1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120
121 #include <asm/uaccess.h>
122
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135
136 #include <linux/filter.h>
137
138 #include <trace/events/sock.h>
139
140 #ifdef CONFIG_INET
141 #include <net/tcp.h>
142 #endif
143
144 #include <net/busy_poll.h>
145
146 static DEFINE_MUTEX(proto_list_mutex);
147 static LIST_HEAD(proto_list);
148
149 /**
150 * sk_ns_capable - General socket capability test
151 * @sk: Socket to use a capability on or through
152 * @user_ns: The user namespace of the capability to use
153 * @cap: The capability to use
154 *
155 * Test to see if the opener of the socket had when the socket was
156 * created and the current process has the capability @cap in the user
157 * namespace @user_ns.
158 */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)159 bool sk_ns_capable(const struct sock *sk,
160 struct user_namespace *user_ns, int cap)
161 {
162 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
163 ns_capable(user_ns, cap);
164 }
165 EXPORT_SYMBOL(sk_ns_capable);
166
167 /**
168 * sk_capable - Socket global capability test
169 * @sk: Socket to use a capability on or through
170 * @cap: The global capability to use
171 *
172 * Test to see if the opener of the socket had when the socket was
173 * created and the current process has the capability @cap in all user
174 * namespaces.
175 */
sk_capable(const struct sock * sk,int cap)176 bool sk_capable(const struct sock *sk, int cap)
177 {
178 return sk_ns_capable(sk, &init_user_ns, cap);
179 }
180 EXPORT_SYMBOL(sk_capable);
181
182 /**
183 * sk_net_capable - Network namespace socket capability test
184 * @sk: Socket to use a capability on or through
185 * @cap: The capability to use
186 *
187 * Test to see if the opener of the socket had when the socket was created
188 * and the current process has the capability @cap over the network namespace
189 * the socket is a member of.
190 */
sk_net_capable(const struct sock * sk,int cap)191 bool sk_net_capable(const struct sock *sk, int cap)
192 {
193 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
194 }
195 EXPORT_SYMBOL(sk_net_capable);
196
197
198 #ifdef CONFIG_MEMCG_KMEM
mem_cgroup_sockets_init(struct mem_cgroup * memcg,struct cgroup_subsys * ss)199 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
200 {
201 struct proto *proto;
202 int ret = 0;
203
204 mutex_lock(&proto_list_mutex);
205 list_for_each_entry(proto, &proto_list, node) {
206 if (proto->init_cgroup) {
207 ret = proto->init_cgroup(memcg, ss);
208 if (ret)
209 goto out;
210 }
211 }
212
213 mutex_unlock(&proto_list_mutex);
214 return ret;
215 out:
216 list_for_each_entry_continue_reverse(proto, &proto_list, node)
217 if (proto->destroy_cgroup)
218 proto->destroy_cgroup(memcg);
219 mutex_unlock(&proto_list_mutex);
220 return ret;
221 }
222
mem_cgroup_sockets_destroy(struct mem_cgroup * memcg)223 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
224 {
225 struct proto *proto;
226
227 mutex_lock(&proto_list_mutex);
228 list_for_each_entry_reverse(proto, &proto_list, node)
229 if (proto->destroy_cgroup)
230 proto->destroy_cgroup(memcg);
231 mutex_unlock(&proto_list_mutex);
232 }
233 #endif
234
235 /*
236 * Each address family might have different locking rules, so we have
237 * one slock key per address family:
238 */
239 static struct lock_class_key af_family_keys[AF_MAX];
240 static struct lock_class_key af_family_slock_keys[AF_MAX];
241
242 #if defined(CONFIG_MEMCG_KMEM)
243 struct static_key memcg_socket_limit_enabled;
244 EXPORT_SYMBOL(memcg_socket_limit_enabled);
245 #endif
246
247 /*
248 * Make lock validator output more readable. (we pre-construct these
249 * strings build-time, so that runtime initialization of socket
250 * locks is fast):
251 */
252 static const char *const af_family_key_strings[AF_MAX+1] = {
253 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
254 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
255 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
256 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
257 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
258 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
259 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
260 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
261 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
262 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
263 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
264 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
265 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
266 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
267 };
268 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
269 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
270 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
271 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
272 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
273 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
274 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
275 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
276 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
277 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
278 "slock-27" , "slock-28" , "slock-AF_CAN" ,
279 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
280 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
281 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
282 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
283 };
284 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
285 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
286 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
287 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
288 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
289 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
290 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
291 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
292 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
293 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
294 "clock-27" , "clock-28" , "clock-AF_CAN" ,
295 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
296 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
297 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
298 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
299 };
300
301 /*
302 * sk_callback_lock locking rules are per-address-family,
303 * so split the lock classes by using a per-AF key:
304 */
305 static struct lock_class_key af_callback_keys[AF_MAX];
306
307 /* Take into consideration the size of the struct sk_buff overhead in the
308 * determination of these values, since that is non-constant across
309 * platforms. This makes socket queueing behavior and performance
310 * not depend upon such differences.
311 */
312 #define _SK_MEM_PACKETS 256
313 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
314 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
316
317 /* Run time adjustable parameters. */
318 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
319 EXPORT_SYMBOL(sysctl_wmem_max);
320 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
321 EXPORT_SYMBOL(sysctl_rmem_max);
322 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
323 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
324
325 /* Maximal space eaten by iovec or ancillary data plus some space */
326 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
327 EXPORT_SYMBOL(sysctl_optmem_max);
328
329 int sysctl_tstamp_allow_data __read_mostly = 1;
330
331 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
332 EXPORT_SYMBOL_GPL(memalloc_socks);
333
334 /**
335 * sk_set_memalloc - sets %SOCK_MEMALLOC
336 * @sk: socket to set it on
337 *
338 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
339 * It's the responsibility of the admin to adjust min_free_kbytes
340 * to meet the requirements
341 */
sk_set_memalloc(struct sock * sk)342 void sk_set_memalloc(struct sock *sk)
343 {
344 sock_set_flag(sk, SOCK_MEMALLOC);
345 sk->sk_allocation |= __GFP_MEMALLOC;
346 static_key_slow_inc(&memalloc_socks);
347 }
348 EXPORT_SYMBOL_GPL(sk_set_memalloc);
349
sk_clear_memalloc(struct sock * sk)350 void sk_clear_memalloc(struct sock *sk)
351 {
352 sock_reset_flag(sk, SOCK_MEMALLOC);
353 sk->sk_allocation &= ~__GFP_MEMALLOC;
354 static_key_slow_dec(&memalloc_socks);
355
356 /*
357 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
358 * progress of swapping. SOCK_MEMALLOC may be cleared while
359 * it has rmem allocations due to the last swapfile being deactivated
360 * but there is a risk that the socket is unusable due to exceeding
361 * the rmem limits. Reclaim the reserves and obey rmem limits again.
362 */
363 sk_mem_reclaim(sk);
364 }
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
366
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)367 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
368 {
369 int ret;
370 unsigned long pflags = current->flags;
371
372 /* these should have been dropped before queueing */
373 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
374
375 current->flags |= PF_MEMALLOC;
376 ret = sk->sk_backlog_rcv(sk, skb);
377 tsk_restore_flags(current, pflags, PF_MEMALLOC);
378
379 return ret;
380 }
381 EXPORT_SYMBOL(__sk_backlog_rcv);
382
sock_set_timeout(long * timeo_p,char __user * optval,int optlen)383 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
384 {
385 struct timeval tv;
386
387 if (optlen < sizeof(tv))
388 return -EINVAL;
389 if (copy_from_user(&tv, optval, sizeof(tv)))
390 return -EFAULT;
391 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
392 return -EDOM;
393
394 if (tv.tv_sec < 0) {
395 static int warned __read_mostly;
396
397 *timeo_p = 0;
398 if (warned < 10 && net_ratelimit()) {
399 warned++;
400 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 __func__, current->comm, task_pid_nr(current));
402 }
403 return 0;
404 }
405 *timeo_p = MAX_SCHEDULE_TIMEOUT;
406 if (tv.tv_sec == 0 && tv.tv_usec == 0)
407 return 0;
408 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
409 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
410 return 0;
411 }
412
sock_warn_obsolete_bsdism(const char * name)413 static void sock_warn_obsolete_bsdism(const char *name)
414 {
415 static int warned;
416 static char warncomm[TASK_COMM_LEN];
417 if (strcmp(warncomm, current->comm) && warned < 5) {
418 strcpy(warncomm, current->comm);
419 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 warncomm, name);
421 warned++;
422 }
423 }
424
sock_needs_netstamp(const struct sock * sk)425 static bool sock_needs_netstamp(const struct sock *sk)
426 {
427 switch (sk->sk_family) {
428 case AF_UNSPEC:
429 case AF_UNIX:
430 return false;
431 default:
432 return true;
433 }
434 }
435
sock_disable_timestamp(struct sock * sk,unsigned long flags)436 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
437 {
438 if (sk->sk_flags & flags) {
439 sk->sk_flags &= ~flags;
440 if (sock_needs_netstamp(sk) &&
441 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
442 net_disable_timestamp();
443 }
444 }
445
446
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)447 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
448 {
449 int err;
450 unsigned long flags;
451 struct sk_buff_head *list = &sk->sk_receive_queue;
452
453 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
454 atomic_inc(&sk->sk_drops);
455 trace_sock_rcvqueue_full(sk, skb);
456 return -ENOMEM;
457 }
458
459 err = sk_filter(sk, skb);
460 if (err)
461 return err;
462
463 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
464 atomic_inc(&sk->sk_drops);
465 return -ENOBUFS;
466 }
467
468 skb->dev = NULL;
469 skb_set_owner_r(skb, sk);
470
471 /* we escape from rcu protected region, make sure we dont leak
472 * a norefcounted dst
473 */
474 skb_dst_force(skb);
475
476 spin_lock_irqsave(&list->lock, flags);
477 sock_skb_set_dropcount(sk, skb);
478 __skb_queue_tail(list, skb);
479 spin_unlock_irqrestore(&list->lock, flags);
480
481 if (!sock_flag(sk, SOCK_DEAD))
482 sk->sk_data_ready(sk);
483 return 0;
484 }
485 EXPORT_SYMBOL(sock_queue_rcv_skb);
486
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap)487 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
488 const int nested, unsigned int trim_cap)
489 {
490 int rc = NET_RX_SUCCESS;
491
492 if (sk_filter_trim_cap(sk, skb, trim_cap))
493 goto discard_and_relse;
494
495 skb->dev = NULL;
496
497 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
498 atomic_inc(&sk->sk_drops);
499 goto discard_and_relse;
500 }
501 if (nested)
502 bh_lock_sock_nested(sk);
503 else
504 bh_lock_sock(sk);
505 if (!sock_owned_by_user(sk)) {
506 /*
507 * trylock + unlock semantics:
508 */
509 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
510
511 rc = sk_backlog_rcv(sk, skb);
512
513 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
514 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
515 bh_unlock_sock(sk);
516 atomic_inc(&sk->sk_drops);
517 goto discard_and_relse;
518 }
519
520 bh_unlock_sock(sk);
521 out:
522 sock_put(sk);
523 return rc;
524 discard_and_relse:
525 kfree_skb(skb);
526 goto out;
527 }
528 EXPORT_SYMBOL(__sk_receive_skb);
529
__sk_dst_check(struct sock * sk,u32 cookie)530 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
531 {
532 struct dst_entry *dst = __sk_dst_get(sk);
533
534 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
535 sk_tx_queue_clear(sk);
536 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
537 dst_release(dst);
538 return NULL;
539 }
540
541 return dst;
542 }
543 EXPORT_SYMBOL(__sk_dst_check);
544
sk_dst_check(struct sock * sk,u32 cookie)545 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
546 {
547 struct dst_entry *dst = sk_dst_get(sk);
548
549 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
550 sk_dst_reset(sk);
551 dst_release(dst);
552 return NULL;
553 }
554
555 return dst;
556 }
557 EXPORT_SYMBOL(sk_dst_check);
558
sock_setbindtodevice(struct sock * sk,char __user * optval,int optlen)559 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
560 int optlen)
561 {
562 int ret = -ENOPROTOOPT;
563 #ifdef CONFIG_NETDEVICES
564 struct net *net = sock_net(sk);
565 char devname[IFNAMSIZ];
566 int index;
567
568 /* Sorry... */
569 ret = -EPERM;
570 if (!ns_capable(net->user_ns, CAP_NET_RAW))
571 goto out;
572
573 ret = -EINVAL;
574 if (optlen < 0)
575 goto out;
576
577 /* Bind this socket to a particular device like "eth0",
578 * as specified in the passed interface name. If the
579 * name is "" or the option length is zero the socket
580 * is not bound.
581 */
582 if (optlen > IFNAMSIZ - 1)
583 optlen = IFNAMSIZ - 1;
584 memset(devname, 0, sizeof(devname));
585
586 ret = -EFAULT;
587 if (copy_from_user(devname, optval, optlen))
588 goto out;
589
590 index = 0;
591 if (devname[0] != '\0') {
592 struct net_device *dev;
593
594 rcu_read_lock();
595 dev = dev_get_by_name_rcu(net, devname);
596 if (dev)
597 index = dev->ifindex;
598 rcu_read_unlock();
599 ret = -ENODEV;
600 if (!dev)
601 goto out;
602 }
603
604 lock_sock(sk);
605 sk->sk_bound_dev_if = index;
606 sk_dst_reset(sk);
607 release_sock(sk);
608
609 ret = 0;
610
611 out:
612 #endif
613
614 return ret;
615 }
616
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)617 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
618 int __user *optlen, int len)
619 {
620 int ret = -ENOPROTOOPT;
621 #ifdef CONFIG_NETDEVICES
622 struct net *net = sock_net(sk);
623 char devname[IFNAMSIZ];
624
625 if (sk->sk_bound_dev_if == 0) {
626 len = 0;
627 goto zero;
628 }
629
630 ret = -EINVAL;
631 if (len < IFNAMSIZ)
632 goto out;
633
634 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
635 if (ret)
636 goto out;
637
638 len = strlen(devname) + 1;
639
640 ret = -EFAULT;
641 if (copy_to_user(optval, devname, len))
642 goto out;
643
644 zero:
645 ret = -EFAULT;
646 if (put_user(len, optlen))
647 goto out;
648
649 ret = 0;
650
651 out:
652 #endif
653
654 return ret;
655 }
656
sock_valbool_flag(struct sock * sk,int bit,int valbool)657 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
658 {
659 if (valbool)
660 sock_set_flag(sk, bit);
661 else
662 sock_reset_flag(sk, bit);
663 }
664
sk_mc_loop(struct sock * sk)665 bool sk_mc_loop(struct sock *sk)
666 {
667 if (dev_recursion_level())
668 return false;
669 if (!sk)
670 return true;
671 switch (sk->sk_family) {
672 case AF_INET:
673 return inet_sk(sk)->mc_loop;
674 #if IS_ENABLED(CONFIG_IPV6)
675 case AF_INET6:
676 return inet6_sk(sk)->mc_loop;
677 #endif
678 }
679 WARN_ON(1);
680 return true;
681 }
682 EXPORT_SYMBOL(sk_mc_loop);
683
684 /*
685 * This is meant for all protocols to use and covers goings on
686 * at the socket level. Everything here is generic.
687 */
688
sock_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)689 int sock_setsockopt(struct socket *sock, int level, int optname,
690 char __user *optval, unsigned int optlen)
691 {
692 struct sock *sk = sock->sk;
693 int val;
694 int valbool;
695 struct linger ling;
696 int ret = 0;
697
698 /*
699 * Options without arguments
700 */
701
702 if (optname == SO_BINDTODEVICE)
703 return sock_setbindtodevice(sk, optval, optlen);
704
705 if (optlen < sizeof(int))
706 return -EINVAL;
707
708 if (get_user(val, (int __user *)optval))
709 return -EFAULT;
710
711 valbool = val ? 1 : 0;
712
713 lock_sock(sk);
714
715 switch (optname) {
716 case SO_DEBUG:
717 if (val && !capable(CAP_NET_ADMIN))
718 ret = -EACCES;
719 else
720 sock_valbool_flag(sk, SOCK_DBG, valbool);
721 break;
722 case SO_REUSEADDR:
723 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
724 break;
725 case SO_REUSEPORT:
726 sk->sk_reuseport = valbool;
727 break;
728 case SO_TYPE:
729 case SO_PROTOCOL:
730 case SO_DOMAIN:
731 case SO_ERROR:
732 ret = -ENOPROTOOPT;
733 break;
734 case SO_DONTROUTE:
735 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
736 sk_dst_reset(sk);
737 break;
738 case SO_BROADCAST:
739 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
740 break;
741 case SO_SNDBUF:
742 /* Don't error on this BSD doesn't and if you think
743 * about it this is right. Otherwise apps have to
744 * play 'guess the biggest size' games. RCVBUF/SNDBUF
745 * are treated in BSD as hints
746 */
747 val = min_t(u32, val, sysctl_wmem_max);
748 set_sndbuf:
749 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
750 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
751 /* Wake up sending tasks if we upped the value. */
752 sk->sk_write_space(sk);
753 break;
754
755 case SO_SNDBUFFORCE:
756 if (!capable(CAP_NET_ADMIN)) {
757 ret = -EPERM;
758 break;
759 }
760 goto set_sndbuf;
761
762 case SO_RCVBUF:
763 /* Don't error on this BSD doesn't and if you think
764 * about it this is right. Otherwise apps have to
765 * play 'guess the biggest size' games. RCVBUF/SNDBUF
766 * are treated in BSD as hints
767 */
768 val = min_t(u32, val, sysctl_rmem_max);
769 set_rcvbuf:
770 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
771 /*
772 * We double it on the way in to account for
773 * "struct sk_buff" etc. overhead. Applications
774 * assume that the SO_RCVBUF setting they make will
775 * allow that much actual data to be received on that
776 * socket.
777 *
778 * Applications are unaware that "struct sk_buff" and
779 * other overheads allocate from the receive buffer
780 * during socket buffer allocation.
781 *
782 * And after considering the possible alternatives,
783 * returning the value we actually used in getsockopt
784 * is the most desirable behavior.
785 */
786 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
787 break;
788
789 case SO_RCVBUFFORCE:
790 if (!capable(CAP_NET_ADMIN)) {
791 ret = -EPERM;
792 break;
793 }
794 goto set_rcvbuf;
795
796 case SO_KEEPALIVE:
797 #ifdef CONFIG_INET
798 if (sk->sk_protocol == IPPROTO_TCP &&
799 sk->sk_type == SOCK_STREAM)
800 tcp_set_keepalive(sk, valbool);
801 #endif
802 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
803 break;
804
805 case SO_OOBINLINE:
806 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
807 break;
808
809 case SO_NO_CHECK:
810 sk->sk_no_check_tx = valbool;
811 break;
812
813 case SO_PRIORITY:
814 if ((val >= 0 && val <= 6) ||
815 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
816 sk->sk_priority = val;
817 else
818 ret = -EPERM;
819 break;
820
821 case SO_LINGER:
822 if (optlen < sizeof(ling)) {
823 ret = -EINVAL; /* 1003.1g */
824 break;
825 }
826 if (copy_from_user(&ling, optval, sizeof(ling))) {
827 ret = -EFAULT;
828 break;
829 }
830 if (!ling.l_onoff)
831 sock_reset_flag(sk, SOCK_LINGER);
832 else {
833 #if (BITS_PER_LONG == 32)
834 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
835 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
836 else
837 #endif
838 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
839 sock_set_flag(sk, SOCK_LINGER);
840 }
841 break;
842
843 case SO_BSDCOMPAT:
844 sock_warn_obsolete_bsdism("setsockopt");
845 break;
846
847 case SO_PASSCRED:
848 if (valbool)
849 set_bit(SOCK_PASSCRED, &sock->flags);
850 else
851 clear_bit(SOCK_PASSCRED, &sock->flags);
852 break;
853
854 case SO_TIMESTAMP:
855 case SO_TIMESTAMPNS:
856 if (valbool) {
857 if (optname == SO_TIMESTAMP)
858 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
859 else
860 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
861 sock_set_flag(sk, SOCK_RCVTSTAMP);
862 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
863 } else {
864 sock_reset_flag(sk, SOCK_RCVTSTAMP);
865 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
866 }
867 break;
868
869 case SO_TIMESTAMPING:
870 if (val & ~SOF_TIMESTAMPING_MASK) {
871 ret = -EINVAL;
872 break;
873 }
874
875 if (val & SOF_TIMESTAMPING_OPT_ID &&
876 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
877 if (sk->sk_protocol == IPPROTO_TCP &&
878 sk->sk_type == SOCK_STREAM) {
879 if (sk->sk_state != TCP_ESTABLISHED) {
880 ret = -EINVAL;
881 break;
882 }
883 sk->sk_tskey = tcp_sk(sk)->snd_una;
884 } else {
885 sk->sk_tskey = 0;
886 }
887 }
888 sk->sk_tsflags = val;
889 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
890 sock_enable_timestamp(sk,
891 SOCK_TIMESTAMPING_RX_SOFTWARE);
892 else
893 sock_disable_timestamp(sk,
894 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
895 break;
896
897 case SO_RCVLOWAT:
898 if (val < 0)
899 val = INT_MAX;
900 sk->sk_rcvlowat = val ? : 1;
901 break;
902
903 case SO_RCVTIMEO:
904 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
905 break;
906
907 case SO_SNDTIMEO:
908 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
909 break;
910
911 case SO_ATTACH_FILTER:
912 ret = -EINVAL;
913 if (optlen == sizeof(struct sock_fprog)) {
914 struct sock_fprog fprog;
915
916 ret = -EFAULT;
917 if (copy_from_user(&fprog, optval, sizeof(fprog)))
918 break;
919
920 ret = sk_attach_filter(&fprog, sk);
921 }
922 break;
923
924 case SO_ATTACH_BPF:
925 ret = -EINVAL;
926 if (optlen == sizeof(u32)) {
927 u32 ufd;
928
929 ret = -EFAULT;
930 if (copy_from_user(&ufd, optval, sizeof(ufd)))
931 break;
932
933 ret = sk_attach_bpf(ufd, sk);
934 }
935 break;
936
937 case SO_DETACH_FILTER:
938 ret = sk_detach_filter(sk);
939 break;
940
941 case SO_LOCK_FILTER:
942 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
943 ret = -EPERM;
944 else
945 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
946 break;
947
948 case SO_PASSSEC:
949 if (valbool)
950 set_bit(SOCK_PASSSEC, &sock->flags);
951 else
952 clear_bit(SOCK_PASSSEC, &sock->flags);
953 break;
954 case SO_MARK:
955 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
956 ret = -EPERM;
957 else
958 sk->sk_mark = val;
959 break;
960
961 case SO_RXQ_OVFL:
962 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
963 break;
964
965 case SO_WIFI_STATUS:
966 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
967 break;
968
969 case SO_PEEK_OFF:
970 if (sock->ops->set_peek_off)
971 ret = sock->ops->set_peek_off(sk, val);
972 else
973 ret = -EOPNOTSUPP;
974 break;
975
976 case SO_NOFCS:
977 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
978 break;
979
980 case SO_SELECT_ERR_QUEUE:
981 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
982 break;
983
984 #ifdef CONFIG_NET_RX_BUSY_POLL
985 case SO_BUSY_POLL:
986 /* allow unprivileged users to decrease the value */
987 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
988 ret = -EPERM;
989 else {
990 if (val < 0)
991 ret = -EINVAL;
992 else
993 sk->sk_ll_usec = val;
994 }
995 break;
996 #endif
997
998 case SO_MAX_PACING_RATE:
999 sk->sk_max_pacing_rate = val;
1000 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1001 sk->sk_max_pacing_rate);
1002 break;
1003
1004 case SO_INCOMING_CPU:
1005 sk->sk_incoming_cpu = val;
1006 break;
1007
1008 default:
1009 ret = -ENOPROTOOPT;
1010 break;
1011 }
1012 release_sock(sk);
1013 return ret;
1014 }
1015 EXPORT_SYMBOL(sock_setsockopt);
1016
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1017 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1018 struct ucred *ucred)
1019 {
1020 ucred->pid = pid_vnr(pid);
1021 ucred->uid = ucred->gid = -1;
1022 if (cred) {
1023 struct user_namespace *current_ns = current_user_ns();
1024
1025 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1026 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1027 }
1028 }
1029
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1030 int sock_getsockopt(struct socket *sock, int level, int optname,
1031 char __user *optval, int __user *optlen)
1032 {
1033 struct sock *sk = sock->sk;
1034
1035 union {
1036 int val;
1037 struct linger ling;
1038 struct timeval tm;
1039 } v;
1040
1041 int lv = sizeof(int);
1042 int len;
1043
1044 if (get_user(len, optlen))
1045 return -EFAULT;
1046 if (len < 0)
1047 return -EINVAL;
1048
1049 memset(&v, 0, sizeof(v));
1050
1051 switch (optname) {
1052 case SO_DEBUG:
1053 v.val = sock_flag(sk, SOCK_DBG);
1054 break;
1055
1056 case SO_DONTROUTE:
1057 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1058 break;
1059
1060 case SO_BROADCAST:
1061 v.val = sock_flag(sk, SOCK_BROADCAST);
1062 break;
1063
1064 case SO_SNDBUF:
1065 v.val = sk->sk_sndbuf;
1066 break;
1067
1068 case SO_RCVBUF:
1069 v.val = sk->sk_rcvbuf;
1070 break;
1071
1072 case SO_REUSEADDR:
1073 v.val = sk->sk_reuse;
1074 break;
1075
1076 case SO_REUSEPORT:
1077 v.val = sk->sk_reuseport;
1078 break;
1079
1080 case SO_KEEPALIVE:
1081 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1082 break;
1083
1084 case SO_TYPE:
1085 v.val = sk->sk_type;
1086 break;
1087
1088 case SO_PROTOCOL:
1089 v.val = sk->sk_protocol;
1090 break;
1091
1092 case SO_DOMAIN:
1093 v.val = sk->sk_family;
1094 break;
1095
1096 case SO_ERROR:
1097 v.val = -sock_error(sk);
1098 if (v.val == 0)
1099 v.val = xchg(&sk->sk_err_soft, 0);
1100 break;
1101
1102 case SO_OOBINLINE:
1103 v.val = sock_flag(sk, SOCK_URGINLINE);
1104 break;
1105
1106 case SO_NO_CHECK:
1107 v.val = sk->sk_no_check_tx;
1108 break;
1109
1110 case SO_PRIORITY:
1111 v.val = sk->sk_priority;
1112 break;
1113
1114 case SO_LINGER:
1115 lv = sizeof(v.ling);
1116 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1117 v.ling.l_linger = sk->sk_lingertime / HZ;
1118 break;
1119
1120 case SO_BSDCOMPAT:
1121 sock_warn_obsolete_bsdism("getsockopt");
1122 break;
1123
1124 case SO_TIMESTAMP:
1125 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1126 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1127 break;
1128
1129 case SO_TIMESTAMPNS:
1130 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1131 break;
1132
1133 case SO_TIMESTAMPING:
1134 v.val = sk->sk_tsflags;
1135 break;
1136
1137 case SO_RCVTIMEO:
1138 lv = sizeof(struct timeval);
1139 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1140 v.tm.tv_sec = 0;
1141 v.tm.tv_usec = 0;
1142 } else {
1143 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1144 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1145 }
1146 break;
1147
1148 case SO_SNDTIMEO:
1149 lv = sizeof(struct timeval);
1150 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1151 v.tm.tv_sec = 0;
1152 v.tm.tv_usec = 0;
1153 } else {
1154 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1155 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1156 }
1157 break;
1158
1159 case SO_RCVLOWAT:
1160 v.val = sk->sk_rcvlowat;
1161 break;
1162
1163 case SO_SNDLOWAT:
1164 v.val = 1;
1165 break;
1166
1167 case SO_PASSCRED:
1168 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1169 break;
1170
1171 case SO_PEERCRED:
1172 {
1173 struct ucred peercred;
1174 if (len > sizeof(peercred))
1175 len = sizeof(peercred);
1176
1177 spin_lock(&sk->sk_peer_lock);
1178 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1179 spin_unlock(&sk->sk_peer_lock);
1180
1181 if (copy_to_user(optval, &peercred, len))
1182 return -EFAULT;
1183 goto lenout;
1184 }
1185
1186 case SO_PEERNAME:
1187 {
1188 char address[128];
1189
1190 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1191 return -ENOTCONN;
1192 if (lv < len)
1193 return -EINVAL;
1194 if (copy_to_user(optval, address, len))
1195 return -EFAULT;
1196 goto lenout;
1197 }
1198
1199 /* Dubious BSD thing... Probably nobody even uses it, but
1200 * the UNIX standard wants it for whatever reason... -DaveM
1201 */
1202 case SO_ACCEPTCONN:
1203 v.val = sk->sk_state == TCP_LISTEN;
1204 break;
1205
1206 case SO_PASSSEC:
1207 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1208 break;
1209
1210 case SO_PEERSEC:
1211 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1212
1213 case SO_MARK:
1214 v.val = sk->sk_mark;
1215 break;
1216
1217 case SO_RXQ_OVFL:
1218 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1219 break;
1220
1221 case SO_WIFI_STATUS:
1222 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1223 break;
1224
1225 case SO_PEEK_OFF:
1226 if (!sock->ops->set_peek_off)
1227 return -EOPNOTSUPP;
1228
1229 v.val = sk->sk_peek_off;
1230 break;
1231 case SO_NOFCS:
1232 v.val = sock_flag(sk, SOCK_NOFCS);
1233 break;
1234
1235 case SO_BINDTODEVICE:
1236 return sock_getbindtodevice(sk, optval, optlen, len);
1237
1238 case SO_GET_FILTER:
1239 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1240 if (len < 0)
1241 return len;
1242
1243 goto lenout;
1244
1245 case SO_LOCK_FILTER:
1246 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1247 break;
1248
1249 case SO_BPF_EXTENSIONS:
1250 v.val = bpf_tell_extensions();
1251 break;
1252
1253 case SO_SELECT_ERR_QUEUE:
1254 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1255 break;
1256
1257 #ifdef CONFIG_NET_RX_BUSY_POLL
1258 case SO_BUSY_POLL:
1259 v.val = sk->sk_ll_usec;
1260 break;
1261 #endif
1262
1263 case SO_MAX_PACING_RATE:
1264 v.val = sk->sk_max_pacing_rate;
1265 break;
1266
1267 case SO_INCOMING_CPU:
1268 v.val = sk->sk_incoming_cpu;
1269 break;
1270
1271 default:
1272 /* We implement the SO_SNDLOWAT etc to not be settable
1273 * (1003.1g 7).
1274 */
1275 return -ENOPROTOOPT;
1276 }
1277
1278 if (len > lv)
1279 len = lv;
1280 if (copy_to_user(optval, &v, len))
1281 return -EFAULT;
1282 lenout:
1283 if (put_user(len, optlen))
1284 return -EFAULT;
1285 return 0;
1286 }
1287
1288 /*
1289 * Initialize an sk_lock.
1290 *
1291 * (We also register the sk_lock with the lock validator.)
1292 */
sock_lock_init(struct sock * sk)1293 static inline void sock_lock_init(struct sock *sk)
1294 {
1295 sock_lock_init_class_and_name(sk,
1296 af_family_slock_key_strings[sk->sk_family],
1297 af_family_slock_keys + sk->sk_family,
1298 af_family_key_strings[sk->sk_family],
1299 af_family_keys + sk->sk_family);
1300 }
1301
1302 /*
1303 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1304 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1305 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1306 */
sock_copy(struct sock * nsk,const struct sock * osk)1307 static void sock_copy(struct sock *nsk, const struct sock *osk)
1308 {
1309 #ifdef CONFIG_SECURITY_NETWORK
1310 void *sptr = nsk->sk_security;
1311 #endif
1312 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1313
1314 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1315 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1316
1317 #ifdef CONFIG_SECURITY_NETWORK
1318 nsk->sk_security = sptr;
1319 security_sk_clone(osk, nsk);
1320 #endif
1321 }
1322
sk_prot_clear_portaddr_nulls(struct sock * sk,int size)1323 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1324 {
1325 unsigned long nulls1, nulls2;
1326
1327 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1328 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1329 if (nulls1 > nulls2)
1330 swap(nulls1, nulls2);
1331
1332 if (nulls1 != 0)
1333 memset((char *)sk, 0, nulls1);
1334 memset((char *)sk + nulls1 + sizeof(void *), 0,
1335 nulls2 - nulls1 - sizeof(void *));
1336 memset((char *)sk + nulls2 + sizeof(void *), 0,
1337 size - nulls2 - sizeof(void *));
1338 }
1339 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1340
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1341 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1342 int family)
1343 {
1344 struct sock *sk;
1345 struct kmem_cache *slab;
1346
1347 slab = prot->slab;
1348 if (slab != NULL) {
1349 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1350 if (!sk)
1351 return sk;
1352 if (priority & __GFP_ZERO) {
1353 if (prot->clear_sk)
1354 prot->clear_sk(sk, prot->obj_size);
1355 else
1356 sk_prot_clear_nulls(sk, prot->obj_size);
1357 }
1358 } else
1359 sk = kmalloc(prot->obj_size, priority);
1360
1361 if (sk != NULL) {
1362 kmemcheck_annotate_bitfield(sk, flags);
1363
1364 if (security_sk_alloc(sk, family, priority))
1365 goto out_free;
1366
1367 if (!try_module_get(prot->owner))
1368 goto out_free_sec;
1369 sk_tx_queue_clear(sk);
1370 }
1371
1372 return sk;
1373
1374 out_free_sec:
1375 security_sk_free(sk);
1376 out_free:
1377 if (slab != NULL)
1378 kmem_cache_free(slab, sk);
1379 else
1380 kfree(sk);
1381 return NULL;
1382 }
1383
sk_prot_free(struct proto * prot,struct sock * sk)1384 static void sk_prot_free(struct proto *prot, struct sock *sk)
1385 {
1386 struct kmem_cache *slab;
1387 struct module *owner;
1388
1389 owner = prot->owner;
1390 slab = prot->slab;
1391
1392 security_sk_free(sk);
1393 if (slab != NULL)
1394 kmem_cache_free(slab, sk);
1395 else
1396 kfree(sk);
1397 module_put(owner);
1398 }
1399
1400 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
sock_update_netprioidx(struct sock * sk)1401 void sock_update_netprioidx(struct sock *sk)
1402 {
1403 if (in_interrupt())
1404 return;
1405
1406 sk->sk_cgrp_prioidx = task_netprioidx(current);
1407 }
1408 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1409 #endif
1410
1411 /**
1412 * sk_alloc - All socket objects are allocated here
1413 * @net: the applicable net namespace
1414 * @family: protocol family
1415 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1416 * @prot: struct proto associated with this new sock instance
1417 * @kern: is this to be a kernel socket?
1418 */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)1419 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1420 struct proto *prot, int kern)
1421 {
1422 struct sock *sk;
1423
1424 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1425 if (sk) {
1426 sk->sk_family = family;
1427 /*
1428 * See comment in struct sock definition to understand
1429 * why we need sk_prot_creator -acme
1430 */
1431 sk->sk_prot = sk->sk_prot_creator = prot;
1432 sock_lock_init(sk);
1433 sk->sk_net_refcnt = kern ? 0 : 1;
1434 if (likely(sk->sk_net_refcnt))
1435 get_net(net);
1436 sock_net_set(sk, net);
1437 atomic_set(&sk->sk_wmem_alloc, 1);
1438
1439 sock_update_classid(sk);
1440 sock_update_netprioidx(sk);
1441 sk_tx_queue_clear(sk);
1442 }
1443
1444 return sk;
1445 }
1446 EXPORT_SYMBOL(sk_alloc);
1447
sk_destruct(struct sock * sk)1448 void sk_destruct(struct sock *sk)
1449 {
1450 struct sk_filter *filter;
1451
1452 if (sk->sk_destruct)
1453 sk->sk_destruct(sk);
1454
1455 filter = rcu_dereference_check(sk->sk_filter,
1456 atomic_read(&sk->sk_wmem_alloc) == 0);
1457 if (filter) {
1458 sk_filter_uncharge(sk, filter);
1459 RCU_INIT_POINTER(sk->sk_filter, NULL);
1460 }
1461
1462 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1463
1464 if (atomic_read(&sk->sk_omem_alloc))
1465 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1466 __func__, atomic_read(&sk->sk_omem_alloc));
1467
1468 if (sk->sk_frag.page) {
1469 put_page(sk->sk_frag.page);
1470 sk->sk_frag.page = NULL;
1471 }
1472
1473 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1474 put_cred(sk->sk_peer_cred);
1475 put_pid(sk->sk_peer_pid);
1476
1477 if (likely(sk->sk_net_refcnt))
1478 put_net(sock_net(sk));
1479 sk_prot_free(sk->sk_prot_creator, sk);
1480 }
1481
__sk_free(struct sock * sk)1482 static void __sk_free(struct sock *sk)
1483 {
1484 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1485 sock_diag_broadcast_destroy(sk);
1486 else
1487 sk_destruct(sk);
1488 }
1489
sk_free(struct sock * sk)1490 void sk_free(struct sock *sk)
1491 {
1492 /*
1493 * We subtract one from sk_wmem_alloc and can know if
1494 * some packets are still in some tx queue.
1495 * If not null, sock_wfree() will call __sk_free(sk) later
1496 */
1497 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1498 __sk_free(sk);
1499 }
1500 EXPORT_SYMBOL(sk_free);
1501
sk_update_clone(const struct sock * sk,struct sock * newsk)1502 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1503 {
1504 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1505 sock_update_memcg(newsk);
1506 }
1507
1508 /**
1509 * sk_clone_lock - clone a socket, and lock its clone
1510 * @sk: the socket to clone
1511 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1512 *
1513 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1514 */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1515 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1516 {
1517 struct sock *newsk;
1518 bool is_charged = true;
1519
1520 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1521 if (newsk != NULL) {
1522 struct sk_filter *filter;
1523
1524 sock_copy(newsk, sk);
1525
1526 newsk->sk_prot_creator = sk->sk_prot;
1527
1528 /* SANITY */
1529 if (likely(newsk->sk_net_refcnt))
1530 get_net(sock_net(newsk));
1531 sk_node_init(&newsk->sk_node);
1532 sock_lock_init(newsk);
1533 bh_lock_sock(newsk);
1534 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1535 newsk->sk_backlog.len = 0;
1536
1537 atomic_set(&newsk->sk_rmem_alloc, 0);
1538 /*
1539 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1540 */
1541 atomic_set(&newsk->sk_wmem_alloc, 1);
1542 atomic_set(&newsk->sk_omem_alloc, 0);
1543 skb_queue_head_init(&newsk->sk_receive_queue);
1544 skb_queue_head_init(&newsk->sk_write_queue);
1545
1546 rwlock_init(&newsk->sk_callback_lock);
1547 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1548 af_callback_keys + newsk->sk_family,
1549 af_family_clock_key_strings[newsk->sk_family]);
1550
1551 newsk->sk_dst_cache = NULL;
1552 newsk->sk_wmem_queued = 0;
1553 newsk->sk_forward_alloc = 0;
1554 newsk->sk_send_head = NULL;
1555 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1556
1557 sock_reset_flag(newsk, SOCK_DONE);
1558 skb_queue_head_init(&newsk->sk_error_queue);
1559
1560 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1561 if (filter != NULL)
1562 /* though it's an empty new sock, the charging may fail
1563 * if sysctl_optmem_max was changed between creation of
1564 * original socket and cloning
1565 */
1566 is_charged = sk_filter_charge(newsk, filter);
1567
1568 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1569 /* We need to make sure that we don't uncharge the new
1570 * socket if we couldn't charge it in the first place
1571 * as otherwise we uncharge the parent's filter.
1572 */
1573 if (!is_charged)
1574 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1575 /* It is still raw copy of parent, so invalidate
1576 * destructor and make plain sk_free() */
1577 newsk->sk_destruct = NULL;
1578 bh_unlock_sock(newsk);
1579 sk_free(newsk);
1580 newsk = NULL;
1581 goto out;
1582 }
1583
1584 newsk->sk_err = 0;
1585 newsk->sk_err_soft = 0;
1586 newsk->sk_priority = 0;
1587 newsk->sk_incoming_cpu = raw_smp_processor_id();
1588 atomic64_set(&newsk->sk_cookie, 0);
1589 /*
1590 * Before updating sk_refcnt, we must commit prior changes to memory
1591 * (Documentation/RCU/rculist_nulls.txt for details)
1592 */
1593 smp_wmb();
1594 atomic_set(&newsk->sk_refcnt, 2);
1595
1596 /*
1597 * Increment the counter in the same struct proto as the master
1598 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1599 * is the same as sk->sk_prot->socks, as this field was copied
1600 * with memcpy).
1601 *
1602 * This _changes_ the previous behaviour, where
1603 * tcp_create_openreq_child always was incrementing the
1604 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1605 * to be taken into account in all callers. -acme
1606 */
1607 sk_refcnt_debug_inc(newsk);
1608 sk_set_socket(newsk, NULL);
1609 sk_tx_queue_clear(newsk);
1610 newsk->sk_wq = NULL;
1611
1612 sk_update_clone(sk, newsk);
1613
1614 if (newsk->sk_prot->sockets_allocated)
1615 sk_sockets_allocated_inc(newsk);
1616
1617 if (sock_needs_netstamp(sk) &&
1618 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1619 net_enable_timestamp();
1620 }
1621 out:
1622 return newsk;
1623 }
1624 EXPORT_SYMBOL_GPL(sk_clone_lock);
1625
sk_setup_caps(struct sock * sk,struct dst_entry * dst)1626 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1627 {
1628 u32 max_segs = 1;
1629
1630 sk_dst_set(sk, dst);
1631 sk->sk_route_caps = dst->dev->features;
1632 if (sk->sk_route_caps & NETIF_F_GSO)
1633 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1634 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1635 if (sk_can_gso(sk)) {
1636 if (dst->header_len) {
1637 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1638 } else {
1639 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1640 sk->sk_gso_max_size = dst->dev->gso_max_size;
1641 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1642 }
1643 }
1644 sk->sk_gso_max_segs = max_segs;
1645 }
1646 EXPORT_SYMBOL_GPL(sk_setup_caps);
1647
1648 /*
1649 * Simple resource managers for sockets.
1650 */
1651
1652
1653 /*
1654 * Write buffer destructor automatically called from kfree_skb.
1655 */
sock_wfree(struct sk_buff * skb)1656 void sock_wfree(struct sk_buff *skb)
1657 {
1658 struct sock *sk = skb->sk;
1659 unsigned int len = skb->truesize;
1660
1661 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1662 /*
1663 * Keep a reference on sk_wmem_alloc, this will be released
1664 * after sk_write_space() call
1665 */
1666 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1667 sk->sk_write_space(sk);
1668 len = 1;
1669 }
1670 /*
1671 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1672 * could not do because of in-flight packets
1673 */
1674 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1675 __sk_free(sk);
1676 }
1677 EXPORT_SYMBOL(sock_wfree);
1678
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)1679 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1680 {
1681 skb_orphan(skb);
1682 skb->sk = sk;
1683 #ifdef CONFIG_INET
1684 if (unlikely(!sk_fullsock(sk))) {
1685 skb->destructor = sock_edemux;
1686 sock_hold(sk);
1687 return;
1688 }
1689 #endif
1690 skb->destructor = sock_wfree;
1691 skb_set_hash_from_sk(skb, sk);
1692 /*
1693 * We used to take a refcount on sk, but following operation
1694 * is enough to guarantee sk_free() wont free this sock until
1695 * all in-flight packets are completed
1696 */
1697 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1698 }
1699 EXPORT_SYMBOL(skb_set_owner_w);
1700
skb_orphan_partial(struct sk_buff * skb)1701 void skb_orphan_partial(struct sk_buff *skb)
1702 {
1703 if (skb->destructor == sock_wfree
1704 #ifdef CONFIG_INET
1705 || skb->destructor == tcp_wfree
1706 #endif
1707 ) {
1708 struct sock *sk = skb->sk;
1709
1710 if (atomic_inc_not_zero(&sk->sk_refcnt)) {
1711 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1712 skb->destructor = sock_efree;
1713 }
1714 } else {
1715 skb_orphan(skb);
1716 }
1717 }
1718 EXPORT_SYMBOL(skb_orphan_partial);
1719
1720 /*
1721 * Read buffer destructor automatically called from kfree_skb.
1722 */
sock_rfree(struct sk_buff * skb)1723 void sock_rfree(struct sk_buff *skb)
1724 {
1725 struct sock *sk = skb->sk;
1726 unsigned int len = skb->truesize;
1727
1728 atomic_sub(len, &sk->sk_rmem_alloc);
1729 sk_mem_uncharge(sk, len);
1730 }
1731 EXPORT_SYMBOL(sock_rfree);
1732
1733 /*
1734 * Buffer destructor for skbs that are not used directly in read or write
1735 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1736 */
sock_efree(struct sk_buff * skb)1737 void sock_efree(struct sk_buff *skb)
1738 {
1739 sock_put(skb->sk);
1740 }
1741 EXPORT_SYMBOL(sock_efree);
1742
sock_i_uid(struct sock * sk)1743 kuid_t sock_i_uid(struct sock *sk)
1744 {
1745 kuid_t uid;
1746
1747 read_lock_bh(&sk->sk_callback_lock);
1748 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1749 read_unlock_bh(&sk->sk_callback_lock);
1750 return uid;
1751 }
1752 EXPORT_SYMBOL(sock_i_uid);
1753
sock_i_ino(struct sock * sk)1754 unsigned long sock_i_ino(struct sock *sk)
1755 {
1756 unsigned long ino;
1757
1758 read_lock_bh(&sk->sk_callback_lock);
1759 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1760 read_unlock_bh(&sk->sk_callback_lock);
1761 return ino;
1762 }
1763 EXPORT_SYMBOL(sock_i_ino);
1764
1765 /*
1766 * Allocate a skb from the socket's send buffer.
1767 */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)1768 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1769 gfp_t priority)
1770 {
1771 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1772 struct sk_buff *skb = alloc_skb(size, priority);
1773 if (skb) {
1774 skb_set_owner_w(skb, sk);
1775 return skb;
1776 }
1777 }
1778 return NULL;
1779 }
1780 EXPORT_SYMBOL(sock_wmalloc);
1781
1782 /*
1783 * Allocate a memory block from the socket's option memory buffer.
1784 */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)1785 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1786 {
1787 if ((unsigned int)size <= sysctl_optmem_max &&
1788 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1789 void *mem;
1790 /* First do the add, to avoid the race if kmalloc
1791 * might sleep.
1792 */
1793 atomic_add(size, &sk->sk_omem_alloc);
1794 mem = kmalloc(size, priority);
1795 if (mem)
1796 return mem;
1797 atomic_sub(size, &sk->sk_omem_alloc);
1798 }
1799 return NULL;
1800 }
1801 EXPORT_SYMBOL(sock_kmalloc);
1802
1803 /* Free an option memory block. Note, we actually want the inline
1804 * here as this allows gcc to detect the nullify and fold away the
1805 * condition entirely.
1806 */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)1807 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1808 const bool nullify)
1809 {
1810 if (WARN_ON_ONCE(!mem))
1811 return;
1812 if (nullify)
1813 kzfree(mem);
1814 else
1815 kfree(mem);
1816 atomic_sub(size, &sk->sk_omem_alloc);
1817 }
1818
sock_kfree_s(struct sock * sk,void * mem,int size)1819 void sock_kfree_s(struct sock *sk, void *mem, int size)
1820 {
1821 __sock_kfree_s(sk, mem, size, false);
1822 }
1823 EXPORT_SYMBOL(sock_kfree_s);
1824
sock_kzfree_s(struct sock * sk,void * mem,int size)1825 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1826 {
1827 __sock_kfree_s(sk, mem, size, true);
1828 }
1829 EXPORT_SYMBOL(sock_kzfree_s);
1830
1831 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1832 I think, these locks should be removed for datagram sockets.
1833 */
sock_wait_for_wmem(struct sock * sk,long timeo)1834 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1835 {
1836 DEFINE_WAIT(wait);
1837
1838 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1839 for (;;) {
1840 if (!timeo)
1841 break;
1842 if (signal_pending(current))
1843 break;
1844 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1845 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1846 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1847 break;
1848 if (sk->sk_shutdown & SEND_SHUTDOWN)
1849 break;
1850 if (sk->sk_err)
1851 break;
1852 timeo = schedule_timeout(timeo);
1853 }
1854 finish_wait(sk_sleep(sk), &wait);
1855 return timeo;
1856 }
1857
1858
1859 /*
1860 * Generic send/receive buffer handlers
1861 */
1862
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)1863 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1864 unsigned long data_len, int noblock,
1865 int *errcode, int max_page_order)
1866 {
1867 struct sk_buff *skb;
1868 long timeo;
1869 int err;
1870
1871 timeo = sock_sndtimeo(sk, noblock);
1872 for (;;) {
1873 err = sock_error(sk);
1874 if (err != 0)
1875 goto failure;
1876
1877 err = -EPIPE;
1878 if (sk->sk_shutdown & SEND_SHUTDOWN)
1879 goto failure;
1880
1881 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1882 break;
1883
1884 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1885 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1886 err = -EAGAIN;
1887 if (!timeo)
1888 goto failure;
1889 if (signal_pending(current))
1890 goto interrupted;
1891 timeo = sock_wait_for_wmem(sk, timeo);
1892 }
1893 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1894 errcode, sk->sk_allocation);
1895 if (skb)
1896 skb_set_owner_w(skb, sk);
1897 return skb;
1898
1899 interrupted:
1900 err = sock_intr_errno(timeo);
1901 failure:
1902 *errcode = err;
1903 return NULL;
1904 }
1905 EXPORT_SYMBOL(sock_alloc_send_pskb);
1906
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1907 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1908 int noblock, int *errcode)
1909 {
1910 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1911 }
1912 EXPORT_SYMBOL(sock_alloc_send_skb);
1913
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)1914 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1915 struct sockcm_cookie *sockc)
1916 {
1917 struct cmsghdr *cmsg;
1918
1919 for_each_cmsghdr(cmsg, msg) {
1920 if (!CMSG_OK(msg, cmsg))
1921 return -EINVAL;
1922 if (cmsg->cmsg_level != SOL_SOCKET)
1923 continue;
1924 switch (cmsg->cmsg_type) {
1925 case SO_MARK:
1926 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1927 return -EPERM;
1928 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1929 return -EINVAL;
1930 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1931 break;
1932 default:
1933 return -EINVAL;
1934 }
1935 }
1936 return 0;
1937 }
1938 EXPORT_SYMBOL(sock_cmsg_send);
1939
1940 /* On 32bit arches, an skb frag is limited to 2^15 */
1941 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1942
1943 /**
1944 * skb_page_frag_refill - check that a page_frag contains enough room
1945 * @sz: minimum size of the fragment we want to get
1946 * @pfrag: pointer to page_frag
1947 * @gfp: priority for memory allocation
1948 *
1949 * Note: While this allocator tries to use high order pages, there is
1950 * no guarantee that allocations succeed. Therefore, @sz MUST be
1951 * less or equal than PAGE_SIZE.
1952 */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)1953 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1954 {
1955 if (pfrag->page) {
1956 if (atomic_read(&pfrag->page->_count) == 1) {
1957 pfrag->offset = 0;
1958 return true;
1959 }
1960 if (pfrag->offset + sz <= pfrag->size)
1961 return true;
1962 put_page(pfrag->page);
1963 }
1964
1965 pfrag->offset = 0;
1966 if (SKB_FRAG_PAGE_ORDER) {
1967 /* Avoid direct reclaim but allow kswapd to wake */
1968 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
1969 __GFP_COMP | __GFP_NOWARN |
1970 __GFP_NORETRY,
1971 SKB_FRAG_PAGE_ORDER);
1972 if (likely(pfrag->page)) {
1973 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1974 return true;
1975 }
1976 }
1977 pfrag->page = alloc_page(gfp);
1978 if (likely(pfrag->page)) {
1979 pfrag->size = PAGE_SIZE;
1980 return true;
1981 }
1982 return false;
1983 }
1984 EXPORT_SYMBOL(skb_page_frag_refill);
1985
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1986 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1987 {
1988 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1989 return true;
1990
1991 sk_enter_memory_pressure(sk);
1992 sk_stream_moderate_sndbuf(sk);
1993 return false;
1994 }
1995 EXPORT_SYMBOL(sk_page_frag_refill);
1996
__lock_sock(struct sock * sk)1997 static void __lock_sock(struct sock *sk)
1998 __releases(&sk->sk_lock.slock)
1999 __acquires(&sk->sk_lock.slock)
2000 {
2001 DEFINE_WAIT(wait);
2002
2003 for (;;) {
2004 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2005 TASK_UNINTERRUPTIBLE);
2006 spin_unlock_bh(&sk->sk_lock.slock);
2007 schedule();
2008 spin_lock_bh(&sk->sk_lock.slock);
2009 if (!sock_owned_by_user(sk))
2010 break;
2011 }
2012 finish_wait(&sk->sk_lock.wq, &wait);
2013 }
2014
__release_sock(struct sock * sk)2015 static void __release_sock(struct sock *sk)
2016 __releases(&sk->sk_lock.slock)
2017 __acquires(&sk->sk_lock.slock)
2018 {
2019 struct sk_buff *skb = sk->sk_backlog.head;
2020
2021 do {
2022 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2023 bh_unlock_sock(sk);
2024
2025 do {
2026 struct sk_buff *next = skb->next;
2027
2028 prefetch(next);
2029 WARN_ON_ONCE(skb_dst_is_noref(skb));
2030 skb->next = NULL;
2031 sk_backlog_rcv(sk, skb);
2032
2033 /*
2034 * We are in process context here with softirqs
2035 * disabled, use cond_resched_softirq() to preempt.
2036 * This is safe to do because we've taken the backlog
2037 * queue private:
2038 */
2039 cond_resched_softirq();
2040
2041 skb = next;
2042 } while (skb != NULL);
2043
2044 bh_lock_sock(sk);
2045 } while ((skb = sk->sk_backlog.head) != NULL);
2046
2047 /*
2048 * Doing the zeroing here guarantee we can not loop forever
2049 * while a wild producer attempts to flood us.
2050 */
2051 sk->sk_backlog.len = 0;
2052 }
2053
2054 /**
2055 * sk_wait_data - wait for data to arrive at sk_receive_queue
2056 * @sk: sock to wait on
2057 * @timeo: for how long
2058 * @skb: last skb seen on sk_receive_queue
2059 *
2060 * Now socket state including sk->sk_err is changed only under lock,
2061 * hence we may omit checks after joining wait queue.
2062 * We check receive queue before schedule() only as optimization;
2063 * it is very likely that release_sock() added new data.
2064 */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)2065 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2066 {
2067 int rc;
2068 DEFINE_WAIT(wait);
2069
2070 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2071 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2072 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2073 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2074 finish_wait(sk_sleep(sk), &wait);
2075 return rc;
2076 }
2077 EXPORT_SYMBOL(sk_wait_data);
2078
2079 /**
2080 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2081 * @sk: socket
2082 * @size: memory size to allocate
2083 * @kind: allocation type
2084 *
2085 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2086 * rmem allocation. This function assumes that protocols which have
2087 * memory_pressure use sk_wmem_queued as write buffer accounting.
2088 */
__sk_mem_schedule(struct sock * sk,int size,int kind)2089 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2090 {
2091 struct proto *prot = sk->sk_prot;
2092 int amt = sk_mem_pages(size);
2093 long allocated;
2094 int parent_status = UNDER_LIMIT;
2095
2096 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2097
2098 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2099
2100 /* Under limit. */
2101 if (parent_status == UNDER_LIMIT &&
2102 allocated <= sk_prot_mem_limits(sk, 0)) {
2103 sk_leave_memory_pressure(sk);
2104 return 1;
2105 }
2106
2107 /* Under pressure. (we or our parents) */
2108 if ((parent_status > SOFT_LIMIT) ||
2109 allocated > sk_prot_mem_limits(sk, 1))
2110 sk_enter_memory_pressure(sk);
2111
2112 /* Over hard limit (we or our parents) */
2113 if ((parent_status == OVER_LIMIT) ||
2114 (allocated > sk_prot_mem_limits(sk, 2)))
2115 goto suppress_allocation;
2116
2117 /* guarantee minimum buffer size under pressure */
2118 if (kind == SK_MEM_RECV) {
2119 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2120 return 1;
2121
2122 } else { /* SK_MEM_SEND */
2123 if (sk->sk_type == SOCK_STREAM) {
2124 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2125 return 1;
2126 } else if (atomic_read(&sk->sk_wmem_alloc) <
2127 prot->sysctl_wmem[0])
2128 return 1;
2129 }
2130
2131 if (sk_has_memory_pressure(sk)) {
2132 u64 alloc;
2133
2134 if (!sk_under_memory_pressure(sk))
2135 return 1;
2136 alloc = sk_sockets_allocated_read_positive(sk);
2137 if (sk_prot_mem_limits(sk, 2) > alloc *
2138 sk_mem_pages(sk->sk_wmem_queued +
2139 atomic_read(&sk->sk_rmem_alloc) +
2140 sk->sk_forward_alloc))
2141 return 1;
2142 }
2143
2144 suppress_allocation:
2145
2146 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2147 sk_stream_moderate_sndbuf(sk);
2148
2149 /* Fail only if socket is _under_ its sndbuf.
2150 * In this case we cannot block, so that we have to fail.
2151 */
2152 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2153 return 1;
2154 }
2155
2156 trace_sock_exceed_buf_limit(sk, prot, allocated);
2157
2158 /* Alas. Undo changes. */
2159 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2160
2161 sk_memory_allocated_sub(sk, amt);
2162
2163 return 0;
2164 }
2165 EXPORT_SYMBOL(__sk_mem_schedule);
2166
2167 /**
2168 * __sk_mem_reclaim - reclaim memory_allocated
2169 * @sk: socket
2170 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2171 */
__sk_mem_reclaim(struct sock * sk,int amount)2172 void __sk_mem_reclaim(struct sock *sk, int amount)
2173 {
2174 amount >>= SK_MEM_QUANTUM_SHIFT;
2175 sk_memory_allocated_sub(sk, amount);
2176 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2177
2178 if (sk_under_memory_pressure(sk) &&
2179 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2180 sk_leave_memory_pressure(sk);
2181 }
2182 EXPORT_SYMBOL(__sk_mem_reclaim);
2183
2184
2185 /*
2186 * Set of default routines for initialising struct proto_ops when
2187 * the protocol does not support a particular function. In certain
2188 * cases where it makes no sense for a protocol to have a "do nothing"
2189 * function, some default processing is provided.
2190 */
2191
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2192 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2193 {
2194 return -EOPNOTSUPP;
2195 }
2196 EXPORT_SYMBOL(sock_no_bind);
2197
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2198 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2199 int len, int flags)
2200 {
2201 return -EOPNOTSUPP;
2202 }
2203 EXPORT_SYMBOL(sock_no_connect);
2204
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2205 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2206 {
2207 return -EOPNOTSUPP;
2208 }
2209 EXPORT_SYMBOL(sock_no_socketpair);
2210
sock_no_accept(struct socket * sock,struct socket * newsock,int flags)2211 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2212 {
2213 return -EOPNOTSUPP;
2214 }
2215 EXPORT_SYMBOL(sock_no_accept);
2216
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int * len,int peer)2217 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2218 int *len, int peer)
2219 {
2220 return -EOPNOTSUPP;
2221 }
2222 EXPORT_SYMBOL(sock_no_getname);
2223
sock_no_poll(struct file * file,struct socket * sock,poll_table * pt)2224 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2225 {
2226 return 0;
2227 }
2228 EXPORT_SYMBOL(sock_no_poll);
2229
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2230 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2231 {
2232 return -EOPNOTSUPP;
2233 }
2234 EXPORT_SYMBOL(sock_no_ioctl);
2235
sock_no_listen(struct socket * sock,int backlog)2236 int sock_no_listen(struct socket *sock, int backlog)
2237 {
2238 return -EOPNOTSUPP;
2239 }
2240 EXPORT_SYMBOL(sock_no_listen);
2241
sock_no_shutdown(struct socket * sock,int how)2242 int sock_no_shutdown(struct socket *sock, int how)
2243 {
2244 return -EOPNOTSUPP;
2245 }
2246 EXPORT_SYMBOL(sock_no_shutdown);
2247
sock_no_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2248 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2249 char __user *optval, unsigned int optlen)
2250 {
2251 return -EOPNOTSUPP;
2252 }
2253 EXPORT_SYMBOL(sock_no_setsockopt);
2254
sock_no_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2255 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2256 char __user *optval, int __user *optlen)
2257 {
2258 return -EOPNOTSUPP;
2259 }
2260 EXPORT_SYMBOL(sock_no_getsockopt);
2261
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)2262 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2263 {
2264 return -EOPNOTSUPP;
2265 }
2266 EXPORT_SYMBOL(sock_no_sendmsg);
2267
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)2268 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2269 int flags)
2270 {
2271 return -EOPNOTSUPP;
2272 }
2273 EXPORT_SYMBOL(sock_no_recvmsg);
2274
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2275 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2276 {
2277 /* Mirror missing mmap method error code */
2278 return -ENODEV;
2279 }
2280 EXPORT_SYMBOL(sock_no_mmap);
2281
2282 /*
2283 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2284 * various sock-based usage counts.
2285 */
__receive_sock(struct file * file)2286 void __receive_sock(struct file *file)
2287 {
2288 struct socket *sock;
2289 int error;
2290
2291 /*
2292 * The resulting value of "error" is ignored here since we only
2293 * need to take action when the file is a socket and testing
2294 * "sock" for NULL is sufficient.
2295 */
2296 sock = sock_from_file(file, &error);
2297 if (sock) {
2298 sock_update_netprioidx(sock->sk);
2299 sock_update_classid(sock->sk);
2300 }
2301 }
2302
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2303 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2304 {
2305 ssize_t res;
2306 struct msghdr msg = {.msg_flags = flags};
2307 struct kvec iov;
2308 char *kaddr = kmap(page);
2309 iov.iov_base = kaddr + offset;
2310 iov.iov_len = size;
2311 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2312 kunmap(page);
2313 return res;
2314 }
2315 EXPORT_SYMBOL(sock_no_sendpage);
2316
2317 /*
2318 * Default Socket Callbacks
2319 */
2320
sock_def_wakeup(struct sock * sk)2321 static void sock_def_wakeup(struct sock *sk)
2322 {
2323 struct socket_wq *wq;
2324
2325 rcu_read_lock();
2326 wq = rcu_dereference(sk->sk_wq);
2327 if (wq_has_sleeper(wq))
2328 wake_up_interruptible_all(&wq->wait);
2329 rcu_read_unlock();
2330 }
2331
sock_def_error_report(struct sock * sk)2332 static void sock_def_error_report(struct sock *sk)
2333 {
2334 struct socket_wq *wq;
2335
2336 rcu_read_lock();
2337 wq = rcu_dereference(sk->sk_wq);
2338 if (wq_has_sleeper(wq))
2339 wake_up_interruptible_poll(&wq->wait, POLLERR);
2340 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2341 rcu_read_unlock();
2342 }
2343
sock_def_readable(struct sock * sk)2344 static void sock_def_readable(struct sock *sk)
2345 {
2346 struct socket_wq *wq;
2347
2348 rcu_read_lock();
2349 wq = rcu_dereference(sk->sk_wq);
2350 if (wq_has_sleeper(wq))
2351 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2352 POLLRDNORM | POLLRDBAND);
2353 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2354 rcu_read_unlock();
2355 }
2356
sock_def_write_space(struct sock * sk)2357 static void sock_def_write_space(struct sock *sk)
2358 {
2359 struct socket_wq *wq;
2360
2361 rcu_read_lock();
2362
2363 /* Do not wake up a writer until he can make "significant"
2364 * progress. --DaveM
2365 */
2366 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2367 wq = rcu_dereference(sk->sk_wq);
2368 if (wq_has_sleeper(wq))
2369 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2370 POLLWRNORM | POLLWRBAND);
2371
2372 /* Should agree with poll, otherwise some programs break */
2373 if (sock_writeable(sk))
2374 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2375 }
2376
2377 rcu_read_unlock();
2378 }
2379
sock_def_destruct(struct sock * sk)2380 static void sock_def_destruct(struct sock *sk)
2381 {
2382 }
2383
sk_send_sigurg(struct sock * sk)2384 void sk_send_sigurg(struct sock *sk)
2385 {
2386 if (sk->sk_socket && sk->sk_socket->file)
2387 if (send_sigurg(&sk->sk_socket->file->f_owner))
2388 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2389 }
2390 EXPORT_SYMBOL(sk_send_sigurg);
2391
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2392 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2393 unsigned long expires)
2394 {
2395 if (!mod_timer(timer, expires))
2396 sock_hold(sk);
2397 }
2398 EXPORT_SYMBOL(sk_reset_timer);
2399
sk_stop_timer(struct sock * sk,struct timer_list * timer)2400 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2401 {
2402 if (del_timer(timer))
2403 __sock_put(sk);
2404 }
2405 EXPORT_SYMBOL(sk_stop_timer);
2406
sock_init_data(struct socket * sock,struct sock * sk)2407 void sock_init_data(struct socket *sock, struct sock *sk)
2408 {
2409 skb_queue_head_init(&sk->sk_receive_queue);
2410 skb_queue_head_init(&sk->sk_write_queue);
2411 skb_queue_head_init(&sk->sk_error_queue);
2412
2413 sk->sk_send_head = NULL;
2414
2415 init_timer(&sk->sk_timer);
2416
2417 sk->sk_allocation = GFP_KERNEL;
2418 sk->sk_rcvbuf = sysctl_rmem_default;
2419 sk->sk_sndbuf = sysctl_wmem_default;
2420 sk->sk_state = TCP_CLOSE;
2421 sk_set_socket(sk, sock);
2422
2423 sock_set_flag(sk, SOCK_ZAPPED);
2424
2425 if (sock) {
2426 sk->sk_type = sock->type;
2427 sk->sk_wq = sock->wq;
2428 sock->sk = sk;
2429 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2430 } else {
2431 sk->sk_wq = NULL;
2432 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2433 }
2434
2435 rwlock_init(&sk->sk_callback_lock);
2436 lockdep_set_class_and_name(&sk->sk_callback_lock,
2437 af_callback_keys + sk->sk_family,
2438 af_family_clock_key_strings[sk->sk_family]);
2439
2440 sk->sk_state_change = sock_def_wakeup;
2441 sk->sk_data_ready = sock_def_readable;
2442 sk->sk_write_space = sock_def_write_space;
2443 sk->sk_error_report = sock_def_error_report;
2444 sk->sk_destruct = sock_def_destruct;
2445
2446 sk->sk_frag.page = NULL;
2447 sk->sk_frag.offset = 0;
2448 sk->sk_peek_off = -1;
2449
2450 sk->sk_peer_pid = NULL;
2451 sk->sk_peer_cred = NULL;
2452 spin_lock_init(&sk->sk_peer_lock);
2453
2454 sk->sk_write_pending = 0;
2455 sk->sk_rcvlowat = 1;
2456 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2457 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2458
2459 sk->sk_stamp = ktime_set(-1L, 0);
2460 #if BITS_PER_LONG==32
2461 seqlock_init(&sk->sk_stamp_seq);
2462 #endif
2463
2464 #ifdef CONFIG_NET_RX_BUSY_POLL
2465 sk->sk_napi_id = 0;
2466 sk->sk_ll_usec = sysctl_net_busy_read;
2467 #endif
2468
2469 sk->sk_max_pacing_rate = ~0U;
2470 sk->sk_pacing_rate = ~0U;
2471 sk->sk_incoming_cpu = -1;
2472 /*
2473 * Before updating sk_refcnt, we must commit prior changes to memory
2474 * (Documentation/RCU/rculist_nulls.txt for details)
2475 */
2476 smp_wmb();
2477 atomic_set(&sk->sk_refcnt, 1);
2478 atomic_set(&sk->sk_drops, 0);
2479 }
2480 EXPORT_SYMBOL(sock_init_data);
2481
lock_sock_nested(struct sock * sk,int subclass)2482 void lock_sock_nested(struct sock *sk, int subclass)
2483 {
2484 might_sleep();
2485 spin_lock_bh(&sk->sk_lock.slock);
2486 if (sk->sk_lock.owned)
2487 __lock_sock(sk);
2488 sk->sk_lock.owned = 1;
2489 spin_unlock(&sk->sk_lock.slock);
2490 /*
2491 * The sk_lock has mutex_lock() semantics here:
2492 */
2493 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2494 local_bh_enable();
2495 }
2496 EXPORT_SYMBOL(lock_sock_nested);
2497
release_sock(struct sock * sk)2498 void release_sock(struct sock *sk)
2499 {
2500 /*
2501 * The sk_lock has mutex_unlock() semantics:
2502 */
2503 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2504
2505 spin_lock_bh(&sk->sk_lock.slock);
2506 if (sk->sk_backlog.tail)
2507 __release_sock(sk);
2508
2509 /* Warning : release_cb() might need to release sk ownership,
2510 * ie call sock_release_ownership(sk) before us.
2511 */
2512 if (sk->sk_prot->release_cb)
2513 sk->sk_prot->release_cb(sk);
2514
2515 sock_release_ownership(sk);
2516 if (waitqueue_active(&sk->sk_lock.wq))
2517 wake_up(&sk->sk_lock.wq);
2518 spin_unlock_bh(&sk->sk_lock.slock);
2519 }
2520 EXPORT_SYMBOL(release_sock);
2521
2522 /**
2523 * lock_sock_fast - fast version of lock_sock
2524 * @sk: socket
2525 *
2526 * This version should be used for very small section, where process wont block
2527 * return false if fast path is taken
2528 * sk_lock.slock locked, owned = 0, BH disabled
2529 * return true if slow path is taken
2530 * sk_lock.slock unlocked, owned = 1, BH enabled
2531 */
lock_sock_fast(struct sock * sk)2532 bool lock_sock_fast(struct sock *sk)
2533 {
2534 might_sleep();
2535 spin_lock_bh(&sk->sk_lock.slock);
2536
2537 if (!sk->sk_lock.owned)
2538 /*
2539 * Note : We must disable BH
2540 */
2541 return false;
2542
2543 __lock_sock(sk);
2544 sk->sk_lock.owned = 1;
2545 spin_unlock(&sk->sk_lock.slock);
2546 /*
2547 * The sk_lock has mutex_lock() semantics here:
2548 */
2549 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2550 local_bh_enable();
2551 return true;
2552 }
2553 EXPORT_SYMBOL(lock_sock_fast);
2554
sock_get_timestamp(struct sock * sk,struct timeval __user * userstamp)2555 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2556 {
2557 struct timeval tv;
2558 if (!sock_flag(sk, SOCK_TIMESTAMP))
2559 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2560 tv = ktime_to_timeval(sk->sk_stamp);
2561 if (tv.tv_sec == -1)
2562 return -ENOENT;
2563 if (tv.tv_sec == 0) {
2564 sk->sk_stamp = ktime_get_real();
2565 tv = ktime_to_timeval(sk->sk_stamp);
2566 }
2567 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2568 }
2569 EXPORT_SYMBOL(sock_get_timestamp);
2570
sock_get_timestampns(struct sock * sk,struct timespec __user * userstamp)2571 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2572 {
2573 struct timespec ts;
2574 if (!sock_flag(sk, SOCK_TIMESTAMP))
2575 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2576 ts = ktime_to_timespec(sk->sk_stamp);
2577 if (ts.tv_sec == -1)
2578 return -ENOENT;
2579 if (ts.tv_sec == 0) {
2580 sk->sk_stamp = ktime_get_real();
2581 ts = ktime_to_timespec(sk->sk_stamp);
2582 }
2583 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2584 }
2585 EXPORT_SYMBOL(sock_get_timestampns);
2586
sock_enable_timestamp(struct sock * sk,int flag)2587 void sock_enable_timestamp(struct sock *sk, int flag)
2588 {
2589 if (!sock_flag(sk, flag)) {
2590 unsigned long previous_flags = sk->sk_flags;
2591
2592 sock_set_flag(sk, flag);
2593 /*
2594 * we just set one of the two flags which require net
2595 * time stamping, but time stamping might have been on
2596 * already because of the other one
2597 */
2598 if (sock_needs_netstamp(sk) &&
2599 !(previous_flags & SK_FLAGS_TIMESTAMP))
2600 net_enable_timestamp();
2601 }
2602 }
2603
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)2604 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2605 int level, int type)
2606 {
2607 struct sock_exterr_skb *serr;
2608 struct sk_buff *skb;
2609 int copied, err;
2610
2611 err = -EAGAIN;
2612 skb = sock_dequeue_err_skb(sk);
2613 if (skb == NULL)
2614 goto out;
2615
2616 copied = skb->len;
2617 if (copied > len) {
2618 msg->msg_flags |= MSG_TRUNC;
2619 copied = len;
2620 }
2621 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2622 if (err)
2623 goto out_free_skb;
2624
2625 sock_recv_timestamp(msg, sk, skb);
2626
2627 serr = SKB_EXT_ERR(skb);
2628 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2629
2630 msg->msg_flags |= MSG_ERRQUEUE;
2631 err = copied;
2632
2633 out_free_skb:
2634 kfree_skb(skb);
2635 out:
2636 return err;
2637 }
2638 EXPORT_SYMBOL(sock_recv_errqueue);
2639
2640 /*
2641 * Get a socket option on an socket.
2642 *
2643 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2644 * asynchronous errors should be reported by getsockopt. We assume
2645 * this means if you specify SO_ERROR (otherwise whats the point of it).
2646 */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2647 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2648 char __user *optval, int __user *optlen)
2649 {
2650 struct sock *sk = sock->sk;
2651
2652 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2653 }
2654 EXPORT_SYMBOL(sock_common_getsockopt);
2655
2656 #ifdef CONFIG_COMPAT
compat_sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2657 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2658 char __user *optval, int __user *optlen)
2659 {
2660 struct sock *sk = sock->sk;
2661
2662 if (sk->sk_prot->compat_getsockopt != NULL)
2663 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2664 optval, optlen);
2665 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2666 }
2667 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2668 #endif
2669
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)2670 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2671 int flags)
2672 {
2673 struct sock *sk = sock->sk;
2674 int addr_len = 0;
2675 int err;
2676
2677 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2678 flags & ~MSG_DONTWAIT, &addr_len);
2679 if (err >= 0)
2680 msg->msg_namelen = addr_len;
2681 return err;
2682 }
2683 EXPORT_SYMBOL(sock_common_recvmsg);
2684
2685 /*
2686 * Set socket options on an inet socket.
2687 */
sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2688 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2689 char __user *optval, unsigned int optlen)
2690 {
2691 struct sock *sk = sock->sk;
2692
2693 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2694 }
2695 EXPORT_SYMBOL(sock_common_setsockopt);
2696
2697 #ifdef CONFIG_COMPAT
compat_sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2698 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2699 char __user *optval, unsigned int optlen)
2700 {
2701 struct sock *sk = sock->sk;
2702
2703 if (sk->sk_prot->compat_setsockopt != NULL)
2704 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2705 optval, optlen);
2706 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2707 }
2708 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2709 #endif
2710
sk_common_release(struct sock * sk)2711 void sk_common_release(struct sock *sk)
2712 {
2713 if (sk->sk_prot->destroy)
2714 sk->sk_prot->destroy(sk);
2715
2716 /*
2717 * Observation: when sock_common_release is called, processes have
2718 * no access to socket. But net still has.
2719 * Step one, detach it from networking:
2720 *
2721 * A. Remove from hash tables.
2722 */
2723
2724 sk->sk_prot->unhash(sk);
2725
2726 /*
2727 * In this point socket cannot receive new packets, but it is possible
2728 * that some packets are in flight because some CPU runs receiver and
2729 * did hash table lookup before we unhashed socket. They will achieve
2730 * receive queue and will be purged by socket destructor.
2731 *
2732 * Also we still have packets pending on receive queue and probably,
2733 * our own packets waiting in device queues. sock_destroy will drain
2734 * receive queue, but transmitted packets will delay socket destruction
2735 * until the last reference will be released.
2736 */
2737
2738 sock_orphan(sk);
2739
2740 xfrm_sk_free_policy(sk);
2741
2742 sk_refcnt_debug_release(sk);
2743
2744 sock_put(sk);
2745 }
2746 EXPORT_SYMBOL(sk_common_release);
2747
2748 #ifdef CONFIG_PROC_FS
2749 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2750 struct prot_inuse {
2751 int val[PROTO_INUSE_NR];
2752 };
2753
2754 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2755
2756 #ifdef CONFIG_NET_NS
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2757 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2758 {
2759 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2760 }
2761 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2762
sock_prot_inuse_get(struct net * net,struct proto * prot)2763 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2764 {
2765 int cpu, idx = prot->inuse_idx;
2766 int res = 0;
2767
2768 for_each_possible_cpu(cpu)
2769 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2770
2771 return res >= 0 ? res : 0;
2772 }
2773 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2774
sock_inuse_init_net(struct net * net)2775 static int __net_init sock_inuse_init_net(struct net *net)
2776 {
2777 net->core.inuse = alloc_percpu(struct prot_inuse);
2778 return net->core.inuse ? 0 : -ENOMEM;
2779 }
2780
sock_inuse_exit_net(struct net * net)2781 static void __net_exit sock_inuse_exit_net(struct net *net)
2782 {
2783 free_percpu(net->core.inuse);
2784 }
2785
2786 static struct pernet_operations net_inuse_ops = {
2787 .init = sock_inuse_init_net,
2788 .exit = sock_inuse_exit_net,
2789 };
2790
net_inuse_init(void)2791 static __init int net_inuse_init(void)
2792 {
2793 if (register_pernet_subsys(&net_inuse_ops))
2794 panic("Cannot initialize net inuse counters");
2795
2796 return 0;
2797 }
2798
2799 core_initcall(net_inuse_init);
2800 #else
2801 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2802
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2803 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2804 {
2805 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2806 }
2807 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2808
sock_prot_inuse_get(struct net * net,struct proto * prot)2809 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2810 {
2811 int cpu, idx = prot->inuse_idx;
2812 int res = 0;
2813
2814 for_each_possible_cpu(cpu)
2815 res += per_cpu(prot_inuse, cpu).val[idx];
2816
2817 return res >= 0 ? res : 0;
2818 }
2819 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2820 #endif
2821
assign_proto_idx(struct proto * prot)2822 static void assign_proto_idx(struct proto *prot)
2823 {
2824 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2825
2826 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2827 pr_err("PROTO_INUSE_NR exhausted\n");
2828 return;
2829 }
2830
2831 set_bit(prot->inuse_idx, proto_inuse_idx);
2832 }
2833
release_proto_idx(struct proto * prot)2834 static void release_proto_idx(struct proto *prot)
2835 {
2836 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2837 clear_bit(prot->inuse_idx, proto_inuse_idx);
2838 }
2839 #else
assign_proto_idx(struct proto * prot)2840 static inline void assign_proto_idx(struct proto *prot)
2841 {
2842 }
2843
release_proto_idx(struct proto * prot)2844 static inline void release_proto_idx(struct proto *prot)
2845 {
2846 }
2847 #endif
2848
req_prot_cleanup(struct request_sock_ops * rsk_prot)2849 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2850 {
2851 if (!rsk_prot)
2852 return;
2853 kfree(rsk_prot->slab_name);
2854 rsk_prot->slab_name = NULL;
2855 kmem_cache_destroy(rsk_prot->slab);
2856 rsk_prot->slab = NULL;
2857 }
2858
req_prot_init(const struct proto * prot)2859 static int req_prot_init(const struct proto *prot)
2860 {
2861 struct request_sock_ops *rsk_prot = prot->rsk_prot;
2862
2863 if (!rsk_prot)
2864 return 0;
2865
2866 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2867 prot->name);
2868 if (!rsk_prot->slab_name)
2869 return -ENOMEM;
2870
2871 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2872 rsk_prot->obj_size, 0,
2873 prot->slab_flags, NULL);
2874
2875 if (!rsk_prot->slab) {
2876 pr_crit("%s: Can't create request sock SLAB cache!\n",
2877 prot->name);
2878 return -ENOMEM;
2879 }
2880 return 0;
2881 }
2882
proto_register(struct proto * prot,int alloc_slab)2883 int proto_register(struct proto *prot, int alloc_slab)
2884 {
2885 if (alloc_slab) {
2886 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2887 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2888 NULL);
2889
2890 if (prot->slab == NULL) {
2891 pr_crit("%s: Can't create sock SLAB cache!\n",
2892 prot->name);
2893 goto out;
2894 }
2895
2896 if (req_prot_init(prot))
2897 goto out_free_request_sock_slab;
2898
2899 if (prot->twsk_prot != NULL) {
2900 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2901
2902 if (prot->twsk_prot->twsk_slab_name == NULL)
2903 goto out_free_request_sock_slab;
2904
2905 prot->twsk_prot->twsk_slab =
2906 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2907 prot->twsk_prot->twsk_obj_size,
2908 0,
2909 prot->slab_flags,
2910 NULL);
2911 if (prot->twsk_prot->twsk_slab == NULL)
2912 goto out_free_timewait_sock_slab_name;
2913 }
2914 }
2915
2916 mutex_lock(&proto_list_mutex);
2917 list_add(&prot->node, &proto_list);
2918 assign_proto_idx(prot);
2919 mutex_unlock(&proto_list_mutex);
2920 return 0;
2921
2922 out_free_timewait_sock_slab_name:
2923 kfree(prot->twsk_prot->twsk_slab_name);
2924 out_free_request_sock_slab:
2925 req_prot_cleanup(prot->rsk_prot);
2926
2927 kmem_cache_destroy(prot->slab);
2928 prot->slab = NULL;
2929 out:
2930 return -ENOBUFS;
2931 }
2932 EXPORT_SYMBOL(proto_register);
2933
proto_unregister(struct proto * prot)2934 void proto_unregister(struct proto *prot)
2935 {
2936 mutex_lock(&proto_list_mutex);
2937 release_proto_idx(prot);
2938 list_del(&prot->node);
2939 mutex_unlock(&proto_list_mutex);
2940
2941 kmem_cache_destroy(prot->slab);
2942 prot->slab = NULL;
2943
2944 req_prot_cleanup(prot->rsk_prot);
2945
2946 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2947 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2948 kfree(prot->twsk_prot->twsk_slab_name);
2949 prot->twsk_prot->twsk_slab = NULL;
2950 }
2951 }
2952 EXPORT_SYMBOL(proto_unregister);
2953
2954 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)2955 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2956 __acquires(proto_list_mutex)
2957 {
2958 mutex_lock(&proto_list_mutex);
2959 return seq_list_start_head(&proto_list, *pos);
2960 }
2961
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)2962 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2963 {
2964 return seq_list_next(v, &proto_list, pos);
2965 }
2966
proto_seq_stop(struct seq_file * seq,void * v)2967 static void proto_seq_stop(struct seq_file *seq, void *v)
2968 __releases(proto_list_mutex)
2969 {
2970 mutex_unlock(&proto_list_mutex);
2971 }
2972
proto_method_implemented(const void * method)2973 static char proto_method_implemented(const void *method)
2974 {
2975 return method == NULL ? 'n' : 'y';
2976 }
sock_prot_memory_allocated(struct proto * proto)2977 static long sock_prot_memory_allocated(struct proto *proto)
2978 {
2979 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2980 }
2981
sock_prot_memory_pressure(struct proto * proto)2982 static char *sock_prot_memory_pressure(struct proto *proto)
2983 {
2984 return proto->memory_pressure != NULL ?
2985 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2986 }
2987
proto_seq_printf(struct seq_file * seq,struct proto * proto)2988 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2989 {
2990
2991 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2992 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2993 proto->name,
2994 proto->obj_size,
2995 sock_prot_inuse_get(seq_file_net(seq), proto),
2996 sock_prot_memory_allocated(proto),
2997 sock_prot_memory_pressure(proto),
2998 proto->max_header,
2999 proto->slab == NULL ? "no" : "yes",
3000 module_name(proto->owner),
3001 proto_method_implemented(proto->close),
3002 proto_method_implemented(proto->connect),
3003 proto_method_implemented(proto->disconnect),
3004 proto_method_implemented(proto->accept),
3005 proto_method_implemented(proto->ioctl),
3006 proto_method_implemented(proto->init),
3007 proto_method_implemented(proto->destroy),
3008 proto_method_implemented(proto->shutdown),
3009 proto_method_implemented(proto->setsockopt),
3010 proto_method_implemented(proto->getsockopt),
3011 proto_method_implemented(proto->sendmsg),
3012 proto_method_implemented(proto->recvmsg),
3013 proto_method_implemented(proto->sendpage),
3014 proto_method_implemented(proto->bind),
3015 proto_method_implemented(proto->backlog_rcv),
3016 proto_method_implemented(proto->hash),
3017 proto_method_implemented(proto->unhash),
3018 proto_method_implemented(proto->get_port),
3019 proto_method_implemented(proto->enter_memory_pressure));
3020 }
3021
proto_seq_show(struct seq_file * seq,void * v)3022 static int proto_seq_show(struct seq_file *seq, void *v)
3023 {
3024 if (v == &proto_list)
3025 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3026 "protocol",
3027 "size",
3028 "sockets",
3029 "memory",
3030 "press",
3031 "maxhdr",
3032 "slab",
3033 "module",
3034 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3035 else
3036 proto_seq_printf(seq, list_entry(v, struct proto, node));
3037 return 0;
3038 }
3039
3040 static const struct seq_operations proto_seq_ops = {
3041 .start = proto_seq_start,
3042 .next = proto_seq_next,
3043 .stop = proto_seq_stop,
3044 .show = proto_seq_show,
3045 };
3046
proto_seq_open(struct inode * inode,struct file * file)3047 static int proto_seq_open(struct inode *inode, struct file *file)
3048 {
3049 return seq_open_net(inode, file, &proto_seq_ops,
3050 sizeof(struct seq_net_private));
3051 }
3052
3053 static const struct file_operations proto_seq_fops = {
3054 .owner = THIS_MODULE,
3055 .open = proto_seq_open,
3056 .read = seq_read,
3057 .llseek = seq_lseek,
3058 .release = seq_release_net,
3059 };
3060
proto_init_net(struct net * net)3061 static __net_init int proto_init_net(struct net *net)
3062 {
3063 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3064 return -ENOMEM;
3065
3066 return 0;
3067 }
3068
proto_exit_net(struct net * net)3069 static __net_exit void proto_exit_net(struct net *net)
3070 {
3071 remove_proc_entry("protocols", net->proc_net);
3072 }
3073
3074
3075 static __net_initdata struct pernet_operations proto_net_ops = {
3076 .init = proto_init_net,
3077 .exit = proto_exit_net,
3078 };
3079
proto_init(void)3080 static int __init proto_init(void)
3081 {
3082 return register_pernet_subsys(&proto_net_ops);
3083 }
3084
3085 subsys_initcall(proto_init);
3086
3087 #endif /* PROC_FS */
3088