1 /*
2 * linux/arch/parisc/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
10 *
11 */
12
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages and page_cache_release */
26 #include <linux/compat.h>
27
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 #include <asm/pdc_chassis.h>
32 #include <asm/mmzone.h>
33 #include <asm/sections.h>
34 #include <asm/msgbuf.h>
35
36 extern int data_start;
37 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */
38
39 #if CONFIG_PGTABLE_LEVELS == 3
40 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
41 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
42 * guarantee that global objects will be laid out in memory in the same order
43 * as the order of declaration, so put these in different sections and use
44 * the linker script to order them. */
45 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
46 #endif
47
48 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
49 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
50
51 #ifdef CONFIG_DISCONTIGMEM
52 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
53 signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
54 #endif
55
56 static struct resource data_resource = {
57 .name = "Kernel data",
58 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
59 };
60
61 static struct resource code_resource = {
62 .name = "Kernel code",
63 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
64 };
65
66 static struct resource pdcdata_resource = {
67 .name = "PDC data (Page Zero)",
68 .start = 0,
69 .end = 0x9ff,
70 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
71 };
72
73 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
74
75 /* The following array is initialized from the firmware specific
76 * information retrieved in kernel/inventory.c.
77 */
78
79 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
80 int npmem_ranges __read_mostly;
81
82 #ifdef CONFIG_64BIT
83 #define MAX_MEM (~0UL)
84 #else /* !CONFIG_64BIT */
85 #define MAX_MEM (3584U*1024U*1024U)
86 #endif /* !CONFIG_64BIT */
87
88 static unsigned long mem_limit __read_mostly = MAX_MEM;
89
mem_limit_func(void)90 static void __init mem_limit_func(void)
91 {
92 char *cp, *end;
93 unsigned long limit;
94
95 /* We need this before __setup() functions are called */
96
97 limit = MAX_MEM;
98 for (cp = boot_command_line; *cp; ) {
99 if (memcmp(cp, "mem=", 4) == 0) {
100 cp += 4;
101 limit = memparse(cp, &end);
102 if (end != cp)
103 break;
104 cp = end;
105 } else {
106 while (*cp != ' ' && *cp)
107 ++cp;
108 while (*cp == ' ')
109 ++cp;
110 }
111 }
112
113 if (limit < mem_limit)
114 mem_limit = limit;
115 }
116
117 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
118
setup_bootmem(void)119 static void __init setup_bootmem(void)
120 {
121 unsigned long bootmap_size;
122 unsigned long mem_max;
123 unsigned long bootmap_pages;
124 unsigned long bootmap_start_pfn;
125 unsigned long bootmap_pfn;
126 #ifndef CONFIG_DISCONTIGMEM
127 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
128 int npmem_holes;
129 #endif
130 int i, sysram_resource_count;
131
132 disable_sr_hashing(); /* Turn off space register hashing */
133
134 /*
135 * Sort the ranges. Since the number of ranges is typically
136 * small, and performance is not an issue here, just do
137 * a simple insertion sort.
138 */
139
140 for (i = 1; i < npmem_ranges; i++) {
141 int j;
142
143 for (j = i; j > 0; j--) {
144 unsigned long tmp;
145
146 if (pmem_ranges[j-1].start_pfn <
147 pmem_ranges[j].start_pfn) {
148
149 break;
150 }
151 tmp = pmem_ranges[j-1].start_pfn;
152 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
153 pmem_ranges[j].start_pfn = tmp;
154 tmp = pmem_ranges[j-1].pages;
155 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
156 pmem_ranges[j].pages = tmp;
157 }
158 }
159
160 #ifndef CONFIG_DISCONTIGMEM
161 /*
162 * Throw out ranges that are too far apart (controlled by
163 * MAX_GAP).
164 */
165
166 for (i = 1; i < npmem_ranges; i++) {
167 if (pmem_ranges[i].start_pfn -
168 (pmem_ranges[i-1].start_pfn +
169 pmem_ranges[i-1].pages) > MAX_GAP) {
170 npmem_ranges = i;
171 printk("Large gap in memory detected (%ld pages). "
172 "Consider turning on CONFIG_DISCONTIGMEM\n",
173 pmem_ranges[i].start_pfn -
174 (pmem_ranges[i-1].start_pfn +
175 pmem_ranges[i-1].pages));
176 break;
177 }
178 }
179 #endif
180
181 if (npmem_ranges > 1) {
182
183 /* Print the memory ranges */
184
185 printk(KERN_INFO "Memory Ranges:\n");
186
187 for (i = 0; i < npmem_ranges; i++) {
188 unsigned long start;
189 unsigned long size;
190
191 size = (pmem_ranges[i].pages << PAGE_SHIFT);
192 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
193 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
194 i,start, start + (size - 1), size >> 20);
195 }
196 }
197
198 sysram_resource_count = npmem_ranges;
199 for (i = 0; i < sysram_resource_count; i++) {
200 struct resource *res = &sysram_resources[i];
201 res->name = "System RAM";
202 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
203 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
204 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
205 request_resource(&iomem_resource, res);
206 }
207
208 /*
209 * For 32 bit kernels we limit the amount of memory we can
210 * support, in order to preserve enough kernel address space
211 * for other purposes. For 64 bit kernels we don't normally
212 * limit the memory, but this mechanism can be used to
213 * artificially limit the amount of memory (and it is written
214 * to work with multiple memory ranges).
215 */
216
217 mem_limit_func(); /* check for "mem=" argument */
218
219 mem_max = 0;
220 for (i = 0; i < npmem_ranges; i++) {
221 unsigned long rsize;
222
223 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
224 if ((mem_max + rsize) > mem_limit) {
225 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
226 if (mem_max == mem_limit)
227 npmem_ranges = i;
228 else {
229 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
230 - (mem_max >> PAGE_SHIFT);
231 npmem_ranges = i + 1;
232 mem_max = mem_limit;
233 }
234 break;
235 }
236 mem_max += rsize;
237 }
238
239 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
240
241 #ifndef CONFIG_DISCONTIGMEM
242 /* Merge the ranges, keeping track of the holes */
243
244 {
245 unsigned long end_pfn;
246 unsigned long hole_pages;
247
248 npmem_holes = 0;
249 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
250 for (i = 1; i < npmem_ranges; i++) {
251
252 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
253 if (hole_pages) {
254 pmem_holes[npmem_holes].start_pfn = end_pfn;
255 pmem_holes[npmem_holes++].pages = hole_pages;
256 end_pfn += hole_pages;
257 }
258 end_pfn += pmem_ranges[i].pages;
259 }
260
261 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
262 npmem_ranges = 1;
263 }
264 #endif
265
266 bootmap_pages = 0;
267 for (i = 0; i < npmem_ranges; i++)
268 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
269
270 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
271
272 #ifdef CONFIG_DISCONTIGMEM
273 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
274 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
275 NODE_DATA(i)->bdata = &bootmem_node_data[i];
276 }
277 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
278
279 for (i = 0; i < npmem_ranges; i++) {
280 node_set_state(i, N_NORMAL_MEMORY);
281 node_set_online(i);
282 }
283 #endif
284
285 /*
286 * Initialize and free the full range of memory in each range.
287 * Note that the only writing these routines do are to the bootmap,
288 * and we've made sure to locate the bootmap properly so that they
289 * won't be writing over anything important.
290 */
291
292 bootmap_pfn = bootmap_start_pfn;
293 max_pfn = 0;
294 for (i = 0; i < npmem_ranges; i++) {
295 unsigned long start_pfn;
296 unsigned long npages;
297
298 start_pfn = pmem_ranges[i].start_pfn;
299 npages = pmem_ranges[i].pages;
300
301 bootmap_size = init_bootmem_node(NODE_DATA(i),
302 bootmap_pfn,
303 start_pfn,
304 (start_pfn + npages) );
305 free_bootmem_node(NODE_DATA(i),
306 (start_pfn << PAGE_SHIFT),
307 (npages << PAGE_SHIFT) );
308 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
309 if ((start_pfn + npages) > max_pfn)
310 max_pfn = start_pfn + npages;
311 }
312
313 /* IOMMU is always used to access "high mem" on those boxes
314 * that can support enough mem that a PCI device couldn't
315 * directly DMA to any physical addresses.
316 * ISA DMA support will need to revisit this.
317 */
318 max_low_pfn = max_pfn;
319
320 /* bootmap sizing messed up? */
321 BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
322
323 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
324
325 #define PDC_CONSOLE_IO_IODC_SIZE 32768
326
327 reserve_bootmem_node(NODE_DATA(0), 0UL,
328 (unsigned long)(PAGE0->mem_free +
329 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
330 reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START),
331 (unsigned long)(_end - KERNEL_BINARY_TEXT_START),
332 BOOTMEM_DEFAULT);
333 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
334 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
335 BOOTMEM_DEFAULT);
336
337 #ifndef CONFIG_DISCONTIGMEM
338
339 /* reserve the holes */
340
341 for (i = 0; i < npmem_holes; i++) {
342 reserve_bootmem_node(NODE_DATA(0),
343 (pmem_holes[i].start_pfn << PAGE_SHIFT),
344 (pmem_holes[i].pages << PAGE_SHIFT),
345 BOOTMEM_DEFAULT);
346 }
347 #endif
348
349 #ifdef CONFIG_BLK_DEV_INITRD
350 if (initrd_start) {
351 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
352 if (__pa(initrd_start) < mem_max) {
353 unsigned long initrd_reserve;
354
355 if (__pa(initrd_end) > mem_max) {
356 initrd_reserve = mem_max - __pa(initrd_start);
357 } else {
358 initrd_reserve = initrd_end - initrd_start;
359 }
360 initrd_below_start_ok = 1;
361 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
362
363 reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
364 initrd_reserve, BOOTMEM_DEFAULT);
365 }
366 }
367 #endif
368
369 data_resource.start = virt_to_phys(&data_start);
370 data_resource.end = virt_to_phys(_end) - 1;
371 code_resource.start = virt_to_phys(_text);
372 code_resource.end = virt_to_phys(&data_start)-1;
373
374 /* We don't know which region the kernel will be in, so try
375 * all of them.
376 */
377 for (i = 0; i < sysram_resource_count; i++) {
378 struct resource *res = &sysram_resources[i];
379 request_resource(res, &code_resource);
380 request_resource(res, &data_resource);
381 }
382 request_resource(&sysram_resources[0], &pdcdata_resource);
383 }
384
parisc_text_address(unsigned long vaddr)385 static int __init parisc_text_address(unsigned long vaddr)
386 {
387 static unsigned long head_ptr __initdata;
388
389 if (!head_ptr)
390 head_ptr = PAGE_MASK & (unsigned long)
391 dereference_function_descriptor(&parisc_kernel_start);
392
393 return core_kernel_text(vaddr) || vaddr == head_ptr;
394 }
395
map_pages(unsigned long start_vaddr,unsigned long start_paddr,unsigned long size,pgprot_t pgprot,int force)396 static void __init map_pages(unsigned long start_vaddr,
397 unsigned long start_paddr, unsigned long size,
398 pgprot_t pgprot, int force)
399 {
400 pgd_t *pg_dir;
401 pmd_t *pmd;
402 pte_t *pg_table;
403 unsigned long end_paddr;
404 unsigned long start_pmd;
405 unsigned long start_pte;
406 unsigned long tmp1;
407 unsigned long tmp2;
408 unsigned long address;
409 unsigned long vaddr;
410 unsigned long ro_start;
411 unsigned long ro_end;
412 unsigned long kernel_end;
413
414 ro_start = __pa((unsigned long)_text);
415 ro_end = __pa((unsigned long)&data_start);
416 kernel_end = __pa((unsigned long)&_end);
417
418 end_paddr = start_paddr + size;
419
420 pg_dir = pgd_offset_k(start_vaddr);
421
422 #if PTRS_PER_PMD == 1
423 start_pmd = 0;
424 #else
425 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
426 #endif
427 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
428
429 address = start_paddr;
430 vaddr = start_vaddr;
431 while (address < end_paddr) {
432 #if PTRS_PER_PMD == 1
433 pmd = (pmd_t *)__pa(pg_dir);
434 #else
435 pmd = (pmd_t *)pgd_address(*pg_dir);
436
437 /*
438 * pmd is physical at this point
439 */
440
441 if (!pmd) {
442 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
443 pmd = (pmd_t *) __pa(pmd);
444 }
445
446 pgd_populate(NULL, pg_dir, __va(pmd));
447 #endif
448 pg_dir++;
449
450 /* now change pmd to kernel virtual addresses */
451
452 pmd = (pmd_t *)__va(pmd) + start_pmd;
453 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
454
455 /*
456 * pg_table is physical at this point
457 */
458
459 pg_table = (pte_t *)pmd_address(*pmd);
460 if (!pg_table) {
461 pg_table = (pte_t *)
462 alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
463 pg_table = (pte_t *) __pa(pg_table);
464 }
465
466 pmd_populate_kernel(NULL, pmd, __va(pg_table));
467
468 /* now change pg_table to kernel virtual addresses */
469
470 pg_table = (pte_t *) __va(pg_table) + start_pte;
471 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
472 pte_t pte;
473
474 if (force)
475 pte = __mk_pte(address, pgprot);
476 else if (parisc_text_address(vaddr)) {
477 pte = __mk_pte(address, PAGE_KERNEL_EXEC);
478 if (address >= ro_start && address < kernel_end)
479 pte = pte_mkhuge(pte);
480 }
481 else
482 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
483 if (address >= ro_start && address < ro_end) {
484 pte = __mk_pte(address, PAGE_KERNEL_EXEC);
485 pte = pte_mkhuge(pte);
486 } else
487 #endif
488 {
489 pte = __mk_pte(address, pgprot);
490 if (address >= ro_start && address < kernel_end)
491 pte = pte_mkhuge(pte);
492 }
493
494 if (address >= end_paddr)
495 break;
496
497 set_pte(pg_table, pte);
498
499 address += PAGE_SIZE;
500 vaddr += PAGE_SIZE;
501 }
502 start_pte = 0;
503
504 if (address >= end_paddr)
505 break;
506 }
507 start_pmd = 0;
508 }
509 }
510
free_initmem(void)511 void free_initmem(void)
512 {
513 unsigned long init_begin = (unsigned long)__init_begin;
514 unsigned long init_end = (unsigned long)__init_end;
515
516 /* The init text pages are marked R-X. We have to
517 * flush the icache and mark them RW-
518 *
519 * This is tricky, because map_pages is in the init section.
520 * Do a dummy remap of the data section first (the data
521 * section is already PAGE_KERNEL) to pull in the TLB entries
522 * for map_kernel */
523 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
524 PAGE_KERNEL_RWX, 1);
525 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
526 * map_pages */
527 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
528 PAGE_KERNEL, 1);
529
530 /* force the kernel to see the new TLB entries */
531 __flush_tlb_range(0, init_begin, init_end);
532
533 /* finally dump all the instructions which were cached, since the
534 * pages are no-longer executable */
535 flush_icache_range(init_begin, init_end);
536
537 free_initmem_default(POISON_FREE_INITMEM);
538
539 /* set up a new led state on systems shipped LED State panel */
540 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
541 }
542
543
544 #ifdef CONFIG_DEBUG_RODATA
mark_rodata_ro(void)545 void mark_rodata_ro(void)
546 {
547 /* rodata memory was already mapped with KERNEL_RO access rights by
548 pagetable_init() and map_pages(). No need to do additional stuff here */
549 printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
550 (unsigned long)(__end_rodata - __start_rodata) >> 10);
551 }
552 #endif
553
554
555 /*
556 * Just an arbitrary offset to serve as a "hole" between mapping areas
557 * (between top of physical memory and a potential pcxl dma mapping
558 * area, and below the vmalloc mapping area).
559 *
560 * The current 32K value just means that there will be a 32K "hole"
561 * between mapping areas. That means that any out-of-bounds memory
562 * accesses will hopefully be caught. The vmalloc() routines leaves
563 * a hole of 4kB between each vmalloced area for the same reason.
564 */
565
566 /* Leave room for gateway page expansion */
567 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
568 #error KERNEL_MAP_START is in gateway reserved region
569 #endif
570 #define MAP_START (KERNEL_MAP_START)
571
572 #define VM_MAP_OFFSET (32*1024)
573 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
574 & ~(VM_MAP_OFFSET-1)))
575
576 void *parisc_vmalloc_start __read_mostly;
577 EXPORT_SYMBOL(parisc_vmalloc_start);
578
579 #ifdef CONFIG_PA11
580 unsigned long pcxl_dma_start __read_mostly;
581 #endif
582
mem_init(void)583 void __init mem_init(void)
584 {
585 /* Do sanity checks on IPC (compat) structures */
586 BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
587 #ifndef CONFIG_64BIT
588 BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
589 BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
590 BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
591 #endif
592 #ifdef CONFIG_COMPAT
593 BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
594 BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
595 BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
596 BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
597 #endif
598
599 /* Do sanity checks on page table constants */
600 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
601 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
602 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
603 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
604 > BITS_PER_LONG);
605
606 high_memory = __va((max_pfn << PAGE_SHIFT));
607 set_max_mapnr(max_low_pfn);
608 free_all_bootmem();
609
610 #ifdef CONFIG_PA11
611 if (hppa_dma_ops == &pcxl_dma_ops) {
612 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
613 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
614 + PCXL_DMA_MAP_SIZE);
615 } else {
616 pcxl_dma_start = 0;
617 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
618 }
619 #else
620 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
621 #endif
622
623 mem_init_print_info(NULL);
624 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
625 printk("virtual kernel memory layout:\n"
626 " vmalloc : 0x%p - 0x%p (%4ld MB)\n"
627 " memory : 0x%p - 0x%p (%4ld MB)\n"
628 " .init : 0x%p - 0x%p (%4ld kB)\n"
629 " .data : 0x%p - 0x%p (%4ld kB)\n"
630 " .text : 0x%p - 0x%p (%4ld kB)\n",
631
632 (void*)VMALLOC_START, (void*)VMALLOC_END,
633 (VMALLOC_END - VMALLOC_START) >> 20,
634
635 __va(0), high_memory,
636 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
637
638 __init_begin, __init_end,
639 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
640
641 _etext, _edata,
642 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
643
644 _text, _etext,
645 ((unsigned long)_etext - (unsigned long)_text) >> 10);
646 #endif
647 }
648
649 unsigned long *empty_zero_page __read_mostly;
650 EXPORT_SYMBOL(empty_zero_page);
651
show_mem(unsigned int filter)652 void show_mem(unsigned int filter)
653 {
654 int total = 0,reserved = 0;
655 pg_data_t *pgdat;
656
657 printk(KERN_INFO "Mem-info:\n");
658 show_free_areas(filter);
659
660 for_each_online_pgdat(pgdat) {
661 unsigned long flags;
662 int zoneid;
663
664 pgdat_resize_lock(pgdat, &flags);
665 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
666 struct zone *zone = &pgdat->node_zones[zoneid];
667 if (!populated_zone(zone))
668 continue;
669
670 total += zone->present_pages;
671 reserved = zone->present_pages - zone->managed_pages;
672 }
673 pgdat_resize_unlock(pgdat, &flags);
674 }
675
676 printk(KERN_INFO "%d pages of RAM\n", total);
677 printk(KERN_INFO "%d reserved pages\n", reserved);
678
679 #ifdef CONFIG_DISCONTIGMEM
680 {
681 struct zonelist *zl;
682 int i, j;
683
684 for (i = 0; i < npmem_ranges; i++) {
685 zl = node_zonelist(i, 0);
686 for (j = 0; j < MAX_NR_ZONES; j++) {
687 struct zoneref *z;
688 struct zone *zone;
689
690 printk("Zone list for zone %d on node %d: ", j, i);
691 for_each_zone_zonelist(zone, z, zl, j)
692 printk("[%d/%s] ", zone_to_nid(zone),
693 zone->name);
694 printk("\n");
695 }
696 }
697 }
698 #endif
699 }
700
701 /*
702 * pagetable_init() sets up the page tables
703 *
704 * Note that gateway_init() places the Linux gateway page at page 0.
705 * Since gateway pages cannot be dereferenced this has the desirable
706 * side effect of trapping those pesky NULL-reference errors in the
707 * kernel.
708 */
pagetable_init(void)709 static void __init pagetable_init(void)
710 {
711 int range;
712
713 /* Map each physical memory range to its kernel vaddr */
714
715 for (range = 0; range < npmem_ranges; range++) {
716 unsigned long start_paddr;
717 unsigned long end_paddr;
718 unsigned long size;
719
720 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
721 size = pmem_ranges[range].pages << PAGE_SHIFT;
722 end_paddr = start_paddr + size;
723
724 map_pages((unsigned long)__va(start_paddr), start_paddr,
725 size, PAGE_KERNEL, 0);
726 }
727
728 #ifdef CONFIG_BLK_DEV_INITRD
729 if (initrd_end && initrd_end > mem_limit) {
730 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
731 map_pages(initrd_start, __pa(initrd_start),
732 initrd_end - initrd_start, PAGE_KERNEL, 0);
733 }
734 #endif
735
736 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
737 }
738
gateway_init(void)739 static void __init gateway_init(void)
740 {
741 unsigned long linux_gateway_page_addr;
742 /* FIXME: This is 'const' in order to trick the compiler
743 into not treating it as DP-relative data. */
744 extern void * const linux_gateway_page;
745
746 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
747
748 /*
749 * Setup Linux Gateway page.
750 *
751 * The Linux gateway page will reside in kernel space (on virtual
752 * page 0), so it doesn't need to be aliased into user space.
753 */
754
755 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
756 PAGE_SIZE, PAGE_GATEWAY, 1);
757 }
758
paging_init(void)759 void __init paging_init(void)
760 {
761 int i;
762
763 setup_bootmem();
764 pagetable_init();
765 gateway_init();
766 flush_cache_all_local(); /* start with known state */
767 flush_tlb_all_local(NULL);
768
769 for (i = 0; i < npmem_ranges; i++) {
770 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
771
772 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
773
774 #ifdef CONFIG_DISCONTIGMEM
775 /* Need to initialize the pfnnid_map before we can initialize
776 the zone */
777 {
778 int j;
779 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
780 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
781 j++) {
782 pfnnid_map[j] = i;
783 }
784 }
785 #endif
786
787 free_area_init_node(i, zones_size,
788 pmem_ranges[i].start_pfn, NULL);
789 }
790 }
791
792 #ifdef CONFIG_PA20
793
794 /*
795 * Currently, all PA20 chips have 18 bit protection IDs, which is the
796 * limiting factor (space ids are 32 bits).
797 */
798
799 #define NR_SPACE_IDS 262144
800
801 #else
802
803 /*
804 * Currently we have a one-to-one relationship between space IDs and
805 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
806 * support 15 bit protection IDs, so that is the limiting factor.
807 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
808 * probably not worth the effort for a special case here.
809 */
810
811 #define NR_SPACE_IDS 32768
812
813 #endif /* !CONFIG_PA20 */
814
815 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
816 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
817
818 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
819 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
820 static unsigned long space_id_index;
821 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
822 static unsigned long dirty_space_ids = 0;
823
824 static DEFINE_SPINLOCK(sid_lock);
825
alloc_sid(void)826 unsigned long alloc_sid(void)
827 {
828 unsigned long index;
829
830 spin_lock(&sid_lock);
831
832 if (free_space_ids == 0) {
833 if (dirty_space_ids != 0) {
834 spin_unlock(&sid_lock);
835 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
836 spin_lock(&sid_lock);
837 }
838 BUG_ON(free_space_ids == 0);
839 }
840
841 free_space_ids--;
842
843 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
844 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
845 space_id_index = index;
846
847 spin_unlock(&sid_lock);
848
849 return index << SPACEID_SHIFT;
850 }
851
free_sid(unsigned long spaceid)852 void free_sid(unsigned long spaceid)
853 {
854 unsigned long index = spaceid >> SPACEID_SHIFT;
855 unsigned long *dirty_space_offset;
856
857 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
858 index &= (BITS_PER_LONG - 1);
859
860 spin_lock(&sid_lock);
861
862 BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
863
864 *dirty_space_offset |= (1L << index);
865 dirty_space_ids++;
866
867 spin_unlock(&sid_lock);
868 }
869
870
871 #ifdef CONFIG_SMP
get_dirty_sids(unsigned long * ndirtyptr,unsigned long * dirty_array)872 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
873 {
874 int i;
875
876 /* NOTE: sid_lock must be held upon entry */
877
878 *ndirtyptr = dirty_space_ids;
879 if (dirty_space_ids != 0) {
880 for (i = 0; i < SID_ARRAY_SIZE; i++) {
881 dirty_array[i] = dirty_space_id[i];
882 dirty_space_id[i] = 0;
883 }
884 dirty_space_ids = 0;
885 }
886
887 return;
888 }
889
recycle_sids(unsigned long ndirty,unsigned long * dirty_array)890 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
891 {
892 int i;
893
894 /* NOTE: sid_lock must be held upon entry */
895
896 if (ndirty != 0) {
897 for (i = 0; i < SID_ARRAY_SIZE; i++) {
898 space_id[i] ^= dirty_array[i];
899 }
900
901 free_space_ids += ndirty;
902 space_id_index = 0;
903 }
904 }
905
906 #else /* CONFIG_SMP */
907
recycle_sids(void)908 static void recycle_sids(void)
909 {
910 int i;
911
912 /* NOTE: sid_lock must be held upon entry */
913
914 if (dirty_space_ids != 0) {
915 for (i = 0; i < SID_ARRAY_SIZE; i++) {
916 space_id[i] ^= dirty_space_id[i];
917 dirty_space_id[i] = 0;
918 }
919
920 free_space_ids += dirty_space_ids;
921 dirty_space_ids = 0;
922 space_id_index = 0;
923 }
924 }
925 #endif
926
927 /*
928 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
929 * purged, we can safely reuse the space ids that were released but
930 * not flushed from the tlb.
931 */
932
933 #ifdef CONFIG_SMP
934
935 static unsigned long recycle_ndirty;
936 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
937 static unsigned int recycle_inuse;
938
flush_tlb_all(void)939 void flush_tlb_all(void)
940 {
941 int do_recycle;
942
943 do_recycle = 0;
944 spin_lock(&sid_lock);
945 __inc_irq_stat(irq_tlb_count);
946 if (dirty_space_ids > RECYCLE_THRESHOLD) {
947 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
948 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
949 recycle_inuse++;
950 do_recycle++;
951 }
952 spin_unlock(&sid_lock);
953 on_each_cpu(flush_tlb_all_local, NULL, 1);
954 if (do_recycle) {
955 spin_lock(&sid_lock);
956 recycle_sids(recycle_ndirty,recycle_dirty_array);
957 recycle_inuse = 0;
958 spin_unlock(&sid_lock);
959 }
960 }
961 #else
flush_tlb_all(void)962 void flush_tlb_all(void)
963 {
964 spin_lock(&sid_lock);
965 __inc_irq_stat(irq_tlb_count);
966 flush_tlb_all_local(NULL);
967 recycle_sids();
968 spin_unlock(&sid_lock);
969 }
970 #endif
971
972 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)973 void free_initrd_mem(unsigned long start, unsigned long end)
974 {
975 free_reserved_area((void *)start, (void *)end, -1, "initrd");
976 }
977 #endif
978