• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005,2006,2007,2008,2009,2010,2011 Imagination Technologies
3  *
4  * This file contains the architecture-dependent parts of process handling.
5  *
6  */
7 
8 #include <linux/errno.h>
9 #include <linux/export.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/unistd.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/reboot.h>
17 #include <linux/elfcore.h>
18 #include <linux/fs.h>
19 #include <linux/tick.h>
20 #include <linux/slab.h>
21 #include <linux/mman.h>
22 #include <linux/pm.h>
23 #include <linux/syscalls.h>
24 #include <linux/uaccess.h>
25 #include <linux/smp.h>
26 #include <asm/core_reg.h>
27 #include <asm/user_gateway.h>
28 #include <asm/tcm.h>
29 #include <asm/traps.h>
30 #include <asm/switch_to.h>
31 
32 /*
33  * Wait for the next interrupt and enable local interrupts
34  */
arch_cpu_idle(void)35 void arch_cpu_idle(void)
36 {
37 	int tmp;
38 
39 	/*
40 	 * Quickly jump straight into the interrupt entry point without actually
41 	 * triggering an interrupt. When TXSTATI gets read the processor will
42 	 * block until an interrupt is triggered.
43 	 */
44 	asm volatile (/* Switch into ISTAT mode */
45 		      "RTH\n\t"
46 		      /* Enable local interrupts */
47 		      "MOV	TXMASKI, %1\n\t"
48 		      /*
49 		       * We can't directly "SWAP PC, PCX", so we swap via a
50 		       * temporary. Essentially we do:
51 		       *  PCX_new = 1f (the place to continue execution)
52 		       *  PC = PCX_old
53 		       */
54 		      "ADD	%0, CPC0, #(1f-.)\n\t"
55 		      "SWAP	PCX, %0\n\t"
56 		      "MOV	PC, %0\n"
57 		      /* Continue execution here with interrupts enabled */
58 		      "1:"
59 		      : "=a" (tmp)
60 		      : "r" (get_trigger_mask()));
61 }
62 
63 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)64 void arch_cpu_idle_dead(void)
65 {
66 	cpu_die();
67 }
68 #endif
69 
70 void (*pm_power_off)(void);
71 EXPORT_SYMBOL(pm_power_off);
72 
73 void (*soc_restart)(char *cmd);
74 void (*soc_halt)(void);
75 
machine_restart(char * cmd)76 void machine_restart(char *cmd)
77 {
78 	if (soc_restart)
79 		soc_restart(cmd);
80 	hard_processor_halt(HALT_OK);
81 }
82 
machine_halt(void)83 void machine_halt(void)
84 {
85 	if (soc_halt)
86 		soc_halt();
87 	smp_send_stop();
88 	hard_processor_halt(HALT_OK);
89 }
90 
machine_power_off(void)91 void machine_power_off(void)
92 {
93 	if (pm_power_off)
94 		pm_power_off();
95 	smp_send_stop();
96 	hard_processor_halt(HALT_OK);
97 }
98 
99 #define FLAG_Z 0x8
100 #define FLAG_N 0x4
101 #define FLAG_O 0x2
102 #define FLAG_C 0x1
103 
show_regs(struct pt_regs * regs)104 void show_regs(struct pt_regs *regs)
105 {
106 	int i;
107 	const char *AX0_names[] = {"A0StP", "A0FrP"};
108 	const char *AX1_names[] = {"A1GbP", "A1LbP"};
109 
110 	const char *DX0_names[] = {
111 		"D0Re0",
112 		"D0Ar6",
113 		"D0Ar4",
114 		"D0Ar2",
115 		"D0FrT",
116 		"D0.5 ",
117 		"D0.6 ",
118 		"D0.7 "
119 	};
120 
121 	const char *DX1_names[] = {
122 		"D1Re0",
123 		"D1Ar5",
124 		"D1Ar3",
125 		"D1Ar1",
126 		"D1RtP",
127 		"D1.5 ",
128 		"D1.6 ",
129 		"D1.7 "
130 	};
131 
132 	show_regs_print_info(KERN_INFO);
133 
134 	pr_info(" pt_regs @ %p\n", regs);
135 	pr_info(" SaveMask = 0x%04hx\n", regs->ctx.SaveMask);
136 	pr_info(" Flags = 0x%04hx (%c%c%c%c)\n", regs->ctx.Flags,
137 		regs->ctx.Flags & FLAG_Z ? 'Z' : 'z',
138 		regs->ctx.Flags & FLAG_N ? 'N' : 'n',
139 		regs->ctx.Flags & FLAG_O ? 'O' : 'o',
140 		regs->ctx.Flags & FLAG_C ? 'C' : 'c');
141 	pr_info(" TXRPT = 0x%08x\n", regs->ctx.CurrRPT);
142 	pr_info(" PC = 0x%08x\n", regs->ctx.CurrPC);
143 
144 	/* AX regs */
145 	for (i = 0; i < 2; i++) {
146 		pr_info(" %s = 0x%08x    ",
147 			AX0_names[i],
148 			regs->ctx.AX[i].U0);
149 		printk(" %s = 0x%08x\n",
150 			AX1_names[i],
151 			regs->ctx.AX[i].U1);
152 	}
153 
154 	if (regs->ctx.SaveMask & TBICTX_XEXT_BIT)
155 		pr_warn(" Extended state present - AX2.[01] will be WRONG\n");
156 
157 	/* Special place with AXx.2 */
158 	pr_info(" A0.2  = 0x%08x    ",
159 		regs->ctx.Ext.AX2.U0);
160 	printk(" A1.2  = 0x%08x\n",
161 		regs->ctx.Ext.AX2.U1);
162 
163 	/* 'extended' AX regs (nominally, just AXx.3) */
164 	for (i = 0; i < (TBICTX_AX_REGS - 3); i++) {
165 		pr_info(" A0.%d  = 0x%08x    ", i + 3, regs->ctx.AX3[i].U0);
166 		printk(" A1.%d  = 0x%08x\n", i + 3, regs->ctx.AX3[i].U1);
167 	}
168 
169 	for (i = 0; i < 8; i++) {
170 		pr_info(" %s = 0x%08x    ", DX0_names[i], regs->ctx.DX[i].U0);
171 		printk(" %s = 0x%08x\n", DX1_names[i], regs->ctx.DX[i].U1);
172 	}
173 
174 	show_trace(NULL, (unsigned long *)regs->ctx.AX[0].U0, regs);
175 }
176 
177 /*
178  * Copy architecture-specific thread state
179  */
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long kthread_arg,struct task_struct * tsk)180 int copy_thread(unsigned long clone_flags, unsigned long usp,
181 		unsigned long kthread_arg, struct task_struct *tsk)
182 {
183 	struct pt_regs *childregs = task_pt_regs(tsk);
184 	void *kernel_context = ((void *) childregs +
185 				sizeof(struct pt_regs));
186 	unsigned long global_base;
187 
188 	BUG_ON(((unsigned long)childregs) & 0x7);
189 	BUG_ON(((unsigned long)kernel_context) & 0x7);
190 
191 	memset(&tsk->thread.kernel_context, 0,
192 			sizeof(tsk->thread.kernel_context));
193 
194 	tsk->thread.kernel_context = __TBISwitchInit(kernel_context,
195 						     ret_from_fork,
196 						     0, 0);
197 
198 	if (unlikely(tsk->flags & PF_KTHREAD)) {
199 		/*
200 		 * Make sure we don't leak any kernel data to child's regs
201 		 * if kernel thread becomes a userspace thread in the future
202 		 */
203 		memset(childregs, 0 , sizeof(struct pt_regs));
204 
205 		global_base = __core_reg_get(A1GbP);
206 		childregs->ctx.AX[0].U1 = (unsigned long) global_base;
207 		childregs->ctx.AX[0].U0 = (unsigned long) kernel_context;
208 		/* Set D1Ar1=kthread_arg and D1RtP=usp (fn) */
209 		childregs->ctx.DX[4].U1 = usp;
210 		childregs->ctx.DX[3].U1 = kthread_arg;
211 		tsk->thread.int_depth = 2;
212 		return 0;
213 	}
214 
215 	/*
216 	 * Get a pointer to where the new child's register block should have
217 	 * been pushed.
218 	 * The Meta's stack grows upwards, and the context is the the first
219 	 * thing to be pushed by TBX (phew)
220 	 */
221 	*childregs = *current_pt_regs();
222 	/* Set the correct stack for the clone mode */
223 	if (usp)
224 		childregs->ctx.AX[0].U0 = ALIGN(usp, 8);
225 	tsk->thread.int_depth = 1;
226 
227 	/* set return value for child process */
228 	childregs->ctx.DX[0].U0 = 0;
229 
230 	/* The TLS pointer is passed as an argument to sys_clone. */
231 	if (clone_flags & CLONE_SETTLS)
232 		tsk->thread.tls_ptr =
233 				(__force void __user *)childregs->ctx.DX[1].U1;
234 
235 #ifdef CONFIG_METAG_FPU
236 	if (tsk->thread.fpu_context) {
237 		struct meta_fpu_context *ctx;
238 
239 		ctx = kmemdup(tsk->thread.fpu_context,
240 			      sizeof(struct meta_fpu_context), GFP_ATOMIC);
241 		tsk->thread.fpu_context = ctx;
242 	}
243 #endif
244 
245 #ifdef CONFIG_METAG_DSP
246 	if (tsk->thread.dsp_context) {
247 		struct meta_ext_context *ctx;
248 		int i;
249 
250 		ctx = kmemdup(tsk->thread.dsp_context,
251 			      sizeof(struct meta_ext_context), GFP_ATOMIC);
252 		for (i = 0; i < 2; i++)
253 			ctx->ram[i] = kmemdup(ctx->ram[i], ctx->ram_sz[i],
254 					      GFP_ATOMIC);
255 		tsk->thread.dsp_context = ctx;
256 	}
257 #endif
258 
259 	return 0;
260 }
261 
262 #ifdef CONFIG_METAG_FPU
alloc_fpu_context(struct thread_struct * thread)263 static void alloc_fpu_context(struct thread_struct *thread)
264 {
265 	thread->fpu_context = kzalloc(sizeof(struct meta_fpu_context),
266 				      GFP_ATOMIC);
267 }
268 
clear_fpu(struct thread_struct * thread)269 static void clear_fpu(struct thread_struct *thread)
270 {
271 	thread->user_flags &= ~TBICTX_FPAC_BIT;
272 	kfree(thread->fpu_context);
273 	thread->fpu_context = NULL;
274 }
275 #else
clear_fpu(struct thread_struct * thread)276 static void clear_fpu(struct thread_struct *thread)
277 {
278 }
279 #endif
280 
281 #ifdef CONFIG_METAG_DSP
clear_dsp(struct thread_struct * thread)282 static void clear_dsp(struct thread_struct *thread)
283 {
284 	if (thread->dsp_context) {
285 		kfree(thread->dsp_context->ram[0]);
286 		kfree(thread->dsp_context->ram[1]);
287 
288 		kfree(thread->dsp_context);
289 
290 		thread->dsp_context = NULL;
291 	}
292 
293 	__core_reg_set(D0.8, 0);
294 }
295 #else
clear_dsp(struct thread_struct * thread)296 static void clear_dsp(struct thread_struct *thread)
297 {
298 }
299 #endif
300 
__switch_to(struct task_struct * prev,struct task_struct * next)301 struct task_struct *__sched __switch_to(struct task_struct *prev,
302 					struct task_struct *next)
303 {
304 	TBIRES to, from;
305 
306 	to.Switch.pCtx = next->thread.kernel_context;
307 	to.Switch.pPara = prev;
308 
309 #ifdef CONFIG_METAG_FPU
310 	if (prev->thread.user_flags & TBICTX_FPAC_BIT) {
311 		struct pt_regs *regs = task_pt_regs(prev);
312 		TBIRES state;
313 
314 		state.Sig.SaveMask = prev->thread.user_flags;
315 		state.Sig.pCtx = &regs->ctx;
316 
317 		if (!prev->thread.fpu_context)
318 			alloc_fpu_context(&prev->thread);
319 		if (prev->thread.fpu_context)
320 			__TBICtxFPUSave(state, prev->thread.fpu_context);
321 	}
322 	/*
323 	 * Force a restore of the FPU context next time this process is
324 	 * scheduled.
325 	 */
326 	if (prev->thread.fpu_context)
327 		prev->thread.fpu_context->needs_restore = true;
328 #endif
329 
330 
331 	from = __TBISwitch(to, &prev->thread.kernel_context);
332 
333 	/* Restore TLS pointer for this process. */
334 	set_gateway_tls(current->thread.tls_ptr);
335 
336 	return (struct task_struct *) from.Switch.pPara;
337 }
338 
flush_thread(void)339 void flush_thread(void)
340 {
341 	clear_fpu(&current->thread);
342 	clear_dsp(&current->thread);
343 }
344 
345 /*
346  * Free current thread data structures etc.
347  */
exit_thread(struct task_struct * tsk)348 void exit_thread(struct task_struct *tsk)
349 {
350 	clear_fpu(&tsk->thread);
351 	clear_dsp(&tsk->thread);
352 }
353 
354 /* TODO: figure out how to unwind the kernel stack here to figure out
355  * where we went to sleep. */
get_wchan(struct task_struct * p)356 unsigned long get_wchan(struct task_struct *p)
357 {
358 	return 0;
359 }
360 
dump_fpu(struct pt_regs * regs,elf_fpregset_t * fpu)361 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
362 {
363 	/* Returning 0 indicates that the FPU state was not stored (as it was
364 	 * not in use) */
365 	return 0;
366 }
367 
368 #ifdef CONFIG_METAG_USER_TCM
369 
370 #define ELF_MIN_ALIGN	PAGE_SIZE
371 
372 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
373 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
374 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
375 
376 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
377 
__metag_elf_map(struct file * filep,unsigned long addr,struct elf_phdr * eppnt,int prot,int type,unsigned long total_size)378 unsigned long __metag_elf_map(struct file *filep, unsigned long addr,
379 			      struct elf_phdr *eppnt, int prot, int type,
380 			      unsigned long total_size)
381 {
382 	unsigned long map_addr, size;
383 	unsigned long page_off = ELF_PAGEOFFSET(eppnt->p_vaddr);
384 	unsigned long raw_size = eppnt->p_filesz + page_off;
385 	unsigned long off = eppnt->p_offset - page_off;
386 	unsigned int tcm_tag;
387 	addr = ELF_PAGESTART(addr);
388 	size = ELF_PAGEALIGN(raw_size);
389 
390 	/* mmap() will return -EINVAL if given a zero size, but a
391 	 * segment with zero filesize is perfectly valid */
392 	if (!size)
393 		return addr;
394 
395 	tcm_tag = tcm_lookup_tag(addr);
396 
397 	if (tcm_tag != TCM_INVALID_TAG)
398 		type &= ~MAP_FIXED;
399 
400 	/*
401 	* total_size is the size of the ELF (interpreter) image.
402 	* The _first_ mmap needs to know the full size, otherwise
403 	* randomization might put this image into an overlapping
404 	* position with the ELF binary image. (since size < total_size)
405 	* So we first map the 'big' image - and unmap the remainder at
406 	* the end. (which unmap is needed for ELF images with holes.)
407 	*/
408 	if (total_size) {
409 		total_size = ELF_PAGEALIGN(total_size);
410 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
411 		if (!BAD_ADDR(map_addr))
412 			vm_munmap(map_addr+size, total_size-size);
413 	} else
414 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
415 
416 	if (!BAD_ADDR(map_addr) && tcm_tag != TCM_INVALID_TAG) {
417 		struct tcm_allocation *tcm;
418 		unsigned long tcm_addr;
419 
420 		tcm = kmalloc(sizeof(*tcm), GFP_KERNEL);
421 		if (!tcm)
422 			return -ENOMEM;
423 
424 		tcm_addr = tcm_alloc(tcm_tag, raw_size);
425 		if (tcm_addr != addr) {
426 			kfree(tcm);
427 			return -ENOMEM;
428 		}
429 
430 		tcm->tag = tcm_tag;
431 		tcm->addr = tcm_addr;
432 		tcm->size = raw_size;
433 
434 		list_add(&tcm->list, &current->mm->context.tcm);
435 
436 		eppnt->p_vaddr = map_addr;
437 		if (copy_from_user((void *) addr, (void __user *) map_addr,
438 				   raw_size))
439 			return -EFAULT;
440 	}
441 
442 	return map_addr;
443 }
444 #endif
445