 preempt_enable();
727 }
728 EXPORT_SYMBOL(flush_tlb_page);
729
730 void
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)731 flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
732 {
733 /* On the Alpha we always flush the whole user tlb. */
734 flush_tlb_mm(vma->vm_mm);
735 }
736 EXPORT_SYMBOL(flush_tlb_range);
737
738 static void
ipi_flush_icache_page(void * x)739 ipi_flush_icache_page(void *x)
740 {
741 struct mm_struct *mm = (struct mm_struct *) x;
742 if (mm == current->active_mm && !asn_locked())
743 __load_new_mm_context(mm);
744 else
745 flush_tlb_other(mm);
746 }
747
748 void
flush_icache_user_range(struct vm_area_struct * vma,struct page * page,unsigned long addr,int len)749 flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
750 unsigned long addr, int len)
751 {
752 struct mm_struct *mm = vma->vm_mm;
753
754 if ((vma->vm_flags & VM_EXEC) == 0)
755 return;
756
757 preempt_disable();
758
759 if (mm == current->active_mm) {
760 __load_new_mm_context(mm);
761 if (atomic_read(&mm->mm_users) <= 1) {
762 int cpu, this_cpu = smp_processor_id();
763 for (cpu = 0; cpu < NR_CPUS; cpu++) {
764 if (!cpu_online(cpu) || cpu == this_cpu)
765 continue;
766 if (mm->context[cpu])
767 mm->context[cpu] = 0;
768 }
769 preempt_enable();
770 return;
771 }
772 }
773
774 if (smp_call_function(ipi_flush_icache_page, mm, 1)) {
775 printk(KERN_CRIT "flush_icache_page: timed out\n");
776 }
777
778 preempt_enable();
779 }
780