1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
36 #define CREATE_TRACE_POINTS
37 #include "pcm_trace.h"
38 #else
39 #define trace_hwptr(substream, pos, in_interrupt)
40 #define trace_xrun(substream)
41 #define trace_hw_ptr_error(substream, reason)
42 #endif
43
44 /*
45 * fill ring buffer with silence
46 * runtime->silence_start: starting pointer to silence area
47 * runtime->silence_filled: size filled with silence
48 * runtime->silence_threshold: threshold from application
49 * runtime->silence_size: maximal size from application
50 *
51 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
52 */
snd_pcm_playback_silence(struct snd_pcm_substream * substream,snd_pcm_uframes_t new_hw_ptr)53 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
54 {
55 struct snd_pcm_runtime *runtime = substream->runtime;
56 snd_pcm_uframes_t frames, ofs, transfer;
57
58 if (runtime->silence_size < runtime->boundary) {
59 snd_pcm_sframes_t noise_dist, n;
60 if (runtime->silence_start != runtime->control->appl_ptr) {
61 n = runtime->control->appl_ptr - runtime->silence_start;
62 if (n < 0)
63 n += runtime->boundary;
64 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
65 runtime->silence_filled -= n;
66 else
67 runtime->silence_filled = 0;
68 runtime->silence_start = runtime->control->appl_ptr;
69 }
70 if (runtime->silence_filled >= runtime->buffer_size)
71 return;
72 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
73 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
74 return;
75 frames = runtime->silence_threshold - noise_dist;
76 if (frames > runtime->silence_size)
77 frames = runtime->silence_size;
78 } else {
79 if (new_hw_ptr == ULONG_MAX) { /* initialization */
80 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
81 if (avail > runtime->buffer_size)
82 avail = runtime->buffer_size;
83 runtime->silence_filled = avail > 0 ? avail : 0;
84 runtime->silence_start = (runtime->status->hw_ptr +
85 runtime->silence_filled) %
86 runtime->boundary;
87 } else {
88 ofs = runtime->status->hw_ptr;
89 frames = new_hw_ptr - ofs;
90 if ((snd_pcm_sframes_t)frames < 0)
91 frames += runtime->boundary;
92 runtime->silence_filled -= frames;
93 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
94 runtime->silence_filled = 0;
95 runtime->silence_start = new_hw_ptr;
96 } else {
97 runtime->silence_start = ofs;
98 }
99 }
100 frames = runtime->buffer_size - runtime->silence_filled;
101 }
102 if (snd_BUG_ON(frames > runtime->buffer_size))
103 return;
104 if (frames == 0)
105 return;
106 ofs = runtime->silence_start % runtime->buffer_size;
107 while (frames > 0) {
108 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
109 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
110 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
111 if (substream->ops->silence) {
112 int err;
113 err = substream->ops->silence(substream, -1, ofs, transfer);
114 snd_BUG_ON(err < 0);
115 } else {
116 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
117 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
118 }
119 } else {
120 unsigned int c;
121 unsigned int channels = runtime->channels;
122 if (substream->ops->silence) {
123 for (c = 0; c < channels; ++c) {
124 int err;
125 err = substream->ops->silence(substream, c, ofs, transfer);
126 snd_BUG_ON(err < 0);
127 }
128 } else {
129 size_t dma_csize = runtime->dma_bytes / channels;
130 for (c = 0; c < channels; ++c) {
131 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
132 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
133 }
134 }
135 }
136 runtime->silence_filled += transfer;
137 frames -= transfer;
138 ofs = 0;
139 }
140 }
141
142 #ifdef CONFIG_SND_DEBUG
snd_pcm_debug_name(struct snd_pcm_substream * substream,char * name,size_t len)143 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
144 char *name, size_t len)
145 {
146 snprintf(name, len, "pcmC%dD%d%c:%d",
147 substream->pcm->card->number,
148 substream->pcm->device,
149 substream->stream ? 'c' : 'p',
150 substream->number);
151 }
152 EXPORT_SYMBOL(snd_pcm_debug_name);
153 #endif
154
155 #define XRUN_DEBUG_BASIC (1<<0)
156 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
157 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
158
159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
160
161 #define xrun_debug(substream, mask) \
162 ((substream)->pstr->xrun_debug & (mask))
163 #else
164 #define xrun_debug(substream, mask) 0
165 #endif
166
167 #define dump_stack_on_xrun(substream) do { \
168 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
169 dump_stack(); \
170 } while (0)
171
xrun(struct snd_pcm_substream * substream)172 static void xrun(struct snd_pcm_substream *substream)
173 {
174 struct snd_pcm_runtime *runtime = substream->runtime;
175
176 trace_xrun(substream);
177 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
178 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
179 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
180 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
181 char name[16];
182 snd_pcm_debug_name(substream, name, sizeof(name));
183 pcm_warn(substream->pcm, "XRUN: %s\n", name);
184 dump_stack_on_xrun(substream);
185 }
186 }
187
188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
190 do { \
191 trace_hw_ptr_error(substream, reason); \
192 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
193 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194 (in_interrupt) ? 'Q' : 'P', ##args); \
195 dump_stack_on_xrun(substream); \
196 } \
197 } while (0)
198
199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
200
201 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
202
203 #endif
204
snd_pcm_update_state(struct snd_pcm_substream * substream,struct snd_pcm_runtime * runtime)205 int snd_pcm_update_state(struct snd_pcm_substream *substream,
206 struct snd_pcm_runtime *runtime)
207 {
208 snd_pcm_uframes_t avail;
209
210 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
211 avail = snd_pcm_playback_avail(runtime);
212 else
213 avail = snd_pcm_capture_avail(runtime);
214 if (avail > runtime->avail_max)
215 runtime->avail_max = avail;
216 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
217 if (avail >= runtime->buffer_size) {
218 snd_pcm_drain_done(substream);
219 return -EPIPE;
220 }
221 } else {
222 if (avail >= runtime->stop_threshold) {
223 xrun(substream);
224 return -EPIPE;
225 }
226 }
227 if (runtime->twake) {
228 if (avail >= runtime->twake)
229 wake_up(&runtime->tsleep);
230 } else if (avail >= runtime->control->avail_min)
231 wake_up(&runtime->sleep);
232 return 0;
233 }
234
update_audio_tstamp(struct snd_pcm_substream * substream,struct timespec * curr_tstamp,struct timespec * audio_tstamp)235 static void update_audio_tstamp(struct snd_pcm_substream *substream,
236 struct timespec *curr_tstamp,
237 struct timespec *audio_tstamp)
238 {
239 struct snd_pcm_runtime *runtime = substream->runtime;
240 u64 audio_frames, audio_nsecs;
241 struct timespec driver_tstamp;
242
243 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
244 return;
245
246 if (!(substream->ops->get_time_info) ||
247 (runtime->audio_tstamp_report.actual_type ==
248 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
249
250 /*
251 * provide audio timestamp derived from pointer position
252 * add delay only if requested
253 */
254
255 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
256
257 if (runtime->audio_tstamp_config.report_delay) {
258 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
259 audio_frames -= runtime->delay;
260 else
261 audio_frames += runtime->delay;
262 }
263 audio_nsecs = div_u64(audio_frames * 1000000000LL,
264 runtime->rate);
265 *audio_tstamp = ns_to_timespec(audio_nsecs);
266 }
267 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
268 runtime->status->audio_tstamp = *audio_tstamp;
269 runtime->status->tstamp = *curr_tstamp;
270 }
271
272 /*
273 * re-take a driver timestamp to let apps detect if the reference tstamp
274 * read by low-level hardware was provided with a delay
275 */
276 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
277 runtime->driver_tstamp = driver_tstamp;
278 }
279
snd_pcm_update_hw_ptr0(struct snd_pcm_substream * substream,unsigned int in_interrupt)280 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
281 unsigned int in_interrupt)
282 {
283 struct snd_pcm_runtime *runtime = substream->runtime;
284 snd_pcm_uframes_t pos;
285 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
286 snd_pcm_sframes_t hdelta, delta;
287 unsigned long jdelta;
288 unsigned long curr_jiffies;
289 struct timespec curr_tstamp;
290 struct timespec audio_tstamp;
291 int crossed_boundary = 0;
292
293 old_hw_ptr = runtime->status->hw_ptr;
294
295 /*
296 * group pointer, time and jiffies reads to allow for more
297 * accurate correlations/corrections.
298 * The values are stored at the end of this routine after
299 * corrections for hw_ptr position
300 */
301 pos = substream->ops->pointer(substream);
302 curr_jiffies = jiffies;
303 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
304 if ((substream->ops->get_time_info) &&
305 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
306 substream->ops->get_time_info(substream, &curr_tstamp,
307 &audio_tstamp,
308 &runtime->audio_tstamp_config,
309 &runtime->audio_tstamp_report);
310
311 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
312 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
313 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
314 } else
315 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
316 }
317
318 if (pos == SNDRV_PCM_POS_XRUN) {
319 xrun(substream);
320 return -EPIPE;
321 }
322 if (pos >= runtime->buffer_size) {
323 if (printk_ratelimit()) {
324 char name[16];
325 snd_pcm_debug_name(substream, name, sizeof(name));
326 pcm_err(substream->pcm,
327 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
328 name, pos, runtime->buffer_size,
329 runtime->period_size);
330 }
331 pos = 0;
332 }
333 pos -= pos % runtime->min_align;
334 trace_hwptr(substream, pos, in_interrupt);
335 hw_base = runtime->hw_ptr_base;
336 new_hw_ptr = hw_base + pos;
337 if (in_interrupt) {
338 /* we know that one period was processed */
339 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
340 delta = runtime->hw_ptr_interrupt + runtime->period_size;
341 if (delta > new_hw_ptr) {
342 /* check for double acknowledged interrupts */
343 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
344 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
345 hw_base += runtime->buffer_size;
346 if (hw_base >= runtime->boundary) {
347 hw_base = 0;
348 crossed_boundary++;
349 }
350 new_hw_ptr = hw_base + pos;
351 goto __delta;
352 }
353 }
354 }
355 /* new_hw_ptr might be lower than old_hw_ptr in case when */
356 /* pointer crosses the end of the ring buffer */
357 if (new_hw_ptr < old_hw_ptr) {
358 hw_base += runtime->buffer_size;
359 if (hw_base >= runtime->boundary) {
360 hw_base = 0;
361 crossed_boundary++;
362 }
363 new_hw_ptr = hw_base + pos;
364 }
365 __delta:
366 delta = new_hw_ptr - old_hw_ptr;
367 if (delta < 0)
368 delta += runtime->boundary;
369
370 if (runtime->no_period_wakeup) {
371 snd_pcm_sframes_t xrun_threshold;
372 /*
373 * Without regular period interrupts, we have to check
374 * the elapsed time to detect xruns.
375 */
376 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
377 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
378 goto no_delta_check;
379 hdelta = jdelta - delta * HZ / runtime->rate;
380 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
381 while (hdelta > xrun_threshold) {
382 delta += runtime->buffer_size;
383 hw_base += runtime->buffer_size;
384 if (hw_base >= runtime->boundary) {
385 hw_base = 0;
386 crossed_boundary++;
387 }
388 new_hw_ptr = hw_base + pos;
389 hdelta -= runtime->hw_ptr_buffer_jiffies;
390 }
391 goto no_delta_check;
392 }
393
394 /* something must be really wrong */
395 if (delta >= runtime->buffer_size + runtime->period_size) {
396 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
397 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
398 substream->stream, (long)pos,
399 (long)new_hw_ptr, (long)old_hw_ptr);
400 return 0;
401 }
402
403 /* Do jiffies check only in xrun_debug mode */
404 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
405 goto no_jiffies_check;
406
407 /* Skip the jiffies check for hardwares with BATCH flag.
408 * Such hardware usually just increases the position at each IRQ,
409 * thus it can't give any strange position.
410 */
411 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
412 goto no_jiffies_check;
413 hdelta = delta;
414 if (hdelta < runtime->delay)
415 goto no_jiffies_check;
416 hdelta -= runtime->delay;
417 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
418 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
419 delta = jdelta /
420 (((runtime->period_size * HZ) / runtime->rate)
421 + HZ/100);
422 /* move new_hw_ptr according jiffies not pos variable */
423 new_hw_ptr = old_hw_ptr;
424 hw_base = delta;
425 /* use loop to avoid checks for delta overflows */
426 /* the delta value is small or zero in most cases */
427 while (delta > 0) {
428 new_hw_ptr += runtime->period_size;
429 if (new_hw_ptr >= runtime->boundary) {
430 new_hw_ptr -= runtime->boundary;
431 crossed_boundary--;
432 }
433 delta--;
434 }
435 /* align hw_base to buffer_size */
436 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
437 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
438 (long)pos, (long)hdelta,
439 (long)runtime->period_size, jdelta,
440 ((hdelta * HZ) / runtime->rate), hw_base,
441 (unsigned long)old_hw_ptr,
442 (unsigned long)new_hw_ptr);
443 /* reset values to proper state */
444 delta = 0;
445 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
446 }
447 no_jiffies_check:
448 if (delta > runtime->period_size + runtime->period_size / 2) {
449 hw_ptr_error(substream, in_interrupt,
450 "Lost interrupts?",
451 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
452 substream->stream, (long)delta,
453 (long)new_hw_ptr,
454 (long)old_hw_ptr);
455 }
456
457 no_delta_check:
458 if (runtime->status->hw_ptr == new_hw_ptr) {
459 runtime->hw_ptr_jiffies = curr_jiffies;
460 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
461 return 0;
462 }
463
464 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
465 runtime->silence_size > 0)
466 snd_pcm_playback_silence(substream, new_hw_ptr);
467
468 if (in_interrupt) {
469 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
470 if (delta < 0)
471 delta += runtime->boundary;
472 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
473 runtime->hw_ptr_interrupt += delta;
474 if (runtime->hw_ptr_interrupt >= runtime->boundary)
475 runtime->hw_ptr_interrupt -= runtime->boundary;
476 }
477 runtime->hw_ptr_base = hw_base;
478 runtime->status->hw_ptr = new_hw_ptr;
479 runtime->hw_ptr_jiffies = curr_jiffies;
480 if (crossed_boundary) {
481 snd_BUG_ON(crossed_boundary != 1);
482 runtime->hw_ptr_wrap += runtime->boundary;
483 }
484
485 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
486
487 return snd_pcm_update_state(substream, runtime);
488 }
489
490 /* CAUTION: call it with irq disabled */
snd_pcm_update_hw_ptr(struct snd_pcm_substream * substream)491 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
492 {
493 return snd_pcm_update_hw_ptr0(substream, 0);
494 }
495
496 /**
497 * snd_pcm_set_ops - set the PCM operators
498 * @pcm: the pcm instance
499 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
500 * @ops: the operator table
501 *
502 * Sets the given PCM operators to the pcm instance.
503 */
snd_pcm_set_ops(struct snd_pcm * pcm,int direction,const struct snd_pcm_ops * ops)504 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
505 const struct snd_pcm_ops *ops)
506 {
507 struct snd_pcm_str *stream = &pcm->streams[direction];
508 struct snd_pcm_substream *substream;
509
510 for (substream = stream->substream; substream != NULL; substream = substream->next)
511 substream->ops = ops;
512 }
513
514 EXPORT_SYMBOL(snd_pcm_set_ops);
515
516 /**
517 * snd_pcm_sync - set the PCM sync id
518 * @substream: the pcm substream
519 *
520 * Sets the PCM sync identifier for the card.
521 */
snd_pcm_set_sync(struct snd_pcm_substream * substream)522 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
523 {
524 struct snd_pcm_runtime *runtime = substream->runtime;
525
526 runtime->sync.id32[0] = substream->pcm->card->number;
527 runtime->sync.id32[1] = -1;
528 runtime->sync.id32[2] = -1;
529 runtime->sync.id32[3] = -1;
530 }
531
532 EXPORT_SYMBOL(snd_pcm_set_sync);
533
534 /*
535 * Standard ioctl routine
536 */
537
div32(unsigned int a,unsigned int b,unsigned int * r)538 static inline unsigned int div32(unsigned int a, unsigned int b,
539 unsigned int *r)
540 {
541 if (b == 0) {
542 *r = 0;
543 return UINT_MAX;
544 }
545 *r = a % b;
546 return a / b;
547 }
548
div_down(unsigned int a,unsigned int b)549 static inline unsigned int div_down(unsigned int a, unsigned int b)
550 {
551 if (b == 0)
552 return UINT_MAX;
553 return a / b;
554 }
555
div_up(unsigned int a,unsigned int b)556 static inline unsigned int div_up(unsigned int a, unsigned int b)
557 {
558 unsigned int r;
559 unsigned int q;
560 if (b == 0)
561 return UINT_MAX;
562 q = div32(a, b, &r);
563 if (r)
564 ++q;
565 return q;
566 }
567
mul(unsigned int a,unsigned int b)568 static inline unsigned int mul(unsigned int a, unsigned int b)
569 {
570 if (a == 0)
571 return 0;
572 if (div_down(UINT_MAX, a) < b)
573 return UINT_MAX;
574 return a * b;
575 }
576
muldiv32(unsigned int a,unsigned int b,unsigned int c,unsigned int * r)577 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
578 unsigned int c, unsigned int *r)
579 {
580 u_int64_t n = (u_int64_t) a * b;
581 if (c == 0) {
582 *r = 0;
583 return UINT_MAX;
584 }
585 n = div_u64_rem(n, c, r);
586 if (n >= UINT_MAX) {
587 *r = 0;
588 return UINT_MAX;
589 }
590 return n;
591 }
592
593 /**
594 * snd_interval_refine - refine the interval value of configurator
595 * @i: the interval value to refine
596 * @v: the interval value to refer to
597 *
598 * Refines the interval value with the reference value.
599 * The interval is changed to the range satisfying both intervals.
600 * The interval status (min, max, integer, etc.) are evaluated.
601 *
602 * Return: Positive if the value is changed, zero if it's not changed, or a
603 * negative error code.
604 */
snd_interval_refine(struct snd_interval * i,const struct snd_interval * v)605 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
606 {
607 int changed = 0;
608 if (snd_BUG_ON(snd_interval_empty(i)))
609 return -EINVAL;
610 if (i->min < v->min) {
611 i->min = v->min;
612 i->openmin = v->openmin;
613 changed = 1;
614 } else if (i->min == v->min && !i->openmin && v->openmin) {
615 i->openmin = 1;
616 changed = 1;
617 }
618 if (i->max > v->max) {
619 i->max = v->max;
620 i->openmax = v->openmax;
621 changed = 1;
622 } else if (i->max == v->max && !i->openmax && v->openmax) {
623 i->openmax = 1;
624 changed = 1;
625 }
626 if (!i->integer && v->integer) {
627 i->integer = 1;
628 changed = 1;
629 }
630 if (i->integer) {
631 if (i->openmin) {
632 i->min++;
633 i->openmin = 0;
634 }
635 if (i->openmax) {
636 i->max--;
637 i->openmax = 0;
638 }
639 } else if (!i->openmin && !i->openmax && i->min == i->max)
640 i->integer = 1;
641 if (snd_interval_checkempty(i)) {
642 snd_interval_none(i);
643 return -EINVAL;
644 }
645 return changed;
646 }
647
648 EXPORT_SYMBOL(snd_interval_refine);
649
snd_interval_refine_first(struct snd_interval * i)650 static int snd_interval_refine_first(struct snd_interval *i)
651 {
652 const unsigned int last_max = i->max;
653
654 if (snd_BUG_ON(snd_interval_empty(i)))
655 return -EINVAL;
656 if (snd_interval_single(i))
657 return 0;
658 i->max = i->min;
659 if (i->openmin)
660 i->max++;
661 /* only exclude max value if also excluded before refine */
662 i->openmax = (i->openmax && i->max >= last_max);
663 return 1;
664 }
665
snd_interval_refine_last(struct snd_interval * i)666 static int snd_interval_refine_last(struct snd_interval *i)
667 {
668 const unsigned int last_min = i->min;
669
670 if (snd_BUG_ON(snd_interval_empty(i)))
671 return -EINVAL;
672 if (snd_interval_single(i))
673 return 0;
674 i->min = i->max;
675 if (i->openmax)
676 i->min--;
677 /* only exclude min value if also excluded before refine */
678 i->openmin = (i->openmin && i->min <= last_min);
679 return 1;
680 }
681
snd_interval_mul(const struct snd_interval * a,const struct snd_interval * b,struct snd_interval * c)682 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
683 {
684 if (a->empty || b->empty) {
685 snd_interval_none(c);
686 return;
687 }
688 c->empty = 0;
689 c->min = mul(a->min, b->min);
690 c->openmin = (a->openmin || b->openmin);
691 c->max = mul(a->max, b->max);
692 c->openmax = (a->openmax || b->openmax);
693 c->integer = (a->integer && b->integer);
694 }
695
696 /**
697 * snd_interval_div - refine the interval value with division
698 * @a: dividend
699 * @b: divisor
700 * @c: quotient
701 *
702 * c = a / b
703 *
704 * Returns non-zero if the value is changed, zero if not changed.
705 */
snd_interval_div(const struct snd_interval * a,const struct snd_interval * b,struct snd_interval * c)706 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
707 {
708 unsigned int r;
709 if (a->empty || b->empty) {
710 snd_interval_none(c);
711 return;
712 }
713 c->empty = 0;
714 c->min = div32(a->min, b->max, &r);
715 c->openmin = (r || a->openmin || b->openmax);
716 if (b->min > 0) {
717 c->max = div32(a->max, b->min, &r);
718 if (r) {
719 c->max++;
720 c->openmax = 1;
721 } else
722 c->openmax = (a->openmax || b->openmin);
723 } else {
724 c->max = UINT_MAX;
725 c->openmax = 0;
726 }
727 c->integer = 0;
728 }
729
730 /**
731 * snd_interval_muldivk - refine the interval value
732 * @a: dividend 1
733 * @b: dividend 2
734 * @k: divisor (as integer)
735 * @c: result
736 *
737 * c = a * b / k
738 *
739 * Returns non-zero if the value is changed, zero if not changed.
740 */
snd_interval_muldivk(const struct snd_interval * a,const struct snd_interval * b,unsigned int k,struct snd_interval * c)741 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
742 unsigned int k, struct snd_interval *c)
743 {
744 unsigned int r;
745 if (a->empty || b->empty) {
746 snd_interval_none(c);
747 return;
748 }
749 c->empty = 0;
750 c->min = muldiv32(a->min, b->min, k, &r);
751 c->openmin = (r || a->openmin || b->openmin);
752 c->max = muldiv32(a->max, b->max, k, &r);
753 if (r) {
754 c->max++;
755 c->openmax = 1;
756 } else
757 c->openmax = (a->openmax || b->openmax);
758 c->integer = 0;
759 }
760
761 /**
762 * snd_interval_mulkdiv - refine the interval value
763 * @a: dividend 1
764 * @k: dividend 2 (as integer)
765 * @b: divisor
766 * @c: result
767 *
768 * c = a * k / b
769 *
770 * Returns non-zero if the value is changed, zero if not changed.
771 */
snd_interval_mulkdiv(const struct snd_interval * a,unsigned int k,const struct snd_interval * b,struct snd_interval * c)772 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
773 const struct snd_interval *b, struct snd_interval *c)
774 {
775 unsigned int r;
776 if (a->empty || b->empty) {
777 snd_interval_none(c);
778 return;
779 }
780 c->empty = 0;
781 c->min = muldiv32(a->min, k, b->max, &r);
782 c->openmin = (r || a->openmin || b->openmax);
783 if (b->min > 0) {
784 c->max = muldiv32(a->max, k, b->min, &r);
785 if (r) {
786 c->max++;
787 c->openmax = 1;
788 } else
789 c->openmax = (a->openmax || b->openmin);
790 } else {
791 c->max = UINT_MAX;
792 c->openmax = 0;
793 }
794 c->integer = 0;
795 }
796
797 /* ---- */
798
799
800 /**
801 * snd_interval_ratnum - refine the interval value
802 * @i: interval to refine
803 * @rats_count: number of ratnum_t
804 * @rats: ratnum_t array
805 * @nump: pointer to store the resultant numerator
806 * @denp: pointer to store the resultant denominator
807 *
808 * Return: Positive if the value is changed, zero if it's not changed, or a
809 * negative error code.
810 */
snd_interval_ratnum(struct snd_interval * i,unsigned int rats_count,const struct snd_ratnum * rats,unsigned int * nump,unsigned int * denp)811 int snd_interval_ratnum(struct snd_interval *i,
812 unsigned int rats_count, const struct snd_ratnum *rats,
813 unsigned int *nump, unsigned int *denp)
814 {
815 unsigned int best_num, best_den;
816 int best_diff;
817 unsigned int k;
818 struct snd_interval t;
819 int err;
820 unsigned int result_num, result_den;
821 int result_diff;
822
823 best_num = best_den = best_diff = 0;
824 for (k = 0; k < rats_count; ++k) {
825 unsigned int num = rats[k].num;
826 unsigned int den;
827 unsigned int q = i->min;
828 int diff;
829 if (q == 0)
830 q = 1;
831 den = div_up(num, q);
832 if (den < rats[k].den_min)
833 continue;
834 if (den > rats[k].den_max)
835 den = rats[k].den_max;
836 else {
837 unsigned int r;
838 r = (den - rats[k].den_min) % rats[k].den_step;
839 if (r != 0)
840 den -= r;
841 }
842 diff = num - q * den;
843 if (diff < 0)
844 diff = -diff;
845 if (best_num == 0 ||
846 diff * best_den < best_diff * den) {
847 best_diff = diff;
848 best_den = den;
849 best_num = num;
850 }
851 }
852 if (best_den == 0) {
853 i->empty = 1;
854 return -EINVAL;
855 }
856 t.min = div_down(best_num, best_den);
857 t.openmin = !!(best_num % best_den);
858
859 result_num = best_num;
860 result_diff = best_diff;
861 result_den = best_den;
862 best_num = best_den = best_diff = 0;
863 for (k = 0; k < rats_count; ++k) {
864 unsigned int num = rats[k].num;
865 unsigned int den;
866 unsigned int q = i->max;
867 int diff;
868 if (q == 0) {
869 i->empty = 1;
870 return -EINVAL;
871 }
872 den = div_down(num, q);
873 if (den > rats[k].den_max)
874 continue;
875 if (den < rats[k].den_min)
876 den = rats[k].den_min;
877 else {
878 unsigned int r;
879 r = (den - rats[k].den_min) % rats[k].den_step;
880 if (r != 0)
881 den += rats[k].den_step - r;
882 }
883 diff = q * den - num;
884 if (diff < 0)
885 diff = -diff;
886 if (best_num == 0 ||
887 diff * best_den < best_diff * den) {
888 best_diff = diff;
889 best_den = den;
890 best_num = num;
891 }
892 }
893 if (best_den == 0) {
894 i->empty = 1;
895 return -EINVAL;
896 }
897 t.max = div_up(best_num, best_den);
898 t.openmax = !!(best_num % best_den);
899 t.integer = 0;
900 err = snd_interval_refine(i, &t);
901 if (err < 0)
902 return err;
903
904 if (snd_interval_single(i)) {
905 if (best_diff * result_den < result_diff * best_den) {
906 result_num = best_num;
907 result_den = best_den;
908 }
909 if (nump)
910 *nump = result_num;
911 if (denp)
912 *denp = result_den;
913 }
914 return err;
915 }
916
917 EXPORT_SYMBOL(snd_interval_ratnum);
918
919 /**
920 * snd_interval_ratden - refine the interval value
921 * @i: interval to refine
922 * @rats_count: number of struct ratden
923 * @rats: struct ratden array
924 * @nump: pointer to store the resultant numerator
925 * @denp: pointer to store the resultant denominator
926 *
927 * Return: Positive if the value is changed, zero if it's not changed, or a
928 * negative error code.
929 */
snd_interval_ratden(struct snd_interval * i,unsigned int rats_count,const struct snd_ratden * rats,unsigned int * nump,unsigned int * denp)930 static int snd_interval_ratden(struct snd_interval *i,
931 unsigned int rats_count,
932 const struct snd_ratden *rats,
933 unsigned int *nump, unsigned int *denp)
934 {
935 unsigned int best_num, best_diff, best_den;
936 unsigned int k;
937 struct snd_interval t;
938 int err;
939
940 best_num = best_den = best_diff = 0;
941 for (k = 0; k < rats_count; ++k) {
942 unsigned int num;
943 unsigned int den = rats[k].den;
944 unsigned int q = i->min;
945 int diff;
946 num = mul(q, den);
947 if (num > rats[k].num_max)
948 continue;
949 if (num < rats[k].num_min)
950 num = rats[k].num_max;
951 else {
952 unsigned int r;
953 r = (num - rats[k].num_min) % rats[k].num_step;
954 if (r != 0)
955 num += rats[k].num_step - r;
956 }
957 diff = num - q * den;
958 if (best_num == 0 ||
959 diff * best_den < best_diff * den) {
960 best_diff = diff;
961 best_den = den;
962 best_num = num;
963 }
964 }
965 if (best_den == 0) {
966 i->empty = 1;
967 return -EINVAL;
968 }
969 t.min = div_down(best_num, best_den);
970 t.openmin = !!(best_num % best_den);
971
972 best_num = best_den = best_diff = 0;
973 for (k = 0; k < rats_count; ++k) {
974 unsigned int num;
975 unsigned int den = rats[k].den;
976 unsigned int q = i->max;
977 int diff;
978 num = mul(q, den);
979 if (num < rats[k].num_min)
980 continue;
981 if (num > rats[k].num_max)
982 num = rats[k].num_max;
983 else {
984 unsigned int r;
985 r = (num - rats[k].num_min) % rats[k].num_step;
986 if (r != 0)
987 num -= r;
988 }
989 diff = q * den - num;
990 if (best_num == 0 ||
991 diff * best_den < best_diff * den) {
992 best_diff = diff;
993 best_den = den;
994 best_num = num;
995 }
996 }
997 if (best_den == 0) {
998 i->empty = 1;
999 return -EINVAL;
1000 }
1001 t.max = div_up(best_num, best_den);
1002 t.openmax = !!(best_num % best_den);
1003 t.integer = 0;
1004 err = snd_interval_refine(i, &t);
1005 if (err < 0)
1006 return err;
1007
1008 if (snd_interval_single(i)) {
1009 if (nump)
1010 *nump = best_num;
1011 if (denp)
1012 *denp = best_den;
1013 }
1014 return err;
1015 }
1016
1017 /**
1018 * snd_interval_list - refine the interval value from the list
1019 * @i: the interval value to refine
1020 * @count: the number of elements in the list
1021 * @list: the value list
1022 * @mask: the bit-mask to evaluate
1023 *
1024 * Refines the interval value from the list.
1025 * When mask is non-zero, only the elements corresponding to bit 1 are
1026 * evaluated.
1027 *
1028 * Return: Positive if the value is changed, zero if it's not changed, or a
1029 * negative error code.
1030 */
snd_interval_list(struct snd_interval * i,unsigned int count,const unsigned int * list,unsigned int mask)1031 int snd_interval_list(struct snd_interval *i, unsigned int count,
1032 const unsigned int *list, unsigned int mask)
1033 {
1034 unsigned int k;
1035 struct snd_interval list_range;
1036
1037 if (!count) {
1038 i->empty = 1;
1039 return -EINVAL;
1040 }
1041 snd_interval_any(&list_range);
1042 list_range.min = UINT_MAX;
1043 list_range.max = 0;
1044 for (k = 0; k < count; k++) {
1045 if (mask && !(mask & (1 << k)))
1046 continue;
1047 if (!snd_interval_test(i, list[k]))
1048 continue;
1049 list_range.min = min(list_range.min, list[k]);
1050 list_range.max = max(list_range.max, list[k]);
1051 }
1052 return snd_interval_refine(i, &list_range);
1053 }
1054
1055 EXPORT_SYMBOL(snd_interval_list);
1056
1057 /**
1058 * snd_interval_ranges - refine the interval value from the list of ranges
1059 * @i: the interval value to refine
1060 * @count: the number of elements in the list of ranges
1061 * @ranges: the ranges list
1062 * @mask: the bit-mask to evaluate
1063 *
1064 * Refines the interval value from the list of ranges.
1065 * When mask is non-zero, only the elements corresponding to bit 1 are
1066 * evaluated.
1067 *
1068 * Return: Positive if the value is changed, zero if it's not changed, or a
1069 * negative error code.
1070 */
snd_interval_ranges(struct snd_interval * i,unsigned int count,const struct snd_interval * ranges,unsigned int mask)1071 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1072 const struct snd_interval *ranges, unsigned int mask)
1073 {
1074 unsigned int k;
1075 struct snd_interval range_union;
1076 struct snd_interval range;
1077
1078 if (!count) {
1079 snd_interval_none(i);
1080 return -EINVAL;
1081 }
1082 snd_interval_any(&range_union);
1083 range_union.min = UINT_MAX;
1084 range_union.max = 0;
1085 for (k = 0; k < count; k++) {
1086 if (mask && !(mask & (1 << k)))
1087 continue;
1088 snd_interval_copy(&range, &ranges[k]);
1089 if (snd_interval_refine(&range, i) < 0)
1090 continue;
1091 if (snd_interval_empty(&range))
1092 continue;
1093
1094 if (range.min < range_union.min) {
1095 range_union.min = range.min;
1096 range_union.openmin = 1;
1097 }
1098 if (range.min == range_union.min && !range.openmin)
1099 range_union.openmin = 0;
1100 if (range.max > range_union.max) {
1101 range_union.max = range.max;
1102 range_union.openmax = 1;
1103 }
1104 if (range.max == range_union.max && !range.openmax)
1105 range_union.openmax = 0;
1106 }
1107 return snd_interval_refine(i, &range_union);
1108 }
1109 EXPORT_SYMBOL(snd_interval_ranges);
1110
snd_interval_step(struct snd_interval * i,unsigned int step)1111 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1112 {
1113 unsigned int n;
1114 int changed = 0;
1115 n = i->min % step;
1116 if (n != 0 || i->openmin) {
1117 i->min += step - n;
1118 i->openmin = 0;
1119 changed = 1;
1120 }
1121 n = i->max % step;
1122 if (n != 0 || i->openmax) {
1123 i->max -= n;
1124 i->openmax = 0;
1125 changed = 1;
1126 }
1127 if (snd_interval_checkempty(i)) {
1128 i->empty = 1;
1129 return -EINVAL;
1130 }
1131 return changed;
1132 }
1133
1134 /* Info constraints helpers */
1135
1136 /**
1137 * snd_pcm_hw_rule_add - add the hw-constraint rule
1138 * @runtime: the pcm runtime instance
1139 * @cond: condition bits
1140 * @var: the variable to evaluate
1141 * @func: the evaluation function
1142 * @private: the private data pointer passed to function
1143 * @dep: the dependent variables
1144 *
1145 * Return: Zero if successful, or a negative error code on failure.
1146 */
snd_pcm_hw_rule_add(struct snd_pcm_runtime * runtime,unsigned int cond,int var,snd_pcm_hw_rule_func_t func,void * private,int dep,...)1147 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1148 int var,
1149 snd_pcm_hw_rule_func_t func, void *private,
1150 int dep, ...)
1151 {
1152 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1153 struct snd_pcm_hw_rule *c;
1154 unsigned int k;
1155 va_list args;
1156 va_start(args, dep);
1157 if (constrs->rules_num >= constrs->rules_all) {
1158 struct snd_pcm_hw_rule *new;
1159 unsigned int new_rules = constrs->rules_all + 16;
1160 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1161 if (!new) {
1162 va_end(args);
1163 return -ENOMEM;
1164 }
1165 if (constrs->rules) {
1166 memcpy(new, constrs->rules,
1167 constrs->rules_num * sizeof(*c));
1168 kfree(constrs->rules);
1169 }
1170 constrs->rules = new;
1171 constrs->rules_all = new_rules;
1172 }
1173 c = &constrs->rules[constrs->rules_num];
1174 c->cond = cond;
1175 c->func = func;
1176 c->var = var;
1177 c->private = private;
1178 k = 0;
1179 while (1) {
1180 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1181 va_end(args);
1182 return -EINVAL;
1183 }
1184 c->deps[k++] = dep;
1185 if (dep < 0)
1186 break;
1187 dep = va_arg(args, int);
1188 }
1189 constrs->rules_num++;
1190 va_end(args);
1191 return 0;
1192 }
1193
1194 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1195
1196 /**
1197 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1198 * @runtime: PCM runtime instance
1199 * @var: hw_params variable to apply the mask
1200 * @mask: the bitmap mask
1201 *
1202 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1203 *
1204 * Return: Zero if successful, or a negative error code on failure.
1205 */
snd_pcm_hw_constraint_mask(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,u_int32_t mask)1206 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1207 u_int32_t mask)
1208 {
1209 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1210 struct snd_mask *maskp = constrs_mask(constrs, var);
1211 *maskp->bits &= mask;
1212 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1213 if (*maskp->bits == 0)
1214 return -EINVAL;
1215 return 0;
1216 }
1217
1218 /**
1219 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1220 * @runtime: PCM runtime instance
1221 * @var: hw_params variable to apply the mask
1222 * @mask: the 64bit bitmap mask
1223 *
1224 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1225 *
1226 * Return: Zero if successful, or a negative error code on failure.
1227 */
snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,u_int64_t mask)1228 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1229 u_int64_t mask)
1230 {
1231 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1232 struct snd_mask *maskp = constrs_mask(constrs, var);
1233 maskp->bits[0] &= (u_int32_t)mask;
1234 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1235 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1236 if (! maskp->bits[0] && ! maskp->bits[1])
1237 return -EINVAL;
1238 return 0;
1239 }
1240 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1241
1242 /**
1243 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1244 * @runtime: PCM runtime instance
1245 * @var: hw_params variable to apply the integer constraint
1246 *
1247 * Apply the constraint of integer to an interval parameter.
1248 *
1249 * Return: Positive if the value is changed, zero if it's not changed, or a
1250 * negative error code.
1251 */
snd_pcm_hw_constraint_integer(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var)1252 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1253 {
1254 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1255 return snd_interval_setinteger(constrs_interval(constrs, var));
1256 }
1257
1258 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1259
1260 /**
1261 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1262 * @runtime: PCM runtime instance
1263 * @var: hw_params variable to apply the range
1264 * @min: the minimal value
1265 * @max: the maximal value
1266 *
1267 * Apply the min/max range constraint to an interval parameter.
1268 *
1269 * Return: Positive if the value is changed, zero if it's not changed, or a
1270 * negative error code.
1271 */
snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,unsigned int min,unsigned int max)1272 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1273 unsigned int min, unsigned int max)
1274 {
1275 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1276 struct snd_interval t;
1277 t.min = min;
1278 t.max = max;
1279 t.openmin = t.openmax = 0;
1280 t.integer = 0;
1281 return snd_interval_refine(constrs_interval(constrs, var), &t);
1282 }
1283
1284 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1285
snd_pcm_hw_rule_list(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1286 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1287 struct snd_pcm_hw_rule *rule)
1288 {
1289 struct snd_pcm_hw_constraint_list *list = rule->private;
1290 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1291 }
1292
1293
1294 /**
1295 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1296 * @runtime: PCM runtime instance
1297 * @cond: condition bits
1298 * @var: hw_params variable to apply the list constraint
1299 * @l: list
1300 *
1301 * Apply the list of constraints to an interval parameter.
1302 *
1303 * Return: Zero if successful, or a negative error code on failure.
1304 */
snd_pcm_hw_constraint_list(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,const struct snd_pcm_hw_constraint_list * l)1305 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1306 unsigned int cond,
1307 snd_pcm_hw_param_t var,
1308 const struct snd_pcm_hw_constraint_list *l)
1309 {
1310 return snd_pcm_hw_rule_add(runtime, cond, var,
1311 snd_pcm_hw_rule_list, (void *)l,
1312 var, -1);
1313 }
1314
1315 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1316
snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1317 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1318 struct snd_pcm_hw_rule *rule)
1319 {
1320 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1321 return snd_interval_ranges(hw_param_interval(params, rule->var),
1322 r->count, r->ranges, r->mask);
1323 }
1324
1325
1326 /**
1327 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1328 * @runtime: PCM runtime instance
1329 * @cond: condition bits
1330 * @var: hw_params variable to apply the list of range constraints
1331 * @r: ranges
1332 *
1333 * Apply the list of range constraints to an interval parameter.
1334 *
1335 * Return: Zero if successful, or a negative error code on failure.
1336 */
snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,const struct snd_pcm_hw_constraint_ranges * r)1337 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1338 unsigned int cond,
1339 snd_pcm_hw_param_t var,
1340 const struct snd_pcm_hw_constraint_ranges *r)
1341 {
1342 return snd_pcm_hw_rule_add(runtime, cond, var,
1343 snd_pcm_hw_rule_ranges, (void *)r,
1344 var, -1);
1345 }
1346 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1347
snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1348 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1349 struct snd_pcm_hw_rule *rule)
1350 {
1351 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1352 unsigned int num = 0, den = 0;
1353 int err;
1354 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1355 r->nrats, r->rats, &num, &den);
1356 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1357 params->rate_num = num;
1358 params->rate_den = den;
1359 }
1360 return err;
1361 }
1362
1363 /**
1364 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1365 * @runtime: PCM runtime instance
1366 * @cond: condition bits
1367 * @var: hw_params variable to apply the ratnums constraint
1368 * @r: struct snd_ratnums constriants
1369 *
1370 * Return: Zero if successful, or a negative error code on failure.
1371 */
snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,const struct snd_pcm_hw_constraint_ratnums * r)1372 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1373 unsigned int cond,
1374 snd_pcm_hw_param_t var,
1375 const struct snd_pcm_hw_constraint_ratnums *r)
1376 {
1377 return snd_pcm_hw_rule_add(runtime, cond, var,
1378 snd_pcm_hw_rule_ratnums, (void *)r,
1379 var, -1);
1380 }
1381
1382 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1383
snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1384 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1385 struct snd_pcm_hw_rule *rule)
1386 {
1387 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1388 unsigned int num = 0, den = 0;
1389 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1390 r->nrats, r->rats, &num, &den);
1391 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1392 params->rate_num = num;
1393 params->rate_den = den;
1394 }
1395 return err;
1396 }
1397
1398 /**
1399 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1400 * @runtime: PCM runtime instance
1401 * @cond: condition bits
1402 * @var: hw_params variable to apply the ratdens constraint
1403 * @r: struct snd_ratdens constriants
1404 *
1405 * Return: Zero if successful, or a negative error code on failure.
1406 */
snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,const struct snd_pcm_hw_constraint_ratdens * r)1407 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1408 unsigned int cond,
1409 snd_pcm_hw_param_t var,
1410 const struct snd_pcm_hw_constraint_ratdens *r)
1411 {
1412 return snd_pcm_hw_rule_add(runtime, cond, var,
1413 snd_pcm_hw_rule_ratdens, (void *)r,
1414 var, -1);
1415 }
1416
1417 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1418
snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1419 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1420 struct snd_pcm_hw_rule *rule)
1421 {
1422 unsigned int l = (unsigned long) rule->private;
1423 int width = l & 0xffff;
1424 unsigned int msbits = l >> 16;
1425 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1426
1427 if (!snd_interval_single(i))
1428 return 0;
1429
1430 if ((snd_interval_value(i) == width) ||
1431 (width == 0 && snd_interval_value(i) > msbits))
1432 params->msbits = min_not_zero(params->msbits, msbits);
1433
1434 return 0;
1435 }
1436
1437 /**
1438 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1439 * @runtime: PCM runtime instance
1440 * @cond: condition bits
1441 * @width: sample bits width
1442 * @msbits: msbits width
1443 *
1444 * This constraint will set the number of most significant bits (msbits) if a
1445 * sample format with the specified width has been select. If width is set to 0
1446 * the msbits will be set for any sample format with a width larger than the
1447 * specified msbits.
1448 *
1449 * Return: Zero if successful, or a negative error code on failure.
1450 */
snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime * runtime,unsigned int cond,unsigned int width,unsigned int msbits)1451 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1452 unsigned int cond,
1453 unsigned int width,
1454 unsigned int msbits)
1455 {
1456 unsigned long l = (msbits << 16) | width;
1457 return snd_pcm_hw_rule_add(runtime, cond, -1,
1458 snd_pcm_hw_rule_msbits,
1459 (void*) l,
1460 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1461 }
1462
1463 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1464
snd_pcm_hw_rule_step(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1465 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1466 struct snd_pcm_hw_rule *rule)
1467 {
1468 unsigned long step = (unsigned long) rule->private;
1469 return snd_interval_step(hw_param_interval(params, rule->var), step);
1470 }
1471
1472 /**
1473 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1474 * @runtime: PCM runtime instance
1475 * @cond: condition bits
1476 * @var: hw_params variable to apply the step constraint
1477 * @step: step size
1478 *
1479 * Return: Zero if successful, or a negative error code on failure.
1480 */
snd_pcm_hw_constraint_step(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,unsigned long step)1481 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1482 unsigned int cond,
1483 snd_pcm_hw_param_t var,
1484 unsigned long step)
1485 {
1486 return snd_pcm_hw_rule_add(runtime, cond, var,
1487 snd_pcm_hw_rule_step, (void *) step,
1488 var, -1);
1489 }
1490
1491 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1492
snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1493 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1494 {
1495 static unsigned int pow2_sizes[] = {
1496 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1497 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1498 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1499 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1500 };
1501 return snd_interval_list(hw_param_interval(params, rule->var),
1502 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1503 }
1504
1505 /**
1506 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1507 * @runtime: PCM runtime instance
1508 * @cond: condition bits
1509 * @var: hw_params variable to apply the power-of-2 constraint
1510 *
1511 * Return: Zero if successful, or a negative error code on failure.
1512 */
snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var)1513 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1514 unsigned int cond,
1515 snd_pcm_hw_param_t var)
1516 {
1517 return snd_pcm_hw_rule_add(runtime, cond, var,
1518 snd_pcm_hw_rule_pow2, NULL,
1519 var, -1);
1520 }
1521
1522 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1523
snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1524 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1525 struct snd_pcm_hw_rule *rule)
1526 {
1527 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1528 struct snd_interval *rate;
1529
1530 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1531 return snd_interval_list(rate, 1, &base_rate, 0);
1532 }
1533
1534 /**
1535 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1536 * @runtime: PCM runtime instance
1537 * @base_rate: the rate at which the hardware does not resample
1538 *
1539 * Return: Zero if successful, or a negative error code on failure.
1540 */
snd_pcm_hw_rule_noresample(struct snd_pcm_runtime * runtime,unsigned int base_rate)1541 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1542 unsigned int base_rate)
1543 {
1544 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1545 SNDRV_PCM_HW_PARAM_RATE,
1546 snd_pcm_hw_rule_noresample_func,
1547 (void *)(uintptr_t)base_rate,
1548 SNDRV_PCM_HW_PARAM_RATE, -1);
1549 }
1550 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1551
_snd_pcm_hw_param_any(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1552 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1553 snd_pcm_hw_param_t var)
1554 {
1555 if (hw_is_mask(var)) {
1556 snd_mask_any(hw_param_mask(params, var));
1557 params->cmask |= 1 << var;
1558 params->rmask |= 1 << var;
1559 return;
1560 }
1561 if (hw_is_interval(var)) {
1562 snd_interval_any(hw_param_interval(params, var));
1563 params->cmask |= 1 << var;
1564 params->rmask |= 1 << var;
1565 return;
1566 }
1567 snd_BUG();
1568 }
1569
_snd_pcm_hw_params_any(struct snd_pcm_hw_params * params)1570 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1571 {
1572 unsigned int k;
1573 memset(params, 0, sizeof(*params));
1574 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1575 _snd_pcm_hw_param_any(params, k);
1576 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1577 _snd_pcm_hw_param_any(params, k);
1578 params->info = ~0U;
1579 }
1580
1581 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1582
1583 /**
1584 * snd_pcm_hw_param_value - return @params field @var value
1585 * @params: the hw_params instance
1586 * @var: parameter to retrieve
1587 * @dir: pointer to the direction (-1,0,1) or %NULL
1588 *
1589 * Return: The value for field @var if it's fixed in configuration space
1590 * defined by @params. -%EINVAL otherwise.
1591 */
snd_pcm_hw_param_value(const struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1592 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1593 snd_pcm_hw_param_t var, int *dir)
1594 {
1595 if (hw_is_mask(var)) {
1596 const struct snd_mask *mask = hw_param_mask_c(params, var);
1597 if (!snd_mask_single(mask))
1598 return -EINVAL;
1599 if (dir)
1600 *dir = 0;
1601 return snd_mask_value(mask);
1602 }
1603 if (hw_is_interval(var)) {
1604 const struct snd_interval *i = hw_param_interval_c(params, var);
1605 if (!snd_interval_single(i))
1606 return -EINVAL;
1607 if (dir)
1608 *dir = i->openmin;
1609 return snd_interval_value(i);
1610 }
1611 return -EINVAL;
1612 }
1613
1614 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1615
_snd_pcm_hw_param_setempty(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1616 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1617 snd_pcm_hw_param_t var)
1618 {
1619 if (hw_is_mask(var)) {
1620 snd_mask_none(hw_param_mask(params, var));
1621 params->cmask |= 1 << var;
1622 params->rmask |= 1 << var;
1623 } else if (hw_is_interval(var)) {
1624 snd_interval_none(hw_param_interval(params, var));
1625 params->cmask |= 1 << var;
1626 params->rmask |= 1 << var;
1627 } else {
1628 snd_BUG();
1629 }
1630 }
1631
1632 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1633
_snd_pcm_hw_param_first(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1634 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1635 snd_pcm_hw_param_t var)
1636 {
1637 int changed;
1638 if (hw_is_mask(var))
1639 changed = snd_mask_refine_first(hw_param_mask(params, var));
1640 else if (hw_is_interval(var))
1641 changed = snd_interval_refine_first(hw_param_interval(params, var));
1642 else
1643 return -EINVAL;
1644 if (changed) {
1645 params->cmask |= 1 << var;
1646 params->rmask |= 1 << var;
1647 }
1648 return changed;
1649 }
1650
1651
1652 /**
1653 * snd_pcm_hw_param_first - refine config space and return minimum value
1654 * @pcm: PCM instance
1655 * @params: the hw_params instance
1656 * @var: parameter to retrieve
1657 * @dir: pointer to the direction (-1,0,1) or %NULL
1658 *
1659 * Inside configuration space defined by @params remove from @var all
1660 * values > minimum. Reduce configuration space accordingly.
1661 *
1662 * Return: The minimum, or a negative error code on failure.
1663 */
snd_pcm_hw_param_first(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1664 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1665 struct snd_pcm_hw_params *params,
1666 snd_pcm_hw_param_t var, int *dir)
1667 {
1668 int changed = _snd_pcm_hw_param_first(params, var);
1669 if (changed < 0)
1670 return changed;
1671 if (params->rmask) {
1672 int err = snd_pcm_hw_refine(pcm, params);
1673 if (err < 0)
1674 return err;
1675 }
1676 return snd_pcm_hw_param_value(params, var, dir);
1677 }
1678
1679 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1680
_snd_pcm_hw_param_last(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1681 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1682 snd_pcm_hw_param_t var)
1683 {
1684 int changed;
1685 if (hw_is_mask(var))
1686 changed = snd_mask_refine_last(hw_param_mask(params, var));
1687 else if (hw_is_interval(var))
1688 changed = snd_interval_refine_last(hw_param_interval(params, var));
1689 else
1690 return -EINVAL;
1691 if (changed) {
1692 params->cmask |= 1 << var;
1693 params->rmask |= 1 << var;
1694 }
1695 return changed;
1696 }
1697
1698
1699 /**
1700 * snd_pcm_hw_param_last - refine config space and return maximum value
1701 * @pcm: PCM instance
1702 * @params: the hw_params instance
1703 * @var: parameter to retrieve
1704 * @dir: pointer to the direction (-1,0,1) or %NULL
1705 *
1706 * Inside configuration space defined by @params remove from @var all
1707 * values < maximum. Reduce configuration space accordingly.
1708 *
1709 * Return: The maximum, or a negative error code on failure.
1710 */
snd_pcm_hw_param_last(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1711 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1712 struct snd_pcm_hw_params *params,
1713 snd_pcm_hw_param_t var, int *dir)
1714 {
1715 int changed = _snd_pcm_hw_param_last(params, var);
1716 if (changed < 0)
1717 return changed;
1718 if (params->rmask) {
1719 int err = snd_pcm_hw_refine(pcm, params);
1720 if (err < 0)
1721 return err;
1722 }
1723 return snd_pcm_hw_param_value(params, var, dir);
1724 }
1725
1726 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1727
1728 /**
1729 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1730 * @pcm: PCM instance
1731 * @params: the hw_params instance
1732 *
1733 * Choose one configuration from configuration space defined by @params.
1734 * The configuration chosen is that obtained fixing in this order:
1735 * first access, first format, first subformat, min channels,
1736 * min rate, min period time, max buffer size, min tick time
1737 *
1738 * Return: Zero if successful, or a negative error code on failure.
1739 */
snd_pcm_hw_params_choose(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params)1740 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1741 struct snd_pcm_hw_params *params)
1742 {
1743 static int vars[] = {
1744 SNDRV_PCM_HW_PARAM_ACCESS,
1745 SNDRV_PCM_HW_PARAM_FORMAT,
1746 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1747 SNDRV_PCM_HW_PARAM_CHANNELS,
1748 SNDRV_PCM_HW_PARAM_RATE,
1749 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1750 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1751 SNDRV_PCM_HW_PARAM_TICK_TIME,
1752 -1
1753 };
1754 int err, *v;
1755
1756 for (v = vars; *v != -1; v++) {
1757 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1758 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1759 else
1760 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1761 if (snd_BUG_ON(err < 0))
1762 return err;
1763 }
1764 return 0;
1765 }
1766
snd_pcm_lib_ioctl_reset(struct snd_pcm_substream * substream,void * arg)1767 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1768 void *arg)
1769 {
1770 struct snd_pcm_runtime *runtime = substream->runtime;
1771 unsigned long flags;
1772 snd_pcm_stream_lock_irqsave(substream, flags);
1773 if (snd_pcm_running(substream) &&
1774 snd_pcm_update_hw_ptr(substream) >= 0)
1775 runtime->status->hw_ptr %= runtime->buffer_size;
1776 else {
1777 runtime->status->hw_ptr = 0;
1778 runtime->hw_ptr_wrap = 0;
1779 }
1780 snd_pcm_stream_unlock_irqrestore(substream, flags);
1781 return 0;
1782 }
1783
snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream * substream,void * arg)1784 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1785 void *arg)
1786 {
1787 struct snd_pcm_channel_info *info = arg;
1788 struct snd_pcm_runtime *runtime = substream->runtime;
1789 int width;
1790 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1791 info->offset = -1;
1792 return 0;
1793 }
1794 width = snd_pcm_format_physical_width(runtime->format);
1795 if (width < 0)
1796 return width;
1797 info->offset = 0;
1798 switch (runtime->access) {
1799 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1800 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1801 info->first = info->channel * width;
1802 info->step = runtime->channels * width;
1803 break;
1804 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1805 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1806 {
1807 size_t size = runtime->dma_bytes / runtime->channels;
1808 info->first = info->channel * size * 8;
1809 info->step = width;
1810 break;
1811 }
1812 default:
1813 snd_BUG();
1814 break;
1815 }
1816 return 0;
1817 }
1818
snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream * substream,void * arg)1819 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1820 void *arg)
1821 {
1822 struct snd_pcm_hw_params *params = arg;
1823 snd_pcm_format_t format;
1824 int channels;
1825 ssize_t frame_size;
1826
1827 params->fifo_size = substream->runtime->hw.fifo_size;
1828 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1829 format = params_format(params);
1830 channels = params_channels(params);
1831 frame_size = snd_pcm_format_size(format, channels);
1832 if (frame_size > 0)
1833 params->fifo_size /= frame_size;
1834 }
1835 return 0;
1836 }
1837
1838 /**
1839 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1840 * @substream: the pcm substream instance
1841 * @cmd: ioctl command
1842 * @arg: ioctl argument
1843 *
1844 * Processes the generic ioctl commands for PCM.
1845 * Can be passed as the ioctl callback for PCM ops.
1846 *
1847 * Return: Zero if successful, or a negative error code on failure.
1848 */
snd_pcm_lib_ioctl(struct snd_pcm_substream * substream,unsigned int cmd,void * arg)1849 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1850 unsigned int cmd, void *arg)
1851 {
1852 switch (cmd) {
1853 case SNDRV_PCM_IOCTL1_RESET:
1854 return snd_pcm_lib_ioctl_reset(substream, arg);
1855 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1856 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1857 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1858 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1859 }
1860 return -ENXIO;
1861 }
1862
1863 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1864
1865 /**
1866 * snd_pcm_period_elapsed - update the pcm status for the next period
1867 * @substream: the pcm substream instance
1868 *
1869 * This function is called from the interrupt handler when the
1870 * PCM has processed the period size. It will update the current
1871 * pointer, wake up sleepers, etc.
1872 *
1873 * Even if more than one periods have elapsed since the last call, you
1874 * have to call this only once.
1875 */
snd_pcm_period_elapsed(struct snd_pcm_substream * substream)1876 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1877 {
1878 struct snd_pcm_runtime *runtime;
1879 unsigned long flags;
1880
1881 if (snd_BUG_ON(!substream))
1882 return;
1883
1884 snd_pcm_stream_lock_irqsave(substream, flags);
1885 if (PCM_RUNTIME_CHECK(substream))
1886 goto _unlock;
1887 runtime = substream->runtime;
1888
1889 if (!snd_pcm_running(substream) ||
1890 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1891 goto _end;
1892
1893 #ifdef CONFIG_SND_PCM_TIMER
1894 if (substream->timer_running)
1895 snd_timer_interrupt(substream->timer, 1);
1896 #endif
1897 _end:
1898 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1899 _unlock:
1900 snd_pcm_stream_unlock_irqrestore(substream, flags);
1901 }
1902
1903 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1904
1905 /*
1906 * Wait until avail_min data becomes available
1907 * Returns a negative error code if any error occurs during operation.
1908 * The available space is stored on availp. When err = 0 and avail = 0
1909 * on the capture stream, it indicates the stream is in DRAINING state.
1910 */
wait_for_avail(struct snd_pcm_substream * substream,snd_pcm_uframes_t * availp)1911 static int wait_for_avail(struct snd_pcm_substream *substream,
1912 snd_pcm_uframes_t *availp)
1913 {
1914 struct snd_pcm_runtime *runtime = substream->runtime;
1915 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1916 wait_queue_t wait;
1917 int err = 0;
1918 snd_pcm_uframes_t avail = 0;
1919 long wait_time, tout;
1920
1921 init_waitqueue_entry(&wait, current);
1922 set_current_state(TASK_INTERRUPTIBLE);
1923 add_wait_queue(&runtime->tsleep, &wait);
1924
1925 if (runtime->no_period_wakeup)
1926 wait_time = MAX_SCHEDULE_TIMEOUT;
1927 else {
1928 wait_time = 10;
1929 if (runtime->rate) {
1930 long t = runtime->period_size * 2 / runtime->rate;
1931 wait_time = max(t, wait_time);
1932 }
1933 wait_time = msecs_to_jiffies(wait_time * 1000);
1934 }
1935
1936 for (;;) {
1937 if (signal_pending(current)) {
1938 err = -ERESTARTSYS;
1939 break;
1940 }
1941
1942 /*
1943 * We need to check if space became available already
1944 * (and thus the wakeup happened already) first to close
1945 * the race of space already having become available.
1946 * This check must happen after been added to the waitqueue
1947 * and having current state be INTERRUPTIBLE.
1948 */
1949 if (is_playback)
1950 avail = snd_pcm_playback_avail(runtime);
1951 else
1952 avail = snd_pcm_capture_avail(runtime);
1953 if (avail >= runtime->twake)
1954 break;
1955 snd_pcm_stream_unlock_irq(substream);
1956
1957 tout = schedule_timeout(wait_time);
1958
1959 snd_pcm_stream_lock_irq(substream);
1960 set_current_state(TASK_INTERRUPTIBLE);
1961 switch (runtime->status->state) {
1962 case SNDRV_PCM_STATE_SUSPENDED:
1963 err = -ESTRPIPE;
1964 goto _endloop;
1965 case SNDRV_PCM_STATE_XRUN:
1966 err = -EPIPE;
1967 goto _endloop;
1968 case SNDRV_PCM_STATE_DRAINING:
1969 if (is_playback)
1970 err = -EPIPE;
1971 else
1972 avail = 0; /* indicate draining */
1973 goto _endloop;
1974 case SNDRV_PCM_STATE_OPEN:
1975 case SNDRV_PCM_STATE_SETUP:
1976 case SNDRV_PCM_STATE_DISCONNECTED:
1977 err = -EBADFD;
1978 goto _endloop;
1979 case SNDRV_PCM_STATE_PAUSED:
1980 continue;
1981 }
1982 if (!tout) {
1983 pcm_dbg(substream->pcm,
1984 "%s write error (DMA or IRQ trouble?)\n",
1985 is_playback ? "playback" : "capture");
1986 err = -EIO;
1987 break;
1988 }
1989 }
1990 _endloop:
1991 set_current_state(TASK_RUNNING);
1992 remove_wait_queue(&runtime->tsleep, &wait);
1993 *availp = avail;
1994 return err;
1995 }
1996
snd_pcm_lib_write_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)1997 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1998 unsigned int hwoff,
1999 unsigned long data, unsigned int off,
2000 snd_pcm_uframes_t frames)
2001 {
2002 struct snd_pcm_runtime *runtime = substream->runtime;
2003 int err;
2004 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2005 if (substream->ops->copy) {
2006 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2007 return err;
2008 } else {
2009 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2010 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2011 return -EFAULT;
2012 }
2013 return 0;
2014 }
2015
2016 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
2017 unsigned long data, unsigned int off,
2018 snd_pcm_uframes_t size);
2019
snd_pcm_lib_write1(struct snd_pcm_substream * substream,unsigned long data,snd_pcm_uframes_t size,int nonblock,transfer_f transfer)2020 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
2021 unsigned long data,
2022 snd_pcm_uframes_t size,
2023 int nonblock,
2024 transfer_f transfer)
2025 {
2026 struct snd_pcm_runtime *runtime = substream->runtime;
2027 snd_pcm_uframes_t xfer = 0;
2028 snd_pcm_uframes_t offset = 0;
2029 snd_pcm_uframes_t avail;
2030 int err = 0;
2031
2032 if (size == 0)
2033 return 0;
2034
2035 snd_pcm_stream_lock_irq(substream);
2036 switch (runtime->status->state) {
2037 case SNDRV_PCM_STATE_PREPARED:
2038 case SNDRV_PCM_STATE_RUNNING:
2039 case SNDRV_PCM_STATE_PAUSED:
2040 break;
2041 case SNDRV_PCM_STATE_XRUN:
2042 err = -EPIPE;
2043 goto _end_unlock;
2044 case SNDRV_PCM_STATE_SUSPENDED:
2045 err = -ESTRPIPE;
2046 goto _end_unlock;
2047 default:
2048 err = -EBADFD;
2049 goto _end_unlock;
2050 }
2051
2052 runtime->twake = runtime->control->avail_min ? : 1;
2053 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2054 snd_pcm_update_hw_ptr(substream);
2055 avail = snd_pcm_playback_avail(runtime);
2056 while (size > 0) {
2057 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2058 snd_pcm_uframes_t cont;
2059 if (!avail) {
2060 if (nonblock) {
2061 err = -EAGAIN;
2062 goto _end_unlock;
2063 }
2064 runtime->twake = min_t(snd_pcm_uframes_t, size,
2065 runtime->control->avail_min ? : 1);
2066 err = wait_for_avail(substream, &avail);
2067 if (err < 0)
2068 goto _end_unlock;
2069 }
2070 frames = size > avail ? avail : size;
2071 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2072 if (frames > cont)
2073 frames = cont;
2074 if (snd_BUG_ON(!frames)) {
2075 runtime->twake = 0;
2076 snd_pcm_stream_unlock_irq(substream);
2077 return -EINVAL;
2078 }
2079 appl_ptr = runtime->control->appl_ptr;
2080 appl_ofs = appl_ptr % runtime->buffer_size;
2081 snd_pcm_stream_unlock_irq(substream);
2082 err = transfer(substream, appl_ofs, data, offset, frames);
2083 snd_pcm_stream_lock_irq(substream);
2084 if (err < 0)
2085 goto _end_unlock;
2086 switch (runtime->status->state) {
2087 case SNDRV_PCM_STATE_XRUN:
2088 err = -EPIPE;
2089 goto _end_unlock;
2090 case SNDRV_PCM_STATE_SUSPENDED:
2091 err = -ESTRPIPE;
2092 goto _end_unlock;
2093 default:
2094 break;
2095 }
2096 appl_ptr += frames;
2097 if (appl_ptr >= runtime->boundary)
2098 appl_ptr -= runtime->boundary;
2099 runtime->control->appl_ptr = appl_ptr;
2100 if (substream->ops->ack)
2101 substream->ops->ack(substream);
2102
2103 offset += frames;
2104 size -= frames;
2105 xfer += frames;
2106 avail -= frames;
2107 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2108 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2109 err = snd_pcm_start(substream);
2110 if (err < 0)
2111 goto _end_unlock;
2112 }
2113 }
2114 _end_unlock:
2115 runtime->twake = 0;
2116 if (xfer > 0 && err >= 0)
2117 snd_pcm_update_state(substream, runtime);
2118 snd_pcm_stream_unlock_irq(substream);
2119 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2120 }
2121
2122 /* sanity-check for read/write methods */
pcm_sanity_check(struct snd_pcm_substream * substream)2123 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2124 {
2125 struct snd_pcm_runtime *runtime;
2126 if (PCM_RUNTIME_CHECK(substream))
2127 return -ENXIO;
2128 runtime = substream->runtime;
2129 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2130 return -EINVAL;
2131 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2132 return -EBADFD;
2133 return 0;
2134 }
2135
snd_pcm_lib_write(struct snd_pcm_substream * substream,const void __user * buf,snd_pcm_uframes_t size)2136 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2137 {
2138 struct snd_pcm_runtime *runtime;
2139 int nonblock;
2140 int err;
2141
2142 err = pcm_sanity_check(substream);
2143 if (err < 0)
2144 return err;
2145 runtime = substream->runtime;
2146 nonblock = !!(substream->f_flags & O_NONBLOCK);
2147
2148 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2149 runtime->channels > 1)
2150 return -EINVAL;
2151 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2152 snd_pcm_lib_write_transfer);
2153 }
2154
2155 EXPORT_SYMBOL(snd_pcm_lib_write);
2156
snd_pcm_lib_writev_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2157 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2158 unsigned int hwoff,
2159 unsigned long data, unsigned int off,
2160 snd_pcm_uframes_t frames)
2161 {
2162 struct snd_pcm_runtime *runtime = substream->runtime;
2163 int err;
2164 void __user **bufs = (void __user **)data;
2165 int channels = runtime->channels;
2166 int c;
2167 if (substream->ops->copy) {
2168 if (snd_BUG_ON(!substream->ops->silence))
2169 return -EINVAL;
2170 for (c = 0; c < channels; ++c, ++bufs) {
2171 if (*bufs == NULL) {
2172 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2173 return err;
2174 } else {
2175 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2176 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2177 return err;
2178 }
2179 }
2180 } else {
2181 /* default transfer behaviour */
2182 size_t dma_csize = runtime->dma_bytes / channels;
2183 for (c = 0; c < channels; ++c, ++bufs) {
2184 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2185 if (*bufs == NULL) {
2186 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2187 } else {
2188 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2189 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2190 return -EFAULT;
2191 }
2192 }
2193 }
2194 return 0;
2195 }
2196
snd_pcm_lib_writev(struct snd_pcm_substream * substream,void __user ** bufs,snd_pcm_uframes_t frames)2197 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2198 void __user **bufs,
2199 snd_pcm_uframes_t frames)
2200 {
2201 struct snd_pcm_runtime *runtime;
2202 int nonblock;
2203 int err;
2204
2205 err = pcm_sanity_check(substream);
2206 if (err < 0)
2207 return err;
2208 runtime = substream->runtime;
2209 nonblock = !!(substream->f_flags & O_NONBLOCK);
2210
2211 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2212 return -EINVAL;
2213 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2214 nonblock, snd_pcm_lib_writev_transfer);
2215 }
2216
2217 EXPORT_SYMBOL(snd_pcm_lib_writev);
2218
snd_pcm_lib_read_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2219 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2220 unsigned int hwoff,
2221 unsigned long data, unsigned int off,
2222 snd_pcm_uframes_t frames)
2223 {
2224 struct snd_pcm_runtime *runtime = substream->runtime;
2225 int err;
2226 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2227 if (substream->ops->copy) {
2228 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2229 return err;
2230 } else {
2231 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2232 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2233 return -EFAULT;
2234 }
2235 return 0;
2236 }
2237
snd_pcm_lib_read1(struct snd_pcm_substream * substream,unsigned long data,snd_pcm_uframes_t size,int nonblock,transfer_f transfer)2238 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2239 unsigned long data,
2240 snd_pcm_uframes_t size,
2241 int nonblock,
2242 transfer_f transfer)
2243 {
2244 struct snd_pcm_runtime *runtime = substream->runtime;
2245 snd_pcm_uframes_t xfer = 0;
2246 snd_pcm_uframes_t offset = 0;
2247 snd_pcm_uframes_t avail;
2248 int err = 0;
2249
2250 if (size == 0)
2251 return 0;
2252
2253 snd_pcm_stream_lock_irq(substream);
2254 switch (runtime->status->state) {
2255 case SNDRV_PCM_STATE_PREPARED:
2256 if (size >= runtime->start_threshold) {
2257 err = snd_pcm_start(substream);
2258 if (err < 0)
2259 goto _end_unlock;
2260 }
2261 break;
2262 case SNDRV_PCM_STATE_DRAINING:
2263 case SNDRV_PCM_STATE_RUNNING:
2264 case SNDRV_PCM_STATE_PAUSED:
2265 break;
2266 case SNDRV_PCM_STATE_XRUN:
2267 err = -EPIPE;
2268 goto _end_unlock;
2269 case SNDRV_PCM_STATE_SUSPENDED:
2270 err = -ESTRPIPE;
2271 goto _end_unlock;
2272 default:
2273 err = -EBADFD;
2274 goto _end_unlock;
2275 }
2276
2277 runtime->twake = runtime->control->avail_min ? : 1;
2278 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2279 snd_pcm_update_hw_ptr(substream);
2280 avail = snd_pcm_capture_avail(runtime);
2281 while (size > 0) {
2282 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2283 snd_pcm_uframes_t cont;
2284 if (!avail) {
2285 if (runtime->status->state ==
2286 SNDRV_PCM_STATE_DRAINING) {
2287 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2288 goto _end_unlock;
2289 }
2290 if (nonblock) {
2291 err = -EAGAIN;
2292 goto _end_unlock;
2293 }
2294 runtime->twake = min_t(snd_pcm_uframes_t, size,
2295 runtime->control->avail_min ? : 1);
2296 err = wait_for_avail(substream, &avail);
2297 if (err < 0)
2298 goto _end_unlock;
2299 if (!avail)
2300 continue; /* draining */
2301 }
2302 frames = size > avail ? avail : size;
2303 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2304 if (frames > cont)
2305 frames = cont;
2306 if (snd_BUG_ON(!frames)) {
2307 runtime->twake = 0;
2308 snd_pcm_stream_unlock_irq(substream);
2309 return -EINVAL;
2310 }
2311 appl_ptr = runtime->control->appl_ptr;
2312 appl_ofs = appl_ptr % runtime->buffer_size;
2313 snd_pcm_stream_unlock_irq(substream);
2314 err = transfer(substream, appl_ofs, data, offset, frames);
2315 snd_pcm_stream_lock_irq(substream);
2316 if (err < 0)
2317 goto _end_unlock;
2318 switch (runtime->status->state) {
2319 case SNDRV_PCM_STATE_XRUN:
2320 err = -EPIPE;
2321 goto _end_unlock;
2322 case SNDRV_PCM_STATE_SUSPENDED:
2323 err = -ESTRPIPE;
2324 goto _end_unlock;
2325 default:
2326 break;
2327 }
2328 appl_ptr += frames;
2329 if (appl_ptr >= runtime->boundary)
2330 appl_ptr -= runtime->boundary;
2331 runtime->control->appl_ptr = appl_ptr;
2332 if (substream->ops->ack)
2333 substream->ops->ack(substream);
2334
2335 offset += frames;
2336 size -= frames;
2337 xfer += frames;
2338 avail -= frames;
2339 }
2340 _end_unlock:
2341 runtime->twake = 0;
2342 if (xfer > 0 && err >= 0)
2343 snd_pcm_update_state(substream, runtime);
2344 snd_pcm_stream_unlock_irq(substream);
2345 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2346 }
2347
snd_pcm_lib_read(struct snd_pcm_substream * substream,void __user * buf,snd_pcm_uframes_t size)2348 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2349 {
2350 struct snd_pcm_runtime *runtime;
2351 int nonblock;
2352 int err;
2353
2354 err = pcm_sanity_check(substream);
2355 if (err < 0)
2356 return err;
2357 runtime = substream->runtime;
2358 nonblock = !!(substream->f_flags & O_NONBLOCK);
2359 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2360 return -EINVAL;
2361 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2362 }
2363
2364 EXPORT_SYMBOL(snd_pcm_lib_read);
2365
snd_pcm_lib_readv_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2366 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2367 unsigned int hwoff,
2368 unsigned long data, unsigned int off,
2369 snd_pcm_uframes_t frames)
2370 {
2371 struct snd_pcm_runtime *runtime = substream->runtime;
2372 int err;
2373 void __user **bufs = (void __user **)data;
2374 int channels = runtime->channels;
2375 int c;
2376 if (substream->ops->copy) {
2377 for (c = 0; c < channels; ++c, ++bufs) {
2378 char __user *buf;
2379 if (*bufs == NULL)
2380 continue;
2381 buf = *bufs + samples_to_bytes(runtime, off);
2382 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2383 return err;
2384 }
2385 } else {
2386 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2387 for (c = 0; c < channels; ++c, ++bufs) {
2388 char *hwbuf;
2389 char __user *buf;
2390 if (*bufs == NULL)
2391 continue;
2392
2393 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2394 buf = *bufs + samples_to_bytes(runtime, off);
2395 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2396 return -EFAULT;
2397 }
2398 }
2399 return 0;
2400 }
2401
snd_pcm_lib_readv(struct snd_pcm_substream * substream,void __user ** bufs,snd_pcm_uframes_t frames)2402 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2403 void __user **bufs,
2404 snd_pcm_uframes_t frames)
2405 {
2406 struct snd_pcm_runtime *runtime;
2407 int nonblock;
2408 int err;
2409
2410 err = pcm_sanity_check(substream);
2411 if (err < 0)
2412 return err;
2413 runtime = substream->runtime;
2414 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2415 return -EBADFD;
2416
2417 nonblock = !!(substream->f_flags & O_NONBLOCK);
2418 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2419 return -EINVAL;
2420 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2421 }
2422
2423 EXPORT_SYMBOL(snd_pcm_lib_readv);
2424
2425 /*
2426 * standard channel mapping helpers
2427 */
2428
2429 /* default channel maps for multi-channel playbacks, up to 8 channels */
2430 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2431 { .channels = 1,
2432 .map = { SNDRV_CHMAP_MONO } },
2433 { .channels = 2,
2434 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2435 { .channels = 4,
2436 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2437 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2438 { .channels = 6,
2439 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2440 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2441 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2442 { .channels = 8,
2443 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2444 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2445 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2446 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2447 { }
2448 };
2449 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2450
2451 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2452 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2453 { .channels = 1,
2454 .map = { SNDRV_CHMAP_MONO } },
2455 { .channels = 2,
2456 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2457 { .channels = 4,
2458 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2459 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2460 { .channels = 6,
2461 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2462 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2463 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2464 { .channels = 8,
2465 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2466 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2467 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2468 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2469 { }
2470 };
2471 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2472
valid_chmap_channels(const struct snd_pcm_chmap * info,int ch)2473 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2474 {
2475 if (ch > info->max_channels)
2476 return false;
2477 return !info->channel_mask || (info->channel_mask & (1U << ch));
2478 }
2479
pcm_chmap_ctl_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2480 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2481 struct snd_ctl_elem_info *uinfo)
2482 {
2483 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2484
2485 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2486 uinfo->count = 0;
2487 uinfo->count = info->max_channels;
2488 uinfo->value.integer.min = 0;
2489 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2490 return 0;
2491 }
2492
2493 /* get callback for channel map ctl element
2494 * stores the channel position firstly matching with the current channels
2495 */
pcm_chmap_ctl_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2496 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2497 struct snd_ctl_elem_value *ucontrol)
2498 {
2499 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2500 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2501 struct snd_pcm_substream *substream;
2502 const struct snd_pcm_chmap_elem *map;
2503
2504 if (snd_BUG_ON(!info->chmap))
2505 return -EINVAL;
2506 substream = snd_pcm_chmap_substream(info, idx);
2507 if (!substream)
2508 return -ENODEV;
2509 memset(ucontrol->value.integer.value, 0,
2510 sizeof(ucontrol->value.integer.value));
2511 if (!substream->runtime)
2512 return 0; /* no channels set */
2513 for (map = info->chmap; map->channels; map++) {
2514 int i;
2515 if (map->channels == substream->runtime->channels &&
2516 valid_chmap_channels(info, map->channels)) {
2517 for (i = 0; i < map->channels; i++)
2518 ucontrol->value.integer.value[i] = map->map[i];
2519 return 0;
2520 }
2521 }
2522 return -EINVAL;
2523 }
2524
2525 /* tlv callback for channel map ctl element
2526 * expands the pre-defined channel maps in a form of TLV
2527 */
pcm_chmap_ctl_tlv(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)2528 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2529 unsigned int size, unsigned int __user *tlv)
2530 {
2531 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2532 const struct snd_pcm_chmap_elem *map;
2533 unsigned int __user *dst;
2534 int c, count = 0;
2535
2536 if (snd_BUG_ON(!info->chmap))
2537 return -EINVAL;
2538 if (size < 8)
2539 return -ENOMEM;
2540 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2541 return -EFAULT;
2542 size -= 8;
2543 dst = tlv + 2;
2544 for (map = info->chmap; map->channels; map++) {
2545 int chs_bytes = map->channels * 4;
2546 if (!valid_chmap_channels(info, map->channels))
2547 continue;
2548 if (size < 8)
2549 return -ENOMEM;
2550 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2551 put_user(chs_bytes, dst + 1))
2552 return -EFAULT;
2553 dst += 2;
2554 size -= 8;
2555 count += 8;
2556 if (size < chs_bytes)
2557 return -ENOMEM;
2558 size -= chs_bytes;
2559 count += chs_bytes;
2560 for (c = 0; c < map->channels; c++) {
2561 if (put_user(map->map[c], dst))
2562 return -EFAULT;
2563 dst++;
2564 }
2565 }
2566 if (put_user(count, tlv + 1))
2567 return -EFAULT;
2568 return 0;
2569 }
2570
pcm_chmap_ctl_private_free(struct snd_kcontrol * kcontrol)2571 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2572 {
2573 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2574 info->pcm->streams[info->stream].chmap_kctl = NULL;
2575 kfree(info);
2576 }
2577
2578 /**
2579 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2580 * @pcm: the assigned PCM instance
2581 * @stream: stream direction
2582 * @chmap: channel map elements (for query)
2583 * @max_channels: the max number of channels for the stream
2584 * @private_value: the value passed to each kcontrol's private_value field
2585 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2586 *
2587 * Create channel-mapping control elements assigned to the given PCM stream(s).
2588 * Return: Zero if successful, or a negative error value.
2589 */
snd_pcm_add_chmap_ctls(struct snd_pcm * pcm,int stream,const struct snd_pcm_chmap_elem * chmap,int max_channels,unsigned long private_value,struct snd_pcm_chmap ** info_ret)2590 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2591 const struct snd_pcm_chmap_elem *chmap,
2592 int max_channels,
2593 unsigned long private_value,
2594 struct snd_pcm_chmap **info_ret)
2595 {
2596 struct snd_pcm_chmap *info;
2597 struct snd_kcontrol_new knew = {
2598 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2599 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2600 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2601 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2602 .info = pcm_chmap_ctl_info,
2603 .get = pcm_chmap_ctl_get,
2604 .tlv.c = pcm_chmap_ctl_tlv,
2605 };
2606 int err;
2607
2608 info = kzalloc(sizeof(*info), GFP_KERNEL);
2609 if (!info)
2610 return -ENOMEM;
2611 info->pcm = pcm;
2612 info->stream = stream;
2613 info->chmap = chmap;
2614 info->max_channels = max_channels;
2615 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2616 knew.name = "Playback Channel Map";
2617 else
2618 knew.name = "Capture Channel Map";
2619 knew.device = pcm->device;
2620 knew.count = pcm->streams[stream].substream_count;
2621 knew.private_value = private_value;
2622 info->kctl = snd_ctl_new1(&knew, info);
2623 if (!info->kctl) {
2624 kfree(info);
2625 return -ENOMEM;
2626 }
2627 info->kctl->private_free = pcm_chmap_ctl_private_free;
2628 err = snd_ctl_add(pcm->card, info->kctl);
2629 if (err < 0)
2630 return err;
2631 pcm->streams[stream].chmap_kctl = info->kctl;
2632 if (info_ret)
2633 *info_ret = info;
2634 return 0;
2635 }
2636 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2637