• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/in.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/if_packet.h>
33 #include <linux/gfp.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <asm/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <linux/filter.h>
45 #include <linux/ratelimit.h>
46 #include <linux/seccomp.h>
47 #include <linux/if_vlan.h>
48 #include <linux/bpf.h>
49 #include <net/sch_generic.h>
50 #include <net/cls_cgroup.h>
51 #include <net/dst_metadata.h>
52 #include <net/dst.h>
53 
54 /**
55  *	sk_filter_trim_cap - run a packet through a socket filter
56  *	@sk: sock associated with &sk_buff
57  *	@skb: buffer to filter
58  *	@cap: limit on how short the eBPF program may trim the packet
59  *
60  * Run the eBPF program and then cut skb->data to correct size returned by
61  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
62  * than pkt_len we keep whole skb->data. This is the socket level
63  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
64  * be accepted or -EPERM if the packet should be tossed.
65  *
66  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)67 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
68 {
69 	int err;
70 	struct sk_filter *filter;
71 
72 	/*
73 	 * If the skb was allocated from pfmemalloc reserves, only
74 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
75 	 * helping free memory
76 	 */
77 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
78 		return -ENOMEM;
79 
80 	err = security_sock_rcv_skb(sk, skb);
81 	if (err)
82 		return err;
83 
84 	rcu_read_lock();
85 	filter = rcu_dereference(sk->sk_filter);
86 	if (filter) {
87 		unsigned int pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
88 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
89 	}
90 	rcu_read_unlock();
91 
92 	return err;
93 }
94 EXPORT_SYMBOL(sk_filter_trim_cap);
95 
__skb_get_pay_offset(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)96 static u64 __skb_get_pay_offset(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
97 {
98 	return skb_get_poff((struct sk_buff *)(unsigned long) ctx);
99 }
100 
__skb_get_nlattr(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)101 static u64 __skb_get_nlattr(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
102 {
103 	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
104 	struct nlattr *nla;
105 
106 	if (skb_is_nonlinear(skb))
107 		return 0;
108 
109 	if (skb->len < sizeof(struct nlattr))
110 		return 0;
111 
112 	if (a > skb->len - sizeof(struct nlattr))
113 		return 0;
114 
115 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
116 	if (nla)
117 		return (void *) nla - (void *) skb->data;
118 
119 	return 0;
120 }
121 
__skb_get_nlattr_nest(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)122 static u64 __skb_get_nlattr_nest(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
123 {
124 	struct sk_buff *skb = (struct sk_buff *)(unsigned long) ctx;
125 	struct nlattr *nla;
126 
127 	if (skb_is_nonlinear(skb))
128 		return 0;
129 
130 	if (skb->len < sizeof(struct nlattr))
131 		return 0;
132 
133 	if (a > skb->len - sizeof(struct nlattr))
134 		return 0;
135 
136 	nla = (struct nlattr *) &skb->data[a];
137 	if (nla->nla_len > skb->len - a)
138 		return 0;
139 
140 	nla = nla_find_nested(nla, x);
141 	if (nla)
142 		return (void *) nla - (void *) skb->data;
143 
144 	return 0;
145 }
146 
__get_raw_cpu_id(u64 ctx,u64 a,u64 x,u64 r4,u64 r5)147 static u64 __get_raw_cpu_id(u64 ctx, u64 a, u64 x, u64 r4, u64 r5)
148 {
149 	return raw_smp_processor_id();
150 }
151 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)152 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
153 			      struct bpf_insn *insn_buf)
154 {
155 	struct bpf_insn *insn = insn_buf;
156 
157 	switch (skb_field) {
158 	case SKF_AD_MARK:
159 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
160 
161 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
162 				      offsetof(struct sk_buff, mark));
163 		break;
164 
165 	case SKF_AD_PKTTYPE:
166 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
167 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
168 #ifdef __BIG_ENDIAN_BITFIELD
169 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
170 #endif
171 		break;
172 
173 	case SKF_AD_QUEUE:
174 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
175 
176 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
177 				      offsetof(struct sk_buff, queue_mapping));
178 		break;
179 
180 	case SKF_AD_VLAN_TAG:
181 	case SKF_AD_VLAN_TAG_PRESENT:
182 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
183 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
184 
185 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
186 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
187 				      offsetof(struct sk_buff, vlan_tci));
188 		if (skb_field == SKF_AD_VLAN_TAG) {
189 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
190 						~VLAN_TAG_PRESENT);
191 		} else {
192 			/* dst_reg >>= 12 */
193 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
194 			/* dst_reg &= 1 */
195 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
196 		}
197 		break;
198 	}
199 
200 	return insn - insn_buf;
201 }
202 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)203 static bool convert_bpf_extensions(struct sock_filter *fp,
204 				   struct bpf_insn **insnp)
205 {
206 	struct bpf_insn *insn = *insnp;
207 	u32 cnt;
208 
209 	switch (fp->k) {
210 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
211 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
212 
213 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
214 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
215 				      offsetof(struct sk_buff, protocol));
216 		/* A = ntohs(A) [emitting a nop or swap16] */
217 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
218 		break;
219 
220 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
221 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
222 		insn += cnt - 1;
223 		break;
224 
225 	case SKF_AD_OFF + SKF_AD_IFINDEX:
226 	case SKF_AD_OFF + SKF_AD_HATYPE:
227 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
228 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
229 		BUILD_BUG_ON(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)) < 0);
230 
231 		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
232 				      BPF_REG_TMP, BPF_REG_CTX,
233 				      offsetof(struct sk_buff, dev));
234 		/* if (tmp != 0) goto pc + 1 */
235 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
236 		*insn++ = BPF_EXIT_INSN();
237 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
238 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
239 					    offsetof(struct net_device, ifindex));
240 		else
241 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
242 					    offsetof(struct net_device, type));
243 		break;
244 
245 	case SKF_AD_OFF + SKF_AD_MARK:
246 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
247 		insn += cnt - 1;
248 		break;
249 
250 	case SKF_AD_OFF + SKF_AD_RXHASH:
251 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
252 
253 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
254 				    offsetof(struct sk_buff, hash));
255 		break;
256 
257 	case SKF_AD_OFF + SKF_AD_QUEUE:
258 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
259 		insn += cnt - 1;
260 		break;
261 
262 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
263 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
264 					 BPF_REG_A, BPF_REG_CTX, insn);
265 		insn += cnt - 1;
266 		break;
267 
268 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
269 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
270 					 BPF_REG_A, BPF_REG_CTX, insn);
271 		insn += cnt - 1;
272 		break;
273 
274 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
275 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
276 
277 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
278 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
279 				      offsetof(struct sk_buff, vlan_proto));
280 		/* A = ntohs(A) [emitting a nop or swap16] */
281 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
282 		break;
283 
284 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
285 	case SKF_AD_OFF + SKF_AD_NLATTR:
286 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
287 	case SKF_AD_OFF + SKF_AD_CPU:
288 	case SKF_AD_OFF + SKF_AD_RANDOM:
289 		/* arg1 = CTX */
290 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
291 		/* arg2 = A */
292 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
293 		/* arg3 = X */
294 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
295 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
296 		switch (fp->k) {
297 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
298 			*insn = BPF_EMIT_CALL(__skb_get_pay_offset);
299 			break;
300 		case SKF_AD_OFF + SKF_AD_NLATTR:
301 			*insn = BPF_EMIT_CALL(__skb_get_nlattr);
302 			break;
303 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
304 			*insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
305 			break;
306 		case SKF_AD_OFF + SKF_AD_CPU:
307 			*insn = BPF_EMIT_CALL(__get_raw_cpu_id);
308 			break;
309 		case SKF_AD_OFF + SKF_AD_RANDOM:
310 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
311 			bpf_user_rnd_init_once();
312 			break;
313 		}
314 		break;
315 
316 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
317 		/* A ^= X */
318 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
319 		break;
320 
321 	default:
322 		/* This is just a dummy call to avoid letting the compiler
323 		 * evict __bpf_call_base() as an optimization. Placed here
324 		 * where no-one bothers.
325 		 */
326 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
327 		return false;
328 	}
329 
330 	*insnp = insn;
331 	return true;
332 }
333 
334 /**
335  *	bpf_convert_filter - convert filter program
336  *	@prog: the user passed filter program
337  *	@len: the length of the user passed filter program
338  *	@new_prog: buffer where converted program will be stored
339  *	@new_len: pointer to store length of converted program
340  *
341  * Remap 'sock_filter' style BPF instruction set to 'sock_filter_ext' style.
342  * Conversion workflow:
343  *
344  * 1) First pass for calculating the new program length:
345  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
346  *
347  * 2) 2nd pass to remap in two passes: 1st pass finds new
348  *    jump offsets, 2nd pass remapping:
349  *   new_prog = kmalloc(sizeof(struct bpf_insn) * new_len);
350  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
351  *
352  * User BPF's register A is mapped to our BPF register 6, user BPF
353  * register X is mapped to BPF register 7; frame pointer is always
354  * register 10; Context 'void *ctx' is stored in register 1, that is,
355  * for socket filters: ctx == 'struct sk_buff *', for seccomp:
356  * ctx == 'struct seccomp_data *'.
357  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_insn * new_prog,int * new_len)358 static int bpf_convert_filter(struct sock_filter *prog, int len,
359 			      struct bpf_insn *new_prog, int *new_len)
360 {
361 	int new_flen = 0, pass = 0, target, i;
362 	struct bpf_insn *new_insn;
363 	struct sock_filter *fp;
364 	int *addrs = NULL;
365 	u8 bpf_src;
366 
367 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
368 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
369 
370 	if (len <= 0 || len > BPF_MAXINSNS)
371 		return -EINVAL;
372 
373 	if (new_prog) {
374 		addrs = kcalloc(len, sizeof(*addrs),
375 				GFP_KERNEL | __GFP_NOWARN);
376 		if (!addrs)
377 			return -ENOMEM;
378 	}
379 
380 do_pass:
381 	new_insn = new_prog;
382 	fp = prog;
383 
384 	if (new_insn)
385 		*new_insn = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
386 	new_insn++;
387 
388 	for (i = 0; i < len; fp++, i++) {
389 		struct bpf_insn tmp_insns[6] = { };
390 		struct bpf_insn *insn = tmp_insns;
391 
392 		if (addrs)
393 			addrs[i] = new_insn - new_prog;
394 
395 		switch (fp->code) {
396 		/* All arithmetic insns and skb loads map as-is. */
397 		case BPF_ALU | BPF_ADD | BPF_X:
398 		case BPF_ALU | BPF_ADD | BPF_K:
399 		case BPF_ALU | BPF_SUB | BPF_X:
400 		case BPF_ALU | BPF_SUB | BPF_K:
401 		case BPF_ALU | BPF_AND | BPF_X:
402 		case BPF_ALU | BPF_AND | BPF_K:
403 		case BPF_ALU | BPF_OR | BPF_X:
404 		case BPF_ALU | BPF_OR | BPF_K:
405 		case BPF_ALU | BPF_LSH | BPF_X:
406 		case BPF_ALU | BPF_LSH | BPF_K:
407 		case BPF_ALU | BPF_RSH | BPF_X:
408 		case BPF_ALU | BPF_RSH | BPF_K:
409 		case BPF_ALU | BPF_XOR | BPF_X:
410 		case BPF_ALU | BPF_XOR | BPF_K:
411 		case BPF_ALU | BPF_MUL | BPF_X:
412 		case BPF_ALU | BPF_MUL | BPF_K:
413 		case BPF_ALU | BPF_DIV | BPF_X:
414 		case BPF_ALU | BPF_DIV | BPF_K:
415 		case BPF_ALU | BPF_MOD | BPF_X:
416 		case BPF_ALU | BPF_MOD | BPF_K:
417 		case BPF_ALU | BPF_NEG:
418 		case BPF_LD | BPF_ABS | BPF_W:
419 		case BPF_LD | BPF_ABS | BPF_H:
420 		case BPF_LD | BPF_ABS | BPF_B:
421 		case BPF_LD | BPF_IND | BPF_W:
422 		case BPF_LD | BPF_IND | BPF_H:
423 		case BPF_LD | BPF_IND | BPF_B:
424 			/* Check for overloaded BPF extension and
425 			 * directly convert it if found, otherwise
426 			 * just move on with mapping.
427 			 */
428 			if (BPF_CLASS(fp->code) == BPF_LD &&
429 			    BPF_MODE(fp->code) == BPF_ABS &&
430 			    convert_bpf_extensions(fp, &insn))
431 				break;
432 
433 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
434 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X))
435 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
436 
437 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
438 			break;
439 
440 		/* Jump transformation cannot use BPF block macros
441 		 * everywhere as offset calculation and target updates
442 		 * require a bit more work than the rest, i.e. jump
443 		 * opcodes map as-is, but offsets need adjustment.
444 		 */
445 
446 #define BPF_EMIT_JMP							\
447 	do {								\
448 		if (target >= len || target < 0)			\
449 			goto err;					\
450 		insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;	\
451 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
452 		insn->off -= insn - tmp_insns;				\
453 	} while (0)
454 
455 		case BPF_JMP | BPF_JA:
456 			target = i + fp->k + 1;
457 			insn->code = fp->code;
458 			BPF_EMIT_JMP;
459 			break;
460 
461 		case BPF_JMP | BPF_JEQ | BPF_K:
462 		case BPF_JMP | BPF_JEQ | BPF_X:
463 		case BPF_JMP | BPF_JSET | BPF_K:
464 		case BPF_JMP | BPF_JSET | BPF_X:
465 		case BPF_JMP | BPF_JGT | BPF_K:
466 		case BPF_JMP | BPF_JGT | BPF_X:
467 		case BPF_JMP | BPF_JGE | BPF_K:
468 		case BPF_JMP | BPF_JGE | BPF_X:
469 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
470 				/* BPF immediates are signed, zero extend
471 				 * immediate into tmp register and use it
472 				 * in compare insn.
473 				 */
474 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
475 
476 				insn->dst_reg = BPF_REG_A;
477 				insn->src_reg = BPF_REG_TMP;
478 				bpf_src = BPF_X;
479 			} else {
480 				insn->dst_reg = BPF_REG_A;
481 				insn->imm = fp->k;
482 				bpf_src = BPF_SRC(fp->code);
483 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
484 			}
485 
486 			/* Common case where 'jump_false' is next insn. */
487 			if (fp->jf == 0) {
488 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
489 				target = i + fp->jt + 1;
490 				BPF_EMIT_JMP;
491 				break;
492 			}
493 
494 			/* Convert JEQ into JNE when 'jump_true' is next insn. */
495 			if (fp->jt == 0 && BPF_OP(fp->code) == BPF_JEQ) {
496 				insn->code = BPF_JMP | BPF_JNE | bpf_src;
497 				target = i + fp->jf + 1;
498 				BPF_EMIT_JMP;
499 				break;
500 			}
501 
502 			/* Other jumps are mapped into two insns: Jxx and JA. */
503 			target = i + fp->jt + 1;
504 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
505 			BPF_EMIT_JMP;
506 			insn++;
507 
508 			insn->code = BPF_JMP | BPF_JA;
509 			target = i + fp->jf + 1;
510 			BPF_EMIT_JMP;
511 			break;
512 
513 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
514 		case BPF_LDX | BPF_MSH | BPF_B:
515 			/* tmp = A */
516 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
517 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
518 			*insn++ = BPF_LD_ABS(BPF_B, fp->k);
519 			/* A &= 0xf */
520 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
521 			/* A <<= 2 */
522 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
523 			/* X = A */
524 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
525 			/* A = tmp */
526 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
527 			break;
528 
529 		/* RET_K, RET_A are remaped into 2 insns. */
530 		case BPF_RET | BPF_A:
531 		case BPF_RET | BPF_K:
532 			*insn++ = BPF_MOV32_RAW(BPF_RVAL(fp->code) == BPF_K ?
533 						BPF_K : BPF_X, BPF_REG_0,
534 						BPF_REG_A, fp->k);
535 			*insn = BPF_EXIT_INSN();
536 			break;
537 
538 		/* Store to stack. */
539 		case BPF_ST:
540 		case BPF_STX:
541 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
542 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
543 					    -(BPF_MEMWORDS - fp->k) * 4);
544 			break;
545 
546 		/* Load from stack. */
547 		case BPF_LD | BPF_MEM:
548 		case BPF_LDX | BPF_MEM:
549 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
550 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
551 					    -(BPF_MEMWORDS - fp->k) * 4);
552 			break;
553 
554 		/* A = K or X = K */
555 		case BPF_LD | BPF_IMM:
556 		case BPF_LDX | BPF_IMM:
557 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
558 					      BPF_REG_A : BPF_REG_X, fp->k);
559 			break;
560 
561 		/* X = A */
562 		case BPF_MISC | BPF_TAX:
563 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
564 			break;
565 
566 		/* A = X */
567 		case BPF_MISC | BPF_TXA:
568 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
569 			break;
570 
571 		/* A = skb->len or X = skb->len */
572 		case BPF_LD | BPF_W | BPF_LEN:
573 		case BPF_LDX | BPF_W | BPF_LEN:
574 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
575 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
576 					    offsetof(struct sk_buff, len));
577 			break;
578 
579 		/* Access seccomp_data fields. */
580 		case BPF_LDX | BPF_ABS | BPF_W:
581 			/* A = *(u32 *) (ctx + K) */
582 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
583 			break;
584 
585 		/* Unknown instruction. */
586 		default:
587 			goto err;
588 		}
589 
590 		insn++;
591 		if (new_prog)
592 			memcpy(new_insn, tmp_insns,
593 			       sizeof(*insn) * (insn - tmp_insns));
594 		new_insn += insn - tmp_insns;
595 	}
596 
597 	if (!new_prog) {
598 		/* Only calculating new length. */
599 		*new_len = new_insn - new_prog;
600 		return 0;
601 	}
602 
603 	pass++;
604 	if (new_flen != new_insn - new_prog) {
605 		new_flen = new_insn - new_prog;
606 		if (pass > 2)
607 			goto err;
608 		goto do_pass;
609 	}
610 
611 	kfree(addrs);
612 	BUG_ON(*new_len != new_flen);
613 	return 0;
614 err:
615 	kfree(addrs);
616 	return -EINVAL;
617 }
618 
619 /* Security:
620  *
621  * As we dont want to clear mem[] array for each packet going through
622  * __bpf_prog_run(), we check that filter loaded by user never try to read
623  * a cell if not previously written, and we check all branches to be sure
624  * a malicious user doesn't try to abuse us.
625  */
check_load_and_stores(const struct sock_filter * filter,int flen)626 static int check_load_and_stores(const struct sock_filter *filter, int flen)
627 {
628 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
629 	int pc, ret = 0;
630 
631 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
632 
633 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
634 	if (!masks)
635 		return -ENOMEM;
636 
637 	memset(masks, 0xff, flen * sizeof(*masks));
638 
639 	for (pc = 0; pc < flen; pc++) {
640 		memvalid &= masks[pc];
641 
642 		switch (filter[pc].code) {
643 		case BPF_ST:
644 		case BPF_STX:
645 			memvalid |= (1 << filter[pc].k);
646 			break;
647 		case BPF_LD | BPF_MEM:
648 		case BPF_LDX | BPF_MEM:
649 			if (!(memvalid & (1 << filter[pc].k))) {
650 				ret = -EINVAL;
651 				goto error;
652 			}
653 			break;
654 		case BPF_JMP | BPF_JA:
655 			/* A jump must set masks on target */
656 			masks[pc + 1 + filter[pc].k] &= memvalid;
657 			memvalid = ~0;
658 			break;
659 		case BPF_JMP | BPF_JEQ | BPF_K:
660 		case BPF_JMP | BPF_JEQ | BPF_X:
661 		case BPF_JMP | BPF_JGE | BPF_K:
662 		case BPF_JMP | BPF_JGE | BPF_X:
663 		case BPF_JMP | BPF_JGT | BPF_K:
664 		case BPF_JMP | BPF_JGT | BPF_X:
665 		case BPF_JMP | BPF_JSET | BPF_K:
666 		case BPF_JMP | BPF_JSET | BPF_X:
667 			/* A jump must set masks on targets */
668 			masks[pc + 1 + filter[pc].jt] &= memvalid;
669 			masks[pc + 1 + filter[pc].jf] &= memvalid;
670 			memvalid = ~0;
671 			break;
672 		}
673 	}
674 error:
675 	kfree(masks);
676 	return ret;
677 }
678 
chk_code_allowed(u16 code_to_probe)679 static bool chk_code_allowed(u16 code_to_probe)
680 {
681 	static const bool codes[] = {
682 		/* 32 bit ALU operations */
683 		[BPF_ALU | BPF_ADD | BPF_K] = true,
684 		[BPF_ALU | BPF_ADD | BPF_X] = true,
685 		[BPF_ALU | BPF_SUB | BPF_K] = true,
686 		[BPF_ALU | BPF_SUB | BPF_X] = true,
687 		[BPF_ALU | BPF_MUL | BPF_K] = true,
688 		[BPF_ALU | BPF_MUL | BPF_X] = true,
689 		[BPF_ALU | BPF_DIV | BPF_K] = true,
690 		[BPF_ALU | BPF_DIV | BPF_X] = true,
691 		[BPF_ALU | BPF_MOD | BPF_K] = true,
692 		[BPF_ALU | BPF_MOD | BPF_X] = true,
693 		[BPF_ALU | BPF_AND | BPF_K] = true,
694 		[BPF_ALU | BPF_AND | BPF_X] = true,
695 		[BPF_ALU | BPF_OR | BPF_K] = true,
696 		[BPF_ALU | BPF_OR | BPF_X] = true,
697 		[BPF_ALU | BPF_XOR | BPF_K] = true,
698 		[BPF_ALU | BPF_XOR | BPF_X] = true,
699 		[BPF_ALU | BPF_LSH | BPF_K] = true,
700 		[BPF_ALU | BPF_LSH | BPF_X] = true,
701 		[BPF_ALU | BPF_RSH | BPF_K] = true,
702 		[BPF_ALU | BPF_RSH | BPF_X] = true,
703 		[BPF_ALU | BPF_NEG] = true,
704 		/* Load instructions */
705 		[BPF_LD | BPF_W | BPF_ABS] = true,
706 		[BPF_LD | BPF_H | BPF_ABS] = true,
707 		[BPF_LD | BPF_B | BPF_ABS] = true,
708 		[BPF_LD | BPF_W | BPF_LEN] = true,
709 		[BPF_LD | BPF_W | BPF_IND] = true,
710 		[BPF_LD | BPF_H | BPF_IND] = true,
711 		[BPF_LD | BPF_B | BPF_IND] = true,
712 		[BPF_LD | BPF_IMM] = true,
713 		[BPF_LD | BPF_MEM] = true,
714 		[BPF_LDX | BPF_W | BPF_LEN] = true,
715 		[BPF_LDX | BPF_B | BPF_MSH] = true,
716 		[BPF_LDX | BPF_IMM] = true,
717 		[BPF_LDX | BPF_MEM] = true,
718 		/* Store instructions */
719 		[BPF_ST] = true,
720 		[BPF_STX] = true,
721 		/* Misc instructions */
722 		[BPF_MISC | BPF_TAX] = true,
723 		[BPF_MISC | BPF_TXA] = true,
724 		/* Return instructions */
725 		[BPF_RET | BPF_K] = true,
726 		[BPF_RET | BPF_A] = true,
727 		/* Jump instructions */
728 		[BPF_JMP | BPF_JA] = true,
729 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
730 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
731 		[BPF_JMP | BPF_JGE | BPF_K] = true,
732 		[BPF_JMP | BPF_JGE | BPF_X] = true,
733 		[BPF_JMP | BPF_JGT | BPF_K] = true,
734 		[BPF_JMP | BPF_JGT | BPF_X] = true,
735 		[BPF_JMP | BPF_JSET | BPF_K] = true,
736 		[BPF_JMP | BPF_JSET | BPF_X] = true,
737 	};
738 
739 	if (code_to_probe >= ARRAY_SIZE(codes))
740 		return false;
741 
742 	return codes[code_to_probe];
743 }
744 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)745 static bool bpf_check_basics_ok(const struct sock_filter *filter,
746 				unsigned int flen)
747 {
748 	if (filter == NULL)
749 		return false;
750 	if (flen == 0 || flen > BPF_MAXINSNS)
751 		return false;
752 
753 	return true;
754 }
755 
756 /**
757  *	bpf_check_classic - verify socket filter code
758  *	@filter: filter to verify
759  *	@flen: length of filter
760  *
761  * Check the user's filter code. If we let some ugly
762  * filter code slip through kaboom! The filter must contain
763  * no references or jumps that are out of range, no illegal
764  * instructions, and must end with a RET instruction.
765  *
766  * All jumps are forward as they are not signed.
767  *
768  * Returns 0 if the rule set is legal or -EINVAL if not.
769  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)770 static int bpf_check_classic(const struct sock_filter *filter,
771 			     unsigned int flen)
772 {
773 	bool anc_found;
774 	int pc;
775 
776 	/* Check the filter code now */
777 	for (pc = 0; pc < flen; pc++) {
778 		const struct sock_filter *ftest = &filter[pc];
779 
780 		/* May we actually operate on this code? */
781 		if (!chk_code_allowed(ftest->code))
782 			return -EINVAL;
783 
784 		/* Some instructions need special checks */
785 		switch (ftest->code) {
786 		case BPF_ALU | BPF_DIV | BPF_K:
787 		case BPF_ALU | BPF_MOD | BPF_K:
788 			/* Check for division by zero */
789 			if (ftest->k == 0)
790 				return -EINVAL;
791 			break;
792 		case BPF_ALU | BPF_LSH | BPF_K:
793 		case BPF_ALU | BPF_RSH | BPF_K:
794 			if (ftest->k >= 32)
795 				return -EINVAL;
796 			break;
797 		case BPF_LD | BPF_MEM:
798 		case BPF_LDX | BPF_MEM:
799 		case BPF_ST:
800 		case BPF_STX:
801 			/* Check for invalid memory addresses */
802 			if (ftest->k >= BPF_MEMWORDS)
803 				return -EINVAL;
804 			break;
805 		case BPF_JMP | BPF_JA:
806 			/* Note, the large ftest->k might cause loops.
807 			 * Compare this with conditional jumps below,
808 			 * where offsets are limited. --ANK (981016)
809 			 */
810 			if (ftest->k >= (unsigned int)(flen - pc - 1))
811 				return -EINVAL;
812 			break;
813 		case BPF_JMP | BPF_JEQ | BPF_K:
814 		case BPF_JMP | BPF_JEQ | BPF_X:
815 		case BPF_JMP | BPF_JGE | BPF_K:
816 		case BPF_JMP | BPF_JGE | BPF_X:
817 		case BPF_JMP | BPF_JGT | BPF_K:
818 		case BPF_JMP | BPF_JGT | BPF_X:
819 		case BPF_JMP | BPF_JSET | BPF_K:
820 		case BPF_JMP | BPF_JSET | BPF_X:
821 			/* Both conditionals must be safe */
822 			if (pc + ftest->jt + 1 >= flen ||
823 			    pc + ftest->jf + 1 >= flen)
824 				return -EINVAL;
825 			break;
826 		case BPF_LD | BPF_W | BPF_ABS:
827 		case BPF_LD | BPF_H | BPF_ABS:
828 		case BPF_LD | BPF_B | BPF_ABS:
829 			anc_found = false;
830 			if (bpf_anc_helper(ftest) & BPF_ANC)
831 				anc_found = true;
832 			/* Ancillary operation unknown or unsupported */
833 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
834 				return -EINVAL;
835 		}
836 	}
837 
838 	/* Last instruction must be a RET code */
839 	switch (filter[flen - 1].code) {
840 	case BPF_RET | BPF_K:
841 	case BPF_RET | BPF_A:
842 		return check_load_and_stores(filter, flen);
843 	}
844 
845 	return -EINVAL;
846 }
847 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)848 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
849 				      const struct sock_fprog *fprog)
850 {
851 	unsigned int fsize = bpf_classic_proglen(fprog);
852 	struct sock_fprog_kern *fkprog;
853 
854 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
855 	if (!fp->orig_prog)
856 		return -ENOMEM;
857 
858 	fkprog = fp->orig_prog;
859 	fkprog->len = fprog->len;
860 
861 	fkprog->filter = kmemdup(fp->insns, fsize,
862 				 GFP_KERNEL | __GFP_NOWARN);
863 	if (!fkprog->filter) {
864 		kfree(fp->orig_prog);
865 		return -ENOMEM;
866 	}
867 
868 	return 0;
869 }
870 
bpf_release_orig_filter(struct bpf_prog * fp)871 static void bpf_release_orig_filter(struct bpf_prog *fp)
872 {
873 	struct sock_fprog_kern *fprog = fp->orig_prog;
874 
875 	if (fprog) {
876 		kfree(fprog->filter);
877 		kfree(fprog);
878 	}
879 }
880 
__bpf_prog_release(struct bpf_prog * prog)881 static void __bpf_prog_release(struct bpf_prog *prog)
882 {
883 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
884 		bpf_prog_put(prog);
885 	} else {
886 		bpf_release_orig_filter(prog);
887 		bpf_prog_free(prog);
888 	}
889 }
890 
__sk_filter_release(struct sk_filter * fp)891 static void __sk_filter_release(struct sk_filter *fp)
892 {
893 	__bpf_prog_release(fp->prog);
894 	kfree(fp);
895 }
896 
897 /**
898  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
899  *	@rcu: rcu_head that contains the sk_filter to free
900  */
sk_filter_release_rcu(struct rcu_head * rcu)901 static void sk_filter_release_rcu(struct rcu_head *rcu)
902 {
903 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
904 
905 	__sk_filter_release(fp);
906 }
907 
908 /**
909  *	sk_filter_release - release a socket filter
910  *	@fp: filter to remove
911  *
912  *	Remove a filter from a socket and release its resources.
913  */
sk_filter_release(struct sk_filter * fp)914 static void sk_filter_release(struct sk_filter *fp)
915 {
916 	if (atomic_dec_and_test(&fp->refcnt))
917 		call_rcu(&fp->rcu, sk_filter_release_rcu);
918 }
919 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)920 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
921 {
922 	u32 filter_size = bpf_prog_size(fp->prog->len);
923 
924 	atomic_sub(filter_size, &sk->sk_omem_alloc);
925 	sk_filter_release(fp);
926 }
927 
928 /* try to charge the socket memory if there is space available
929  * return true on success
930  */
sk_filter_charge(struct sock * sk,struct sk_filter * fp)931 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
932 {
933 	u32 filter_size = bpf_prog_size(fp->prog->len);
934 
935 	/* same check as in sock_kmalloc() */
936 	if (filter_size <= sysctl_optmem_max &&
937 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
938 		atomic_inc(&fp->refcnt);
939 		atomic_add(filter_size, &sk->sk_omem_alloc);
940 		return true;
941 	}
942 	return false;
943 }
944 
bpf_migrate_filter(struct bpf_prog * fp)945 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
946 {
947 	struct sock_filter *old_prog;
948 	struct bpf_prog *old_fp;
949 	int err, new_len, old_len = fp->len;
950 
951 	/* We are free to overwrite insns et al right here as it
952 	 * won't be used at this point in time anymore internally
953 	 * after the migration to the internal BPF instruction
954 	 * representation.
955 	 */
956 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
957 		     sizeof(struct bpf_insn));
958 
959 	/* Conversion cannot happen on overlapping memory areas,
960 	 * so we need to keep the user BPF around until the 2nd
961 	 * pass. At this time, the user BPF is stored in fp->insns.
962 	 */
963 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
964 			   GFP_KERNEL | __GFP_NOWARN);
965 	if (!old_prog) {
966 		err = -ENOMEM;
967 		goto out_err;
968 	}
969 
970 	/* 1st pass: calculate the new program length. */
971 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
972 	if (err)
973 		goto out_err_free;
974 
975 	/* Expand fp for appending the new filter representation. */
976 	old_fp = fp;
977 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
978 	if (!fp) {
979 		/* The old_fp is still around in case we couldn't
980 		 * allocate new memory, so uncharge on that one.
981 		 */
982 		fp = old_fp;
983 		err = -ENOMEM;
984 		goto out_err_free;
985 	}
986 
987 	fp->len = new_len;
988 
989 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
990 	err = bpf_convert_filter(old_prog, old_len, fp->insnsi, &new_len);
991 	if (err)
992 		/* 2nd bpf_convert_filter() can fail only if it fails
993 		 * to allocate memory, remapping must succeed. Note,
994 		 * that at this time old_fp has already been released
995 		 * by krealloc().
996 		 */
997 		goto out_err_free;
998 
999 	err = bpf_prog_select_runtime(fp);
1000 	if (err)
1001 		goto out_err_free;
1002 
1003 	kfree(old_prog);
1004 	return fp;
1005 
1006 out_err_free:
1007 	kfree(old_prog);
1008 out_err:
1009 	__bpf_prog_release(fp);
1010 	return ERR_PTR(err);
1011 }
1012 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1013 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1014 					   bpf_aux_classic_check_t trans)
1015 {
1016 	int err;
1017 
1018 	fp->bpf_func = NULL;
1019 	fp->jited = 0;
1020 
1021 	err = bpf_check_classic(fp->insns, fp->len);
1022 	if (err) {
1023 		__bpf_prog_release(fp);
1024 		return ERR_PTR(err);
1025 	}
1026 
1027 	/* There might be additional checks and transformations
1028 	 * needed on classic filters, f.e. in case of seccomp.
1029 	 */
1030 	if (trans) {
1031 		err = trans(fp->insns, fp->len);
1032 		if (err) {
1033 			__bpf_prog_release(fp);
1034 			return ERR_PTR(err);
1035 		}
1036 	}
1037 
1038 	/* Probe if we can JIT compile the filter and if so, do
1039 	 * the compilation of the filter.
1040 	 */
1041 	bpf_jit_compile(fp);
1042 
1043 	/* JIT compiler couldn't process this filter, so do the
1044 	 * internal BPF translation for the optimized interpreter.
1045 	 */
1046 	if (!fp->jited)
1047 		fp = bpf_migrate_filter(fp);
1048 
1049 	return fp;
1050 }
1051 
1052 /**
1053  *	bpf_prog_create - create an unattached filter
1054  *	@pfp: the unattached filter that is created
1055  *	@fprog: the filter program
1056  *
1057  * Create a filter independent of any socket. We first run some
1058  * sanity checks on it to make sure it does not explode on us later.
1059  * If an error occurs or there is insufficient memory for the filter
1060  * a negative errno code is returned. On success the return is zero.
1061  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1062 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1063 {
1064 	unsigned int fsize = bpf_classic_proglen(fprog);
1065 	struct bpf_prog *fp;
1066 
1067 	/* Make sure new filter is there and in the right amounts. */
1068 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1069 		return -EINVAL;
1070 
1071 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1072 	if (!fp)
1073 		return -ENOMEM;
1074 
1075 	memcpy(fp->insns, fprog->filter, fsize);
1076 
1077 	fp->len = fprog->len;
1078 	/* Since unattached filters are not copied back to user
1079 	 * space through sk_get_filter(), we do not need to hold
1080 	 * a copy here, and can spare us the work.
1081 	 */
1082 	fp->orig_prog = NULL;
1083 
1084 	/* bpf_prepare_filter() already takes care of freeing
1085 	 * memory in case something goes wrong.
1086 	 */
1087 	fp = bpf_prepare_filter(fp, NULL);
1088 	if (IS_ERR(fp))
1089 		return PTR_ERR(fp);
1090 
1091 	*pfp = fp;
1092 	return 0;
1093 }
1094 EXPORT_SYMBOL_GPL(bpf_prog_create);
1095 
1096 /**
1097  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1098  *	@pfp: the unattached filter that is created
1099  *	@fprog: the filter program
1100  *	@trans: post-classic verifier transformation handler
1101  *	@save_orig: save classic BPF program
1102  *
1103  * This function effectively does the same as bpf_prog_create(), only
1104  * that it builds up its insns buffer from user space provided buffer.
1105  * It also allows for passing a bpf_aux_classic_check_t handler.
1106  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1107 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1108 			      bpf_aux_classic_check_t trans, bool save_orig)
1109 {
1110 	unsigned int fsize = bpf_classic_proglen(fprog);
1111 	struct bpf_prog *fp;
1112 	int err;
1113 
1114 	/* Make sure new filter is there and in the right amounts. */
1115 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1116 		return -EINVAL;
1117 
1118 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1119 	if (!fp)
1120 		return -ENOMEM;
1121 
1122 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1123 		__bpf_prog_free(fp);
1124 		return -EFAULT;
1125 	}
1126 
1127 	fp->len = fprog->len;
1128 	fp->orig_prog = NULL;
1129 
1130 	if (save_orig) {
1131 		err = bpf_prog_store_orig_filter(fp, fprog);
1132 		if (err) {
1133 			__bpf_prog_free(fp);
1134 			return -ENOMEM;
1135 		}
1136 	}
1137 
1138 	/* bpf_prepare_filter() already takes care of freeing
1139 	 * memory in case something goes wrong.
1140 	 */
1141 	fp = bpf_prepare_filter(fp, trans);
1142 	if (IS_ERR(fp))
1143 		return PTR_ERR(fp);
1144 
1145 	*pfp = fp;
1146 	return 0;
1147 }
1148 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1149 
bpf_prog_destroy(struct bpf_prog * fp)1150 void bpf_prog_destroy(struct bpf_prog *fp)
1151 {
1152 	__bpf_prog_release(fp);
1153 }
1154 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1155 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk,bool locked)1156 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk,
1157 			    bool locked)
1158 {
1159 	struct sk_filter *fp, *old_fp;
1160 
1161 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1162 	if (!fp)
1163 		return -ENOMEM;
1164 
1165 	fp->prog = prog;
1166 	atomic_set(&fp->refcnt, 0);
1167 
1168 	if (!sk_filter_charge(sk, fp)) {
1169 		kfree(fp);
1170 		return -ENOMEM;
1171 	}
1172 
1173 	old_fp = rcu_dereference_protected(sk->sk_filter, locked);
1174 	rcu_assign_pointer(sk->sk_filter, fp);
1175 	if (old_fp)
1176 		sk_filter_uncharge(sk, old_fp);
1177 
1178 	return 0;
1179 }
1180 
1181 /**
1182  *	sk_attach_filter - attach a socket filter
1183  *	@fprog: the filter program
1184  *	@sk: the socket to use
1185  *
1186  * Attach the user's filter code. We first run some sanity checks on
1187  * it to make sure it does not explode on us later. If an error
1188  * occurs or there is insufficient memory for the filter a negative
1189  * errno code is returned. On success the return is zero.
1190  */
__sk_attach_filter(struct sock_fprog * fprog,struct sock * sk,bool locked)1191 int __sk_attach_filter(struct sock_fprog *fprog, struct sock *sk,
1192 		       bool locked)
1193 {
1194 	unsigned int fsize = bpf_classic_proglen(fprog);
1195 	struct bpf_prog *prog;
1196 	int err;
1197 
1198 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1199 		return -EPERM;
1200 
1201 	/* Make sure new filter is there and in the right amounts. */
1202 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1203 		return -EINVAL;
1204 
1205 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1206 	if (!prog)
1207 		return -ENOMEM;
1208 
1209 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1210 		__bpf_prog_free(prog);
1211 		return -EFAULT;
1212 	}
1213 
1214 	prog->len = fprog->len;
1215 
1216 	err = bpf_prog_store_orig_filter(prog, fprog);
1217 	if (err) {
1218 		__bpf_prog_free(prog);
1219 		return -ENOMEM;
1220 	}
1221 
1222 	/* bpf_prepare_filter() already takes care of freeing
1223 	 * memory in case something goes wrong.
1224 	 */
1225 	prog = bpf_prepare_filter(prog, NULL);
1226 	if (IS_ERR(prog))
1227 		return PTR_ERR(prog);
1228 
1229 	err = __sk_attach_prog(prog, sk, locked);
1230 	if (err < 0) {
1231 		__bpf_prog_release(prog);
1232 		return err;
1233 	}
1234 
1235 	return 0;
1236 }
1237 EXPORT_SYMBOL_GPL(__sk_attach_filter);
1238 
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1239 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1240 {
1241 	return __sk_attach_filter(fprog, sk, sock_owned_by_user(sk));
1242 }
1243 
sk_attach_bpf(u32 ufd,struct sock * sk)1244 int sk_attach_bpf(u32 ufd, struct sock *sk)
1245 {
1246 	struct bpf_prog *prog;
1247 	int err;
1248 
1249 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1250 		return -EPERM;
1251 
1252 	prog = bpf_prog_get(ufd);
1253 	if (IS_ERR(prog))
1254 		return PTR_ERR(prog);
1255 
1256 	if (prog->type != BPF_PROG_TYPE_SOCKET_FILTER) {
1257 		bpf_prog_put(prog);
1258 		return -EINVAL;
1259 	}
1260 
1261 	err = __sk_attach_prog(prog, sk, sock_owned_by_user(sk));
1262 	if (err < 0) {
1263 		bpf_prog_put(prog);
1264 		return err;
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 #define BPF_RECOMPUTE_CSUM(flags)	((flags) & 1)
1271 
bpf_skb_store_bytes(u64 r1,u64 r2,u64 r3,u64 r4,u64 flags)1272 static u64 bpf_skb_store_bytes(u64 r1, u64 r2, u64 r3, u64 r4, u64 flags)
1273 {
1274 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1275 	int offset = (int) r2;
1276 	void *from = (void *) (long) r3;
1277 	unsigned int len = (unsigned int) r4;
1278 	char buf[16];
1279 	void *ptr;
1280 
1281 	/* bpf verifier guarantees that:
1282 	 * 'from' pointer points to bpf program stack
1283 	 * 'len' bytes of it were initialized
1284 	 * 'len' > 0
1285 	 * 'skb' is a valid pointer to 'struct sk_buff'
1286 	 *
1287 	 * so check for invalid 'offset' and too large 'len'
1288 	 */
1289 	if (unlikely((u32) offset > 0xffff || len > sizeof(buf)))
1290 		return -EFAULT;
1291 	if (unlikely(skb_try_make_writable(skb, offset + len)))
1292 		return -EFAULT;
1293 
1294 	ptr = skb_header_pointer(skb, offset, len, buf);
1295 	if (unlikely(!ptr))
1296 		return -EFAULT;
1297 
1298 	if (BPF_RECOMPUTE_CSUM(flags))
1299 		skb_postpull_rcsum(skb, ptr, len);
1300 
1301 	memcpy(ptr, from, len);
1302 
1303 	if (ptr == buf)
1304 		/* skb_store_bits cannot return -EFAULT here */
1305 		skb_store_bits(skb, offset, ptr, len);
1306 
1307 	if (BPF_RECOMPUTE_CSUM(flags) && skb->ip_summed == CHECKSUM_COMPLETE)
1308 		skb->csum = csum_add(skb->csum, csum_partial(ptr, len, 0));
1309 	return 0;
1310 }
1311 
1312 const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1313 	.func		= bpf_skb_store_bytes,
1314 	.gpl_only	= false,
1315 	.ret_type	= RET_INTEGER,
1316 	.arg1_type	= ARG_PTR_TO_CTX,
1317 	.arg2_type	= ARG_ANYTHING,
1318 	.arg3_type	= ARG_PTR_TO_STACK,
1319 	.arg4_type	= ARG_CONST_STACK_SIZE,
1320 	.arg5_type	= ARG_ANYTHING,
1321 };
1322 
1323 #define BPF_HEADER_FIELD_SIZE(flags)	((flags) & 0x0f)
1324 #define BPF_IS_PSEUDO_HEADER(flags)	((flags) & 0x10)
1325 
bpf_l3_csum_replace(u64 r1,u64 r2,u64 from,u64 to,u64 flags)1326 static u64 bpf_l3_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1327 {
1328 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1329 	int offset = (int) r2;
1330 	__sum16 sum, *ptr;
1331 
1332 	if (unlikely((u32) offset > 0xffff))
1333 		return -EFAULT;
1334 
1335 	if (unlikely(skb_try_make_writable(skb, offset + sizeof(sum))))
1336 		return -EFAULT;
1337 
1338 	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1339 	if (unlikely(!ptr))
1340 		return -EFAULT;
1341 
1342 	switch (BPF_HEADER_FIELD_SIZE(flags)) {
1343 	case 2:
1344 		csum_replace2(ptr, from, to);
1345 		break;
1346 	case 4:
1347 		csum_replace4(ptr, from, to);
1348 		break;
1349 	default:
1350 		return -EINVAL;
1351 	}
1352 
1353 	if (ptr == &sum)
1354 		/* skb_store_bits guaranteed to not return -EFAULT here */
1355 		skb_store_bits(skb, offset, ptr, sizeof(sum));
1356 
1357 	return 0;
1358 }
1359 
1360 const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1361 	.func		= bpf_l3_csum_replace,
1362 	.gpl_only	= false,
1363 	.ret_type	= RET_INTEGER,
1364 	.arg1_type	= ARG_PTR_TO_CTX,
1365 	.arg2_type	= ARG_ANYTHING,
1366 	.arg3_type	= ARG_ANYTHING,
1367 	.arg4_type	= ARG_ANYTHING,
1368 	.arg5_type	= ARG_ANYTHING,
1369 };
1370 
bpf_l4_csum_replace(u64 r1,u64 r2,u64 from,u64 to,u64 flags)1371 static u64 bpf_l4_csum_replace(u64 r1, u64 r2, u64 from, u64 to, u64 flags)
1372 {
1373 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1374 	bool is_pseudo = !!BPF_IS_PSEUDO_HEADER(flags);
1375 	int offset = (int) r2;
1376 	__sum16 sum, *ptr;
1377 
1378 	if (unlikely((u32) offset > 0xffff))
1379 		return -EFAULT;
1380 	if (unlikely(skb_try_make_writable(skb, offset + sizeof(sum))))
1381 		return -EFAULT;
1382 
1383 	ptr = skb_header_pointer(skb, offset, sizeof(sum), &sum);
1384 	if (unlikely(!ptr))
1385 		return -EFAULT;
1386 
1387 	switch (BPF_HEADER_FIELD_SIZE(flags)) {
1388 	case 2:
1389 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1390 		break;
1391 	case 4:
1392 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1393 		break;
1394 	default:
1395 		return -EINVAL;
1396 	}
1397 
1398 	if (ptr == &sum)
1399 		/* skb_store_bits guaranteed to not return -EFAULT here */
1400 		skb_store_bits(skb, offset, ptr, sizeof(sum));
1401 
1402 	return 0;
1403 }
1404 
1405 const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1406 	.func		= bpf_l4_csum_replace,
1407 	.gpl_only	= false,
1408 	.ret_type	= RET_INTEGER,
1409 	.arg1_type	= ARG_PTR_TO_CTX,
1410 	.arg2_type	= ARG_ANYTHING,
1411 	.arg3_type	= ARG_ANYTHING,
1412 	.arg4_type	= ARG_ANYTHING,
1413 	.arg5_type	= ARG_ANYTHING,
1414 };
1415 
1416 #define BPF_IS_REDIRECT_INGRESS(flags)	((flags) & 1)
1417 
bpf_clone_redirect(u64 r1,u64 ifindex,u64 flags,u64 r4,u64 r5)1418 static u64 bpf_clone_redirect(u64 r1, u64 ifindex, u64 flags, u64 r4, u64 r5)
1419 {
1420 	struct sk_buff *skb = (struct sk_buff *) (long) r1, *skb2;
1421 	struct net_device *dev;
1422 
1423 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1424 	if (unlikely(!dev))
1425 		return -EINVAL;
1426 
1427 	skb2 = skb_clone(skb, GFP_ATOMIC);
1428 	if (unlikely(!skb2))
1429 		return -ENOMEM;
1430 
1431 	if (BPF_IS_REDIRECT_INGRESS(flags))
1432 		return dev_forward_skb(dev, skb2);
1433 
1434 	skb2->dev = dev;
1435 	skb_sender_cpu_clear(skb2);
1436 	return dev_queue_xmit(skb2);
1437 }
1438 
1439 const struct bpf_func_proto bpf_clone_redirect_proto = {
1440 	.func           = bpf_clone_redirect,
1441 	.gpl_only       = false,
1442 	.ret_type       = RET_INTEGER,
1443 	.arg1_type      = ARG_PTR_TO_CTX,
1444 	.arg2_type      = ARG_ANYTHING,
1445 	.arg3_type      = ARG_ANYTHING,
1446 };
1447 
1448 struct redirect_info {
1449 	u32 ifindex;
1450 	u32 flags;
1451 };
1452 
1453 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
bpf_redirect(u64 ifindex,u64 flags,u64 r3,u64 r4,u64 r5)1454 static u64 bpf_redirect(u64 ifindex, u64 flags, u64 r3, u64 r4, u64 r5)
1455 {
1456 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1457 
1458 	ri->ifindex = ifindex;
1459 	ri->flags = flags;
1460 	return TC_ACT_REDIRECT;
1461 }
1462 
skb_do_redirect(struct sk_buff * skb)1463 int skb_do_redirect(struct sk_buff *skb)
1464 {
1465 	struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1466 	struct net_device *dev;
1467 
1468 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1469 	ri->ifindex = 0;
1470 	if (unlikely(!dev)) {
1471 		kfree_skb(skb);
1472 		return -EINVAL;
1473 	}
1474 
1475 	if (BPF_IS_REDIRECT_INGRESS(ri->flags))
1476 		return dev_forward_skb(dev, skb);
1477 
1478 	skb->dev = dev;
1479 	skb_sender_cpu_clear(skb);
1480 	return dev_queue_xmit(skb);
1481 }
1482 
1483 const struct bpf_func_proto bpf_redirect_proto = {
1484 	.func           = bpf_redirect,
1485 	.gpl_only       = false,
1486 	.ret_type       = RET_INTEGER,
1487 	.arg1_type      = ARG_ANYTHING,
1488 	.arg2_type      = ARG_ANYTHING,
1489 };
1490 
bpf_get_cgroup_classid(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1491 static u64 bpf_get_cgroup_classid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1492 {
1493 	return task_get_classid((struct sk_buff *) (unsigned long) r1);
1494 }
1495 
1496 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
1497 	.func           = bpf_get_cgroup_classid,
1498 	.gpl_only       = false,
1499 	.ret_type       = RET_INTEGER,
1500 	.arg1_type      = ARG_PTR_TO_CTX,
1501 };
1502 
bpf_get_route_realm(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1503 static u64 bpf_get_route_realm(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1504 {
1505 #ifdef CONFIG_IP_ROUTE_CLASSID
1506 	const struct dst_entry *dst;
1507 
1508 	dst = skb_dst((struct sk_buff *) (unsigned long) r1);
1509 	if (dst)
1510 		return dst->tclassid;
1511 #endif
1512 	return 0;
1513 }
1514 
1515 static const struct bpf_func_proto bpf_get_route_realm_proto = {
1516 	.func           = bpf_get_route_realm,
1517 	.gpl_only       = false,
1518 	.ret_type       = RET_INTEGER,
1519 	.arg1_type      = ARG_PTR_TO_CTX,
1520 };
1521 
bpf_skb_vlan_push(u64 r1,u64 r2,u64 vlan_tci,u64 r4,u64 r5)1522 static u64 bpf_skb_vlan_push(u64 r1, u64 r2, u64 vlan_tci, u64 r4, u64 r5)
1523 {
1524 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1525 	__be16 vlan_proto = (__force __be16) r2;
1526 
1527 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
1528 		     vlan_proto != htons(ETH_P_8021AD)))
1529 		vlan_proto = htons(ETH_P_8021Q);
1530 
1531 	return skb_vlan_push(skb, vlan_proto, vlan_tci);
1532 }
1533 
1534 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
1535 	.func           = bpf_skb_vlan_push,
1536 	.gpl_only       = false,
1537 	.ret_type       = RET_INTEGER,
1538 	.arg1_type      = ARG_PTR_TO_CTX,
1539 	.arg2_type      = ARG_ANYTHING,
1540 	.arg3_type      = ARG_ANYTHING,
1541 };
1542 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
1543 
bpf_skb_vlan_pop(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1544 static u64 bpf_skb_vlan_pop(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1545 {
1546 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1547 
1548 	return skb_vlan_pop(skb);
1549 }
1550 
1551 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
1552 	.func           = bpf_skb_vlan_pop,
1553 	.gpl_only       = false,
1554 	.ret_type       = RET_INTEGER,
1555 	.arg1_type      = ARG_PTR_TO_CTX,
1556 };
1557 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
1558 
bpf_helper_changes_skb_data(void * func)1559 bool bpf_helper_changes_skb_data(void *func)
1560 {
1561 	if (func == bpf_skb_vlan_push)
1562 		return true;
1563 	if (func == bpf_skb_vlan_pop)
1564 		return true;
1565 	if (func == bpf_skb_store_bytes)
1566 		return true;
1567 	if (func == bpf_l3_csum_replace)
1568 		return true;
1569 	if (func == bpf_l4_csum_replace)
1570 		return true;
1571 
1572 	return false;
1573 }
1574 
bpf_skb_get_tunnel_key(u64 r1,u64 r2,u64 size,u64 flags,u64 r5)1575 static u64 bpf_skb_get_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1576 {
1577 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1578 	struct bpf_tunnel_key *to = (struct bpf_tunnel_key *) (long) r2;
1579 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
1580 
1581 	if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags || !info))
1582 		return -EINVAL;
1583 	if (ip_tunnel_info_af(info) != AF_INET)
1584 		return -EINVAL;
1585 
1586 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
1587 	to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
1588 
1589 	return 0;
1590 }
1591 
1592 const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
1593 	.func		= bpf_skb_get_tunnel_key,
1594 	.gpl_only	= false,
1595 	.ret_type	= RET_INTEGER,
1596 	.arg1_type	= ARG_PTR_TO_CTX,
1597 	.arg2_type	= ARG_PTR_TO_STACK,
1598 	.arg3_type	= ARG_CONST_STACK_SIZE,
1599 	.arg4_type	= ARG_ANYTHING,
1600 };
1601 
1602 static struct metadata_dst __percpu *md_dst;
1603 
bpf_skb_set_tunnel_key(u64 r1,u64 r2,u64 size,u64 flags,u64 r5)1604 static u64 bpf_skb_set_tunnel_key(u64 r1, u64 r2, u64 size, u64 flags, u64 r5)
1605 {
1606 	struct sk_buff *skb = (struct sk_buff *) (long) r1;
1607 	struct bpf_tunnel_key *from = (struct bpf_tunnel_key *) (long) r2;
1608 	struct metadata_dst *md = this_cpu_ptr(md_dst);
1609 	struct ip_tunnel_info *info;
1610 
1611 	if (unlikely(size != sizeof(struct bpf_tunnel_key) || flags))
1612 		return -EINVAL;
1613 
1614 	skb_dst_drop(skb);
1615 	dst_hold((struct dst_entry *) md);
1616 	skb_dst_set(skb, (struct dst_entry *) md);
1617 
1618 	info = &md->u.tun_info;
1619 	info->mode = IP_TUNNEL_INFO_TX;
1620 	info->key.tun_flags = TUNNEL_KEY;
1621 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
1622 	info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
1623 
1624 	return 0;
1625 }
1626 
1627 const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
1628 	.func		= bpf_skb_set_tunnel_key,
1629 	.gpl_only	= false,
1630 	.ret_type	= RET_INTEGER,
1631 	.arg1_type	= ARG_PTR_TO_CTX,
1632 	.arg2_type	= ARG_PTR_TO_STACK,
1633 	.arg3_type	= ARG_CONST_STACK_SIZE,
1634 	.arg4_type	= ARG_ANYTHING,
1635 };
1636 
bpf_get_skb_set_tunnel_key_proto(void)1637 static const struct bpf_func_proto *bpf_get_skb_set_tunnel_key_proto(void)
1638 {
1639 	if (!md_dst) {
1640 		/* race is not possible, since it's called from
1641 		 * verifier that is holding verifier mutex
1642 		 */
1643 		md_dst = metadata_dst_alloc_percpu(0, GFP_KERNEL);
1644 		if (!md_dst)
1645 			return NULL;
1646 	}
1647 	return &bpf_skb_set_tunnel_key_proto;
1648 }
1649 
1650 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id)1651 sk_filter_func_proto(enum bpf_func_id func_id)
1652 {
1653 	switch (func_id) {
1654 	case BPF_FUNC_map_lookup_elem:
1655 		return &bpf_map_lookup_elem_proto;
1656 	case BPF_FUNC_map_update_elem:
1657 		return &bpf_map_update_elem_proto;
1658 	case BPF_FUNC_map_delete_elem:
1659 		return &bpf_map_delete_elem_proto;
1660 	case BPF_FUNC_get_prandom_u32:
1661 		return &bpf_get_prandom_u32_proto;
1662 	case BPF_FUNC_get_smp_processor_id:
1663 		return &bpf_get_smp_processor_id_proto;
1664 	case BPF_FUNC_tail_call:
1665 		return &bpf_tail_call_proto;
1666 	case BPF_FUNC_ktime_get_ns:
1667 		return &bpf_ktime_get_ns_proto;
1668 	case BPF_FUNC_trace_printk:
1669 		if (capable(CAP_SYS_ADMIN))
1670 			return bpf_get_trace_printk_proto();
1671 	default:
1672 		return NULL;
1673 	}
1674 }
1675 
1676 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id)1677 tc_cls_act_func_proto(enum bpf_func_id func_id)
1678 {
1679 	switch (func_id) {
1680 	case BPF_FUNC_skb_store_bytes:
1681 		return &bpf_skb_store_bytes_proto;
1682 	case BPF_FUNC_l3_csum_replace:
1683 		return &bpf_l3_csum_replace_proto;
1684 	case BPF_FUNC_l4_csum_replace:
1685 		return &bpf_l4_csum_replace_proto;
1686 	case BPF_FUNC_clone_redirect:
1687 		return &bpf_clone_redirect_proto;
1688 	case BPF_FUNC_get_cgroup_classid:
1689 		return &bpf_get_cgroup_classid_proto;
1690 	case BPF_FUNC_skb_vlan_push:
1691 		return &bpf_skb_vlan_push_proto;
1692 	case BPF_FUNC_skb_vlan_pop:
1693 		return &bpf_skb_vlan_pop_proto;
1694 	case BPF_FUNC_skb_get_tunnel_key:
1695 		return &bpf_skb_get_tunnel_key_proto;
1696 	case BPF_FUNC_skb_set_tunnel_key:
1697 		return bpf_get_skb_set_tunnel_key_proto();
1698 	case BPF_FUNC_redirect:
1699 		return &bpf_redirect_proto;
1700 	case BPF_FUNC_get_route_realm:
1701 		return &bpf_get_route_realm_proto;
1702 	default:
1703 		return sk_filter_func_proto(func_id);
1704 	}
1705 }
1706 
__is_valid_access(int off,int size,enum bpf_access_type type)1707 static bool __is_valid_access(int off, int size, enum bpf_access_type type)
1708 {
1709 	/* check bounds */
1710 	if (off < 0 || off >= sizeof(struct __sk_buff))
1711 		return false;
1712 
1713 	/* disallow misaligned access */
1714 	if (off % size != 0)
1715 		return false;
1716 
1717 	/* all __sk_buff fields are __u32 */
1718 	if (size != 4)
1719 		return false;
1720 
1721 	return true;
1722 }
1723 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type)1724 static bool sk_filter_is_valid_access(int off, int size,
1725 				      enum bpf_access_type type)
1726 {
1727 	if (off == offsetof(struct __sk_buff, tc_classid))
1728 		return false;
1729 
1730 	if (type == BPF_WRITE) {
1731 		switch (off) {
1732 		case offsetof(struct __sk_buff, cb[0]) ...
1733 			offsetof(struct __sk_buff, cb[4]):
1734 			break;
1735 		default:
1736 			return false;
1737 		}
1738 	}
1739 
1740 	return __is_valid_access(off, size, type);
1741 }
1742 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type)1743 static bool tc_cls_act_is_valid_access(int off, int size,
1744 				       enum bpf_access_type type)
1745 {
1746 	if (off == offsetof(struct __sk_buff, tc_classid))
1747 		return type == BPF_WRITE ? true : false;
1748 
1749 	if (type == BPF_WRITE) {
1750 		switch (off) {
1751 		case offsetof(struct __sk_buff, mark):
1752 		case offsetof(struct __sk_buff, tc_index):
1753 		case offsetof(struct __sk_buff, priority):
1754 		case offsetof(struct __sk_buff, cb[0]) ...
1755 			offsetof(struct __sk_buff, cb[4]):
1756 			break;
1757 		default:
1758 			return false;
1759 		}
1760 	}
1761 	return __is_valid_access(off, size, type);
1762 }
1763 
bpf_net_convert_ctx_access(enum bpf_access_type type,int dst_reg,int src_reg,int ctx_off,struct bpf_insn * insn_buf,struct bpf_prog * prog)1764 static u32 bpf_net_convert_ctx_access(enum bpf_access_type type, int dst_reg,
1765 				      int src_reg, int ctx_off,
1766 				      struct bpf_insn *insn_buf,
1767 				      struct bpf_prog *prog)
1768 {
1769 	struct bpf_insn *insn = insn_buf;
1770 
1771 	switch (ctx_off) {
1772 	case offsetof(struct __sk_buff, len):
1773 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
1774 
1775 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1776 				      offsetof(struct sk_buff, len));
1777 		break;
1778 
1779 	case offsetof(struct __sk_buff, protocol):
1780 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
1781 
1782 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1783 				      offsetof(struct sk_buff, protocol));
1784 		break;
1785 
1786 	case offsetof(struct __sk_buff, vlan_proto):
1787 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
1788 
1789 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1790 				      offsetof(struct sk_buff, vlan_proto));
1791 		break;
1792 
1793 	case offsetof(struct __sk_buff, priority):
1794 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, priority) != 4);
1795 
1796 		if (type == BPF_WRITE)
1797 			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
1798 					      offsetof(struct sk_buff, priority));
1799 		else
1800 			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1801 					      offsetof(struct sk_buff, priority));
1802 		break;
1803 
1804 	case offsetof(struct __sk_buff, ingress_ifindex):
1805 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, skb_iif) != 4);
1806 
1807 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1808 				      offsetof(struct sk_buff, skb_iif));
1809 		break;
1810 
1811 	case offsetof(struct __sk_buff, ifindex):
1812 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
1813 
1814 		*insn++ = BPF_LDX_MEM(bytes_to_bpf_size(FIELD_SIZEOF(struct sk_buff, dev)),
1815 				      dst_reg, src_reg,
1816 				      offsetof(struct sk_buff, dev));
1817 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
1818 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, dst_reg,
1819 				      offsetof(struct net_device, ifindex));
1820 		break;
1821 
1822 	case offsetof(struct __sk_buff, hash):
1823 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
1824 
1825 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1826 				      offsetof(struct sk_buff, hash));
1827 		break;
1828 
1829 	case offsetof(struct __sk_buff, mark):
1830 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
1831 
1832 		if (type == BPF_WRITE)
1833 			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg,
1834 					      offsetof(struct sk_buff, mark));
1835 		else
1836 			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
1837 					      offsetof(struct sk_buff, mark));
1838 		break;
1839 
1840 	case offsetof(struct __sk_buff, pkt_type):
1841 		return convert_skb_access(SKF_AD_PKTTYPE, dst_reg, src_reg, insn);
1842 
1843 	case offsetof(struct __sk_buff, queue_mapping):
1844 		return convert_skb_access(SKF_AD_QUEUE, dst_reg, src_reg, insn);
1845 
1846 	case offsetof(struct __sk_buff, vlan_present):
1847 		return convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
1848 					  dst_reg, src_reg, insn);
1849 
1850 	case offsetof(struct __sk_buff, vlan_tci):
1851 		return convert_skb_access(SKF_AD_VLAN_TAG,
1852 					  dst_reg, src_reg, insn);
1853 
1854 	case offsetof(struct __sk_buff, cb[0]) ...
1855 		offsetof(struct __sk_buff, cb[4]):
1856 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
1857 
1858 		prog->cb_access = 1;
1859 		ctx_off -= offsetof(struct __sk_buff, cb[0]);
1860 		ctx_off += offsetof(struct sk_buff, cb);
1861 		ctx_off += offsetof(struct qdisc_skb_cb, data);
1862 		if (type == BPF_WRITE)
1863 			*insn++ = BPF_STX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
1864 		else
1865 			*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, ctx_off);
1866 		break;
1867 
1868 	case offsetof(struct __sk_buff, tc_classid):
1869 		ctx_off -= offsetof(struct __sk_buff, tc_classid);
1870 		ctx_off += offsetof(struct sk_buff, cb);
1871 		ctx_off += offsetof(struct qdisc_skb_cb, tc_classid);
1872 		WARN_ON(type != BPF_WRITE);
1873 		*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg, ctx_off);
1874 		break;
1875 
1876 	case offsetof(struct __sk_buff, tc_index):
1877 #ifdef CONFIG_NET_SCHED
1878 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tc_index) != 2);
1879 
1880 		if (type == BPF_WRITE)
1881 			*insn++ = BPF_STX_MEM(BPF_H, dst_reg, src_reg,
1882 					      offsetof(struct sk_buff, tc_index));
1883 		else
1884 			*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
1885 					      offsetof(struct sk_buff, tc_index));
1886 		break;
1887 #else
1888 		if (type == BPF_WRITE)
1889 			*insn++ = BPF_MOV64_REG(dst_reg, dst_reg);
1890 		else
1891 			*insn++ = BPF_MOV64_IMM(dst_reg, 0);
1892 		break;
1893 #endif
1894 	}
1895 
1896 	return insn - insn_buf;
1897 }
1898 
1899 static const struct bpf_verifier_ops sk_filter_ops = {
1900 	.get_func_proto = sk_filter_func_proto,
1901 	.is_valid_access = sk_filter_is_valid_access,
1902 	.convert_ctx_access = bpf_net_convert_ctx_access,
1903 };
1904 
1905 static const struct bpf_verifier_ops tc_cls_act_ops = {
1906 	.get_func_proto = tc_cls_act_func_proto,
1907 	.is_valid_access = tc_cls_act_is_valid_access,
1908 	.convert_ctx_access = bpf_net_convert_ctx_access,
1909 };
1910 
1911 static struct bpf_prog_type_list sk_filter_type __read_mostly = {
1912 	.ops = &sk_filter_ops,
1913 	.type = BPF_PROG_TYPE_SOCKET_FILTER,
1914 };
1915 
1916 static struct bpf_prog_type_list sched_cls_type __read_mostly = {
1917 	.ops = &tc_cls_act_ops,
1918 	.type = BPF_PROG_TYPE_SCHED_CLS,
1919 };
1920 
1921 static struct bpf_prog_type_list sched_act_type __read_mostly = {
1922 	.ops = &tc_cls_act_ops,
1923 	.type = BPF_PROG_TYPE_SCHED_ACT,
1924 };
1925 
register_sk_filter_ops(void)1926 static int __init register_sk_filter_ops(void)
1927 {
1928 	bpf_register_prog_type(&sk_filter_type);
1929 	bpf_register_prog_type(&sched_cls_type);
1930 	bpf_register_prog_type(&sched_act_type);
1931 
1932 	return 0;
1933 }
1934 late_initcall(register_sk_filter_ops);
1935 
__sk_detach_filter(struct sock * sk,bool locked)1936 int __sk_detach_filter(struct sock *sk, bool locked)
1937 {
1938 	int ret = -ENOENT;
1939 	struct sk_filter *filter;
1940 
1941 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1942 		return -EPERM;
1943 
1944 	filter = rcu_dereference_protected(sk->sk_filter, locked);
1945 	if (filter) {
1946 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1947 		sk_filter_uncharge(sk, filter);
1948 		ret = 0;
1949 	}
1950 
1951 	return ret;
1952 }
1953 EXPORT_SYMBOL_GPL(__sk_detach_filter);
1954 
sk_detach_filter(struct sock * sk)1955 int sk_detach_filter(struct sock *sk)
1956 {
1957 	return __sk_detach_filter(sk, sock_owned_by_user(sk));
1958 }
1959 
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)1960 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
1961 		  unsigned int len)
1962 {
1963 	struct sock_fprog_kern *fprog;
1964 	struct sk_filter *filter;
1965 	int ret = 0;
1966 
1967 	lock_sock(sk);
1968 	filter = rcu_dereference_protected(sk->sk_filter,
1969 					   sock_owned_by_user(sk));
1970 	if (!filter)
1971 		goto out;
1972 
1973 	/* We're copying the filter that has been originally attached,
1974 	 * so no conversion/decode needed anymore. eBPF programs that
1975 	 * have no original program cannot be dumped through this.
1976 	 */
1977 	ret = -EACCES;
1978 	fprog = filter->prog->orig_prog;
1979 	if (!fprog)
1980 		goto out;
1981 
1982 	ret = fprog->len;
1983 	if (!len)
1984 		/* User space only enquires number of filter blocks. */
1985 		goto out;
1986 
1987 	ret = -EINVAL;
1988 	if (len < fprog->len)
1989 		goto out;
1990 
1991 	ret = -EFAULT;
1992 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
1993 		goto out;
1994 
1995 	/* Instead of bytes, the API requests to return the number
1996 	 * of filter blocks.
1997 	 */
1998 	ret = fprog->len;
1999 out:
2000 	release_sock(sk);
2001 	return ret;
2002 }
2003