• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #define DEBUG
14 
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/hugetlb.h>
39 #include <linux/memory.h>
40 #include <linux/nmi.h>
41 #include <linux/debugfs.h>
42 
43 #include <asm/io.h>
44 #include <asm/kdump.h>
45 #include <asm/prom.h>
46 #include <asm/processor.h>
47 #include <asm/pgtable.h>
48 #include <asm/smp.h>
49 #include <asm/elf.h>
50 #include <asm/machdep.h>
51 #include <asm/paca.h>
52 #include <asm/time.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/btext.h>
56 #include <asm/nvram.h>
57 #include <asm/setup.h>
58 #include <asm/rtas.h>
59 #include <asm/iommu.h>
60 #include <asm/serial.h>
61 #include <asm/cache.h>
62 #include <asm/page.h>
63 #include <asm/mmu.h>
64 #include <asm/firmware.h>
65 #include <asm/xmon.h>
66 #include <asm/udbg.h>
67 #include <asm/kexec.h>
68 #include <asm/mmu_context.h>
69 #include <asm/code-patching.h>
70 #include <asm/kvm_ppc.h>
71 #include <asm/hugetlb.h>
72 #include <asm/epapr_hcalls.h>
73 
74 #ifdef DEBUG
75 #define DBG(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG(fmt...)
78 #endif
79 
80 int spinning_secondaries;
81 u64 ppc64_pft_size;
82 
83 /* Pick defaults since we might want to patch instructions
84  * before we've read this from the device tree.
85  */
86 struct ppc64_caches ppc64_caches = {
87 	.dline_size = 0x40,
88 	.log_dline_size = 6,
89 	.iline_size = 0x40,
90 	.log_iline_size = 6
91 };
92 EXPORT_SYMBOL_GPL(ppc64_caches);
93 
94 /*
95  * These are used in binfmt_elf.c to put aux entries on the stack
96  * for each elf executable being started.
97  */
98 int dcache_bsize;
99 int icache_bsize;
100 int ucache_bsize;
101 
102 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
setup_tlb_core_data(void)103 static void setup_tlb_core_data(void)
104 {
105 	int cpu;
106 
107 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
108 
109 	for_each_possible_cpu(cpu) {
110 		int first = cpu_first_thread_sibling(cpu);
111 
112 		/*
113 		 * If we boot via kdump on a non-primary thread,
114 		 * make sure we point at the thread that actually
115 		 * set up this TLB.
116 		 */
117 		if (cpu_first_thread_sibling(boot_cpuid) == first)
118 			first = boot_cpuid;
119 
120 		paca[cpu].tcd_ptr = &paca[first].tcd;
121 
122 		/*
123 		 * If we have threads, we need either tlbsrx.
124 		 * or e6500 tablewalk mode, or else TLB handlers
125 		 * will be racy and could produce duplicate entries.
126 		 */
127 		if (smt_enabled_at_boot >= 2 &&
128 		    !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
129 		    book3e_htw_mode != PPC_HTW_E6500) {
130 			/* Should we panic instead? */
131 			WARN_ONCE("%s: unsupported MMU configuration -- expect problems\n",
132 				  __func__);
133 		}
134 	}
135 }
136 #else
setup_tlb_core_data(void)137 static void setup_tlb_core_data(void)
138 {
139 }
140 #endif
141 
142 #ifdef CONFIG_SMP
143 
144 static char *smt_enabled_cmdline;
145 
146 /* Look for ibm,smt-enabled OF option */
check_smt_enabled(void)147 static void check_smt_enabled(void)
148 {
149 	struct device_node *dn;
150 	const char *smt_option;
151 
152 	/* Default to enabling all threads */
153 	smt_enabled_at_boot = threads_per_core;
154 
155 	/* Allow the command line to overrule the OF option */
156 	if (smt_enabled_cmdline) {
157 		if (!strcmp(smt_enabled_cmdline, "on"))
158 			smt_enabled_at_boot = threads_per_core;
159 		else if (!strcmp(smt_enabled_cmdline, "off"))
160 			smt_enabled_at_boot = 0;
161 		else {
162 			int smt;
163 			int rc;
164 
165 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
166 			if (!rc)
167 				smt_enabled_at_boot =
168 					min(threads_per_core, smt);
169 		}
170 	} else {
171 		dn = of_find_node_by_path("/options");
172 		if (dn) {
173 			smt_option = of_get_property(dn, "ibm,smt-enabled",
174 						     NULL);
175 
176 			if (smt_option) {
177 				if (!strcmp(smt_option, "on"))
178 					smt_enabled_at_boot = threads_per_core;
179 				else if (!strcmp(smt_option, "off"))
180 					smt_enabled_at_boot = 0;
181 			}
182 
183 			of_node_put(dn);
184 		}
185 	}
186 }
187 
188 /* Look for smt-enabled= cmdline option */
early_smt_enabled(char * p)189 static int __init early_smt_enabled(char *p)
190 {
191 	smt_enabled_cmdline = p;
192 	return 0;
193 }
194 early_param("smt-enabled", early_smt_enabled);
195 
196 #else
197 #define check_smt_enabled()
198 #endif /* CONFIG_SMP */
199 
200 /** Fix up paca fields required for the boot cpu */
fixup_boot_paca(void)201 static void fixup_boot_paca(void)
202 {
203 	/* The boot cpu is started */
204 	get_paca()->cpu_start = 1;
205 	/* Allow percpu accesses to work until we setup percpu data */
206 	get_paca()->data_offset = 0;
207 }
208 
cpu_ready_for_interrupts(void)209 static void cpu_ready_for_interrupts(void)
210 {
211 	/* Set IR and DR in PACA MSR */
212 	get_paca()->kernel_msr = MSR_KERNEL;
213 
214 	/*
215 	 * Enable AIL if supported, and we are in hypervisor mode. If we are
216 	 * not in hypervisor mode, we enable relocation-on interrupts later
217 	 * in pSeries_setup_arch() using the H_SET_MODE hcall.
218 	 */
219 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
220 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
221 		unsigned long lpcr = mfspr(SPRN_LPCR);
222 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
223 	}
224 
225 	/*
226 	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
227 	 * early asm init because at that point we haven't updated our
228 	 * CPU features from firmware and device-tree. Here we have,
229 	 * so let's do it.
230 	 */
231 	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
232 		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
233 }
234 
235 /*
236  * Early initialization entry point. This is called by head.S
237  * with MMU translation disabled. We rely on the "feature" of
238  * the CPU that ignores the top 2 bits of the address in real
239  * mode so we can access kernel globals normally provided we
240  * only toy with things in the RMO region. From here, we do
241  * some early parsing of the device-tree to setup out MEMBLOCK
242  * data structures, and allocate & initialize the hash table
243  * and segment tables so we can start running with translation
244  * enabled.
245  *
246  * It is this function which will call the probe() callback of
247  * the various platform types and copy the matching one to the
248  * global ppc_md structure. Your platform can eventually do
249  * some very early initializations from the probe() routine, but
250  * this is not recommended, be very careful as, for example, the
251  * device-tree is not accessible via normal means at this point.
252  */
253 
early_setup(unsigned long dt_ptr)254 void __init early_setup(unsigned long dt_ptr)
255 {
256 	static __initdata struct paca_struct boot_paca;
257 
258 	/* -------- printk is _NOT_ safe to use here ! ------- */
259 
260 	/* Identify CPU type */
261 	identify_cpu(0, mfspr(SPRN_PVR));
262 
263 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
264 	initialise_paca(&boot_paca, 0);
265 	setup_paca(&boot_paca);
266 	fixup_boot_paca();
267 
268 	/* Initialize lockdep early or else spinlocks will blow */
269 	lockdep_init();
270 
271 	/* -------- printk is now safe to use ------- */
272 
273 	/* Enable early debugging if any specified (see udbg.h) */
274 	udbg_early_init();
275 
276  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
277 
278 	/*
279 	 * Do early initialization using the flattened device
280 	 * tree, such as retrieving the physical memory map or
281 	 * calculating/retrieving the hash table size.
282 	 */
283 	early_init_devtree(__va(dt_ptr));
284 
285 	epapr_paravirt_early_init();
286 
287 	/* Now we know the logical id of our boot cpu, setup the paca. */
288 	setup_paca(&paca[boot_cpuid]);
289 	fixup_boot_paca();
290 
291 	/* Probe the machine type */
292 	probe_machine();
293 
294 	setup_kdump_trampoline();
295 
296 	DBG("Found, Initializing memory management...\n");
297 
298 	/* Initialize the hash table or TLB handling */
299 	early_init_mmu();
300 
301 	/*
302 	 * At this point, we can let interrupts switch to virtual mode
303 	 * (the MMU has been setup), so adjust the MSR in the PACA to
304 	 * have IR and DR set and enable AIL if it exists
305 	 */
306 	cpu_ready_for_interrupts();
307 
308 	/* Reserve large chunks of memory for use by CMA for KVM */
309 	kvm_cma_reserve();
310 
311 	/*
312 	 * Reserve any gigantic pages requested on the command line.
313 	 * memblock needs to have been initialized by the time this is
314 	 * called since this will reserve memory.
315 	 */
316 	reserve_hugetlb_gpages();
317 
318 	DBG(" <- early_setup()\n");
319 
320 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
321 	/*
322 	 * This needs to be done *last* (after the above DBG() even)
323 	 *
324 	 * Right after we return from this function, we turn on the MMU
325 	 * which means the real-mode access trick that btext does will
326 	 * no longer work, it needs to switch to using a real MMU
327 	 * mapping. This call will ensure that it does
328 	 */
329 	btext_map();
330 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
331 }
332 
333 #ifdef CONFIG_SMP
early_setup_secondary(void)334 void early_setup_secondary(void)
335 {
336 	/* Mark interrupts enabled in PACA */
337 	get_paca()->soft_enabled = 0;
338 
339 	/* Initialize the hash table or TLB handling */
340 	early_init_mmu_secondary();
341 
342 	/*
343 	 * At this point, we can let interrupts switch to virtual mode
344 	 * (the MMU has been setup), so adjust the MSR in the PACA to
345 	 * have IR and DR set.
346 	 */
347 	cpu_ready_for_interrupts();
348 }
349 
350 #endif /* CONFIG_SMP */
351 
352 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
use_spinloop(void)353 static bool use_spinloop(void)
354 {
355 	if (!IS_ENABLED(CONFIG_PPC_BOOK3E))
356 		return true;
357 
358 	/*
359 	 * When book3e boots from kexec, the ePAPR spin table does
360 	 * not get used.
361 	 */
362 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
363 }
364 
smp_release_cpus(void)365 void smp_release_cpus(void)
366 {
367 	unsigned long *ptr;
368 	int i;
369 
370 	if (!use_spinloop())
371 		return;
372 
373 	DBG(" -> smp_release_cpus()\n");
374 
375 	/* All secondary cpus are spinning on a common spinloop, release them
376 	 * all now so they can start to spin on their individual paca
377 	 * spinloops. For non SMP kernels, the secondary cpus never get out
378 	 * of the common spinloop.
379 	 */
380 
381 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
382 			- PHYSICAL_START);
383 	*ptr = ppc_function_entry(generic_secondary_smp_init);
384 
385 	/* And wait a bit for them to catch up */
386 	for (i = 0; i < 100000; i++) {
387 		mb();
388 		HMT_low();
389 		if (spinning_secondaries == 0)
390 			break;
391 		udelay(1);
392 	}
393 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
394 
395 	DBG(" <- smp_release_cpus()\n");
396 }
397 #endif /* CONFIG_SMP || CONFIG_KEXEC */
398 
399 /*
400  * Initialize some remaining members of the ppc64_caches and systemcfg
401  * structures
402  * (at least until we get rid of them completely). This is mostly some
403  * cache informations about the CPU that will be used by cache flush
404  * routines and/or provided to userland
405  */
initialize_cache_info(void)406 static void __init initialize_cache_info(void)
407 {
408 	struct device_node *np;
409 	unsigned long num_cpus = 0;
410 
411 	DBG(" -> initialize_cache_info()\n");
412 
413 	for_each_node_by_type(np, "cpu") {
414 		num_cpus += 1;
415 
416 		/*
417 		 * We're assuming *all* of the CPUs have the same
418 		 * d-cache and i-cache sizes... -Peter
419 		 */
420 		if (num_cpus == 1) {
421 			const __be32 *sizep, *lsizep;
422 			u32 size, lsize;
423 
424 			size = 0;
425 			lsize = cur_cpu_spec->dcache_bsize;
426 			sizep = of_get_property(np, "d-cache-size", NULL);
427 			if (sizep != NULL)
428 				size = be32_to_cpu(*sizep);
429 			lsizep = of_get_property(np, "d-cache-block-size",
430 						 NULL);
431 			/* fallback if block size missing */
432 			if (lsizep == NULL)
433 				lsizep = of_get_property(np,
434 							 "d-cache-line-size",
435 							 NULL);
436 			if (lsizep != NULL)
437 				lsize = be32_to_cpu(*lsizep);
438 			if (sizep == NULL || lsizep == NULL)
439 				DBG("Argh, can't find dcache properties ! "
440 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
441 
442 			ppc64_caches.dsize = size;
443 			ppc64_caches.dline_size = lsize;
444 			ppc64_caches.log_dline_size = __ilog2(lsize);
445 			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
446 
447 			size = 0;
448 			lsize = cur_cpu_spec->icache_bsize;
449 			sizep = of_get_property(np, "i-cache-size", NULL);
450 			if (sizep != NULL)
451 				size = be32_to_cpu(*sizep);
452 			lsizep = of_get_property(np, "i-cache-block-size",
453 						 NULL);
454 			if (lsizep == NULL)
455 				lsizep = of_get_property(np,
456 							 "i-cache-line-size",
457 							 NULL);
458 			if (lsizep != NULL)
459 				lsize = be32_to_cpu(*lsizep);
460 			if (sizep == NULL || lsizep == NULL)
461 				DBG("Argh, can't find icache properties ! "
462 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
463 
464 			ppc64_caches.isize = size;
465 			ppc64_caches.iline_size = lsize;
466 			ppc64_caches.log_iline_size = __ilog2(lsize);
467 			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
468 		}
469 	}
470 
471 	DBG(" <- initialize_cache_info()\n");
472 }
473 
474 
475 /*
476  * Do some initial setup of the system.  The parameters are those which
477  * were passed in from the bootloader.
478  */
setup_system(void)479 void __init setup_system(void)
480 {
481 	DBG(" -> setup_system()\n");
482 
483 	/* Apply the CPUs-specific and firmware specific fixups to kernel
484 	 * text (nop out sections not relevant to this CPU or this firmware)
485 	 */
486 	do_feature_fixups(cur_cpu_spec->cpu_features,
487 			  &__start___ftr_fixup, &__stop___ftr_fixup);
488 	do_feature_fixups(cur_cpu_spec->mmu_features,
489 			  &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
490 	do_feature_fixups(powerpc_firmware_features,
491 			  &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
492 	do_lwsync_fixups(cur_cpu_spec->cpu_features,
493 			 &__start___lwsync_fixup, &__stop___lwsync_fixup);
494 	do_final_fixups();
495 
496 	/*
497 	 * Unflatten the device-tree passed by prom_init or kexec
498 	 */
499 	unflatten_device_tree();
500 
501 	/*
502 	 * Fill the ppc64_caches & systemcfg structures with informations
503  	 * retrieved from the device-tree.
504 	 */
505 	initialize_cache_info();
506 
507 #ifdef CONFIG_PPC_RTAS
508 	/*
509 	 * Initialize RTAS if available
510 	 */
511 	rtas_initialize();
512 #endif /* CONFIG_PPC_RTAS */
513 
514 	/*
515 	 * Check if we have an initrd provided via the device-tree
516 	 */
517 	check_for_initrd();
518 
519 	/*
520 	 * Do some platform specific early initializations, that includes
521 	 * setting up the hash table pointers. It also sets up some interrupt-mapping
522 	 * related options that will be used by finish_device_tree()
523 	 */
524 	if (ppc_md.init_early)
525 		ppc_md.init_early();
526 
527  	/*
528 	 * We can discover serial ports now since the above did setup the
529 	 * hash table management for us, thus ioremap works. We do that early
530 	 * so that further code can be debugged
531 	 */
532 	find_legacy_serial_ports();
533 
534 	/*
535 	 * Register early console
536 	 */
537 	register_early_udbg_console();
538 
539 	/*
540 	 * Initialize xmon
541 	 */
542 	xmon_setup();
543 
544 	smp_setup_cpu_maps();
545 	check_smt_enabled();
546 	setup_tlb_core_data();
547 
548 	/*
549 	 * Freescale Book3e parts spin in a loop provided by firmware,
550 	 * so smp_release_cpus() does nothing for them
551 	 */
552 #if defined(CONFIG_SMP)
553 	/* Release secondary cpus out of their spinloops at 0x60 now that
554 	 * we can map physical -> logical CPU ids
555 	 */
556 	smp_release_cpus();
557 #endif
558 
559 	pr_info("Starting Linux %s %s\n", init_utsname()->machine,
560 		 init_utsname()->version);
561 
562 	pr_info("-----------------------------------------------------\n");
563 	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
564 	pr_info("phys_mem_size     = 0x%llx\n", memblock_phys_mem_size());
565 
566 	if (ppc64_caches.dline_size != 0x80)
567 		pr_info("dcache_line_size  = 0x%x\n", ppc64_caches.dline_size);
568 	if (ppc64_caches.iline_size != 0x80)
569 		pr_info("icache_line_size  = 0x%x\n", ppc64_caches.iline_size);
570 
571 	pr_info("cpu_features      = 0x%016lx\n", cur_cpu_spec->cpu_features);
572 	pr_info("  possible        = 0x%016lx\n", CPU_FTRS_POSSIBLE);
573 	pr_info("  always          = 0x%016lx\n", CPU_FTRS_ALWAYS);
574 	pr_info("cpu_user_features = 0x%08x 0x%08x\n", cur_cpu_spec->cpu_user_features,
575 		cur_cpu_spec->cpu_user_features2);
576 	pr_info("mmu_features      = 0x%08x\n", cur_cpu_spec->mmu_features);
577 	pr_info("firmware_features = 0x%016lx\n", powerpc_firmware_features);
578 
579 #ifdef CONFIG_PPC_STD_MMU_64
580 	if (htab_address)
581 		pr_info("htab_address      = 0x%p\n", htab_address);
582 
583 	pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
584 #endif
585 
586 	if (PHYSICAL_START > 0)
587 		pr_info("physical_start    = 0x%llx\n",
588 		       (unsigned long long)PHYSICAL_START);
589 	pr_info("-----------------------------------------------------\n");
590 
591 	DBG(" <- setup_system()\n");
592 }
593 
594 /* This returns the limit below which memory accesses to the linear
595  * mapping are guarnateed not to cause a TLB or SLB miss. This is
596  * used to allocate interrupt or emergency stacks for which our
597  * exception entry path doesn't deal with being interrupted.
598  */
safe_stack_limit(void)599 static u64 safe_stack_limit(void)
600 {
601 #ifdef CONFIG_PPC_BOOK3E
602 	/* Freescale BookE bolts the entire linear mapping */
603 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
604 		return linear_map_top;
605 	/* Other BookE, we assume the first GB is bolted */
606 	return 1ul << 30;
607 #else
608 	/* BookS, the first segment is bolted */
609 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
610 		return 1UL << SID_SHIFT_1T;
611 	return 1UL << SID_SHIFT;
612 #endif
613 }
614 
irqstack_early_init(void)615 static void __init irqstack_early_init(void)
616 {
617 	u64 limit = safe_stack_limit();
618 	unsigned int i;
619 
620 	/*
621 	 * Interrupt stacks must be in the first segment since we
622 	 * cannot afford to take SLB misses on them.
623 	 */
624 	for_each_possible_cpu(i) {
625 		softirq_ctx[i] = (struct thread_info *)
626 			__va(memblock_alloc_base(THREAD_SIZE,
627 					    THREAD_SIZE, limit));
628 		hardirq_ctx[i] = (struct thread_info *)
629 			__va(memblock_alloc_base(THREAD_SIZE,
630 					    THREAD_SIZE, limit));
631 	}
632 }
633 
634 #ifdef CONFIG_PPC_BOOK3E
exc_lvl_early_init(void)635 static void __init exc_lvl_early_init(void)
636 {
637 	unsigned int i;
638 	unsigned long sp;
639 
640 	for_each_possible_cpu(i) {
641 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
642 		critirq_ctx[i] = (struct thread_info *)__va(sp);
643 		paca[i].crit_kstack = __va(sp + THREAD_SIZE);
644 
645 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
646 		dbgirq_ctx[i] = (struct thread_info *)__va(sp);
647 		paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
648 
649 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
650 		mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
651 		paca[i].mc_kstack = __va(sp + THREAD_SIZE);
652 	}
653 
654 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
655 		patch_exception(0x040, exc_debug_debug_book3e);
656 }
657 #else
658 #define exc_lvl_early_init()
659 #endif
660 
661 /*
662  * Stack space used when we detect a bad kernel stack pointer, and
663  * early in SMP boots before relocation is enabled. Exclusive emergency
664  * stack for machine checks.
665  */
emergency_stack_init(void)666 static void __init emergency_stack_init(void)
667 {
668 	u64 limit;
669 	unsigned int i;
670 
671 	/*
672 	 * Emergency stacks must be under 256MB, we cannot afford to take
673 	 * SLB misses on them. The ABI also requires them to be 128-byte
674 	 * aligned.
675 	 *
676 	 * Since we use these as temporary stacks during secondary CPU
677 	 * bringup, we need to get at them in real mode. This means they
678 	 * must also be within the RMO region.
679 	 */
680 	limit = min(safe_stack_limit(), ppc64_rma_size);
681 
682 	for_each_possible_cpu(i) {
683 		unsigned long sp;
684 		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
685 		sp += THREAD_SIZE;
686 		paca[i].emergency_sp = __va(sp);
687 
688 #ifdef CONFIG_PPC_BOOK3S_64
689 		/* emergency stack for machine check exception handling. */
690 		sp  = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
691 		sp += THREAD_SIZE;
692 		paca[i].mc_emergency_sp = __va(sp);
693 #endif
694 	}
695 }
696 
697 /*
698  * Called into from start_kernel this initializes memblock, which is used
699  * to manage page allocation until mem_init is called.
700  */
setup_arch(char ** cmdline_p)701 void __init setup_arch(char **cmdline_p)
702 {
703 	*cmdline_p = boot_command_line;
704 
705 	/*
706 	 * Set cache line size based on type of cpu as a default.
707 	 * Systems with OF can look in the properties on the cpu node(s)
708 	 * for a possibly more accurate value.
709 	 */
710 	dcache_bsize = ppc64_caches.dline_size;
711 	icache_bsize = ppc64_caches.iline_size;
712 
713 	if (ppc_md.panic)
714 		setup_panic();
715 
716 	init_mm.start_code = (unsigned long)_stext;
717 	init_mm.end_code = (unsigned long) _etext;
718 	init_mm.end_data = (unsigned long) _edata;
719 	init_mm.brk = klimit;
720 #ifdef CONFIG_PPC_64K_PAGES
721 	init_mm.context.pte_frag = NULL;
722 #endif
723 #ifdef CONFIG_SPAPR_TCE_IOMMU
724 	mm_iommu_init(&init_mm.context);
725 #endif
726 	irqstack_early_init();
727 	exc_lvl_early_init();
728 	emergency_stack_init();
729 
730 	initmem_init();
731 
732 #ifdef CONFIG_DUMMY_CONSOLE
733 	conswitchp = &dummy_con;
734 #endif
735 
736 	if (ppc_md.setup_arch)
737 		ppc_md.setup_arch();
738 
739 	setup_barrier_nospec();
740 	setup_spectre_v2();
741 
742 	paging_init();
743 
744 	/* Initialize the MMU context management stuff */
745 	mmu_context_init();
746 
747 	/* Interrupt code needs to be 64K-aligned */
748 	if ((unsigned long)_stext & 0xffff)
749 		panic("Kernelbase not 64K-aligned (0x%lx)!\n",
750 		      (unsigned long)_stext);
751 }
752 
753 #ifdef CONFIG_SMP
754 #define PCPU_DYN_SIZE		()
755 
pcpu_fc_alloc(unsigned int cpu,size_t size,size_t align)756 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
757 {
758 	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
759 				    __pa(MAX_DMA_ADDRESS));
760 }
761 
pcpu_fc_free(void * ptr,size_t size)762 static void __init pcpu_fc_free(void *ptr, size_t size)
763 {
764 	free_bootmem(__pa(ptr), size);
765 }
766 
pcpu_cpu_distance(unsigned int from,unsigned int to)767 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
768 {
769 	if (cpu_to_node(from) == cpu_to_node(to))
770 		return LOCAL_DISTANCE;
771 	else
772 		return REMOTE_DISTANCE;
773 }
774 
775 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
776 EXPORT_SYMBOL(__per_cpu_offset);
777 
setup_per_cpu_areas(void)778 void __init setup_per_cpu_areas(void)
779 {
780 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
781 	size_t atom_size;
782 	unsigned long delta;
783 	unsigned int cpu;
784 	int rc;
785 
786 	/*
787 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
788 	 * to group units.  For larger mappings, use 1M atom which
789 	 * should be large enough to contain a number of units.
790 	 */
791 	if (mmu_linear_psize == MMU_PAGE_4K)
792 		atom_size = PAGE_SIZE;
793 	else
794 		atom_size = 1 << 20;
795 
796 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
797 				    pcpu_fc_alloc, pcpu_fc_free);
798 	if (rc < 0)
799 		panic("cannot initialize percpu area (err=%d)", rc);
800 
801 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
802 	for_each_possible_cpu(cpu) {
803                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
804 		paca[cpu].data_offset = __per_cpu_offset[cpu];
805 	}
806 }
807 #endif
808 
809 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
memory_block_size_bytes(void)810 unsigned long memory_block_size_bytes(void)
811 {
812 	if (ppc_md.memory_block_size)
813 		return ppc_md.memory_block_size();
814 
815 	return MIN_MEMORY_BLOCK_SIZE;
816 }
817 #endif
818 
819 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
820 struct ppc_pci_io ppc_pci_io;
821 EXPORT_SYMBOL(ppc_pci_io);
822 #endif
823 
824 #ifdef CONFIG_HARDLOCKUP_DETECTOR
hw_nmi_get_sample_period(int watchdog_thresh)825 u64 hw_nmi_get_sample_period(int watchdog_thresh)
826 {
827 	return ppc_proc_freq * watchdog_thresh;
828 }
829 
830 /*
831  * The hardlockup detector breaks PMU event based branches and is likely
832  * to get false positives in KVM guests, so disable it by default.
833  */
disable_hardlockup_detector(void)834 static int __init disable_hardlockup_detector(void)
835 {
836 	hardlockup_detector_disable();
837 
838 	return 0;
839 }
840 early_initcall(disable_hardlockup_detector);
841 #endif
842 
843 #ifdef CONFIG_PPC_BOOK3S_64
844 static enum l1d_flush_type enabled_flush_types;
845 static void *l1d_flush_fallback_area;
846 static bool no_rfi_flush;
847 static bool no_entry_flush;
848 static bool no_uaccess_flush;
849 bool rfi_flush;
850 bool entry_flush;
851 bool uaccess_flush;
852 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key);
853 EXPORT_SYMBOL(uaccess_flush_key);
854 
handle_no_rfi_flush(char * p)855 static int __init handle_no_rfi_flush(char *p)
856 {
857 	pr_info("rfi-flush: disabled on command line.");
858 	no_rfi_flush = true;
859 	return 0;
860 }
861 early_param("no_rfi_flush", handle_no_rfi_flush);
862 
handle_no_entry_flush(char * p)863 static int __init handle_no_entry_flush(char *p)
864 {
865 	pr_info("entry-flush: disabled on command line.");
866 	no_entry_flush = true;
867 	return 0;
868 }
869 early_param("no_entry_flush", handle_no_entry_flush);
870 
handle_no_uaccess_flush(char * p)871 static int __init handle_no_uaccess_flush(char *p)
872 {
873 	pr_info("uaccess-flush: disabled on command line.");
874 	no_uaccess_flush = true;
875 	return 0;
876 }
877 early_param("no_uaccess_flush", handle_no_uaccess_flush);
878 
879 /*
880  * The RFI flush is not KPTI, but because users will see doco that says to use
881  * nopti we hijack that option here to also disable the RFI flush.
882  */
handle_no_pti(char * p)883 static int __init handle_no_pti(char *p)
884 {
885 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
886 	handle_no_rfi_flush(NULL);
887 	return 0;
888 }
889 early_param("nopti", handle_no_pti);
890 
do_nothing(void * unused)891 static void do_nothing(void *unused)
892 {
893 	/*
894 	 * We don't need to do the flush explicitly, just enter+exit kernel is
895 	 * sufficient, the RFI exit handlers will do the right thing.
896 	 */
897 }
898 
rfi_flush_enable(bool enable)899 void rfi_flush_enable(bool enable)
900 {
901 	if (enable) {
902 		do_rfi_flush_fixups(enabled_flush_types);
903 		on_each_cpu(do_nothing, NULL, 1);
904 	} else
905 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
906 
907 	rfi_flush = enable;
908 }
909 
entry_flush_enable(bool enable)910 void entry_flush_enable(bool enable)
911 {
912 	if (enable) {
913 		do_entry_flush_fixups(enabled_flush_types);
914 		on_each_cpu(do_nothing, NULL, 1);
915 	} else {
916 		do_entry_flush_fixups(L1D_FLUSH_NONE);
917 	}
918 
919 	entry_flush = enable;
920 }
921 
uaccess_flush_enable(bool enable)922 void uaccess_flush_enable(bool enable)
923 {
924 	if (enable) {
925 		do_uaccess_flush_fixups(enabled_flush_types);
926 		if (static_key_initialized)
927 			static_branch_enable(&uaccess_flush_key);
928 		else
929 			printk(KERN_DEBUG "uaccess-flush: deferring static key until after static key initialization\n");
930 		on_each_cpu(do_nothing, NULL, 1);
931 	} else {
932 		static_branch_disable(&uaccess_flush_key);
933 		do_uaccess_flush_fixups(L1D_FLUSH_NONE);
934 	}
935 
936 	uaccess_flush = enable;
937 }
938 
init_fallback_flush(void)939 static void __ref init_fallback_flush(void)
940 {
941 	u64 l1d_size, limit;
942 	int cpu;
943 
944 	/* Only allocate the fallback flush area once (at boot time). */
945 	if (l1d_flush_fallback_area)
946 		return;
947 
948 	l1d_size = ppc64_caches.dsize;
949 	limit = min(safe_stack_limit(), ppc64_rma_size);
950 
951 	/*
952 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
953 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
954 	 * reliably avoid the prefetcher.
955 	 */
956 	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
957 	memset(l1d_flush_fallback_area, 0, l1d_size * 2);
958 
959 	for_each_possible_cpu(cpu) {
960 		paca[cpu].rfi_flush_fallback_area = l1d_flush_fallback_area;
961 		paca[cpu].l1d_flush_size = l1d_size;
962 	}
963 }
964 
setup_rfi_flush(enum l1d_flush_type types,bool enable)965 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
966 {
967 	if (types & L1D_FLUSH_FALLBACK) {
968 		pr_info("rfi-flush: fallback displacement flush available\n");
969 		init_fallback_flush();
970 	}
971 
972 	if (types & L1D_FLUSH_ORI)
973 		pr_info("rfi-flush: ori type flush available\n");
974 
975 	if (types & L1D_FLUSH_MTTRIG)
976 		pr_info("rfi-flush: mttrig type flush available\n");
977 
978 	enabled_flush_types = types;
979 
980 	if (!no_rfi_flush)
981 		rfi_flush_enable(enable);
982 }
983 
setup_entry_flush(bool enable)984 void setup_entry_flush(bool enable)
985 {
986 	if (cpu_mitigations_off())
987 		return;
988 
989 	if (!no_entry_flush)
990 		entry_flush_enable(enable);
991 }
992 
setup_uaccess_flush(bool enable)993 void setup_uaccess_flush(bool enable)
994 {
995 	if (cpu_mitigations_off())
996 		return;
997 
998 	if (!no_uaccess_flush)
999 		uaccess_flush_enable(enable);
1000 }
1001 
1002 #ifdef CONFIG_DEBUG_FS
rfi_flush_set(void * data,u64 val)1003 static int rfi_flush_set(void *data, u64 val)
1004 {
1005 	bool enable;
1006 
1007 	if (val == 1)
1008 		enable = true;
1009 	else if (val == 0)
1010 		enable = false;
1011 	else
1012 		return -EINVAL;
1013 
1014 	/* Only do anything if we're changing state */
1015 	if (enable != rfi_flush)
1016 		rfi_flush_enable(enable);
1017 
1018 	return 0;
1019 }
1020 
rfi_flush_get(void * data,u64 * val)1021 static int rfi_flush_get(void *data, u64 *val)
1022 {
1023 	*val = rfi_flush ? 1 : 0;
1024 	return 0;
1025 }
1026 
1027 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
1028 
entry_flush_set(void * data,u64 val)1029 static int entry_flush_set(void *data, u64 val)
1030 {
1031 	bool enable;
1032 
1033 	if (val == 1)
1034 		enable = true;
1035 	else if (val == 0)
1036 		enable = false;
1037 	else
1038 		return -EINVAL;
1039 
1040 	/* Only do anything if we're changing state */
1041 	if (enable != entry_flush)
1042 		entry_flush_enable(enable);
1043 
1044 	return 0;
1045 }
1046 
entry_flush_get(void * data,u64 * val)1047 static int entry_flush_get(void *data, u64 *val)
1048 {
1049 	*val = entry_flush ? 1 : 0;
1050 	return 0;
1051 }
1052 
1053 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n");
1054 
uaccess_flush_set(void * data,u64 val)1055 static int uaccess_flush_set(void *data, u64 val)
1056 {
1057 	bool enable;
1058 
1059 	if (val == 1)
1060 		enable = true;
1061 	else if (val == 0)
1062 		enable = false;
1063 	else
1064 		return -EINVAL;
1065 
1066 	/* Only do anything if we're changing state */
1067 	if (enable != uaccess_flush)
1068 		uaccess_flush_enable(enable);
1069 
1070 	return 0;
1071 }
1072 
uaccess_flush_get(void * data,u64 * val)1073 static int uaccess_flush_get(void *data, u64 *val)
1074 {
1075 	*val = uaccess_flush ? 1 : 0;
1076 	return 0;
1077 }
1078 
1079 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n");
1080 
1081 
rfi_flush_debugfs_init(void)1082 static __init int rfi_flush_debugfs_init(void)
1083 {
1084 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
1085 	debugfs_create_file("entry_flush", 0600, powerpc_debugfs_root, NULL, &fops_entry_flush);
1086 	debugfs_create_file("uaccess_flush", 0600, powerpc_debugfs_root, NULL, &fops_uaccess_flush);
1087 	return 0;
1088 }
1089 device_initcall(rfi_flush_debugfs_init);
1090 #endif
1091 
1092 /*
1093  * setup_uaccess_flush runs before jump_label_init, so we can't do the setup
1094  * there. Do it now instead.
1095  */
uaccess_flush_static_key_init(void)1096 static __init int uaccess_flush_static_key_init(void)
1097 {
1098 	if (uaccess_flush) {
1099 		printk(KERN_DEBUG "uaccess-flush: switching on static key\n");
1100 		static_branch_enable(&uaccess_flush_key);
1101 	}
1102 	return 0;
1103 }
1104 early_initcall(uaccess_flush_static_key_init);
1105 #endif /* CONFIG_PPC_BOOK3S_64 */
1106