• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 
138 #include <trace/events/sock.h>
139 
140 #ifdef CONFIG_INET
141 #include <net/tcp.h>
142 #endif
143 
144 #include <net/busy_poll.h>
145 
146 static DEFINE_MUTEX(proto_list_mutex);
147 static LIST_HEAD(proto_list);
148 
149 /**
150  * sk_ns_capable - General socket capability test
151  * @sk: Socket to use a capability on or through
152  * @user_ns: The user namespace of the capability to use
153  * @cap: The capability to use
154  *
155  * Test to see if the opener of the socket had when the socket was
156  * created and the current process has the capability @cap in the user
157  * namespace @user_ns.
158  */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)159 bool sk_ns_capable(const struct sock *sk,
160 		   struct user_namespace *user_ns, int cap)
161 {
162 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
163 		ns_capable(user_ns, cap);
164 }
165 EXPORT_SYMBOL(sk_ns_capable);
166 
167 /**
168  * sk_capable - Socket global capability test
169  * @sk: Socket to use a capability on or through
170  * @cap: The global capability to use
171  *
172  * Test to see if the opener of the socket had when the socket was
173  * created and the current process has the capability @cap in all user
174  * namespaces.
175  */
sk_capable(const struct sock * sk,int cap)176 bool sk_capable(const struct sock *sk, int cap)
177 {
178 	return sk_ns_capable(sk, &init_user_ns, cap);
179 }
180 EXPORT_SYMBOL(sk_capable);
181 
182 /**
183  * sk_net_capable - Network namespace socket capability test
184  * @sk: Socket to use a capability on or through
185  * @cap: The capability to use
186  *
187  * Test to see if the opener of the socket had when the socket was created
188  * and the current process has the capability @cap over the network namespace
189  * the socket is a member of.
190  */
sk_net_capable(const struct sock * sk,int cap)191 bool sk_net_capable(const struct sock *sk, int cap)
192 {
193 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
194 }
195 EXPORT_SYMBOL(sk_net_capable);
196 
197 
198 #ifdef CONFIG_MEMCG_KMEM
mem_cgroup_sockets_init(struct mem_cgroup * memcg,struct cgroup_subsys * ss)199 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
200 {
201 	struct proto *proto;
202 	int ret = 0;
203 
204 	mutex_lock(&proto_list_mutex);
205 	list_for_each_entry(proto, &proto_list, node) {
206 		if (proto->init_cgroup) {
207 			ret = proto->init_cgroup(memcg, ss);
208 			if (ret)
209 				goto out;
210 		}
211 	}
212 
213 	mutex_unlock(&proto_list_mutex);
214 	return ret;
215 out:
216 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
217 		if (proto->destroy_cgroup)
218 			proto->destroy_cgroup(memcg);
219 	mutex_unlock(&proto_list_mutex);
220 	return ret;
221 }
222 
mem_cgroup_sockets_destroy(struct mem_cgroup * memcg)223 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
224 {
225 	struct proto *proto;
226 
227 	mutex_lock(&proto_list_mutex);
228 	list_for_each_entry_reverse(proto, &proto_list, node)
229 		if (proto->destroy_cgroup)
230 			proto->destroy_cgroup(memcg);
231 	mutex_unlock(&proto_list_mutex);
232 }
233 #endif
234 
235 /*
236  * Each address family might have different locking rules, so we have
237  * one slock key per address family:
238  */
239 static struct lock_class_key af_family_keys[AF_MAX];
240 static struct lock_class_key af_family_slock_keys[AF_MAX];
241 
242 #if defined(CONFIG_MEMCG_KMEM)
243 struct static_key memcg_socket_limit_enabled;
244 EXPORT_SYMBOL(memcg_socket_limit_enabled);
245 #endif
246 
247 /*
248  * Make lock validator output more readable. (we pre-construct these
249  * strings build-time, so that runtime initialization of socket
250  * locks is fast):
251  */
252 static const char *const af_family_key_strings[AF_MAX+1] = {
253   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
254   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
255   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
256   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
257   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
258   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
259   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
260   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
261   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
262   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
263   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
264   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
265   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
266   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
267 };
268 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
269   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
270   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
271   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
272   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
273   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
274   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
275   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
276   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
277   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
278   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
279   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
280   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
281   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
282   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
283 };
284 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
285   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
286   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
287   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
288   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
289   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
290   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
291   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
292   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
293   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
294   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
295   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
296   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
297   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
298   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
299 };
300 
301 /*
302  * sk_callback_lock locking rules are per-address-family,
303  * so split the lock classes by using a per-AF key:
304  */
305 static struct lock_class_key af_callback_keys[AF_MAX];
306 
307 /* Take into consideration the size of the struct sk_buff overhead in the
308  * determination of these values, since that is non-constant across
309  * platforms.  This makes socket queueing behavior and performance
310  * not depend upon such differences.
311  */
312 #define _SK_MEM_PACKETS		256
313 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
314 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
316 
317 /* Run time adjustable parameters. */
318 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
319 EXPORT_SYMBOL(sysctl_wmem_max);
320 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
321 EXPORT_SYMBOL(sysctl_rmem_max);
322 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
323 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
324 
325 /* Maximal space eaten by iovec or ancillary data plus some space */
326 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
327 EXPORT_SYMBOL(sysctl_optmem_max);
328 
329 int sysctl_tstamp_allow_data __read_mostly = 1;
330 
331 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
332 EXPORT_SYMBOL_GPL(memalloc_socks);
333 
334 /**
335  * sk_set_memalloc - sets %SOCK_MEMALLOC
336  * @sk: socket to set it on
337  *
338  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
339  * It's the responsibility of the admin to adjust min_free_kbytes
340  * to meet the requirements
341  */
sk_set_memalloc(struct sock * sk)342 void sk_set_memalloc(struct sock *sk)
343 {
344 	sock_set_flag(sk, SOCK_MEMALLOC);
345 	sk->sk_allocation |= __GFP_MEMALLOC;
346 	static_key_slow_inc(&memalloc_socks);
347 }
348 EXPORT_SYMBOL_GPL(sk_set_memalloc);
349 
sk_clear_memalloc(struct sock * sk)350 void sk_clear_memalloc(struct sock *sk)
351 {
352 	sock_reset_flag(sk, SOCK_MEMALLOC);
353 	sk->sk_allocation &= ~__GFP_MEMALLOC;
354 	static_key_slow_dec(&memalloc_socks);
355 
356 	/*
357 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
358 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
359 	 * it has rmem allocations due to the last swapfile being deactivated
360 	 * but there is a risk that the socket is unusable due to exceeding
361 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
362 	 */
363 	sk_mem_reclaim(sk);
364 }
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
366 
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)367 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
368 {
369 	int ret;
370 	unsigned long pflags = current->flags;
371 
372 	/* these should have been dropped before queueing */
373 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
374 
375 	current->flags |= PF_MEMALLOC;
376 	ret = sk->sk_backlog_rcv(sk, skb);
377 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
378 
379 	return ret;
380 }
381 EXPORT_SYMBOL(__sk_backlog_rcv);
382 
sock_set_timeout(long * timeo_p,char __user * optval,int optlen)383 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
384 {
385 	struct timeval tv;
386 
387 	if (optlen < sizeof(tv))
388 		return -EINVAL;
389 	if (copy_from_user(&tv, optval, sizeof(tv)))
390 		return -EFAULT;
391 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
392 		return -EDOM;
393 
394 	if (tv.tv_sec < 0) {
395 		static int warned __read_mostly;
396 
397 		*timeo_p = 0;
398 		if (warned < 10 && net_ratelimit()) {
399 			warned++;
400 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 				__func__, current->comm, task_pid_nr(current));
402 		}
403 		return 0;
404 	}
405 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
406 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
407 		return 0;
408 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
409 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
410 	return 0;
411 }
412 
sock_warn_obsolete_bsdism(const char * name)413 static void sock_warn_obsolete_bsdism(const char *name)
414 {
415 	static int warned;
416 	static char warncomm[TASK_COMM_LEN];
417 	if (strcmp(warncomm, current->comm) && warned < 5) {
418 		strcpy(warncomm,  current->comm);
419 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 			warncomm, name);
421 		warned++;
422 	}
423 }
424 
sock_needs_netstamp(const struct sock * sk)425 static bool sock_needs_netstamp(const struct sock *sk)
426 {
427 	switch (sk->sk_family) {
428 	case AF_UNSPEC:
429 	case AF_UNIX:
430 		return false;
431 	default:
432 		return true;
433 	}
434 }
435 
sock_disable_timestamp(struct sock * sk,unsigned long flags)436 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
437 {
438 	if (sk->sk_flags & flags) {
439 		sk->sk_flags &= ~flags;
440 		if (sock_needs_netstamp(sk) &&
441 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
442 			net_disable_timestamp();
443 	}
444 }
445 
446 
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)447 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
448 {
449 	int err;
450 	unsigned long flags;
451 	struct sk_buff_head *list = &sk->sk_receive_queue;
452 
453 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
454 		atomic_inc(&sk->sk_drops);
455 		trace_sock_rcvqueue_full(sk, skb);
456 		return -ENOMEM;
457 	}
458 
459 	err = sk_filter(sk, skb);
460 	if (err)
461 		return err;
462 
463 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
464 		atomic_inc(&sk->sk_drops);
465 		return -ENOBUFS;
466 	}
467 
468 	skb->dev = NULL;
469 	skb_set_owner_r(skb, sk);
470 
471 	/* we escape from rcu protected region, make sure we dont leak
472 	 * a norefcounted dst
473 	 */
474 	skb_dst_force(skb);
475 
476 	spin_lock_irqsave(&list->lock, flags);
477 	sock_skb_set_dropcount(sk, skb);
478 	__skb_queue_tail(list, skb);
479 	spin_unlock_irqrestore(&list->lock, flags);
480 
481 	if (!sock_flag(sk, SOCK_DEAD))
482 		sk->sk_data_ready(sk);
483 	return 0;
484 }
485 EXPORT_SYMBOL(sock_queue_rcv_skb);
486 
__sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested,unsigned int trim_cap)487 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
488 		     const int nested, unsigned int trim_cap)
489 {
490 	int rc = NET_RX_SUCCESS;
491 
492 	if (sk_filter_trim_cap(sk, skb, trim_cap))
493 		goto discard_and_relse;
494 
495 	skb->dev = NULL;
496 
497 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
498 		atomic_inc(&sk->sk_drops);
499 		goto discard_and_relse;
500 	}
501 	if (nested)
502 		bh_lock_sock_nested(sk);
503 	else
504 		bh_lock_sock(sk);
505 	if (!sock_owned_by_user(sk)) {
506 		/*
507 		 * trylock + unlock semantics:
508 		 */
509 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
510 
511 		rc = sk_backlog_rcv(sk, skb);
512 
513 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
514 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
515 		bh_unlock_sock(sk);
516 		atomic_inc(&sk->sk_drops);
517 		goto discard_and_relse;
518 	}
519 
520 	bh_unlock_sock(sk);
521 out:
522 	sock_put(sk);
523 	return rc;
524 discard_and_relse:
525 	kfree_skb(skb);
526 	goto out;
527 }
528 EXPORT_SYMBOL(__sk_receive_skb);
529 
__sk_dst_check(struct sock * sk,u32 cookie)530 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
531 {
532 	struct dst_entry *dst = __sk_dst_get(sk);
533 
534 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
535 		sk_tx_queue_clear(sk);
536 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
537 		dst_release(dst);
538 		return NULL;
539 	}
540 
541 	return dst;
542 }
543 EXPORT_SYMBOL(__sk_dst_check);
544 
sk_dst_check(struct sock * sk,u32 cookie)545 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
546 {
547 	struct dst_entry *dst = sk_dst_get(sk);
548 
549 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
550 		sk_dst_reset(sk);
551 		dst_release(dst);
552 		return NULL;
553 	}
554 
555 	return dst;
556 }
557 EXPORT_SYMBOL(sk_dst_check);
558 
sock_setbindtodevice(struct sock * sk,char __user * optval,int optlen)559 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
560 				int optlen)
561 {
562 	int ret = -ENOPROTOOPT;
563 #ifdef CONFIG_NETDEVICES
564 	struct net *net = sock_net(sk);
565 	char devname[IFNAMSIZ];
566 	int index;
567 
568 	/* Sorry... */
569 	ret = -EPERM;
570 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
571 		goto out;
572 
573 	ret = -EINVAL;
574 	if (optlen < 0)
575 		goto out;
576 
577 	/* Bind this socket to a particular device like "eth0",
578 	 * as specified in the passed interface name. If the
579 	 * name is "" or the option length is zero the socket
580 	 * is not bound.
581 	 */
582 	if (optlen > IFNAMSIZ - 1)
583 		optlen = IFNAMSIZ - 1;
584 	memset(devname, 0, sizeof(devname));
585 
586 	ret = -EFAULT;
587 	if (copy_from_user(devname, optval, optlen))
588 		goto out;
589 
590 	index = 0;
591 	if (devname[0] != '\0') {
592 		struct net_device *dev;
593 
594 		rcu_read_lock();
595 		dev = dev_get_by_name_rcu(net, devname);
596 		if (dev)
597 			index = dev->ifindex;
598 		rcu_read_unlock();
599 		ret = -ENODEV;
600 		if (!dev)
601 			goto out;
602 	}
603 
604 	lock_sock(sk);
605 	sk->sk_bound_dev_if = index;
606 	sk_dst_reset(sk);
607 	release_sock(sk);
608 
609 	ret = 0;
610 
611 out:
612 #endif
613 
614 	return ret;
615 }
616 
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)617 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
618 				int __user *optlen, int len)
619 {
620 	int ret = -ENOPROTOOPT;
621 #ifdef CONFIG_NETDEVICES
622 	struct net *net = sock_net(sk);
623 	char devname[IFNAMSIZ];
624 
625 	if (sk->sk_bound_dev_if == 0) {
626 		len = 0;
627 		goto zero;
628 	}
629 
630 	ret = -EINVAL;
631 	if (len < IFNAMSIZ)
632 		goto out;
633 
634 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
635 	if (ret)
636 		goto out;
637 
638 	len = strlen(devname) + 1;
639 
640 	ret = -EFAULT;
641 	if (copy_to_user(optval, devname, len))
642 		goto out;
643 
644 zero:
645 	ret = -EFAULT;
646 	if (put_user(len, optlen))
647 		goto out;
648 
649 	ret = 0;
650 
651 out:
652 #endif
653 
654 	return ret;
655 }
656 
sock_valbool_flag(struct sock * sk,int bit,int valbool)657 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
658 {
659 	if (valbool)
660 		sock_set_flag(sk, bit);
661 	else
662 		sock_reset_flag(sk, bit);
663 }
664 
sk_mc_loop(struct sock * sk)665 bool sk_mc_loop(struct sock *sk)
666 {
667 	if (dev_recursion_level())
668 		return false;
669 	if (!sk)
670 		return true;
671 	switch (sk->sk_family) {
672 	case AF_INET:
673 		return inet_sk(sk)->mc_loop;
674 #if IS_ENABLED(CONFIG_IPV6)
675 	case AF_INET6:
676 		return inet6_sk(sk)->mc_loop;
677 #endif
678 	}
679 	WARN_ON(1);
680 	return true;
681 }
682 EXPORT_SYMBOL(sk_mc_loop);
683 
684 /*
685  *	This is meant for all protocols to use and covers goings on
686  *	at the socket level. Everything here is generic.
687  */
688 
sock_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)689 int sock_setsockopt(struct socket *sock, int level, int optname,
690 		    char __user *optval, unsigned int optlen)
691 {
692 	struct sock *sk = sock->sk;
693 	int val;
694 	int valbool;
695 	struct linger ling;
696 	int ret = 0;
697 
698 	/*
699 	 *	Options without arguments
700 	 */
701 
702 	if (optname == SO_BINDTODEVICE)
703 		return sock_setbindtodevice(sk, optval, optlen);
704 
705 	if (optlen < sizeof(int))
706 		return -EINVAL;
707 
708 	if (get_user(val, (int __user *)optval))
709 		return -EFAULT;
710 
711 	valbool = val ? 1 : 0;
712 
713 	lock_sock(sk);
714 
715 	switch (optname) {
716 	case SO_DEBUG:
717 		if (val && !capable(CAP_NET_ADMIN))
718 			ret = -EACCES;
719 		else
720 			sock_valbool_flag(sk, SOCK_DBG, valbool);
721 		break;
722 	case SO_REUSEADDR:
723 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
724 		break;
725 	case SO_REUSEPORT:
726 		sk->sk_reuseport = valbool;
727 		break;
728 	case SO_TYPE:
729 	case SO_PROTOCOL:
730 	case SO_DOMAIN:
731 	case SO_ERROR:
732 		ret = -ENOPROTOOPT;
733 		break;
734 	case SO_DONTROUTE:
735 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
736 		sk_dst_reset(sk);
737 		break;
738 	case SO_BROADCAST:
739 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
740 		break;
741 	case SO_SNDBUF:
742 		/* Don't error on this BSD doesn't and if you think
743 		 * about it this is right. Otherwise apps have to
744 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
745 		 * are treated in BSD as hints
746 		 */
747 		val = min_t(u32, val, sysctl_wmem_max);
748 set_sndbuf:
749 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
750 		sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
751 		/* Wake up sending tasks if we upped the value. */
752 		sk->sk_write_space(sk);
753 		break;
754 
755 	case SO_SNDBUFFORCE:
756 		if (!capable(CAP_NET_ADMIN)) {
757 			ret = -EPERM;
758 			break;
759 		}
760 		goto set_sndbuf;
761 
762 	case SO_RCVBUF:
763 		/* Don't error on this BSD doesn't and if you think
764 		 * about it this is right. Otherwise apps have to
765 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
766 		 * are treated in BSD as hints
767 		 */
768 		val = min_t(u32, val, sysctl_rmem_max);
769 set_rcvbuf:
770 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
771 		/*
772 		 * We double it on the way in to account for
773 		 * "struct sk_buff" etc. overhead.   Applications
774 		 * assume that the SO_RCVBUF setting they make will
775 		 * allow that much actual data to be received on that
776 		 * socket.
777 		 *
778 		 * Applications are unaware that "struct sk_buff" and
779 		 * other overheads allocate from the receive buffer
780 		 * during socket buffer allocation.
781 		 *
782 		 * And after considering the possible alternatives,
783 		 * returning the value we actually used in getsockopt
784 		 * is the most desirable behavior.
785 		 */
786 		sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
787 		break;
788 
789 	case SO_RCVBUFFORCE:
790 		if (!capable(CAP_NET_ADMIN)) {
791 			ret = -EPERM;
792 			break;
793 		}
794 		goto set_rcvbuf;
795 
796 	case SO_KEEPALIVE:
797 #ifdef CONFIG_INET
798 		if (sk->sk_protocol == IPPROTO_TCP &&
799 		    sk->sk_type == SOCK_STREAM)
800 			tcp_set_keepalive(sk, valbool);
801 #endif
802 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
803 		break;
804 
805 	case SO_OOBINLINE:
806 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
807 		break;
808 
809 	case SO_NO_CHECK:
810 		sk->sk_no_check_tx = valbool;
811 		break;
812 
813 	case SO_PRIORITY:
814 		if ((val >= 0 && val <= 6) ||
815 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
816 			sk->sk_priority = val;
817 		else
818 			ret = -EPERM;
819 		break;
820 
821 	case SO_LINGER:
822 		if (optlen < sizeof(ling)) {
823 			ret = -EINVAL;	/* 1003.1g */
824 			break;
825 		}
826 		if (copy_from_user(&ling, optval, sizeof(ling))) {
827 			ret = -EFAULT;
828 			break;
829 		}
830 		if (!ling.l_onoff)
831 			sock_reset_flag(sk, SOCK_LINGER);
832 		else {
833 #if (BITS_PER_LONG == 32)
834 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
835 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
836 			else
837 #endif
838 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
839 			sock_set_flag(sk, SOCK_LINGER);
840 		}
841 		break;
842 
843 	case SO_BSDCOMPAT:
844 		sock_warn_obsolete_bsdism("setsockopt");
845 		break;
846 
847 	case SO_PASSCRED:
848 		if (valbool)
849 			set_bit(SOCK_PASSCRED, &sock->flags);
850 		else
851 			clear_bit(SOCK_PASSCRED, &sock->flags);
852 		break;
853 
854 	case SO_TIMESTAMP:
855 	case SO_TIMESTAMPNS:
856 		if (valbool)  {
857 			if (optname == SO_TIMESTAMP)
858 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
859 			else
860 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
861 			sock_set_flag(sk, SOCK_RCVTSTAMP);
862 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
863 		} else {
864 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
865 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
866 		}
867 		break;
868 
869 	case SO_TIMESTAMPING:
870 		if (val & ~SOF_TIMESTAMPING_MASK) {
871 			ret = -EINVAL;
872 			break;
873 		}
874 
875 		if (val & SOF_TIMESTAMPING_OPT_ID &&
876 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
877 			if (sk->sk_protocol == IPPROTO_TCP &&
878 			    sk->sk_type == SOCK_STREAM) {
879 				if (sk->sk_state != TCP_ESTABLISHED) {
880 					ret = -EINVAL;
881 					break;
882 				}
883 				sk->sk_tskey = tcp_sk(sk)->snd_una;
884 			} else {
885 				sk->sk_tskey = 0;
886 			}
887 		}
888 		sk->sk_tsflags = val;
889 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
890 			sock_enable_timestamp(sk,
891 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
892 		else
893 			sock_disable_timestamp(sk,
894 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
895 		break;
896 
897 	case SO_RCVLOWAT:
898 		if (val < 0)
899 			val = INT_MAX;
900 		sk->sk_rcvlowat = val ? : 1;
901 		break;
902 
903 	case SO_RCVTIMEO:
904 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
905 		break;
906 
907 	case SO_SNDTIMEO:
908 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
909 		break;
910 
911 	case SO_ATTACH_FILTER:
912 		ret = -EINVAL;
913 		if (optlen == sizeof(struct sock_fprog)) {
914 			struct sock_fprog fprog;
915 
916 			ret = -EFAULT;
917 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
918 				break;
919 
920 			ret = sk_attach_filter(&fprog, sk);
921 		}
922 		break;
923 
924 	case SO_ATTACH_BPF:
925 		ret = -EINVAL;
926 		if (optlen == sizeof(u32)) {
927 			u32 ufd;
928 
929 			ret = -EFAULT;
930 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
931 				break;
932 
933 			ret = sk_attach_bpf(ufd, sk);
934 		}
935 		break;
936 
937 	case SO_DETACH_FILTER:
938 		ret = sk_detach_filter(sk);
939 		break;
940 
941 	case SO_LOCK_FILTER:
942 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
943 			ret = -EPERM;
944 		else
945 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
946 		break;
947 
948 	case SO_PASSSEC:
949 		if (valbool)
950 			set_bit(SOCK_PASSSEC, &sock->flags);
951 		else
952 			clear_bit(SOCK_PASSSEC, &sock->flags);
953 		break;
954 	case SO_MARK:
955 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
956 			ret = -EPERM;
957 		else
958 			sk->sk_mark = val;
959 		break;
960 
961 	case SO_RXQ_OVFL:
962 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
963 		break;
964 
965 	case SO_WIFI_STATUS:
966 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
967 		break;
968 
969 	case SO_PEEK_OFF:
970 		if (sock->ops->set_peek_off)
971 			ret = sock->ops->set_peek_off(sk, val);
972 		else
973 			ret = -EOPNOTSUPP;
974 		break;
975 
976 	case SO_NOFCS:
977 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
978 		break;
979 
980 	case SO_SELECT_ERR_QUEUE:
981 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
982 		break;
983 
984 #ifdef CONFIG_NET_RX_BUSY_POLL
985 	case SO_BUSY_POLL:
986 		/* allow unprivileged users to decrease the value */
987 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
988 			ret = -EPERM;
989 		else {
990 			if (val < 0)
991 				ret = -EINVAL;
992 			else
993 				sk->sk_ll_usec = val;
994 		}
995 		break;
996 #endif
997 
998 	case SO_MAX_PACING_RATE:
999 		sk->sk_max_pacing_rate = val;
1000 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
1001 					 sk->sk_max_pacing_rate);
1002 		break;
1003 
1004 	case SO_INCOMING_CPU:
1005 		sk->sk_incoming_cpu = val;
1006 		break;
1007 
1008 	default:
1009 		ret = -ENOPROTOOPT;
1010 		break;
1011 	}
1012 	release_sock(sk);
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL(sock_setsockopt);
1016 
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)1017 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1018 			  struct ucred *ucred)
1019 {
1020 	ucred->pid = pid_vnr(pid);
1021 	ucred->uid = ucred->gid = -1;
1022 	if (cred) {
1023 		struct user_namespace *current_ns = current_user_ns();
1024 
1025 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1026 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1027 	}
1028 }
1029 
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1030 int sock_getsockopt(struct socket *sock, int level, int optname,
1031 		    char __user *optval, int __user *optlen)
1032 {
1033 	struct sock *sk = sock->sk;
1034 
1035 	union {
1036 		int val;
1037 		struct linger ling;
1038 		struct timeval tm;
1039 	} v;
1040 
1041 	int lv = sizeof(int);
1042 	int len;
1043 
1044 	if (get_user(len, optlen))
1045 		return -EFAULT;
1046 	if (len < 0)
1047 		return -EINVAL;
1048 
1049 	memset(&v, 0, sizeof(v));
1050 
1051 	switch (optname) {
1052 	case SO_DEBUG:
1053 		v.val = sock_flag(sk, SOCK_DBG);
1054 		break;
1055 
1056 	case SO_DONTROUTE:
1057 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1058 		break;
1059 
1060 	case SO_BROADCAST:
1061 		v.val = sock_flag(sk, SOCK_BROADCAST);
1062 		break;
1063 
1064 	case SO_SNDBUF:
1065 		v.val = sk->sk_sndbuf;
1066 		break;
1067 
1068 	case SO_RCVBUF:
1069 		v.val = sk->sk_rcvbuf;
1070 		break;
1071 
1072 	case SO_REUSEADDR:
1073 		v.val = sk->sk_reuse;
1074 		break;
1075 
1076 	case SO_REUSEPORT:
1077 		v.val = sk->sk_reuseport;
1078 		break;
1079 
1080 	case SO_KEEPALIVE:
1081 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1082 		break;
1083 
1084 	case SO_TYPE:
1085 		v.val = sk->sk_type;
1086 		break;
1087 
1088 	case SO_PROTOCOL:
1089 		v.val = sk->sk_protocol;
1090 		break;
1091 
1092 	case SO_DOMAIN:
1093 		v.val = sk->sk_family;
1094 		break;
1095 
1096 	case SO_ERROR:
1097 		v.val = -sock_error(sk);
1098 		if (v.val == 0)
1099 			v.val = xchg(&sk->sk_err_soft, 0);
1100 		break;
1101 
1102 	case SO_OOBINLINE:
1103 		v.val = sock_flag(sk, SOCK_URGINLINE);
1104 		break;
1105 
1106 	case SO_NO_CHECK:
1107 		v.val = sk->sk_no_check_tx;
1108 		break;
1109 
1110 	case SO_PRIORITY:
1111 		v.val = sk->sk_priority;
1112 		break;
1113 
1114 	case SO_LINGER:
1115 		lv		= sizeof(v.ling);
1116 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1117 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1118 		break;
1119 
1120 	case SO_BSDCOMPAT:
1121 		sock_warn_obsolete_bsdism("getsockopt");
1122 		break;
1123 
1124 	case SO_TIMESTAMP:
1125 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1126 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1127 		break;
1128 
1129 	case SO_TIMESTAMPNS:
1130 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1131 		break;
1132 
1133 	case SO_TIMESTAMPING:
1134 		v.val = sk->sk_tsflags;
1135 		break;
1136 
1137 	case SO_RCVTIMEO:
1138 		lv = sizeof(struct timeval);
1139 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1140 			v.tm.tv_sec = 0;
1141 			v.tm.tv_usec = 0;
1142 		} else {
1143 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1144 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1145 		}
1146 		break;
1147 
1148 	case SO_SNDTIMEO:
1149 		lv = sizeof(struct timeval);
1150 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1151 			v.tm.tv_sec = 0;
1152 			v.tm.tv_usec = 0;
1153 		} else {
1154 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1155 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1156 		}
1157 		break;
1158 
1159 	case SO_RCVLOWAT:
1160 		v.val = sk->sk_rcvlowat;
1161 		break;
1162 
1163 	case SO_SNDLOWAT:
1164 		v.val = 1;
1165 		break;
1166 
1167 	case SO_PASSCRED:
1168 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1169 		break;
1170 
1171 	case SO_PEERCRED:
1172 	{
1173 		struct ucred peercred;
1174 		if (len > sizeof(peercred))
1175 			len = sizeof(peercred);
1176 
1177 		spin_lock(&sk->sk_peer_lock);
1178 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1179 		spin_unlock(&sk->sk_peer_lock);
1180 
1181 		if (copy_to_user(optval, &peercred, len))
1182 			return -EFAULT;
1183 		goto lenout;
1184 	}
1185 
1186 	case SO_PEERNAME:
1187 	{
1188 		char address[128];
1189 
1190 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1191 			return -ENOTCONN;
1192 		if (lv < len)
1193 			return -EINVAL;
1194 		if (copy_to_user(optval, address, len))
1195 			return -EFAULT;
1196 		goto lenout;
1197 	}
1198 
1199 	/* Dubious BSD thing... Probably nobody even uses it, but
1200 	 * the UNIX standard wants it for whatever reason... -DaveM
1201 	 */
1202 	case SO_ACCEPTCONN:
1203 		v.val = sk->sk_state == TCP_LISTEN;
1204 		break;
1205 
1206 	case SO_PASSSEC:
1207 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1208 		break;
1209 
1210 	case SO_PEERSEC:
1211 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1212 
1213 	case SO_MARK:
1214 		v.val = sk->sk_mark;
1215 		break;
1216 
1217 	case SO_RXQ_OVFL:
1218 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1219 		break;
1220 
1221 	case SO_WIFI_STATUS:
1222 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1223 		break;
1224 
1225 	case SO_PEEK_OFF:
1226 		if (!sock->ops->set_peek_off)
1227 			return -EOPNOTSUPP;
1228 
1229 		v.val = sk->sk_peek_off;
1230 		break;
1231 	case SO_NOFCS:
1232 		v.val = sock_flag(sk, SOCK_NOFCS);
1233 		break;
1234 
1235 	case SO_BINDTODEVICE:
1236 		return sock_getbindtodevice(sk, optval, optlen, len);
1237 
1238 	case SO_GET_FILTER:
1239 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1240 		if (len < 0)
1241 			return len;
1242 
1243 		goto lenout;
1244 
1245 	case SO_LOCK_FILTER:
1246 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1247 		break;
1248 
1249 	case SO_BPF_EXTENSIONS:
1250 		v.val = bpf_tell_extensions();
1251 		break;
1252 
1253 	case SO_SELECT_ERR_QUEUE:
1254 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1255 		break;
1256 
1257 #ifdef CONFIG_NET_RX_BUSY_POLL
1258 	case SO_BUSY_POLL:
1259 		v.val = sk->sk_ll_usec;
1260 		break;
1261 #endif
1262 
1263 	case SO_MAX_PACING_RATE:
1264 		v.val = sk->sk_max_pacing_rate;
1265 		break;
1266 
1267 	case SO_INCOMING_CPU:
1268 		v.val = sk->sk_incoming_cpu;
1269 		break;
1270 
1271 	default:
1272 		/* We implement the SO_SNDLOWAT etc to not be settable
1273 		 * (1003.1g 7).
1274 		 */
1275 		return -ENOPROTOOPT;
1276 	}
1277 
1278 	if (len > lv)
1279 		len = lv;
1280 	if (copy_to_user(optval, &v, len))
1281 		return -EFAULT;
1282 lenout:
1283 	if (put_user(len, optlen))
1284 		return -EFAULT;
1285 	return 0;
1286 }
1287 
1288 /*
1289  * Initialize an sk_lock.
1290  *
1291  * (We also register the sk_lock with the lock validator.)
1292  */
sock_lock_init(struct sock * sk)1293 static inline void sock_lock_init(struct sock *sk)
1294 {
1295 	sock_lock_init_class_and_name(sk,
1296 			af_family_slock_key_strings[sk->sk_family],
1297 			af_family_slock_keys + sk->sk_family,
1298 			af_family_key_strings[sk->sk_family],
1299 			af_family_keys + sk->sk_family);
1300 }
1301 
1302 /*
1303  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1304  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1305  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1306  */
sock_copy(struct sock * nsk,const struct sock * osk)1307 static void sock_copy(struct sock *nsk, const struct sock *osk)
1308 {
1309 #ifdef CONFIG_SECURITY_NETWORK
1310 	void *sptr = nsk->sk_security;
1311 #endif
1312 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1313 
1314 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1315 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1316 
1317 #ifdef CONFIG_SECURITY_NETWORK
1318 	nsk->sk_security = sptr;
1319 	security_sk_clone(osk, nsk);
1320 #endif
1321 }
1322 
sk_prot_clear_portaddr_nulls(struct sock * sk,int size)1323 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1324 {
1325 	unsigned long nulls1, nulls2;
1326 
1327 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1328 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1329 	if (nulls1 > nulls2)
1330 		swap(nulls1, nulls2);
1331 
1332 	if (nulls1 != 0)
1333 		memset((char *)sk, 0, nulls1);
1334 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1335 	       nulls2 - nulls1 - sizeof(void *));
1336 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1337 	       size - nulls2 - sizeof(void *));
1338 }
1339 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1340 
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1341 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1342 		int family)
1343 {
1344 	struct sock *sk;
1345 	struct kmem_cache *slab;
1346 
1347 	slab = prot->slab;
1348 	if (slab != NULL) {
1349 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1350 		if (!sk)
1351 			return sk;
1352 		if (priority & __GFP_ZERO) {
1353 			if (prot->clear_sk)
1354 				prot->clear_sk(sk, prot->obj_size);
1355 			else
1356 				sk_prot_clear_nulls(sk, prot->obj_size);
1357 		}
1358 	} else
1359 		sk = kmalloc(prot->obj_size, priority);
1360 
1361 	if (sk != NULL) {
1362 		kmemcheck_annotate_bitfield(sk, flags);
1363 
1364 		if (security_sk_alloc(sk, family, priority))
1365 			goto out_free;
1366 
1367 		if (!try_module_get(prot->owner))
1368 			goto out_free_sec;
1369 		sk_tx_queue_clear(sk);
1370 	}
1371 
1372 	return sk;
1373 
1374 out_free_sec:
1375 	security_sk_free(sk);
1376 out_free:
1377 	if (slab != NULL)
1378 		kmem_cache_free(slab, sk);
1379 	else
1380 		kfree(sk);
1381 	return NULL;
1382 }
1383 
sk_prot_free(struct proto * prot,struct sock * sk)1384 static void sk_prot_free(struct proto *prot, struct sock *sk)
1385 {
1386 	struct kmem_cache *slab;
1387 	struct module *owner;
1388 
1389 	owner = prot->owner;
1390 	slab = prot->slab;
1391 
1392 	security_sk_free(sk);
1393 	if (slab != NULL)
1394 		kmem_cache_free(slab, sk);
1395 	else
1396 		kfree(sk);
1397 	module_put(owner);
1398 }
1399 
1400 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
sock_update_netprioidx(struct sock * sk)1401 void sock_update_netprioidx(struct sock *sk)
1402 {
1403 	if (in_interrupt())
1404 		return;
1405 
1406 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1407 }
1408 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1409 #endif
1410 
1411 /**
1412  *	sk_alloc - All socket objects are allocated here
1413  *	@net: the applicable net namespace
1414  *	@family: protocol family
1415  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1416  *	@prot: struct proto associated with this new sock instance
1417  *	@kern: is this to be a kernel socket?
1418  */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot,int kern)1419 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1420 		      struct proto *prot, int kern)
1421 {
1422 	struct sock *sk;
1423 
1424 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1425 	if (sk) {
1426 		sk->sk_family = family;
1427 		/*
1428 		 * See comment in struct sock definition to understand
1429 		 * why we need sk_prot_creator -acme
1430 		 */
1431 		sk->sk_prot = sk->sk_prot_creator = prot;
1432 		sock_lock_init(sk);
1433 		sk->sk_net_refcnt = kern ? 0 : 1;
1434 		if (likely(sk->sk_net_refcnt))
1435 			get_net(net);
1436 		sock_net_set(sk, net);
1437 		atomic_set(&sk->sk_wmem_alloc, 1);
1438 
1439 		sock_update_classid(sk);
1440 		sock_update_netprioidx(sk);
1441 		sk_tx_queue_clear(sk);
1442 	}
1443 
1444 	return sk;
1445 }
1446 EXPORT_SYMBOL(sk_alloc);
1447 
sk_destruct(struct sock * sk)1448 void sk_destruct(struct sock *sk)
1449 {
1450 	struct sk_filter *filter;
1451 
1452 	if (sk->sk_destruct)
1453 		sk->sk_destruct(sk);
1454 
1455 	filter = rcu_dereference_check(sk->sk_filter,
1456 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1457 	if (filter) {
1458 		sk_filter_uncharge(sk, filter);
1459 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1460 	}
1461 
1462 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1463 
1464 	if (atomic_read(&sk->sk_omem_alloc))
1465 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1466 			 __func__, atomic_read(&sk->sk_omem_alloc));
1467 
1468 	if (sk->sk_frag.page) {
1469 		put_page(sk->sk_frag.page);
1470 		sk->sk_frag.page = NULL;
1471 	}
1472 
1473 	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
1474 	put_cred(sk->sk_peer_cred);
1475 	put_pid(sk->sk_peer_pid);
1476 
1477 	if (likely(sk->sk_net_refcnt))
1478 		put_net(sock_net(sk));
1479 	sk_prot_free(sk->sk_prot_creator, sk);
1480 }
1481 
__sk_free(struct sock * sk)1482 static void __sk_free(struct sock *sk)
1483 {
1484 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1485 		sock_diag_broadcast_destroy(sk);
1486 	else
1487 		sk_destruct(sk);
1488 }
1489 
sk_free(struct sock * sk)1490 void sk_free(struct sock *sk)
1491 {
1492 	/*
1493 	 * We subtract one from sk_wmem_alloc and can know if
1494 	 * some packets are still in some tx queue.
1495 	 * If not null, sock_wfree() will call __sk_free(sk) later
1496 	 */
1497 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1498 		__sk_free(sk);
1499 }
1500 EXPORT_SYMBOL(sk_free);
1501 
sk_update_clone(const struct sock * sk,struct sock * newsk)1502 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1503 {
1504 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1505 		sock_update_memcg(newsk);
1506 }
1507 
1508 /**
1509  *	sk_clone_lock - clone a socket, and lock its clone
1510  *	@sk: the socket to clone
1511  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1512  *
1513  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1514  */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1515 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1516 {
1517 	struct sock *newsk;
1518 	bool is_charged = true;
1519 
1520 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1521 	if (newsk != NULL) {
1522 		struct sk_filter *filter;
1523 
1524 		sock_copy(newsk, sk);
1525 
1526 		newsk->sk_prot_creator = sk->sk_prot;
1527 
1528 		/* SANITY */
1529 		if (likely(newsk->sk_net_refcnt))
1530 			get_net(sock_net(newsk));
1531 		sk_node_init(&newsk->sk_node);
1532 		sock_lock_init(newsk);
1533 		bh_lock_sock(newsk);
1534 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1535 		newsk->sk_backlog.len = 0;
1536 
1537 		atomic_set(&newsk->sk_rmem_alloc, 0);
1538 		/*
1539 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1540 		 */
1541 		atomic_set(&newsk->sk_wmem_alloc, 1);
1542 		atomic_set(&newsk->sk_omem_alloc, 0);
1543 		skb_queue_head_init(&newsk->sk_receive_queue);
1544 		skb_queue_head_init(&newsk->sk_write_queue);
1545 
1546 		rwlock_init(&newsk->sk_callback_lock);
1547 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1548 				af_callback_keys + newsk->sk_family,
1549 				af_family_clock_key_strings[newsk->sk_family]);
1550 
1551 		newsk->sk_dst_cache	= NULL;
1552 		newsk->sk_wmem_queued	= 0;
1553 		newsk->sk_forward_alloc = 0;
1554 		newsk->sk_send_head	= NULL;
1555 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1556 
1557 		sock_reset_flag(newsk, SOCK_DONE);
1558 		skb_queue_head_init(&newsk->sk_error_queue);
1559 
1560 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1561 		if (filter != NULL)
1562 			/* though it's an empty new sock, the charging may fail
1563 			 * if sysctl_optmem_max was changed between creation of
1564 			 * original socket and cloning
1565 			 */
1566 			is_charged = sk_filter_charge(newsk, filter);
1567 
1568 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1569 			/* We need to make sure that we don't uncharge the new
1570 			 * socket if we couldn't charge it in the first place
1571 			 * as otherwise we uncharge the parent's filter.
1572 			 */
1573 			if (!is_charged)
1574 				RCU_INIT_POINTER(newsk->sk_filter, NULL);
1575 			/* It is still raw copy of parent, so invalidate
1576 			 * destructor and make plain sk_free() */
1577 			newsk->sk_destruct = NULL;
1578 			bh_unlock_sock(newsk);
1579 			sk_free(newsk);
1580 			newsk = NULL;
1581 			goto out;
1582 		}
1583 
1584 		newsk->sk_err	   = 0;
1585 		newsk->sk_err_soft = 0;
1586 		newsk->sk_priority = 0;
1587 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1588 		atomic64_set(&newsk->sk_cookie, 0);
1589 		/*
1590 		 * Before updating sk_refcnt, we must commit prior changes to memory
1591 		 * (Documentation/RCU/rculist_nulls.txt for details)
1592 		 */
1593 		smp_wmb();
1594 		atomic_set(&newsk->sk_refcnt, 2);
1595 
1596 		/*
1597 		 * Increment the counter in the same struct proto as the master
1598 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1599 		 * is the same as sk->sk_prot->socks, as this field was copied
1600 		 * with memcpy).
1601 		 *
1602 		 * This _changes_ the previous behaviour, where
1603 		 * tcp_create_openreq_child always was incrementing the
1604 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1605 		 * to be taken into account in all callers. -acme
1606 		 */
1607 		sk_refcnt_debug_inc(newsk);
1608 		sk_set_socket(newsk, NULL);
1609 		sk_tx_queue_clear(newsk);
1610 		newsk->sk_wq = NULL;
1611 
1612 		sk_update_clone(sk, newsk);
1613 
1614 		if (newsk->sk_prot->sockets_allocated)
1615 			sk_sockets_allocated_inc(newsk);
1616 
1617 		if (sock_needs_netstamp(sk) &&
1618 		    newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1619 			net_enable_timestamp();
1620 	}
1621 out:
1622 	return newsk;
1623 }
1624 EXPORT_SYMBOL_GPL(sk_clone_lock);
1625 
sk_setup_caps(struct sock * sk,struct dst_entry * dst)1626 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1627 {
1628 	u32 max_segs = 1;
1629 
1630 	sk_dst_set(sk, dst);
1631 	sk->sk_route_caps = dst->dev->features;
1632 	if (sk->sk_route_caps & NETIF_F_GSO)
1633 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1634 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1635 	if (sk_can_gso(sk)) {
1636 		if (dst->header_len) {
1637 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1638 		} else {
1639 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1640 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1641 			max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1642 		}
1643 	}
1644 	sk->sk_gso_max_segs = max_segs;
1645 }
1646 EXPORT_SYMBOL_GPL(sk_setup_caps);
1647 
1648 /*
1649  *	Simple resource managers for sockets.
1650  */
1651 
1652 
1653 /*
1654  * Write buffer destructor automatically called from kfree_skb.
1655  */
sock_wfree(struct sk_buff * skb)1656 void sock_wfree(struct sk_buff *skb)
1657 {
1658 	struct sock *sk = skb->sk;
1659 	unsigned int len = skb->truesize;
1660 
1661 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1662 		/*
1663 		 * Keep a reference on sk_wmem_alloc, this will be released
1664 		 * after sk_write_space() call
1665 		 */
1666 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1667 		sk->sk_write_space(sk);
1668 		len = 1;
1669 	}
1670 	/*
1671 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1672 	 * could not do because of in-flight packets
1673 	 */
1674 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1675 		__sk_free(sk);
1676 }
1677 EXPORT_SYMBOL(sock_wfree);
1678 
skb_set_owner_w(struct sk_buff * skb,struct sock * sk)1679 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1680 {
1681 	skb_orphan(skb);
1682 	skb->sk = sk;
1683 #ifdef CONFIG_INET
1684 	if (unlikely(!sk_fullsock(sk))) {
1685 		skb->destructor = sock_edemux;
1686 		sock_hold(sk);
1687 		return;
1688 	}
1689 #endif
1690 	skb->destructor = sock_wfree;
1691 	skb_set_hash_from_sk(skb, sk);
1692 	/*
1693 	 * We used to take a refcount on sk, but following operation
1694 	 * is enough to guarantee sk_free() wont free this sock until
1695 	 * all in-flight packets are completed
1696 	 */
1697 	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1698 }
1699 EXPORT_SYMBOL(skb_set_owner_w);
1700 
skb_orphan_partial(struct sk_buff * skb)1701 void skb_orphan_partial(struct sk_buff *skb)
1702 {
1703 	if (skb->destructor == sock_wfree
1704 #ifdef CONFIG_INET
1705 	    || skb->destructor == tcp_wfree
1706 #endif
1707 		) {
1708 		struct sock *sk = skb->sk;
1709 
1710 		if (atomic_inc_not_zero(&sk->sk_refcnt)) {
1711 			atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1712 			skb->destructor = sock_efree;
1713 		}
1714 	} else {
1715 		skb_orphan(skb);
1716 	}
1717 }
1718 EXPORT_SYMBOL(skb_orphan_partial);
1719 
1720 /*
1721  * Read buffer destructor automatically called from kfree_skb.
1722  */
sock_rfree(struct sk_buff * skb)1723 void sock_rfree(struct sk_buff *skb)
1724 {
1725 	struct sock *sk = skb->sk;
1726 	unsigned int len = skb->truesize;
1727 
1728 	atomic_sub(len, &sk->sk_rmem_alloc);
1729 	sk_mem_uncharge(sk, len);
1730 }
1731 EXPORT_SYMBOL(sock_rfree);
1732 
1733 /*
1734  * Buffer destructor for skbs that are not used directly in read or write
1735  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
1736  */
sock_efree(struct sk_buff * skb)1737 void sock_efree(struct sk_buff *skb)
1738 {
1739 	sock_put(skb->sk);
1740 }
1741 EXPORT_SYMBOL(sock_efree);
1742 
sock_i_uid(struct sock * sk)1743 kuid_t sock_i_uid(struct sock *sk)
1744 {
1745 	kuid_t uid;
1746 
1747 	read_lock_bh(&sk->sk_callback_lock);
1748 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1749 	read_unlock_bh(&sk->sk_callback_lock);
1750 	return uid;
1751 }
1752 EXPORT_SYMBOL(sock_i_uid);
1753 
sock_i_ino(struct sock * sk)1754 unsigned long sock_i_ino(struct sock *sk)
1755 {
1756 	unsigned long ino;
1757 
1758 	read_lock_bh(&sk->sk_callback_lock);
1759 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1760 	read_unlock_bh(&sk->sk_callback_lock);
1761 	return ino;
1762 }
1763 EXPORT_SYMBOL(sock_i_ino);
1764 
1765 /*
1766  * Allocate a skb from the socket's send buffer.
1767  */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)1768 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1769 			     gfp_t priority)
1770 {
1771 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1772 		struct sk_buff *skb = alloc_skb(size, priority);
1773 		if (skb) {
1774 			skb_set_owner_w(skb, sk);
1775 			return skb;
1776 		}
1777 	}
1778 	return NULL;
1779 }
1780 EXPORT_SYMBOL(sock_wmalloc);
1781 
1782 /*
1783  * Allocate a memory block from the socket's option memory buffer.
1784  */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)1785 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1786 {
1787 	if ((unsigned int)size <= sysctl_optmem_max &&
1788 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1789 		void *mem;
1790 		/* First do the add, to avoid the race if kmalloc
1791 		 * might sleep.
1792 		 */
1793 		atomic_add(size, &sk->sk_omem_alloc);
1794 		mem = kmalloc(size, priority);
1795 		if (mem)
1796 			return mem;
1797 		atomic_sub(size, &sk->sk_omem_alloc);
1798 	}
1799 	return NULL;
1800 }
1801 EXPORT_SYMBOL(sock_kmalloc);
1802 
1803 /* Free an option memory block. Note, we actually want the inline
1804  * here as this allows gcc to detect the nullify and fold away the
1805  * condition entirely.
1806  */
__sock_kfree_s(struct sock * sk,void * mem,int size,const bool nullify)1807 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1808 				  const bool nullify)
1809 {
1810 	if (WARN_ON_ONCE(!mem))
1811 		return;
1812 	if (nullify)
1813 		kzfree(mem);
1814 	else
1815 		kfree(mem);
1816 	atomic_sub(size, &sk->sk_omem_alloc);
1817 }
1818 
sock_kfree_s(struct sock * sk,void * mem,int size)1819 void sock_kfree_s(struct sock *sk, void *mem, int size)
1820 {
1821 	__sock_kfree_s(sk, mem, size, false);
1822 }
1823 EXPORT_SYMBOL(sock_kfree_s);
1824 
sock_kzfree_s(struct sock * sk,void * mem,int size)1825 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1826 {
1827 	__sock_kfree_s(sk, mem, size, true);
1828 }
1829 EXPORT_SYMBOL(sock_kzfree_s);
1830 
1831 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1832    I think, these locks should be removed for datagram sockets.
1833  */
sock_wait_for_wmem(struct sock * sk,long timeo)1834 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1835 {
1836 	DEFINE_WAIT(wait);
1837 
1838 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1839 	for (;;) {
1840 		if (!timeo)
1841 			break;
1842 		if (signal_pending(current))
1843 			break;
1844 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1845 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1846 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1847 			break;
1848 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1849 			break;
1850 		if (sk->sk_err)
1851 			break;
1852 		timeo = schedule_timeout(timeo);
1853 	}
1854 	finish_wait(sk_sleep(sk), &wait);
1855 	return timeo;
1856 }
1857 
1858 
1859 /*
1860  *	Generic send/receive buffer handlers
1861  */
1862 
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)1863 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1864 				     unsigned long data_len, int noblock,
1865 				     int *errcode, int max_page_order)
1866 {
1867 	struct sk_buff *skb;
1868 	long timeo;
1869 	int err;
1870 
1871 	timeo = sock_sndtimeo(sk, noblock);
1872 	for (;;) {
1873 		err = sock_error(sk);
1874 		if (err != 0)
1875 			goto failure;
1876 
1877 		err = -EPIPE;
1878 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1879 			goto failure;
1880 
1881 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1882 			break;
1883 
1884 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1885 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1886 		err = -EAGAIN;
1887 		if (!timeo)
1888 			goto failure;
1889 		if (signal_pending(current))
1890 			goto interrupted;
1891 		timeo = sock_wait_for_wmem(sk, timeo);
1892 	}
1893 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1894 				   errcode, sk->sk_allocation);
1895 	if (skb)
1896 		skb_set_owner_w(skb, sk);
1897 	return skb;
1898 
1899 interrupted:
1900 	err = sock_intr_errno(timeo);
1901 failure:
1902 	*errcode = err;
1903 	return NULL;
1904 }
1905 EXPORT_SYMBOL(sock_alloc_send_pskb);
1906 
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1907 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1908 				    int noblock, int *errcode)
1909 {
1910 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1911 }
1912 EXPORT_SYMBOL(sock_alloc_send_skb);
1913 
sock_cmsg_send(struct sock * sk,struct msghdr * msg,struct sockcm_cookie * sockc)1914 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1915 		   struct sockcm_cookie *sockc)
1916 {
1917 	struct cmsghdr *cmsg;
1918 
1919 	for_each_cmsghdr(cmsg, msg) {
1920 		if (!CMSG_OK(msg, cmsg))
1921 			return -EINVAL;
1922 		if (cmsg->cmsg_level != SOL_SOCKET)
1923 			continue;
1924 		switch (cmsg->cmsg_type) {
1925 		case SO_MARK:
1926 			if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1927 				return -EPERM;
1928 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
1929 				return -EINVAL;
1930 			sockc->mark = *(u32 *)CMSG_DATA(cmsg);
1931 			break;
1932 		default:
1933 			return -EINVAL;
1934 		}
1935 	}
1936 	return 0;
1937 }
1938 EXPORT_SYMBOL(sock_cmsg_send);
1939 
1940 /* On 32bit arches, an skb frag is limited to 2^15 */
1941 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1942 
1943 /**
1944  * skb_page_frag_refill - check that a page_frag contains enough room
1945  * @sz: minimum size of the fragment we want to get
1946  * @pfrag: pointer to page_frag
1947  * @gfp: priority for memory allocation
1948  *
1949  * Note: While this allocator tries to use high order pages, there is
1950  * no guarantee that allocations succeed. Therefore, @sz MUST be
1951  * less or equal than PAGE_SIZE.
1952  */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)1953 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1954 {
1955 	if (pfrag->page) {
1956 		if (atomic_read(&pfrag->page->_count) == 1) {
1957 			pfrag->offset = 0;
1958 			return true;
1959 		}
1960 		if (pfrag->offset + sz <= pfrag->size)
1961 			return true;
1962 		put_page(pfrag->page);
1963 	}
1964 
1965 	pfrag->offset = 0;
1966 	if (SKB_FRAG_PAGE_ORDER) {
1967 		/* Avoid direct reclaim but allow kswapd to wake */
1968 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
1969 					  __GFP_COMP | __GFP_NOWARN |
1970 					  __GFP_NORETRY,
1971 					  SKB_FRAG_PAGE_ORDER);
1972 		if (likely(pfrag->page)) {
1973 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1974 			return true;
1975 		}
1976 	}
1977 	pfrag->page = alloc_page(gfp);
1978 	if (likely(pfrag->page)) {
1979 		pfrag->size = PAGE_SIZE;
1980 		return true;
1981 	}
1982 	return false;
1983 }
1984 EXPORT_SYMBOL(skb_page_frag_refill);
1985 
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1986 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1987 {
1988 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1989 		return true;
1990 
1991 	sk_enter_memory_pressure(sk);
1992 	sk_stream_moderate_sndbuf(sk);
1993 	return false;
1994 }
1995 EXPORT_SYMBOL(sk_page_frag_refill);
1996 
__lock_sock(struct sock * sk)1997 static void __lock_sock(struct sock *sk)
1998 	__releases(&sk->sk_lock.slock)
1999 	__acquires(&sk->sk_lock.slock)
2000 {
2001 	DEFINE_WAIT(wait);
2002 
2003 	for (;;) {
2004 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2005 					TASK_UNINTERRUPTIBLE);
2006 		spin_unlock_bh(&sk->sk_lock.slock);
2007 		schedule();
2008 		spin_lock_bh(&sk->sk_lock.slock);
2009 		if (!sock_owned_by_user(sk))
2010 			break;
2011 	}
2012 	finish_wait(&sk->sk_lock.wq, &wait);
2013 }
2014 
__release_sock(struct sock * sk)2015 static void __release_sock(struct sock *sk)
2016 	__releases(&sk->sk_lock.slock)
2017 	__acquires(&sk->sk_lock.slock)
2018 {
2019 	struct sk_buff *skb = sk->sk_backlog.head;
2020 
2021 	do {
2022 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2023 		bh_unlock_sock(sk);
2024 
2025 		do {
2026 			struct sk_buff *next = skb->next;
2027 
2028 			prefetch(next);
2029 			WARN_ON_ONCE(skb_dst_is_noref(skb));
2030 			skb->next = NULL;
2031 			sk_backlog_rcv(sk, skb);
2032 
2033 			/*
2034 			 * We are in process context here with softirqs
2035 			 * disabled, use cond_resched_softirq() to preempt.
2036 			 * This is safe to do because we've taken the backlog
2037 			 * queue private:
2038 			 */
2039 			cond_resched_softirq();
2040 
2041 			skb = next;
2042 		} while (skb != NULL);
2043 
2044 		bh_lock_sock(sk);
2045 	} while ((skb = sk->sk_backlog.head) != NULL);
2046 
2047 	/*
2048 	 * Doing the zeroing here guarantee we can not loop forever
2049 	 * while a wild producer attempts to flood us.
2050 	 */
2051 	sk->sk_backlog.len = 0;
2052 }
2053 
2054 /**
2055  * sk_wait_data - wait for data to arrive at sk_receive_queue
2056  * @sk:    sock to wait on
2057  * @timeo: for how long
2058  * @skb:   last skb seen on sk_receive_queue
2059  *
2060  * Now socket state including sk->sk_err is changed only under lock,
2061  * hence we may omit checks after joining wait queue.
2062  * We check receive queue before schedule() only as optimization;
2063  * it is very likely that release_sock() added new data.
2064  */
sk_wait_data(struct sock * sk,long * timeo,const struct sk_buff * skb)2065 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2066 {
2067 	int rc;
2068 	DEFINE_WAIT(wait);
2069 
2070 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2071 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2072 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb);
2073 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2074 	finish_wait(sk_sleep(sk), &wait);
2075 	return rc;
2076 }
2077 EXPORT_SYMBOL(sk_wait_data);
2078 
2079 /**
2080  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2081  *	@sk: socket
2082  *	@size: memory size to allocate
2083  *	@kind: allocation type
2084  *
2085  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2086  *	rmem allocation. This function assumes that protocols which have
2087  *	memory_pressure use sk_wmem_queued as write buffer accounting.
2088  */
__sk_mem_schedule(struct sock * sk,int size,int kind)2089 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2090 {
2091 	struct proto *prot = sk->sk_prot;
2092 	int amt = sk_mem_pages(size);
2093 	long allocated;
2094 	int parent_status = UNDER_LIMIT;
2095 
2096 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2097 
2098 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2099 
2100 	/* Under limit. */
2101 	if (parent_status == UNDER_LIMIT &&
2102 			allocated <= sk_prot_mem_limits(sk, 0)) {
2103 		sk_leave_memory_pressure(sk);
2104 		return 1;
2105 	}
2106 
2107 	/* Under pressure. (we or our parents) */
2108 	if ((parent_status > SOFT_LIMIT) ||
2109 			allocated > sk_prot_mem_limits(sk, 1))
2110 		sk_enter_memory_pressure(sk);
2111 
2112 	/* Over hard limit (we or our parents) */
2113 	if ((parent_status == OVER_LIMIT) ||
2114 			(allocated > sk_prot_mem_limits(sk, 2)))
2115 		goto suppress_allocation;
2116 
2117 	/* guarantee minimum buffer size under pressure */
2118 	if (kind == SK_MEM_RECV) {
2119 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2120 			return 1;
2121 
2122 	} else { /* SK_MEM_SEND */
2123 		if (sk->sk_type == SOCK_STREAM) {
2124 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2125 				return 1;
2126 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2127 			   prot->sysctl_wmem[0])
2128 				return 1;
2129 	}
2130 
2131 	if (sk_has_memory_pressure(sk)) {
2132 		u64 alloc;
2133 
2134 		if (!sk_under_memory_pressure(sk))
2135 			return 1;
2136 		alloc = sk_sockets_allocated_read_positive(sk);
2137 		if (sk_prot_mem_limits(sk, 2) > alloc *
2138 		    sk_mem_pages(sk->sk_wmem_queued +
2139 				 atomic_read(&sk->sk_rmem_alloc) +
2140 				 sk->sk_forward_alloc))
2141 			return 1;
2142 	}
2143 
2144 suppress_allocation:
2145 
2146 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2147 		sk_stream_moderate_sndbuf(sk);
2148 
2149 		/* Fail only if socket is _under_ its sndbuf.
2150 		 * In this case we cannot block, so that we have to fail.
2151 		 */
2152 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2153 			return 1;
2154 	}
2155 
2156 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2157 
2158 	/* Alas. Undo changes. */
2159 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2160 
2161 	sk_memory_allocated_sub(sk, amt);
2162 
2163 	return 0;
2164 }
2165 EXPORT_SYMBOL(__sk_mem_schedule);
2166 
2167 /**
2168  *	__sk_mem_reclaim - reclaim memory_allocated
2169  *	@sk: socket
2170  *	@amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2171  */
__sk_mem_reclaim(struct sock * sk,int amount)2172 void __sk_mem_reclaim(struct sock *sk, int amount)
2173 {
2174 	amount >>= SK_MEM_QUANTUM_SHIFT;
2175 	sk_memory_allocated_sub(sk, amount);
2176 	sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2177 
2178 	if (sk_under_memory_pressure(sk) &&
2179 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2180 		sk_leave_memory_pressure(sk);
2181 }
2182 EXPORT_SYMBOL(__sk_mem_reclaim);
2183 
2184 
2185 /*
2186  * Set of default routines for initialising struct proto_ops when
2187  * the protocol does not support a particular function. In certain
2188  * cases where it makes no sense for a protocol to have a "do nothing"
2189  * function, some default processing is provided.
2190  */
2191 
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2192 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2193 {
2194 	return -EOPNOTSUPP;
2195 }
2196 EXPORT_SYMBOL(sock_no_bind);
2197 
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2198 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2199 		    int len, int flags)
2200 {
2201 	return -EOPNOTSUPP;
2202 }
2203 EXPORT_SYMBOL(sock_no_connect);
2204 
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2205 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2206 {
2207 	return -EOPNOTSUPP;
2208 }
2209 EXPORT_SYMBOL(sock_no_socketpair);
2210 
sock_no_accept(struct socket * sock,struct socket * newsock,int flags)2211 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2212 {
2213 	return -EOPNOTSUPP;
2214 }
2215 EXPORT_SYMBOL(sock_no_accept);
2216 
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int * len,int peer)2217 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2218 		    int *len, int peer)
2219 {
2220 	return -EOPNOTSUPP;
2221 }
2222 EXPORT_SYMBOL(sock_no_getname);
2223 
sock_no_poll(struct file * file,struct socket * sock,poll_table * pt)2224 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2225 {
2226 	return 0;
2227 }
2228 EXPORT_SYMBOL(sock_no_poll);
2229 
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2230 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2231 {
2232 	return -EOPNOTSUPP;
2233 }
2234 EXPORT_SYMBOL(sock_no_ioctl);
2235 
sock_no_listen(struct socket * sock,int backlog)2236 int sock_no_listen(struct socket *sock, int backlog)
2237 {
2238 	return -EOPNOTSUPP;
2239 }
2240 EXPORT_SYMBOL(sock_no_listen);
2241 
sock_no_shutdown(struct socket * sock,int how)2242 int sock_no_shutdown(struct socket *sock, int how)
2243 {
2244 	return -EOPNOTSUPP;
2245 }
2246 EXPORT_SYMBOL(sock_no_shutdown);
2247 
sock_no_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2248 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2249 		    char __user *optval, unsigned int optlen)
2250 {
2251 	return -EOPNOTSUPP;
2252 }
2253 EXPORT_SYMBOL(sock_no_setsockopt);
2254 
sock_no_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2255 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2256 		    char __user *optval, int __user *optlen)
2257 {
2258 	return -EOPNOTSUPP;
2259 }
2260 EXPORT_SYMBOL(sock_no_getsockopt);
2261 
sock_no_sendmsg(struct socket * sock,struct msghdr * m,size_t len)2262 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2263 {
2264 	return -EOPNOTSUPP;
2265 }
2266 EXPORT_SYMBOL(sock_no_sendmsg);
2267 
sock_no_recvmsg(struct socket * sock,struct msghdr * m,size_t len,int flags)2268 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2269 		    int flags)
2270 {
2271 	return -EOPNOTSUPP;
2272 }
2273 EXPORT_SYMBOL(sock_no_recvmsg);
2274 
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2275 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2276 {
2277 	/* Mirror missing mmap method error code */
2278 	return -ENODEV;
2279 }
2280 EXPORT_SYMBOL(sock_no_mmap);
2281 
2282 /*
2283  * When a file is received (via SCM_RIGHTS, etc), we must bump the
2284  * various sock-based usage counts.
2285  */
__receive_sock(struct file * file)2286 void __receive_sock(struct file *file)
2287 {
2288 	struct socket *sock;
2289 	int error;
2290 
2291 	/*
2292 	 * The resulting value of "error" is ignored here since we only
2293 	 * need to take action when the file is a socket and testing
2294 	 * "sock" for NULL is sufficient.
2295 	 */
2296 	sock = sock_from_file(file, &error);
2297 	if (sock) {
2298 		sock_update_netprioidx(sock->sk);
2299 		sock_update_classid(sock->sk);
2300 	}
2301 }
2302 
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2303 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2304 {
2305 	ssize_t res;
2306 	struct msghdr msg = {.msg_flags = flags};
2307 	struct kvec iov;
2308 	char *kaddr = kmap(page);
2309 	iov.iov_base = kaddr + offset;
2310 	iov.iov_len = size;
2311 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2312 	kunmap(page);
2313 	return res;
2314 }
2315 EXPORT_SYMBOL(sock_no_sendpage);
2316 
2317 /*
2318  *	Default Socket Callbacks
2319  */
2320 
sock_def_wakeup(struct sock * sk)2321 static void sock_def_wakeup(struct sock *sk)
2322 {
2323 	struct socket_wq *wq;
2324 
2325 	rcu_read_lock();
2326 	wq = rcu_dereference(sk->sk_wq);
2327 	if (wq_has_sleeper(wq))
2328 		wake_up_interruptible_all(&wq->wait);
2329 	rcu_read_unlock();
2330 }
2331 
sock_def_error_report(struct sock * sk)2332 static void sock_def_error_report(struct sock *sk)
2333 {
2334 	struct socket_wq *wq;
2335 
2336 	rcu_read_lock();
2337 	wq = rcu_dereference(sk->sk_wq);
2338 	if (wq_has_sleeper(wq))
2339 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2340 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2341 	rcu_read_unlock();
2342 }
2343 
sock_def_readable(struct sock * sk)2344 static void sock_def_readable(struct sock *sk)
2345 {
2346 	struct socket_wq *wq;
2347 
2348 	rcu_read_lock();
2349 	wq = rcu_dereference(sk->sk_wq);
2350 	if (wq_has_sleeper(wq))
2351 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2352 						POLLRDNORM | POLLRDBAND);
2353 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2354 	rcu_read_unlock();
2355 }
2356 
sock_def_write_space(struct sock * sk)2357 static void sock_def_write_space(struct sock *sk)
2358 {
2359 	struct socket_wq *wq;
2360 
2361 	rcu_read_lock();
2362 
2363 	/* Do not wake up a writer until he can make "significant"
2364 	 * progress.  --DaveM
2365 	 */
2366 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2367 		wq = rcu_dereference(sk->sk_wq);
2368 		if (wq_has_sleeper(wq))
2369 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2370 						POLLWRNORM | POLLWRBAND);
2371 
2372 		/* Should agree with poll, otherwise some programs break */
2373 		if (sock_writeable(sk))
2374 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2375 	}
2376 
2377 	rcu_read_unlock();
2378 }
2379 
sock_def_destruct(struct sock * sk)2380 static void sock_def_destruct(struct sock *sk)
2381 {
2382 }
2383 
sk_send_sigurg(struct sock * sk)2384 void sk_send_sigurg(struct sock *sk)
2385 {
2386 	if (sk->sk_socket && sk->sk_socket->file)
2387 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2388 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2389 }
2390 EXPORT_SYMBOL(sk_send_sigurg);
2391 
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2392 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2393 		    unsigned long expires)
2394 {
2395 	if (!mod_timer(timer, expires))
2396 		sock_hold(sk);
2397 }
2398 EXPORT_SYMBOL(sk_reset_timer);
2399 
sk_stop_timer(struct sock * sk,struct timer_list * timer)2400 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2401 {
2402 	if (del_timer(timer))
2403 		__sock_put(sk);
2404 }
2405 EXPORT_SYMBOL(sk_stop_timer);
2406 
sock_init_data(struct socket * sock,struct sock * sk)2407 void sock_init_data(struct socket *sock, struct sock *sk)
2408 {
2409 	skb_queue_head_init(&sk->sk_receive_queue);
2410 	skb_queue_head_init(&sk->sk_write_queue);
2411 	skb_queue_head_init(&sk->sk_error_queue);
2412 
2413 	sk->sk_send_head	=	NULL;
2414 
2415 	init_timer(&sk->sk_timer);
2416 
2417 	sk->sk_allocation	=	GFP_KERNEL;
2418 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2419 	sk->sk_sndbuf		=	sysctl_wmem_default;
2420 	sk->sk_state		=	TCP_CLOSE;
2421 	sk_set_socket(sk, sock);
2422 
2423 	sock_set_flag(sk, SOCK_ZAPPED);
2424 
2425 	if (sock) {
2426 		sk->sk_type	=	sock->type;
2427 		sk->sk_wq	=	sock->wq;
2428 		sock->sk	=	sk;
2429 		sk->sk_uid	=	SOCK_INODE(sock)->i_uid;
2430 	} else {
2431 		sk->sk_wq	=	NULL;
2432 		sk->sk_uid	=	make_kuid(sock_net(sk)->user_ns, 0);
2433 	}
2434 
2435 	rwlock_init(&sk->sk_callback_lock);
2436 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2437 			af_callback_keys + sk->sk_family,
2438 			af_family_clock_key_strings[sk->sk_family]);
2439 
2440 	sk->sk_state_change	=	sock_def_wakeup;
2441 	sk->sk_data_ready	=	sock_def_readable;
2442 	sk->sk_write_space	=	sock_def_write_space;
2443 	sk->sk_error_report	=	sock_def_error_report;
2444 	sk->sk_destruct		=	sock_def_destruct;
2445 
2446 	sk->sk_frag.page	=	NULL;
2447 	sk->sk_frag.offset	=	0;
2448 	sk->sk_peek_off		=	-1;
2449 
2450 	sk->sk_peer_pid 	=	NULL;
2451 	sk->sk_peer_cred	=	NULL;
2452 	spin_lock_init(&sk->sk_peer_lock);
2453 
2454 	sk->sk_write_pending	=	0;
2455 	sk->sk_rcvlowat		=	1;
2456 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2457 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2458 
2459 	sk->sk_stamp = ktime_set(-1L, 0);
2460 #if BITS_PER_LONG==32
2461 	seqlock_init(&sk->sk_stamp_seq);
2462 #endif
2463 
2464 #ifdef CONFIG_NET_RX_BUSY_POLL
2465 	sk->sk_napi_id		=	0;
2466 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2467 #endif
2468 
2469 	sk->sk_max_pacing_rate = ~0U;
2470 	sk->sk_pacing_rate = ~0U;
2471 	sk->sk_incoming_cpu = -1;
2472 	/*
2473 	 * Before updating sk_refcnt, we must commit prior changes to memory
2474 	 * (Documentation/RCU/rculist_nulls.txt for details)
2475 	 */
2476 	smp_wmb();
2477 	atomic_set(&sk->sk_refcnt, 1);
2478 	atomic_set(&sk->sk_drops, 0);
2479 }
2480 EXPORT_SYMBOL(sock_init_data);
2481 
lock_sock_nested(struct sock * sk,int subclass)2482 void lock_sock_nested(struct sock *sk, int subclass)
2483 {
2484 	might_sleep();
2485 	spin_lock_bh(&sk->sk_lock.slock);
2486 	if (sk->sk_lock.owned)
2487 		__lock_sock(sk);
2488 	sk->sk_lock.owned = 1;
2489 	spin_unlock(&sk->sk_lock.slock);
2490 	/*
2491 	 * The sk_lock has mutex_lock() semantics here:
2492 	 */
2493 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2494 	local_bh_enable();
2495 }
2496 EXPORT_SYMBOL(lock_sock_nested);
2497 
release_sock(struct sock * sk)2498 void release_sock(struct sock *sk)
2499 {
2500 	/*
2501 	 * The sk_lock has mutex_unlock() semantics:
2502 	 */
2503 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2504 
2505 	spin_lock_bh(&sk->sk_lock.slock);
2506 	if (sk->sk_backlog.tail)
2507 		__release_sock(sk);
2508 
2509 	/* Warning : release_cb() might need to release sk ownership,
2510 	 * ie call sock_release_ownership(sk) before us.
2511 	 */
2512 	if (sk->sk_prot->release_cb)
2513 		sk->sk_prot->release_cb(sk);
2514 
2515 	sock_release_ownership(sk);
2516 	if (waitqueue_active(&sk->sk_lock.wq))
2517 		wake_up(&sk->sk_lock.wq);
2518 	spin_unlock_bh(&sk->sk_lock.slock);
2519 }
2520 EXPORT_SYMBOL(release_sock);
2521 
2522 /**
2523  * lock_sock_fast - fast version of lock_sock
2524  * @sk: socket
2525  *
2526  * This version should be used for very small section, where process wont block
2527  * return false if fast path is taken
2528  *   sk_lock.slock locked, owned = 0, BH disabled
2529  * return true if slow path is taken
2530  *   sk_lock.slock unlocked, owned = 1, BH enabled
2531  */
lock_sock_fast(struct sock * sk)2532 bool lock_sock_fast(struct sock *sk)
2533 {
2534 	might_sleep();
2535 	spin_lock_bh(&sk->sk_lock.slock);
2536 
2537 	if (!sk->sk_lock.owned)
2538 		/*
2539 		 * Note : We must disable BH
2540 		 */
2541 		return false;
2542 
2543 	__lock_sock(sk);
2544 	sk->sk_lock.owned = 1;
2545 	spin_unlock(&sk->sk_lock.slock);
2546 	/*
2547 	 * The sk_lock has mutex_lock() semantics here:
2548 	 */
2549 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2550 	local_bh_enable();
2551 	return true;
2552 }
2553 EXPORT_SYMBOL(lock_sock_fast);
2554 
sock_get_timestamp(struct sock * sk,struct timeval __user * userstamp)2555 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2556 {
2557 	struct timeval tv;
2558 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2559 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2560 	tv = ktime_to_timeval(sk->sk_stamp);
2561 	if (tv.tv_sec == -1)
2562 		return -ENOENT;
2563 	if (tv.tv_sec == 0) {
2564 		sk->sk_stamp = ktime_get_real();
2565 		tv = ktime_to_timeval(sk->sk_stamp);
2566 	}
2567 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2568 }
2569 EXPORT_SYMBOL(sock_get_timestamp);
2570 
sock_get_timestampns(struct sock * sk,struct timespec __user * userstamp)2571 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2572 {
2573 	struct timespec ts;
2574 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2575 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2576 	ts = ktime_to_timespec(sk->sk_stamp);
2577 	if (ts.tv_sec == -1)
2578 		return -ENOENT;
2579 	if (ts.tv_sec == 0) {
2580 		sk->sk_stamp = ktime_get_real();
2581 		ts = ktime_to_timespec(sk->sk_stamp);
2582 	}
2583 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2584 }
2585 EXPORT_SYMBOL(sock_get_timestampns);
2586 
sock_enable_timestamp(struct sock * sk,int flag)2587 void sock_enable_timestamp(struct sock *sk, int flag)
2588 {
2589 	if (!sock_flag(sk, flag)) {
2590 		unsigned long previous_flags = sk->sk_flags;
2591 
2592 		sock_set_flag(sk, flag);
2593 		/*
2594 		 * we just set one of the two flags which require net
2595 		 * time stamping, but time stamping might have been on
2596 		 * already because of the other one
2597 		 */
2598 		if (sock_needs_netstamp(sk) &&
2599 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
2600 			net_enable_timestamp();
2601 	}
2602 }
2603 
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)2604 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2605 		       int level, int type)
2606 {
2607 	struct sock_exterr_skb *serr;
2608 	struct sk_buff *skb;
2609 	int copied, err;
2610 
2611 	err = -EAGAIN;
2612 	skb = sock_dequeue_err_skb(sk);
2613 	if (skb == NULL)
2614 		goto out;
2615 
2616 	copied = skb->len;
2617 	if (copied > len) {
2618 		msg->msg_flags |= MSG_TRUNC;
2619 		copied = len;
2620 	}
2621 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2622 	if (err)
2623 		goto out_free_skb;
2624 
2625 	sock_recv_timestamp(msg, sk, skb);
2626 
2627 	serr = SKB_EXT_ERR(skb);
2628 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2629 
2630 	msg->msg_flags |= MSG_ERRQUEUE;
2631 	err = copied;
2632 
2633 out_free_skb:
2634 	kfree_skb(skb);
2635 out:
2636 	return err;
2637 }
2638 EXPORT_SYMBOL(sock_recv_errqueue);
2639 
2640 /*
2641  *	Get a socket option on an socket.
2642  *
2643  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2644  *	asynchronous errors should be reported by getsockopt. We assume
2645  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2646  */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2647 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2648 			   char __user *optval, int __user *optlen)
2649 {
2650 	struct sock *sk = sock->sk;
2651 
2652 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2653 }
2654 EXPORT_SYMBOL(sock_common_getsockopt);
2655 
2656 #ifdef CONFIG_COMPAT
compat_sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2657 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2658 				  char __user *optval, int __user *optlen)
2659 {
2660 	struct sock *sk = sock->sk;
2661 
2662 	if (sk->sk_prot->compat_getsockopt != NULL)
2663 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2664 						      optval, optlen);
2665 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2666 }
2667 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2668 #endif
2669 
sock_common_recvmsg(struct socket * sock,struct msghdr * msg,size_t size,int flags)2670 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2671 			int flags)
2672 {
2673 	struct sock *sk = sock->sk;
2674 	int addr_len = 0;
2675 	int err;
2676 
2677 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2678 				   flags & ~MSG_DONTWAIT, &addr_len);
2679 	if (err >= 0)
2680 		msg->msg_namelen = addr_len;
2681 	return err;
2682 }
2683 EXPORT_SYMBOL(sock_common_recvmsg);
2684 
2685 /*
2686  *	Set socket options on an inet socket.
2687  */
sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2688 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2689 			   char __user *optval, unsigned int optlen)
2690 {
2691 	struct sock *sk = sock->sk;
2692 
2693 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2694 }
2695 EXPORT_SYMBOL(sock_common_setsockopt);
2696 
2697 #ifdef CONFIG_COMPAT
compat_sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2698 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2699 				  char __user *optval, unsigned int optlen)
2700 {
2701 	struct sock *sk = sock->sk;
2702 
2703 	if (sk->sk_prot->compat_setsockopt != NULL)
2704 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2705 						      optval, optlen);
2706 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2707 }
2708 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2709 #endif
2710 
sk_common_release(struct sock * sk)2711 void sk_common_release(struct sock *sk)
2712 {
2713 	if (sk->sk_prot->destroy)
2714 		sk->sk_prot->destroy(sk);
2715 
2716 	/*
2717 	 * Observation: when sock_common_release is called, processes have
2718 	 * no access to socket. But net still has.
2719 	 * Step one, detach it from networking:
2720 	 *
2721 	 * A. Remove from hash tables.
2722 	 */
2723 
2724 	sk->sk_prot->unhash(sk);
2725 
2726 	/*
2727 	 * In this point socket cannot receive new packets, but it is possible
2728 	 * that some packets are in flight because some CPU runs receiver and
2729 	 * did hash table lookup before we unhashed socket. They will achieve
2730 	 * receive queue and will be purged by socket destructor.
2731 	 *
2732 	 * Also we still have packets pending on receive queue and probably,
2733 	 * our own packets waiting in device queues. sock_destroy will drain
2734 	 * receive queue, but transmitted packets will delay socket destruction
2735 	 * until the last reference will be released.
2736 	 */
2737 
2738 	sock_orphan(sk);
2739 
2740 	xfrm_sk_free_policy(sk);
2741 
2742 	sk_refcnt_debug_release(sk);
2743 
2744 	sock_put(sk);
2745 }
2746 EXPORT_SYMBOL(sk_common_release);
2747 
2748 #ifdef CONFIG_PROC_FS
2749 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2750 struct prot_inuse {
2751 	int val[PROTO_INUSE_NR];
2752 };
2753 
2754 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2755 
2756 #ifdef CONFIG_NET_NS
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2757 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2758 {
2759 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2760 }
2761 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2762 
sock_prot_inuse_get(struct net * net,struct proto * prot)2763 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2764 {
2765 	int cpu, idx = prot->inuse_idx;
2766 	int res = 0;
2767 
2768 	for_each_possible_cpu(cpu)
2769 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2770 
2771 	return res >= 0 ? res : 0;
2772 }
2773 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2774 
sock_inuse_init_net(struct net * net)2775 static int __net_init sock_inuse_init_net(struct net *net)
2776 {
2777 	net->core.inuse = alloc_percpu(struct prot_inuse);
2778 	return net->core.inuse ? 0 : -ENOMEM;
2779 }
2780 
sock_inuse_exit_net(struct net * net)2781 static void __net_exit sock_inuse_exit_net(struct net *net)
2782 {
2783 	free_percpu(net->core.inuse);
2784 }
2785 
2786 static struct pernet_operations net_inuse_ops = {
2787 	.init = sock_inuse_init_net,
2788 	.exit = sock_inuse_exit_net,
2789 };
2790 
net_inuse_init(void)2791 static __init int net_inuse_init(void)
2792 {
2793 	if (register_pernet_subsys(&net_inuse_ops))
2794 		panic("Cannot initialize net inuse counters");
2795 
2796 	return 0;
2797 }
2798 
2799 core_initcall(net_inuse_init);
2800 #else
2801 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2802 
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2803 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2804 {
2805 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2806 }
2807 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2808 
sock_prot_inuse_get(struct net * net,struct proto * prot)2809 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2810 {
2811 	int cpu, idx = prot->inuse_idx;
2812 	int res = 0;
2813 
2814 	for_each_possible_cpu(cpu)
2815 		res += per_cpu(prot_inuse, cpu).val[idx];
2816 
2817 	return res >= 0 ? res : 0;
2818 }
2819 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2820 #endif
2821 
assign_proto_idx(struct proto * prot)2822 static void assign_proto_idx(struct proto *prot)
2823 {
2824 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2825 
2826 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2827 		pr_err("PROTO_INUSE_NR exhausted\n");
2828 		return;
2829 	}
2830 
2831 	set_bit(prot->inuse_idx, proto_inuse_idx);
2832 }
2833 
release_proto_idx(struct proto * prot)2834 static void release_proto_idx(struct proto *prot)
2835 {
2836 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2837 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2838 }
2839 #else
assign_proto_idx(struct proto * prot)2840 static inline void assign_proto_idx(struct proto *prot)
2841 {
2842 }
2843 
release_proto_idx(struct proto * prot)2844 static inline void release_proto_idx(struct proto *prot)
2845 {
2846 }
2847 #endif
2848 
req_prot_cleanup(struct request_sock_ops * rsk_prot)2849 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
2850 {
2851 	if (!rsk_prot)
2852 		return;
2853 	kfree(rsk_prot->slab_name);
2854 	rsk_prot->slab_name = NULL;
2855 	kmem_cache_destroy(rsk_prot->slab);
2856 	rsk_prot->slab = NULL;
2857 }
2858 
req_prot_init(const struct proto * prot)2859 static int req_prot_init(const struct proto *prot)
2860 {
2861 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
2862 
2863 	if (!rsk_prot)
2864 		return 0;
2865 
2866 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
2867 					prot->name);
2868 	if (!rsk_prot->slab_name)
2869 		return -ENOMEM;
2870 
2871 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
2872 					   rsk_prot->obj_size, 0,
2873 					   prot->slab_flags, NULL);
2874 
2875 	if (!rsk_prot->slab) {
2876 		pr_crit("%s: Can't create request sock SLAB cache!\n",
2877 			prot->name);
2878 		return -ENOMEM;
2879 	}
2880 	return 0;
2881 }
2882 
proto_register(struct proto * prot,int alloc_slab)2883 int proto_register(struct proto *prot, int alloc_slab)
2884 {
2885 	if (alloc_slab) {
2886 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2887 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2888 					NULL);
2889 
2890 		if (prot->slab == NULL) {
2891 			pr_crit("%s: Can't create sock SLAB cache!\n",
2892 				prot->name);
2893 			goto out;
2894 		}
2895 
2896 		if (req_prot_init(prot))
2897 			goto out_free_request_sock_slab;
2898 
2899 		if (prot->twsk_prot != NULL) {
2900 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2901 
2902 			if (prot->twsk_prot->twsk_slab_name == NULL)
2903 				goto out_free_request_sock_slab;
2904 
2905 			prot->twsk_prot->twsk_slab =
2906 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2907 						  prot->twsk_prot->twsk_obj_size,
2908 						  0,
2909 						  prot->slab_flags,
2910 						  NULL);
2911 			if (prot->twsk_prot->twsk_slab == NULL)
2912 				goto out_free_timewait_sock_slab_name;
2913 		}
2914 	}
2915 
2916 	mutex_lock(&proto_list_mutex);
2917 	list_add(&prot->node, &proto_list);
2918 	assign_proto_idx(prot);
2919 	mutex_unlock(&proto_list_mutex);
2920 	return 0;
2921 
2922 out_free_timewait_sock_slab_name:
2923 	kfree(prot->twsk_prot->twsk_slab_name);
2924 out_free_request_sock_slab:
2925 	req_prot_cleanup(prot->rsk_prot);
2926 
2927 	kmem_cache_destroy(prot->slab);
2928 	prot->slab = NULL;
2929 out:
2930 	return -ENOBUFS;
2931 }
2932 EXPORT_SYMBOL(proto_register);
2933 
proto_unregister(struct proto * prot)2934 void proto_unregister(struct proto *prot)
2935 {
2936 	mutex_lock(&proto_list_mutex);
2937 	release_proto_idx(prot);
2938 	list_del(&prot->node);
2939 	mutex_unlock(&proto_list_mutex);
2940 
2941 	kmem_cache_destroy(prot->slab);
2942 	prot->slab = NULL;
2943 
2944 	req_prot_cleanup(prot->rsk_prot);
2945 
2946 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2947 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2948 		kfree(prot->twsk_prot->twsk_slab_name);
2949 		prot->twsk_prot->twsk_slab = NULL;
2950 	}
2951 }
2952 EXPORT_SYMBOL(proto_unregister);
2953 
2954 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)2955 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2956 	__acquires(proto_list_mutex)
2957 {
2958 	mutex_lock(&proto_list_mutex);
2959 	return seq_list_start_head(&proto_list, *pos);
2960 }
2961 
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)2962 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2963 {
2964 	return seq_list_next(v, &proto_list, pos);
2965 }
2966 
proto_seq_stop(struct seq_file * seq,void * v)2967 static void proto_seq_stop(struct seq_file *seq, void *v)
2968 	__releases(proto_list_mutex)
2969 {
2970 	mutex_unlock(&proto_list_mutex);
2971 }
2972 
proto_method_implemented(const void * method)2973 static char proto_method_implemented(const void *method)
2974 {
2975 	return method == NULL ? 'n' : 'y';
2976 }
sock_prot_memory_allocated(struct proto * proto)2977 static long sock_prot_memory_allocated(struct proto *proto)
2978 {
2979 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2980 }
2981 
sock_prot_memory_pressure(struct proto * proto)2982 static char *sock_prot_memory_pressure(struct proto *proto)
2983 {
2984 	return proto->memory_pressure != NULL ?
2985 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2986 }
2987 
proto_seq_printf(struct seq_file * seq,struct proto * proto)2988 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2989 {
2990 
2991 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2992 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2993 		   proto->name,
2994 		   proto->obj_size,
2995 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2996 		   sock_prot_memory_allocated(proto),
2997 		   sock_prot_memory_pressure(proto),
2998 		   proto->max_header,
2999 		   proto->slab == NULL ? "no" : "yes",
3000 		   module_name(proto->owner),
3001 		   proto_method_implemented(proto->close),
3002 		   proto_method_implemented(proto->connect),
3003 		   proto_method_implemented(proto->disconnect),
3004 		   proto_method_implemented(proto->accept),
3005 		   proto_method_implemented(proto->ioctl),
3006 		   proto_method_implemented(proto->init),
3007 		   proto_method_implemented(proto->destroy),
3008 		   proto_method_implemented(proto->shutdown),
3009 		   proto_method_implemented(proto->setsockopt),
3010 		   proto_method_implemented(proto->getsockopt),
3011 		   proto_method_implemented(proto->sendmsg),
3012 		   proto_method_implemented(proto->recvmsg),
3013 		   proto_method_implemented(proto->sendpage),
3014 		   proto_method_implemented(proto->bind),
3015 		   proto_method_implemented(proto->backlog_rcv),
3016 		   proto_method_implemented(proto->hash),
3017 		   proto_method_implemented(proto->unhash),
3018 		   proto_method_implemented(proto->get_port),
3019 		   proto_method_implemented(proto->enter_memory_pressure));
3020 }
3021 
proto_seq_show(struct seq_file * seq,void * v)3022 static int proto_seq_show(struct seq_file *seq, void *v)
3023 {
3024 	if (v == &proto_list)
3025 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3026 			   "protocol",
3027 			   "size",
3028 			   "sockets",
3029 			   "memory",
3030 			   "press",
3031 			   "maxhdr",
3032 			   "slab",
3033 			   "module",
3034 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3035 	else
3036 		proto_seq_printf(seq, list_entry(v, struct proto, node));
3037 	return 0;
3038 }
3039 
3040 static const struct seq_operations proto_seq_ops = {
3041 	.start  = proto_seq_start,
3042 	.next   = proto_seq_next,
3043 	.stop   = proto_seq_stop,
3044 	.show   = proto_seq_show,
3045 };
3046 
proto_seq_open(struct inode * inode,struct file * file)3047 static int proto_seq_open(struct inode *inode, struct file *file)
3048 {
3049 	return seq_open_net(inode, file, &proto_seq_ops,
3050 			    sizeof(struct seq_net_private));
3051 }
3052 
3053 static const struct file_operations proto_seq_fops = {
3054 	.owner		= THIS_MODULE,
3055 	.open		= proto_seq_open,
3056 	.read		= seq_read,
3057 	.llseek		= seq_lseek,
3058 	.release	= seq_release_net,
3059 };
3060 
proto_init_net(struct net * net)3061 static __net_init int proto_init_net(struct net *net)
3062 {
3063 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
3064 		return -ENOMEM;
3065 
3066 	return 0;
3067 }
3068 
proto_exit_net(struct net * net)3069 static __net_exit void proto_exit_net(struct net *net)
3070 {
3071 	remove_proc_entry("protocols", net->proc_net);
3072 }
3073 
3074 
3075 static __net_initdata struct pernet_operations proto_net_ops = {
3076 	.init = proto_init_net,
3077 	.exit = proto_exit_net,
3078 };
3079 
proto_init(void)3080 static int __init proto_init(void)
3081 {
3082 	return register_pernet_subsys(&proto_net_ops);
3083 }
3084 
3085 subsys_initcall(proto_init);
3086 
3087 #endif /* PROC_FS */
3088