• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *
3  *	(C)Copyright 1998,1999 SysKonnect,
4  *	a business unit of Schneider & Koch & Co. Datensysteme GmbH.
5  *
6  *	See the file "skfddi.c" for further information.
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  *
13  *	The information in this file is provided "AS IS" without warranty.
14  *
15  ******************************************************************************/
16 
17 /*
18 	PCM
19 	Physical Connection Management
20 */
21 
22 /*
23  * Hardware independent state machine implemantation
24  * The following external SMT functions are referenced :
25  *
26  * 		queue_event()
27  * 		smt_timer_start()
28  * 		smt_timer_stop()
29  *
30  * 	The following external HW dependent functions are referenced :
31  * 		sm_pm_control()
32  *		sm_ph_linestate()
33  *		sm_pm_ls_latch()
34  *
35  * 	The following HW dependent events are required :
36  *		PC_QLS
37  *		PC_ILS
38  *		PC_HLS
39  *		PC_MLS
40  *		PC_NSE
41  *		PC_LEM
42  *
43  */
44 
45 
46 #include "h/types.h"
47 #include "h/fddi.h"
48 #include "h/smc.h"
49 #include "h/supern_2.h"
50 #define KERNEL
51 #include "h/smtstate.h"
52 
53 #ifndef	lint
54 static const char ID_sccs[] = "@(#)pcmplc.c	2.55 99/08/05 (C) SK " ;
55 #endif
56 
57 #ifdef	FDDI_MIB
58 extern int snmp_fddi_trap(
59 #ifdef	ANSIC
60 struct s_smc	* smc, int  type, int  index
61 #endif
62 );
63 #endif
64 #ifdef	CONCENTRATOR
65 extern int plc_is_installed(
66 #ifdef	ANSIC
67 struct s_smc *smc ,
68 int p
69 #endif
70 ) ;
71 #endif
72 /*
73  * FSM Macros
74  */
75 #define AFLAG		(0x20)
76 #define GO_STATE(x)	(mib->fddiPORTPCMState = (x)|AFLAG)
77 #define ACTIONS_DONE()	(mib->fddiPORTPCMState &= ~AFLAG)
78 #define ACTIONS(x)	(x|AFLAG)
79 
80 /*
81  * PCM states
82  */
83 #define PC0_OFF			0
84 #define PC1_BREAK		1
85 #define PC2_TRACE		2
86 #define PC3_CONNECT		3
87 #define PC4_NEXT		4
88 #define PC5_SIGNAL		5
89 #define PC6_JOIN		6
90 #define PC7_VERIFY		7
91 #define PC8_ACTIVE		8
92 #define PC9_MAINT		9
93 
94 #ifdef	DEBUG
95 /*
96  * symbolic state names
97  */
98 static const char * const pcm_states[] =  {
99 	"PC0_OFF","PC1_BREAK","PC2_TRACE","PC3_CONNECT","PC4_NEXT",
100 	"PC5_SIGNAL","PC6_JOIN","PC7_VERIFY","PC8_ACTIVE","PC9_MAINT"
101 } ;
102 
103 /*
104  * symbolic event names
105  */
106 static const char * const pcm_events[] = {
107 	"NONE","PC_START","PC_STOP","PC_LOOP","PC_JOIN","PC_SIGNAL",
108 	"PC_REJECT","PC_MAINT","PC_TRACE","PC_PDR",
109 	"PC_ENABLE","PC_DISABLE",
110 	"PC_QLS","PC_ILS","PC_MLS","PC_HLS","PC_LS_PDR","PC_LS_NONE",
111 	"PC_TIMEOUT_TB_MAX","PC_TIMEOUT_TB_MIN",
112 	"PC_TIMEOUT_C_MIN","PC_TIMEOUT_T_OUT",
113 	"PC_TIMEOUT_TL_MIN","PC_TIMEOUT_T_NEXT","PC_TIMEOUT_LCT",
114 	"PC_NSE","PC_LEM"
115 } ;
116 #endif
117 
118 #ifdef	MOT_ELM
119 /*
120  * PCL-S control register
121  * this register in the PLC-S controls the scrambling parameters
122  */
123 #define PLCS_CONTROL_C_U	0
124 #define PLCS_CONTROL_C_S	(PL_C_SDOFF_ENABLE | PL_C_SDON_ENABLE | \
125 				 PL_C_CIPHER_ENABLE)
126 #define	PLCS_FASSERT_U		0
127 #define	PLCS_FASSERT_S		0xFd76	/* 52.0 us */
128 #define	PLCS_FDEASSERT_U	0
129 #define	PLCS_FDEASSERT_S	0
130 #else	/* nMOT_ELM */
131 /*
132  * PCL-S control register
133  * this register in the PLC-S controls the scrambling parameters
134  * can be patched for ANSI compliance if standard changes
135  */
136 static const u_char plcs_control_c_u[17] = "PLC_CNTRL_C_U=\0\0" ;
137 static const u_char plcs_control_c_s[17] = "PLC_CNTRL_C_S=\01\02" ;
138 
139 #define PLCS_CONTROL_C_U (plcs_control_c_u[14] | (plcs_control_c_u[15]<<8))
140 #define PLCS_CONTROL_C_S (plcs_control_c_s[14] | (plcs_control_c_s[15]<<8))
141 #endif	/* nMOT_ELM */
142 
143 /*
144  * external vars
145  */
146 /* struct definition see 'cmtdef.h' (also used by CFM) */
147 
148 #define PS_OFF		0
149 #define PS_BIT3		1
150 #define PS_BIT4		2
151 #define PS_BIT7		3
152 #define PS_LCT		4
153 #define PS_BIT8		5
154 #define PS_JOIN		6
155 #define PS_ACTIVE	7
156 
157 #define LCT_LEM_MAX	255
158 
159 /*
160  * PLC timing parameter
161  */
162 
163 #define PLC_MS(m)	((int)((0x10000L-(m*100000L/2048))))
164 #define SLOW_TL_MIN	PLC_MS(6)
165 #define SLOW_C_MIN	PLC_MS(10)
166 
167 static	const struct plt {
168 	int	timer ;			/* relative plc timer address */
169 	int	para ;			/* default timing parameters */
170 } pltm[] = {
171 	{ PL_C_MIN, SLOW_C_MIN },	/* min t. to remain Connect State */
172 	{ PL_TL_MIN, SLOW_TL_MIN },	/* min t. to transmit a Line State */
173 	{ PL_TB_MIN, TP_TB_MIN },	/* min break time */
174 	{ PL_T_OUT, TP_T_OUT },		/* Signaling timeout */
175 	{ PL_LC_LENGTH, TP_LC_LENGTH },	/* Link Confidence Test Time */
176 	{ PL_T_SCRUB, TP_T_SCRUB },	/* Scrub Time == MAC TVX time ! */
177 	{ PL_NS_MAX, TP_NS_MAX },	/* max t. that noise is tolerated */
178 	{ 0,0 }
179 } ;
180 
181 /*
182  * interrupt mask
183  */
184 #ifdef	SUPERNET_3
185 /*
186  * Do we need the EBUF error during signaling, too, to detect SUPERNET_3
187  * PLL bug?
188  */
189 static const int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
190 			PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
191 #else	/* SUPERNET_3 */
192 /*
193  * We do NOT need the elasticity buffer error during signaling.
194  */
195 static int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
196 			PL_PCM_ENABLED | PL_SELF_TEST ;
197 #endif	/* SUPERNET_3 */
198 static const int plc_imsk_act = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
199 			PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
200 
201 /* internal functions */
202 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd);
203 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy);
204 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy);
205 static void reset_lem_struct(struct s_phy *phy);
206 static void plc_init(struct s_smc *smc, int p);
207 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold);
208 static void sm_ph_lem_stop(struct s_smc *smc, int np);
209 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls);
210 static void real_init_plc(struct s_smc *smc);
211 
212 /*
213  * SMT timer interface
214  *      start PCM timer 0
215  */
start_pcm_timer0(struct s_smc * smc,u_long value,int event,struct s_phy * phy)216 static void start_pcm_timer0(struct s_smc *smc, u_long value, int event,
217 			     struct s_phy *phy)
218 {
219 	phy->timer0_exp = FALSE ;       /* clear timer event flag */
220 	smt_timer_start(smc,&phy->pcm_timer0,value,
221 		EV_TOKEN(EVENT_PCM+phy->np,event)) ;
222 }
223 /*
224  * SMT timer interface
225  *      stop PCM timer 0
226  */
stop_pcm_timer0(struct s_smc * smc,struct s_phy * phy)227 static void stop_pcm_timer0(struct s_smc *smc, struct s_phy *phy)
228 {
229 	if (phy->pcm_timer0.tm_active)
230 		smt_timer_stop(smc,&phy->pcm_timer0) ;
231 }
232 
233 /*
234 	init PCM state machine (called by driver)
235 	clear all PCM vars and flags
236 */
pcm_init(struct s_smc * smc)237 void pcm_init(struct s_smc *smc)
238 {
239 	int		i ;
240 	int		np ;
241 	struct s_phy	*phy ;
242 	struct fddi_mib_p	*mib ;
243 
244 	for (np = 0,phy = smc->y ; np < NUMPHYS ; np++,phy++) {
245 		/* Indicates the type of PHY being used */
246 		mib = phy->mib ;
247 		mib->fddiPORTPCMState = ACTIONS(PC0_OFF) ;
248 		phy->np = np ;
249 		switch (smc->s.sas) {
250 #ifdef	CONCENTRATOR
251 		case SMT_SAS :
252 			mib->fddiPORTMy_Type = (np == PS) ? TS : TM ;
253 			break ;
254 		case SMT_DAS :
255 			mib->fddiPORTMy_Type = (np == PA) ? TA :
256 					(np == PB) ? TB : TM ;
257 			break ;
258 		case SMT_NAC :
259 			mib->fddiPORTMy_Type = TM ;
260 			break;
261 #else
262 		case SMT_SAS :
263 			mib->fddiPORTMy_Type = (np == PS) ? TS : TNONE ;
264 			mib->fddiPORTHardwarePresent = (np == PS) ? TRUE :
265 					FALSE ;
266 #ifndef	SUPERNET_3
267 			smc->y[PA].mib->fddiPORTPCMState = PC0_OFF ;
268 #else
269 			smc->y[PB].mib->fddiPORTPCMState = PC0_OFF ;
270 #endif
271 			break ;
272 		case SMT_DAS :
273 			mib->fddiPORTMy_Type = (np == PB) ? TB : TA ;
274 			break ;
275 #endif
276 		}
277 		/*
278 		 * set PMD-type
279 		 */
280 		phy->pmd_scramble = 0 ;
281 		switch (phy->pmd_type[PMD_SK_PMD]) {
282 		case 'P' :
283 			mib->fddiPORTPMDClass = MIB_PMDCLASS_MULTI ;
284 			break ;
285 		case 'L' :
286 			mib->fddiPORTPMDClass = MIB_PMDCLASS_LCF ;
287 			break ;
288 		case 'D' :
289 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
290 			break ;
291 		case 'S' :
292 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
293 			phy->pmd_scramble = TRUE ;
294 			break ;
295 		case 'U' :
296 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
297 			phy->pmd_scramble = TRUE ;
298 			break ;
299 		case '1' :
300 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
301 			break ;
302 		case '2' :
303 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
304 			break ;
305 		case '3' :
306 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
307 			break ;
308 		case '4' :
309 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
310 			break ;
311 		case 'H' :
312 			mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
313 			break ;
314 		case 'I' :
315 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
316 			break ;
317 		case 'G' :
318 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
319 			break ;
320 		default:
321 			mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
322 			break ;
323 		}
324 		/*
325 		 * A and B port can be on primary and secondary path
326 		 */
327 		switch (mib->fddiPORTMy_Type) {
328 		case TA :
329 			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
330 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
331 			mib->fddiPORTRequestedPaths[2] =
332 				MIB_P_PATH_LOCAL |
333 				MIB_P_PATH_CON_ALTER |
334 				MIB_P_PATH_SEC_PREFER ;
335 			mib->fddiPORTRequestedPaths[3] =
336 				MIB_P_PATH_LOCAL |
337 				MIB_P_PATH_CON_ALTER |
338 				MIB_P_PATH_SEC_PREFER |
339 				MIB_P_PATH_THRU ;
340 			break ;
341 		case TB :
342 			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
343 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
344 			mib->fddiPORTRequestedPaths[2] =
345 				MIB_P_PATH_LOCAL |
346 				MIB_P_PATH_PRIM_PREFER ;
347 			mib->fddiPORTRequestedPaths[3] =
348 				MIB_P_PATH_LOCAL |
349 				MIB_P_PATH_PRIM_PREFER |
350 				MIB_P_PATH_CON_PREFER |
351 				MIB_P_PATH_THRU ;
352 			break ;
353 		case TS :
354 			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
355 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
356 			mib->fddiPORTRequestedPaths[2] =
357 				MIB_P_PATH_LOCAL |
358 				MIB_P_PATH_CON_ALTER |
359 				MIB_P_PATH_PRIM_PREFER ;
360 			mib->fddiPORTRequestedPaths[3] =
361 				MIB_P_PATH_LOCAL |
362 				MIB_P_PATH_CON_ALTER |
363 				MIB_P_PATH_PRIM_PREFER ;
364 			break ;
365 		case TM :
366 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
367 			mib->fddiPORTRequestedPaths[2] =
368 				MIB_P_PATH_LOCAL |
369 				MIB_P_PATH_SEC_ALTER |
370 				MIB_P_PATH_PRIM_ALTER ;
371 			mib->fddiPORTRequestedPaths[3] = 0 ;
372 			break ;
373 		}
374 
375 		phy->pc_lem_fail = FALSE ;
376 		mib->fddiPORTPCMStateX = mib->fddiPORTPCMState ;
377 		mib->fddiPORTLCTFail_Ct = 0 ;
378 		mib->fddiPORTBS_Flag = 0 ;
379 		mib->fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
380 		mib->fddiPORTNeighborType = TNONE ;
381 		phy->ls_flag = 0 ;
382 		phy->rc_flag = 0 ;
383 		phy->tc_flag = 0 ;
384 		phy->td_flag = 0 ;
385 		if (np >= PM)
386 			phy->phy_name = '0' + np - PM ;
387 		else
388 			phy->phy_name = 'A' + np ;
389 		phy->wc_flag = FALSE ;		/* set by SMT */
390 		memset((char *)&phy->lem,0,sizeof(struct lem_counter)) ;
391 		reset_lem_struct(phy) ;
392 		memset((char *)&phy->plc,0,sizeof(struct s_plc)) ;
393 		phy->plc.p_state = PS_OFF ;
394 		for (i = 0 ; i < NUMBITS ; i++) {
395 			phy->t_next[i] = 0 ;
396 		}
397 	}
398 	real_init_plc(smc) ;
399 }
400 
init_plc(struct s_smc * smc)401 void init_plc(struct s_smc *smc)
402 {
403 	SK_UNUSED(smc) ;
404 
405 	/*
406 	 * dummy
407 	 * this is an obsolete public entry point that has to remain
408 	 * for compat. It is used by various drivers.
409 	 * the work is now done in real_init_plc()
410 	 * which is called from pcm_init() ;
411 	 */
412 }
413 
real_init_plc(struct s_smc * smc)414 static void real_init_plc(struct s_smc *smc)
415 {
416 	int	p ;
417 
418 	for (p = 0 ; p < NUMPHYS ; p++)
419 		plc_init(smc,p) ;
420 }
421 
plc_init(struct s_smc * smc,int p)422 static void plc_init(struct s_smc *smc, int p)
423 {
424 	int	i ;
425 #ifndef	MOT_ELM
426 	int	rev ;	/* Revision of PLC-x */
427 #endif	/* MOT_ELM */
428 
429 	/* transit PCM state machine to MAINT state */
430 	outpw(PLC(p,PL_CNTRL_B),0) ;
431 	outpw(PLC(p,PL_CNTRL_B),PL_PCM_STOP) ;
432 	outpw(PLC(p,PL_CNTRL_A),0) ;
433 
434 	/*
435 	 * if PLC-S then set control register C
436 	 */
437 #ifndef	MOT_ELM
438 	rev = inpw(PLC(p,PL_STATUS_A)) & PLC_REV_MASK ;
439 	if (rev != PLC_REVISION_A)
440 #endif	/* MOT_ELM */
441 	{
442 		if (smc->y[p].pmd_scramble) {
443 			outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_S) ;
444 #ifdef	MOT_ELM
445 			outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_S) ;
446 			outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_S) ;
447 #endif	/* MOT_ELM */
448 		}
449 		else {
450 			outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_U) ;
451 #ifdef	MOT_ELM
452 			outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_U) ;
453 			outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_U) ;
454 #endif	/* MOT_ELM */
455 		}
456 	}
457 
458 	/*
459 	 * set timer register
460 	 */
461 	for ( i = 0 ; pltm[i].timer; i++)	/* set timer parameter reg */
462 		outpw(PLC(p,pltm[i].timer),pltm[i].para) ;
463 
464 	(void)inpw(PLC(p,PL_INTR_EVENT)) ;	/* clear interrupt event reg */
465 	plc_clear_irq(smc,p) ;
466 	outpw(PLC(p,PL_INTR_MASK),plc_imsk_na); /* enable non active irq's */
467 
468 	/*
469 	 * if PCM is configured for class s, it will NOT go to the
470 	 * REMOVE state if offline (page 3-36;)
471 	 * in the concentrator, all inactive PHYS always must be in
472 	 * the remove state
473 	 * there's no real need to use this feature at all ..
474 	 */
475 #ifndef	CONCENTRATOR
476 	if ((smc->s.sas == SMT_SAS) && (p == PS)) {
477 		outpw(PLC(p,PL_CNTRL_B),PL_CLASS_S) ;
478 	}
479 #endif
480 }
481 
482 /*
483  * control PCM state machine
484  */
plc_go_state(struct s_smc * smc,int p,int state)485 static void plc_go_state(struct s_smc *smc, int p, int state)
486 {
487 	HW_PTR port ;
488 	int val ;
489 
490 	SK_UNUSED(smc) ;
491 
492 	port = (HW_PTR) (PLC(p,PL_CNTRL_B)) ;
493 	val = inpw(port) & ~(PL_PCM_CNTRL | PL_MAINT) ;
494 	outpw(port,val) ;
495 	outpw(port,val | state) ;
496 }
497 
498 /*
499  * read current line state (called by ECM & PCM)
500  */
sm_pm_get_ls(struct s_smc * smc,int phy)501 int sm_pm_get_ls(struct s_smc *smc, int phy)
502 {
503 	int	state ;
504 
505 #ifdef	CONCENTRATOR
506 	if (!plc_is_installed(smc,phy))
507 		return PC_QLS;
508 #endif
509 
510 	state = inpw(PLC(phy,PL_STATUS_A)) & PL_LINE_ST ;
511 	switch(state) {
512 	case PL_L_QLS:
513 		state = PC_QLS ;
514 		break ;
515 	case PL_L_MLS:
516 		state = PC_MLS ;
517 		break ;
518 	case PL_L_HLS:
519 		state = PC_HLS ;
520 		break ;
521 	case PL_L_ILS4:
522 	case PL_L_ILS16:
523 		state = PC_ILS ;
524 		break ;
525 	case PL_L_ALS:
526 		state = PC_LS_PDR ;
527 		break ;
528 	default :
529 		state = PC_LS_NONE ;
530 	}
531 	return state;
532 }
533 
plc_send_bits(struct s_smc * smc,struct s_phy * phy,int len)534 static int plc_send_bits(struct s_smc *smc, struct s_phy *phy, int len)
535 {
536 	int np = phy->np ;		/* PHY index */
537 	int	n ;
538 	int	i ;
539 
540 	SK_UNUSED(smc) ;
541 
542 	/* create bit vector */
543 	for (i = len-1,n = 0 ; i >= 0 ; i--) {
544 		n = (n<<1) | phy->t_val[phy->bitn+i] ;
545 	}
546 	if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
547 #if	0
548 		printf("PL_PCM_SIGNAL is set\n") ;
549 #endif
550 		return 1;
551 	}
552 	/* write bit[n] & length = 1 to regs */
553 	outpw(PLC(np,PL_VECTOR_LEN),len-1) ;	/* len=nr-1 */
554 	outpw(PLC(np,PL_XMIT_VECTOR),n) ;
555 #ifdef	DEBUG
556 #if 1
557 #ifdef	DEBUG_BRD
558 	if (smc->debug.d_plc & 0x80)
559 #else
560 	if (debug.d_plc & 0x80)
561 #endif
562 		printf("SIGNALING bit %d .. %d\n",phy->bitn,phy->bitn+len-1) ;
563 #endif
564 #endif
565 	return 0;
566 }
567 
568 /*
569  * config plc muxes
570  */
plc_config_mux(struct s_smc * smc,int mux)571 void plc_config_mux(struct s_smc *smc, int mux)
572 {
573 	if (smc->s.sas != SMT_DAS)
574 		return ;
575 	if (mux == MUX_WRAPB) {
576 		SETMASK(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
577 		SETMASK(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
578 	}
579 	else {
580 		CLEAR(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
581 		CLEAR(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP) ;
582 	}
583 	CLEAR(PLC(PB,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
584 	CLEAR(PLC(PB,PL_CNTRL_A),PL_SC_REM_LOOP) ;
585 }
586 
587 /*
588 	PCM state machine
589 	called by dispatcher  & fddi_init() (driver)
590 	do
591 		display state change
592 		process event
593 	until SM is stable
594 */
pcm(struct s_smc * smc,const int np,int event)595 void pcm(struct s_smc *smc, const int np, int event)
596 {
597 	int	state ;
598 	int	oldstate ;
599 	struct s_phy	*phy ;
600 	struct fddi_mib_p	*mib ;
601 
602 #ifndef	CONCENTRATOR
603 	/*
604 	 * ignore 2nd PHY if SAS
605 	 */
606 	if ((np != PS) && (smc->s.sas == SMT_SAS))
607 		return ;
608 #endif
609 	phy = &smc->y[np] ;
610 	mib = phy->mib ;
611 	oldstate = mib->fddiPORTPCMState ;
612 	do {
613 		DB_PCM("PCM %c: state %s",
614 			phy->phy_name,
615 			(mib->fddiPORTPCMState & AFLAG) ? "ACTIONS " : "") ;
616 		DB_PCM("%s, event %s\n",
617 			pcm_states[mib->fddiPORTPCMState & ~AFLAG],
618 			pcm_events[event]) ;
619 		state = mib->fddiPORTPCMState ;
620 		pcm_fsm(smc,phy,event) ;
621 		event = 0 ;
622 	} while (state != mib->fddiPORTPCMState) ;
623 	/*
624 	 * because the PLC does the bit signaling for us,
625 	 * we're always in SIGNAL state
626 	 * the MIB want's to see CONNECT
627 	 * we therefore fake an entry in the MIB
628 	 */
629 	if (state == PC5_SIGNAL)
630 		mib->fddiPORTPCMStateX = PC3_CONNECT ;
631 	else
632 		mib->fddiPORTPCMStateX = state ;
633 
634 #ifndef	SLIM_SMT
635 	/*
636 	 * path change
637 	 */
638 	if (	mib->fddiPORTPCMState != oldstate &&
639 		((oldstate == PC8_ACTIVE) || (mib->fddiPORTPCMState == PC8_ACTIVE))) {
640 		smt_srf_event(smc,SMT_EVENT_PORT_PATH_CHANGE,
641 			(int) (INDEX_PORT+ phy->np),0) ;
642 	}
643 #endif
644 
645 #ifdef FDDI_MIB
646 	/* check whether a snmp-trap has to be sent */
647 
648 	if ( mib->fddiPORTPCMState != oldstate ) {
649 		/* a real state change took place */
650 		DB_SNMP ("PCM from %d to %d\n", oldstate, mib->fddiPORTPCMState);
651 		if ( mib->fddiPORTPCMState == PC0_OFF ) {
652 			/* send first trap */
653 			snmp_fddi_trap (smc, 1, (int) mib->fddiPORTIndex );
654 		} else if ( oldstate == PC0_OFF ) {
655 			/* send second trap */
656 			snmp_fddi_trap (smc, 2, (int) mib->fddiPORTIndex );
657 		} else if ( mib->fddiPORTPCMState != PC2_TRACE &&
658 			oldstate == PC8_ACTIVE ) {
659 			/* send third trap */
660 			snmp_fddi_trap (smc, 3, (int) mib->fddiPORTIndex );
661 		} else if ( mib->fddiPORTPCMState == PC8_ACTIVE ) {
662 			/* send fourth trap */
663 			snmp_fddi_trap (smc, 4, (int) mib->fddiPORTIndex );
664 		}
665 	}
666 #endif
667 
668 	pcm_state_change(smc,np,state) ;
669 }
670 
671 /*
672  * PCM state machine
673  */
pcm_fsm(struct s_smc * smc,struct s_phy * phy,int cmd)674 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd)
675 {
676 	int	i ;
677 	int	np = phy->np ;		/* PHY index */
678 	struct s_plc	*plc ;
679 	struct fddi_mib_p	*mib ;
680 #ifndef	MOT_ELM
681 	u_short	plc_rev ;		/* Revision of the plc */
682 #endif	/* nMOT_ELM */
683 
684 	plc = &phy->plc ;
685 	mib = phy->mib ;
686 
687 	/*
688 	 * general transitions independent of state
689 	 */
690 	switch (cmd) {
691 	case PC_STOP :
692 		/*PC00-PC80*/
693 		if (mib->fddiPORTPCMState != PC9_MAINT) {
694 			GO_STATE(PC0_OFF) ;
695 			AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
696 				FDDI_PORT_EVENT, (u_long) FDDI_PORT_STOP,
697 				smt_get_port_event_word(smc));
698 		}
699 		return ;
700 	case PC_START :
701 		/*PC01-PC81*/
702 		if (mib->fddiPORTPCMState != PC9_MAINT)
703 			GO_STATE(PC1_BREAK) ;
704 		return ;
705 	case PC_DISABLE :
706 		/* PC09-PC99 */
707 		GO_STATE(PC9_MAINT) ;
708 		AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
709 			FDDI_PORT_EVENT, (u_long) FDDI_PORT_DISABLED,
710 			smt_get_port_event_word(smc));
711 		return ;
712 	case PC_TIMEOUT_LCT :
713 		/* if long or extended LCT */
714 		stop_pcm_timer0(smc,phy) ;
715 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
716 		/* end of LCT is indicate by PCM_CODE (initiate PCM event) */
717 		return ;
718 	}
719 
720 	switch(mib->fddiPORTPCMState) {
721 	case ACTIONS(PC0_OFF) :
722 		stop_pcm_timer0(smc,phy) ;
723 		outpw(PLC(np,PL_CNTRL_A),0) ;
724 		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
725 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
726 		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
727 		phy->cf_loop = FALSE ;
728 		phy->cf_join = FALSE ;
729 		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
730 		plc_go_state(smc,np,PL_PCM_STOP) ;
731 		mib->fddiPORTConnectState = PCM_DISABLED ;
732 		ACTIONS_DONE() ;
733 		break ;
734 	case PC0_OFF:
735 		/*PC09*/
736 		if (cmd == PC_MAINT) {
737 			GO_STATE(PC9_MAINT) ;
738 			break ;
739 		}
740 		break ;
741 	case ACTIONS(PC1_BREAK) :
742 		/* Stop the LCT timer if we came from Signal state */
743 		stop_pcm_timer0(smc,phy) ;
744 		ACTIONS_DONE() ;
745 		plc_go_state(smc,np,0) ;
746 		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
747 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
748 		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
749 		/*
750 		 * if vector is already loaded, go to OFF to clear PCM_SIGNAL
751 		 */
752 #if	0
753 		if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
754 			plc_go_state(smc,np,PL_PCM_STOP) ;
755 			/* TB_MIN ? */
756 		}
757 #endif
758 		/*
759 		 * Go to OFF state in any case.
760 		 */
761 		plc_go_state(smc,np,PL_PCM_STOP) ;
762 
763 		if (mib->fddiPORTPC_Withhold == PC_WH_NONE)
764 			mib->fddiPORTConnectState = PCM_CONNECTING ;
765 		phy->cf_loop = FALSE ;
766 		phy->cf_join = FALSE ;
767 		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
768 		phy->ls_flag = FALSE ;
769 		phy->pc_mode = PM_NONE ;	/* needed by CFM */
770 		phy->bitn = 0 ;			/* bit signaling start bit */
771 		for (i = 0 ; i < 3 ; i++)
772 			pc_tcode_actions(smc,i,phy) ;
773 
774 		/* Set the non-active interrupt mask register */
775 		outpw(PLC(np,PL_INTR_MASK),plc_imsk_na) ;
776 
777 		/*
778 		 * If the LCT was stopped. There might be a
779 		 * PCM_CODE interrupt event present.
780 		 * This must be cleared.
781 		 */
782 		(void)inpw(PLC(np,PL_INTR_EVENT)) ;
783 #ifndef	MOT_ELM
784 		/* Get the plc revision for revision dependent code */
785 		plc_rev = inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK ;
786 
787 		if (plc_rev != PLC_REV_SN3)
788 #endif	/* MOT_ELM */
789 		{
790 			/*
791 			 * No supernet III PLC, so set Xmit verctor and
792 			 * length BEFORE starting the state machine.
793 			 */
794 			if (plc_send_bits(smc,phy,3)) {
795 				return ;
796 			}
797 		}
798 
799 		/*
800 		 * Now give the Start command.
801 		 * - The start command shall be done before setting the bits
802 		 *   to be signaled. (In PLC-S description and PLCS in SN3.
803 		 * - The start command shall be issued AFTER setting the
804 		 *   XMIT vector and the XMIT length register.
805 		 *
806 		 * We do it exactly according this specs for the old PLC and
807 		 * the new PLCS inside the SN3.
808 		 * For the usual PLCS we try it the way it is done for the
809 		 * old PLC and set the XMIT registers again, if the PLC is
810 		 * not in SIGNAL state. This is done according to an PLCS
811 		 * errata workaround.
812 		 */
813 
814 		plc_go_state(smc,np,PL_PCM_START) ;
815 
816 		/*
817 		 * workaround for PLC-S eng. sample errata
818 		 */
819 #ifdef	MOT_ELM
820 		if (!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
821 #else	/* nMOT_ELM */
822 		if (((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) !=
823 			PLC_REVISION_A) &&
824 			!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
825 #endif	/* nMOT_ELM */
826 		{
827 			/*
828 			 * Set register again (PLCS errata) or the first time
829 			 * (new SN3 PLCS).
830 			 */
831 			(void) plc_send_bits(smc,phy,3) ;
832 		}
833 		/*
834 		 * end of workaround
835 		 */
836 
837 		GO_STATE(PC5_SIGNAL) ;
838 		plc->p_state = PS_BIT3 ;
839 		plc->p_bits = 3 ;
840 		plc->p_start = 0 ;
841 
842 		break ;
843 	case PC1_BREAK :
844 		break ;
845 	case ACTIONS(PC2_TRACE) :
846 		plc_go_state(smc,np,PL_PCM_TRACE) ;
847 		ACTIONS_DONE() ;
848 		break ;
849 	case PC2_TRACE :
850 		break ;
851 
852 	case PC3_CONNECT :	/* these states are done by hardware */
853 	case PC4_NEXT :
854 		break ;
855 
856 	case ACTIONS(PC5_SIGNAL) :
857 		ACTIONS_DONE() ;
858 	case PC5_SIGNAL :
859 		if ((cmd != PC_SIGNAL) && (cmd != PC_TIMEOUT_LCT))
860 			break ;
861 		switch (plc->p_state) {
862 		case PS_BIT3 :
863 			for (i = 0 ; i <= 2 ; i++)
864 				pc_rcode_actions(smc,i,phy) ;
865 			pc_tcode_actions(smc,3,phy) ;
866 			plc->p_state = PS_BIT4 ;
867 			plc->p_bits = 1 ;
868 			plc->p_start = 3 ;
869 			phy->bitn = 3 ;
870 			if (plc_send_bits(smc,phy,1)) {
871 				return ;
872 			}
873 			break ;
874 		case PS_BIT4 :
875 			pc_rcode_actions(smc,3,phy) ;
876 			for (i = 4 ; i <= 6 ; i++)
877 				pc_tcode_actions(smc,i,phy) ;
878 			plc->p_state = PS_BIT7 ;
879 			plc->p_bits = 3 ;
880 			plc->p_start = 4 ;
881 			phy->bitn = 4 ;
882 			if (plc_send_bits(smc,phy,3)) {
883 				return ;
884 			}
885 			break ;
886 		case PS_BIT7 :
887 			for (i = 3 ; i <= 6 ; i++)
888 				pc_rcode_actions(smc,i,phy) ;
889 			plc->p_state = PS_LCT ;
890 			plc->p_bits = 0 ;
891 			plc->p_start = 7 ;
892 			phy->bitn = 7 ;
893 		sm_ph_lem_start(smc,np,(int)smc->s.lct_short) ; /* enable LEM */
894 			/* start LCT */
895 			i = inpw(PLC(np,PL_CNTRL_B)) & ~PL_PC_LOOP ;
896 			outpw(PLC(np,PL_CNTRL_B),i) ;	/* must be cleared */
897 			outpw(PLC(np,PL_CNTRL_B),i | PL_RLBP) ;
898 			break ;
899 		case PS_LCT :
900 			/* check for local LCT failure */
901 			pc_tcode_actions(smc,7,phy) ;
902 			/*
903 			 * set tval[7]
904 			 */
905 			plc->p_state = PS_BIT8 ;
906 			plc->p_bits = 1 ;
907 			plc->p_start = 7 ;
908 			phy->bitn = 7 ;
909 			if (plc_send_bits(smc,phy,1)) {
910 				return ;
911 			}
912 			break ;
913 		case PS_BIT8 :
914 			/* check for remote LCT failure */
915 			pc_rcode_actions(smc,7,phy) ;
916 			if (phy->t_val[7] || phy->r_val[7]) {
917 				plc_go_state(smc,np,PL_PCM_STOP) ;
918 				GO_STATE(PC1_BREAK) ;
919 				break ;
920 			}
921 			for (i = 8 ; i <= 9 ; i++)
922 				pc_tcode_actions(smc,i,phy) ;
923 			plc->p_state = PS_JOIN ;
924 			plc->p_bits = 2 ;
925 			plc->p_start = 8 ;
926 			phy->bitn = 8 ;
927 			if (plc_send_bits(smc,phy,2)) {
928 				return ;
929 			}
930 			break ;
931 		case PS_JOIN :
932 			for (i = 8 ; i <= 9 ; i++)
933 				pc_rcode_actions(smc,i,phy) ;
934 			plc->p_state = PS_ACTIVE ;
935 			GO_STATE(PC6_JOIN) ;
936 			break ;
937 		}
938 		break ;
939 
940 	case ACTIONS(PC6_JOIN) :
941 		/*
942 		 * prevent mux error when going from WRAP_A to WRAP_B
943 		 */
944 		if (smc->s.sas == SMT_DAS && np == PB &&
945 			(smc->y[PA].pc_mode == PM_TREE ||
946 			 smc->y[PB].pc_mode == PM_TREE)) {
947 			SETMASK(PLC(np,PL_CNTRL_A),
948 				PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
949 			SETMASK(PLC(np,PL_CNTRL_B),
950 				PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
951 		}
952 		SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
953 		SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
954 		ACTIONS_DONE() ;
955 		cmd = 0 ;
956 		/* fall thru */
957 	case PC6_JOIN :
958 		switch (plc->p_state) {
959 		case PS_ACTIVE:
960 			/*PC88b*/
961 			if (!phy->cf_join) {
962 				phy->cf_join = TRUE ;
963 				queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
964 			}
965 			if (cmd == PC_JOIN)
966 				GO_STATE(PC8_ACTIVE) ;
967 			/*PC82*/
968 			if (cmd == PC_TRACE) {
969 				GO_STATE(PC2_TRACE) ;
970 				break ;
971 			}
972 			break ;
973 		}
974 		break ;
975 
976 	case PC7_VERIFY :
977 		break ;
978 
979 	case ACTIONS(PC8_ACTIVE) :
980 		/*
981 		 * start LEM for SMT
982 		 */
983 		sm_ph_lem_start(smc,(int)phy->np,LCT_LEM_MAX) ;
984 
985 		phy->tr_flag = FALSE ;
986 		mib->fddiPORTConnectState = PCM_ACTIVE ;
987 
988 		/* Set the active interrupt mask register */
989 		outpw(PLC(np,PL_INTR_MASK),plc_imsk_act) ;
990 
991 		ACTIONS_DONE() ;
992 		break ;
993 	case PC8_ACTIVE :
994 		/*PC81 is done by PL_TNE_EXPIRED irq */
995 		/*PC82*/
996 		if (cmd == PC_TRACE) {
997 			GO_STATE(PC2_TRACE) ;
998 			break ;
999 		}
1000 		/*PC88c: is done by TRACE_PROP irq */
1001 
1002 		break ;
1003 	case ACTIONS(PC9_MAINT) :
1004 		stop_pcm_timer0(smc,phy) ;
1005 		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
1006 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
1007 		CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;	/* disable LEM int. */
1008 		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
1009 		phy->cf_loop = FALSE ;
1010 		phy->cf_join = FALSE ;
1011 		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
1012 		plc_go_state(smc,np,PL_PCM_STOP) ;
1013 		mib->fddiPORTConnectState = PCM_DISABLED ;
1014 		SETMASK(PLC(np,PL_CNTRL_B),PL_MAINT,PL_MAINT) ;
1015 		sm_ph_linestate(smc,np,(int) MIB2LS(mib->fddiPORTMaint_LS)) ;
1016 		outpw(PLC(np,PL_CNTRL_A),PL_SC_BYPASS) ;
1017 		ACTIONS_DONE() ;
1018 		break ;
1019 	case PC9_MAINT :
1020 		DB_PCMN(1,"PCM %c : MAINT\n",phy->phy_name,0) ;
1021 		/*PC90*/
1022 		if (cmd == PC_ENABLE) {
1023 			GO_STATE(PC0_OFF) ;
1024 			break ;
1025 		}
1026 		break ;
1027 
1028 	default:
1029 		SMT_PANIC(smc,SMT_E0118, SMT_E0118_MSG) ;
1030 		break ;
1031 	}
1032 }
1033 
1034 /*
1035  * force line state on a PHY output	(only in MAINT state)
1036  */
sm_ph_linestate(struct s_smc * smc,int phy,int ls)1037 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls)
1038 {
1039 	int	cntrl ;
1040 
1041 	SK_UNUSED(smc) ;
1042 
1043 	cntrl = (inpw(PLC(phy,PL_CNTRL_B)) & ~PL_MAINT_LS) |
1044 						PL_PCM_STOP | PL_MAINT ;
1045 	switch(ls) {
1046 	case PC_QLS: 		/* Force Quiet */
1047 		cntrl |= PL_M_QUI0 ;
1048 		break ;
1049 	case PC_MLS: 		/* Force Master */
1050 		cntrl |= PL_M_MASTR ;
1051 		break ;
1052 	case PC_HLS: 		/* Force Halt */
1053 		cntrl |= PL_M_HALT ;
1054 		break ;
1055 	default :
1056 	case PC_ILS: 		/* Force Idle */
1057 		cntrl |= PL_M_IDLE ;
1058 		break ;
1059 	case PC_LS_PDR: 	/* Enable repeat filter */
1060 		cntrl |= PL_M_TPDR ;
1061 		break ;
1062 	}
1063 	outpw(PLC(phy,PL_CNTRL_B),cntrl) ;
1064 }
1065 
reset_lem_struct(struct s_phy * phy)1066 static void reset_lem_struct(struct s_phy *phy)
1067 {
1068 	struct lem_counter *lem = &phy->lem ;
1069 
1070 	phy->mib->fddiPORTLer_Estimate = 15 ;
1071 	lem->lem_float_ber = 15 * 100 ;
1072 }
1073 
1074 /*
1075  * link error monitor
1076  */
lem_evaluate(struct s_smc * smc,struct s_phy * phy)1077 static void lem_evaluate(struct s_smc *smc, struct s_phy *phy)
1078 {
1079 	int ber ;
1080 	u_long errors ;
1081 	struct lem_counter *lem = &phy->lem ;
1082 	struct fddi_mib_p	*mib ;
1083 	int			cond ;
1084 
1085 	mib = phy->mib ;
1086 
1087 	if (!lem->lem_on)
1088 		return ;
1089 
1090 	errors = inpw(PLC(((int) phy->np),PL_LINK_ERR_CTR)) ;
1091 	lem->lem_errors += errors ;
1092 	mib->fddiPORTLem_Ct += errors ;
1093 
1094 	errors = lem->lem_errors ;
1095 	/*
1096 	 * calculation is called on a intervall of 8 seconds
1097 	 *	-> this means, that one error in 8 sec. is one of 8*125*10E6
1098 	 *	the same as BER = 10E-9
1099 	 * Please note:
1100 	 *	-> 9 errors in 8 seconds mean:
1101 	 *	   BER = 9 * 10E-9  and this is
1102 	 *	    < 10E-8, so the limit of 10E-8 is not reached!
1103 	 */
1104 
1105 		if (!errors)		ber = 15 ;
1106 	else	if (errors <= 9)	ber = 9 ;
1107 	else	if (errors <= 99)	ber = 8 ;
1108 	else	if (errors <= 999)	ber = 7 ;
1109 	else	if (errors <= 9999)	ber = 6 ;
1110 	else	if (errors <= 99999)	ber = 5 ;
1111 	else	if (errors <= 999999)	ber = 4 ;
1112 	else	if (errors <= 9999999)	ber = 3 ;
1113 	else	if (errors <= 99999999)	ber = 2 ;
1114 	else	if (errors <= 999999999) ber = 1 ;
1115 	else				ber = 0 ;
1116 
1117 	/*
1118 	 * weighted average
1119 	 */
1120 	ber *= 100 ;
1121 	lem->lem_float_ber = lem->lem_float_ber * 7 + ber * 3 ;
1122 	lem->lem_float_ber /= 10 ;
1123 	mib->fddiPORTLer_Estimate = lem->lem_float_ber / 100 ;
1124 	if (mib->fddiPORTLer_Estimate < 4) {
1125 		mib->fddiPORTLer_Estimate = 4 ;
1126 	}
1127 
1128 	if (lem->lem_errors) {
1129 		DB_PCMN(1,"LEM %c :\n",phy->np == PB? 'B' : 'A',0) ;
1130 		DB_PCMN(1,"errors      : %ld\n",lem->lem_errors,0) ;
1131 		DB_PCMN(1,"sum_errors  : %ld\n",mib->fddiPORTLem_Ct,0) ;
1132 		DB_PCMN(1,"current BER : 10E-%d\n",ber/100,0) ;
1133 		DB_PCMN(1,"float BER   : 10E-(%d/100)\n",lem->lem_float_ber,0) ;
1134 		DB_PCMN(1,"avg. BER    : 10E-%d\n",
1135 			mib->fddiPORTLer_Estimate,0) ;
1136 	}
1137 
1138 	lem->lem_errors = 0L ;
1139 
1140 #ifndef	SLIM_SMT
1141 	cond = (mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Alarm) ?
1142 		TRUE : FALSE ;
1143 #ifdef	SMT_EXT_CUTOFF
1144 	smt_ler_alarm_check(smc,phy,cond) ;
1145 #endif	/* nSMT_EXT_CUTOFF */
1146 	if (cond != mib->fddiPORTLerFlag) {
1147 		smt_srf_event(smc,SMT_COND_PORT_LER,
1148 			(int) (INDEX_PORT+ phy->np) ,cond) ;
1149 	}
1150 #endif
1151 
1152 	if (	mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Cutoff) {
1153 		phy->pc_lem_fail = TRUE ;		/* flag */
1154 		mib->fddiPORTLem_Reject_Ct++ ;
1155 		/*
1156 		 * "forgive 10e-2" if we cutoff so we can come
1157 		 * up again ..
1158 		 */
1159 		lem->lem_float_ber += 2*100 ;
1160 
1161 		/*PC81b*/
1162 #ifdef	CONCENTRATOR
1163 		DB_PCMN(1,"PCM: LER cutoff on port %d cutoff %d\n",
1164 			phy->np, mib->fddiPORTLer_Cutoff) ;
1165 #endif
1166 #ifdef	SMT_EXT_CUTOFF
1167 		smt_port_off_event(smc,phy->np);
1168 #else	/* nSMT_EXT_CUTOFF */
1169 		queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1170 #endif	/* nSMT_EXT_CUTOFF */
1171 	}
1172 }
1173 
1174 /*
1175  * called by SMT to calculate LEM bit error rate
1176  */
sm_lem_evaluate(struct s_smc * smc)1177 void sm_lem_evaluate(struct s_smc *smc)
1178 {
1179 	int np ;
1180 
1181 	for (np = 0 ; np < NUMPHYS ; np++)
1182 		lem_evaluate(smc,&smc->y[np]) ;
1183 }
1184 
lem_check_lct(struct s_smc * smc,struct s_phy * phy)1185 static void lem_check_lct(struct s_smc *smc, struct s_phy *phy)
1186 {
1187 	struct lem_counter	*lem = &phy->lem ;
1188 	struct fddi_mib_p	*mib ;
1189 	int errors ;
1190 
1191 	mib = phy->mib ;
1192 
1193 	phy->pc_lem_fail = FALSE ;		/* flag */
1194 	errors = inpw(PLC(((int)phy->np),PL_LINK_ERR_CTR)) ;
1195 	lem->lem_errors += errors ;
1196 	mib->fddiPORTLem_Ct += errors ;
1197 	if (lem->lem_errors) {
1198 		switch(phy->lc_test) {
1199 		case LC_SHORT:
1200 			if (lem->lem_errors >= smc->s.lct_short)
1201 				phy->pc_lem_fail = TRUE ;
1202 			break ;
1203 		case LC_MEDIUM:
1204 			if (lem->lem_errors >= smc->s.lct_medium)
1205 				phy->pc_lem_fail = TRUE ;
1206 			break ;
1207 		case LC_LONG:
1208 			if (lem->lem_errors >= smc->s.lct_long)
1209 				phy->pc_lem_fail = TRUE ;
1210 			break ;
1211 		case LC_EXTENDED:
1212 			if (lem->lem_errors >= smc->s.lct_extended)
1213 				phy->pc_lem_fail = TRUE ;
1214 			break ;
1215 		}
1216 		DB_PCMN(1," >>errors : %d\n",lem->lem_errors,0) ;
1217 	}
1218 	if (phy->pc_lem_fail) {
1219 		mib->fddiPORTLCTFail_Ct++ ;
1220 		mib->fddiPORTLem_Reject_Ct++ ;
1221 	}
1222 	else
1223 		mib->fddiPORTLCTFail_Ct = 0 ;
1224 }
1225 
1226 /*
1227  * LEM functions
1228  */
sm_ph_lem_start(struct s_smc * smc,int np,int threshold)1229 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold)
1230 {
1231 	struct lem_counter *lem = &smc->y[np].lem ;
1232 
1233 	lem->lem_on = 1 ;
1234 	lem->lem_errors = 0L ;
1235 
1236 	/* Do NOT reset mib->fddiPORTLer_Estimate here. It is called too
1237 	 * often.
1238 	 */
1239 
1240 	outpw(PLC(np,PL_LE_THRESHOLD),threshold) ;
1241 	(void)inpw(PLC(np,PL_LINK_ERR_CTR)) ;	/* clear error counter */
1242 
1243 	/* enable LE INT */
1244 	SETMASK(PLC(np,PL_INTR_MASK),PL_LE_CTR,PL_LE_CTR) ;
1245 }
1246 
sm_ph_lem_stop(struct s_smc * smc,int np)1247 static void sm_ph_lem_stop(struct s_smc *smc, int np)
1248 {
1249 	struct lem_counter *lem = &smc->y[np].lem ;
1250 
1251 	lem->lem_on = 0 ;
1252 	CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;
1253 }
1254 
1255 /* ARGSUSED */
sm_pm_ls_latch(struct s_smc * smc,int phy,int on_off)1256 void sm_pm_ls_latch(struct s_smc *smc, int phy, int on_off)
1257 /* int on_off;	en- or disable ident. ls */
1258 {
1259 	SK_UNUSED(smc) ;
1260 
1261 	phy = phy ; on_off = on_off ;
1262 }
1263 
1264 
1265 /*
1266  * PCM pseudo code
1267  * receive actions are called AFTER the bit n is received,
1268  * i.e. if pc_rcode_actions(5) is called, bit 6 is the next bit to be received
1269  */
1270 
1271 /*
1272  * PCM pseudo code 5.1 .. 6.1
1273  */
pc_rcode_actions(struct s_smc * smc,int bit,struct s_phy * phy)1274 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy)
1275 {
1276 	struct fddi_mib_p	*mib ;
1277 
1278 	mib = phy->mib ;
1279 
1280 	DB_PCMN(1,"SIG rec %x %x:\n", bit,phy->r_val[bit] ) ;
1281 	bit++ ;
1282 
1283 	switch(bit) {
1284 	case 0:
1285 	case 1:
1286 	case 2:
1287 		break ;
1288 	case 3 :
1289 		if (phy->r_val[1] == 0 && phy->r_val[2] == 0)
1290 			mib->fddiPORTNeighborType = TA ;
1291 		else if (phy->r_val[1] == 0 && phy->r_val[2] == 1)
1292 			mib->fddiPORTNeighborType = TB ;
1293 		else if (phy->r_val[1] == 1 && phy->r_val[2] == 0)
1294 			mib->fddiPORTNeighborType = TS ;
1295 		else if (phy->r_val[1] == 1 && phy->r_val[2] == 1)
1296 			mib->fddiPORTNeighborType = TM ;
1297 		break ;
1298 	case 4:
1299 		if (mib->fddiPORTMy_Type == TM &&
1300 			mib->fddiPORTNeighborType == TM) {
1301 			DB_PCMN(1,"PCM %c : E100 withhold M-M\n",
1302 				phy->phy_name,0) ;
1303 			mib->fddiPORTPC_Withhold = PC_WH_M_M ;
1304 			RS_SET(smc,RS_EVENT) ;
1305 		}
1306 		else if (phy->t_val[3] || phy->r_val[3]) {
1307 			mib->fddiPORTPC_Withhold = PC_WH_NONE ;
1308 			if (mib->fddiPORTMy_Type == TM ||
1309 			    mib->fddiPORTNeighborType == TM)
1310 				phy->pc_mode = PM_TREE ;
1311 			else
1312 				phy->pc_mode = PM_PEER ;
1313 
1314 			/* reevaluate the selection criteria (wc_flag) */
1315 			all_selection_criteria (smc);
1316 
1317 			if (phy->wc_flag) {
1318 				mib->fddiPORTPC_Withhold = PC_WH_PATH ;
1319 			}
1320 		}
1321 		else {
1322 			mib->fddiPORTPC_Withhold = PC_WH_OTHER ;
1323 			RS_SET(smc,RS_EVENT) ;
1324 			DB_PCMN(1,"PCM %c : E101 withhold other\n",
1325 				phy->phy_name,0) ;
1326 		}
1327 		phy->twisted = ((mib->fddiPORTMy_Type != TS) &&
1328 				(mib->fddiPORTMy_Type != TM) &&
1329 				(mib->fddiPORTNeighborType ==
1330 				mib->fddiPORTMy_Type)) ;
1331 		if (phy->twisted) {
1332 			DB_PCMN(1,"PCM %c : E102 !!! TWISTED !!!\n",
1333 				phy->phy_name,0) ;
1334 		}
1335 		break ;
1336 	case 5 :
1337 		break ;
1338 	case 6:
1339 		if (phy->t_val[4] || phy->r_val[4]) {
1340 			if ((phy->t_val[4] && phy->t_val[5]) ||
1341 			    (phy->r_val[4] && phy->r_val[5]) )
1342 				phy->lc_test = LC_EXTENDED ;
1343 			else
1344 				phy->lc_test = LC_LONG ;
1345 		}
1346 		else if (phy->t_val[5] || phy->r_val[5])
1347 			phy->lc_test = LC_MEDIUM ;
1348 		else
1349 			phy->lc_test = LC_SHORT ;
1350 		switch (phy->lc_test) {
1351 		case LC_SHORT :				/* 50ms */
1352 			outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LENGTH ) ;
1353 			phy->t_next[7] = smc->s.pcm_lc_short ;
1354 			break ;
1355 		case LC_MEDIUM :			/* 500ms */
1356 			outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LONGLN ) ;
1357 			phy->t_next[7] = smc->s.pcm_lc_medium ;
1358 			break ;
1359 		case LC_LONG :
1360 			SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1361 			phy->t_next[7] = smc->s.pcm_lc_long ;
1362 			break ;
1363 		case LC_EXTENDED :
1364 			SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1365 			phy->t_next[7] = smc->s.pcm_lc_extended ;
1366 			break ;
1367 		}
1368 		if (phy->t_next[7] > smc->s.pcm_lc_medium) {
1369 			start_pcm_timer0(smc,phy->t_next[7],PC_TIMEOUT_LCT,phy);
1370 		}
1371 		DB_PCMN(1,"LCT timer = %ld us\n", phy->t_next[7], 0) ;
1372 		phy->t_next[9] = smc->s.pcm_t_next_9 ;
1373 		break ;
1374 	case 7:
1375 		if (phy->t_val[6]) {
1376 			phy->cf_loop = TRUE ;
1377 		}
1378 		phy->td_flag = TRUE ;
1379 		break ;
1380 	case 8:
1381 		if (phy->t_val[7] || phy->r_val[7]) {
1382 			DB_PCMN(1,"PCM %c : E103 LCT fail %s\n",
1383 				phy->phy_name,phy->t_val[7]? "local":"remote") ;
1384 			queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1385 		}
1386 		break ;
1387 	case 9:
1388 		if (phy->t_val[8] || phy->r_val[8]) {
1389 			if (phy->t_val[8])
1390 				phy->cf_loop = TRUE ;
1391 			phy->td_flag = TRUE ;
1392 		}
1393 		break ;
1394 	case 10:
1395 		if (phy->r_val[9]) {
1396 			/* neighbor intends to have MAC on output */ ;
1397 			mib->fddiPORTMacIndicated.R_val = TRUE ;
1398 		}
1399 		else {
1400 			/* neighbor does not intend to have MAC on output */ ;
1401 			mib->fddiPORTMacIndicated.R_val = FALSE ;
1402 		}
1403 		break ;
1404 	}
1405 }
1406 
1407 /*
1408  * PCM pseudo code 5.1 .. 6.1
1409  */
pc_tcode_actions(struct s_smc * smc,const int bit,struct s_phy * phy)1410 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy)
1411 {
1412 	int	np = phy->np ;
1413 	struct fddi_mib_p	*mib ;
1414 
1415 	mib = phy->mib ;
1416 
1417 	switch(bit) {
1418 	case 0:
1419 		phy->t_val[0] = 0 ;		/* no escape used */
1420 		break ;
1421 	case 1:
1422 		if (mib->fddiPORTMy_Type == TS || mib->fddiPORTMy_Type == TM)
1423 			phy->t_val[1] = 1 ;
1424 		else
1425 			phy->t_val[1] = 0 ;
1426 		break ;
1427 	case 2 :
1428 		if (mib->fddiPORTMy_Type == TB || mib->fddiPORTMy_Type == TM)
1429 			phy->t_val[2] = 1 ;
1430 		else
1431 			phy->t_val[2] = 0 ;
1432 		break ;
1433 	case 3:
1434 		{
1435 		int	type,ne ;
1436 		int	policy ;
1437 
1438 		type = mib->fddiPORTMy_Type ;
1439 		ne = mib->fddiPORTNeighborType ;
1440 		policy = smc->mib.fddiSMTConnectionPolicy ;
1441 
1442 		phy->t_val[3] = 1 ;	/* Accept connection */
1443 		switch (type) {
1444 		case TA :
1445 			if (
1446 				((policy & POLICY_AA) && ne == TA) ||
1447 				((policy & POLICY_AB) && ne == TB) ||
1448 				((policy & POLICY_AS) && ne == TS) ||
1449 				((policy & POLICY_AM) && ne == TM) )
1450 				phy->t_val[3] = 0 ;	/* Reject */
1451 			break ;
1452 		case TB :
1453 			if (
1454 				((policy & POLICY_BA) && ne == TA) ||
1455 				((policy & POLICY_BB) && ne == TB) ||
1456 				((policy & POLICY_BS) && ne == TS) ||
1457 				((policy & POLICY_BM) && ne == TM) )
1458 				phy->t_val[3] = 0 ;	/* Reject */
1459 			break ;
1460 		case TS :
1461 			if (
1462 				((policy & POLICY_SA) && ne == TA) ||
1463 				((policy & POLICY_SB) && ne == TB) ||
1464 				((policy & POLICY_SS) && ne == TS) ||
1465 				((policy & POLICY_SM) && ne == TM) )
1466 				phy->t_val[3] = 0 ;	/* Reject */
1467 			break ;
1468 		case TM :
1469 			if (	ne == TM ||
1470 				((policy & POLICY_MA) && ne == TA) ||
1471 				((policy & POLICY_MB) && ne == TB) ||
1472 				((policy & POLICY_MS) && ne == TS) ||
1473 				((policy & POLICY_MM) && ne == TM) )
1474 				phy->t_val[3] = 0 ;	/* Reject */
1475 			break ;
1476 		}
1477 #ifndef	SLIM_SMT
1478 		/*
1479 		 * detect undesirable connection attempt event
1480 		 */
1481 		if (	(type == TA && ne == TA ) ||
1482 			(type == TA && ne == TS ) ||
1483 			(type == TB && ne == TB ) ||
1484 			(type == TB && ne == TS ) ||
1485 			(type == TS && ne == TA ) ||
1486 			(type == TS && ne == TB ) ) {
1487 			smt_srf_event(smc,SMT_EVENT_PORT_CONNECTION,
1488 				(int) (INDEX_PORT+ phy->np) ,0) ;
1489 		}
1490 #endif
1491 		}
1492 		break ;
1493 	case 4:
1494 		if (mib->fddiPORTPC_Withhold == PC_WH_NONE) {
1495 			if (phy->pc_lem_fail) {
1496 				phy->t_val[4] = 1 ;	/* long */
1497 				phy->t_val[5] = 0 ;
1498 			}
1499 			else {
1500 				phy->t_val[4] = 0 ;
1501 				if (mib->fddiPORTLCTFail_Ct > 0)
1502 					phy->t_val[5] = 1 ;	/* medium */
1503 				else
1504 					phy->t_val[5] = 0 ;	/* short */
1505 
1506 				/*
1507 				 * Implementers choice: use medium
1508 				 * instead of short when undesired
1509 				 * connection attempt is made.
1510 				 */
1511 				if (phy->wc_flag)
1512 					phy->t_val[5] = 1 ;	/* medium */
1513 			}
1514 			mib->fddiPORTConnectState = PCM_CONNECTING ;
1515 		}
1516 		else {
1517 			mib->fddiPORTConnectState = PCM_STANDBY ;
1518 			phy->t_val[4] = 1 ;	/* extended */
1519 			phy->t_val[5] = 1 ;
1520 		}
1521 		break ;
1522 	case 5:
1523 		break ;
1524 	case 6:
1525 		/* we do NOT have a MAC for LCT */
1526 		phy->t_val[6] = 0 ;
1527 		break ;
1528 	case 7:
1529 		phy->cf_loop = FALSE ;
1530 		lem_check_lct(smc,phy) ;
1531 		if (phy->pc_lem_fail) {
1532 			DB_PCMN(1,"PCM %c : E104 LCT failed\n",
1533 				phy->phy_name,0) ;
1534 			phy->t_val[7] = 1 ;
1535 		}
1536 		else
1537 			phy->t_val[7] = 0 ;
1538 		break ;
1539 	case 8:
1540 		phy->t_val[8] = 0 ;	/* Don't request MAC loopback */
1541 		break ;
1542 	case 9:
1543 		phy->cf_loop = 0 ;
1544 		if ((mib->fddiPORTPC_Withhold != PC_WH_NONE) ||
1545 		     ((smc->s.sas == SMT_DAS) && (phy->wc_flag))) {
1546 			queue_event(smc,EVENT_PCM+np,PC_START) ;
1547 			break ;
1548 		}
1549 		phy->t_val[9] = FALSE ;
1550 		switch (smc->s.sas) {
1551 		case SMT_DAS :
1552 			/*
1553 			 * MAC intended on output
1554 			 */
1555 			if (phy->pc_mode == PM_TREE) {
1556 				if ((np == PB) || ((np == PA) &&
1557 				(smc->y[PB].mib->fddiPORTConnectState !=
1558 					PCM_ACTIVE)))
1559 					phy->t_val[9] = TRUE ;
1560 			}
1561 			else {
1562 				if (np == PB)
1563 					phy->t_val[9] = TRUE ;
1564 			}
1565 			break ;
1566 		case SMT_SAS :
1567 			if (np == PS)
1568 				phy->t_val[9] = TRUE ;
1569 			break ;
1570 #ifdef	CONCENTRATOR
1571 		case SMT_NAC :
1572 			/*
1573 			 * MAC intended on output
1574 			 */
1575 			if (np == PB)
1576 				phy->t_val[9] = TRUE ;
1577 			break ;
1578 #endif
1579 		}
1580 		mib->fddiPORTMacIndicated.T_val = phy->t_val[9] ;
1581 		break ;
1582 	}
1583 	DB_PCMN(1,"SIG snd %x %x:\n", bit,phy->t_val[bit] ) ;
1584 }
1585 
1586 /*
1587  * return status twisted (called by SMT)
1588  */
pcm_status_twisted(struct s_smc * smc)1589 int pcm_status_twisted(struct s_smc *smc)
1590 {
1591 	int	twist = 0 ;
1592 	if (smc->s.sas != SMT_DAS)
1593 		return 0;
1594 	if (smc->y[PA].twisted && (smc->y[PA].mib->fddiPORTPCMState == PC8_ACTIVE))
1595 		twist |= 1 ;
1596 	if (smc->y[PB].twisted && (smc->y[PB].mib->fddiPORTPCMState == PC8_ACTIVE))
1597 		twist |= 2 ;
1598 	return twist;
1599 }
1600 
1601 /*
1602  * return status	(called by SMT)
1603  *	type
1604  *	state
1605  *	remote phy type
1606  *	remote mac yes/no
1607  */
pcm_status_state(struct s_smc * smc,int np,int * type,int * state,int * remote,int * mac)1608 void pcm_status_state(struct s_smc *smc, int np, int *type, int *state,
1609 		      int *remote, int *mac)
1610 {
1611 	struct s_phy	*phy = &smc->y[np] ;
1612 	struct fddi_mib_p	*mib ;
1613 
1614 	mib = phy->mib ;
1615 
1616 	/* remote PHY type and MAC - set only if active */
1617 	*mac = 0 ;
1618 	*type = mib->fddiPORTMy_Type ;		/* our PHY type */
1619 	*state = mib->fddiPORTConnectState ;
1620 	*remote = mib->fddiPORTNeighborType ;
1621 
1622 	switch(mib->fddiPORTPCMState) {
1623 	case PC8_ACTIVE :
1624 		*mac = mib->fddiPORTMacIndicated.R_val ;
1625 		break ;
1626 	}
1627 }
1628 
1629 /*
1630  * return rooted station status (called by SMT)
1631  */
pcm_rooted_station(struct s_smc * smc)1632 int pcm_rooted_station(struct s_smc *smc)
1633 {
1634 	int	n ;
1635 
1636 	for (n = 0 ; n < NUMPHYS ; n++) {
1637 		if (smc->y[n].mib->fddiPORTPCMState == PC8_ACTIVE &&
1638 		    smc->y[n].mib->fddiPORTNeighborType == TM)
1639 			return 0;
1640 	}
1641 	return 1;
1642 }
1643 
1644 /*
1645  * Interrupt actions for PLC & PCM events
1646  */
plc_irq(struct s_smc * smc,int np,unsigned int cmd)1647 void plc_irq(struct s_smc *smc, int np, unsigned int cmd)
1648 /* int np;	PHY index */
1649 {
1650 	struct s_phy *phy = &smc->y[np] ;
1651 	struct s_plc *plc = &phy->plc ;
1652 	int		n ;
1653 #ifdef	SUPERNET_3
1654 	int		corr_mask ;
1655 #endif	/* SUPERNET_3 */
1656 	int		i ;
1657 
1658 	if (np >= smc->s.numphys) {
1659 		plc->soft_err++ ;
1660 		return ;
1661 	}
1662 	if (cmd & PL_EBUF_ERR) {	/* elastic buff. det. over-|underflow*/
1663 		/*
1664 		 * Check whether the SRF Condition occurred.
1665 		 */
1666 		if (!plc->ebuf_cont && phy->mib->fddiPORTPCMState == PC8_ACTIVE){
1667 			/*
1668 			 * This is the real Elasticity Error.
1669 			 * More than one in a row are treated as a
1670 			 * single one.
1671 			 * Only count this in the active state.
1672 			 */
1673 			phy->mib->fddiPORTEBError_Ct ++ ;
1674 
1675 		}
1676 
1677 		plc->ebuf_err++ ;
1678 		if (plc->ebuf_cont <= 1000) {
1679 			/*
1680 			 * Prevent counter from being wrapped after
1681 			 * hanging years in that interrupt.
1682 			 */
1683 			plc->ebuf_cont++ ;	/* Ebuf continuous error */
1684 		}
1685 
1686 #ifdef	SUPERNET_3
1687 		if (plc->ebuf_cont == 1000 &&
1688 			((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) ==
1689 			PLC_REV_SN3)) {
1690 			/*
1691 			 * This interrupt remeained high for at least
1692 			 * 1000 consecutive interrupt calls.
1693 			 *
1694 			 * This is caused by a hardware error of the
1695 			 * ORION part of the Supernet III chipset.
1696 			 *
1697 			 * Disable this bit from the mask.
1698 			 */
1699 			corr_mask = (plc_imsk_na & ~PL_EBUF_ERR) ;
1700 			outpw(PLC(np,PL_INTR_MASK),corr_mask);
1701 
1702 			/*
1703 			 * Disconnect from the ring.
1704 			 * Call the driver with the reset indication.
1705 			 */
1706 			queue_event(smc,EVENT_ECM,EC_DISCONNECT) ;
1707 
1708 			/*
1709 			 * Make an error log entry.
1710 			 */
1711 			SMT_ERR_LOG(smc,SMT_E0136, SMT_E0136_MSG) ;
1712 
1713 			/*
1714 			 * Indicate the Reset.
1715 			 */
1716 			drv_reset_indication(smc) ;
1717 		}
1718 #endif	/* SUPERNET_3 */
1719 	} else {
1720 		/* Reset the continuous error variable */
1721 		plc->ebuf_cont = 0 ;	/* reset Ebuf continuous error */
1722 	}
1723 	if (cmd & PL_PHYINV) {		/* physical layer invalid signal */
1724 		plc->phyinv++ ;
1725 	}
1726 	if (cmd & PL_VSYM_CTR) {	/* violation symbol counter has incr.*/
1727 		plc->vsym_ctr++ ;
1728 	}
1729 	if (cmd & PL_MINI_CTR) {	/* dep. on PLC_CNTRL_A's MINI_CTR_INT*/
1730 		plc->mini_ctr++ ;
1731 	}
1732 	if (cmd & PL_LE_CTR) {		/* link error event counter */
1733 		int	j ;
1734 
1735 		/*
1736 		 * note: PL_LINK_ERR_CTR MUST be read to clear it
1737 		 */
1738 		j = inpw(PLC(np,PL_LE_THRESHOLD)) ;
1739 		i = inpw(PLC(np,PL_LINK_ERR_CTR)) ;
1740 
1741 		if (i < j) {
1742 			/* wrapped around */
1743 			i += 256 ;
1744 		}
1745 
1746 		if (phy->lem.lem_on) {
1747 			/* Note: Lem errors shall only be counted when
1748 			 * link is ACTIVE or LCT is active.
1749 			 */
1750 			phy->lem.lem_errors += i ;
1751 			phy->mib->fddiPORTLem_Ct += i ;
1752 		}
1753 	}
1754 	if (cmd & PL_TPC_EXPIRED) {	/* TPC timer reached zero */
1755 		if (plc->p_state == PS_LCT) {
1756 			/*
1757 			 * end of LCT
1758 			 */
1759 			;
1760 		}
1761 		plc->tpc_exp++ ;
1762 	}
1763 	if (cmd & PL_LS_MATCH) {	/* LS == LS in PLC_CNTRL_B's MATCH_LS*/
1764 		switch (inpw(PLC(np,PL_CNTRL_B)) & PL_MATCH_LS) {
1765 		case PL_I_IDLE :	phy->curr_ls = PC_ILS ;		break ;
1766 		case PL_I_HALT :	phy->curr_ls = PC_HLS ;		break ;
1767 		case PL_I_MASTR :	phy->curr_ls = PC_MLS ;		break ;
1768 		case PL_I_QUIET :	phy->curr_ls = PC_QLS ;		break ;
1769 		}
1770 	}
1771 	if (cmd & PL_PCM_BREAK) {	/* PCM has entered the BREAK state */
1772 		int	reason;
1773 
1774 		reason = inpw(PLC(np,PL_STATUS_B)) & PL_BREAK_REASON ;
1775 
1776 		switch (reason) {
1777 		case PL_B_PCS :		plc->b_pcs++ ;	break ;
1778 		case PL_B_TPC :		plc->b_tpc++ ;	break ;
1779 		case PL_B_TNE :		plc->b_tne++ ;	break ;
1780 		case PL_B_QLS :		plc->b_qls++ ;	break ;
1781 		case PL_B_ILS :		plc->b_ils++ ;	break ;
1782 		case PL_B_HLS :		plc->b_hls++ ;	break ;
1783 		}
1784 
1785 		/*jd 05-Aug-1999 changed: Bug #10419 */
1786 		DB_PCMN(1,"PLC %d: MDcF = %x\n", np, smc->e.DisconnectFlag);
1787 		if (smc->e.DisconnectFlag == FALSE) {
1788 			DB_PCMN(1,"PLC %d: restart (reason %x)\n", np, reason);
1789 			queue_event(smc,EVENT_PCM+np,PC_START) ;
1790 		}
1791 		else {
1792 			DB_PCMN(1,"PLC %d: NO!! restart (reason %x)\n", np, reason);
1793 		}
1794 		return ;
1795 	}
1796 	/*
1797 	 * If both CODE & ENABLE are set ignore enable
1798 	 */
1799 	if (cmd & PL_PCM_CODE) { /* receive last sign.-bit | LCT complete */
1800 		queue_event(smc,EVENT_PCM+np,PC_SIGNAL) ;
1801 		n = inpw(PLC(np,PL_RCV_VECTOR)) ;
1802 		for (i = 0 ; i < plc->p_bits ; i++) {
1803 			phy->r_val[plc->p_start+i] = n & 1 ;
1804 			n >>= 1 ;
1805 		}
1806 	}
1807 	else if (cmd & PL_PCM_ENABLED) { /* asserted SC_JOIN, scrub.completed*/
1808 		queue_event(smc,EVENT_PCM+np,PC_JOIN) ;
1809 	}
1810 	if (cmd & PL_TRACE_PROP) {	/* MLS while PC8_ACTIV || PC2_TRACE */
1811 		/*PC22b*/
1812 		if (!phy->tr_flag) {
1813 			DB_PCMN(1,"PCM : irq TRACE_PROP %d %d\n",
1814 				np,smc->mib.fddiSMTECMState) ;
1815 			phy->tr_flag = TRUE ;
1816 			smc->e.trace_prop |= ENTITY_BIT(ENTITY_PHY(np)) ;
1817 			queue_event(smc,EVENT_ECM,EC_TRACE_PROP) ;
1818 		}
1819 	}
1820 	/*
1821 	 * filter PLC glitch ???
1822 	 * QLS || HLS only while in PC2_TRACE state
1823 	 */
1824 	if ((cmd & PL_SELF_TEST) && (phy->mib->fddiPORTPCMState == PC2_TRACE)) {
1825 		/*PC22a*/
1826 		if (smc->e.path_test == PT_PASSED) {
1827 			DB_PCMN(1,"PCM : state = %s %d\n", get_pcmstate(smc,np),
1828 				phy->mib->fddiPORTPCMState) ;
1829 
1830 			smc->e.path_test = PT_PENDING ;
1831 			queue_event(smc,EVENT_ECM,EC_PATH_TEST) ;
1832 		}
1833 	}
1834 	if (cmd & PL_TNE_EXPIRED) {	/* TNE: length of noise events */
1835 		/* break_required (TNE > NS_Max) */
1836 		if (phy->mib->fddiPORTPCMState == PC8_ACTIVE) {
1837 			if (!phy->tr_flag) {
1838 			   DB_PCMN(1,"PCM %c : PC81 %s\n",phy->phy_name,"NSE");
1839 			   queue_event(smc,EVENT_PCM+np,PC_START) ;
1840 			   return ;
1841 			}
1842 		}
1843 	}
1844 #if	0
1845 	if (cmd & PL_NP_ERR) {		/* NP has requested to r/w an inv reg*/
1846 		/*
1847 		 * It's a bug by AMD
1848 		 */
1849 		plc->np_err++ ;
1850 	}
1851 	/* pin inactiv (GND) */
1852 	if (cmd & PL_PARITY_ERR) {	/* p. error dedected on TX9-0 inp */
1853 		plc->parity_err++ ;
1854 	}
1855 	if (cmd & PL_LSDO) {		/* carrier detected */
1856 		;
1857 	}
1858 #endif
1859 }
1860 
1861 #ifdef	DEBUG
1862 /*
1863  * fill state struct
1864  */
pcm_get_state(struct s_smc * smc,struct smt_state * state)1865 void pcm_get_state(struct s_smc *smc, struct smt_state *state)
1866 {
1867 	struct s_phy	*phy ;
1868 	struct pcm_state *pcs ;
1869 	int	i ;
1870 	int	ii ;
1871 	short	rbits ;
1872 	short	tbits ;
1873 	struct fddi_mib_p	*mib ;
1874 
1875 	for (i = 0, phy = smc->y, pcs = state->pcm_state ; i < NUMPHYS ;
1876 		i++ , phy++, pcs++ ) {
1877 		mib = phy->mib ;
1878 		pcs->pcm_type = (u_char) mib->fddiPORTMy_Type ;
1879 		pcs->pcm_state = (u_char) mib->fddiPORTPCMState ;
1880 		pcs->pcm_mode = phy->pc_mode ;
1881 		pcs->pcm_neighbor = (u_char) mib->fddiPORTNeighborType ;
1882 		pcs->pcm_bsf = mib->fddiPORTBS_Flag ;
1883 		pcs->pcm_lsf = phy->ls_flag ;
1884 		pcs->pcm_lct_fail = (u_char) mib->fddiPORTLCTFail_Ct ;
1885 		pcs->pcm_ls_rx = LS2MIB(sm_pm_get_ls(smc,i)) ;
1886 		for (ii = 0, rbits = tbits = 0 ; ii < NUMBITS ; ii++) {
1887 			rbits <<= 1 ;
1888 			tbits <<= 1 ;
1889 			if (phy->r_val[NUMBITS-1-ii])
1890 				rbits |= 1 ;
1891 			if (phy->t_val[NUMBITS-1-ii])
1892 				tbits |= 1 ;
1893 		}
1894 		pcs->pcm_r_val = rbits ;
1895 		pcs->pcm_t_val = tbits ;
1896 	}
1897 }
1898 
get_pcm_state(struct s_smc * smc,int np)1899 int get_pcm_state(struct s_smc *smc, int np)
1900 {
1901 	int pcs ;
1902 
1903 	SK_UNUSED(smc) ;
1904 
1905 	switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1906 		case PL_PC0 :	pcs = PC_STOP ;		break ;
1907 		case PL_PC1 :	pcs = PC_START ;	break ;
1908 		case PL_PC2 :	pcs = PC_TRACE ;	break ;
1909 		case PL_PC3 :	pcs = PC_SIGNAL ;	break ;
1910 		case PL_PC4 :	pcs = PC_SIGNAL ;	break ;
1911 		case PL_PC5 :	pcs = PC_SIGNAL ;	break ;
1912 		case PL_PC6 :	pcs = PC_JOIN ;		break ;
1913 		case PL_PC7 :	pcs = PC_JOIN ;		break ;
1914 		case PL_PC8 :	pcs = PC_ENABLE ;	break ;
1915 		case PL_PC9 :	pcs = PC_MAINT ;	break ;
1916 		default :	pcs = PC_DISABLE ; 	break ;
1917 	}
1918 	return pcs;
1919 }
1920 
get_linestate(struct s_smc * smc,int np)1921 char *get_linestate(struct s_smc *smc, int np)
1922 {
1923 	char *ls = "" ;
1924 
1925 	SK_UNUSED(smc) ;
1926 
1927 	switch (inpw(PLC(np,PL_STATUS_A)) & PL_LINE_ST) {
1928 		case PL_L_NLS :	ls = "NOISE" ;	break ;
1929 		case PL_L_ALS :	ls = "ACTIV" ;	break ;
1930 		case PL_L_UND :	ls = "UNDEF" ;	break ;
1931 		case PL_L_ILS4:	ls = "ILS 4" ;	break ;
1932 		case PL_L_QLS :	ls = "QLS" ;	break ;
1933 		case PL_L_MLS :	ls = "MLS" ;	break ;
1934 		case PL_L_HLS :	ls = "HLS" ;	break ;
1935 		case PL_L_ILS16:ls = "ILS16" ;	break ;
1936 #ifdef	lint
1937 		default:	ls = "unknown" ; break ;
1938 #endif
1939 	}
1940 	return ls;
1941 }
1942 
get_pcmstate(struct s_smc * smc,int np)1943 char *get_pcmstate(struct s_smc *smc, int np)
1944 {
1945 	char *pcs ;
1946 
1947 	SK_UNUSED(smc) ;
1948 
1949 	switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1950 		case PL_PC0 :	pcs = "OFF" ;		break ;
1951 		case PL_PC1 :	pcs = "BREAK" ;		break ;
1952 		case PL_PC2 :	pcs = "TRACE" ;		break ;
1953 		case PL_PC3 :	pcs = "CONNECT";	break ;
1954 		case PL_PC4 :	pcs = "NEXT" ;		break ;
1955 		case PL_PC5 :	pcs = "SIGNAL" ;	break ;
1956 		case PL_PC6 :	pcs = "JOIN" ;		break ;
1957 		case PL_PC7 :	pcs = "VERIFY" ;	break ;
1958 		case PL_PC8 :	pcs = "ACTIV" ;		break ;
1959 		case PL_PC9 :	pcs = "MAINT" ;		break ;
1960 		default :	pcs = "UNKNOWN" ; 	break ;
1961 	}
1962 	return pcs;
1963 }
1964 
list_phy(struct s_smc * smc)1965 void list_phy(struct s_smc *smc)
1966 {
1967 	struct s_plc *plc ;
1968 	int np ;
1969 
1970 	for (np = 0 ; np < NUMPHYS ; np++) {
1971 		plc  = &smc->y[np].plc ;
1972 		printf("PHY %d:\tERRORS\t\t\tBREAK_REASONS\t\tSTATES:\n",np) ;
1973 		printf("\tsoft_error: %ld \t\tPC_Start : %ld\n",
1974 						plc->soft_err,plc->b_pcs);
1975 		printf("\tparity_err: %ld \t\tTPC exp. : %ld\t\tLine: %s\n",
1976 			plc->parity_err,plc->b_tpc,get_linestate(smc,np)) ;
1977 		printf("\tebuf_error: %ld \t\tTNE exp. : %ld\n",
1978 						plc->ebuf_err,plc->b_tne) ;
1979 		printf("\tphyinvalid: %ld \t\tQLS det. : %ld\t\tPCM : %s\n",
1980 			plc->phyinv,plc->b_qls,get_pcmstate(smc,np)) ;
1981 		printf("\tviosym_ctr: %ld \t\tILS det. : %ld\n",
1982 						plc->vsym_ctr,plc->b_ils)  ;
1983 		printf("\tmingap_ctr: %ld \t\tHLS det. : %ld\n",
1984 						plc->mini_ctr,plc->b_hls) ;
1985 		printf("\tnodepr_err: %ld\n",plc->np_err) ;
1986 		printf("\tTPC_exp : %ld\n",plc->tpc_exp) ;
1987 		printf("\tLEM_err : %ld\n",smc->y[np].lem.lem_errors) ;
1988 	}
1989 }
1990 
1991 
1992 #ifdef	CONCENTRATOR
pcm_lem_dump(struct s_smc * smc)1993 void pcm_lem_dump(struct s_smc *smc)
1994 {
1995 	int		i ;
1996 	struct s_phy	*phy ;
1997 	struct fddi_mib_p	*mib ;
1998 
1999 	char		*entostring() ;
2000 
2001 	printf("PHY	errors	BER\n") ;
2002 	printf("----------------------\n") ;
2003 	for (i = 0,phy = smc->y ; i < NUMPHYS ; i++,phy++) {
2004 		if (!plc_is_installed(smc,i))
2005 			continue ;
2006 		mib = phy->mib ;
2007 		printf("%s\t%ld\t10E-%d\n",
2008 			entostring(smc,ENTITY_PHY(i)),
2009 			mib->fddiPORTLem_Ct,
2010 			mib->fddiPORTLer_Estimate) ;
2011 	}
2012 }
2013 #endif
2014 #endif
2015