1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91
92 /*
93 * Array of node states.
94 */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117 /*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123 unsigned long dirty_balance_reserve __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 /*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
get_pcppage_migratetype(struct page * page)136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 return page->index;
139 }
140
set_pcppage_migratetype(struct page * page,int migratetype)141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 page->index = migratetype;
144 }
145
146 #ifdef CONFIG_PM_SLEEP
147 /*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
155
156 static gfp_t saved_gfp_mask;
157
pm_restore_gfp_mask(void)158 void pm_restore_gfp_mask(void)
159 {
160 WARN_ON(!mutex_is_locked(&pm_mutex));
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
165 }
166
pm_restrict_gfp_mask(void)167 void pm_restrict_gfp_mask(void)
168 {
169 WARN_ON(!mutex_is_locked(&pm_mutex));
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174
pm_suspended_storage(void)175 bool pm_suspended_storage(void)
176 {
177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 return false;
179 return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
186
187 static void __free_pages_ok(struct page *page, unsigned int order);
188
189 /*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
199 */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 32,
209 #endif
210 32,
211 };
212
213 EXPORT_SYMBOL(totalram_pages);
214
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 "DMA32",
221 #endif
222 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 "HighMem",
225 #endif
226 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 "Device",
229 #endif
230 };
231
232 static void free_compound_page(struct page *page);
233 compound_page_dtor * const compound_page_dtors[] = {
234 NULL,
235 free_compound_page,
236 #ifdef CONFIG_HUGETLB_PAGE
237 free_huge_page,
238 #endif
239 };
240
241 /*
242 * Try to keep at least this much lowmem free. Do not allow normal
243 * allocations below this point, only high priority ones. Automatically
244 * tuned according to the amount of memory in the system.
245 */
246 int min_free_kbytes = 1024;
247 int user_min_free_kbytes = -1;
248
249 /*
250 * Extra memory for the system to try freeing. Used to temporarily
251 * free memory, to make space for new workloads. Anyone can allocate
252 * down to the min watermarks controlled by min_free_kbytes above.
253 */
254 int extra_free_kbytes = 0;
255
256 static unsigned long __meminitdata nr_kernel_pages;
257 static unsigned long __meminitdata nr_all_pages;
258 static unsigned long __meminitdata dma_reserve;
259
260 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
261 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
262 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
263 static unsigned long __initdata required_kernelcore;
264 static unsigned long __initdata required_movablecore;
265 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
266
267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 int movable_zone;
269 EXPORT_SYMBOL(movable_zone);
270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271
272 #if MAX_NUMNODES > 1
273 int nr_node_ids __read_mostly = MAX_NUMNODES;
274 int nr_online_nodes __read_mostly = 1;
275 EXPORT_SYMBOL(nr_node_ids);
276 EXPORT_SYMBOL(nr_online_nodes);
277 #endif
278
279 int page_group_by_mobility_disabled __read_mostly;
280
281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282
283 /*
284 * Determine how many pages need to be initialized durig early boot
285 * (non-deferred initialization).
286 * The value of first_deferred_pfn will be set later, once non-deferred pages
287 * are initialized, but for now set it ULONG_MAX.
288 */
reset_deferred_meminit(pg_data_t * pgdat)289 static inline void reset_deferred_meminit(pg_data_t *pgdat)
290 {
291 phys_addr_t start_addr, end_addr;
292 unsigned long max_pgcnt;
293 unsigned long reserved;
294
295 /*
296 * Initialise at least 2G of a node but also take into account that
297 * two large system hashes that can take up 1GB for 0.25TB/node.
298 */
299 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
300 (pgdat->node_spanned_pages >> 8));
301
302 /*
303 * Compensate the all the memblock reservations (e.g. crash kernel)
304 * from the initial estimation to make sure we will initialize enough
305 * memory to boot.
306 */
307 start_addr = PFN_PHYS(pgdat->node_start_pfn);
308 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
309 reserved = memblock_reserved_memory_within(start_addr, end_addr);
310 max_pgcnt += PHYS_PFN(reserved);
311
312 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
313 pgdat->first_deferred_pfn = ULONG_MAX;
314 }
315
316 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)317 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
318 {
319 int nid = early_pfn_to_nid(pfn);
320
321 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
322 return true;
323
324 return false;
325 }
326
early_page_nid_uninitialised(unsigned long pfn,int nid)327 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
328 {
329 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
330 return true;
331
332 return false;
333 }
334
335 /*
336 * Returns false when the remaining initialisation should be deferred until
337 * later in the boot cycle when it can be parallelised.
338 */
update_defer_init(pg_data_t * pgdat,unsigned long pfn,unsigned long zone_end,unsigned long * nr_initialised)339 static inline bool update_defer_init(pg_data_t *pgdat,
340 unsigned long pfn, unsigned long zone_end,
341 unsigned long *nr_initialised)
342 {
343 /* Always populate low zones for address-contrained allocations */
344 if (zone_end < pgdat_end_pfn(pgdat))
345 return true;
346 /* Initialise at least 2G of the highest zone */
347 (*nr_initialised)++;
348 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
349 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
350 pgdat->first_deferred_pfn = pfn;
351 return false;
352 }
353
354 return true;
355 }
356 #else
reset_deferred_meminit(pg_data_t * pgdat)357 static inline void reset_deferred_meminit(pg_data_t *pgdat)
358 {
359 }
360
early_page_uninitialised(unsigned long pfn)361 static inline bool early_page_uninitialised(unsigned long pfn)
362 {
363 return false;
364 }
365
early_page_nid_uninitialised(unsigned long pfn,int nid)366 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
367 {
368 return false;
369 }
370
update_defer_init(pg_data_t * pgdat,unsigned long pfn,unsigned long zone_end,unsigned long * nr_initialised)371 static inline bool update_defer_init(pg_data_t *pgdat,
372 unsigned long pfn, unsigned long zone_end,
373 unsigned long *nr_initialised)
374 {
375 return true;
376 }
377 #endif
378
379
set_pageblock_migratetype(struct page * page,int migratetype)380 void set_pageblock_migratetype(struct page *page, int migratetype)
381 {
382 if (unlikely(page_group_by_mobility_disabled &&
383 migratetype < MIGRATE_PCPTYPES))
384 migratetype = MIGRATE_UNMOVABLE;
385
386 set_pageblock_flags_group(page, (unsigned long)migratetype,
387 PB_migrate, PB_migrate_end);
388 }
389
390 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)391 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
392 {
393 int ret = 0;
394 unsigned seq;
395 unsigned long pfn = page_to_pfn(page);
396 unsigned long sp, start_pfn;
397
398 do {
399 seq = zone_span_seqbegin(zone);
400 start_pfn = zone->zone_start_pfn;
401 sp = zone->spanned_pages;
402 if (!zone_spans_pfn(zone, pfn))
403 ret = 1;
404 } while (zone_span_seqretry(zone, seq));
405
406 if (ret)
407 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
408 pfn, zone_to_nid(zone), zone->name,
409 start_pfn, start_pfn + sp);
410
411 return ret;
412 }
413
page_is_consistent(struct zone * zone,struct page * page)414 static int page_is_consistent(struct zone *zone, struct page *page)
415 {
416 if (!pfn_valid_within(page_to_pfn(page)))
417 return 0;
418 if (zone != page_zone(page))
419 return 0;
420
421 return 1;
422 }
423 /*
424 * Temporary debugging check for pages not lying within a given zone.
425 */
bad_range(struct zone * zone,struct page * page)426 static int bad_range(struct zone *zone, struct page *page)
427 {
428 if (page_outside_zone_boundaries(zone, page))
429 return 1;
430 if (!page_is_consistent(zone, page))
431 return 1;
432
433 return 0;
434 }
435 #else
bad_range(struct zone * zone,struct page * page)436 static inline int bad_range(struct zone *zone, struct page *page)
437 {
438 return 0;
439 }
440 #endif
441
bad_page(struct page * page,const char * reason,unsigned long bad_flags)442 static void bad_page(struct page *page, const char *reason,
443 unsigned long bad_flags)
444 {
445 static unsigned long resume;
446 static unsigned long nr_shown;
447 static unsigned long nr_unshown;
448
449 /* Don't complain about poisoned pages */
450 if (PageHWPoison(page)) {
451 page_mapcount_reset(page); /* remove PageBuddy */
452 return;
453 }
454
455 /*
456 * Allow a burst of 60 reports, then keep quiet for that minute;
457 * or allow a steady drip of one report per second.
458 */
459 if (nr_shown == 60) {
460 if (time_before(jiffies, resume)) {
461 nr_unshown++;
462 goto out;
463 }
464 if (nr_unshown) {
465 printk(KERN_ALERT
466 "BUG: Bad page state: %lu messages suppressed\n",
467 nr_unshown);
468 nr_unshown = 0;
469 }
470 nr_shown = 0;
471 }
472 if (nr_shown++ == 0)
473 resume = jiffies + 60 * HZ;
474
475 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
476 current->comm, page_to_pfn(page));
477 dump_page_badflags(page, reason, bad_flags);
478
479 print_modules();
480 dump_stack();
481 out:
482 /* Leave bad fields for debug, except PageBuddy could make trouble */
483 page_mapcount_reset(page); /* remove PageBuddy */
484 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
485 }
486
487 /*
488 * Higher-order pages are called "compound pages". They are structured thusly:
489 *
490 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
491 *
492 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
493 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
494 *
495 * The first tail page's ->compound_dtor holds the offset in array of compound
496 * page destructors. See compound_page_dtors.
497 *
498 * The first tail page's ->compound_order holds the order of allocation.
499 * This usage means that zero-order pages may not be compound.
500 */
501
free_compound_page(struct page * page)502 static void free_compound_page(struct page *page)
503 {
504 __free_pages_ok(page, compound_order(page));
505 }
506
prep_compound_page(struct page * page,unsigned int order)507 void prep_compound_page(struct page *page, unsigned int order)
508 {
509 int i;
510 int nr_pages = 1 << order;
511
512 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
513 set_compound_order(page, order);
514 __SetPageHead(page);
515 for (i = 1; i < nr_pages; i++) {
516 struct page *p = page + i;
517 set_page_count(p, 0);
518 set_compound_head(p, page);
519 }
520 }
521
522 #ifdef CONFIG_DEBUG_PAGEALLOC
523 unsigned int _debug_guardpage_minorder;
524 bool _debug_pagealloc_enabled __read_mostly;
525 bool _debug_guardpage_enabled __read_mostly;
526
early_debug_pagealloc(char * buf)527 static int __init early_debug_pagealloc(char *buf)
528 {
529 if (!buf)
530 return -EINVAL;
531
532 if (strcmp(buf, "on") == 0)
533 _debug_pagealloc_enabled = true;
534
535 return 0;
536 }
537 early_param("debug_pagealloc", early_debug_pagealloc);
538
need_debug_guardpage(void)539 static bool need_debug_guardpage(void)
540 {
541 /* If we don't use debug_pagealloc, we don't need guard page */
542 if (!debug_pagealloc_enabled())
543 return false;
544
545 return true;
546 }
547
init_debug_guardpage(void)548 static void init_debug_guardpage(void)
549 {
550 if (!debug_pagealloc_enabled())
551 return;
552
553 _debug_guardpage_enabled = true;
554 }
555
556 struct page_ext_operations debug_guardpage_ops = {
557 .need = need_debug_guardpage,
558 .init = init_debug_guardpage,
559 };
560
debug_guardpage_minorder_setup(char * buf)561 static int __init debug_guardpage_minorder_setup(char *buf)
562 {
563 unsigned long res;
564
565 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
566 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
567 return 0;
568 }
569 _debug_guardpage_minorder = res;
570 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
571 return 0;
572 }
573 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
574
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)575 static inline void set_page_guard(struct zone *zone, struct page *page,
576 unsigned int order, int migratetype)
577 {
578 struct page_ext *page_ext;
579
580 if (!debug_guardpage_enabled())
581 return;
582
583 page_ext = lookup_page_ext(page);
584 if (unlikely(!page_ext))
585 return;
586
587 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
588
589 INIT_LIST_HEAD(&page->lru);
590 set_page_private(page, order);
591 /* Guard pages are not available for any usage */
592 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
593 }
594
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)595 static inline void clear_page_guard(struct zone *zone, struct page *page,
596 unsigned int order, int migratetype)
597 {
598 struct page_ext *page_ext;
599
600 if (!debug_guardpage_enabled())
601 return;
602
603 page_ext = lookup_page_ext(page);
604 if (unlikely(!page_ext))
605 return;
606
607 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
608
609 set_page_private(page, 0);
610 if (!is_migrate_isolate(migratetype))
611 __mod_zone_freepage_state(zone, (1 << order), migratetype);
612 }
613 #else
614 struct page_ext_operations debug_guardpage_ops = { NULL, };
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)615 static inline void set_page_guard(struct zone *zone, struct page *page,
616 unsigned int order, int migratetype) {}
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)617 static inline void clear_page_guard(struct zone *zone, struct page *page,
618 unsigned int order, int migratetype) {}
619 #endif
620
set_page_order(struct page * page,unsigned int order)621 static inline void set_page_order(struct page *page, unsigned int order)
622 {
623 set_page_private(page, order);
624 __SetPageBuddy(page);
625 }
626
rmv_page_order(struct page * page)627 static inline void rmv_page_order(struct page *page)
628 {
629 __ClearPageBuddy(page);
630 set_page_private(page, 0);
631 }
632
633 /*
634 * This function checks whether a page is free && is the buddy
635 * we can do coalesce a page and its buddy if
636 * (a) the buddy is not in a hole &&
637 * (b) the buddy is in the buddy system &&
638 * (c) a page and its buddy have the same order &&
639 * (d) a page and its buddy are in the same zone.
640 *
641 * For recording whether a page is in the buddy system, we set ->_mapcount
642 * PAGE_BUDDY_MAPCOUNT_VALUE.
643 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
644 * serialized by zone->lock.
645 *
646 * For recording page's order, we use page_private(page).
647 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)648 static inline int page_is_buddy(struct page *page, struct page *buddy,
649 unsigned int order)
650 {
651 if (!pfn_valid_within(page_to_pfn(buddy)))
652 return 0;
653
654 if (page_is_guard(buddy) && page_order(buddy) == order) {
655 if (page_zone_id(page) != page_zone_id(buddy))
656 return 0;
657
658 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
659
660 return 1;
661 }
662
663 if (PageBuddy(buddy) && page_order(buddy) == order) {
664 /*
665 * zone check is done late to avoid uselessly
666 * calculating zone/node ids for pages that could
667 * never merge.
668 */
669 if (page_zone_id(page) != page_zone_id(buddy))
670 return 0;
671
672 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
673
674 return 1;
675 }
676 return 0;
677 }
678
679 /*
680 * Freeing function for a buddy system allocator.
681 *
682 * The concept of a buddy system is to maintain direct-mapped table
683 * (containing bit values) for memory blocks of various "orders".
684 * The bottom level table contains the map for the smallest allocatable
685 * units of memory (here, pages), and each level above it describes
686 * pairs of units from the levels below, hence, "buddies".
687 * At a high level, all that happens here is marking the table entry
688 * at the bottom level available, and propagating the changes upward
689 * as necessary, plus some accounting needed to play nicely with other
690 * parts of the VM system.
691 * At each level, we keep a list of pages, which are heads of continuous
692 * free pages of length of (1 << order) and marked with _mapcount
693 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
694 * field.
695 * So when we are allocating or freeing one, we can derive the state of the
696 * other. That is, if we allocate a small block, and both were
697 * free, the remainder of the region must be split into blocks.
698 * If a block is freed, and its buddy is also free, then this
699 * triggers coalescing into a block of larger size.
700 *
701 * -- nyc
702 */
703
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype)704 static inline void __free_one_page(struct page *page,
705 unsigned long pfn,
706 struct zone *zone, unsigned int order,
707 int migratetype)
708 {
709 unsigned long page_idx;
710 unsigned long combined_idx;
711 unsigned long uninitialized_var(buddy_idx);
712 struct page *buddy;
713 unsigned int max_order;
714
715 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
716
717 VM_BUG_ON(!zone_is_initialized(zone));
718 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
719
720 VM_BUG_ON(migratetype == -1);
721 if (likely(!is_migrate_isolate(migratetype)))
722 __mod_zone_freepage_state(zone, 1 << order, migratetype);
723
724 page_idx = pfn & ((1 << MAX_ORDER) - 1);
725
726 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
727 VM_BUG_ON_PAGE(bad_range(zone, page), page);
728
729 continue_merging:
730 while (order < max_order) {
731 buddy_idx = __find_buddy_index(page_idx, order);
732 buddy = page + (buddy_idx - page_idx);
733 if (!page_is_buddy(page, buddy, order))
734 goto done_merging;
735 /*
736 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
737 * merge with it and move up one order.
738 */
739 if (page_is_guard(buddy)) {
740 clear_page_guard(zone, buddy, order, migratetype);
741 } else {
742 list_del(&buddy->lru);
743 zone->free_area[order].nr_free--;
744 rmv_page_order(buddy);
745 }
746 combined_idx = buddy_idx & page_idx;
747 page = page + (combined_idx - page_idx);
748 page_idx = combined_idx;
749 order++;
750 }
751 if (order < MAX_ORDER - 1) {
752 /* If we are here, it means order is >= pageblock_order.
753 * We want to prevent merge between freepages on isolate
754 * pageblock and normal pageblock. Without this, pageblock
755 * isolation could cause incorrect freepage or CMA accounting.
756 *
757 * We don't want to hit this code for the more frequent
758 * low-order merging.
759 */
760 if (unlikely(has_isolate_pageblock(zone))) {
761 int buddy_mt;
762
763 buddy_idx = __find_buddy_index(page_idx, order);
764 buddy = page + (buddy_idx - page_idx);
765 buddy_mt = get_pageblock_migratetype(buddy);
766
767 if (migratetype != buddy_mt
768 && (is_migrate_isolate(migratetype) ||
769 is_migrate_isolate(buddy_mt)))
770 goto done_merging;
771 }
772 max_order = order + 1;
773 goto continue_merging;
774 }
775
776 done_merging:
777 set_page_order(page, order);
778
779 /*
780 * If this is not the largest possible page, check if the buddy
781 * of the next-highest order is free. If it is, it's possible
782 * that pages are being freed that will coalesce soon. In case,
783 * that is happening, add the free page to the tail of the list
784 * so it's less likely to be used soon and more likely to be merged
785 * as a higher order page
786 */
787 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
788 struct page *higher_page, *higher_buddy;
789 combined_idx = buddy_idx & page_idx;
790 higher_page = page + (combined_idx - page_idx);
791 buddy_idx = __find_buddy_index(combined_idx, order + 1);
792 higher_buddy = higher_page + (buddy_idx - combined_idx);
793 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
794 list_add_tail(&page->lru,
795 &zone->free_area[order].free_list[migratetype]);
796 goto out;
797 }
798 }
799
800 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
801 out:
802 zone->free_area[order].nr_free++;
803 }
804
free_pages_check(struct page * page)805 static inline int free_pages_check(struct page *page)
806 {
807 const char *bad_reason = NULL;
808 unsigned long bad_flags = 0;
809
810 if (unlikely(page_mapcount(page)))
811 bad_reason = "nonzero mapcount";
812 if (unlikely(page->mapping != NULL))
813 bad_reason = "non-NULL mapping";
814 if (unlikely(atomic_read(&page->_count) != 0))
815 bad_reason = "nonzero _count";
816 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
817 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
818 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
819 }
820 #ifdef CONFIG_MEMCG
821 if (unlikely(page->mem_cgroup))
822 bad_reason = "page still charged to cgroup";
823 #endif
824 if (unlikely(bad_reason)) {
825 bad_page(page, bad_reason, bad_flags);
826 return 1;
827 }
828 page_cpupid_reset_last(page);
829 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
830 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
831 return 0;
832 }
833
834 /*
835 * Frees a number of pages from the PCP lists
836 * Assumes all pages on list are in same zone, and of same order.
837 * count is the number of pages to free.
838 *
839 * If the zone was previously in an "all pages pinned" state then look to
840 * see if this freeing clears that state.
841 *
842 * And clear the zone's pages_scanned counter, to hold off the "all pages are
843 * pinned" detection logic.
844 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)845 static void free_pcppages_bulk(struct zone *zone, int count,
846 struct per_cpu_pages *pcp)
847 {
848 int migratetype = 0;
849 int batch_free = 0;
850 unsigned long nr_scanned;
851
852 spin_lock(&zone->lock);
853 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
854 if (nr_scanned)
855 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
856
857 /*
858 * Ensure proper count is passed which otherwise would stuck in the
859 * below while (list_empty(list)) loop.
860 */
861 count = min(pcp->count, count);
862 while (count) {
863 struct page *page;
864 struct list_head *list;
865
866 /*
867 * Remove pages from lists in a round-robin fashion. A
868 * batch_free count is maintained that is incremented when an
869 * empty list is encountered. This is so more pages are freed
870 * off fuller lists instead of spinning excessively around empty
871 * lists
872 */
873 do {
874 batch_free++;
875 if (++migratetype == MIGRATE_PCPTYPES)
876 migratetype = 0;
877 list = &pcp->lists[migratetype];
878 } while (list_empty(list));
879
880 /* This is the only non-empty list. Free them all. */
881 if (batch_free == MIGRATE_PCPTYPES)
882 batch_free = count;
883
884 do {
885 int mt; /* migratetype of the to-be-freed page */
886
887 page = list_entry(list->prev, struct page, lru);
888 /* must delete as __free_one_page list manipulates */
889 list_del(&page->lru);
890
891 mt = get_pcppage_migratetype(page);
892 /* MIGRATE_ISOLATE page should not go to pcplists */
893 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
894 /* Pageblock could have been isolated meanwhile */
895 if (unlikely(has_isolate_pageblock(zone)))
896 mt = get_pageblock_migratetype(page);
897
898 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
899 trace_mm_page_pcpu_drain(page, 0, mt);
900 } while (--count && --batch_free && !list_empty(list));
901 }
902 spin_unlock(&zone->lock);
903 }
904
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype)905 static void free_one_page(struct zone *zone,
906 struct page *page, unsigned long pfn,
907 unsigned int order,
908 int migratetype)
909 {
910 unsigned long nr_scanned;
911 spin_lock(&zone->lock);
912 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
913 if (nr_scanned)
914 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
915
916 if (unlikely(has_isolate_pageblock(zone) ||
917 is_migrate_isolate(migratetype))) {
918 migratetype = get_pfnblock_migratetype(page, pfn);
919 }
920 __free_one_page(page, pfn, zone, order, migratetype);
921 spin_unlock(&zone->lock);
922 }
923
free_tail_pages_check(struct page * head_page,struct page * page)924 static int free_tail_pages_check(struct page *head_page, struct page *page)
925 {
926 int ret = 1;
927
928 /*
929 * We rely page->lru.next never has bit 0 set, unless the page
930 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
931 */
932 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
933
934 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
935 ret = 0;
936 goto out;
937 }
938 if (unlikely(!PageTail(page))) {
939 bad_page(page, "PageTail not set", 0);
940 goto out;
941 }
942 if (unlikely(compound_head(page) != head_page)) {
943 bad_page(page, "compound_head not consistent", 0);
944 goto out;
945 }
946 ret = 0;
947 out:
948 clear_compound_head(page);
949 return ret;
950 }
951
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)952 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
953 unsigned long zone, int nid)
954 {
955 set_page_links(page, zone, nid, pfn);
956 init_page_count(page);
957 page_mapcount_reset(page);
958 page_cpupid_reset_last(page);
959
960 INIT_LIST_HEAD(&page->lru);
961 #ifdef WANT_PAGE_VIRTUAL
962 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
963 if (!is_highmem_idx(zone))
964 set_page_address(page, __va(pfn << PAGE_SHIFT));
965 #endif
966 }
967
__init_single_pfn(unsigned long pfn,unsigned long zone,int nid)968 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
969 int nid)
970 {
971 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
972 }
973
974 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)975 static void init_reserved_page(unsigned long pfn)
976 {
977 pg_data_t *pgdat;
978 int nid, zid;
979
980 if (!early_page_uninitialised(pfn))
981 return;
982
983 nid = early_pfn_to_nid(pfn);
984 pgdat = NODE_DATA(nid);
985
986 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
987 struct zone *zone = &pgdat->node_zones[zid];
988
989 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
990 break;
991 }
992 __init_single_pfn(pfn, zid, nid);
993 }
994 #else
init_reserved_page(unsigned long pfn)995 static inline void init_reserved_page(unsigned long pfn)
996 {
997 }
998 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
999
1000 /*
1001 * Initialised pages do not have PageReserved set. This function is
1002 * called for each range allocated by the bootmem allocator and
1003 * marks the pages PageReserved. The remaining valid pages are later
1004 * sent to the buddy page allocator.
1005 */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1006 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1007 {
1008 unsigned long start_pfn = PFN_DOWN(start);
1009 unsigned long end_pfn = PFN_UP(end);
1010
1011 for (; start_pfn < end_pfn; start_pfn++) {
1012 if (pfn_valid(start_pfn)) {
1013 struct page *page = pfn_to_page(start_pfn);
1014
1015 init_reserved_page(start_pfn);
1016
1017 /* Avoid false-positive PageTail() */
1018 INIT_LIST_HEAD(&page->lru);
1019
1020 SetPageReserved(page);
1021 }
1022 }
1023 }
1024
free_pages_prepare(struct page * page,unsigned int order)1025 static bool free_pages_prepare(struct page *page, unsigned int order)
1026 {
1027 bool compound = PageCompound(page);
1028 int i, bad = 0;
1029
1030 VM_BUG_ON_PAGE(PageTail(page), page);
1031 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1032
1033 trace_mm_page_free(page, order);
1034 kmemcheck_free_shadow(page, order);
1035 kasan_free_pages(page, order);
1036
1037 if (PageAnon(page))
1038 page->mapping = NULL;
1039 bad += free_pages_check(page);
1040 for (i = 1; i < (1 << order); i++) {
1041 if (compound)
1042 bad += free_tail_pages_check(page, page + i);
1043 bad += free_pages_check(page + i);
1044 }
1045 if (bad)
1046 return false;
1047
1048 reset_page_owner(page, order);
1049
1050 if (!PageHighMem(page)) {
1051 debug_check_no_locks_freed(page_address(page),
1052 PAGE_SIZE << order);
1053 debug_check_no_obj_freed(page_address(page),
1054 PAGE_SIZE << order);
1055 }
1056 arch_free_page(page, order);
1057 kernel_map_pages(page, 1 << order, 0);
1058
1059 return true;
1060 }
1061
__free_pages_ok(struct page * page,unsigned int order)1062 static void __free_pages_ok(struct page *page, unsigned int order)
1063 {
1064 unsigned long flags;
1065 int migratetype;
1066 unsigned long pfn = page_to_pfn(page);
1067
1068 if (!free_pages_prepare(page, order))
1069 return;
1070
1071 migratetype = get_pfnblock_migratetype(page, pfn);
1072 local_irq_save(flags);
1073 __count_vm_events(PGFREE, 1 << order);
1074 free_one_page(page_zone(page), page, pfn, order, migratetype);
1075 local_irq_restore(flags);
1076 }
1077
__free_pages_boot_core(struct page * page,unsigned long pfn,unsigned int order)1078 static void __init __free_pages_boot_core(struct page *page,
1079 unsigned long pfn, unsigned int order)
1080 {
1081 unsigned int nr_pages = 1 << order;
1082 struct page *p = page;
1083 unsigned int loop;
1084
1085 prefetchw(p);
1086 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1087 prefetchw(p + 1);
1088 __ClearPageReserved(p);
1089 set_page_count(p, 0);
1090 }
1091 __ClearPageReserved(p);
1092 set_page_count(p, 0);
1093
1094 page_zone(page)->managed_pages += nr_pages;
1095 set_page_refcounted(page);
1096 __free_pages(page, order);
1097 }
1098
1099 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1100 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1101
1102 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1103
early_pfn_to_nid(unsigned long pfn)1104 int __meminit early_pfn_to_nid(unsigned long pfn)
1105 {
1106 static DEFINE_SPINLOCK(early_pfn_lock);
1107 int nid;
1108
1109 spin_lock(&early_pfn_lock);
1110 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1111 if (nid < 0)
1112 nid = first_online_node;
1113 spin_unlock(&early_pfn_lock);
1114
1115 return nid;
1116 }
1117 #endif
1118
1119 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
meminit_pfn_in_nid(unsigned long pfn,int node,struct mminit_pfnnid_cache * state)1120 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1121 struct mminit_pfnnid_cache *state)
1122 {
1123 int nid;
1124
1125 nid = __early_pfn_to_nid(pfn, state);
1126 if (nid >= 0 && nid != node)
1127 return false;
1128 return true;
1129 }
1130
1131 /* Only safe to use early in boot when initialisation is single-threaded */
early_pfn_in_nid(unsigned long pfn,int node)1132 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1133 {
1134 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1135 }
1136
1137 #else
1138
early_pfn_in_nid(unsigned long pfn,int node)1139 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1140 {
1141 return true;
1142 }
meminit_pfn_in_nid(unsigned long pfn,int node,struct mminit_pfnnid_cache * state)1143 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1144 struct mminit_pfnnid_cache *state)
1145 {
1146 return true;
1147 }
1148 #endif
1149
1150
__free_pages_bootmem(struct page * page,unsigned long pfn,unsigned int order)1151 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1152 unsigned int order)
1153 {
1154 if (early_page_uninitialised(pfn))
1155 return;
1156 return __free_pages_boot_core(page, pfn, order);
1157 }
1158
1159 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(struct page * page,unsigned long pfn,int nr_pages)1160 static void __init deferred_free_range(struct page *page,
1161 unsigned long pfn, int nr_pages)
1162 {
1163 int i;
1164
1165 if (!page)
1166 return;
1167
1168 /* Free a large naturally-aligned chunk if possible */
1169 if (nr_pages == MAX_ORDER_NR_PAGES &&
1170 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1171 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1172 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1173 return;
1174 }
1175
1176 for (i = 0; i < nr_pages; i++, page++, pfn++)
1177 __free_pages_boot_core(page, pfn, 0);
1178 }
1179
1180 /* Completion tracking for deferred_init_memmap() threads */
1181 static atomic_t pgdat_init_n_undone __initdata;
1182 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1183
pgdat_init_report_one_done(void)1184 static inline void __init pgdat_init_report_one_done(void)
1185 {
1186 if (atomic_dec_and_test(&pgdat_init_n_undone))
1187 complete(&pgdat_init_all_done_comp);
1188 }
1189
1190 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)1191 static int __init deferred_init_memmap(void *data)
1192 {
1193 pg_data_t *pgdat = data;
1194 int nid = pgdat->node_id;
1195 struct mminit_pfnnid_cache nid_init_state = { };
1196 unsigned long start = jiffies;
1197 unsigned long nr_pages = 0;
1198 unsigned long walk_start, walk_end;
1199 int i, zid;
1200 struct zone *zone;
1201 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1202 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1203
1204 if (first_init_pfn == ULONG_MAX) {
1205 pgdat_init_report_one_done();
1206 return 0;
1207 }
1208
1209 /* Bind memory initialisation thread to a local node if possible */
1210 if (!cpumask_empty(cpumask))
1211 set_cpus_allowed_ptr(current, cpumask);
1212
1213 /* Sanity check boundaries */
1214 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1215 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1216 pgdat->first_deferred_pfn = ULONG_MAX;
1217
1218 /* Only the highest zone is deferred so find it */
1219 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1220 zone = pgdat->node_zones + zid;
1221 if (first_init_pfn < zone_end_pfn(zone))
1222 break;
1223 }
1224
1225 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1226 unsigned long pfn, end_pfn;
1227 struct page *page = NULL;
1228 struct page *free_base_page = NULL;
1229 unsigned long free_base_pfn = 0;
1230 int nr_to_free = 0;
1231
1232 end_pfn = min(walk_end, zone_end_pfn(zone));
1233 pfn = first_init_pfn;
1234 if (pfn < walk_start)
1235 pfn = walk_start;
1236 if (pfn < zone->zone_start_pfn)
1237 pfn = zone->zone_start_pfn;
1238
1239 for (; pfn < end_pfn; pfn++) {
1240 if (!pfn_valid_within(pfn))
1241 goto free_range;
1242
1243 /*
1244 * Ensure pfn_valid is checked every
1245 * MAX_ORDER_NR_PAGES for memory holes
1246 */
1247 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1248 if (!pfn_valid(pfn)) {
1249 page = NULL;
1250 goto free_range;
1251 }
1252 }
1253
1254 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1255 page = NULL;
1256 goto free_range;
1257 }
1258
1259 /* Minimise pfn page lookups and scheduler checks */
1260 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1261 page++;
1262 } else {
1263 nr_pages += nr_to_free;
1264 deferred_free_range(free_base_page,
1265 free_base_pfn, nr_to_free);
1266 free_base_page = NULL;
1267 free_base_pfn = nr_to_free = 0;
1268
1269 page = pfn_to_page(pfn);
1270 cond_resched();
1271 }
1272
1273 if (page->flags) {
1274 VM_BUG_ON(page_zone(page) != zone);
1275 goto free_range;
1276 }
1277
1278 __init_single_page(page, pfn, zid, nid);
1279 if (!free_base_page) {
1280 free_base_page = page;
1281 free_base_pfn = pfn;
1282 nr_to_free = 0;
1283 }
1284 nr_to_free++;
1285
1286 /* Where possible, batch up pages for a single free */
1287 continue;
1288 free_range:
1289 /* Free the current block of pages to allocator */
1290 nr_pages += nr_to_free;
1291 deferred_free_range(free_base_page, free_base_pfn,
1292 nr_to_free);
1293 free_base_page = NULL;
1294 free_base_pfn = nr_to_free = 0;
1295 }
1296
1297 first_init_pfn = max(end_pfn, first_init_pfn);
1298 }
1299
1300 /* Sanity check that the next zone really is unpopulated */
1301 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1302
1303 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1304 jiffies_to_msecs(jiffies - start));
1305
1306 pgdat_init_report_one_done();
1307 return 0;
1308 }
1309
page_alloc_init_late(void)1310 void __init page_alloc_init_late(void)
1311 {
1312 int nid;
1313
1314 /* There will be num_node_state(N_MEMORY) threads */
1315 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1316 for_each_node_state(nid, N_MEMORY) {
1317 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1318 }
1319
1320 /* Block until all are initialised */
1321 wait_for_completion(&pgdat_init_all_done_comp);
1322
1323 /* Reinit limits that are based on free pages after the kernel is up */
1324 files_maxfiles_init();
1325 }
1326 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1327
1328 #ifdef CONFIG_CMA
1329 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)1330 void __init init_cma_reserved_pageblock(struct page *page)
1331 {
1332 unsigned i = pageblock_nr_pages;
1333 struct page *p = page;
1334
1335 do {
1336 __ClearPageReserved(p);
1337 set_page_count(p, 0);
1338 } while (++p, --i);
1339
1340 set_pageblock_migratetype(page, MIGRATE_CMA);
1341
1342 if (pageblock_order >= MAX_ORDER) {
1343 i = pageblock_nr_pages;
1344 p = page;
1345 do {
1346 set_page_refcounted(p);
1347 __free_pages(p, MAX_ORDER - 1);
1348 p += MAX_ORDER_NR_PAGES;
1349 } while (i -= MAX_ORDER_NR_PAGES);
1350 } else {
1351 set_page_refcounted(page);
1352 __free_pages(page, pageblock_order);
1353 }
1354
1355 adjust_managed_page_count(page, pageblock_nr_pages);
1356 }
1357 #endif
1358
1359 /*
1360 * The order of subdivision here is critical for the IO subsystem.
1361 * Please do not alter this order without good reasons and regression
1362 * testing. Specifically, as large blocks of memory are subdivided,
1363 * the order in which smaller blocks are delivered depends on the order
1364 * they're subdivided in this function. This is the primary factor
1365 * influencing the order in which pages are delivered to the IO
1366 * subsystem according to empirical testing, and this is also justified
1367 * by considering the behavior of a buddy system containing a single
1368 * large block of memory acted on by a series of small allocations.
1369 * This behavior is a critical factor in sglist merging's success.
1370 *
1371 * -- nyc
1372 */
expand(struct zone * zone,struct page * page,int low,int high,struct free_area * area,int migratetype)1373 static inline void expand(struct zone *zone, struct page *page,
1374 int low, int high, struct free_area *area,
1375 int migratetype)
1376 {
1377 unsigned long size = 1 << high;
1378
1379 while (high > low) {
1380 area--;
1381 high--;
1382 size >>= 1;
1383 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1384
1385 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1386 debug_guardpage_enabled() &&
1387 high < debug_guardpage_minorder()) {
1388 /*
1389 * Mark as guard pages (or page), that will allow to
1390 * merge back to allocator when buddy will be freed.
1391 * Corresponding page table entries will not be touched,
1392 * pages will stay not present in virtual address space
1393 */
1394 set_page_guard(zone, &page[size], high, migratetype);
1395 continue;
1396 }
1397 list_add(&page[size].lru, &area->free_list[migratetype]);
1398 area->nr_free++;
1399 set_page_order(&page[size], high);
1400 }
1401 }
1402
1403 /*
1404 * This page is about to be returned from the page allocator
1405 */
check_new_page(struct page * page)1406 static inline int check_new_page(struct page *page)
1407 {
1408 const char *bad_reason = NULL;
1409 unsigned long bad_flags = 0;
1410
1411 if (unlikely(page_mapcount(page)))
1412 bad_reason = "nonzero mapcount";
1413 if (unlikely(page->mapping != NULL))
1414 bad_reason = "non-NULL mapping";
1415 if (unlikely(atomic_read(&page->_count) != 0))
1416 bad_reason = "nonzero _count";
1417 if (unlikely(page->flags & __PG_HWPOISON)) {
1418 bad_reason = "HWPoisoned (hardware-corrupted)";
1419 bad_flags = __PG_HWPOISON;
1420 }
1421 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1422 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1423 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1424 }
1425 #ifdef CONFIG_MEMCG
1426 if (unlikely(page->mem_cgroup))
1427 bad_reason = "page still charged to cgroup";
1428 #endif
1429 if (unlikely(bad_reason)) {
1430 bad_page(page, bad_reason, bad_flags);
1431 return 1;
1432 }
1433 return 0;
1434 }
1435
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,int alloc_flags)1436 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1437 int alloc_flags)
1438 {
1439 int i;
1440
1441 for (i = 0; i < (1 << order); i++) {
1442 struct page *p = page + i;
1443 if (unlikely(check_new_page(p)))
1444 return 1;
1445 }
1446
1447 set_page_private(page, 0);
1448 set_page_refcounted(page);
1449
1450 arch_alloc_page(page, order);
1451 kernel_map_pages(page, 1 << order, 1);
1452 kasan_alloc_pages(page, order);
1453
1454 if (gfp_flags & __GFP_ZERO)
1455 for (i = 0; i < (1 << order); i++)
1456 clear_highpage(page + i);
1457
1458 if (order && (gfp_flags & __GFP_COMP))
1459 prep_compound_page(page, order);
1460
1461 set_page_owner(page, order, gfp_flags);
1462
1463 /*
1464 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1465 * allocate the page. The expectation is that the caller is taking
1466 * steps that will free more memory. The caller should avoid the page
1467 * being used for !PFMEMALLOC purposes.
1468 */
1469 if (alloc_flags & ALLOC_NO_WATERMARKS)
1470 set_page_pfmemalloc(page);
1471 else
1472 clear_page_pfmemalloc(page);
1473
1474 return 0;
1475 }
1476
1477 /*
1478 * Go through the free lists for the given migratetype and remove
1479 * the smallest available page from the freelists
1480 */
1481 static inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1482 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1483 int migratetype)
1484 {
1485 unsigned int current_order;
1486 struct free_area *area;
1487 struct page *page;
1488
1489 /* Find a page of the appropriate size in the preferred list */
1490 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1491 area = &(zone->free_area[current_order]);
1492 if (list_empty(&area->free_list[migratetype]))
1493 continue;
1494
1495 page = list_entry(area->free_list[migratetype].next,
1496 struct page, lru);
1497 list_del(&page->lru);
1498 rmv_page_order(page);
1499 area->nr_free--;
1500 expand(zone, page, order, current_order, area, migratetype);
1501 set_pcppage_migratetype(page, migratetype);
1502 return page;
1503 }
1504
1505 return NULL;
1506 }
1507
1508
1509 /*
1510 * This array describes the order lists are fallen back to when
1511 * the free lists for the desirable migrate type are depleted
1512 */
1513 static int fallbacks[MIGRATE_TYPES][4] = {
1514 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1515 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1516 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1517 #ifdef CONFIG_CMA
1518 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1519 #endif
1520 #ifdef CONFIG_MEMORY_ISOLATION
1521 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1522 #endif
1523 };
1524
1525 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1526 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1527 unsigned int order)
1528 {
1529 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1530 }
1531 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1532 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1533 unsigned int order) { return NULL; }
1534 #endif
1535
1536 /*
1537 * Move the free pages in a range to the free lists of the requested type.
1538 * Note that start_page and end_pages are not aligned on a pageblock
1539 * boundary. If alignment is required, use move_freepages_block()
1540 */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype)1541 int move_freepages(struct zone *zone,
1542 struct page *start_page, struct page *end_page,
1543 int migratetype)
1544 {
1545 struct page *page;
1546 unsigned int order;
1547 int pages_moved = 0;
1548
1549 #ifndef CONFIG_HOLES_IN_ZONE
1550 /*
1551 * page_zone is not safe to call in this context when
1552 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1553 * anyway as we check zone boundaries in move_freepages_block().
1554 * Remove at a later date when no bug reports exist related to
1555 * grouping pages by mobility
1556 */
1557 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1558 #endif
1559
1560 for (page = start_page; page <= end_page;) {
1561 if (!pfn_valid_within(page_to_pfn(page))) {
1562 page++;
1563 continue;
1564 }
1565
1566 /* Make sure we are not inadvertently changing nodes */
1567 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1568
1569 if (!PageBuddy(page)) {
1570 page++;
1571 continue;
1572 }
1573
1574 order = page_order(page);
1575 list_move(&page->lru,
1576 &zone->free_area[order].free_list[migratetype]);
1577 page += 1 << order;
1578 pages_moved += 1 << order;
1579 }
1580
1581 return pages_moved;
1582 }
1583
move_freepages_block(struct zone * zone,struct page * page,int migratetype)1584 int move_freepages_block(struct zone *zone, struct page *page,
1585 int migratetype)
1586 {
1587 unsigned long start_pfn, end_pfn;
1588 struct page *start_page, *end_page;
1589
1590 start_pfn = page_to_pfn(page);
1591 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1592 start_page = pfn_to_page(start_pfn);
1593 end_page = start_page + pageblock_nr_pages - 1;
1594 end_pfn = start_pfn + pageblock_nr_pages - 1;
1595
1596 /* Do not cross zone boundaries */
1597 if (!zone_spans_pfn(zone, start_pfn))
1598 start_page = page;
1599 if (!zone_spans_pfn(zone, end_pfn))
1600 return 0;
1601
1602 return move_freepages(zone, start_page, end_page, migratetype);
1603 }
1604
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1605 static void change_pageblock_range(struct page *pageblock_page,
1606 int start_order, int migratetype)
1607 {
1608 int nr_pageblocks = 1 << (start_order - pageblock_order);
1609
1610 while (nr_pageblocks--) {
1611 set_pageblock_migratetype(pageblock_page, migratetype);
1612 pageblock_page += pageblock_nr_pages;
1613 }
1614 }
1615
1616 /*
1617 * When we are falling back to another migratetype during allocation, try to
1618 * steal extra free pages from the same pageblocks to satisfy further
1619 * allocations, instead of polluting multiple pageblocks.
1620 *
1621 * If we are stealing a relatively large buddy page, it is likely there will
1622 * be more free pages in the pageblock, so try to steal them all. For
1623 * reclaimable and unmovable allocations, we steal regardless of page size,
1624 * as fragmentation caused by those allocations polluting movable pageblocks
1625 * is worse than movable allocations stealing from unmovable and reclaimable
1626 * pageblocks.
1627 */
can_steal_fallback(unsigned int order,int start_mt)1628 static bool can_steal_fallback(unsigned int order, int start_mt)
1629 {
1630 /*
1631 * Leaving this order check is intended, although there is
1632 * relaxed order check in next check. The reason is that
1633 * we can actually steal whole pageblock if this condition met,
1634 * but, below check doesn't guarantee it and that is just heuristic
1635 * so could be changed anytime.
1636 */
1637 if (order >= pageblock_order)
1638 return true;
1639
1640 if (order >= pageblock_order / 2 ||
1641 start_mt == MIGRATE_RECLAIMABLE ||
1642 start_mt == MIGRATE_UNMOVABLE ||
1643 page_group_by_mobility_disabled)
1644 return true;
1645
1646 return false;
1647 }
1648
1649 /*
1650 * This function implements actual steal behaviour. If order is large enough,
1651 * we can steal whole pageblock. If not, we first move freepages in this
1652 * pageblock and check whether half of pages are moved or not. If half of
1653 * pages are moved, we can change migratetype of pageblock and permanently
1654 * use it's pages as requested migratetype in the future.
1655 */
steal_suitable_fallback(struct zone * zone,struct page * page,int start_type)1656 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1657 int start_type)
1658 {
1659 unsigned int current_order = page_order(page);
1660 int pages;
1661
1662 /* Take ownership for orders >= pageblock_order */
1663 if (current_order >= pageblock_order) {
1664 change_pageblock_range(page, current_order, start_type);
1665 return;
1666 }
1667
1668 pages = move_freepages_block(zone, page, start_type);
1669
1670 /* Claim the whole block if over half of it is free */
1671 if (pages >= (1 << (pageblock_order-1)) ||
1672 page_group_by_mobility_disabled)
1673 set_pageblock_migratetype(page, start_type);
1674 }
1675
1676 /*
1677 * Check whether there is a suitable fallback freepage with requested order.
1678 * If only_stealable is true, this function returns fallback_mt only if
1679 * we can steal other freepages all together. This would help to reduce
1680 * fragmentation due to mixed migratetype pages in one pageblock.
1681 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1682 int find_suitable_fallback(struct free_area *area, unsigned int order,
1683 int migratetype, bool only_stealable, bool *can_steal)
1684 {
1685 int i;
1686 int fallback_mt;
1687
1688 if (area->nr_free == 0)
1689 return -1;
1690
1691 *can_steal = false;
1692 for (i = 0;; i++) {
1693 fallback_mt = fallbacks[migratetype][i];
1694 if (fallback_mt == MIGRATE_TYPES)
1695 break;
1696
1697 if (list_empty(&area->free_list[fallback_mt]))
1698 continue;
1699
1700 if (can_steal_fallback(order, migratetype))
1701 *can_steal = true;
1702
1703 if (!only_stealable)
1704 return fallback_mt;
1705
1706 if (*can_steal)
1707 return fallback_mt;
1708 }
1709
1710 return -1;
1711 }
1712
1713 /*
1714 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1715 * there are no empty page blocks that contain a page with a suitable order
1716 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)1717 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1718 unsigned int alloc_order)
1719 {
1720 int mt;
1721 unsigned long max_managed, flags;
1722
1723 /*
1724 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1725 * Check is race-prone but harmless.
1726 */
1727 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1728 if (zone->nr_reserved_highatomic >= max_managed)
1729 return;
1730
1731 spin_lock_irqsave(&zone->lock, flags);
1732
1733 /* Recheck the nr_reserved_highatomic limit under the lock */
1734 if (zone->nr_reserved_highatomic >= max_managed)
1735 goto out_unlock;
1736
1737 /* Yoink! */
1738 mt = get_pageblock_migratetype(page);
1739 if (mt != MIGRATE_HIGHATOMIC &&
1740 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1741 zone->nr_reserved_highatomic += pageblock_nr_pages;
1742 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1743 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1744 }
1745
1746 out_unlock:
1747 spin_unlock_irqrestore(&zone->lock, flags);
1748 }
1749
1750 /*
1751 * Used when an allocation is about to fail under memory pressure. This
1752 * potentially hurts the reliability of high-order allocations when under
1753 * intense memory pressure but failed atomic allocations should be easier
1754 * to recover from than an OOM.
1755 */
unreserve_highatomic_pageblock(const struct alloc_context * ac)1756 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1757 {
1758 struct zonelist *zonelist = ac->zonelist;
1759 unsigned long flags;
1760 struct zoneref *z;
1761 struct zone *zone;
1762 struct page *page;
1763 int order;
1764
1765 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1766 ac->nodemask) {
1767 /* Preserve at least one pageblock */
1768 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1769 continue;
1770
1771 spin_lock_irqsave(&zone->lock, flags);
1772 for (order = 0; order < MAX_ORDER; order++) {
1773 struct free_area *area = &(zone->free_area[order]);
1774
1775 if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
1776 continue;
1777
1778 page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
1779 struct page, lru);
1780
1781 /*
1782 * In page freeing path, migratetype change is racy so
1783 * we can counter several free pages in a pageblock
1784 * in this loop althoug we changed the pageblock type
1785 * from highatomic to ac->migratetype. So we should
1786 * adjust the count once.
1787 */
1788 if (get_pageblock_migratetype(page) ==
1789 MIGRATE_HIGHATOMIC) {
1790 /*
1791 * It should never happen but changes to
1792 * locking could inadvertently allow a per-cpu
1793 * drain to add pages to MIGRATE_HIGHATOMIC
1794 * while unreserving so be safe and watch for
1795 * underflows.
1796 */
1797 zone->nr_reserved_highatomic -= min(
1798 pageblock_nr_pages,
1799 zone->nr_reserved_highatomic);
1800 }
1801
1802 /*
1803 * Convert to ac->migratetype and avoid the normal
1804 * pageblock stealing heuristics. Minimally, the caller
1805 * is doing the work and needs the pages. More
1806 * importantly, if the block was always converted to
1807 * MIGRATE_UNMOVABLE or another type then the number
1808 * of pageblocks that cannot be completely freed
1809 * may increase.
1810 */
1811 set_pageblock_migratetype(page, ac->migratetype);
1812 move_freepages_block(zone, page, ac->migratetype);
1813 spin_unlock_irqrestore(&zone->lock, flags);
1814 return;
1815 }
1816 spin_unlock_irqrestore(&zone->lock, flags);
1817 }
1818 }
1819
1820 /* Remove an element from the buddy allocator from the fallback list */
1821 static inline struct page *
__rmqueue_fallback(struct zone * zone,unsigned int order,int start_migratetype)1822 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1823 {
1824 struct free_area *area;
1825 unsigned int current_order;
1826 struct page *page;
1827 int fallback_mt;
1828 bool can_steal;
1829
1830 /* Find the largest possible block of pages in the other list */
1831 for (current_order = MAX_ORDER-1;
1832 current_order >= order && current_order <= MAX_ORDER-1;
1833 --current_order) {
1834 area = &(zone->free_area[current_order]);
1835 fallback_mt = find_suitable_fallback(area, current_order,
1836 start_migratetype, false, &can_steal);
1837 if (fallback_mt == -1)
1838 continue;
1839
1840 page = list_entry(area->free_list[fallback_mt].next,
1841 struct page, lru);
1842 if (can_steal)
1843 steal_suitable_fallback(zone, page, start_migratetype);
1844
1845 /* Remove the page from the freelists */
1846 area->nr_free--;
1847 list_del(&page->lru);
1848 rmv_page_order(page);
1849
1850 expand(zone, page, order, current_order, area,
1851 start_migratetype);
1852 /*
1853 * The pcppage_migratetype may differ from pageblock's
1854 * migratetype depending on the decisions in
1855 * find_suitable_fallback(). This is OK as long as it does not
1856 * differ for MIGRATE_CMA pageblocks. Those can be used as
1857 * fallback only via special __rmqueue_cma_fallback() function
1858 */
1859 set_pcppage_migratetype(page, start_migratetype);
1860
1861 trace_mm_page_alloc_extfrag(page, order, current_order,
1862 start_migratetype, fallback_mt);
1863
1864 return page;
1865 }
1866
1867 return NULL;
1868 }
1869
1870 /*
1871 * Do the hard work of removing an element from the buddy allocator.
1872 * Call me with the zone->lock already held.
1873 */
__rmqueue(struct zone * zone,unsigned int order,int migratetype,gfp_t gfp_flags)1874 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1875 int migratetype, gfp_t gfp_flags)
1876 {
1877 struct page *page;
1878
1879 page = __rmqueue_smallest(zone, order, migratetype);
1880 if (unlikely(!page)) {
1881 if (migratetype == MIGRATE_MOVABLE)
1882 page = __rmqueue_cma_fallback(zone, order);
1883
1884 if (!page)
1885 page = __rmqueue_fallback(zone, order, migratetype);
1886 }
1887
1888 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1889 return page;
1890 }
1891
1892 /*
1893 * Obtain a specified number of elements from the buddy allocator, all under
1894 * a single hold of the lock, for efficiency. Add them to the supplied list.
1895 * Returns the number of new pages which were placed at *list.
1896 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,bool cold)1897 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1898 unsigned long count, struct list_head *list,
1899 int migratetype, bool cold)
1900 {
1901 int i;
1902
1903 spin_lock(&zone->lock);
1904 for (i = 0; i < count; ++i) {
1905 struct page *page = __rmqueue(zone, order, migratetype, 0);
1906 if (unlikely(page == NULL))
1907 break;
1908
1909 /*
1910 * Split buddy pages returned by expand() are received here
1911 * in physical page order. The page is added to the callers and
1912 * list and the list head then moves forward. From the callers
1913 * perspective, the linked list is ordered by page number in
1914 * some conditions. This is useful for IO devices that can
1915 * merge IO requests if the physical pages are ordered
1916 * properly.
1917 */
1918 if (likely(!cold))
1919 list_add(&page->lru, list);
1920 else
1921 list_add_tail(&page->lru, list);
1922 list = &page->lru;
1923 if (is_migrate_cma(get_pcppage_migratetype(page)))
1924 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1925 -(1 << order));
1926 }
1927 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1928 spin_unlock(&zone->lock);
1929 return i;
1930 }
1931
1932 #ifdef CONFIG_NUMA
1933 /*
1934 * Called from the vmstat counter updater to drain pagesets of this
1935 * currently executing processor on remote nodes after they have
1936 * expired.
1937 *
1938 * Note that this function must be called with the thread pinned to
1939 * a single processor.
1940 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)1941 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1942 {
1943 unsigned long flags;
1944 int to_drain, batch;
1945
1946 local_irq_save(flags);
1947 batch = READ_ONCE(pcp->batch);
1948 to_drain = min(pcp->count, batch);
1949 if (to_drain > 0) {
1950 free_pcppages_bulk(zone, to_drain, pcp);
1951 pcp->count -= to_drain;
1952 }
1953 local_irq_restore(flags);
1954 }
1955 #endif
1956
1957 /*
1958 * Drain pcplists of the indicated processor and zone.
1959 *
1960 * The processor must either be the current processor and the
1961 * thread pinned to the current processor or a processor that
1962 * is not online.
1963 */
drain_pages_zone(unsigned int cpu,struct zone * zone)1964 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1965 {
1966 unsigned long flags;
1967 struct per_cpu_pageset *pset;
1968 struct per_cpu_pages *pcp;
1969
1970 local_irq_save(flags);
1971 pset = per_cpu_ptr(zone->pageset, cpu);
1972
1973 pcp = &pset->pcp;
1974 if (pcp->count) {
1975 free_pcppages_bulk(zone, pcp->count, pcp);
1976 pcp->count = 0;
1977 }
1978 local_irq_restore(flags);
1979 }
1980
1981 /*
1982 * Drain pcplists of all zones on the indicated processor.
1983 *
1984 * The processor must either be the current processor and the
1985 * thread pinned to the current processor or a processor that
1986 * is not online.
1987 */
drain_pages(unsigned int cpu)1988 static void drain_pages(unsigned int cpu)
1989 {
1990 struct zone *zone;
1991
1992 for_each_populated_zone(zone) {
1993 drain_pages_zone(cpu, zone);
1994 }
1995 }
1996
1997 /*
1998 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1999 *
2000 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2001 * the single zone's pages.
2002 */
drain_local_pages(struct zone * zone)2003 void drain_local_pages(struct zone *zone)
2004 {
2005 int cpu = smp_processor_id();
2006
2007 if (zone)
2008 drain_pages_zone(cpu, zone);
2009 else
2010 drain_pages(cpu);
2011 }
2012
2013 /*
2014 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2015 *
2016 * When zone parameter is non-NULL, spill just the single zone's pages.
2017 *
2018 * Note that this code is protected against sending an IPI to an offline
2019 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2020 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2021 * nothing keeps CPUs from showing up after we populated the cpumask and
2022 * before the call to on_each_cpu_mask().
2023 */
drain_all_pages(struct zone * zone)2024 void drain_all_pages(struct zone *zone)
2025 {
2026 int cpu;
2027
2028 /*
2029 * Allocate in the BSS so we wont require allocation in
2030 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2031 */
2032 static cpumask_t cpus_with_pcps;
2033
2034 /*
2035 * We don't care about racing with CPU hotplug event
2036 * as offline notification will cause the notified
2037 * cpu to drain that CPU pcps and on_each_cpu_mask
2038 * disables preemption as part of its processing
2039 */
2040 for_each_online_cpu(cpu) {
2041 struct per_cpu_pageset *pcp;
2042 struct zone *z;
2043 bool has_pcps = false;
2044
2045 if (zone) {
2046 pcp = per_cpu_ptr(zone->pageset, cpu);
2047 if (pcp->pcp.count)
2048 has_pcps = true;
2049 } else {
2050 for_each_populated_zone(z) {
2051 pcp = per_cpu_ptr(z->pageset, cpu);
2052 if (pcp->pcp.count) {
2053 has_pcps = true;
2054 break;
2055 }
2056 }
2057 }
2058
2059 if (has_pcps)
2060 cpumask_set_cpu(cpu, &cpus_with_pcps);
2061 else
2062 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2063 }
2064 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2065 zone, 1);
2066 }
2067
2068 #ifdef CONFIG_HIBERNATION
2069
mark_free_pages(struct zone * zone)2070 void mark_free_pages(struct zone *zone)
2071 {
2072 unsigned long pfn, max_zone_pfn;
2073 unsigned long flags;
2074 unsigned int order, t;
2075 struct list_head *curr;
2076
2077 if (zone_is_empty(zone))
2078 return;
2079
2080 spin_lock_irqsave(&zone->lock, flags);
2081
2082 max_zone_pfn = zone_end_pfn(zone);
2083 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2084 if (pfn_valid(pfn)) {
2085 struct page *page = pfn_to_page(pfn);
2086
2087 if (!swsusp_page_is_forbidden(page))
2088 swsusp_unset_page_free(page);
2089 }
2090
2091 for_each_migratetype_order(order, t) {
2092 list_for_each(curr, &zone->free_area[order].free_list[t]) {
2093 unsigned long i;
2094
2095 pfn = page_to_pfn(list_entry(curr, struct page, lru));
2096 for (i = 0; i < (1UL << order); i++)
2097 swsusp_set_page_free(pfn_to_page(pfn + i));
2098 }
2099 }
2100 spin_unlock_irqrestore(&zone->lock, flags);
2101 }
2102 #endif /* CONFIG_PM */
2103
2104 /*
2105 * Free a 0-order page
2106 * cold == true ? free a cold page : free a hot page
2107 */
free_hot_cold_page(struct page * page,bool cold)2108 void free_hot_cold_page(struct page *page, bool cold)
2109 {
2110 struct zone *zone = page_zone(page);
2111 struct per_cpu_pages *pcp;
2112 unsigned long flags;
2113 unsigned long pfn = page_to_pfn(page);
2114 int migratetype;
2115
2116 if (!free_pages_prepare(page, 0))
2117 return;
2118
2119 migratetype = get_pfnblock_migratetype(page, pfn);
2120 set_pcppage_migratetype(page, migratetype);
2121 local_irq_save(flags);
2122 __count_vm_event(PGFREE);
2123
2124 /*
2125 * We only track unmovable, reclaimable and movable on pcp lists.
2126 * Free ISOLATE pages back to the allocator because they are being
2127 * offlined but treat RESERVE as movable pages so we can get those
2128 * areas back if necessary. Otherwise, we may have to free
2129 * excessively into the page allocator
2130 */
2131 if (migratetype >= MIGRATE_PCPTYPES) {
2132 if (unlikely(is_migrate_isolate(migratetype))) {
2133 free_one_page(zone, page, pfn, 0, migratetype);
2134 goto out;
2135 }
2136 migratetype = MIGRATE_MOVABLE;
2137 }
2138
2139 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2140 if (!cold)
2141 list_add(&page->lru, &pcp->lists[migratetype]);
2142 else
2143 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2144 pcp->count++;
2145 if (pcp->count >= pcp->high) {
2146 unsigned long batch = READ_ONCE(pcp->batch);
2147 free_pcppages_bulk(zone, batch, pcp);
2148 pcp->count -= batch;
2149 }
2150
2151 out:
2152 local_irq_restore(flags);
2153 }
2154
2155 /*
2156 * Free a list of 0-order pages
2157 */
free_hot_cold_page_list(struct list_head * list,bool cold)2158 void free_hot_cold_page_list(struct list_head *list, bool cold)
2159 {
2160 struct page *page, *next;
2161
2162 list_for_each_entry_safe(page, next, list, lru) {
2163 trace_mm_page_free_batched(page, cold);
2164 free_hot_cold_page(page, cold);
2165 }
2166 }
2167
2168 /*
2169 * split_page takes a non-compound higher-order page, and splits it into
2170 * n (1<<order) sub-pages: page[0..n]
2171 * Each sub-page must be freed individually.
2172 *
2173 * Note: this is probably too low level an operation for use in drivers.
2174 * Please consult with lkml before using this in your driver.
2175 */
split_page(struct page * page,unsigned int order)2176 void split_page(struct page *page, unsigned int order)
2177 {
2178 int i;
2179 gfp_t gfp_mask;
2180
2181 VM_BUG_ON_PAGE(PageCompound(page), page);
2182 VM_BUG_ON_PAGE(!page_count(page), page);
2183
2184 #ifdef CONFIG_KMEMCHECK
2185 /*
2186 * Split shadow pages too, because free(page[0]) would
2187 * otherwise free the whole shadow.
2188 */
2189 if (kmemcheck_page_is_tracked(page))
2190 split_page(virt_to_page(page[0].shadow), order);
2191 #endif
2192
2193 gfp_mask = get_page_owner_gfp(page);
2194 set_page_owner(page, 0, gfp_mask);
2195 for (i = 1; i < (1 << order); i++) {
2196 set_page_refcounted(page + i);
2197 set_page_owner(page + i, 0, gfp_mask);
2198 }
2199 }
2200 EXPORT_SYMBOL_GPL(split_page);
2201
__isolate_free_page(struct page * page,unsigned int order)2202 int __isolate_free_page(struct page *page, unsigned int order)
2203 {
2204 unsigned long watermark;
2205 struct zone *zone;
2206 int mt;
2207
2208 BUG_ON(!PageBuddy(page));
2209
2210 zone = page_zone(page);
2211 mt = get_pageblock_migratetype(page);
2212
2213 if (!is_migrate_isolate(mt)) {
2214 /* Obey watermarks as if the page was being allocated */
2215 watermark = low_wmark_pages(zone) + (1 << order);
2216 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2217 return 0;
2218
2219 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2220 }
2221
2222 /* Remove page from free list */
2223 list_del(&page->lru);
2224 zone->free_area[order].nr_free--;
2225 rmv_page_order(page);
2226
2227 set_page_owner(page, order, __GFP_MOVABLE);
2228
2229 /* Set the pageblock if the isolated page is at least a pageblock */
2230 if (order >= pageblock_order - 1) {
2231 struct page *endpage = page + (1 << order) - 1;
2232 for (; page < endpage; page += pageblock_nr_pages) {
2233 int mt = get_pageblock_migratetype(page);
2234 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2235 set_pageblock_migratetype(page,
2236 MIGRATE_MOVABLE);
2237 }
2238 }
2239
2240
2241 return 1UL << order;
2242 }
2243
2244 /*
2245 * Similar to split_page except the page is already free. As this is only
2246 * being used for migration, the migratetype of the block also changes.
2247 * As this is called with interrupts disabled, the caller is responsible
2248 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2249 * are enabled.
2250 *
2251 * Note: this is probably too low level an operation for use in drivers.
2252 * Please consult with lkml before using this in your driver.
2253 */
split_free_page(struct page * page)2254 int split_free_page(struct page *page)
2255 {
2256 unsigned int order;
2257 int nr_pages;
2258
2259 order = page_order(page);
2260
2261 nr_pages = __isolate_free_page(page, order);
2262 if (!nr_pages)
2263 return 0;
2264
2265 /* Split into individual pages */
2266 set_page_refcounted(page);
2267 split_page(page, order);
2268 return nr_pages;
2269 }
2270
2271 /*
2272 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2273 */
2274 static inline
buffered_rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,int alloc_flags,int migratetype)2275 struct page *buffered_rmqueue(struct zone *preferred_zone,
2276 struct zone *zone, unsigned int order,
2277 gfp_t gfp_flags, int alloc_flags, int migratetype)
2278 {
2279 unsigned long flags;
2280 struct page *page;
2281 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2282
2283 if (likely(order == 0)) {
2284 struct per_cpu_pages *pcp;
2285 struct list_head *list;
2286
2287 local_irq_save(flags);
2288 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2289 list = &pcp->lists[migratetype];
2290 if (list_empty(list)) {
2291 pcp->count += rmqueue_bulk(zone, 0,
2292 pcp->batch, list,
2293 migratetype, cold);
2294 if (unlikely(list_empty(list)))
2295 goto failed;
2296 }
2297
2298 if (cold)
2299 page = list_entry(list->prev, struct page, lru);
2300 else
2301 page = list_entry(list->next, struct page, lru);
2302
2303 list_del(&page->lru);
2304 pcp->count--;
2305 } else {
2306 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2307 /*
2308 * __GFP_NOFAIL is not to be used in new code.
2309 *
2310 * All __GFP_NOFAIL callers should be fixed so that they
2311 * properly detect and handle allocation failures.
2312 *
2313 * We most definitely don't want callers attempting to
2314 * allocate greater than order-1 page units with
2315 * __GFP_NOFAIL.
2316 */
2317 WARN_ON_ONCE(order > 1);
2318 }
2319 spin_lock_irqsave(&zone->lock, flags);
2320
2321 page = NULL;
2322 if (alloc_flags & ALLOC_HARDER) {
2323 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2324 if (page)
2325 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2326 }
2327 if (!page)
2328 page = __rmqueue(zone, order, migratetype, gfp_flags);
2329 spin_unlock(&zone->lock);
2330 if (!page)
2331 goto failed;
2332 __mod_zone_freepage_state(zone, -(1 << order),
2333 get_pcppage_migratetype(page));
2334 }
2335
2336 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2337 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2338 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2339 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2340
2341 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2342 zone_statistics(preferred_zone, zone, gfp_flags);
2343 local_irq_restore(flags);
2344
2345 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2346 return page;
2347
2348 failed:
2349 local_irq_restore(flags);
2350 return NULL;
2351 }
2352
2353 #ifdef CONFIG_FAIL_PAGE_ALLOC
2354
2355 static struct {
2356 struct fault_attr attr;
2357
2358 bool ignore_gfp_highmem;
2359 bool ignore_gfp_reclaim;
2360 u32 min_order;
2361 } fail_page_alloc = {
2362 .attr = FAULT_ATTR_INITIALIZER,
2363 .ignore_gfp_reclaim = true,
2364 .ignore_gfp_highmem = true,
2365 .min_order = 1,
2366 };
2367
setup_fail_page_alloc(char * str)2368 static int __init setup_fail_page_alloc(char *str)
2369 {
2370 return setup_fault_attr(&fail_page_alloc.attr, str);
2371 }
2372 __setup("fail_page_alloc=", setup_fail_page_alloc);
2373
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2374 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2375 {
2376 if (order < fail_page_alloc.min_order)
2377 return false;
2378 if (gfp_mask & __GFP_NOFAIL)
2379 return false;
2380 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2381 return false;
2382 if (fail_page_alloc.ignore_gfp_reclaim &&
2383 (gfp_mask & __GFP_DIRECT_RECLAIM))
2384 return false;
2385
2386 return should_fail(&fail_page_alloc.attr, 1 << order);
2387 }
2388
2389 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2390
fail_page_alloc_debugfs(void)2391 static int __init fail_page_alloc_debugfs(void)
2392 {
2393 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2394 struct dentry *dir;
2395
2396 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2397 &fail_page_alloc.attr);
2398 if (IS_ERR(dir))
2399 return PTR_ERR(dir);
2400
2401 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2402 &fail_page_alloc.ignore_gfp_reclaim))
2403 goto fail;
2404 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2405 &fail_page_alloc.ignore_gfp_highmem))
2406 goto fail;
2407 if (!debugfs_create_u32("min-order", mode, dir,
2408 &fail_page_alloc.min_order))
2409 goto fail;
2410
2411 return 0;
2412 fail:
2413 debugfs_remove_recursive(dir);
2414
2415 return -ENOMEM;
2416 }
2417
2418 late_initcall(fail_page_alloc_debugfs);
2419
2420 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2421
2422 #else /* CONFIG_FAIL_PAGE_ALLOC */
2423
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2424 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2425 {
2426 return false;
2427 }
2428
2429 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2430
2431 /*
2432 * Return true if free base pages are above 'mark'. For high-order checks it
2433 * will return true of the order-0 watermark is reached and there is at least
2434 * one free page of a suitable size. Checking now avoids taking the zone lock
2435 * to check in the allocation paths if no pages are free.
2436 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,int alloc_flags,long free_pages)2437 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2438 unsigned long mark, int classzone_idx, int alloc_flags,
2439 long free_pages)
2440 {
2441 long min = mark;
2442 int o;
2443 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2444
2445 /* free_pages may go negative - that's OK */
2446 free_pages -= (1 << order) - 1;
2447
2448 if (alloc_flags & ALLOC_HIGH)
2449 min -= min / 2;
2450
2451 /*
2452 * If the caller does not have rights to ALLOC_HARDER then subtract
2453 * the high-atomic reserves. This will over-estimate the size of the
2454 * atomic reserve but it avoids a search.
2455 */
2456 if (likely(!alloc_harder))
2457 free_pages -= z->nr_reserved_highatomic;
2458 else
2459 min -= min / 4;
2460
2461 #ifdef CONFIG_CMA
2462 /* If allocation can't use CMA areas don't use free CMA pages */
2463 if (!(alloc_flags & ALLOC_CMA))
2464 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2465 #endif
2466
2467 /*
2468 * Check watermarks for an order-0 allocation request. If these
2469 * are not met, then a high-order request also cannot go ahead
2470 * even if a suitable page happened to be free.
2471 */
2472 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2473 return false;
2474
2475 /* If this is an order-0 request then the watermark is fine */
2476 if (!order)
2477 return true;
2478
2479 /* For a high-order request, check at least one suitable page is free */
2480 for (o = order; o < MAX_ORDER; o++) {
2481 struct free_area *area = &z->free_area[o];
2482 int mt;
2483
2484 if (!area->nr_free)
2485 continue;
2486
2487 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2488 if (!list_empty(&area->free_list[mt]))
2489 return true;
2490 }
2491
2492 #ifdef CONFIG_CMA
2493 if ((alloc_flags & ALLOC_CMA) &&
2494 !list_empty(&area->free_list[MIGRATE_CMA])) {
2495 return true;
2496 }
2497 #endif
2498 if (alloc_harder &&
2499 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
2500 return true;
2501 }
2502 return false;
2503 }
2504
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,int alloc_flags)2505 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2506 int classzone_idx, int alloc_flags)
2507 {
2508 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2509 zone_page_state(z, NR_FREE_PAGES));
2510 }
2511
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx)2512 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2513 unsigned long mark, int classzone_idx)
2514 {
2515 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2516
2517 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2518 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2519
2520 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2521 free_pages);
2522 }
2523
2524 #ifdef CONFIG_NUMA
zone_local(struct zone * local_zone,struct zone * zone)2525 static bool zone_local(struct zone *local_zone, struct zone *zone)
2526 {
2527 return local_zone->node == zone->node;
2528 }
2529
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)2530 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2531 {
2532 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2533 RECLAIM_DISTANCE;
2534 }
2535 #else /* CONFIG_NUMA */
zone_local(struct zone * local_zone,struct zone * zone)2536 static bool zone_local(struct zone *local_zone, struct zone *zone)
2537 {
2538 return true;
2539 }
2540
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)2541 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2542 {
2543 return true;
2544 }
2545 #endif /* CONFIG_NUMA */
2546
reset_alloc_batches(struct zone * preferred_zone)2547 static void reset_alloc_batches(struct zone *preferred_zone)
2548 {
2549 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2550
2551 do {
2552 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2553 high_wmark_pages(zone) - low_wmark_pages(zone) -
2554 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2555 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2556 } while (zone++ != preferred_zone);
2557 }
2558
2559 /*
2560 * get_page_from_freelist goes through the zonelist trying to allocate
2561 * a page.
2562 */
2563 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)2564 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2565 const struct alloc_context *ac)
2566 {
2567 struct zonelist *zonelist = ac->zonelist;
2568 struct zoneref *z;
2569 struct page *page = NULL;
2570 struct zone *zone;
2571 int nr_fair_skipped = 0;
2572 bool zonelist_rescan;
2573
2574 zonelist_scan:
2575 zonelist_rescan = false;
2576
2577 /*
2578 * Scan zonelist, looking for a zone with enough free.
2579 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2580 */
2581 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2582 ac->nodemask) {
2583 unsigned long mark;
2584
2585 if (cpusets_enabled() &&
2586 (alloc_flags & ALLOC_CPUSET) &&
2587 !cpuset_zone_allowed(zone, gfp_mask))
2588 continue;
2589 /*
2590 * Distribute pages in proportion to the individual
2591 * zone size to ensure fair page aging. The zone a
2592 * page was allocated in should have no effect on the
2593 * time the page has in memory before being reclaimed.
2594 */
2595 if (alloc_flags & ALLOC_FAIR) {
2596 if (!zone_local(ac->preferred_zone, zone))
2597 break;
2598 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2599 nr_fair_skipped++;
2600 continue;
2601 }
2602 }
2603 /*
2604 * When allocating a page cache page for writing, we
2605 * want to get it from a zone that is within its dirty
2606 * limit, such that no single zone holds more than its
2607 * proportional share of globally allowed dirty pages.
2608 * The dirty limits take into account the zone's
2609 * lowmem reserves and high watermark so that kswapd
2610 * should be able to balance it without having to
2611 * write pages from its LRU list.
2612 *
2613 * This may look like it could increase pressure on
2614 * lower zones by failing allocations in higher zones
2615 * before they are full. But the pages that do spill
2616 * over are limited as the lower zones are protected
2617 * by this very same mechanism. It should not become
2618 * a practical burden to them.
2619 *
2620 * XXX: For now, allow allocations to potentially
2621 * exceed the per-zone dirty limit in the slowpath
2622 * (spread_dirty_pages unset) before going into reclaim,
2623 * which is important when on a NUMA setup the allowed
2624 * zones are together not big enough to reach the
2625 * global limit. The proper fix for these situations
2626 * will require awareness of zones in the
2627 * dirty-throttling and the flusher threads.
2628 */
2629 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2630 continue;
2631
2632 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2633 if (!zone_watermark_ok(zone, order, mark,
2634 ac->classzone_idx, alloc_flags)) {
2635 int ret;
2636
2637 /* Checked here to keep the fast path fast */
2638 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2639 if (alloc_flags & ALLOC_NO_WATERMARKS)
2640 goto try_this_zone;
2641
2642 if (zone_reclaim_mode == 0 ||
2643 !zone_allows_reclaim(ac->preferred_zone, zone))
2644 continue;
2645
2646 ret = zone_reclaim(zone, gfp_mask, order);
2647 switch (ret) {
2648 case ZONE_RECLAIM_NOSCAN:
2649 /* did not scan */
2650 continue;
2651 case ZONE_RECLAIM_FULL:
2652 /* scanned but unreclaimable */
2653 continue;
2654 default:
2655 /* did we reclaim enough */
2656 if (zone_watermark_ok(zone, order, mark,
2657 ac->classzone_idx, alloc_flags))
2658 goto try_this_zone;
2659
2660 continue;
2661 }
2662 }
2663
2664 try_this_zone:
2665 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2666 gfp_mask, alloc_flags, ac->migratetype);
2667 if (page) {
2668 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2669 goto try_this_zone;
2670
2671 /*
2672 * If this is a high-order atomic allocation then check
2673 * if the pageblock should be reserved for the future
2674 */
2675 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2676 reserve_highatomic_pageblock(page, zone, order);
2677
2678 return page;
2679 }
2680 }
2681
2682 /*
2683 * The first pass makes sure allocations are spread fairly within the
2684 * local node. However, the local node might have free pages left
2685 * after the fairness batches are exhausted, and remote zones haven't
2686 * even been considered yet. Try once more without fairness, and
2687 * include remote zones now, before entering the slowpath and waking
2688 * kswapd: prefer spilling to a remote zone over swapping locally.
2689 */
2690 if (alloc_flags & ALLOC_FAIR) {
2691 alloc_flags &= ~ALLOC_FAIR;
2692 if (nr_fair_skipped) {
2693 zonelist_rescan = true;
2694 reset_alloc_batches(ac->preferred_zone);
2695 }
2696 if (nr_online_nodes > 1)
2697 zonelist_rescan = true;
2698 }
2699
2700 if (zonelist_rescan)
2701 goto zonelist_scan;
2702
2703 return NULL;
2704 }
2705
2706 /*
2707 * Large machines with many possible nodes should not always dump per-node
2708 * meminfo in irq context.
2709 */
should_suppress_show_mem(void)2710 static inline bool should_suppress_show_mem(void)
2711 {
2712 bool ret = false;
2713
2714 #if NODES_SHIFT > 8
2715 ret = in_interrupt();
2716 #endif
2717 return ret;
2718 }
2719
2720 static DEFINE_RATELIMIT_STATE(nopage_rs,
2721 DEFAULT_RATELIMIT_INTERVAL,
2722 DEFAULT_RATELIMIT_BURST);
2723
warn_alloc_failed(gfp_t gfp_mask,unsigned int order,const char * fmt,...)2724 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2725 {
2726 unsigned int filter = SHOW_MEM_FILTER_NODES;
2727
2728 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2729 debug_guardpage_minorder() > 0)
2730 return;
2731
2732 /*
2733 * This documents exceptions given to allocations in certain
2734 * contexts that are allowed to allocate outside current's set
2735 * of allowed nodes.
2736 */
2737 if (!(gfp_mask & __GFP_NOMEMALLOC))
2738 if (test_thread_flag(TIF_MEMDIE) ||
2739 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2740 filter &= ~SHOW_MEM_FILTER_NODES;
2741 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2742 filter &= ~SHOW_MEM_FILTER_NODES;
2743
2744 if (fmt) {
2745 struct va_format vaf;
2746 va_list args;
2747
2748 va_start(args, fmt);
2749
2750 vaf.fmt = fmt;
2751 vaf.va = &args;
2752
2753 pr_warn("%pV", &vaf);
2754
2755 va_end(args);
2756 }
2757
2758 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2759 current->comm, order, gfp_mask);
2760
2761 dump_stack();
2762 if (!should_suppress_show_mem())
2763 show_mem(filter);
2764 }
2765
2766 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)2767 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2768 const struct alloc_context *ac, unsigned long *did_some_progress)
2769 {
2770 struct oom_control oc = {
2771 .zonelist = ac->zonelist,
2772 .nodemask = ac->nodemask,
2773 .gfp_mask = gfp_mask,
2774 .order = order,
2775 };
2776 struct page *page;
2777
2778 *did_some_progress = 0;
2779
2780 /*
2781 * Acquire the oom lock. If that fails, somebody else is
2782 * making progress for us.
2783 */
2784 if (!mutex_trylock(&oom_lock)) {
2785 *did_some_progress = 1;
2786 schedule_timeout_uninterruptible(1);
2787 return NULL;
2788 }
2789
2790 /*
2791 * Go through the zonelist yet one more time, keep very high watermark
2792 * here, this is only to catch a parallel oom killing, we must fail if
2793 * we're still under heavy pressure.
2794 */
2795 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2796 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2797 if (page)
2798 goto out;
2799
2800 if (!(gfp_mask & __GFP_NOFAIL)) {
2801 /* Coredumps can quickly deplete all memory reserves */
2802 if (current->flags & PF_DUMPCORE)
2803 goto out;
2804 /* The OOM killer will not help higher order allocs */
2805 if (order > PAGE_ALLOC_COSTLY_ORDER)
2806 goto out;
2807 /* The OOM killer does not needlessly kill tasks for lowmem */
2808 if (ac->high_zoneidx < ZONE_NORMAL)
2809 goto out;
2810 /* The OOM killer does not compensate for IO-less reclaim */
2811 if (!(gfp_mask & __GFP_FS)) {
2812 /*
2813 * XXX: Page reclaim didn't yield anything,
2814 * and the OOM killer can't be invoked, but
2815 * keep looping as per tradition.
2816 */
2817 *did_some_progress = 1;
2818 goto out;
2819 }
2820 if (pm_suspended_storage())
2821 goto out;
2822 /* The OOM killer may not free memory on a specific node */
2823 if (gfp_mask & __GFP_THISNODE)
2824 goto out;
2825 }
2826 /* Exhausted what can be done so it's blamo time */
2827 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2828 *did_some_progress = 1;
2829 out:
2830 mutex_unlock(&oom_lock);
2831 return page;
2832 }
2833
2834 #ifdef CONFIG_COMPACTION
2835 /* Try memory compaction for high-order allocations before reclaim */
2836 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,enum migrate_mode mode,int * contended_compaction,bool * deferred_compaction)2837 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2838 int alloc_flags, const struct alloc_context *ac,
2839 enum migrate_mode mode, int *contended_compaction,
2840 bool *deferred_compaction)
2841 {
2842 unsigned long compact_result;
2843 struct page *page;
2844
2845 if (!order)
2846 return NULL;
2847
2848 current->flags |= PF_MEMALLOC;
2849 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2850 mode, contended_compaction);
2851 current->flags &= ~PF_MEMALLOC;
2852
2853 switch (compact_result) {
2854 case COMPACT_DEFERRED:
2855 *deferred_compaction = true;
2856 /* fall-through */
2857 case COMPACT_SKIPPED:
2858 return NULL;
2859 default:
2860 break;
2861 }
2862
2863 /*
2864 * At least in one zone compaction wasn't deferred or skipped, so let's
2865 * count a compaction stall
2866 */
2867 count_vm_event(COMPACTSTALL);
2868
2869 page = get_page_from_freelist(gfp_mask, order,
2870 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2871
2872 if (page) {
2873 struct zone *zone = page_zone(page);
2874
2875 zone->compact_blockskip_flush = false;
2876 compaction_defer_reset(zone, order, true);
2877 count_vm_event(COMPACTSUCCESS);
2878 return page;
2879 }
2880
2881 /*
2882 * It's bad if compaction run occurs and fails. The most likely reason
2883 * is that pages exist, but not enough to satisfy watermarks.
2884 */
2885 count_vm_event(COMPACTFAIL);
2886
2887 cond_resched();
2888
2889 return NULL;
2890 }
2891 #else
2892 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,enum migrate_mode mode,int * contended_compaction,bool * deferred_compaction)2893 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2894 int alloc_flags, const struct alloc_context *ac,
2895 enum migrate_mode mode, int *contended_compaction,
2896 bool *deferred_compaction)
2897 {
2898 return NULL;
2899 }
2900 #endif /* CONFIG_COMPACTION */
2901
2902 /* Perform direct synchronous page reclaim */
2903 static int
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)2904 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2905 const struct alloc_context *ac)
2906 {
2907 struct reclaim_state reclaim_state;
2908 int progress;
2909
2910 cond_resched();
2911
2912 /* We now go into synchronous reclaim */
2913 cpuset_memory_pressure_bump();
2914 current->flags |= PF_MEMALLOC;
2915 lockdep_set_current_reclaim_state(gfp_mask);
2916 reclaim_state.reclaimed_slab = 0;
2917 current->reclaim_state = &reclaim_state;
2918
2919 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2920 ac->nodemask);
2921
2922 current->reclaim_state = NULL;
2923 lockdep_clear_current_reclaim_state();
2924 current->flags &= ~PF_MEMALLOC;
2925
2926 cond_resched();
2927
2928 return progress;
2929 }
2930
2931 /* The really slow allocator path where we enter direct reclaim */
2932 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)2933 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2934 int alloc_flags, const struct alloc_context *ac,
2935 unsigned long *did_some_progress)
2936 {
2937 struct page *page = NULL;
2938 bool drained = false;
2939
2940 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2941 if (unlikely(!(*did_some_progress)))
2942 return NULL;
2943
2944 retry:
2945 page = get_page_from_freelist(gfp_mask, order,
2946 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2947
2948 /*
2949 * If an allocation failed after direct reclaim, it could be because
2950 * pages are pinned on the per-cpu lists or in high alloc reserves.
2951 * Shrink them them and try again
2952 */
2953 if (!page && !drained) {
2954 unreserve_highatomic_pageblock(ac);
2955 drain_all_pages(NULL);
2956 drained = true;
2957 goto retry;
2958 }
2959
2960 return page;
2961 }
2962
2963 /*
2964 * This is called in the allocator slow-path if the allocation request is of
2965 * sufficient urgency to ignore watermarks and take other desperate measures
2966 */
2967 static inline struct page *
__alloc_pages_high_priority(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)2968 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2969 const struct alloc_context *ac)
2970 {
2971 struct page *page;
2972
2973 do {
2974 page = get_page_from_freelist(gfp_mask, order,
2975 ALLOC_NO_WATERMARKS, ac);
2976
2977 if (!page && gfp_mask & __GFP_NOFAIL)
2978 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2979 HZ/50);
2980 } while (!page && (gfp_mask & __GFP_NOFAIL));
2981
2982 return page;
2983 }
2984
wake_all_kswapds(unsigned int order,const struct alloc_context * ac)2985 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2986 {
2987 struct zoneref *z;
2988 struct zone *zone;
2989
2990 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2991 ac->high_zoneidx, ac->nodemask)
2992 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2993 }
2994
2995 static inline int
gfp_to_alloc_flags(gfp_t gfp_mask)2996 gfp_to_alloc_flags(gfp_t gfp_mask)
2997 {
2998 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2999
3000 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3001 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3002
3003 /*
3004 * The caller may dip into page reserves a bit more if the caller
3005 * cannot run direct reclaim, or if the caller has realtime scheduling
3006 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3007 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3008 */
3009 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3010
3011 if (gfp_mask & __GFP_ATOMIC) {
3012 /*
3013 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3014 * if it can't schedule.
3015 */
3016 if (!(gfp_mask & __GFP_NOMEMALLOC))
3017 alloc_flags |= ALLOC_HARDER;
3018 /*
3019 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3020 * comment for __cpuset_node_allowed().
3021 */
3022 alloc_flags &= ~ALLOC_CPUSET;
3023 } else if (unlikely(rt_task(current)) && !in_interrupt())
3024 alloc_flags |= ALLOC_HARDER;
3025
3026 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3027 if (gfp_mask & __GFP_MEMALLOC)
3028 alloc_flags |= ALLOC_NO_WATERMARKS;
3029 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3030 alloc_flags |= ALLOC_NO_WATERMARKS;
3031 else if (!in_interrupt() &&
3032 ((current->flags & PF_MEMALLOC) ||
3033 unlikely(test_thread_flag(TIF_MEMDIE))))
3034 alloc_flags |= ALLOC_NO_WATERMARKS;
3035 }
3036 #ifdef CONFIG_CMA
3037 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3038 alloc_flags |= ALLOC_CMA;
3039 #endif
3040 return alloc_flags;
3041 }
3042
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3043 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3044 {
3045 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3046 }
3047
is_thp_gfp_mask(gfp_t gfp_mask)3048 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3049 {
3050 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3051 }
3052
3053 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)3054 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3055 struct alloc_context *ac)
3056 {
3057 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3058 struct page *page = NULL;
3059 int alloc_flags;
3060 unsigned long pages_reclaimed = 0;
3061 unsigned long did_some_progress;
3062 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3063 bool deferred_compaction = false;
3064 int contended_compaction = COMPACT_CONTENDED_NONE;
3065
3066 /*
3067 * In the slowpath, we sanity check order to avoid ever trying to
3068 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3069 * be using allocators in order of preference for an area that is
3070 * too large.
3071 */
3072 if (order >= MAX_ORDER) {
3073 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3074 return NULL;
3075 }
3076
3077 /*
3078 * We also sanity check to catch abuse of atomic reserves being used by
3079 * callers that are not in atomic context.
3080 */
3081 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3082 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3083 gfp_mask &= ~__GFP_ATOMIC;
3084
3085 /*
3086 * If this allocation cannot block and it is for a specific node, then
3087 * fail early. There's no need to wakeup kswapd or retry for a
3088 * speculative node-specific allocation.
3089 */
3090 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
3091 goto nopage;
3092
3093 retry:
3094 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3095 wake_all_kswapds(order, ac);
3096
3097 /*
3098 * OK, we're below the kswapd watermark and have kicked background
3099 * reclaim. Now things get more complex, so set up alloc_flags according
3100 * to how we want to proceed.
3101 */
3102 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3103
3104 /*
3105 * Find the true preferred zone if the allocation is unconstrained by
3106 * cpusets.
3107 */
3108 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3109 struct zoneref *preferred_zoneref;
3110 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3111 ac->high_zoneidx, NULL, &ac->preferred_zone);
3112 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3113 }
3114
3115 /* This is the last chance, in general, before the goto nopage. */
3116 page = get_page_from_freelist(gfp_mask, order,
3117 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3118 if (page)
3119 goto got_pg;
3120
3121 /* Allocate without watermarks if the context allows */
3122 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3123 /*
3124 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3125 * the allocation is high priority and these type of
3126 * allocations are system rather than user orientated
3127 */
3128 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3129
3130 if (page) {
3131 goto got_pg;
3132 }
3133 }
3134
3135 /* Caller is not willing to reclaim, we can't balance anything */
3136 if (!can_direct_reclaim) {
3137 /*
3138 * All existing users of the deprecated __GFP_NOFAIL are
3139 * blockable, so warn of any new users that actually allow this
3140 * type of allocation to fail.
3141 */
3142 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3143 goto nopage;
3144 }
3145
3146 /* Avoid recursion of direct reclaim */
3147 if (current->flags & PF_MEMALLOC)
3148 goto nopage;
3149
3150 /* Avoid allocations with no watermarks from looping endlessly */
3151 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3152 goto nopage;
3153
3154 /*
3155 * Try direct compaction. The first pass is asynchronous. Subsequent
3156 * attempts after direct reclaim are synchronous
3157 */
3158 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3159 migration_mode,
3160 &contended_compaction,
3161 &deferred_compaction);
3162 if (page)
3163 goto got_pg;
3164
3165 /* Checks for THP-specific high-order allocations */
3166 if (is_thp_gfp_mask(gfp_mask)) {
3167 /*
3168 * If compaction is deferred for high-order allocations, it is
3169 * because sync compaction recently failed. If this is the case
3170 * and the caller requested a THP allocation, we do not want
3171 * to heavily disrupt the system, so we fail the allocation
3172 * instead of entering direct reclaim.
3173 */
3174 if (deferred_compaction)
3175 goto nopage;
3176
3177 /*
3178 * In all zones where compaction was attempted (and not
3179 * deferred or skipped), lock contention has been detected.
3180 * For THP allocation we do not want to disrupt the others
3181 * so we fallback to base pages instead.
3182 */
3183 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3184 goto nopage;
3185
3186 /*
3187 * If compaction was aborted due to need_resched(), we do not
3188 * want to further increase allocation latency, unless it is
3189 * khugepaged trying to collapse.
3190 */
3191 if (contended_compaction == COMPACT_CONTENDED_SCHED
3192 && !(current->flags & PF_KTHREAD))
3193 goto nopage;
3194 }
3195
3196 /*
3197 * It can become very expensive to allocate transparent hugepages at
3198 * fault, so use asynchronous memory compaction for THP unless it is
3199 * khugepaged trying to collapse.
3200 */
3201 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3202 migration_mode = MIGRATE_SYNC_LIGHT;
3203
3204 /* Try direct reclaim and then allocating */
3205 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3206 &did_some_progress);
3207 if (page)
3208 goto got_pg;
3209
3210 /* Do not loop if specifically requested */
3211 if (gfp_mask & __GFP_NORETRY)
3212 goto noretry;
3213
3214 /* Keep reclaiming pages as long as there is reasonable progress */
3215 pages_reclaimed += did_some_progress;
3216 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3217 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3218 /* Wait for some write requests to complete then retry */
3219 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3220 goto retry;
3221 }
3222
3223 /* Reclaim has failed us, start killing things */
3224 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3225 if (page)
3226 goto got_pg;
3227
3228 /* Retry as long as the OOM killer is making progress */
3229 if (did_some_progress)
3230 goto retry;
3231
3232 noretry:
3233 /*
3234 * High-order allocations do not necessarily loop after
3235 * direct reclaim and reclaim/compaction depends on compaction
3236 * being called after reclaim so call directly if necessary
3237 */
3238 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3239 ac, migration_mode,
3240 &contended_compaction,
3241 &deferred_compaction);
3242 if (page)
3243 goto got_pg;
3244 nopage:
3245 warn_alloc_failed(gfp_mask, order, NULL);
3246 got_pg:
3247 return page;
3248 }
3249
3250 /*
3251 * This is the 'heart' of the zoned buddy allocator.
3252 */
3253 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,nodemask_t * nodemask)3254 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3255 struct zonelist *zonelist, nodemask_t *nodemask)
3256 {
3257 struct zoneref *preferred_zoneref;
3258 struct page *page = NULL;
3259 unsigned int cpuset_mems_cookie;
3260 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3261 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3262 struct alloc_context ac = {
3263 .high_zoneidx = gfp_zone(gfp_mask),
3264 .nodemask = nodemask,
3265 .migratetype = gfpflags_to_migratetype(gfp_mask),
3266 };
3267
3268 gfp_mask &= gfp_allowed_mask;
3269
3270 lockdep_trace_alloc(gfp_mask);
3271
3272 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3273
3274 if (should_fail_alloc_page(gfp_mask, order))
3275 return NULL;
3276
3277 /*
3278 * Check the zones suitable for the gfp_mask contain at least one
3279 * valid zone. It's possible to have an empty zonelist as a result
3280 * of __GFP_THISNODE and a memoryless node
3281 */
3282 if (unlikely(!zonelist->_zonerefs->zone))
3283 return NULL;
3284
3285 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3286 alloc_flags |= ALLOC_CMA;
3287
3288 retry_cpuset:
3289 cpuset_mems_cookie = read_mems_allowed_begin();
3290
3291 /* We set it here, as __alloc_pages_slowpath might have changed it */
3292 ac.zonelist = zonelist;
3293
3294 /* Dirty zone balancing only done in the fast path */
3295 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3296
3297 /* The preferred zone is used for statistics later */
3298 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3299 ac.nodemask ? : &cpuset_current_mems_allowed,
3300 &ac.preferred_zone);
3301 if (!ac.preferred_zone)
3302 goto out;
3303 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3304
3305 /* First allocation attempt */
3306 alloc_mask = gfp_mask|__GFP_HARDWALL;
3307 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3308 if (unlikely(!page)) {
3309 /*
3310 * Runtime PM, block IO and its error handling path
3311 * can deadlock because I/O on the device might not
3312 * complete.
3313 */
3314 alloc_mask = memalloc_noio_flags(gfp_mask);
3315 ac.spread_dirty_pages = false;
3316
3317 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3318 }
3319
3320 if (kmemcheck_enabled && page)
3321 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3322
3323 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3324
3325 out:
3326 /*
3327 * When updating a task's mems_allowed, it is possible to race with
3328 * parallel threads in such a way that an allocation can fail while
3329 * the mask is being updated. If a page allocation is about to fail,
3330 * check if the cpuset changed during allocation and if so, retry.
3331 */
3332 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3333 goto retry_cpuset;
3334
3335 return page;
3336 }
3337 EXPORT_SYMBOL(__alloc_pages_nodemask);
3338
3339 /*
3340 * Common helper functions.
3341 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)3342 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3343 {
3344 struct page *page;
3345
3346 /*
3347 * __get_free_pages() returns a 32-bit address, which cannot represent
3348 * a highmem page
3349 */
3350 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3351
3352 page = alloc_pages(gfp_mask, order);
3353 if (!page)
3354 return 0;
3355 return (unsigned long) page_address(page);
3356 }
3357 EXPORT_SYMBOL(__get_free_pages);
3358
get_zeroed_page(gfp_t gfp_mask)3359 unsigned long get_zeroed_page(gfp_t gfp_mask)
3360 {
3361 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3362 }
3363 EXPORT_SYMBOL(get_zeroed_page);
3364
__free_pages(struct page * page,unsigned int order)3365 void __free_pages(struct page *page, unsigned int order)
3366 {
3367 if (put_page_testzero(page)) {
3368 if (order == 0)
3369 free_hot_cold_page(page, false);
3370 else
3371 __free_pages_ok(page, order);
3372 }
3373 }
3374
3375 EXPORT_SYMBOL(__free_pages);
3376
free_pages(unsigned long addr,unsigned int order)3377 void free_pages(unsigned long addr, unsigned int order)
3378 {
3379 if (addr != 0) {
3380 VM_BUG_ON(!virt_addr_valid((void *)addr));
3381 __free_pages(virt_to_page((void *)addr), order);
3382 }
3383 }
3384
3385 EXPORT_SYMBOL(free_pages);
3386
3387 /*
3388 * Page Fragment:
3389 * An arbitrary-length arbitrary-offset area of memory which resides
3390 * within a 0 or higher order page. Multiple fragments within that page
3391 * are individually refcounted, in the page's reference counter.
3392 *
3393 * The page_frag functions below provide a simple allocation framework for
3394 * page fragments. This is used by the network stack and network device
3395 * drivers to provide a backing region of memory for use as either an
3396 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3397 */
__page_frag_refill(struct page_frag_cache * nc,gfp_t gfp_mask)3398 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3399 gfp_t gfp_mask)
3400 {
3401 struct page *page = NULL;
3402 gfp_t gfp = gfp_mask;
3403
3404 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3405 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3406 __GFP_NOMEMALLOC;
3407 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3408 PAGE_FRAG_CACHE_MAX_ORDER);
3409 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3410 #endif
3411 if (unlikely(!page))
3412 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3413
3414 nc->va = page ? page_address(page) : NULL;
3415
3416 return page;
3417 }
3418
__alloc_page_frag(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)3419 void *__alloc_page_frag(struct page_frag_cache *nc,
3420 unsigned int fragsz, gfp_t gfp_mask)
3421 {
3422 unsigned int size = PAGE_SIZE;
3423 struct page *page;
3424 int offset;
3425
3426 if (unlikely(!nc->va)) {
3427 refill:
3428 page = __page_frag_refill(nc, gfp_mask);
3429 if (!page)
3430 return NULL;
3431
3432 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3433 /* if size can vary use size else just use PAGE_SIZE */
3434 size = nc->size;
3435 #endif
3436 /* Even if we own the page, we do not use atomic_set().
3437 * This would break get_page_unless_zero() users.
3438 */
3439 atomic_add(size - 1, &page->_count);
3440
3441 /* reset page count bias and offset to start of new frag */
3442 nc->pfmemalloc = page_is_pfmemalloc(page);
3443 nc->pagecnt_bias = size;
3444 nc->offset = size;
3445 }
3446
3447 offset = nc->offset - fragsz;
3448 if (unlikely(offset < 0)) {
3449 page = virt_to_page(nc->va);
3450
3451 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3452 goto refill;
3453
3454 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3455 /* if size can vary use size else just use PAGE_SIZE */
3456 size = nc->size;
3457 #endif
3458 /* OK, page count is 0, we can safely set it */
3459 atomic_set(&page->_count, size);
3460
3461 /* reset page count bias and offset to start of new frag */
3462 nc->pagecnt_bias = size;
3463 offset = size - fragsz;
3464 }
3465
3466 nc->pagecnt_bias--;
3467 nc->offset = offset;
3468
3469 return nc->va + offset;
3470 }
3471 EXPORT_SYMBOL(__alloc_page_frag);
3472
3473 /*
3474 * Frees a page fragment allocated out of either a compound or order 0 page.
3475 */
__free_page_frag(void * addr)3476 void __free_page_frag(void *addr)
3477 {
3478 struct page *page = virt_to_head_page(addr);
3479
3480 if (unlikely(put_page_testzero(page)))
3481 __free_pages_ok(page, compound_order(page));
3482 }
3483 EXPORT_SYMBOL(__free_page_frag);
3484
3485 /*
3486 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3487 * of the current memory cgroup.
3488 *
3489 * It should be used when the caller would like to use kmalloc, but since the
3490 * allocation is large, it has to fall back to the page allocator.
3491 */
alloc_kmem_pages(gfp_t gfp_mask,unsigned int order)3492 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3493 {
3494 struct page *page;
3495
3496 page = alloc_pages(gfp_mask, order);
3497 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3498 __free_pages(page, order);
3499 page = NULL;
3500 }
3501 return page;
3502 }
3503
alloc_kmem_pages_node(int nid,gfp_t gfp_mask,unsigned int order)3504 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3505 {
3506 struct page *page;
3507
3508 page = alloc_pages_node(nid, gfp_mask, order);
3509 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3510 __free_pages(page, order);
3511 page = NULL;
3512 }
3513 return page;
3514 }
3515
3516 /*
3517 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3518 * alloc_kmem_pages.
3519 */
__free_kmem_pages(struct page * page,unsigned int order)3520 void __free_kmem_pages(struct page *page, unsigned int order)
3521 {
3522 memcg_kmem_uncharge(page, order);
3523 __free_pages(page, order);
3524 }
3525
free_kmem_pages(unsigned long addr,unsigned int order)3526 void free_kmem_pages(unsigned long addr, unsigned int order)
3527 {
3528 if (addr != 0) {
3529 VM_BUG_ON(!virt_addr_valid((void *)addr));
3530 __free_kmem_pages(virt_to_page((void *)addr), order);
3531 }
3532 }
3533
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)3534 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3535 size_t size)
3536 {
3537 if (addr) {
3538 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3539 unsigned long used = addr + PAGE_ALIGN(size);
3540
3541 split_page(virt_to_page((void *)addr), order);
3542 while (used < alloc_end) {
3543 free_page(used);
3544 used += PAGE_SIZE;
3545 }
3546 }
3547 return (void *)addr;
3548 }
3549
3550 /**
3551 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3552 * @size: the number of bytes to allocate
3553 * @gfp_mask: GFP flags for the allocation
3554 *
3555 * This function is similar to alloc_pages(), except that it allocates the
3556 * minimum number of pages to satisfy the request. alloc_pages() can only
3557 * allocate memory in power-of-two pages.
3558 *
3559 * This function is also limited by MAX_ORDER.
3560 *
3561 * Memory allocated by this function must be released by free_pages_exact().
3562 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)3563 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3564 {
3565 unsigned int order = get_order(size);
3566 unsigned long addr;
3567
3568 addr = __get_free_pages(gfp_mask, order);
3569 return make_alloc_exact(addr, order, size);
3570 }
3571 EXPORT_SYMBOL(alloc_pages_exact);
3572
3573 /**
3574 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3575 * pages on a node.
3576 * @nid: the preferred node ID where memory should be allocated
3577 * @size: the number of bytes to allocate
3578 * @gfp_mask: GFP flags for the allocation
3579 *
3580 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3581 * back.
3582 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)3583 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3584 {
3585 unsigned int order = get_order(size);
3586 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3587 if (!p)
3588 return NULL;
3589 return make_alloc_exact((unsigned long)page_address(p), order, size);
3590 }
3591
3592 /**
3593 * free_pages_exact - release memory allocated via alloc_pages_exact()
3594 * @virt: the value returned by alloc_pages_exact.
3595 * @size: size of allocation, same value as passed to alloc_pages_exact().
3596 *
3597 * Release the memory allocated by a previous call to alloc_pages_exact.
3598 */
free_pages_exact(void * virt,size_t size)3599 void free_pages_exact(void *virt, size_t size)
3600 {
3601 unsigned long addr = (unsigned long)virt;
3602 unsigned long end = addr + PAGE_ALIGN(size);
3603
3604 while (addr < end) {
3605 free_page(addr);
3606 addr += PAGE_SIZE;
3607 }
3608 }
3609 EXPORT_SYMBOL(free_pages_exact);
3610
3611 /**
3612 * nr_free_zone_pages - count number of pages beyond high watermark
3613 * @offset: The zone index of the highest zone
3614 *
3615 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3616 * high watermark within all zones at or below a given zone index. For each
3617 * zone, the number of pages is calculated as:
3618 * managed_pages - high_pages
3619 */
nr_free_zone_pages(int offset)3620 static unsigned long nr_free_zone_pages(int offset)
3621 {
3622 struct zoneref *z;
3623 struct zone *zone;
3624
3625 /* Just pick one node, since fallback list is circular */
3626 unsigned long sum = 0;
3627
3628 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3629
3630 for_each_zone_zonelist(zone, z, zonelist, offset) {
3631 unsigned long size = zone->managed_pages;
3632 unsigned long high = high_wmark_pages(zone);
3633 if (size > high)
3634 sum += size - high;
3635 }
3636
3637 return sum;
3638 }
3639
3640 /**
3641 * nr_free_buffer_pages - count number of pages beyond high watermark
3642 *
3643 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3644 * watermark within ZONE_DMA and ZONE_NORMAL.
3645 */
nr_free_buffer_pages(void)3646 unsigned long nr_free_buffer_pages(void)
3647 {
3648 return nr_free_zone_pages(gfp_zone(GFP_USER));
3649 }
3650 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3651
3652 /**
3653 * nr_free_pagecache_pages - count number of pages beyond high watermark
3654 *
3655 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3656 * high watermark within all zones.
3657 */
nr_free_pagecache_pages(void)3658 unsigned long nr_free_pagecache_pages(void)
3659 {
3660 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3661 }
3662
show_node(struct zone * zone)3663 static inline void show_node(struct zone *zone)
3664 {
3665 if (IS_ENABLED(CONFIG_NUMA))
3666 printk("Node %d ", zone_to_nid(zone));
3667 }
3668
si_mem_available(void)3669 long si_mem_available(void)
3670 {
3671 long available;
3672 unsigned long pagecache;
3673 unsigned long wmark_low = 0;
3674 unsigned long pages[NR_LRU_LISTS];
3675 struct zone *zone;
3676 int lru;
3677
3678 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3679 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3680
3681 for_each_zone(zone)
3682 wmark_low += zone->watermark[WMARK_LOW];
3683
3684 /*
3685 * Estimate the amount of memory available for userspace allocations,
3686 * without causing swapping.
3687 */
3688 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3689
3690 /*
3691 * Not all the page cache can be freed, otherwise the system will
3692 * start swapping. Assume at least half of the page cache, or the
3693 * low watermark worth of cache, needs to stay.
3694 */
3695 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3696 pagecache -= min(pagecache / 2, wmark_low);
3697 available += pagecache;
3698
3699 /*
3700 * Part of the reclaimable slab consists of items that are in use,
3701 * and cannot be freed. Cap this estimate at the low watermark.
3702 */
3703 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3704 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3705
3706 if (available < 0)
3707 available = 0;
3708 return available;
3709 }
3710 EXPORT_SYMBOL_GPL(si_mem_available);
3711
si_meminfo(struct sysinfo * val)3712 void si_meminfo(struct sysinfo *val)
3713 {
3714 val->totalram = totalram_pages;
3715 val->sharedram = global_page_state(NR_SHMEM);
3716 val->freeram = global_page_state(NR_FREE_PAGES);
3717 val->bufferram = nr_blockdev_pages();
3718 val->totalhigh = totalhigh_pages;
3719 val->freehigh = nr_free_highpages();
3720 val->mem_unit = PAGE_SIZE;
3721 }
3722
3723 EXPORT_SYMBOL(si_meminfo);
3724
3725 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)3726 void si_meminfo_node(struct sysinfo *val, int nid)
3727 {
3728 int zone_type; /* needs to be signed */
3729 unsigned long managed_pages = 0;
3730 pg_data_t *pgdat = NODE_DATA(nid);
3731
3732 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3733 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3734 val->totalram = managed_pages;
3735 val->sharedram = node_page_state(nid, NR_SHMEM);
3736 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3737 #ifdef CONFIG_HIGHMEM
3738 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3739 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3740 NR_FREE_PAGES);
3741 #else
3742 val->totalhigh = 0;
3743 val->freehigh = 0;
3744 #endif
3745 val->mem_unit = PAGE_SIZE;
3746 }
3747 #endif
3748
3749 /*
3750 * Determine whether the node should be displayed or not, depending on whether
3751 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3752 */
skip_free_areas_node(unsigned int flags,int nid)3753 bool skip_free_areas_node(unsigned int flags, int nid)
3754 {
3755 bool ret = false;
3756 unsigned int cpuset_mems_cookie;
3757
3758 if (!(flags & SHOW_MEM_FILTER_NODES))
3759 goto out;
3760
3761 do {
3762 cpuset_mems_cookie = read_mems_allowed_begin();
3763 ret = !node_isset(nid, cpuset_current_mems_allowed);
3764 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3765 out:
3766 return ret;
3767 }
3768
3769 #define K(x) ((x) << (PAGE_SHIFT-10))
3770
show_migration_types(unsigned char type)3771 static void show_migration_types(unsigned char type)
3772 {
3773 static const char types[MIGRATE_TYPES] = {
3774 [MIGRATE_UNMOVABLE] = 'U',
3775 [MIGRATE_MOVABLE] = 'M',
3776 [MIGRATE_RECLAIMABLE] = 'E',
3777 [MIGRATE_HIGHATOMIC] = 'H',
3778 #ifdef CONFIG_CMA
3779 [MIGRATE_CMA] = 'C',
3780 #endif
3781 #ifdef CONFIG_MEMORY_ISOLATION
3782 [MIGRATE_ISOLATE] = 'I',
3783 #endif
3784 };
3785 char tmp[MIGRATE_TYPES + 1];
3786 char *p = tmp;
3787 int i;
3788
3789 for (i = 0; i < MIGRATE_TYPES; i++) {
3790 if (type & (1 << i))
3791 *p++ = types[i];
3792 }
3793
3794 *p = '\0';
3795 printk("(%s) ", tmp);
3796 }
3797
3798 /*
3799 * Show free area list (used inside shift_scroll-lock stuff)
3800 * We also calculate the percentage fragmentation. We do this by counting the
3801 * memory on each free list with the exception of the first item on the list.
3802 *
3803 * Bits in @filter:
3804 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3805 * cpuset.
3806 */
show_free_areas(unsigned int filter)3807 void show_free_areas(unsigned int filter)
3808 {
3809 unsigned long free_pcp = 0;
3810 int cpu;
3811 struct zone *zone;
3812
3813 for_each_populated_zone(zone) {
3814 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3815 continue;
3816
3817 for_each_online_cpu(cpu)
3818 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3819 }
3820
3821 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3822 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3823 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3824 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3825 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3826 " free:%lu free_pcp:%lu free_cma:%lu\n",
3827 global_page_state(NR_ACTIVE_ANON),
3828 global_page_state(NR_INACTIVE_ANON),
3829 global_page_state(NR_ISOLATED_ANON),
3830 global_page_state(NR_ACTIVE_FILE),
3831 global_page_state(NR_INACTIVE_FILE),
3832 global_page_state(NR_ISOLATED_FILE),
3833 global_page_state(NR_UNEVICTABLE),
3834 global_page_state(NR_FILE_DIRTY),
3835 global_page_state(NR_WRITEBACK),
3836 global_page_state(NR_UNSTABLE_NFS),
3837 global_page_state(NR_SLAB_RECLAIMABLE),
3838 global_page_state(NR_SLAB_UNRECLAIMABLE),
3839 global_page_state(NR_FILE_MAPPED),
3840 global_page_state(NR_SHMEM),
3841 global_page_state(NR_PAGETABLE),
3842 global_page_state(NR_BOUNCE),
3843 global_page_state(NR_FREE_PAGES),
3844 free_pcp,
3845 global_page_state(NR_FREE_CMA_PAGES));
3846
3847 for_each_populated_zone(zone) {
3848 int i;
3849
3850 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3851 continue;
3852
3853 free_pcp = 0;
3854 for_each_online_cpu(cpu)
3855 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3856
3857 show_node(zone);
3858 printk("%s"
3859 " free:%lukB"
3860 " min:%lukB"
3861 " low:%lukB"
3862 " high:%lukB"
3863 " active_anon:%lukB"
3864 " inactive_anon:%lukB"
3865 " active_file:%lukB"
3866 " inactive_file:%lukB"
3867 " unevictable:%lukB"
3868 " isolated(anon):%lukB"
3869 " isolated(file):%lukB"
3870 " present:%lukB"
3871 " managed:%lukB"
3872 " mlocked:%lukB"
3873 " dirty:%lukB"
3874 " writeback:%lukB"
3875 " mapped:%lukB"
3876 " shmem:%lukB"
3877 " slab_reclaimable:%lukB"
3878 " slab_unreclaimable:%lukB"
3879 " kernel_stack:%lukB"
3880 " pagetables:%lukB"
3881 " unstable:%lukB"
3882 " bounce:%lukB"
3883 " free_pcp:%lukB"
3884 " local_pcp:%ukB"
3885 " free_cma:%lukB"
3886 " writeback_tmp:%lukB"
3887 " pages_scanned:%lu"
3888 " all_unreclaimable? %s"
3889 "\n",
3890 zone->name,
3891 K(zone_page_state(zone, NR_FREE_PAGES)),
3892 K(min_wmark_pages(zone)),
3893 K(low_wmark_pages(zone)),
3894 K(high_wmark_pages(zone)),
3895 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3896 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3897 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3898 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3899 K(zone_page_state(zone, NR_UNEVICTABLE)),
3900 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3901 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3902 K(zone->present_pages),
3903 K(zone->managed_pages),
3904 K(zone_page_state(zone, NR_MLOCK)),
3905 K(zone_page_state(zone, NR_FILE_DIRTY)),
3906 K(zone_page_state(zone, NR_WRITEBACK)),
3907 K(zone_page_state(zone, NR_FILE_MAPPED)),
3908 K(zone_page_state(zone, NR_SHMEM)),
3909 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3910 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3911 zone_page_state(zone, NR_KERNEL_STACK) *
3912 THREAD_SIZE / 1024,
3913 K(zone_page_state(zone, NR_PAGETABLE)),
3914 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3915 K(zone_page_state(zone, NR_BOUNCE)),
3916 K(free_pcp),
3917 K(this_cpu_read(zone->pageset->pcp.count)),
3918 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3919 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3920 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3921 (!zone_reclaimable(zone) ? "yes" : "no")
3922 );
3923 printk("lowmem_reserve[]:");
3924 for (i = 0; i < MAX_NR_ZONES; i++)
3925 printk(" %ld", zone->lowmem_reserve[i]);
3926 printk("\n");
3927 }
3928
3929 for_each_populated_zone(zone) {
3930 unsigned int order;
3931 unsigned long nr[MAX_ORDER], flags, total = 0;
3932 unsigned char types[MAX_ORDER];
3933
3934 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3935 continue;
3936 show_node(zone);
3937 printk("%s: ", zone->name);
3938
3939 spin_lock_irqsave(&zone->lock, flags);
3940 for (order = 0; order < MAX_ORDER; order++) {
3941 struct free_area *area = &zone->free_area[order];
3942 int type;
3943
3944 nr[order] = area->nr_free;
3945 total += nr[order] << order;
3946
3947 types[order] = 0;
3948 for (type = 0; type < MIGRATE_TYPES; type++) {
3949 if (!list_empty(&area->free_list[type]))
3950 types[order] |= 1 << type;
3951 }
3952 }
3953 spin_unlock_irqrestore(&zone->lock, flags);
3954 for (order = 0; order < MAX_ORDER; order++) {
3955 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3956 if (nr[order])
3957 show_migration_types(types[order]);
3958 }
3959 printk("= %lukB\n", K(total));
3960 }
3961
3962 hugetlb_show_meminfo();
3963
3964 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3965
3966 show_swap_cache_info();
3967 }
3968
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)3969 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3970 {
3971 zoneref->zone = zone;
3972 zoneref->zone_idx = zone_idx(zone);
3973 }
3974
3975 /*
3976 * Builds allocation fallback zone lists.
3977 *
3978 * Add all populated zones of a node to the zonelist.
3979 */
build_zonelists_node(pg_data_t * pgdat,struct zonelist * zonelist,int nr_zones)3980 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3981 int nr_zones)
3982 {
3983 struct zone *zone;
3984 enum zone_type zone_type = MAX_NR_ZONES;
3985
3986 do {
3987 zone_type--;
3988 zone = pgdat->node_zones + zone_type;
3989 if (populated_zone(zone)) {
3990 zoneref_set_zone(zone,
3991 &zonelist->_zonerefs[nr_zones++]);
3992 check_highest_zone(zone_type);
3993 }
3994 } while (zone_type);
3995
3996 return nr_zones;
3997 }
3998
3999
4000 /*
4001 * zonelist_order:
4002 * 0 = automatic detection of better ordering.
4003 * 1 = order by ([node] distance, -zonetype)
4004 * 2 = order by (-zonetype, [node] distance)
4005 *
4006 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4007 * the same zonelist. So only NUMA can configure this param.
4008 */
4009 #define ZONELIST_ORDER_DEFAULT 0
4010 #define ZONELIST_ORDER_NODE 1
4011 #define ZONELIST_ORDER_ZONE 2
4012
4013 /* zonelist order in the kernel.
4014 * set_zonelist_order() will set this to NODE or ZONE.
4015 */
4016 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4017 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4018
4019
4020 #ifdef CONFIG_NUMA
4021 /* The value user specified ....changed by config */
4022 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4023 /* string for sysctl */
4024 #define NUMA_ZONELIST_ORDER_LEN 16
4025 char numa_zonelist_order[16] = "default";
4026
4027 /*
4028 * interface for configure zonelist ordering.
4029 * command line option "numa_zonelist_order"
4030 * = "[dD]efault - default, automatic configuration.
4031 * = "[nN]ode - order by node locality, then by zone within node
4032 * = "[zZ]one - order by zone, then by locality within zone
4033 */
4034
__parse_numa_zonelist_order(char * s)4035 static int __parse_numa_zonelist_order(char *s)
4036 {
4037 if (*s == 'd' || *s == 'D') {
4038 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4039 } else if (*s == 'n' || *s == 'N') {
4040 user_zonelist_order = ZONELIST_ORDER_NODE;
4041 } else if (*s == 'z' || *s == 'Z') {
4042 user_zonelist_order = ZONELIST_ORDER_ZONE;
4043 } else {
4044 printk(KERN_WARNING
4045 "Ignoring invalid numa_zonelist_order value: %s\n", s);
4046 return -EINVAL;
4047 }
4048 return 0;
4049 }
4050
setup_numa_zonelist_order(char * s)4051 static __init int setup_numa_zonelist_order(char *s)
4052 {
4053 int ret;
4054
4055 if (!s)
4056 return 0;
4057
4058 ret = __parse_numa_zonelist_order(s);
4059 if (ret == 0)
4060 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4061
4062 return ret;
4063 }
4064 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4065
4066 /*
4067 * sysctl handler for numa_zonelist_order
4068 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)4069 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4070 void __user *buffer, size_t *length,
4071 loff_t *ppos)
4072 {
4073 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4074 int ret;
4075 static DEFINE_MUTEX(zl_order_mutex);
4076
4077 mutex_lock(&zl_order_mutex);
4078 if (write) {
4079 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4080 ret = -EINVAL;
4081 goto out;
4082 }
4083 strcpy(saved_string, (char *)table->data);
4084 }
4085 ret = proc_dostring(table, write, buffer, length, ppos);
4086 if (ret)
4087 goto out;
4088 if (write) {
4089 int oldval = user_zonelist_order;
4090
4091 ret = __parse_numa_zonelist_order((char *)table->data);
4092 if (ret) {
4093 /*
4094 * bogus value. restore saved string
4095 */
4096 strncpy((char *)table->data, saved_string,
4097 NUMA_ZONELIST_ORDER_LEN);
4098 user_zonelist_order = oldval;
4099 } else if (oldval != user_zonelist_order) {
4100 mutex_lock(&zonelists_mutex);
4101 build_all_zonelists(NULL, NULL);
4102 mutex_unlock(&zonelists_mutex);
4103 }
4104 }
4105 out:
4106 mutex_unlock(&zl_order_mutex);
4107 return ret;
4108 }
4109
4110
4111 #define MAX_NODE_LOAD (nr_online_nodes)
4112 static int node_load[MAX_NUMNODES];
4113
4114 /**
4115 * find_next_best_node - find the next node that should appear in a given node's fallback list
4116 * @node: node whose fallback list we're appending
4117 * @used_node_mask: nodemask_t of already used nodes
4118 *
4119 * We use a number of factors to determine which is the next node that should
4120 * appear on a given node's fallback list. The node should not have appeared
4121 * already in @node's fallback list, and it should be the next closest node
4122 * according to the distance array (which contains arbitrary distance values
4123 * from each node to each node in the system), and should also prefer nodes
4124 * with no CPUs, since presumably they'll have very little allocation pressure
4125 * on them otherwise.
4126 * It returns -1 if no node is found.
4127 */
find_next_best_node(int node,nodemask_t * used_node_mask)4128 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4129 {
4130 int n, val;
4131 int min_val = INT_MAX;
4132 int best_node = NUMA_NO_NODE;
4133 const struct cpumask *tmp = cpumask_of_node(0);
4134
4135 /* Use the local node if we haven't already */
4136 if (!node_isset(node, *used_node_mask)) {
4137 node_set(node, *used_node_mask);
4138 return node;
4139 }
4140
4141 for_each_node_state(n, N_MEMORY) {
4142
4143 /* Don't want a node to appear more than once */
4144 if (node_isset(n, *used_node_mask))
4145 continue;
4146
4147 /* Use the distance array to find the distance */
4148 val = node_distance(node, n);
4149
4150 /* Penalize nodes under us ("prefer the next node") */
4151 val += (n < node);
4152
4153 /* Give preference to headless and unused nodes */
4154 tmp = cpumask_of_node(n);
4155 if (!cpumask_empty(tmp))
4156 val += PENALTY_FOR_NODE_WITH_CPUS;
4157
4158 /* Slight preference for less loaded node */
4159 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4160 val += node_load[n];
4161
4162 if (val < min_val) {
4163 min_val = val;
4164 best_node = n;
4165 }
4166 }
4167
4168 if (best_node >= 0)
4169 node_set(best_node, *used_node_mask);
4170
4171 return best_node;
4172 }
4173
4174
4175 /*
4176 * Build zonelists ordered by node and zones within node.
4177 * This results in maximum locality--normal zone overflows into local
4178 * DMA zone, if any--but risks exhausting DMA zone.
4179 */
build_zonelists_in_node_order(pg_data_t * pgdat,int node)4180 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4181 {
4182 int j;
4183 struct zonelist *zonelist;
4184
4185 zonelist = &pgdat->node_zonelists[0];
4186 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4187 ;
4188 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4189 zonelist->_zonerefs[j].zone = NULL;
4190 zonelist->_zonerefs[j].zone_idx = 0;
4191 }
4192
4193 /*
4194 * Build gfp_thisnode zonelists
4195 */
build_thisnode_zonelists(pg_data_t * pgdat)4196 static void build_thisnode_zonelists(pg_data_t *pgdat)
4197 {
4198 int j;
4199 struct zonelist *zonelist;
4200
4201 zonelist = &pgdat->node_zonelists[1];
4202 j = build_zonelists_node(pgdat, zonelist, 0);
4203 zonelist->_zonerefs[j].zone = NULL;
4204 zonelist->_zonerefs[j].zone_idx = 0;
4205 }
4206
4207 /*
4208 * Build zonelists ordered by zone and nodes within zones.
4209 * This results in conserving DMA zone[s] until all Normal memory is
4210 * exhausted, but results in overflowing to remote node while memory
4211 * may still exist in local DMA zone.
4212 */
4213 static int node_order[MAX_NUMNODES];
4214
build_zonelists_in_zone_order(pg_data_t * pgdat,int nr_nodes)4215 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4216 {
4217 int pos, j, node;
4218 int zone_type; /* needs to be signed */
4219 struct zone *z;
4220 struct zonelist *zonelist;
4221
4222 zonelist = &pgdat->node_zonelists[0];
4223 pos = 0;
4224 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4225 for (j = 0; j < nr_nodes; j++) {
4226 node = node_order[j];
4227 z = &NODE_DATA(node)->node_zones[zone_type];
4228 if (populated_zone(z)) {
4229 zoneref_set_zone(z,
4230 &zonelist->_zonerefs[pos++]);
4231 check_highest_zone(zone_type);
4232 }
4233 }
4234 }
4235 zonelist->_zonerefs[pos].zone = NULL;
4236 zonelist->_zonerefs[pos].zone_idx = 0;
4237 }
4238
4239 #if defined(CONFIG_64BIT)
4240 /*
4241 * Devices that require DMA32/DMA are relatively rare and do not justify a
4242 * penalty to every machine in case the specialised case applies. Default
4243 * to Node-ordering on 64-bit NUMA machines
4244 */
default_zonelist_order(void)4245 static int default_zonelist_order(void)
4246 {
4247 return ZONELIST_ORDER_NODE;
4248 }
4249 #else
4250 /*
4251 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4252 * by the kernel. If processes running on node 0 deplete the low memory zone
4253 * then reclaim will occur more frequency increasing stalls and potentially
4254 * be easier to OOM if a large percentage of the zone is under writeback or
4255 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4256 * Hence, default to zone ordering on 32-bit.
4257 */
default_zonelist_order(void)4258 static int default_zonelist_order(void)
4259 {
4260 return ZONELIST_ORDER_ZONE;
4261 }
4262 #endif /* CONFIG_64BIT */
4263
set_zonelist_order(void)4264 static void set_zonelist_order(void)
4265 {
4266 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4267 current_zonelist_order = default_zonelist_order();
4268 else
4269 current_zonelist_order = user_zonelist_order;
4270 }
4271
build_zonelists(pg_data_t * pgdat)4272 static void build_zonelists(pg_data_t *pgdat)
4273 {
4274 int j, node, load;
4275 enum zone_type i;
4276 nodemask_t used_mask;
4277 int local_node, prev_node;
4278 struct zonelist *zonelist;
4279 unsigned int order = current_zonelist_order;
4280
4281 /* initialize zonelists */
4282 for (i = 0; i < MAX_ZONELISTS; i++) {
4283 zonelist = pgdat->node_zonelists + i;
4284 zonelist->_zonerefs[0].zone = NULL;
4285 zonelist->_zonerefs[0].zone_idx = 0;
4286 }
4287
4288 /* NUMA-aware ordering of nodes */
4289 local_node = pgdat->node_id;
4290 load = nr_online_nodes;
4291 prev_node = local_node;
4292 nodes_clear(used_mask);
4293
4294 memset(node_order, 0, sizeof(node_order));
4295 j = 0;
4296
4297 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4298 /*
4299 * We don't want to pressure a particular node.
4300 * So adding penalty to the first node in same
4301 * distance group to make it round-robin.
4302 */
4303 if (node_distance(local_node, node) !=
4304 node_distance(local_node, prev_node))
4305 node_load[node] = load;
4306
4307 prev_node = node;
4308 load--;
4309 if (order == ZONELIST_ORDER_NODE)
4310 build_zonelists_in_node_order(pgdat, node);
4311 else
4312 node_order[j++] = node; /* remember order */
4313 }
4314
4315 if (order == ZONELIST_ORDER_ZONE) {
4316 /* calculate node order -- i.e., DMA last! */
4317 build_zonelists_in_zone_order(pgdat, j);
4318 }
4319
4320 build_thisnode_zonelists(pgdat);
4321 }
4322
4323 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4324 /*
4325 * Return node id of node used for "local" allocations.
4326 * I.e., first node id of first zone in arg node's generic zonelist.
4327 * Used for initializing percpu 'numa_mem', which is used primarily
4328 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4329 */
local_memory_node(int node)4330 int local_memory_node(int node)
4331 {
4332 struct zone *zone;
4333
4334 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4335 gfp_zone(GFP_KERNEL),
4336 NULL,
4337 &zone);
4338 return zone->node;
4339 }
4340 #endif
4341
4342 #else /* CONFIG_NUMA */
4343
set_zonelist_order(void)4344 static void set_zonelist_order(void)
4345 {
4346 current_zonelist_order = ZONELIST_ORDER_ZONE;
4347 }
4348
build_zonelists(pg_data_t * pgdat)4349 static void build_zonelists(pg_data_t *pgdat)
4350 {
4351 int node, local_node;
4352 enum zone_type j;
4353 struct zonelist *zonelist;
4354
4355 local_node = pgdat->node_id;
4356
4357 zonelist = &pgdat->node_zonelists[0];
4358 j = build_zonelists_node(pgdat, zonelist, 0);
4359
4360 /*
4361 * Now we build the zonelist so that it contains the zones
4362 * of all the other nodes.
4363 * We don't want to pressure a particular node, so when
4364 * building the zones for node N, we make sure that the
4365 * zones coming right after the local ones are those from
4366 * node N+1 (modulo N)
4367 */
4368 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4369 if (!node_online(node))
4370 continue;
4371 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4372 }
4373 for (node = 0; node < local_node; node++) {
4374 if (!node_online(node))
4375 continue;
4376 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4377 }
4378
4379 zonelist->_zonerefs[j].zone = NULL;
4380 zonelist->_zonerefs[j].zone_idx = 0;
4381 }
4382
4383 #endif /* CONFIG_NUMA */
4384
4385 /*
4386 * Boot pageset table. One per cpu which is going to be used for all
4387 * zones and all nodes. The parameters will be set in such a way
4388 * that an item put on a list will immediately be handed over to
4389 * the buddy list. This is safe since pageset manipulation is done
4390 * with interrupts disabled.
4391 *
4392 * The boot_pagesets must be kept even after bootup is complete for
4393 * unused processors and/or zones. They do play a role for bootstrapping
4394 * hotplugged processors.
4395 *
4396 * zoneinfo_show() and maybe other functions do
4397 * not check if the processor is online before following the pageset pointer.
4398 * Other parts of the kernel may not check if the zone is available.
4399 */
4400 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4401 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4402 static void setup_zone_pageset(struct zone *zone);
4403
4404 /*
4405 * Global mutex to protect against size modification of zonelists
4406 * as well as to serialize pageset setup for the new populated zone.
4407 */
4408 DEFINE_MUTEX(zonelists_mutex);
4409
4410 /* return values int ....just for stop_machine() */
__build_all_zonelists(void * data)4411 static int __build_all_zonelists(void *data)
4412 {
4413 int nid;
4414 int cpu;
4415 pg_data_t *self = data;
4416
4417 #ifdef CONFIG_NUMA
4418 memset(node_load, 0, sizeof(node_load));
4419 #endif
4420
4421 if (self && !node_online(self->node_id)) {
4422 build_zonelists(self);
4423 }
4424
4425 for_each_online_node(nid) {
4426 pg_data_t *pgdat = NODE_DATA(nid);
4427
4428 build_zonelists(pgdat);
4429 }
4430
4431 /*
4432 * Initialize the boot_pagesets that are going to be used
4433 * for bootstrapping processors. The real pagesets for
4434 * each zone will be allocated later when the per cpu
4435 * allocator is available.
4436 *
4437 * boot_pagesets are used also for bootstrapping offline
4438 * cpus if the system is already booted because the pagesets
4439 * are needed to initialize allocators on a specific cpu too.
4440 * F.e. the percpu allocator needs the page allocator which
4441 * needs the percpu allocator in order to allocate its pagesets
4442 * (a chicken-egg dilemma).
4443 */
4444 for_each_possible_cpu(cpu) {
4445 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4446
4447 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4448 /*
4449 * We now know the "local memory node" for each node--
4450 * i.e., the node of the first zone in the generic zonelist.
4451 * Set up numa_mem percpu variable for on-line cpus. During
4452 * boot, only the boot cpu should be on-line; we'll init the
4453 * secondary cpus' numa_mem as they come on-line. During
4454 * node/memory hotplug, we'll fixup all on-line cpus.
4455 */
4456 if (cpu_online(cpu))
4457 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4458 #endif
4459 }
4460
4461 return 0;
4462 }
4463
4464 static noinline void __init
build_all_zonelists_init(void)4465 build_all_zonelists_init(void)
4466 {
4467 __build_all_zonelists(NULL);
4468 mminit_verify_zonelist();
4469 cpuset_init_current_mems_allowed();
4470 }
4471
4472 /*
4473 * Called with zonelists_mutex held always
4474 * unless system_state == SYSTEM_BOOTING.
4475 *
4476 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4477 * [we're only called with non-NULL zone through __meminit paths] and
4478 * (2) call of __init annotated helper build_all_zonelists_init
4479 * [protected by SYSTEM_BOOTING].
4480 */
build_all_zonelists(pg_data_t * pgdat,struct zone * zone)4481 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4482 {
4483 set_zonelist_order();
4484
4485 if (system_state == SYSTEM_BOOTING) {
4486 build_all_zonelists_init();
4487 } else {
4488 #ifdef CONFIG_MEMORY_HOTPLUG
4489 if (zone)
4490 setup_zone_pageset(zone);
4491 #endif
4492 /* we have to stop all cpus to guarantee there is no user
4493 of zonelist */
4494 stop_machine(__build_all_zonelists, pgdat, NULL);
4495 /* cpuset refresh routine should be here */
4496 }
4497 vm_total_pages = nr_free_pagecache_pages();
4498 /*
4499 * Disable grouping by mobility if the number of pages in the
4500 * system is too low to allow the mechanism to work. It would be
4501 * more accurate, but expensive to check per-zone. This check is
4502 * made on memory-hotadd so a system can start with mobility
4503 * disabled and enable it later
4504 */
4505 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4506 page_group_by_mobility_disabled = 1;
4507 else
4508 page_group_by_mobility_disabled = 0;
4509
4510 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4511 nr_online_nodes,
4512 zonelist_order_name[current_zonelist_order],
4513 page_group_by_mobility_disabled ? "off" : "on",
4514 vm_total_pages);
4515 #ifdef CONFIG_NUMA
4516 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4517 #endif
4518 }
4519
4520 /*
4521 * Helper functions to size the waitqueue hash table.
4522 * Essentially these want to choose hash table sizes sufficiently
4523 * large so that collisions trying to wait on pages are rare.
4524 * But in fact, the number of active page waitqueues on typical
4525 * systems is ridiculously low, less than 200. So this is even
4526 * conservative, even though it seems large.
4527 *
4528 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4529 * waitqueues, i.e. the size of the waitq table given the number of pages.
4530 */
4531 #define PAGES_PER_WAITQUEUE 256
4532
4533 #ifndef CONFIG_MEMORY_HOTPLUG
wait_table_hash_nr_entries(unsigned long pages)4534 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4535 {
4536 unsigned long size = 1;
4537
4538 pages /= PAGES_PER_WAITQUEUE;
4539
4540 while (size < pages)
4541 size <<= 1;
4542
4543 /*
4544 * Once we have dozens or even hundreds of threads sleeping
4545 * on IO we've got bigger problems than wait queue collision.
4546 * Limit the size of the wait table to a reasonable size.
4547 */
4548 size = min(size, 4096UL);
4549
4550 return max(size, 4UL);
4551 }
4552 #else
4553 /*
4554 * A zone's size might be changed by hot-add, so it is not possible to determine
4555 * a suitable size for its wait_table. So we use the maximum size now.
4556 *
4557 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4558 *
4559 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4560 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4561 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4562 *
4563 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4564 * or more by the traditional way. (See above). It equals:
4565 *
4566 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4567 * ia64(16K page size) : = ( 8G + 4M)byte.
4568 * powerpc (64K page size) : = (32G +16M)byte.
4569 */
wait_table_hash_nr_entries(unsigned long pages)4570 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4571 {
4572 return 4096UL;
4573 }
4574 #endif
4575
4576 /*
4577 * This is an integer logarithm so that shifts can be used later
4578 * to extract the more random high bits from the multiplicative
4579 * hash function before the remainder is taken.
4580 */
wait_table_bits(unsigned long size)4581 static inline unsigned long wait_table_bits(unsigned long size)
4582 {
4583 return ffz(~size);
4584 }
4585
4586 /*
4587 * Initially all pages are reserved - free ones are freed
4588 * up by free_all_bootmem() once the early boot process is
4589 * done. Non-atomic initialization, single-pass.
4590 */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,enum memmap_context context)4591 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4592 unsigned long start_pfn, enum memmap_context context)
4593 {
4594 pg_data_t *pgdat = NODE_DATA(nid);
4595 unsigned long end_pfn = start_pfn + size;
4596 unsigned long pfn;
4597 struct zone *z;
4598 unsigned long nr_initialised = 0;
4599
4600 if (highest_memmap_pfn < end_pfn - 1)
4601 highest_memmap_pfn = end_pfn - 1;
4602
4603 z = &pgdat->node_zones[zone];
4604 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4605 /*
4606 * There can be holes in boot-time mem_map[]s
4607 * handed to this function. They do not
4608 * exist on hotplugged memory.
4609 */
4610 if (context == MEMMAP_EARLY) {
4611 if (!early_pfn_valid(pfn))
4612 continue;
4613 if (!early_pfn_in_nid(pfn, nid))
4614 continue;
4615 if (!update_defer_init(pgdat, pfn, end_pfn,
4616 &nr_initialised))
4617 break;
4618 }
4619
4620 /*
4621 * Mark the block movable so that blocks are reserved for
4622 * movable at startup. This will force kernel allocations
4623 * to reserve their blocks rather than leaking throughout
4624 * the address space during boot when many long-lived
4625 * kernel allocations are made.
4626 *
4627 * bitmap is created for zone's valid pfn range. but memmap
4628 * can be created for invalid pages (for alignment)
4629 * check here not to call set_pageblock_migratetype() against
4630 * pfn out of zone.
4631 */
4632 if (!(pfn & (pageblock_nr_pages - 1))) {
4633 struct page *page = pfn_to_page(pfn);
4634
4635 __init_single_page(page, pfn, zone, nid);
4636 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4637 } else {
4638 __init_single_pfn(pfn, zone, nid);
4639 }
4640 }
4641 }
4642
zone_init_free_lists(struct zone * zone)4643 static void __meminit zone_init_free_lists(struct zone *zone)
4644 {
4645 unsigned int order, t;
4646 for_each_migratetype_order(order, t) {
4647 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4648 zone->free_area[order].nr_free = 0;
4649 }
4650 }
4651
4652 #ifndef __HAVE_ARCH_MEMMAP_INIT
4653 #define memmap_init(size, nid, zone, start_pfn) \
4654 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4655 #endif
4656
zone_batchsize(struct zone * zone)4657 static int zone_batchsize(struct zone *zone)
4658 {
4659 #ifdef CONFIG_MMU
4660 int batch;
4661
4662 /*
4663 * The per-cpu-pages pools are set to around 1000th of the
4664 * size of the zone. But no more than 1/2 of a meg.
4665 *
4666 * OK, so we don't know how big the cache is. So guess.
4667 */
4668 batch = zone->managed_pages / 1024;
4669 if (batch * PAGE_SIZE > 512 * 1024)
4670 batch = (512 * 1024) / PAGE_SIZE;
4671 batch /= 4; /* We effectively *= 4 below */
4672 if (batch < 1)
4673 batch = 1;
4674
4675 /*
4676 * Clamp the batch to a 2^n - 1 value. Having a power
4677 * of 2 value was found to be more likely to have
4678 * suboptimal cache aliasing properties in some cases.
4679 *
4680 * For example if 2 tasks are alternately allocating
4681 * batches of pages, one task can end up with a lot
4682 * of pages of one half of the possible page colors
4683 * and the other with pages of the other colors.
4684 */
4685 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4686
4687 return batch;
4688
4689 #else
4690 /* The deferral and batching of frees should be suppressed under NOMMU
4691 * conditions.
4692 *
4693 * The problem is that NOMMU needs to be able to allocate large chunks
4694 * of contiguous memory as there's no hardware page translation to
4695 * assemble apparent contiguous memory from discontiguous pages.
4696 *
4697 * Queueing large contiguous runs of pages for batching, however,
4698 * causes the pages to actually be freed in smaller chunks. As there
4699 * can be a significant delay between the individual batches being
4700 * recycled, this leads to the once large chunks of space being
4701 * fragmented and becoming unavailable for high-order allocations.
4702 */
4703 return 0;
4704 #endif
4705 }
4706
4707 /*
4708 * pcp->high and pcp->batch values are related and dependent on one another:
4709 * ->batch must never be higher then ->high.
4710 * The following function updates them in a safe manner without read side
4711 * locking.
4712 *
4713 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4714 * those fields changing asynchronously (acording the the above rule).
4715 *
4716 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4717 * outside of boot time (or some other assurance that no concurrent updaters
4718 * exist).
4719 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)4720 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4721 unsigned long batch)
4722 {
4723 /* start with a fail safe value for batch */
4724 pcp->batch = 1;
4725 smp_wmb();
4726
4727 /* Update high, then batch, in order */
4728 pcp->high = high;
4729 smp_wmb();
4730
4731 pcp->batch = batch;
4732 }
4733
4734 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)4735 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4736 {
4737 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4738 }
4739
pageset_init(struct per_cpu_pageset * p)4740 static void pageset_init(struct per_cpu_pageset *p)
4741 {
4742 struct per_cpu_pages *pcp;
4743 int migratetype;
4744
4745 memset(p, 0, sizeof(*p));
4746
4747 pcp = &p->pcp;
4748 pcp->count = 0;
4749 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4750 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4751 }
4752
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)4753 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4754 {
4755 pageset_init(p);
4756 pageset_set_batch(p, batch);
4757 }
4758
4759 /*
4760 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4761 * to the value high for the pageset p.
4762 */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)4763 static void pageset_set_high(struct per_cpu_pageset *p,
4764 unsigned long high)
4765 {
4766 unsigned long batch = max(1UL, high / 4);
4767 if ((high / 4) > (PAGE_SHIFT * 8))
4768 batch = PAGE_SHIFT * 8;
4769
4770 pageset_update(&p->pcp, high, batch);
4771 }
4772
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)4773 static void pageset_set_high_and_batch(struct zone *zone,
4774 struct per_cpu_pageset *pcp)
4775 {
4776 if (percpu_pagelist_fraction)
4777 pageset_set_high(pcp,
4778 (zone->managed_pages /
4779 percpu_pagelist_fraction));
4780 else
4781 pageset_set_batch(pcp, zone_batchsize(zone));
4782 }
4783
zone_pageset_init(struct zone * zone,int cpu)4784 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4785 {
4786 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4787
4788 pageset_init(pcp);
4789 pageset_set_high_and_batch(zone, pcp);
4790 }
4791
setup_zone_pageset(struct zone * zone)4792 static void __meminit setup_zone_pageset(struct zone *zone)
4793 {
4794 int cpu;
4795 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4796 for_each_possible_cpu(cpu)
4797 zone_pageset_init(zone, cpu);
4798 }
4799
4800 /*
4801 * Allocate per cpu pagesets and initialize them.
4802 * Before this call only boot pagesets were available.
4803 */
setup_per_cpu_pageset(void)4804 void __init setup_per_cpu_pageset(void)
4805 {
4806 struct zone *zone;
4807
4808 for_each_populated_zone(zone)
4809 setup_zone_pageset(zone);
4810 }
4811
4812 static noinline __init_refok
zone_wait_table_init(struct zone * zone,unsigned long zone_size_pages)4813 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4814 {
4815 int i;
4816 size_t alloc_size;
4817
4818 /*
4819 * The per-page waitqueue mechanism uses hashed waitqueues
4820 * per zone.
4821 */
4822 zone->wait_table_hash_nr_entries =
4823 wait_table_hash_nr_entries(zone_size_pages);
4824 zone->wait_table_bits =
4825 wait_table_bits(zone->wait_table_hash_nr_entries);
4826 alloc_size = zone->wait_table_hash_nr_entries
4827 * sizeof(wait_queue_head_t);
4828
4829 if (!slab_is_available()) {
4830 zone->wait_table = (wait_queue_head_t *)
4831 memblock_virt_alloc_node_nopanic(
4832 alloc_size, zone->zone_pgdat->node_id);
4833 } else {
4834 /*
4835 * This case means that a zone whose size was 0 gets new memory
4836 * via memory hot-add.
4837 * But it may be the case that a new node was hot-added. In
4838 * this case vmalloc() will not be able to use this new node's
4839 * memory - this wait_table must be initialized to use this new
4840 * node itself as well.
4841 * To use this new node's memory, further consideration will be
4842 * necessary.
4843 */
4844 zone->wait_table = vmalloc(alloc_size);
4845 }
4846 if (!zone->wait_table)
4847 return -ENOMEM;
4848
4849 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4850 init_waitqueue_head(zone->wait_table + i);
4851
4852 return 0;
4853 }
4854
zone_pcp_init(struct zone * zone)4855 static __meminit void zone_pcp_init(struct zone *zone)
4856 {
4857 /*
4858 * per cpu subsystem is not up at this point. The following code
4859 * relies on the ability of the linker to provide the
4860 * offset of a (static) per cpu variable into the per cpu area.
4861 */
4862 zone->pageset = &boot_pageset;
4863
4864 if (populated_zone(zone))
4865 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4866 zone->name, zone->present_pages,
4867 zone_batchsize(zone));
4868 }
4869
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)4870 int __meminit init_currently_empty_zone(struct zone *zone,
4871 unsigned long zone_start_pfn,
4872 unsigned long size)
4873 {
4874 struct pglist_data *pgdat = zone->zone_pgdat;
4875 int ret;
4876 ret = zone_wait_table_init(zone, size);
4877 if (ret)
4878 return ret;
4879 pgdat->nr_zones = zone_idx(zone) + 1;
4880
4881 zone->zone_start_pfn = zone_start_pfn;
4882
4883 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4884 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4885 pgdat->node_id,
4886 (unsigned long)zone_idx(zone),
4887 zone_start_pfn, (zone_start_pfn + size));
4888
4889 zone_init_free_lists(zone);
4890
4891 return 0;
4892 }
4893
4894 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4895 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4896
4897 /*
4898 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4899 */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)4900 int __meminit __early_pfn_to_nid(unsigned long pfn,
4901 struct mminit_pfnnid_cache *state)
4902 {
4903 unsigned long start_pfn, end_pfn;
4904 int nid;
4905
4906 if (state->last_start <= pfn && pfn < state->last_end)
4907 return state->last_nid;
4908
4909 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4910 if (nid != -1) {
4911 state->last_start = start_pfn;
4912 state->last_end = end_pfn;
4913 state->last_nid = nid;
4914 }
4915
4916 return nid;
4917 }
4918 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4919
4920 /**
4921 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4922 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4923 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4924 *
4925 * If an architecture guarantees that all ranges registered contain no holes
4926 * and may be freed, this this function may be used instead of calling
4927 * memblock_free_early_nid() manually.
4928 */
free_bootmem_with_active_regions(int nid,unsigned long max_low_pfn)4929 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4930 {
4931 unsigned long start_pfn, end_pfn;
4932 int i, this_nid;
4933
4934 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4935 start_pfn = min(start_pfn, max_low_pfn);
4936 end_pfn = min(end_pfn, max_low_pfn);
4937
4938 if (start_pfn < end_pfn)
4939 memblock_free_early_nid(PFN_PHYS(start_pfn),
4940 (end_pfn - start_pfn) << PAGE_SHIFT,
4941 this_nid);
4942 }
4943 }
4944
4945 /**
4946 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4947 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4948 *
4949 * If an architecture guarantees that all ranges registered contain no holes and may
4950 * be freed, this function may be used instead of calling memory_present() manually.
4951 */
sparse_memory_present_with_active_regions(int nid)4952 void __init sparse_memory_present_with_active_regions(int nid)
4953 {
4954 unsigned long start_pfn, end_pfn;
4955 int i, this_nid;
4956
4957 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4958 memory_present(this_nid, start_pfn, end_pfn);
4959 }
4960
4961 /**
4962 * get_pfn_range_for_nid - Return the start and end page frames for a node
4963 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4964 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4965 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4966 *
4967 * It returns the start and end page frame of a node based on information
4968 * provided by memblock_set_node(). If called for a node
4969 * with no available memory, a warning is printed and the start and end
4970 * PFNs will be 0.
4971 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)4972 void __meminit get_pfn_range_for_nid(unsigned int nid,
4973 unsigned long *start_pfn, unsigned long *end_pfn)
4974 {
4975 unsigned long this_start_pfn, this_end_pfn;
4976 int i;
4977
4978 *start_pfn = -1UL;
4979 *end_pfn = 0;
4980
4981 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4982 *start_pfn = min(*start_pfn, this_start_pfn);
4983 *end_pfn = max(*end_pfn, this_end_pfn);
4984 }
4985
4986 if (*start_pfn == -1UL)
4987 *start_pfn = 0;
4988 }
4989
4990 /*
4991 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4992 * assumption is made that zones within a node are ordered in monotonic
4993 * increasing memory addresses so that the "highest" populated zone is used
4994 */
find_usable_zone_for_movable(void)4995 static void __init find_usable_zone_for_movable(void)
4996 {
4997 int zone_index;
4998 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4999 if (zone_index == ZONE_MOVABLE)
5000 continue;
5001
5002 if (arch_zone_highest_possible_pfn[zone_index] >
5003 arch_zone_lowest_possible_pfn[zone_index])
5004 break;
5005 }
5006
5007 VM_BUG_ON(zone_index == -1);
5008 movable_zone = zone_index;
5009 }
5010
5011 /*
5012 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5013 * because it is sized independent of architecture. Unlike the other zones,
5014 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5015 * in each node depending on the size of each node and how evenly kernelcore
5016 * is distributed. This helper function adjusts the zone ranges
5017 * provided by the architecture for a given node by using the end of the
5018 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5019 * zones within a node are in order of monotonic increases memory addresses
5020 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)5021 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5022 unsigned long zone_type,
5023 unsigned long node_start_pfn,
5024 unsigned long node_end_pfn,
5025 unsigned long *zone_start_pfn,
5026 unsigned long *zone_end_pfn)
5027 {
5028 /* Only adjust if ZONE_MOVABLE is on this node */
5029 if (zone_movable_pfn[nid]) {
5030 /* Size ZONE_MOVABLE */
5031 if (zone_type == ZONE_MOVABLE) {
5032 *zone_start_pfn = zone_movable_pfn[nid];
5033 *zone_end_pfn = min(node_end_pfn,
5034 arch_zone_highest_possible_pfn[movable_zone]);
5035
5036 /* Adjust for ZONE_MOVABLE starting within this range */
5037 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5038 *zone_end_pfn > zone_movable_pfn[nid]) {
5039 *zone_end_pfn = zone_movable_pfn[nid];
5040
5041 /* Check if this whole range is within ZONE_MOVABLE */
5042 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5043 *zone_start_pfn = *zone_end_pfn;
5044 }
5045 }
5046
5047 /*
5048 * Return the number of pages a zone spans in a node, including holes
5049 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5050 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)5051 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5052 unsigned long zone_type,
5053 unsigned long node_start_pfn,
5054 unsigned long node_end_pfn,
5055 unsigned long *ignored)
5056 {
5057 unsigned long zone_start_pfn, zone_end_pfn;
5058
5059 /* When hotadd a new node from cpu_up(), the node should be empty */
5060 if (!node_start_pfn && !node_end_pfn)
5061 return 0;
5062
5063 /* Get the start and end of the zone */
5064 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5065 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5066 adjust_zone_range_for_zone_movable(nid, zone_type,
5067 node_start_pfn, node_end_pfn,
5068 &zone_start_pfn, &zone_end_pfn);
5069
5070 /* Check that this node has pages within the zone's required range */
5071 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5072 return 0;
5073
5074 /* Move the zone boundaries inside the node if necessary */
5075 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5076 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5077
5078 /* Return the spanned pages */
5079 return zone_end_pfn - zone_start_pfn;
5080 }
5081
5082 /*
5083 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5084 * then all holes in the requested range will be accounted for.
5085 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)5086 unsigned long __meminit __absent_pages_in_range(int nid,
5087 unsigned long range_start_pfn,
5088 unsigned long range_end_pfn)
5089 {
5090 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5091 unsigned long start_pfn, end_pfn;
5092 int i;
5093
5094 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5095 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5096 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5097 nr_absent -= end_pfn - start_pfn;
5098 }
5099 return nr_absent;
5100 }
5101
5102 /**
5103 * absent_pages_in_range - Return number of page frames in holes within a range
5104 * @start_pfn: The start PFN to start searching for holes
5105 * @end_pfn: The end PFN to stop searching for holes
5106 *
5107 * It returns the number of pages frames in memory holes within a range.
5108 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)5109 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5110 unsigned long end_pfn)
5111 {
5112 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5113 }
5114
5115 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)5116 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5117 unsigned long zone_type,
5118 unsigned long node_start_pfn,
5119 unsigned long node_end_pfn,
5120 unsigned long *ignored)
5121 {
5122 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5123 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5124 unsigned long zone_start_pfn, zone_end_pfn;
5125
5126 /* When hotadd a new node from cpu_up(), the node should be empty */
5127 if (!node_start_pfn && !node_end_pfn)
5128 return 0;
5129
5130 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5131 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5132
5133 adjust_zone_range_for_zone_movable(nid, zone_type,
5134 node_start_pfn, node_end_pfn,
5135 &zone_start_pfn, &zone_end_pfn);
5136 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5137 }
5138
5139 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size)5140 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5141 unsigned long zone_type,
5142 unsigned long node_start_pfn,
5143 unsigned long node_end_pfn,
5144 unsigned long *zones_size)
5145 {
5146 return zones_size[zone_type];
5147 }
5148
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zholes_size)5149 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5150 unsigned long zone_type,
5151 unsigned long node_start_pfn,
5152 unsigned long node_end_pfn,
5153 unsigned long *zholes_size)
5154 {
5155 if (!zholes_size)
5156 return 0;
5157
5158 return zholes_size[zone_type];
5159 }
5160
5161 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5162
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)5163 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5164 unsigned long node_start_pfn,
5165 unsigned long node_end_pfn,
5166 unsigned long *zones_size,
5167 unsigned long *zholes_size)
5168 {
5169 unsigned long realtotalpages = 0, totalpages = 0;
5170 enum zone_type i;
5171
5172 for (i = 0; i < MAX_NR_ZONES; i++) {
5173 struct zone *zone = pgdat->node_zones + i;
5174 unsigned long size, real_size;
5175
5176 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5177 node_start_pfn,
5178 node_end_pfn,
5179 zones_size);
5180 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5181 node_start_pfn, node_end_pfn,
5182 zholes_size);
5183 zone->spanned_pages = size;
5184 zone->present_pages = real_size;
5185
5186 totalpages += size;
5187 realtotalpages += real_size;
5188 }
5189
5190 pgdat->node_spanned_pages = totalpages;
5191 pgdat->node_present_pages = realtotalpages;
5192 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5193 realtotalpages);
5194 }
5195
5196 #ifndef CONFIG_SPARSEMEM
5197 /*
5198 * Calculate the size of the zone->blockflags rounded to an unsigned long
5199 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5200 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5201 * round what is now in bits to nearest long in bits, then return it in
5202 * bytes.
5203 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)5204 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5205 {
5206 unsigned long usemapsize;
5207
5208 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5209 usemapsize = roundup(zonesize, pageblock_nr_pages);
5210 usemapsize = usemapsize >> pageblock_order;
5211 usemapsize *= NR_PAGEBLOCK_BITS;
5212 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5213
5214 return usemapsize / 8;
5215 }
5216
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)5217 static void __init setup_usemap(struct pglist_data *pgdat,
5218 struct zone *zone,
5219 unsigned long zone_start_pfn,
5220 unsigned long zonesize)
5221 {
5222 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5223 zone->pageblock_flags = NULL;
5224 if (usemapsize)
5225 zone->pageblock_flags =
5226 memblock_virt_alloc_node_nopanic(usemapsize,
5227 pgdat->node_id);
5228 }
5229 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)5230 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5231 unsigned long zone_start_pfn, unsigned long zonesize) {}
5232 #endif /* CONFIG_SPARSEMEM */
5233
5234 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5235
5236 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)5237 void __paginginit set_pageblock_order(void)
5238 {
5239 unsigned int order;
5240
5241 /* Check that pageblock_nr_pages has not already been setup */
5242 if (pageblock_order)
5243 return;
5244
5245 if (HPAGE_SHIFT > PAGE_SHIFT)
5246 order = HUGETLB_PAGE_ORDER;
5247 else
5248 order = MAX_ORDER - 1;
5249
5250 /*
5251 * Assume the largest contiguous order of interest is a huge page.
5252 * This value may be variable depending on boot parameters on IA64 and
5253 * powerpc.
5254 */
5255 pageblock_order = order;
5256 }
5257 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5258
5259 /*
5260 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5261 * is unused as pageblock_order is set at compile-time. See
5262 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5263 * the kernel config
5264 */
set_pageblock_order(void)5265 void __paginginit set_pageblock_order(void)
5266 {
5267 }
5268
5269 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5270
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)5271 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5272 unsigned long present_pages)
5273 {
5274 unsigned long pages = spanned_pages;
5275
5276 /*
5277 * Provide a more accurate estimation if there are holes within
5278 * the zone and SPARSEMEM is in use. If there are holes within the
5279 * zone, each populated memory region may cost us one or two extra
5280 * memmap pages due to alignment because memmap pages for each
5281 * populated regions may not naturally algined on page boundary.
5282 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5283 */
5284 if (spanned_pages > present_pages + (present_pages >> 4) &&
5285 IS_ENABLED(CONFIG_SPARSEMEM))
5286 pages = present_pages;
5287
5288 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5289 }
5290
5291 /*
5292 * Set up the zone data structures:
5293 * - mark all pages reserved
5294 * - mark all memory queues empty
5295 * - clear the memory bitmaps
5296 *
5297 * NOTE: pgdat should get zeroed by caller.
5298 */
free_area_init_core(struct pglist_data * pgdat)5299 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5300 {
5301 enum zone_type j;
5302 int nid = pgdat->node_id;
5303 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5304 int ret;
5305
5306 pgdat_resize_init(pgdat);
5307 #ifdef CONFIG_NUMA_BALANCING
5308 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5309 pgdat->numabalancing_migrate_nr_pages = 0;
5310 pgdat->numabalancing_migrate_next_window = jiffies;
5311 #endif
5312 init_waitqueue_head(&pgdat->kswapd_wait);
5313 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5314 pgdat_page_ext_init(pgdat);
5315
5316 for (j = 0; j < MAX_NR_ZONES; j++) {
5317 struct zone *zone = pgdat->node_zones + j;
5318 unsigned long size, realsize, freesize, memmap_pages;
5319
5320 size = zone->spanned_pages;
5321 realsize = freesize = zone->present_pages;
5322
5323 /*
5324 * Adjust freesize so that it accounts for how much memory
5325 * is used by this zone for memmap. This affects the watermark
5326 * and per-cpu initialisations
5327 */
5328 memmap_pages = calc_memmap_size(size, realsize);
5329 if (!is_highmem_idx(j)) {
5330 if (freesize >= memmap_pages) {
5331 freesize -= memmap_pages;
5332 if (memmap_pages)
5333 printk(KERN_DEBUG
5334 " %s zone: %lu pages used for memmap\n",
5335 zone_names[j], memmap_pages);
5336 } else
5337 printk(KERN_WARNING
5338 " %s zone: %lu pages exceeds freesize %lu\n",
5339 zone_names[j], memmap_pages, freesize);
5340 }
5341
5342 /* Account for reserved pages */
5343 if (j == 0 && freesize > dma_reserve) {
5344 freesize -= dma_reserve;
5345 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5346 zone_names[0], dma_reserve);
5347 }
5348
5349 if (!is_highmem_idx(j))
5350 nr_kernel_pages += freesize;
5351 /* Charge for highmem memmap if there are enough kernel pages */
5352 else if (nr_kernel_pages > memmap_pages * 2)
5353 nr_kernel_pages -= memmap_pages;
5354 nr_all_pages += freesize;
5355
5356 /*
5357 * Set an approximate value for lowmem here, it will be adjusted
5358 * when the bootmem allocator frees pages into the buddy system.
5359 * And all highmem pages will be managed by the buddy system.
5360 */
5361 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5362 #ifdef CONFIG_NUMA
5363 zone->node = nid;
5364 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5365 / 100;
5366 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5367 #endif
5368 zone->name = zone_names[j];
5369 spin_lock_init(&zone->lock);
5370 spin_lock_init(&zone->lru_lock);
5371 zone_seqlock_init(zone);
5372 zone->zone_pgdat = pgdat;
5373 zone_pcp_init(zone);
5374
5375 /* For bootup, initialized properly in watermark setup */
5376 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5377
5378 lruvec_init(&zone->lruvec);
5379 if (!size)
5380 continue;
5381
5382 set_pageblock_order();
5383 setup_usemap(pgdat, zone, zone_start_pfn, size);
5384 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5385 BUG_ON(ret);
5386 memmap_init(size, nid, j, zone_start_pfn);
5387 zone_start_pfn += size;
5388 }
5389 }
5390
alloc_node_mem_map(struct pglist_data * pgdat)5391 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5392 {
5393 unsigned long __maybe_unused start = 0;
5394 unsigned long __maybe_unused offset = 0;
5395
5396 /* Skip empty nodes */
5397 if (!pgdat->node_spanned_pages)
5398 return;
5399
5400 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5401 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5402 offset = pgdat->node_start_pfn - start;
5403 /* ia64 gets its own node_mem_map, before this, without bootmem */
5404 if (!pgdat->node_mem_map) {
5405 unsigned long size, end;
5406 struct page *map;
5407
5408 /*
5409 * The zone's endpoints aren't required to be MAX_ORDER
5410 * aligned but the node_mem_map endpoints must be in order
5411 * for the buddy allocator to function correctly.
5412 */
5413 end = pgdat_end_pfn(pgdat);
5414 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5415 size = (end - start) * sizeof(struct page);
5416 map = alloc_remap(pgdat->node_id, size);
5417 if (!map)
5418 map = memblock_virt_alloc_node_nopanic(size,
5419 pgdat->node_id);
5420 pgdat->node_mem_map = map + offset;
5421 }
5422 #ifndef CONFIG_NEED_MULTIPLE_NODES
5423 /*
5424 * With no DISCONTIG, the global mem_map is just set as node 0's
5425 */
5426 if (pgdat == NODE_DATA(0)) {
5427 mem_map = NODE_DATA(0)->node_mem_map;
5428 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5429 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5430 mem_map -= offset;
5431 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5432 }
5433 #endif
5434 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5435 }
5436
free_area_init_node(int nid,unsigned long * zones_size,unsigned long node_start_pfn,unsigned long * zholes_size)5437 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5438 unsigned long node_start_pfn, unsigned long *zholes_size)
5439 {
5440 pg_data_t *pgdat = NODE_DATA(nid);
5441 unsigned long start_pfn = 0;
5442 unsigned long end_pfn = 0;
5443
5444 /* pg_data_t should be reset to zero when it's allocated */
5445 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5446
5447 pgdat->node_id = nid;
5448 pgdat->node_start_pfn = node_start_pfn;
5449 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5450 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5451 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5452 (u64)start_pfn << PAGE_SHIFT,
5453 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5454 #endif
5455 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5456 zones_size, zholes_size);
5457
5458 alloc_node_mem_map(pgdat);
5459 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5460 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5461 nid, (unsigned long)pgdat,
5462 (unsigned long)pgdat->node_mem_map);
5463 #endif
5464
5465 reset_deferred_meminit(pgdat);
5466 free_area_init_core(pgdat);
5467 }
5468
5469 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5470
5471 #if MAX_NUMNODES > 1
5472 /*
5473 * Figure out the number of possible node ids.
5474 */
setup_nr_node_ids(void)5475 void __init setup_nr_node_ids(void)
5476 {
5477 unsigned int highest;
5478
5479 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5480 nr_node_ids = highest + 1;
5481 }
5482 #endif
5483
5484 /**
5485 * node_map_pfn_alignment - determine the maximum internode alignment
5486 *
5487 * This function should be called after node map is populated and sorted.
5488 * It calculates the maximum power of two alignment which can distinguish
5489 * all the nodes.
5490 *
5491 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5492 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5493 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5494 * shifted, 1GiB is enough and this function will indicate so.
5495 *
5496 * This is used to test whether pfn -> nid mapping of the chosen memory
5497 * model has fine enough granularity to avoid incorrect mapping for the
5498 * populated node map.
5499 *
5500 * Returns the determined alignment in pfn's. 0 if there is no alignment
5501 * requirement (single node).
5502 */
node_map_pfn_alignment(void)5503 unsigned long __init node_map_pfn_alignment(void)
5504 {
5505 unsigned long accl_mask = 0, last_end = 0;
5506 unsigned long start, end, mask;
5507 int last_nid = -1;
5508 int i, nid;
5509
5510 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5511 if (!start || last_nid < 0 || last_nid == nid) {
5512 last_nid = nid;
5513 last_end = end;
5514 continue;
5515 }
5516
5517 /*
5518 * Start with a mask granular enough to pin-point to the
5519 * start pfn and tick off bits one-by-one until it becomes
5520 * too coarse to separate the current node from the last.
5521 */
5522 mask = ~((1 << __ffs(start)) - 1);
5523 while (mask && last_end <= (start & (mask << 1)))
5524 mask <<= 1;
5525
5526 /* accumulate all internode masks */
5527 accl_mask |= mask;
5528 }
5529
5530 /* convert mask to number of pages */
5531 return ~accl_mask + 1;
5532 }
5533
5534 /* Find the lowest pfn for a node */
find_min_pfn_for_node(int nid)5535 static unsigned long __init find_min_pfn_for_node(int nid)
5536 {
5537 unsigned long min_pfn = ULONG_MAX;
5538 unsigned long start_pfn;
5539 int i;
5540
5541 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5542 min_pfn = min(min_pfn, start_pfn);
5543
5544 if (min_pfn == ULONG_MAX) {
5545 printk(KERN_WARNING
5546 "Could not find start_pfn for node %d\n", nid);
5547 return 0;
5548 }
5549
5550 return min_pfn;
5551 }
5552
5553 /**
5554 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5555 *
5556 * It returns the minimum PFN based on information provided via
5557 * memblock_set_node().
5558 */
find_min_pfn_with_active_regions(void)5559 unsigned long __init find_min_pfn_with_active_regions(void)
5560 {
5561 return find_min_pfn_for_node(MAX_NUMNODES);
5562 }
5563
5564 /*
5565 * early_calculate_totalpages()
5566 * Sum pages in active regions for movable zone.
5567 * Populate N_MEMORY for calculating usable_nodes.
5568 */
early_calculate_totalpages(void)5569 static unsigned long __init early_calculate_totalpages(void)
5570 {
5571 unsigned long totalpages = 0;
5572 unsigned long start_pfn, end_pfn;
5573 int i, nid;
5574
5575 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5576 unsigned long pages = end_pfn - start_pfn;
5577
5578 totalpages += pages;
5579 if (pages)
5580 node_set_state(nid, N_MEMORY);
5581 }
5582 return totalpages;
5583 }
5584
5585 /*
5586 * Find the PFN the Movable zone begins in each node. Kernel memory
5587 * is spread evenly between nodes as long as the nodes have enough
5588 * memory. When they don't, some nodes will have more kernelcore than
5589 * others
5590 */
find_zone_movable_pfns_for_nodes(void)5591 static void __init find_zone_movable_pfns_for_nodes(void)
5592 {
5593 int i, nid;
5594 unsigned long usable_startpfn;
5595 unsigned long kernelcore_node, kernelcore_remaining;
5596 /* save the state before borrow the nodemask */
5597 nodemask_t saved_node_state = node_states[N_MEMORY];
5598 unsigned long totalpages = early_calculate_totalpages();
5599 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5600 struct memblock_region *r;
5601
5602 /* Need to find movable_zone earlier when movable_node is specified. */
5603 find_usable_zone_for_movable();
5604
5605 /*
5606 * If movable_node is specified, ignore kernelcore and movablecore
5607 * options.
5608 */
5609 if (movable_node_is_enabled()) {
5610 for_each_memblock(memory, r) {
5611 if (!memblock_is_hotpluggable(r))
5612 continue;
5613
5614 nid = r->nid;
5615
5616 usable_startpfn = PFN_DOWN(r->base);
5617 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5618 min(usable_startpfn, zone_movable_pfn[nid]) :
5619 usable_startpfn;
5620 }
5621
5622 goto out2;
5623 }
5624
5625 /*
5626 * If movablecore=nn[KMG] was specified, calculate what size of
5627 * kernelcore that corresponds so that memory usable for
5628 * any allocation type is evenly spread. If both kernelcore
5629 * and movablecore are specified, then the value of kernelcore
5630 * will be used for required_kernelcore if it's greater than
5631 * what movablecore would have allowed.
5632 */
5633 if (required_movablecore) {
5634 unsigned long corepages;
5635
5636 /*
5637 * Round-up so that ZONE_MOVABLE is at least as large as what
5638 * was requested by the user
5639 */
5640 required_movablecore =
5641 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5642 required_movablecore = min(totalpages, required_movablecore);
5643 corepages = totalpages - required_movablecore;
5644
5645 required_kernelcore = max(required_kernelcore, corepages);
5646 }
5647
5648 /*
5649 * If kernelcore was not specified or kernelcore size is larger
5650 * than totalpages, there is no ZONE_MOVABLE.
5651 */
5652 if (!required_kernelcore || required_kernelcore >= totalpages)
5653 goto out;
5654
5655 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5656 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5657
5658 restart:
5659 /* Spread kernelcore memory as evenly as possible throughout nodes */
5660 kernelcore_node = required_kernelcore / usable_nodes;
5661 for_each_node_state(nid, N_MEMORY) {
5662 unsigned long start_pfn, end_pfn;
5663
5664 /*
5665 * Recalculate kernelcore_node if the division per node
5666 * now exceeds what is necessary to satisfy the requested
5667 * amount of memory for the kernel
5668 */
5669 if (required_kernelcore < kernelcore_node)
5670 kernelcore_node = required_kernelcore / usable_nodes;
5671
5672 /*
5673 * As the map is walked, we track how much memory is usable
5674 * by the kernel using kernelcore_remaining. When it is
5675 * 0, the rest of the node is usable by ZONE_MOVABLE
5676 */
5677 kernelcore_remaining = kernelcore_node;
5678
5679 /* Go through each range of PFNs within this node */
5680 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5681 unsigned long size_pages;
5682
5683 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5684 if (start_pfn >= end_pfn)
5685 continue;
5686
5687 /* Account for what is only usable for kernelcore */
5688 if (start_pfn < usable_startpfn) {
5689 unsigned long kernel_pages;
5690 kernel_pages = min(end_pfn, usable_startpfn)
5691 - start_pfn;
5692
5693 kernelcore_remaining -= min(kernel_pages,
5694 kernelcore_remaining);
5695 required_kernelcore -= min(kernel_pages,
5696 required_kernelcore);
5697
5698 /* Continue if range is now fully accounted */
5699 if (end_pfn <= usable_startpfn) {
5700
5701 /*
5702 * Push zone_movable_pfn to the end so
5703 * that if we have to rebalance
5704 * kernelcore across nodes, we will
5705 * not double account here
5706 */
5707 zone_movable_pfn[nid] = end_pfn;
5708 continue;
5709 }
5710 start_pfn = usable_startpfn;
5711 }
5712
5713 /*
5714 * The usable PFN range for ZONE_MOVABLE is from
5715 * start_pfn->end_pfn. Calculate size_pages as the
5716 * number of pages used as kernelcore
5717 */
5718 size_pages = end_pfn - start_pfn;
5719 if (size_pages > kernelcore_remaining)
5720 size_pages = kernelcore_remaining;
5721 zone_movable_pfn[nid] = start_pfn + size_pages;
5722
5723 /*
5724 * Some kernelcore has been met, update counts and
5725 * break if the kernelcore for this node has been
5726 * satisfied
5727 */
5728 required_kernelcore -= min(required_kernelcore,
5729 size_pages);
5730 kernelcore_remaining -= size_pages;
5731 if (!kernelcore_remaining)
5732 break;
5733 }
5734 }
5735
5736 /*
5737 * If there is still required_kernelcore, we do another pass with one
5738 * less node in the count. This will push zone_movable_pfn[nid] further
5739 * along on the nodes that still have memory until kernelcore is
5740 * satisfied
5741 */
5742 usable_nodes--;
5743 if (usable_nodes && required_kernelcore > usable_nodes)
5744 goto restart;
5745
5746 out2:
5747 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5748 for (nid = 0; nid < MAX_NUMNODES; nid++)
5749 zone_movable_pfn[nid] =
5750 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5751
5752 out:
5753 /* restore the node_state */
5754 node_states[N_MEMORY] = saved_node_state;
5755 }
5756
5757 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)5758 static void check_for_memory(pg_data_t *pgdat, int nid)
5759 {
5760 enum zone_type zone_type;
5761
5762 if (N_MEMORY == N_NORMAL_MEMORY)
5763 return;
5764
5765 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5766 struct zone *zone = &pgdat->node_zones[zone_type];
5767 if (populated_zone(zone)) {
5768 node_set_state(nid, N_HIGH_MEMORY);
5769 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5770 zone_type <= ZONE_NORMAL)
5771 node_set_state(nid, N_NORMAL_MEMORY);
5772 break;
5773 }
5774 }
5775 }
5776
5777 /**
5778 * free_area_init_nodes - Initialise all pg_data_t and zone data
5779 * @max_zone_pfn: an array of max PFNs for each zone
5780 *
5781 * This will call free_area_init_node() for each active node in the system.
5782 * Using the page ranges provided by memblock_set_node(), the size of each
5783 * zone in each node and their holes is calculated. If the maximum PFN
5784 * between two adjacent zones match, it is assumed that the zone is empty.
5785 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5786 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5787 * starts where the previous one ended. For example, ZONE_DMA32 starts
5788 * at arch_max_dma_pfn.
5789 */
free_area_init_nodes(unsigned long * max_zone_pfn)5790 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5791 {
5792 unsigned long start_pfn, end_pfn;
5793 int i, nid;
5794
5795 /* Record where the zone boundaries are */
5796 memset(arch_zone_lowest_possible_pfn, 0,
5797 sizeof(arch_zone_lowest_possible_pfn));
5798 memset(arch_zone_highest_possible_pfn, 0,
5799 sizeof(arch_zone_highest_possible_pfn));
5800
5801 start_pfn = find_min_pfn_with_active_regions();
5802
5803 for (i = 0; i < MAX_NR_ZONES; i++) {
5804 if (i == ZONE_MOVABLE)
5805 continue;
5806
5807 end_pfn = max(max_zone_pfn[i], start_pfn);
5808 arch_zone_lowest_possible_pfn[i] = start_pfn;
5809 arch_zone_highest_possible_pfn[i] = end_pfn;
5810
5811 start_pfn = end_pfn;
5812 }
5813 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5814 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5815
5816 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5817 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5818 find_zone_movable_pfns_for_nodes();
5819
5820 /* Print out the zone ranges */
5821 pr_info("Zone ranges:\n");
5822 for (i = 0; i < MAX_NR_ZONES; i++) {
5823 if (i == ZONE_MOVABLE)
5824 continue;
5825 pr_info(" %-8s ", zone_names[i]);
5826 if (arch_zone_lowest_possible_pfn[i] ==
5827 arch_zone_highest_possible_pfn[i])
5828 pr_cont("empty\n");
5829 else
5830 pr_cont("[mem %#018Lx-%#018Lx]\n",
5831 (u64)arch_zone_lowest_possible_pfn[i]
5832 << PAGE_SHIFT,
5833 ((u64)arch_zone_highest_possible_pfn[i]
5834 << PAGE_SHIFT) - 1);
5835 }
5836
5837 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5838 pr_info("Movable zone start for each node\n");
5839 for (i = 0; i < MAX_NUMNODES; i++) {
5840 if (zone_movable_pfn[i])
5841 pr_info(" Node %d: %#018Lx\n", i,
5842 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5843 }
5844
5845 /* Print out the early node map */
5846 pr_info("Early memory node ranges\n");
5847 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5848 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5849 (u64)start_pfn << PAGE_SHIFT,
5850 ((u64)end_pfn << PAGE_SHIFT) - 1);
5851
5852 /* Initialise every node */
5853 mminit_verify_pageflags_layout();
5854 setup_nr_node_ids();
5855 for_each_online_node(nid) {
5856 pg_data_t *pgdat = NODE_DATA(nid);
5857 free_area_init_node(nid, NULL,
5858 find_min_pfn_for_node(nid), NULL);
5859
5860 /* Any memory on that node */
5861 if (pgdat->node_present_pages)
5862 node_set_state(nid, N_MEMORY);
5863 check_for_memory(pgdat, nid);
5864 }
5865 }
5866
cmdline_parse_core(char * p,unsigned long * core)5867 static int __init cmdline_parse_core(char *p, unsigned long *core)
5868 {
5869 unsigned long long coremem;
5870 if (!p)
5871 return -EINVAL;
5872
5873 coremem = memparse(p, &p);
5874 *core = coremem >> PAGE_SHIFT;
5875
5876 /* Paranoid check that UL is enough for the coremem value */
5877 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5878
5879 return 0;
5880 }
5881
5882 /*
5883 * kernelcore=size sets the amount of memory for use for allocations that
5884 * cannot be reclaimed or migrated.
5885 */
cmdline_parse_kernelcore(char * p)5886 static int __init cmdline_parse_kernelcore(char *p)
5887 {
5888 return cmdline_parse_core(p, &required_kernelcore);
5889 }
5890
5891 /*
5892 * movablecore=size sets the amount of memory for use for allocations that
5893 * can be reclaimed or migrated.
5894 */
cmdline_parse_movablecore(char * p)5895 static int __init cmdline_parse_movablecore(char *p)
5896 {
5897 return cmdline_parse_core(p, &required_movablecore);
5898 }
5899
5900 early_param("kernelcore", cmdline_parse_kernelcore);
5901 early_param("movablecore", cmdline_parse_movablecore);
5902
5903 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5904
adjust_managed_page_count(struct page * page,long count)5905 void adjust_managed_page_count(struct page *page, long count)
5906 {
5907 spin_lock(&managed_page_count_lock);
5908 page_zone(page)->managed_pages += count;
5909 totalram_pages += count;
5910 #ifdef CONFIG_HIGHMEM
5911 if (PageHighMem(page))
5912 totalhigh_pages += count;
5913 #endif
5914 spin_unlock(&managed_page_count_lock);
5915 }
5916 EXPORT_SYMBOL(adjust_managed_page_count);
5917
free_reserved_area(void * start,void * end,int poison,char * s)5918 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5919 {
5920 void *pos;
5921 unsigned long pages = 0;
5922
5923 start = (void *)PAGE_ALIGN((unsigned long)start);
5924 end = (void *)((unsigned long)end & PAGE_MASK);
5925 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5926 if ((unsigned int)poison <= 0xFF)
5927 memset(pos, poison, PAGE_SIZE);
5928 free_reserved_page(virt_to_page(pos));
5929 }
5930
5931 if (pages && s)
5932 pr_info("Freeing %s memory: %ldK\n",
5933 s, pages << (PAGE_SHIFT - 10));
5934
5935 return pages;
5936 }
5937 EXPORT_SYMBOL(free_reserved_area);
5938
5939 #ifdef CONFIG_HIGHMEM
free_highmem_page(struct page * page)5940 void free_highmem_page(struct page *page)
5941 {
5942 __free_reserved_page(page);
5943 totalram_pages++;
5944 page_zone(page)->managed_pages++;
5945 totalhigh_pages++;
5946 }
5947 #endif
5948
5949
mem_init_print_info(const char * str)5950 void __init mem_init_print_info(const char *str)
5951 {
5952 unsigned long physpages, codesize, datasize, rosize, bss_size;
5953 unsigned long init_code_size, init_data_size;
5954
5955 physpages = get_num_physpages();
5956 codesize = _etext - _stext;
5957 datasize = _edata - _sdata;
5958 rosize = __end_rodata - __start_rodata;
5959 bss_size = __bss_stop - __bss_start;
5960 init_data_size = __init_end - __init_begin;
5961 init_code_size = _einittext - _sinittext;
5962
5963 /*
5964 * Detect special cases and adjust section sizes accordingly:
5965 * 1) .init.* may be embedded into .data sections
5966 * 2) .init.text.* may be out of [__init_begin, __init_end],
5967 * please refer to arch/tile/kernel/vmlinux.lds.S.
5968 * 3) .rodata.* may be embedded into .text or .data sections.
5969 */
5970 #define adj_init_size(start, end, size, pos, adj) \
5971 do { \
5972 if (start <= pos && pos < end && size > adj) \
5973 size -= adj; \
5974 } while (0)
5975
5976 adj_init_size(__init_begin, __init_end, init_data_size,
5977 _sinittext, init_code_size);
5978 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5979 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5980 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5981 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5982
5983 #undef adj_init_size
5984
5985 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
5986 #ifdef CONFIG_HIGHMEM
5987 ", %luK highmem"
5988 #endif
5989 "%s%s)\n",
5990 nr_free_pages() << (PAGE_SHIFT - 10),
5991 physpages << (PAGE_SHIFT - 10),
5992 codesize >> 10, datasize >> 10, rosize >> 10,
5993 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5994 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
5995 totalcma_pages << (PAGE_SHIFT - 10),
5996 #ifdef CONFIG_HIGHMEM
5997 totalhigh_pages << (PAGE_SHIFT - 10),
5998 #endif
5999 str ? ", " : "", str ? str : "");
6000 }
6001
6002 /**
6003 * set_dma_reserve - set the specified number of pages reserved in the first zone
6004 * @new_dma_reserve: The number of pages to mark reserved
6005 *
6006 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6007 * In the DMA zone, a significant percentage may be consumed by kernel image
6008 * and other unfreeable allocations which can skew the watermarks badly. This
6009 * function may optionally be used to account for unfreeable pages in the
6010 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6011 * smaller per-cpu batchsize.
6012 */
set_dma_reserve(unsigned long new_dma_reserve)6013 void __init set_dma_reserve(unsigned long new_dma_reserve)
6014 {
6015 dma_reserve = new_dma_reserve;
6016 }
6017
free_area_init(unsigned long * zones_size)6018 void __init free_area_init(unsigned long *zones_size)
6019 {
6020 free_area_init_node(0, zones_size,
6021 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6022 }
6023
page_alloc_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)6024 static int page_alloc_cpu_notify(struct notifier_block *self,
6025 unsigned long action, void *hcpu)
6026 {
6027 int cpu = (unsigned long)hcpu;
6028
6029 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6030 lru_add_drain_cpu(cpu);
6031 drain_pages(cpu);
6032
6033 /*
6034 * Spill the event counters of the dead processor
6035 * into the current processors event counters.
6036 * This artificially elevates the count of the current
6037 * processor.
6038 */
6039 vm_events_fold_cpu(cpu);
6040
6041 /*
6042 * Zero the differential counters of the dead processor
6043 * so that the vm statistics are consistent.
6044 *
6045 * This is only okay since the processor is dead and cannot
6046 * race with what we are doing.
6047 */
6048 cpu_vm_stats_fold(cpu);
6049 }
6050 return NOTIFY_OK;
6051 }
6052
page_alloc_init(void)6053 void __init page_alloc_init(void)
6054 {
6055 hotcpu_notifier(page_alloc_cpu_notify, 0);
6056 }
6057
6058 /*
6059 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6060 * or min_free_kbytes changes.
6061 */
calculate_totalreserve_pages(void)6062 static void calculate_totalreserve_pages(void)
6063 {
6064 struct pglist_data *pgdat;
6065 unsigned long reserve_pages = 0;
6066 enum zone_type i, j;
6067
6068 for_each_online_pgdat(pgdat) {
6069 for (i = 0; i < MAX_NR_ZONES; i++) {
6070 struct zone *zone = pgdat->node_zones + i;
6071 long max = 0;
6072
6073 /* Find valid and maximum lowmem_reserve in the zone */
6074 for (j = i; j < MAX_NR_ZONES; j++) {
6075 if (zone->lowmem_reserve[j] > max)
6076 max = zone->lowmem_reserve[j];
6077 }
6078
6079 /* we treat the high watermark as reserved pages. */
6080 max += high_wmark_pages(zone);
6081
6082 if (max > zone->managed_pages)
6083 max = zone->managed_pages;
6084 reserve_pages += max;
6085 /*
6086 * Lowmem reserves are not available to
6087 * GFP_HIGHUSER page cache allocations and
6088 * kswapd tries to balance zones to their high
6089 * watermark. As a result, neither should be
6090 * regarded as dirtyable memory, to prevent a
6091 * situation where reclaim has to clean pages
6092 * in order to balance the zones.
6093 */
6094 zone->dirty_balance_reserve = max;
6095 }
6096 }
6097 dirty_balance_reserve = reserve_pages;
6098 totalreserve_pages = reserve_pages;
6099 }
6100
6101 /*
6102 * setup_per_zone_lowmem_reserve - called whenever
6103 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6104 * has a correct pages reserved value, so an adequate number of
6105 * pages are left in the zone after a successful __alloc_pages().
6106 */
setup_per_zone_lowmem_reserve(void)6107 static void setup_per_zone_lowmem_reserve(void)
6108 {
6109 struct pglist_data *pgdat;
6110 enum zone_type j, idx;
6111
6112 for_each_online_pgdat(pgdat) {
6113 for (j = 0; j < MAX_NR_ZONES; j++) {
6114 struct zone *zone = pgdat->node_zones + j;
6115 unsigned long managed_pages = zone->managed_pages;
6116
6117 zone->lowmem_reserve[j] = 0;
6118
6119 idx = j;
6120 while (idx) {
6121 struct zone *lower_zone;
6122
6123 idx--;
6124
6125 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6126 sysctl_lowmem_reserve_ratio[idx] = 1;
6127
6128 lower_zone = pgdat->node_zones + idx;
6129 lower_zone->lowmem_reserve[j] = managed_pages /
6130 sysctl_lowmem_reserve_ratio[idx];
6131 managed_pages += lower_zone->managed_pages;
6132 }
6133 }
6134 }
6135
6136 /* update totalreserve_pages */
6137 calculate_totalreserve_pages();
6138 }
6139
__setup_per_zone_wmarks(void)6140 static void __setup_per_zone_wmarks(void)
6141 {
6142 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6143 unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
6144 unsigned long lowmem_pages = 0;
6145 struct zone *zone;
6146 unsigned long flags;
6147
6148 /* Calculate total number of !ZONE_HIGHMEM pages */
6149 for_each_zone(zone) {
6150 if (!is_highmem(zone))
6151 lowmem_pages += zone->managed_pages;
6152 }
6153
6154 for_each_zone(zone) {
6155 u64 min, low;
6156
6157 spin_lock_irqsave(&zone->lock, flags);
6158 min = (u64)pages_min * zone->managed_pages;
6159 do_div(min, lowmem_pages);
6160 low = (u64)pages_low * zone->managed_pages;
6161 do_div(low, vm_total_pages);
6162
6163 if (is_highmem(zone)) {
6164 /*
6165 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6166 * need highmem pages, so cap pages_min to a small
6167 * value here.
6168 *
6169 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6170 * deltas control asynch page reclaim, and so should
6171 * not be capped for highmem.
6172 */
6173 unsigned long min_pages;
6174
6175 min_pages = zone->managed_pages / 1024;
6176 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6177 zone->watermark[WMARK_MIN] = min_pages;
6178 } else {
6179 /*
6180 * If it's a lowmem zone, reserve a number of pages
6181 * proportionate to the zone's size.
6182 */
6183 zone->watermark[WMARK_MIN] = min;
6184 }
6185
6186 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) +
6187 low + (min >> 2);
6188 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
6189 low + (min >> 1);
6190
6191 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6192 high_wmark_pages(zone) - low_wmark_pages(zone) -
6193 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6194
6195 spin_unlock_irqrestore(&zone->lock, flags);
6196 }
6197
6198 /* update totalreserve_pages */
6199 calculate_totalreserve_pages();
6200 }
6201
6202 /**
6203 * setup_per_zone_wmarks - called when min_free_kbytes changes
6204 * or when memory is hot-{added|removed}
6205 *
6206 * Ensures that the watermark[min,low,high] values for each zone are set
6207 * correctly with respect to min_free_kbytes.
6208 */
setup_per_zone_wmarks(void)6209 void setup_per_zone_wmarks(void)
6210 {
6211 mutex_lock(&zonelists_mutex);
6212 __setup_per_zone_wmarks();
6213 mutex_unlock(&zonelists_mutex);
6214 }
6215
6216 /*
6217 * The inactive anon list should be small enough that the VM never has to
6218 * do too much work, but large enough that each inactive page has a chance
6219 * to be referenced again before it is swapped out.
6220 *
6221 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6222 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6223 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6224 * the anonymous pages are kept on the inactive list.
6225 *
6226 * total target max
6227 * memory ratio inactive anon
6228 * -------------------------------------
6229 * 10MB 1 5MB
6230 * 100MB 1 50MB
6231 * 1GB 3 250MB
6232 * 10GB 10 0.9GB
6233 * 100GB 31 3GB
6234 * 1TB 101 10GB
6235 * 10TB 320 32GB
6236 */
calculate_zone_inactive_ratio(struct zone * zone)6237 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6238 {
6239 unsigned int gb, ratio;
6240
6241 /* Zone size in gigabytes */
6242 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6243 if (gb)
6244 ratio = int_sqrt(10 * gb);
6245 else
6246 ratio = 1;
6247
6248 zone->inactive_ratio = ratio;
6249 }
6250
setup_per_zone_inactive_ratio(void)6251 static void __meminit setup_per_zone_inactive_ratio(void)
6252 {
6253 struct zone *zone;
6254
6255 for_each_zone(zone)
6256 calculate_zone_inactive_ratio(zone);
6257 }
6258
6259 /*
6260 * Initialise min_free_kbytes.
6261 *
6262 * For small machines we want it small (128k min). For large machines
6263 * we want it large (64MB max). But it is not linear, because network
6264 * bandwidth does not increase linearly with machine size. We use
6265 *
6266 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6267 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6268 *
6269 * which yields
6270 *
6271 * 16MB: 512k
6272 * 32MB: 724k
6273 * 64MB: 1024k
6274 * 128MB: 1448k
6275 * 256MB: 2048k
6276 * 512MB: 2896k
6277 * 1024MB: 4096k
6278 * 2048MB: 5792k
6279 * 4096MB: 8192k
6280 * 8192MB: 11584k
6281 * 16384MB: 16384k
6282 */
init_per_zone_wmark_min(void)6283 int __meminit init_per_zone_wmark_min(void)
6284 {
6285 unsigned long lowmem_kbytes;
6286 int new_min_free_kbytes;
6287
6288 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6289 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6290
6291 if (new_min_free_kbytes > user_min_free_kbytes) {
6292 min_free_kbytes = new_min_free_kbytes;
6293 if (min_free_kbytes < 128)
6294 min_free_kbytes = 128;
6295 if (min_free_kbytes > 65536)
6296 min_free_kbytes = 65536;
6297 } else {
6298 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6299 new_min_free_kbytes, user_min_free_kbytes);
6300 }
6301 setup_per_zone_wmarks();
6302 refresh_zone_stat_thresholds();
6303 setup_per_zone_lowmem_reserve();
6304 setup_per_zone_inactive_ratio();
6305 return 0;
6306 }
postcore_initcall(init_per_zone_wmark_min)6307 postcore_initcall(init_per_zone_wmark_min)
6308
6309 /*
6310 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6311 * that we can call two helper functions whenever min_free_kbytes
6312 * or extra_free_kbytes changes.
6313 */
6314 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6315 void __user *buffer, size_t *length, loff_t *ppos)
6316 {
6317 int rc;
6318
6319 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6320 if (rc)
6321 return rc;
6322
6323 if (write) {
6324 user_min_free_kbytes = min_free_kbytes;
6325 setup_per_zone_wmarks();
6326 }
6327 return 0;
6328 }
6329
6330 #ifdef CONFIG_NUMA
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6331 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6332 void __user *buffer, size_t *length, loff_t *ppos)
6333 {
6334 struct zone *zone;
6335 int rc;
6336
6337 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6338 if (rc)
6339 return rc;
6340
6341 for_each_zone(zone)
6342 zone->min_unmapped_pages = (zone->managed_pages *
6343 sysctl_min_unmapped_ratio) / 100;
6344 return 0;
6345 }
6346
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6347 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6348 void __user *buffer, size_t *length, loff_t *ppos)
6349 {
6350 struct zone *zone;
6351 int rc;
6352
6353 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6354 if (rc)
6355 return rc;
6356
6357 for_each_zone(zone)
6358 zone->min_slab_pages = (zone->managed_pages *
6359 sysctl_min_slab_ratio) / 100;
6360 return 0;
6361 }
6362 #endif
6363
6364 /*
6365 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6366 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6367 * whenever sysctl_lowmem_reserve_ratio changes.
6368 *
6369 * The reserve ratio obviously has absolutely no relation with the
6370 * minimum watermarks. The lowmem reserve ratio can only make sense
6371 * if in function of the boot time zone sizes.
6372 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6373 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6374 void __user *buffer, size_t *length, loff_t *ppos)
6375 {
6376 proc_dointvec_minmax(table, write, buffer, length, ppos);
6377 setup_per_zone_lowmem_reserve();
6378 return 0;
6379 }
6380
6381 /*
6382 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6383 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6384 * pagelist can have before it gets flushed back to buddy allocator.
6385 */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6386 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6387 void __user *buffer, size_t *length, loff_t *ppos)
6388 {
6389 struct zone *zone;
6390 int old_percpu_pagelist_fraction;
6391 int ret;
6392
6393 mutex_lock(&pcp_batch_high_lock);
6394 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6395
6396 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6397 if (!write || ret < 0)
6398 goto out;
6399
6400 /* Sanity checking to avoid pcp imbalance */
6401 if (percpu_pagelist_fraction &&
6402 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6403 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6404 ret = -EINVAL;
6405 goto out;
6406 }
6407
6408 /* No change? */
6409 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6410 goto out;
6411
6412 for_each_populated_zone(zone) {
6413 unsigned int cpu;
6414
6415 for_each_possible_cpu(cpu)
6416 pageset_set_high_and_batch(zone,
6417 per_cpu_ptr(zone->pageset, cpu));
6418 }
6419 out:
6420 mutex_unlock(&pcp_batch_high_lock);
6421 return ret;
6422 }
6423
6424 #ifdef CONFIG_NUMA
6425 int hashdist = HASHDIST_DEFAULT;
6426
set_hashdist(char * str)6427 static int __init set_hashdist(char *str)
6428 {
6429 if (!str)
6430 return 0;
6431 hashdist = simple_strtoul(str, &str, 0);
6432 return 1;
6433 }
6434 __setup("hashdist=", set_hashdist);
6435 #endif
6436
6437 /*
6438 * allocate a large system hash table from bootmem
6439 * - it is assumed that the hash table must contain an exact power-of-2
6440 * quantity of entries
6441 * - limit is the number of hash buckets, not the total allocation size
6442 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)6443 void *__init alloc_large_system_hash(const char *tablename,
6444 unsigned long bucketsize,
6445 unsigned long numentries,
6446 int scale,
6447 int flags,
6448 unsigned int *_hash_shift,
6449 unsigned int *_hash_mask,
6450 unsigned long low_limit,
6451 unsigned long high_limit)
6452 {
6453 unsigned long long max = high_limit;
6454 unsigned long log2qty, size;
6455 void *table = NULL;
6456
6457 /* allow the kernel cmdline to have a say */
6458 if (!numentries) {
6459 /* round applicable memory size up to nearest megabyte */
6460 numentries = nr_kernel_pages;
6461
6462 /* It isn't necessary when PAGE_SIZE >= 1MB */
6463 if (PAGE_SHIFT < 20)
6464 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6465
6466 /* limit to 1 bucket per 2^scale bytes of low memory */
6467 if (scale > PAGE_SHIFT)
6468 numentries >>= (scale - PAGE_SHIFT);
6469 else
6470 numentries <<= (PAGE_SHIFT - scale);
6471
6472 /* Make sure we've got at least a 0-order allocation.. */
6473 if (unlikely(flags & HASH_SMALL)) {
6474 /* Makes no sense without HASH_EARLY */
6475 WARN_ON(!(flags & HASH_EARLY));
6476 if (!(numentries >> *_hash_shift)) {
6477 numentries = 1UL << *_hash_shift;
6478 BUG_ON(!numentries);
6479 }
6480 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6481 numentries = PAGE_SIZE / bucketsize;
6482 }
6483 numentries = roundup_pow_of_two(numentries);
6484
6485 /* limit allocation size to 1/16 total memory by default */
6486 if (max == 0) {
6487 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6488 do_div(max, bucketsize);
6489 }
6490 max = min(max, 0x80000000ULL);
6491
6492 if (numentries < low_limit)
6493 numentries = low_limit;
6494 if (numentries > max)
6495 numentries = max;
6496
6497 log2qty = ilog2(numentries);
6498
6499 do {
6500 size = bucketsize << log2qty;
6501 if (flags & HASH_EARLY)
6502 table = memblock_virt_alloc_nopanic(size, 0);
6503 else if (hashdist)
6504 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6505 else {
6506 /*
6507 * If bucketsize is not a power-of-two, we may free
6508 * some pages at the end of hash table which
6509 * alloc_pages_exact() automatically does
6510 */
6511 if (get_order(size) < MAX_ORDER) {
6512 table = alloc_pages_exact(size, GFP_ATOMIC);
6513 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6514 }
6515 }
6516 } while (!table && size > PAGE_SIZE && --log2qty);
6517
6518 if (!table)
6519 panic("Failed to allocate %s hash table\n", tablename);
6520
6521 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6522 tablename,
6523 (1UL << log2qty),
6524 ilog2(size) - PAGE_SHIFT,
6525 size);
6526
6527 if (_hash_shift)
6528 *_hash_shift = log2qty;
6529 if (_hash_mask)
6530 *_hash_mask = (1 << log2qty) - 1;
6531
6532 return table;
6533 }
6534
6535 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct zone * zone,unsigned long pfn)6536 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6537 unsigned long pfn)
6538 {
6539 #ifdef CONFIG_SPARSEMEM
6540 return __pfn_to_section(pfn)->pageblock_flags;
6541 #else
6542 return zone->pageblock_flags;
6543 #endif /* CONFIG_SPARSEMEM */
6544 }
6545
pfn_to_bitidx(struct zone * zone,unsigned long pfn)6546 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6547 {
6548 #ifdef CONFIG_SPARSEMEM
6549 pfn &= (PAGES_PER_SECTION-1);
6550 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6551 #else
6552 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6553 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6554 #endif /* CONFIG_SPARSEMEM */
6555 }
6556
6557 /**
6558 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6559 * @page: The page within the block of interest
6560 * @pfn: The target page frame number
6561 * @end_bitidx: The last bit of interest to retrieve
6562 * @mask: mask of bits that the caller is interested in
6563 *
6564 * Return: pageblock_bits flags
6565 */
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)6566 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6567 unsigned long end_bitidx,
6568 unsigned long mask)
6569 {
6570 struct zone *zone;
6571 unsigned long *bitmap;
6572 unsigned long bitidx, word_bitidx;
6573 unsigned long word;
6574
6575 zone = page_zone(page);
6576 bitmap = get_pageblock_bitmap(zone, pfn);
6577 bitidx = pfn_to_bitidx(zone, pfn);
6578 word_bitidx = bitidx / BITS_PER_LONG;
6579 bitidx &= (BITS_PER_LONG-1);
6580
6581 word = bitmap[word_bitidx];
6582 bitidx += end_bitidx;
6583 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6584 }
6585
6586 /**
6587 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6588 * @page: The page within the block of interest
6589 * @flags: The flags to set
6590 * @pfn: The target page frame number
6591 * @end_bitidx: The last bit of interest
6592 * @mask: mask of bits that the caller is interested in
6593 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)6594 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6595 unsigned long pfn,
6596 unsigned long end_bitidx,
6597 unsigned long mask)
6598 {
6599 struct zone *zone;
6600 unsigned long *bitmap;
6601 unsigned long bitidx, word_bitidx;
6602 unsigned long old_word, word;
6603
6604 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6605
6606 zone = page_zone(page);
6607 bitmap = get_pageblock_bitmap(zone, pfn);
6608 bitidx = pfn_to_bitidx(zone, pfn);
6609 word_bitidx = bitidx / BITS_PER_LONG;
6610 bitidx &= (BITS_PER_LONG-1);
6611
6612 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6613
6614 bitidx += end_bitidx;
6615 mask <<= (BITS_PER_LONG - bitidx - 1);
6616 flags <<= (BITS_PER_LONG - bitidx - 1);
6617
6618 word = READ_ONCE(bitmap[word_bitidx]);
6619 for (;;) {
6620 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6621 if (word == old_word)
6622 break;
6623 word = old_word;
6624 }
6625 }
6626
6627 /*
6628 * This function checks whether pageblock includes unmovable pages or not.
6629 * If @count is not zero, it is okay to include less @count unmovable pages
6630 *
6631 * PageLRU check without isolation or lru_lock could race so that
6632 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6633 * expect this function should be exact.
6634 */
has_unmovable_pages(struct zone * zone,struct page * page,int count,bool skip_hwpoisoned_pages)6635 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6636 bool skip_hwpoisoned_pages)
6637 {
6638 unsigned long pfn, iter, found;
6639 int mt;
6640
6641 /*
6642 * For avoiding noise data, lru_add_drain_all() should be called
6643 * If ZONE_MOVABLE, the zone never contains unmovable pages
6644 */
6645 if (zone_idx(zone) == ZONE_MOVABLE)
6646 return false;
6647 mt = get_pageblock_migratetype(page);
6648 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6649 return false;
6650
6651 pfn = page_to_pfn(page);
6652 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6653 unsigned long check = pfn + iter;
6654
6655 if (!pfn_valid_within(check))
6656 continue;
6657
6658 page = pfn_to_page(check);
6659
6660 /*
6661 * Hugepages are not in LRU lists, but they're movable.
6662 * We need not scan over tail pages bacause we don't
6663 * handle each tail page individually in migration.
6664 */
6665 if (PageHuge(page)) {
6666 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6667 continue;
6668 }
6669
6670 /*
6671 * We can't use page_count without pin a page
6672 * because another CPU can free compound page.
6673 * This check already skips compound tails of THP
6674 * because their page->_count is zero at all time.
6675 */
6676 if (!atomic_read(&page->_count)) {
6677 if (PageBuddy(page))
6678 iter += (1 << page_order(page)) - 1;
6679 continue;
6680 }
6681
6682 /*
6683 * The HWPoisoned page may be not in buddy system, and
6684 * page_count() is not 0.
6685 */
6686 if (skip_hwpoisoned_pages && PageHWPoison(page))
6687 continue;
6688
6689 if (!PageLRU(page))
6690 found++;
6691 /*
6692 * If there are RECLAIMABLE pages, we need to check
6693 * it. But now, memory offline itself doesn't call
6694 * shrink_node_slabs() and it still to be fixed.
6695 */
6696 /*
6697 * If the page is not RAM, page_count()should be 0.
6698 * we don't need more check. This is an _used_ not-movable page.
6699 *
6700 * The problematic thing here is PG_reserved pages. PG_reserved
6701 * is set to both of a memory hole page and a _used_ kernel
6702 * page at boot.
6703 */
6704 if (found > count)
6705 return true;
6706 }
6707 return false;
6708 }
6709
is_pageblock_removable_nolock(struct page * page)6710 bool is_pageblock_removable_nolock(struct page *page)
6711 {
6712 struct zone *zone;
6713 unsigned long pfn;
6714
6715 /*
6716 * We have to be careful here because we are iterating over memory
6717 * sections which are not zone aware so we might end up outside of
6718 * the zone but still within the section.
6719 * We have to take care about the node as well. If the node is offline
6720 * its NODE_DATA will be NULL - see page_zone.
6721 */
6722 if (!node_online(page_to_nid(page)))
6723 return false;
6724
6725 zone = page_zone(page);
6726 pfn = page_to_pfn(page);
6727 if (!zone_spans_pfn(zone, pfn))
6728 return false;
6729
6730 return !has_unmovable_pages(zone, page, 0, true);
6731 }
6732
6733 #ifdef CONFIG_CMA
6734
pfn_max_align_down(unsigned long pfn)6735 static unsigned long pfn_max_align_down(unsigned long pfn)
6736 {
6737 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6738 pageblock_nr_pages) - 1);
6739 }
6740
pfn_max_align_up(unsigned long pfn)6741 static unsigned long pfn_max_align_up(unsigned long pfn)
6742 {
6743 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6744 pageblock_nr_pages));
6745 }
6746
6747 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6748 static int __alloc_contig_migrate_range(struct compact_control *cc,
6749 unsigned long start, unsigned long end)
6750 {
6751 /* This function is based on compact_zone() from compaction.c. */
6752 unsigned long nr_reclaimed;
6753 unsigned long pfn = start;
6754 unsigned int tries = 0;
6755 int ret = 0;
6756
6757 migrate_prep();
6758
6759 while (pfn < end || !list_empty(&cc->migratepages)) {
6760 if (fatal_signal_pending(current)) {
6761 ret = -EINTR;
6762 break;
6763 }
6764
6765 if (list_empty(&cc->migratepages)) {
6766 cc->nr_migratepages = 0;
6767 pfn = isolate_migratepages_range(cc, pfn, end);
6768 if (!pfn) {
6769 ret = -EINTR;
6770 break;
6771 }
6772 tries = 0;
6773 } else if (++tries == 5) {
6774 ret = ret < 0 ? ret : -EBUSY;
6775 break;
6776 }
6777
6778 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6779 &cc->migratepages);
6780 cc->nr_migratepages -= nr_reclaimed;
6781
6782 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6783 NULL, 0, cc->mode, MR_CMA);
6784 }
6785 if (ret < 0) {
6786 putback_movable_pages(&cc->migratepages);
6787 return ret;
6788 }
6789 return 0;
6790 }
6791
6792 /**
6793 * alloc_contig_range() -- tries to allocate given range of pages
6794 * @start: start PFN to allocate
6795 * @end: one-past-the-last PFN to allocate
6796 * @migratetype: migratetype of the underlaying pageblocks (either
6797 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6798 * in range must have the same migratetype and it must
6799 * be either of the two.
6800 *
6801 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6802 * aligned, however it's the caller's responsibility to guarantee that
6803 * we are the only thread that changes migrate type of pageblocks the
6804 * pages fall in.
6805 *
6806 * The PFN range must belong to a single zone.
6807 *
6808 * Returns zero on success or negative error code. On success all
6809 * pages which PFN is in [start, end) are allocated for the caller and
6810 * need to be freed with free_contig_range().
6811 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype)6812 int alloc_contig_range(unsigned long start, unsigned long end,
6813 unsigned migratetype)
6814 {
6815 unsigned long outer_start, outer_end;
6816 unsigned int order;
6817 int ret = 0;
6818
6819 struct compact_control cc = {
6820 .nr_migratepages = 0,
6821 .order = -1,
6822 .zone = page_zone(pfn_to_page(start)),
6823 .mode = MIGRATE_SYNC,
6824 .ignore_skip_hint = true,
6825 };
6826 INIT_LIST_HEAD(&cc.migratepages);
6827
6828 /*
6829 * What we do here is we mark all pageblocks in range as
6830 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6831 * have different sizes, and due to the way page allocator
6832 * work, we align the range to biggest of the two pages so
6833 * that page allocator won't try to merge buddies from
6834 * different pageblocks and change MIGRATE_ISOLATE to some
6835 * other migration type.
6836 *
6837 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6838 * migrate the pages from an unaligned range (ie. pages that
6839 * we are interested in). This will put all the pages in
6840 * range back to page allocator as MIGRATE_ISOLATE.
6841 *
6842 * When this is done, we take the pages in range from page
6843 * allocator removing them from the buddy system. This way
6844 * page allocator will never consider using them.
6845 *
6846 * This lets us mark the pageblocks back as
6847 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6848 * aligned range but not in the unaligned, original range are
6849 * put back to page allocator so that buddy can use them.
6850 */
6851
6852 ret = start_isolate_page_range(pfn_max_align_down(start),
6853 pfn_max_align_up(end), migratetype,
6854 false);
6855 if (ret)
6856 return ret;
6857
6858 ret = __alloc_contig_migrate_range(&cc, start, end);
6859 if (ret)
6860 goto done;
6861
6862 /*
6863 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6864 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6865 * more, all pages in [start, end) are free in page allocator.
6866 * What we are going to do is to allocate all pages from
6867 * [start, end) (that is remove them from page allocator).
6868 *
6869 * The only problem is that pages at the beginning and at the
6870 * end of interesting range may be not aligned with pages that
6871 * page allocator holds, ie. they can be part of higher order
6872 * pages. Because of this, we reserve the bigger range and
6873 * once this is done free the pages we are not interested in.
6874 *
6875 * We don't have to hold zone->lock here because the pages are
6876 * isolated thus they won't get removed from buddy.
6877 */
6878
6879 lru_add_drain_all();
6880 drain_all_pages(cc.zone);
6881
6882 order = 0;
6883 outer_start = start;
6884 while (!PageBuddy(pfn_to_page(outer_start))) {
6885 if (++order >= MAX_ORDER) {
6886 ret = -EBUSY;
6887 goto done;
6888 }
6889 outer_start &= ~0UL << order;
6890 }
6891
6892 /* Make sure the range is really isolated. */
6893 if (test_pages_isolated(outer_start, end, false)) {
6894 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
6895 __func__, outer_start, end);
6896 ret = -EBUSY;
6897 goto done;
6898 }
6899
6900 /* Grab isolated pages from freelists. */
6901 outer_end = isolate_freepages_range(&cc, outer_start, end);
6902 if (!outer_end) {
6903 ret = -EBUSY;
6904 goto done;
6905 }
6906
6907 /* Free head and tail (if any) */
6908 if (start != outer_start)
6909 free_contig_range(outer_start, start - outer_start);
6910 if (end != outer_end)
6911 free_contig_range(end, outer_end - end);
6912
6913 done:
6914 undo_isolate_page_range(pfn_max_align_down(start),
6915 pfn_max_align_up(end), migratetype);
6916 return ret;
6917 }
6918
free_contig_range(unsigned long pfn,unsigned nr_pages)6919 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6920 {
6921 unsigned int count = 0;
6922
6923 for (; nr_pages--; pfn++) {
6924 struct page *page = pfn_to_page(pfn);
6925
6926 count += page_count(page) != 1;
6927 __free_page(page);
6928 }
6929 WARN(count != 0, "%d pages are still in use!\n", count);
6930 }
6931 #endif
6932
6933 #ifdef CONFIG_MEMORY_HOTPLUG
6934 /*
6935 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6936 * page high values need to be recalulated.
6937 */
zone_pcp_update(struct zone * zone)6938 void __meminit zone_pcp_update(struct zone *zone)
6939 {
6940 unsigned cpu;
6941 mutex_lock(&pcp_batch_high_lock);
6942 for_each_possible_cpu(cpu)
6943 pageset_set_high_and_batch(zone,
6944 per_cpu_ptr(zone->pageset, cpu));
6945 mutex_unlock(&pcp_batch_high_lock);
6946 }
6947 #endif
6948
zone_pcp_reset(struct zone * zone)6949 void zone_pcp_reset(struct zone *zone)
6950 {
6951 unsigned long flags;
6952 int cpu;
6953 struct per_cpu_pageset *pset;
6954
6955 /* avoid races with drain_pages() */
6956 local_irq_save(flags);
6957 if (zone->pageset != &boot_pageset) {
6958 for_each_online_cpu(cpu) {
6959 pset = per_cpu_ptr(zone->pageset, cpu);
6960 drain_zonestat(zone, pset);
6961 }
6962 free_percpu(zone->pageset);
6963 zone->pageset = &boot_pageset;
6964 }
6965 local_irq_restore(flags);
6966 }
6967
6968 #ifdef CONFIG_MEMORY_HOTREMOVE
6969 /*
6970 * All pages in the range must be isolated before calling this.
6971 */
6972 void
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6973 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6974 {
6975 struct page *page;
6976 struct zone *zone;
6977 unsigned int order, i;
6978 unsigned long pfn;
6979 unsigned long flags;
6980 /* find the first valid pfn */
6981 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6982 if (pfn_valid(pfn))
6983 break;
6984 if (pfn == end_pfn)
6985 return;
6986 zone = page_zone(pfn_to_page(pfn));
6987 spin_lock_irqsave(&zone->lock, flags);
6988 pfn = start_pfn;
6989 while (pfn < end_pfn) {
6990 if (!pfn_valid(pfn)) {
6991 pfn++;
6992 continue;
6993 }
6994 page = pfn_to_page(pfn);
6995 /*
6996 * The HWPoisoned page may be not in buddy system, and
6997 * page_count() is not 0.
6998 */
6999 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7000 pfn++;
7001 SetPageReserved(page);
7002 continue;
7003 }
7004
7005 BUG_ON(page_count(page));
7006 BUG_ON(!PageBuddy(page));
7007 order = page_order(page);
7008 #ifdef CONFIG_DEBUG_VM
7009 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7010 pfn, 1 << order, end_pfn);
7011 #endif
7012 list_del(&page->lru);
7013 rmv_page_order(page);
7014 zone->free_area[order].nr_free--;
7015 for (i = 0; i < (1 << order); i++)
7016 SetPageReserved((page+i));
7017 pfn += (1 << order);
7018 }
7019 spin_unlock_irqrestore(&zone->lock, flags);
7020 }
7021 #endif
7022
7023 #ifdef CONFIG_MEMORY_FAILURE
is_free_buddy_page(struct page * page)7024 bool is_free_buddy_page(struct page *page)
7025 {
7026 struct zone *zone = page_zone(page);
7027 unsigned long pfn = page_to_pfn(page);
7028 unsigned long flags;
7029 unsigned int order;
7030
7031 spin_lock_irqsave(&zone->lock, flags);
7032 for (order = 0; order < MAX_ORDER; order++) {
7033 struct page *page_head = page - (pfn & ((1 << order) - 1));
7034
7035 if (PageBuddy(page_head) && page_order(page_head) >= order)
7036 break;
7037 }
7038 spin_unlock_irqrestore(&zone->lock, flags);
7039
7040 return order < MAX_ORDER;
7041 }
7042 #endif
7043