1 /*
2 * Platform dependent support for SGI SN
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (c) 2000-2008 Silicon Graphics, Inc. All Rights Reserved.
9 */
10
11 #include <linux/irq.h>
12 #include <linux/spinlock.h>
13 #include <linux/init.h>
14 #include <linux/rculist.h>
15 #include <linux/slab.h>
16 #include <asm/sn/addrs.h>
17 #include <asm/sn/arch.h>
18 #include <asm/sn/intr.h>
19 #include <asm/sn/pcibr_provider.h>
20 #include <asm/sn/pcibus_provider_defs.h>
21 #include <asm/sn/pcidev.h>
22 #include <asm/sn/shub_mmr.h>
23 #include <asm/sn/sn_sal.h>
24 #include <asm/sn/sn_feature_sets.h>
25
26 static void register_intr_pda(struct sn_irq_info *sn_irq_info);
27 static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
28
29 extern int sn_ioif_inited;
30 struct list_head **sn_irq_lh;
31 static DEFINE_SPINLOCK(sn_irq_info_lock); /* non-IRQ lock */
32
sn_intr_alloc(nasid_t local_nasid,int local_widget,struct sn_irq_info * sn_irq_info,int req_irq,nasid_t req_nasid,int req_slice)33 u64 sn_intr_alloc(nasid_t local_nasid, int local_widget,
34 struct sn_irq_info *sn_irq_info,
35 int req_irq, nasid_t req_nasid,
36 int req_slice)
37 {
38 struct ia64_sal_retval ret_stuff;
39 ret_stuff.status = 0;
40 ret_stuff.v0 = 0;
41
42 SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
43 (u64) SAL_INTR_ALLOC, (u64) local_nasid,
44 (u64) local_widget, __pa(sn_irq_info), (u64) req_irq,
45 (u64) req_nasid, (u64) req_slice);
46
47 return ret_stuff.status;
48 }
49
sn_intr_free(nasid_t local_nasid,int local_widget,struct sn_irq_info * sn_irq_info)50 void sn_intr_free(nasid_t local_nasid, int local_widget,
51 struct sn_irq_info *sn_irq_info)
52 {
53 struct ia64_sal_retval ret_stuff;
54 ret_stuff.status = 0;
55 ret_stuff.v0 = 0;
56
57 SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
58 (u64) SAL_INTR_FREE, (u64) local_nasid,
59 (u64) local_widget, (u64) sn_irq_info->irq_irq,
60 (u64) sn_irq_info->irq_cookie, 0, 0);
61 }
62
sn_intr_redirect(nasid_t local_nasid,int local_widget,struct sn_irq_info * sn_irq_info,nasid_t req_nasid,int req_slice)63 u64 sn_intr_redirect(nasid_t local_nasid, int local_widget,
64 struct sn_irq_info *sn_irq_info,
65 nasid_t req_nasid, int req_slice)
66 {
67 struct ia64_sal_retval ret_stuff;
68 ret_stuff.status = 0;
69 ret_stuff.v0 = 0;
70
71 SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
72 (u64) SAL_INTR_REDIRECT, (u64) local_nasid,
73 (u64) local_widget, __pa(sn_irq_info),
74 (u64) req_nasid, (u64) req_slice, 0);
75
76 return ret_stuff.status;
77 }
78
sn_startup_irq(struct irq_data * data)79 static unsigned int sn_startup_irq(struct irq_data *data)
80 {
81 return 0;
82 }
83
sn_shutdown_irq(struct irq_data * data)84 static void sn_shutdown_irq(struct irq_data *data)
85 {
86 }
87
88 extern void ia64_mca_register_cpev(int);
89
sn_disable_irq(struct irq_data * data)90 static void sn_disable_irq(struct irq_data *data)
91 {
92 if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
93 ia64_mca_register_cpev(0);
94 }
95
sn_enable_irq(struct irq_data * data)96 static void sn_enable_irq(struct irq_data *data)
97 {
98 if (data->irq == local_vector_to_irq(IA64_CPE_VECTOR))
99 ia64_mca_register_cpev(data->irq);
100 }
101
sn_ack_irq(struct irq_data * data)102 static void sn_ack_irq(struct irq_data *data)
103 {
104 u64 event_occurred, mask;
105 unsigned int irq = data->irq & 0xff;
106
107 event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
108 mask = event_occurred & SH_ALL_INT_MASK;
109 HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS), mask);
110 __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
111
112 irq_move_irq(data);
113 }
114
sn_retarget_vector(struct sn_irq_info * sn_irq_info,nasid_t nasid,int slice)115 struct sn_irq_info *sn_retarget_vector(struct sn_irq_info *sn_irq_info,
116 nasid_t nasid, int slice)
117 {
118 int vector;
119 int cpuid;
120 #ifdef CONFIG_SMP
121 int cpuphys;
122 #endif
123 int64_t bridge;
124 int local_widget, status;
125 nasid_t local_nasid;
126 struct sn_irq_info *new_irq_info;
127 struct sn_pcibus_provider *pci_provider;
128
129 bridge = (u64) sn_irq_info->irq_bridge;
130 if (!bridge) {
131 return NULL; /* irq is not a device interrupt */
132 }
133
134 local_nasid = NASID_GET(bridge);
135
136 if (local_nasid & 1)
137 local_widget = TIO_SWIN_WIDGETNUM(bridge);
138 else
139 local_widget = SWIN_WIDGETNUM(bridge);
140 vector = sn_irq_info->irq_irq;
141
142 /* Make use of SAL_INTR_REDIRECT if PROM supports it */
143 status = sn_intr_redirect(local_nasid, local_widget, sn_irq_info, nasid, slice);
144 if (!status) {
145 new_irq_info = sn_irq_info;
146 goto finish_up;
147 }
148
149 /*
150 * PROM does not support SAL_INTR_REDIRECT, or it failed.
151 * Revert to old method.
152 */
153 new_irq_info = kmemdup(sn_irq_info, sizeof(struct sn_irq_info),
154 GFP_ATOMIC);
155 if (new_irq_info == NULL)
156 return NULL;
157
158 /* Free the old PROM new_irq_info structure */
159 sn_intr_free(local_nasid, local_widget, new_irq_info);
160 unregister_intr_pda(new_irq_info);
161
162 /* allocate a new PROM new_irq_info struct */
163 status = sn_intr_alloc(local_nasid, local_widget,
164 new_irq_info, vector,
165 nasid, slice);
166
167 /* SAL call failed */
168 if (status) {
169 kfree(new_irq_info);
170 return NULL;
171 }
172
173 register_intr_pda(new_irq_info);
174 spin_lock(&sn_irq_info_lock);
175 list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
176 spin_unlock(&sn_irq_info_lock);
177 kfree_rcu(sn_irq_info, rcu);
178
179
180 finish_up:
181 /* Update kernels new_irq_info with new target info */
182 cpuid = nasid_slice_to_cpuid(new_irq_info->irq_nasid,
183 new_irq_info->irq_slice);
184 new_irq_info->irq_cpuid = cpuid;
185
186 pci_provider = sn_pci_provider[new_irq_info->irq_bridge_type];
187
188 /*
189 * If this represents a line interrupt, target it. If it's
190 * an msi (irq_int_bit < 0), it's already targeted.
191 */
192 if (new_irq_info->irq_int_bit >= 0 &&
193 pci_provider && pci_provider->target_interrupt)
194 (pci_provider->target_interrupt)(new_irq_info);
195
196 #ifdef CONFIG_SMP
197 cpuphys = cpu_physical_id(cpuid);
198 set_irq_affinity_info((vector & 0xff), cpuphys, 0);
199 #endif
200
201 return new_irq_info;
202 }
203
sn_set_affinity_irq(struct irq_data * data,const struct cpumask * mask,bool force)204 static int sn_set_affinity_irq(struct irq_data *data,
205 const struct cpumask *mask, bool force)
206 {
207 struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
208 unsigned int irq = data->irq;
209 nasid_t nasid;
210 int slice;
211
212 nasid = cpuid_to_nasid(cpumask_first_and(mask, cpu_online_mask));
213 slice = cpuid_to_slice(cpumask_first_and(mask, cpu_online_mask));
214
215 list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
216 sn_irq_lh[irq], list)
217 (void)sn_retarget_vector(sn_irq_info, nasid, slice);
218
219 return 0;
220 }
221
222 #ifdef CONFIG_SMP
sn_set_err_irq_affinity(unsigned int irq)223 void sn_set_err_irq_affinity(unsigned int irq)
224 {
225 /*
226 * On systems which support CPU disabling (SHub2), all error interrupts
227 * are targeted at the boot CPU.
228 */
229 if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT))
230 set_irq_affinity_info(irq, cpu_physical_id(0), 0);
231 }
232 #else
sn_set_err_irq_affinity(unsigned int irq)233 void sn_set_err_irq_affinity(unsigned int irq) { }
234 #endif
235
236 static void
sn_mask_irq(struct irq_data * data)237 sn_mask_irq(struct irq_data *data)
238 {
239 }
240
241 static void
sn_unmask_irq(struct irq_data * data)242 sn_unmask_irq(struct irq_data *data)
243 {
244 }
245
246 struct irq_chip irq_type_sn = {
247 .name = "SN hub",
248 .irq_startup = sn_startup_irq,
249 .irq_shutdown = sn_shutdown_irq,
250 .irq_enable = sn_enable_irq,
251 .irq_disable = sn_disable_irq,
252 .irq_ack = sn_ack_irq,
253 .irq_mask = sn_mask_irq,
254 .irq_unmask = sn_unmask_irq,
255 .irq_set_affinity = sn_set_affinity_irq
256 };
257
sn_irq_to_vector(int irq)258 ia64_vector sn_irq_to_vector(int irq)
259 {
260 if (irq >= IA64_NUM_VECTORS)
261 return 0;
262 return (ia64_vector)irq;
263 }
264
sn_local_vector_to_irq(u8 vector)265 unsigned int sn_local_vector_to_irq(u8 vector)
266 {
267 return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
268 }
269
sn_irq_init(void)270 void sn_irq_init(void)
271 {
272 int i;
273
274 ia64_first_device_vector = IA64_SN2_FIRST_DEVICE_VECTOR;
275 ia64_last_device_vector = IA64_SN2_LAST_DEVICE_VECTOR;
276
277 for (i = 0; i < NR_IRQS; i++) {
278 if (irq_get_chip(i) == &no_irq_chip)
279 irq_set_chip(i, &irq_type_sn);
280 }
281 }
282
register_intr_pda(struct sn_irq_info * sn_irq_info)283 static void register_intr_pda(struct sn_irq_info *sn_irq_info)
284 {
285 int irq = sn_irq_info->irq_irq;
286 int cpu = sn_irq_info->irq_cpuid;
287
288 if (pdacpu(cpu)->sn_last_irq < irq) {
289 pdacpu(cpu)->sn_last_irq = irq;
290 }
291
292 if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq)
293 pdacpu(cpu)->sn_first_irq = irq;
294 }
295
unregister_intr_pda(struct sn_irq_info * sn_irq_info)296 static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
297 {
298 int irq = sn_irq_info->irq_irq;
299 int cpu = sn_irq_info->irq_cpuid;
300 struct sn_irq_info *tmp_irq_info;
301 int i, foundmatch;
302
303 rcu_read_lock();
304 if (pdacpu(cpu)->sn_last_irq == irq) {
305 foundmatch = 0;
306 for (i = pdacpu(cpu)->sn_last_irq - 1;
307 i && !foundmatch; i--) {
308 list_for_each_entry_rcu(tmp_irq_info,
309 sn_irq_lh[i],
310 list) {
311 if (tmp_irq_info->irq_cpuid == cpu) {
312 foundmatch = 1;
313 break;
314 }
315 }
316 }
317 pdacpu(cpu)->sn_last_irq = i;
318 }
319
320 if (pdacpu(cpu)->sn_first_irq == irq) {
321 foundmatch = 0;
322 for (i = pdacpu(cpu)->sn_first_irq + 1;
323 i < NR_IRQS && !foundmatch; i++) {
324 list_for_each_entry_rcu(tmp_irq_info,
325 sn_irq_lh[i],
326 list) {
327 if (tmp_irq_info->irq_cpuid == cpu) {
328 foundmatch = 1;
329 break;
330 }
331 }
332 }
333 pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
334 }
335 rcu_read_unlock();
336 }
337
sn_irq_fixup(struct pci_dev * pci_dev,struct sn_irq_info * sn_irq_info)338 void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
339 {
340 nasid_t nasid = sn_irq_info->irq_nasid;
341 int slice = sn_irq_info->irq_slice;
342 int cpu = nasid_slice_to_cpuid(nasid, slice);
343 #ifdef CONFIG_SMP
344 int cpuphys;
345 #endif
346
347 pci_dev_get(pci_dev);
348 sn_irq_info->irq_cpuid = cpu;
349 sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
350
351 /* link it into the sn_irq[irq] list */
352 spin_lock(&sn_irq_info_lock);
353 list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
354 reserve_irq_vector(sn_irq_info->irq_irq);
355 if (sn_irq_info->irq_int_bit != -1)
356 irq_set_handler(sn_irq_info->irq_irq, handle_level_irq);
357 spin_unlock(&sn_irq_info_lock);
358
359 register_intr_pda(sn_irq_info);
360 #ifdef CONFIG_SMP
361 cpuphys = cpu_physical_id(cpu);
362 set_irq_affinity_info(sn_irq_info->irq_irq, cpuphys, 0);
363 /*
364 * Affinity was set by the PROM, prevent it from
365 * being reset by the request_irq() path.
366 */
367 irqd_mark_affinity_was_set(irq_get_irq_data(sn_irq_info->irq_irq));
368 #endif
369 }
370
sn_irq_unfixup(struct pci_dev * pci_dev)371 void sn_irq_unfixup(struct pci_dev *pci_dev)
372 {
373 struct sn_irq_info *sn_irq_info;
374
375 /* Only cleanup IRQ stuff if this device has a host bus context */
376 if (!SN_PCIDEV_BUSSOFT(pci_dev))
377 return;
378
379 sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
380 if (!sn_irq_info)
381 return;
382 if (!sn_irq_info->irq_irq) {
383 kfree(sn_irq_info);
384 return;
385 }
386
387 unregister_intr_pda(sn_irq_info);
388 spin_lock(&sn_irq_info_lock);
389 list_del_rcu(&sn_irq_info->list);
390 spin_unlock(&sn_irq_info_lock);
391 if (list_empty(sn_irq_lh[sn_irq_info->irq_irq]))
392 free_irq_vector(sn_irq_info->irq_irq);
393 kfree_rcu(sn_irq_info, rcu);
394 pci_dev_put(pci_dev);
395
396 }
397
398 static inline void
sn_call_force_intr_provider(struct sn_irq_info * sn_irq_info)399 sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
400 {
401 struct sn_pcibus_provider *pci_provider;
402
403 pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
404
405 /* Don't force an interrupt if the irq has been disabled */
406 if (!irqd_irq_disabled(irq_get_irq_data(sn_irq_info->irq_irq)) &&
407 pci_provider && pci_provider->force_interrupt)
408 (*pci_provider->force_interrupt)(sn_irq_info);
409 }
410
411 /*
412 * Check for lost interrupts. If the PIC int_status reg. says that
413 * an interrupt has been sent, but not handled, and the interrupt
414 * is not pending in either the cpu irr regs or in the soft irr regs,
415 * and the interrupt is not in service, then the interrupt may have
416 * been lost. Force an interrupt on that pin. It is possible that
417 * the interrupt is in flight, so we may generate a spurious interrupt,
418 * but we should never miss a real lost interrupt.
419 */
sn_check_intr(int irq,struct sn_irq_info * sn_irq_info)420 static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
421 {
422 u64 regval;
423 struct pcidev_info *pcidev_info;
424 struct pcibus_info *pcibus_info;
425
426 /*
427 * Bridge types attached to TIO (anything but PIC) do not need this WAR
428 * since they do not target Shub II interrupt registers. If that
429 * ever changes, this check needs to accommodate.
430 */
431 if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
432 return;
433
434 pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
435 if (!pcidev_info)
436 return;
437
438 pcibus_info =
439 (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
440 pdi_pcibus_info;
441 regval = pcireg_intr_status_get(pcibus_info);
442
443 if (!ia64_get_irr(irq_to_vector(irq))) {
444 if (!test_bit(irq, pda->sn_in_service_ivecs)) {
445 regval &= 0xff;
446 if (sn_irq_info->irq_int_bit & regval &
447 sn_irq_info->irq_last_intr) {
448 regval &= ~(sn_irq_info->irq_int_bit & regval);
449 sn_call_force_intr_provider(sn_irq_info);
450 }
451 }
452 }
453 sn_irq_info->irq_last_intr = regval;
454 }
455
sn_lb_int_war_check(void)456 void sn_lb_int_war_check(void)
457 {
458 struct sn_irq_info *sn_irq_info;
459 int i;
460
461 if (!sn_ioif_inited || pda->sn_first_irq == 0)
462 return;
463
464 rcu_read_lock();
465 for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
466 list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
467 sn_check_intr(i, sn_irq_info);
468 }
469 }
470 rcu_read_unlock();
471 }
472
sn_irq_lh_init(void)473 void __init sn_irq_lh_init(void)
474 {
475 int i;
476
477 sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
478 if (!sn_irq_lh)
479 panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
480
481 for (i = 0; i < NR_IRQS; i++) {
482 sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
483 if (!sn_irq_lh[i])
484 panic("SN PCI INIT: Failed IRQ memory allocation\n");
485
486 INIT_LIST_HEAD(sn_irq_lh[i]);
487 }
488 }
489