• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43 
spidev_release(struct device * dev)44 static void spidev_release(struct device *dev)
45 {
46 	struct spi_device	*spi = to_spi_device(dev);
47 
48 	/* spi masters may cleanup for released devices */
49 	if (spi->master->cleanup)
50 		spi->master->cleanup(spi);
51 
52 	spi_master_put(spi->master);
53 	kfree(spi);
54 }
55 
56 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 	const struct spi_device	*spi = to_spi_device(dev);
60 	int len;
61 
62 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 	if (len != -ENODEV)
64 		return len;
65 
66 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69 
70 #define SPI_STATISTICS_ATTRS(field, file)				\
71 static ssize_t spi_master_##field##_show(struct device *dev,		\
72 					 struct device_attribute *attr,	\
73 					 char *buf)			\
74 {									\
75 	struct spi_master *master = container_of(dev,			\
76 						 struct spi_master, dev); \
77 	return spi_statistics_##field##_show(&master->statistics, buf);	\
78 }									\
79 static struct device_attribute dev_attr_spi_master_##field = {		\
80 	.attr = { .name = file, .mode = S_IRUGO },			\
81 	.show = spi_master_##field##_show,				\
82 };									\
83 static ssize_t spi_device_##field##_show(struct device *dev,		\
84 					 struct device_attribute *attr,	\
85 					char *buf)			\
86 {									\
87 	struct spi_device *spi = container_of(dev,			\
88 					      struct spi_device, dev);	\
89 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
90 }									\
91 static struct device_attribute dev_attr_spi_device_##field = {		\
92 	.attr = { .name = file, .mode = S_IRUGO },			\
93 	.show = spi_device_##field##_show,				\
94 }
95 
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 					    char *buf)			\
99 {									\
100 	unsigned long flags;						\
101 	ssize_t len;							\
102 	spin_lock_irqsave(&stat->lock, flags);				\
103 	len = sprintf(buf, format_string, stat->field);			\
104 	spin_unlock_irqrestore(&stat->lock, flags);			\
105 	return len;							\
106 }									\
107 SPI_STATISTICS_ATTRS(name, file)
108 
109 #define SPI_STATISTICS_SHOW(field, format_string)			\
110 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
111 				 field, format_string)
112 
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117 
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121 
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125 
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
127 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
128 				 "transfer_bytes_histo_" number,	\
129 				 transfer_bytes_histo[index],  "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147 
148 static struct attribute *spi_dev_attrs[] = {
149 	&dev_attr_modalias.attr,
150 	NULL,
151 };
152 
153 static const struct attribute_group spi_dev_group = {
154 	.attrs  = spi_dev_attrs,
155 };
156 
157 static struct attribute *spi_device_statistics_attrs[] = {
158 	&dev_attr_spi_device_messages.attr,
159 	&dev_attr_spi_device_transfers.attr,
160 	&dev_attr_spi_device_errors.attr,
161 	&dev_attr_spi_device_timedout.attr,
162 	&dev_attr_spi_device_spi_sync.attr,
163 	&dev_attr_spi_device_spi_sync_immediate.attr,
164 	&dev_attr_spi_device_spi_async.attr,
165 	&dev_attr_spi_device_bytes.attr,
166 	&dev_attr_spi_device_bytes_rx.attr,
167 	&dev_attr_spi_device_bytes_tx.attr,
168 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
169 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
170 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
171 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
172 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
173 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
174 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
175 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
185 	NULL,
186 };
187 
188 static const struct attribute_group spi_device_statistics_group = {
189 	.name  = "statistics",
190 	.attrs  = spi_device_statistics_attrs,
191 };
192 
193 static const struct attribute_group *spi_dev_groups[] = {
194 	&spi_dev_group,
195 	&spi_device_statistics_group,
196 	NULL,
197 };
198 
199 static struct attribute *spi_master_statistics_attrs[] = {
200 	&dev_attr_spi_master_messages.attr,
201 	&dev_attr_spi_master_transfers.attr,
202 	&dev_attr_spi_master_errors.attr,
203 	&dev_attr_spi_master_timedout.attr,
204 	&dev_attr_spi_master_spi_sync.attr,
205 	&dev_attr_spi_master_spi_sync_immediate.attr,
206 	&dev_attr_spi_master_spi_async.attr,
207 	&dev_attr_spi_master_bytes.attr,
208 	&dev_attr_spi_master_bytes_rx.attr,
209 	&dev_attr_spi_master_bytes_tx.attr,
210 	&dev_attr_spi_master_transfer_bytes_histo0.attr,
211 	&dev_attr_spi_master_transfer_bytes_histo1.attr,
212 	&dev_attr_spi_master_transfer_bytes_histo2.attr,
213 	&dev_attr_spi_master_transfer_bytes_histo3.attr,
214 	&dev_attr_spi_master_transfer_bytes_histo4.attr,
215 	&dev_attr_spi_master_transfer_bytes_histo5.attr,
216 	&dev_attr_spi_master_transfer_bytes_histo6.attr,
217 	&dev_attr_spi_master_transfer_bytes_histo7.attr,
218 	&dev_attr_spi_master_transfer_bytes_histo8.attr,
219 	&dev_attr_spi_master_transfer_bytes_histo9.attr,
220 	&dev_attr_spi_master_transfer_bytes_histo10.attr,
221 	&dev_attr_spi_master_transfer_bytes_histo11.attr,
222 	&dev_attr_spi_master_transfer_bytes_histo12.attr,
223 	&dev_attr_spi_master_transfer_bytes_histo13.attr,
224 	&dev_attr_spi_master_transfer_bytes_histo14.attr,
225 	&dev_attr_spi_master_transfer_bytes_histo15.attr,
226 	&dev_attr_spi_master_transfer_bytes_histo16.attr,
227 	NULL,
228 };
229 
230 static const struct attribute_group spi_master_statistics_group = {
231 	.name  = "statistics",
232 	.attrs  = spi_master_statistics_attrs,
233 };
234 
235 static const struct attribute_group *spi_master_groups[] = {
236 	&spi_master_statistics_group,
237 	NULL,
238 };
239 
spi_statistics_add_transfer_stats(struct spi_statistics * stats,struct spi_transfer * xfer,struct spi_master * master)240 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
241 				       struct spi_transfer *xfer,
242 				       struct spi_master *master)
243 {
244 	unsigned long flags;
245 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
246 
247 	if (l2len < 0)
248 		l2len = 0;
249 
250 	spin_lock_irqsave(&stats->lock, flags);
251 
252 	stats->transfers++;
253 	stats->transfer_bytes_histo[l2len]++;
254 
255 	stats->bytes += xfer->len;
256 	if ((xfer->tx_buf) &&
257 	    (xfer->tx_buf != master->dummy_tx))
258 		stats->bytes_tx += xfer->len;
259 	if ((xfer->rx_buf) &&
260 	    (xfer->rx_buf != master->dummy_rx))
261 		stats->bytes_rx += xfer->len;
262 
263 	spin_unlock_irqrestore(&stats->lock, flags);
264 }
265 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
266 
267 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
268  * and the sysfs version makes coldplug work too.
269  */
270 
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)271 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
272 						const struct spi_device *sdev)
273 {
274 	while (id->name[0]) {
275 		if (!strcmp(sdev->modalias, id->name))
276 			return id;
277 		id++;
278 	}
279 	return NULL;
280 }
281 
spi_get_device_id(const struct spi_device * sdev)282 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
283 {
284 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
285 
286 	return spi_match_id(sdrv->id_table, sdev);
287 }
288 EXPORT_SYMBOL_GPL(spi_get_device_id);
289 
spi_match_device(struct device * dev,struct device_driver * drv)290 static int spi_match_device(struct device *dev, struct device_driver *drv)
291 {
292 	const struct spi_device	*spi = to_spi_device(dev);
293 	const struct spi_driver	*sdrv = to_spi_driver(drv);
294 
295 	/* Attempt an OF style match */
296 	if (of_driver_match_device(dev, drv))
297 		return 1;
298 
299 	/* Then try ACPI */
300 	if (acpi_driver_match_device(dev, drv))
301 		return 1;
302 
303 	if (sdrv->id_table)
304 		return !!spi_match_id(sdrv->id_table, spi);
305 
306 	return strcmp(spi->modalias, drv->name) == 0;
307 }
308 
spi_uevent(struct device * dev,struct kobj_uevent_env * env)309 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
310 {
311 	const struct spi_device		*spi = to_spi_device(dev);
312 	int rc;
313 
314 	rc = acpi_device_uevent_modalias(dev, env);
315 	if (rc != -ENODEV)
316 		return rc;
317 
318 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
319 	return 0;
320 }
321 
322 struct bus_type spi_bus_type = {
323 	.name		= "spi",
324 	.dev_groups	= spi_dev_groups,
325 	.match		= spi_match_device,
326 	.uevent		= spi_uevent,
327 };
328 EXPORT_SYMBOL_GPL(spi_bus_type);
329 
330 
spi_drv_probe(struct device * dev)331 static int spi_drv_probe(struct device *dev)
332 {
333 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
334 	struct spi_device		*spi = to_spi_device(dev);
335 	int ret;
336 
337 	ret = of_clk_set_defaults(dev->of_node, false);
338 	if (ret)
339 		return ret;
340 
341 	if (dev->of_node) {
342 		spi->irq = of_irq_get(dev->of_node, 0);
343 		if (spi->irq == -EPROBE_DEFER)
344 			return -EPROBE_DEFER;
345 		if (spi->irq < 0)
346 			spi->irq = 0;
347 	}
348 
349 	ret = dev_pm_domain_attach(dev, true);
350 	if (ret != -EPROBE_DEFER) {
351 		ret = sdrv->probe(spi);
352 		if (ret)
353 			dev_pm_domain_detach(dev, true);
354 	}
355 
356 	return ret;
357 }
358 
spi_drv_remove(struct device * dev)359 static int spi_drv_remove(struct device *dev)
360 {
361 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
362 	int ret;
363 
364 	ret = sdrv->remove(to_spi_device(dev));
365 	dev_pm_domain_detach(dev, true);
366 
367 	return ret;
368 }
369 
spi_drv_shutdown(struct device * dev)370 static void spi_drv_shutdown(struct device *dev)
371 {
372 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
373 
374 	sdrv->shutdown(to_spi_device(dev));
375 }
376 
377 /**
378  * __spi_register_driver - register a SPI driver
379  * @owner: owner module of the driver to register
380  * @sdrv: the driver to register
381  * Context: can sleep
382  *
383  * Return: zero on success, else a negative error code.
384  */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)385 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
386 {
387 	sdrv->driver.owner = owner;
388 	sdrv->driver.bus = &spi_bus_type;
389 	if (sdrv->probe)
390 		sdrv->driver.probe = spi_drv_probe;
391 	if (sdrv->remove)
392 		sdrv->driver.remove = spi_drv_remove;
393 	if (sdrv->shutdown)
394 		sdrv->driver.shutdown = spi_drv_shutdown;
395 	return driver_register(&sdrv->driver);
396 }
397 EXPORT_SYMBOL_GPL(__spi_register_driver);
398 
399 /*-------------------------------------------------------------------------*/
400 
401 /* SPI devices should normally not be created by SPI device drivers; that
402  * would make them board-specific.  Similarly with SPI master drivers.
403  * Device registration normally goes into like arch/.../mach.../board-YYY.c
404  * with other readonly (flashable) information about mainboard devices.
405  */
406 
407 struct boardinfo {
408 	struct list_head	list;
409 	struct spi_board_info	board_info;
410 };
411 
412 static LIST_HEAD(board_list);
413 static LIST_HEAD(spi_master_list);
414 
415 /*
416  * Used to protect add/del opertion for board_info list and
417  * spi_master list, and their matching process
418  */
419 static DEFINE_MUTEX(board_lock);
420 
421 /*
422  * Prevents addition of devices with same chip select and
423  * addition of devices below an unregistering controller.
424  */
425 static DEFINE_MUTEX(spi_add_lock);
426 
427 /**
428  * spi_alloc_device - Allocate a new SPI device
429  * @master: Controller to which device is connected
430  * Context: can sleep
431  *
432  * Allows a driver to allocate and initialize a spi_device without
433  * registering it immediately.  This allows a driver to directly
434  * fill the spi_device with device parameters before calling
435  * spi_add_device() on it.
436  *
437  * Caller is responsible to call spi_add_device() on the returned
438  * spi_device structure to add it to the SPI master.  If the caller
439  * needs to discard the spi_device without adding it, then it should
440  * call spi_dev_put() on it.
441  *
442  * Return: a pointer to the new device, or NULL.
443  */
spi_alloc_device(struct spi_master * master)444 struct spi_device *spi_alloc_device(struct spi_master *master)
445 {
446 	struct spi_device	*spi;
447 
448 	if (!spi_master_get(master))
449 		return NULL;
450 
451 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
452 	if (!spi) {
453 		spi_master_put(master);
454 		return NULL;
455 	}
456 
457 	spi->master = master;
458 	spi->dev.parent = &master->dev;
459 	spi->dev.bus = &spi_bus_type;
460 	spi->dev.release = spidev_release;
461 	spi->cs_gpio = -ENOENT;
462 
463 	spin_lock_init(&spi->statistics.lock);
464 
465 	device_initialize(&spi->dev);
466 	return spi;
467 }
468 EXPORT_SYMBOL_GPL(spi_alloc_device);
469 
spi_dev_set_name(struct spi_device * spi)470 static void spi_dev_set_name(struct spi_device *spi)
471 {
472 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
473 
474 	if (adev) {
475 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
476 		return;
477 	}
478 
479 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
480 		     spi->chip_select);
481 }
482 
spi_dev_check(struct device * dev,void * data)483 static int spi_dev_check(struct device *dev, void *data)
484 {
485 	struct spi_device *spi = to_spi_device(dev);
486 	struct spi_device *new_spi = data;
487 
488 	if (spi->master == new_spi->master &&
489 	    spi->chip_select == new_spi->chip_select)
490 		return -EBUSY;
491 	return 0;
492 }
493 
494 /**
495  * spi_add_device - Add spi_device allocated with spi_alloc_device
496  * @spi: spi_device to register
497  *
498  * Companion function to spi_alloc_device.  Devices allocated with
499  * spi_alloc_device can be added onto the spi bus with this function.
500  *
501  * Return: 0 on success; negative errno on failure
502  */
spi_add_device(struct spi_device * spi)503 int spi_add_device(struct spi_device *spi)
504 {
505 	struct spi_master *master = spi->master;
506 	struct device *dev = master->dev.parent;
507 	int status;
508 
509 	/* Chipselects are numbered 0..max; validate. */
510 	if (spi->chip_select >= master->num_chipselect) {
511 		dev_err(dev, "cs%d >= max %d\n",
512 			spi->chip_select,
513 			master->num_chipselect);
514 		return -EINVAL;
515 	}
516 
517 	/* Set the bus ID string */
518 	spi_dev_set_name(spi);
519 
520 	/* We need to make sure there's no other device with this
521 	 * chipselect **BEFORE** we call setup(), else we'll trash
522 	 * its configuration.  Lock against concurrent add() calls.
523 	 */
524 	mutex_lock(&spi_add_lock);
525 
526 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
527 	if (status) {
528 		dev_err(dev, "chipselect %d already in use\n",
529 				spi->chip_select);
530 		goto done;
531 	}
532 
533 	/* Controller may unregister concurrently */
534 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
535 	    !device_is_registered(&master->dev)) {
536 		status = -ENODEV;
537 		goto done;
538 	}
539 
540 	if (master->cs_gpios)
541 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
542 
543 	/* Drivers may modify this initial i/o setup, but will
544 	 * normally rely on the device being setup.  Devices
545 	 * using SPI_CS_HIGH can't coexist well otherwise...
546 	 */
547 	status = spi_setup(spi);
548 	if (status < 0) {
549 		dev_err(dev, "can't setup %s, status %d\n",
550 				dev_name(&spi->dev), status);
551 		goto done;
552 	}
553 
554 	/* Device may be bound to an active driver when this returns */
555 	status = device_add(&spi->dev);
556 	if (status < 0)
557 		dev_err(dev, "can't add %s, status %d\n",
558 				dev_name(&spi->dev), status);
559 	else
560 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
561 
562 done:
563 	mutex_unlock(&spi_add_lock);
564 	return status;
565 }
566 EXPORT_SYMBOL_GPL(spi_add_device);
567 
568 /**
569  * spi_new_device - instantiate one new SPI device
570  * @master: Controller to which device is connected
571  * @chip: Describes the SPI device
572  * Context: can sleep
573  *
574  * On typical mainboards, this is purely internal; and it's not needed
575  * after board init creates the hard-wired devices.  Some development
576  * platforms may not be able to use spi_register_board_info though, and
577  * this is exported so that for example a USB or parport based adapter
578  * driver could add devices (which it would learn about out-of-band).
579  *
580  * Return: the new device, or NULL.
581  */
spi_new_device(struct spi_master * master,struct spi_board_info * chip)582 struct spi_device *spi_new_device(struct spi_master *master,
583 				  struct spi_board_info *chip)
584 {
585 	struct spi_device	*proxy;
586 	int			status;
587 
588 	/* NOTE:  caller did any chip->bus_num checks necessary.
589 	 *
590 	 * Also, unless we change the return value convention to use
591 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
592 	 * suggests syslogged diagnostics are best here (ugh).
593 	 */
594 
595 	proxy = spi_alloc_device(master);
596 	if (!proxy)
597 		return NULL;
598 
599 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
600 
601 	proxy->chip_select = chip->chip_select;
602 	proxy->max_speed_hz = chip->max_speed_hz;
603 	proxy->mode = chip->mode;
604 	proxy->irq = chip->irq;
605 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
606 	proxy->dev.platform_data = (void *) chip->platform_data;
607 	proxy->controller_data = chip->controller_data;
608 	proxy->controller_state = NULL;
609 
610 	status = spi_add_device(proxy);
611 	if (status < 0) {
612 		spi_dev_put(proxy);
613 		return NULL;
614 	}
615 
616 	return proxy;
617 }
618 EXPORT_SYMBOL_GPL(spi_new_device);
619 
spi_match_master_to_boardinfo(struct spi_master * master,struct spi_board_info * bi)620 static void spi_match_master_to_boardinfo(struct spi_master *master,
621 				struct spi_board_info *bi)
622 {
623 	struct spi_device *dev;
624 
625 	if (master->bus_num != bi->bus_num)
626 		return;
627 
628 	dev = spi_new_device(master, bi);
629 	if (!dev)
630 		dev_err(master->dev.parent, "can't create new device for %s\n",
631 			bi->modalias);
632 }
633 
634 /**
635  * spi_register_board_info - register SPI devices for a given board
636  * @info: array of chip descriptors
637  * @n: how many descriptors are provided
638  * Context: can sleep
639  *
640  * Board-specific early init code calls this (probably during arch_initcall)
641  * with segments of the SPI device table.  Any device nodes are created later,
642  * after the relevant parent SPI controller (bus_num) is defined.  We keep
643  * this table of devices forever, so that reloading a controller driver will
644  * not make Linux forget about these hard-wired devices.
645  *
646  * Other code can also call this, e.g. a particular add-on board might provide
647  * SPI devices through its expansion connector, so code initializing that board
648  * would naturally declare its SPI devices.
649  *
650  * The board info passed can safely be __initdata ... but be careful of
651  * any embedded pointers (platform_data, etc), they're copied as-is.
652  *
653  * Return: zero on success, else a negative error code.
654  */
spi_register_board_info(struct spi_board_info const * info,unsigned n)655 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
656 {
657 	struct boardinfo *bi;
658 	int i;
659 
660 	if (!n)
661 		return -EINVAL;
662 
663 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
664 	if (!bi)
665 		return -ENOMEM;
666 
667 	for (i = 0; i < n; i++, bi++, info++) {
668 		struct spi_master *master;
669 
670 		memcpy(&bi->board_info, info, sizeof(*info));
671 		mutex_lock(&board_lock);
672 		list_add_tail(&bi->list, &board_list);
673 		list_for_each_entry(master, &spi_master_list, list)
674 			spi_match_master_to_boardinfo(master, &bi->board_info);
675 		mutex_unlock(&board_lock);
676 	}
677 
678 	return 0;
679 }
680 
681 /*-------------------------------------------------------------------------*/
682 
spi_set_cs(struct spi_device * spi,bool enable)683 static void spi_set_cs(struct spi_device *spi, bool enable)
684 {
685 	if (spi->mode & SPI_CS_HIGH)
686 		enable = !enable;
687 
688 	if (gpio_is_valid(spi->cs_gpio))
689 		gpio_set_value(spi->cs_gpio, !enable);
690 	else if (spi->master->set_cs)
691 		spi->master->set_cs(spi, !enable);
692 }
693 
694 #ifdef CONFIG_HAS_DMA
spi_map_buf(struct spi_master * master,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)695 static int spi_map_buf(struct spi_master *master, struct device *dev,
696 		       struct sg_table *sgt, void *buf, size_t len,
697 		       enum dma_data_direction dir)
698 {
699 	const bool vmalloced_buf = is_vmalloc_addr(buf);
700 	int desc_len;
701 	int sgs;
702 	struct page *vm_page;
703 	void *sg_buf;
704 	size_t min;
705 	int i, ret;
706 
707 	if (vmalloced_buf) {
708 		desc_len = PAGE_SIZE;
709 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
710 	} else {
711 		desc_len = master->max_dma_len;
712 		sgs = DIV_ROUND_UP(len, desc_len);
713 	}
714 
715 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
716 	if (ret != 0)
717 		return ret;
718 
719 	for (i = 0; i < sgs; i++) {
720 
721 		if (vmalloced_buf) {
722 			/*
723 			 * Next scatterlist entry size is the minimum between
724 			 * the desc_len and the remaining buffer length that
725 			 * fits in a page.
726 			 */
727 			min = min_t(size_t, desc_len,
728 				    min_t(size_t, len,
729 					  PAGE_SIZE - offset_in_page(buf)));
730 			vm_page = vmalloc_to_page(buf);
731 			if (!vm_page) {
732 				sg_free_table(sgt);
733 				return -ENOMEM;
734 			}
735 			sg_set_page(&sgt->sgl[i], vm_page,
736 				    min, offset_in_page(buf));
737 		} else {
738 			min = min_t(size_t, len, desc_len);
739 			sg_buf = buf;
740 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
741 		}
742 
743 
744 		buf += min;
745 		len -= min;
746 	}
747 
748 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
749 	if (!ret)
750 		ret = -ENOMEM;
751 	if (ret < 0) {
752 		sg_free_table(sgt);
753 		return ret;
754 	}
755 
756 	sgt->nents = ret;
757 
758 	return 0;
759 }
760 
spi_unmap_buf(struct spi_master * master,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)761 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
762 			  struct sg_table *sgt, enum dma_data_direction dir)
763 {
764 	if (sgt->orig_nents) {
765 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
766 		sg_free_table(sgt);
767 	}
768 }
769 
__spi_map_msg(struct spi_master * master,struct spi_message * msg)770 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
771 {
772 	struct device *tx_dev, *rx_dev;
773 	struct spi_transfer *xfer;
774 	int ret;
775 
776 	if (!master->can_dma)
777 		return 0;
778 
779 	if (master->dma_tx)
780 		tx_dev = master->dma_tx->device->dev;
781 	else
782 		tx_dev = &master->dev;
783 
784 	if (master->dma_rx)
785 		rx_dev = master->dma_rx->device->dev;
786 	else
787 		rx_dev = &master->dev;
788 
789 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
790 		if (!master->can_dma(master, msg->spi, xfer))
791 			continue;
792 
793 		if (xfer->tx_buf != NULL) {
794 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
795 					  (void *)xfer->tx_buf, xfer->len,
796 					  DMA_TO_DEVICE);
797 			if (ret != 0)
798 				return ret;
799 		}
800 
801 		if (xfer->rx_buf != NULL) {
802 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
803 					  xfer->rx_buf, xfer->len,
804 					  DMA_FROM_DEVICE);
805 			if (ret != 0) {
806 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
807 					      DMA_TO_DEVICE);
808 				return ret;
809 			}
810 		}
811 	}
812 
813 	master->cur_msg_mapped = true;
814 
815 	return 0;
816 }
817 
__spi_unmap_msg(struct spi_master * master,struct spi_message * msg)818 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
819 {
820 	struct spi_transfer *xfer;
821 	struct device *tx_dev, *rx_dev;
822 
823 	if (!master->cur_msg_mapped || !master->can_dma)
824 		return 0;
825 
826 	if (master->dma_tx)
827 		tx_dev = master->dma_tx->device->dev;
828 	else
829 		tx_dev = &master->dev;
830 
831 	if (master->dma_rx)
832 		rx_dev = master->dma_rx->device->dev;
833 	else
834 		rx_dev = &master->dev;
835 
836 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
837 		if (!master->can_dma(master, msg->spi, xfer))
838 			continue;
839 
840 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
841 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
842 	}
843 
844 	return 0;
845 }
846 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_master * master,struct spi_message * msg)847 static inline int __spi_map_msg(struct spi_master *master,
848 				struct spi_message *msg)
849 {
850 	return 0;
851 }
852 
__spi_unmap_msg(struct spi_master * master,struct spi_message * msg)853 static inline int __spi_unmap_msg(struct spi_master *master,
854 				  struct spi_message *msg)
855 {
856 	return 0;
857 }
858 #endif /* !CONFIG_HAS_DMA */
859 
spi_unmap_msg(struct spi_master * master,struct spi_message * msg)860 static inline int spi_unmap_msg(struct spi_master *master,
861 				struct spi_message *msg)
862 {
863 	struct spi_transfer *xfer;
864 
865 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
866 		/*
867 		 * Restore the original value of tx_buf or rx_buf if they are
868 		 * NULL.
869 		 */
870 		if (xfer->tx_buf == master->dummy_tx)
871 			xfer->tx_buf = NULL;
872 		if (xfer->rx_buf == master->dummy_rx)
873 			xfer->rx_buf = NULL;
874 	}
875 
876 	return __spi_unmap_msg(master, msg);
877 }
878 
spi_map_msg(struct spi_master * master,struct spi_message * msg)879 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
880 {
881 	struct spi_transfer *xfer;
882 	void *tmp;
883 	unsigned int max_tx, max_rx;
884 
885 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
886 		max_tx = 0;
887 		max_rx = 0;
888 
889 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
890 			if ((master->flags & SPI_MASTER_MUST_TX) &&
891 			    !xfer->tx_buf)
892 				max_tx = max(xfer->len, max_tx);
893 			if ((master->flags & SPI_MASTER_MUST_RX) &&
894 			    !xfer->rx_buf)
895 				max_rx = max(xfer->len, max_rx);
896 		}
897 
898 		if (max_tx) {
899 			tmp = krealloc(master->dummy_tx, max_tx,
900 				       GFP_KERNEL | GFP_DMA);
901 			if (!tmp)
902 				return -ENOMEM;
903 			master->dummy_tx = tmp;
904 			memset(tmp, 0, max_tx);
905 		}
906 
907 		if (max_rx) {
908 			tmp = krealloc(master->dummy_rx, max_rx,
909 				       GFP_KERNEL | GFP_DMA);
910 			if (!tmp)
911 				return -ENOMEM;
912 			master->dummy_rx = tmp;
913 		}
914 
915 		if (max_tx || max_rx) {
916 			list_for_each_entry(xfer, &msg->transfers,
917 					    transfer_list) {
918 				if (!xfer->len)
919 					continue;
920 				if (!xfer->tx_buf)
921 					xfer->tx_buf = master->dummy_tx;
922 				if (!xfer->rx_buf)
923 					xfer->rx_buf = master->dummy_rx;
924 			}
925 		}
926 	}
927 
928 	return __spi_map_msg(master, msg);
929 }
930 
931 /*
932  * spi_transfer_one_message - Default implementation of transfer_one_message()
933  *
934  * This is a standard implementation of transfer_one_message() for
935  * drivers which impelment a transfer_one() operation.  It provides
936  * standard handling of delays and chip select management.
937  */
spi_transfer_one_message(struct spi_master * master,struct spi_message * msg)938 static int spi_transfer_one_message(struct spi_master *master,
939 				    struct spi_message *msg)
940 {
941 	struct spi_transfer *xfer;
942 	bool keep_cs = false;
943 	int ret = 0;
944 	unsigned long ms = 1;
945 	struct spi_statistics *statm = &master->statistics;
946 	struct spi_statistics *stats = &msg->spi->statistics;
947 
948 	spi_set_cs(msg->spi, true);
949 
950 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
951 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
952 
953 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
954 		trace_spi_transfer_start(msg, xfer);
955 
956 		spi_statistics_add_transfer_stats(statm, xfer, master);
957 		spi_statistics_add_transfer_stats(stats, xfer, master);
958 
959 		if (xfer->tx_buf || xfer->rx_buf) {
960 			reinit_completion(&master->xfer_completion);
961 
962 			ret = master->transfer_one(master, msg->spi, xfer);
963 			if (ret < 0) {
964 				SPI_STATISTICS_INCREMENT_FIELD(statm,
965 							       errors);
966 				SPI_STATISTICS_INCREMENT_FIELD(stats,
967 							       errors);
968 				dev_err(&msg->spi->dev,
969 					"SPI transfer failed: %d\n", ret);
970 				goto out;
971 			}
972 
973 			if (ret > 0) {
974 				ret = 0;
975 				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
976 				ms += ms + 100; /* some tolerance */
977 
978 				ms = wait_for_completion_timeout(&master->xfer_completion,
979 								 msecs_to_jiffies(ms));
980 			}
981 
982 			if (ms == 0) {
983 				SPI_STATISTICS_INCREMENT_FIELD(statm,
984 							       timedout);
985 				SPI_STATISTICS_INCREMENT_FIELD(stats,
986 							       timedout);
987 				dev_err(&msg->spi->dev,
988 					"SPI transfer timed out\n");
989 				msg->status = -ETIMEDOUT;
990 			}
991 		} else {
992 			if (xfer->len)
993 				dev_err(&msg->spi->dev,
994 					"Bufferless transfer has length %u\n",
995 					xfer->len);
996 		}
997 
998 		trace_spi_transfer_stop(msg, xfer);
999 
1000 		if (msg->status != -EINPROGRESS)
1001 			goto out;
1002 
1003 		if (xfer->delay_usecs)
1004 			udelay(xfer->delay_usecs);
1005 
1006 		if (xfer->cs_change) {
1007 			if (list_is_last(&xfer->transfer_list,
1008 					 &msg->transfers)) {
1009 				keep_cs = true;
1010 			} else {
1011 				spi_set_cs(msg->spi, false);
1012 				udelay(10);
1013 				spi_set_cs(msg->spi, true);
1014 			}
1015 		}
1016 
1017 		msg->actual_length += xfer->len;
1018 	}
1019 
1020 out:
1021 	if (ret != 0 || !keep_cs)
1022 		spi_set_cs(msg->spi, false);
1023 
1024 	if (msg->status == -EINPROGRESS)
1025 		msg->status = ret;
1026 
1027 	if (msg->status && master->handle_err)
1028 		master->handle_err(master, msg);
1029 
1030 	spi_finalize_current_message(master);
1031 
1032 	return ret;
1033 }
1034 
1035 /**
1036  * spi_finalize_current_transfer - report completion of a transfer
1037  * @master: the master reporting completion
1038  *
1039  * Called by SPI drivers using the core transfer_one_message()
1040  * implementation to notify it that the current interrupt driven
1041  * transfer has finished and the next one may be scheduled.
1042  */
spi_finalize_current_transfer(struct spi_master * master)1043 void spi_finalize_current_transfer(struct spi_master *master)
1044 {
1045 	complete(&master->xfer_completion);
1046 }
1047 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1048 
1049 /**
1050  * __spi_pump_messages - function which processes spi message queue
1051  * @master: master to process queue for
1052  * @in_kthread: true if we are in the context of the message pump thread
1053  *
1054  * This function checks if there is any spi message in the queue that
1055  * needs processing and if so call out to the driver to initialize hardware
1056  * and transfer each message.
1057  *
1058  * Note that it is called both from the kthread itself and also from
1059  * inside spi_sync(); the queue extraction handling at the top of the
1060  * function should deal with this safely.
1061  */
__spi_pump_messages(struct spi_master * master,bool in_kthread)1062 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1063 {
1064 	unsigned long flags;
1065 	bool was_busy = false;
1066 	int ret;
1067 
1068 	/* Lock queue */
1069 	spin_lock_irqsave(&master->queue_lock, flags);
1070 
1071 	/* Make sure we are not already running a message */
1072 	if (master->cur_msg) {
1073 		spin_unlock_irqrestore(&master->queue_lock, flags);
1074 		return;
1075 	}
1076 
1077 	/* If another context is idling the device then defer */
1078 	if (master->idling) {
1079 		queue_kthread_work(&master->kworker, &master->pump_messages);
1080 		spin_unlock_irqrestore(&master->queue_lock, flags);
1081 		return;
1082 	}
1083 
1084 	/* Check if the queue is idle */
1085 	if (list_empty(&master->queue) || !master->running) {
1086 		if (!master->busy) {
1087 			spin_unlock_irqrestore(&master->queue_lock, flags);
1088 			return;
1089 		}
1090 
1091 		/* Only do teardown in the thread */
1092 		if (!in_kthread) {
1093 			queue_kthread_work(&master->kworker,
1094 					   &master->pump_messages);
1095 			spin_unlock_irqrestore(&master->queue_lock, flags);
1096 			return;
1097 		}
1098 
1099 		master->busy = false;
1100 		master->idling = true;
1101 		spin_unlock_irqrestore(&master->queue_lock, flags);
1102 
1103 		kfree(master->dummy_rx);
1104 		master->dummy_rx = NULL;
1105 		kfree(master->dummy_tx);
1106 		master->dummy_tx = NULL;
1107 		if (master->unprepare_transfer_hardware &&
1108 		    master->unprepare_transfer_hardware(master))
1109 			dev_err(&master->dev,
1110 				"failed to unprepare transfer hardware\n");
1111 		if (master->auto_runtime_pm) {
1112 			pm_runtime_mark_last_busy(master->dev.parent);
1113 			pm_runtime_put_autosuspend(master->dev.parent);
1114 		}
1115 		trace_spi_master_idle(master);
1116 
1117 		spin_lock_irqsave(&master->queue_lock, flags);
1118 		master->idling = false;
1119 		spin_unlock_irqrestore(&master->queue_lock, flags);
1120 		return;
1121 	}
1122 
1123 	/* Extract head of queue */
1124 	master->cur_msg =
1125 		list_first_entry(&master->queue, struct spi_message, queue);
1126 
1127 	list_del_init(&master->cur_msg->queue);
1128 	if (master->busy)
1129 		was_busy = true;
1130 	else
1131 		master->busy = true;
1132 	spin_unlock_irqrestore(&master->queue_lock, flags);
1133 
1134 	if (!was_busy && master->auto_runtime_pm) {
1135 		ret = pm_runtime_get_sync(master->dev.parent);
1136 		if (ret < 0) {
1137 			dev_err(&master->dev, "Failed to power device: %d\n",
1138 				ret);
1139 			return;
1140 		}
1141 	}
1142 
1143 	if (!was_busy)
1144 		trace_spi_master_busy(master);
1145 
1146 	if (!was_busy && master->prepare_transfer_hardware) {
1147 		ret = master->prepare_transfer_hardware(master);
1148 		if (ret) {
1149 			dev_err(&master->dev,
1150 				"failed to prepare transfer hardware\n");
1151 
1152 			if (master->auto_runtime_pm)
1153 				pm_runtime_put(master->dev.parent);
1154 			return;
1155 		}
1156 	}
1157 
1158 	trace_spi_message_start(master->cur_msg);
1159 
1160 	if (master->prepare_message) {
1161 		ret = master->prepare_message(master, master->cur_msg);
1162 		if (ret) {
1163 			dev_err(&master->dev,
1164 				"failed to prepare message: %d\n", ret);
1165 			master->cur_msg->status = ret;
1166 			spi_finalize_current_message(master);
1167 			return;
1168 		}
1169 		master->cur_msg_prepared = true;
1170 	}
1171 
1172 	ret = spi_map_msg(master, master->cur_msg);
1173 	if (ret) {
1174 		master->cur_msg->status = ret;
1175 		spi_finalize_current_message(master);
1176 		return;
1177 	}
1178 
1179 	ret = master->transfer_one_message(master, master->cur_msg);
1180 	if (ret) {
1181 		dev_err(&master->dev,
1182 			"failed to transfer one message from queue\n");
1183 		return;
1184 	}
1185 }
1186 
1187 /**
1188  * spi_pump_messages - kthread work function which processes spi message queue
1189  * @work: pointer to kthread work struct contained in the master struct
1190  */
spi_pump_messages(struct kthread_work * work)1191 static void spi_pump_messages(struct kthread_work *work)
1192 {
1193 	struct spi_master *master =
1194 		container_of(work, struct spi_master, pump_messages);
1195 
1196 	__spi_pump_messages(master, true);
1197 }
1198 
spi_init_queue(struct spi_master * master)1199 static int spi_init_queue(struct spi_master *master)
1200 {
1201 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1202 
1203 	master->running = false;
1204 	master->busy = false;
1205 
1206 	init_kthread_worker(&master->kworker);
1207 	master->kworker_task = kthread_run(kthread_worker_fn,
1208 					   &master->kworker, "%s",
1209 					   dev_name(&master->dev));
1210 	if (IS_ERR(master->kworker_task)) {
1211 		dev_err(&master->dev, "failed to create message pump task\n");
1212 		return PTR_ERR(master->kworker_task);
1213 	}
1214 	init_kthread_work(&master->pump_messages, spi_pump_messages);
1215 
1216 	/*
1217 	 * Master config will indicate if this controller should run the
1218 	 * message pump with high (realtime) priority to reduce the transfer
1219 	 * latency on the bus by minimising the delay between a transfer
1220 	 * request and the scheduling of the message pump thread. Without this
1221 	 * setting the message pump thread will remain at default priority.
1222 	 */
1223 	if (master->rt) {
1224 		dev_info(&master->dev,
1225 			"will run message pump with realtime priority\n");
1226 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 /**
1233  * spi_get_next_queued_message() - called by driver to check for queued
1234  * messages
1235  * @master: the master to check for queued messages
1236  *
1237  * If there are more messages in the queue, the next message is returned from
1238  * this call.
1239  *
1240  * Return: the next message in the queue, else NULL if the queue is empty.
1241  */
spi_get_next_queued_message(struct spi_master * master)1242 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1243 {
1244 	struct spi_message *next;
1245 	unsigned long flags;
1246 
1247 	/* get a pointer to the next message, if any */
1248 	spin_lock_irqsave(&master->queue_lock, flags);
1249 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1250 					queue);
1251 	spin_unlock_irqrestore(&master->queue_lock, flags);
1252 
1253 	return next;
1254 }
1255 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1256 
1257 /**
1258  * spi_finalize_current_message() - the current message is complete
1259  * @master: the master to return the message to
1260  *
1261  * Called by the driver to notify the core that the message in the front of the
1262  * queue is complete and can be removed from the queue.
1263  */
spi_finalize_current_message(struct spi_master * master)1264 void spi_finalize_current_message(struct spi_master *master)
1265 {
1266 	struct spi_message *mesg;
1267 	unsigned long flags;
1268 	int ret;
1269 
1270 	spin_lock_irqsave(&master->queue_lock, flags);
1271 	mesg = master->cur_msg;
1272 	spin_unlock_irqrestore(&master->queue_lock, flags);
1273 
1274 	spi_unmap_msg(master, mesg);
1275 
1276 	if (master->cur_msg_prepared && master->unprepare_message) {
1277 		ret = master->unprepare_message(master, mesg);
1278 		if (ret) {
1279 			dev_err(&master->dev,
1280 				"failed to unprepare message: %d\n", ret);
1281 		}
1282 	}
1283 
1284 	spin_lock_irqsave(&master->queue_lock, flags);
1285 	master->cur_msg = NULL;
1286 	master->cur_msg_prepared = false;
1287 	queue_kthread_work(&master->kworker, &master->pump_messages);
1288 	spin_unlock_irqrestore(&master->queue_lock, flags);
1289 
1290 	trace_spi_message_done(mesg);
1291 
1292 	mesg->state = NULL;
1293 	if (mesg->complete)
1294 		mesg->complete(mesg->context);
1295 }
1296 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1297 
spi_start_queue(struct spi_master * master)1298 static int spi_start_queue(struct spi_master *master)
1299 {
1300 	unsigned long flags;
1301 
1302 	spin_lock_irqsave(&master->queue_lock, flags);
1303 
1304 	if (master->running || master->busy) {
1305 		spin_unlock_irqrestore(&master->queue_lock, flags);
1306 		return -EBUSY;
1307 	}
1308 
1309 	master->running = true;
1310 	master->cur_msg = NULL;
1311 	spin_unlock_irqrestore(&master->queue_lock, flags);
1312 
1313 	queue_kthread_work(&master->kworker, &master->pump_messages);
1314 
1315 	return 0;
1316 }
1317 
spi_stop_queue(struct spi_master * master)1318 static int spi_stop_queue(struct spi_master *master)
1319 {
1320 	unsigned long flags;
1321 	unsigned limit = 500;
1322 	int ret = 0;
1323 
1324 	spin_lock_irqsave(&master->queue_lock, flags);
1325 
1326 	/*
1327 	 * This is a bit lame, but is optimized for the common execution path.
1328 	 * A wait_queue on the master->busy could be used, but then the common
1329 	 * execution path (pump_messages) would be required to call wake_up or
1330 	 * friends on every SPI message. Do this instead.
1331 	 */
1332 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1333 		spin_unlock_irqrestore(&master->queue_lock, flags);
1334 		usleep_range(10000, 11000);
1335 		spin_lock_irqsave(&master->queue_lock, flags);
1336 	}
1337 
1338 	if (!list_empty(&master->queue) || master->busy)
1339 		ret = -EBUSY;
1340 	else
1341 		master->running = false;
1342 
1343 	spin_unlock_irqrestore(&master->queue_lock, flags);
1344 
1345 	if (ret) {
1346 		dev_warn(&master->dev,
1347 			 "could not stop message queue\n");
1348 		return ret;
1349 	}
1350 	return ret;
1351 }
1352 
spi_destroy_queue(struct spi_master * master)1353 static int spi_destroy_queue(struct spi_master *master)
1354 {
1355 	int ret;
1356 
1357 	ret = spi_stop_queue(master);
1358 
1359 	/*
1360 	 * flush_kthread_worker will block until all work is done.
1361 	 * If the reason that stop_queue timed out is that the work will never
1362 	 * finish, then it does no good to call flush/stop thread, so
1363 	 * return anyway.
1364 	 */
1365 	if (ret) {
1366 		dev_err(&master->dev, "problem destroying queue\n");
1367 		return ret;
1368 	}
1369 
1370 	flush_kthread_worker(&master->kworker);
1371 	kthread_stop(master->kworker_task);
1372 
1373 	return 0;
1374 }
1375 
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)1376 static int __spi_queued_transfer(struct spi_device *spi,
1377 				 struct spi_message *msg,
1378 				 bool need_pump)
1379 {
1380 	struct spi_master *master = spi->master;
1381 	unsigned long flags;
1382 
1383 	spin_lock_irqsave(&master->queue_lock, flags);
1384 
1385 	if (!master->running) {
1386 		spin_unlock_irqrestore(&master->queue_lock, flags);
1387 		return -ESHUTDOWN;
1388 	}
1389 	msg->actual_length = 0;
1390 	msg->status = -EINPROGRESS;
1391 
1392 	list_add_tail(&msg->queue, &master->queue);
1393 	if (!master->busy && need_pump)
1394 		queue_kthread_work(&master->kworker, &master->pump_messages);
1395 
1396 	spin_unlock_irqrestore(&master->queue_lock, flags);
1397 	return 0;
1398 }
1399 
1400 /**
1401  * spi_queued_transfer - transfer function for queued transfers
1402  * @spi: spi device which is requesting transfer
1403  * @msg: spi message which is to handled is queued to driver queue
1404  *
1405  * Return: zero on success, else a negative error code.
1406  */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)1407 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1408 {
1409 	return __spi_queued_transfer(spi, msg, true);
1410 }
1411 
spi_master_initialize_queue(struct spi_master * master)1412 static int spi_master_initialize_queue(struct spi_master *master)
1413 {
1414 	int ret;
1415 
1416 	master->transfer = spi_queued_transfer;
1417 	if (!master->transfer_one_message)
1418 		master->transfer_one_message = spi_transfer_one_message;
1419 
1420 	/* Initialize and start queue */
1421 	ret = spi_init_queue(master);
1422 	if (ret) {
1423 		dev_err(&master->dev, "problem initializing queue\n");
1424 		goto err_init_queue;
1425 	}
1426 	master->queued = true;
1427 	ret = spi_start_queue(master);
1428 	if (ret) {
1429 		dev_err(&master->dev, "problem starting queue\n");
1430 		goto err_start_queue;
1431 	}
1432 
1433 	return 0;
1434 
1435 err_start_queue:
1436 	spi_destroy_queue(master);
1437 err_init_queue:
1438 	return ret;
1439 }
1440 
1441 /*-------------------------------------------------------------------------*/
1442 
1443 #if defined(CONFIG_OF)
1444 static struct spi_device *
of_register_spi_device(struct spi_master * master,struct device_node * nc)1445 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1446 {
1447 	struct spi_device *spi;
1448 	int rc;
1449 	u32 value;
1450 
1451 	/* Alloc an spi_device */
1452 	spi = spi_alloc_device(master);
1453 	if (!spi) {
1454 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1455 			nc->full_name);
1456 		rc = -ENOMEM;
1457 		goto err_out;
1458 	}
1459 
1460 	/* Select device driver */
1461 	rc = of_modalias_node(nc, spi->modalias,
1462 				sizeof(spi->modalias));
1463 	if (rc < 0) {
1464 		dev_err(&master->dev, "cannot find modalias for %s\n",
1465 			nc->full_name);
1466 		goto err_out;
1467 	}
1468 
1469 	/* Device address */
1470 	rc = of_property_read_u32(nc, "reg", &value);
1471 	if (rc) {
1472 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1473 			nc->full_name, rc);
1474 		goto err_out;
1475 	}
1476 	spi->chip_select = value;
1477 
1478 	/* Mode (clock phase/polarity/etc.) */
1479 	if (of_find_property(nc, "spi-cpha", NULL))
1480 		spi->mode |= SPI_CPHA;
1481 	if (of_find_property(nc, "spi-cpol", NULL))
1482 		spi->mode |= SPI_CPOL;
1483 	if (of_find_property(nc, "spi-cs-high", NULL))
1484 		spi->mode |= SPI_CS_HIGH;
1485 	if (of_find_property(nc, "spi-3wire", NULL))
1486 		spi->mode |= SPI_3WIRE;
1487 	if (of_find_property(nc, "spi-lsb-first", NULL))
1488 		spi->mode |= SPI_LSB_FIRST;
1489 
1490 	/* Device DUAL/QUAD mode */
1491 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1492 		switch (value) {
1493 		case 1:
1494 			break;
1495 		case 2:
1496 			spi->mode |= SPI_TX_DUAL;
1497 			break;
1498 		case 4:
1499 			spi->mode |= SPI_TX_QUAD;
1500 			break;
1501 		default:
1502 			dev_warn(&master->dev,
1503 				"spi-tx-bus-width %d not supported\n",
1504 				value);
1505 			break;
1506 		}
1507 	}
1508 
1509 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1510 		switch (value) {
1511 		case 1:
1512 			break;
1513 		case 2:
1514 			spi->mode |= SPI_RX_DUAL;
1515 			break;
1516 		case 4:
1517 			spi->mode |= SPI_RX_QUAD;
1518 			break;
1519 		default:
1520 			dev_warn(&master->dev,
1521 				"spi-rx-bus-width %d not supported\n",
1522 				value);
1523 			break;
1524 		}
1525 	}
1526 
1527 	/* Device speed */
1528 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1529 	if (rc) {
1530 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1531 			nc->full_name, rc);
1532 		goto err_out;
1533 	}
1534 	spi->max_speed_hz = value;
1535 
1536 	/* Store a pointer to the node in the device structure */
1537 	of_node_get(nc);
1538 	spi->dev.of_node = nc;
1539 
1540 	/* Register the new device */
1541 	rc = spi_add_device(spi);
1542 	if (rc) {
1543 		dev_err(&master->dev, "spi_device register error %s\n",
1544 			nc->full_name);
1545 		goto err_out;
1546 	}
1547 
1548 	return spi;
1549 
1550 err_out:
1551 	spi_dev_put(spi);
1552 	return ERR_PTR(rc);
1553 }
1554 
1555 /**
1556  * of_register_spi_devices() - Register child devices onto the SPI bus
1557  * @master:	Pointer to spi_master device
1558  *
1559  * Registers an spi_device for each child node of master node which has a 'reg'
1560  * property.
1561  */
of_register_spi_devices(struct spi_master * master)1562 static void of_register_spi_devices(struct spi_master *master)
1563 {
1564 	struct spi_device *spi;
1565 	struct device_node *nc;
1566 
1567 	if (!master->dev.of_node)
1568 		return;
1569 
1570 	for_each_available_child_of_node(master->dev.of_node, nc) {
1571 		spi = of_register_spi_device(master, nc);
1572 		if (IS_ERR(spi))
1573 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1574 				nc->full_name);
1575 	}
1576 }
1577 #else
of_register_spi_devices(struct spi_master * master)1578 static void of_register_spi_devices(struct spi_master *master) { }
1579 #endif
1580 
1581 #ifdef CONFIG_ACPI
acpi_spi_add_resource(struct acpi_resource * ares,void * data)1582 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1583 {
1584 	struct spi_device *spi = data;
1585 
1586 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1587 		struct acpi_resource_spi_serialbus *sb;
1588 
1589 		sb = &ares->data.spi_serial_bus;
1590 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1591 			spi->chip_select = sb->device_selection;
1592 			spi->max_speed_hz = sb->connection_speed;
1593 
1594 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1595 				spi->mode |= SPI_CPHA;
1596 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1597 				spi->mode |= SPI_CPOL;
1598 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1599 				spi->mode |= SPI_CS_HIGH;
1600 		}
1601 	} else if (spi->irq < 0) {
1602 		struct resource r;
1603 
1604 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1605 			spi->irq = r.start;
1606 	}
1607 
1608 	/* Always tell the ACPI core to skip this resource */
1609 	return 1;
1610 }
1611 
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)1612 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1613 				       void *data, void **return_value)
1614 {
1615 	struct spi_master *master = data;
1616 	struct list_head resource_list;
1617 	struct acpi_device *adev;
1618 	struct spi_device *spi;
1619 	int ret;
1620 
1621 	if (acpi_bus_get_device(handle, &adev))
1622 		return AE_OK;
1623 	if (acpi_bus_get_status(adev) || !adev->status.present)
1624 		return AE_OK;
1625 
1626 	spi = spi_alloc_device(master);
1627 	if (!spi) {
1628 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1629 			dev_name(&adev->dev));
1630 		return AE_NO_MEMORY;
1631 	}
1632 
1633 	ACPI_COMPANION_SET(&spi->dev, adev);
1634 	spi->irq = -1;
1635 
1636 	INIT_LIST_HEAD(&resource_list);
1637 	ret = acpi_dev_get_resources(adev, &resource_list,
1638 				     acpi_spi_add_resource, spi);
1639 	acpi_dev_free_resource_list(&resource_list);
1640 
1641 	if (ret < 0 || !spi->max_speed_hz) {
1642 		spi_dev_put(spi);
1643 		return AE_OK;
1644 	}
1645 
1646 	adev->power.flags.ignore_parent = true;
1647 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1648 	if (spi_add_device(spi)) {
1649 		adev->power.flags.ignore_parent = false;
1650 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1651 			dev_name(&adev->dev));
1652 		spi_dev_put(spi);
1653 	}
1654 
1655 	return AE_OK;
1656 }
1657 
acpi_register_spi_devices(struct spi_master * master)1658 static void acpi_register_spi_devices(struct spi_master *master)
1659 {
1660 	acpi_status status;
1661 	acpi_handle handle;
1662 
1663 	handle = ACPI_HANDLE(master->dev.parent);
1664 	if (!handle)
1665 		return;
1666 
1667 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1668 				     acpi_spi_add_device, NULL,
1669 				     master, NULL);
1670 	if (ACPI_FAILURE(status))
1671 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1672 }
1673 #else
acpi_register_spi_devices(struct spi_master * master)1674 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1675 #endif /* CONFIG_ACPI */
1676 
spi_master_release(struct device * dev)1677 static void spi_master_release(struct device *dev)
1678 {
1679 	struct spi_master *master;
1680 
1681 	master = container_of(dev, struct spi_master, dev);
1682 	kfree(master);
1683 }
1684 
1685 static struct class spi_master_class = {
1686 	.name		= "spi_master",
1687 	.owner		= THIS_MODULE,
1688 	.dev_release	= spi_master_release,
1689 	.dev_groups	= spi_master_groups,
1690 };
1691 
1692 
1693 /**
1694  * spi_alloc_master - allocate SPI master controller
1695  * @dev: the controller, possibly using the platform_bus
1696  * @size: how much zeroed driver-private data to allocate; the pointer to this
1697  *	memory is in the driver_data field of the returned device,
1698  *	accessible with spi_master_get_devdata().
1699  * Context: can sleep
1700  *
1701  * This call is used only by SPI master controller drivers, which are the
1702  * only ones directly touching chip registers.  It's how they allocate
1703  * an spi_master structure, prior to calling spi_register_master().
1704  *
1705  * This must be called from context that can sleep.
1706  *
1707  * The caller is responsible for assigning the bus number and initializing
1708  * the master's methods before calling spi_register_master(); and (after errors
1709  * adding the device) calling spi_master_put() to prevent a memory leak.
1710  *
1711  * Return: the SPI master structure on success, else NULL.
1712  */
spi_alloc_master(struct device * dev,unsigned size)1713 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1714 {
1715 	struct spi_master	*master;
1716 
1717 	if (!dev)
1718 		return NULL;
1719 
1720 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1721 	if (!master)
1722 		return NULL;
1723 
1724 	device_initialize(&master->dev);
1725 	master->bus_num = -1;
1726 	master->num_chipselect = 1;
1727 	master->dev.class = &spi_master_class;
1728 	master->dev.parent = dev;
1729 	spi_master_set_devdata(master, &master[1]);
1730 
1731 	return master;
1732 }
1733 EXPORT_SYMBOL_GPL(spi_alloc_master);
1734 
devm_spi_release_master(struct device * dev,void * master)1735 static void devm_spi_release_master(struct device *dev, void *master)
1736 {
1737 	spi_master_put(*(struct spi_master **)master);
1738 }
1739 
1740 /**
1741  * devm_spi_alloc_master - resource-managed spi_alloc_master()
1742  * @dev: physical device of SPI master
1743  * @size: how much zeroed driver-private data to allocate
1744  * Context: can sleep
1745  *
1746  * Allocate an SPI master and automatically release a reference on it
1747  * when @dev is unbound from its driver.  Drivers are thus relieved from
1748  * having to call spi_master_put().
1749  *
1750  * The arguments to this function are identical to spi_alloc_master().
1751  *
1752  * Return: the SPI master structure on success, else NULL.
1753  */
devm_spi_alloc_master(struct device * dev,unsigned int size)1754 struct spi_master *devm_spi_alloc_master(struct device *dev, unsigned int size)
1755 {
1756 	struct spi_master **ptr, *master;
1757 
1758 	ptr = devres_alloc(devm_spi_release_master, sizeof(*ptr),
1759 			   GFP_KERNEL);
1760 	if (!ptr)
1761 		return NULL;
1762 
1763 	master = spi_alloc_master(dev, size);
1764 	if (master) {
1765 		master->devm_allocated = true;
1766 		*ptr = master;
1767 		devres_add(dev, ptr);
1768 	} else {
1769 		devres_free(ptr);
1770 	}
1771 
1772 	return master;
1773 }
1774 EXPORT_SYMBOL_GPL(devm_spi_alloc_master);
1775 
1776 #ifdef CONFIG_OF
of_spi_register_master(struct spi_master * master)1777 static int of_spi_register_master(struct spi_master *master)
1778 {
1779 	int nb, i, *cs;
1780 	struct device_node *np = master->dev.of_node;
1781 
1782 	if (!np)
1783 		return 0;
1784 
1785 	nb = of_gpio_named_count(np, "cs-gpios");
1786 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1787 
1788 	/* Return error only for an incorrectly formed cs-gpios property */
1789 	if (nb == 0 || nb == -ENOENT)
1790 		return 0;
1791 	else if (nb < 0)
1792 		return nb;
1793 
1794 	cs = devm_kzalloc(&master->dev,
1795 			  sizeof(int) * master->num_chipselect,
1796 			  GFP_KERNEL);
1797 	master->cs_gpios = cs;
1798 
1799 	if (!master->cs_gpios)
1800 		return -ENOMEM;
1801 
1802 	for (i = 0; i < master->num_chipselect; i++)
1803 		cs[i] = -ENOENT;
1804 
1805 	for (i = 0; i < nb; i++)
1806 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1807 
1808 	return 0;
1809 }
1810 #else
of_spi_register_master(struct spi_master * master)1811 static int of_spi_register_master(struct spi_master *master)
1812 {
1813 	return 0;
1814 }
1815 #endif
1816 
1817 /**
1818  * spi_register_master - register SPI master controller
1819  * @master: initialized master, originally from spi_alloc_master()
1820  * Context: can sleep
1821  *
1822  * SPI master controllers connect to their drivers using some non-SPI bus,
1823  * such as the platform bus.  The final stage of probe() in that code
1824  * includes calling spi_register_master() to hook up to this SPI bus glue.
1825  *
1826  * SPI controllers use board specific (often SOC specific) bus numbers,
1827  * and board-specific addressing for SPI devices combines those numbers
1828  * with chip select numbers.  Since SPI does not directly support dynamic
1829  * device identification, boards need configuration tables telling which
1830  * chip is at which address.
1831  *
1832  * This must be called from context that can sleep.  It returns zero on
1833  * success, else a negative error code (dropping the master's refcount).
1834  * After a successful return, the caller is responsible for calling
1835  * spi_unregister_master().
1836  *
1837  * Return: zero on success, else a negative error code.
1838  */
spi_register_master(struct spi_master * master)1839 int spi_register_master(struct spi_master *master)
1840 {
1841 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1842 	struct device		*dev = master->dev.parent;
1843 	struct boardinfo	*bi;
1844 	int			status = -ENODEV;
1845 	int			dynamic = 0;
1846 
1847 	if (!dev)
1848 		return -ENODEV;
1849 
1850 	status = of_spi_register_master(master);
1851 	if (status)
1852 		return status;
1853 
1854 	/* even if it's just one always-selected device, there must
1855 	 * be at least one chipselect
1856 	 */
1857 	if (master->num_chipselect == 0)
1858 		return -EINVAL;
1859 
1860 	if ((master->bus_num < 0) && master->dev.of_node)
1861 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1862 
1863 	/* convention:  dynamically assigned bus IDs count down from the max */
1864 	if (master->bus_num < 0) {
1865 		/* FIXME switch to an IDR based scheme, something like
1866 		 * I2C now uses, so we can't run out of "dynamic" IDs
1867 		 */
1868 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1869 		dynamic = 1;
1870 	}
1871 
1872 	INIT_LIST_HEAD(&master->queue);
1873 	spin_lock_init(&master->queue_lock);
1874 	spin_lock_init(&master->bus_lock_spinlock);
1875 	mutex_init(&master->bus_lock_mutex);
1876 	master->bus_lock_flag = 0;
1877 	init_completion(&master->xfer_completion);
1878 	if (!master->max_dma_len)
1879 		master->max_dma_len = INT_MAX;
1880 
1881 	/* register the device, then userspace will see it.
1882 	 * registration fails if the bus ID is in use.
1883 	 */
1884 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1885 	status = device_add(&master->dev);
1886 	if (status < 0)
1887 		goto done;
1888 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1889 			dynamic ? " (dynamic)" : "");
1890 
1891 	/* If we're using a queued driver, start the queue */
1892 	if (master->transfer)
1893 		dev_info(dev, "master is unqueued, this is deprecated\n");
1894 	else {
1895 		status = spi_master_initialize_queue(master);
1896 		if (status) {
1897 			device_del(&master->dev);
1898 			goto done;
1899 		}
1900 	}
1901 	/* add statistics */
1902 	spin_lock_init(&master->statistics.lock);
1903 
1904 	mutex_lock(&board_lock);
1905 	list_add_tail(&master->list, &spi_master_list);
1906 	list_for_each_entry(bi, &board_list, list)
1907 		spi_match_master_to_boardinfo(master, &bi->board_info);
1908 	mutex_unlock(&board_lock);
1909 
1910 	/* Register devices from the device tree and ACPI */
1911 	of_register_spi_devices(master);
1912 	acpi_register_spi_devices(master);
1913 done:
1914 	return status;
1915 }
1916 EXPORT_SYMBOL_GPL(spi_register_master);
1917 
devm_spi_unregister(struct device * dev,void * res)1918 static void devm_spi_unregister(struct device *dev, void *res)
1919 {
1920 	spi_unregister_master(*(struct spi_master **)res);
1921 }
1922 
1923 /**
1924  * dev_spi_register_master - register managed SPI master controller
1925  * @dev:    device managing SPI master
1926  * @master: initialized master, originally from spi_alloc_master()
1927  * Context: can sleep
1928  *
1929  * Register a SPI device as with spi_register_master() which will
1930  * automatically be unregister
1931  *
1932  * Return: zero on success, else a negative error code.
1933  */
devm_spi_register_master(struct device * dev,struct spi_master * master)1934 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1935 {
1936 	struct spi_master **ptr;
1937 	int ret;
1938 
1939 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1940 	if (!ptr)
1941 		return -ENOMEM;
1942 
1943 	ret = spi_register_master(master);
1944 	if (!ret) {
1945 		*ptr = master;
1946 		devres_add(dev, ptr);
1947 	} else {
1948 		devres_free(ptr);
1949 	}
1950 
1951 	return ret;
1952 }
1953 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1954 
__unregister(struct device * dev,void * null)1955 static int __unregister(struct device *dev, void *null)
1956 {
1957 	spi_unregister_device(to_spi_device(dev));
1958 	return 0;
1959 }
1960 
1961 /**
1962  * spi_unregister_master - unregister SPI master controller
1963  * @master: the master being unregistered
1964  * Context: can sleep
1965  *
1966  * This call is used only by SPI master controller drivers, which are the
1967  * only ones directly touching chip registers.
1968  *
1969  * This must be called from context that can sleep.
1970  */
spi_unregister_master(struct spi_master * master)1971 void spi_unregister_master(struct spi_master *master)
1972 {
1973 	/* Prevent addition of new devices, unregister existing ones */
1974 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
1975 		mutex_lock(&spi_add_lock);
1976 
1977 	device_for_each_child(&master->dev, NULL, __unregister);
1978 
1979 	if (master->queued) {
1980 		if (spi_destroy_queue(master))
1981 			dev_err(&master->dev, "queue remove failed\n");
1982 	}
1983 
1984 	mutex_lock(&board_lock);
1985 	list_del(&master->list);
1986 	mutex_unlock(&board_lock);
1987 
1988 	device_del(&master->dev);
1989 
1990 	/* Release the last reference on the master if its driver
1991 	 * has not yet been converted to devm_spi_alloc_master().
1992 	 */
1993 	if (!master->devm_allocated)
1994 		put_device(&master->dev);
1995 
1996 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
1997 		mutex_unlock(&spi_add_lock);
1998 }
1999 EXPORT_SYMBOL_GPL(spi_unregister_master);
2000 
spi_master_suspend(struct spi_master * master)2001 int spi_master_suspend(struct spi_master *master)
2002 {
2003 	int ret;
2004 
2005 	/* Basically no-ops for non-queued masters */
2006 	if (!master->queued)
2007 		return 0;
2008 
2009 	ret = spi_stop_queue(master);
2010 	if (ret)
2011 		dev_err(&master->dev, "queue stop failed\n");
2012 
2013 	return ret;
2014 }
2015 EXPORT_SYMBOL_GPL(spi_master_suspend);
2016 
spi_master_resume(struct spi_master * master)2017 int spi_master_resume(struct spi_master *master)
2018 {
2019 	int ret;
2020 
2021 	if (!master->queued)
2022 		return 0;
2023 
2024 	ret = spi_start_queue(master);
2025 	if (ret)
2026 		dev_err(&master->dev, "queue restart failed\n");
2027 
2028 	return ret;
2029 }
2030 EXPORT_SYMBOL_GPL(spi_master_resume);
2031 
__spi_master_match(struct device * dev,const void * data)2032 static int __spi_master_match(struct device *dev, const void *data)
2033 {
2034 	struct spi_master *m;
2035 	const u16 *bus_num = data;
2036 
2037 	m = container_of(dev, struct spi_master, dev);
2038 	return m->bus_num == *bus_num;
2039 }
2040 
2041 /**
2042  * spi_busnum_to_master - look up master associated with bus_num
2043  * @bus_num: the master's bus number
2044  * Context: can sleep
2045  *
2046  * This call may be used with devices that are registered after
2047  * arch init time.  It returns a refcounted pointer to the relevant
2048  * spi_master (which the caller must release), or NULL if there is
2049  * no such master registered.
2050  *
2051  * Return: the SPI master structure on success, else NULL.
2052  */
spi_busnum_to_master(u16 bus_num)2053 struct spi_master *spi_busnum_to_master(u16 bus_num)
2054 {
2055 	struct device		*dev;
2056 	struct spi_master	*master = NULL;
2057 
2058 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2059 				__spi_master_match);
2060 	if (dev)
2061 		master = container_of(dev, struct spi_master, dev);
2062 	/* reference got in class_find_device */
2063 	return master;
2064 }
2065 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2066 
2067 
2068 /*-------------------------------------------------------------------------*/
2069 
2070 /* Core methods for SPI master protocol drivers.  Some of the
2071  * other core methods are currently defined as inline functions.
2072  */
2073 
__spi_validate_bits_per_word(struct spi_master * master,u8 bits_per_word)2074 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2075 {
2076 	if (master->bits_per_word_mask) {
2077 		/* Only 32 bits fit in the mask */
2078 		if (bits_per_word > 32)
2079 			return -EINVAL;
2080 		if (!(master->bits_per_word_mask &
2081 				SPI_BPW_MASK(bits_per_word)))
2082 			return -EINVAL;
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 /**
2089  * spi_setup - setup SPI mode and clock rate
2090  * @spi: the device whose settings are being modified
2091  * Context: can sleep, and no requests are queued to the device
2092  *
2093  * SPI protocol drivers may need to update the transfer mode if the
2094  * device doesn't work with its default.  They may likewise need
2095  * to update clock rates or word sizes from initial values.  This function
2096  * changes those settings, and must be called from a context that can sleep.
2097  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2098  * effect the next time the device is selected and data is transferred to
2099  * or from it.  When this function returns, the spi device is deselected.
2100  *
2101  * Note that this call will fail if the protocol driver specifies an option
2102  * that the underlying controller or its driver does not support.  For
2103  * example, not all hardware supports wire transfers using nine bit words,
2104  * LSB-first wire encoding, or active-high chipselects.
2105  *
2106  * Return: zero on success, else a negative error code.
2107  */
spi_setup(struct spi_device * spi)2108 int spi_setup(struct spi_device *spi)
2109 {
2110 	unsigned	bad_bits, ugly_bits;
2111 	int		status;
2112 
2113 	/* check mode to prevent that DUAL and QUAD set at the same time
2114 	 */
2115 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2116 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2117 		dev_err(&spi->dev,
2118 		"setup: can not select dual and quad at the same time\n");
2119 		return -EINVAL;
2120 	}
2121 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2122 	 */
2123 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2124 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2125 		return -EINVAL;
2126 	/* help drivers fail *cleanly* when they need options
2127 	 * that aren't supported with their current master
2128 	 */
2129 	bad_bits = spi->mode & ~spi->master->mode_bits;
2130 	ugly_bits = bad_bits &
2131 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2132 	if (ugly_bits) {
2133 		dev_warn(&spi->dev,
2134 			 "setup: ignoring unsupported mode bits %x\n",
2135 			 ugly_bits);
2136 		spi->mode &= ~ugly_bits;
2137 		bad_bits &= ~ugly_bits;
2138 	}
2139 	if (bad_bits) {
2140 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2141 			bad_bits);
2142 		return -EINVAL;
2143 	}
2144 
2145 	if (!spi->bits_per_word)
2146 		spi->bits_per_word = 8;
2147 
2148 	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2149 	if (status)
2150 		return status;
2151 
2152 	if (!spi->max_speed_hz)
2153 		spi->max_speed_hz = spi->master->max_speed_hz;
2154 
2155 	if (spi->master->setup)
2156 		status = spi->master->setup(spi);
2157 
2158 	spi_set_cs(spi, false);
2159 
2160 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2161 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2162 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2163 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2164 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2165 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2166 			spi->bits_per_word, spi->max_speed_hz,
2167 			status);
2168 
2169 	return status;
2170 }
2171 EXPORT_SYMBOL_GPL(spi_setup);
2172 
__spi_validate(struct spi_device * spi,struct spi_message * message)2173 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2174 {
2175 	struct spi_master *master = spi->master;
2176 	struct spi_transfer *xfer;
2177 	int w_size;
2178 
2179 	if (list_empty(&message->transfers))
2180 		return -EINVAL;
2181 
2182 	/* Half-duplex links include original MicroWire, and ones with
2183 	 * only one data pin like SPI_3WIRE (switches direction) or where
2184 	 * either MOSI or MISO is missing.  They can also be caused by
2185 	 * software limitations.
2186 	 */
2187 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2188 			|| (spi->mode & SPI_3WIRE)) {
2189 		unsigned flags = master->flags;
2190 
2191 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2192 			if (xfer->rx_buf && xfer->tx_buf)
2193 				return -EINVAL;
2194 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2195 				return -EINVAL;
2196 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2197 				return -EINVAL;
2198 		}
2199 	}
2200 
2201 	/**
2202 	 * Set transfer bits_per_word and max speed as spi device default if
2203 	 * it is not set for this transfer.
2204 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2205 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2206 	 */
2207 	message->frame_length = 0;
2208 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2209 		message->frame_length += xfer->len;
2210 		if (!xfer->bits_per_word)
2211 			xfer->bits_per_word = spi->bits_per_word;
2212 
2213 		if (!xfer->speed_hz)
2214 			xfer->speed_hz = spi->max_speed_hz;
2215 		if (!xfer->speed_hz)
2216 			xfer->speed_hz = master->max_speed_hz;
2217 
2218 		if (master->max_speed_hz &&
2219 		    xfer->speed_hz > master->max_speed_hz)
2220 			xfer->speed_hz = master->max_speed_hz;
2221 
2222 		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2223 			return -EINVAL;
2224 
2225 		/*
2226 		 * SPI transfer length should be multiple of SPI word size
2227 		 * where SPI word size should be power-of-two multiple
2228 		 */
2229 		if (xfer->bits_per_word <= 8)
2230 			w_size = 1;
2231 		else if (xfer->bits_per_word <= 16)
2232 			w_size = 2;
2233 		else
2234 			w_size = 4;
2235 
2236 		/* No partial transfers accepted */
2237 		if (xfer->len % w_size)
2238 			return -EINVAL;
2239 
2240 		if (xfer->speed_hz && master->min_speed_hz &&
2241 		    xfer->speed_hz < master->min_speed_hz)
2242 			return -EINVAL;
2243 
2244 		if (xfer->tx_buf && !xfer->tx_nbits)
2245 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2246 		if (xfer->rx_buf && !xfer->rx_nbits)
2247 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2248 		/* check transfer tx/rx_nbits:
2249 		 * 1. check the value matches one of single, dual and quad
2250 		 * 2. check tx/rx_nbits match the mode in spi_device
2251 		 */
2252 		if (xfer->tx_buf) {
2253 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2254 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2255 				xfer->tx_nbits != SPI_NBITS_QUAD)
2256 				return -EINVAL;
2257 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2258 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2259 				return -EINVAL;
2260 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2261 				!(spi->mode & SPI_TX_QUAD))
2262 				return -EINVAL;
2263 		}
2264 		/* check transfer rx_nbits */
2265 		if (xfer->rx_buf) {
2266 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2267 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2268 				xfer->rx_nbits != SPI_NBITS_QUAD)
2269 				return -EINVAL;
2270 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2271 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2272 				return -EINVAL;
2273 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2274 				!(spi->mode & SPI_RX_QUAD))
2275 				return -EINVAL;
2276 		}
2277 	}
2278 
2279 	message->status = -EINPROGRESS;
2280 
2281 	return 0;
2282 }
2283 
__spi_async(struct spi_device * spi,struct spi_message * message)2284 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2285 {
2286 	struct spi_master *master = spi->master;
2287 
2288 	message->spi = spi;
2289 
2290 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2291 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2292 
2293 	trace_spi_message_submit(message);
2294 
2295 	return master->transfer(spi, message);
2296 }
2297 
2298 /**
2299  * spi_async - asynchronous SPI transfer
2300  * @spi: device with which data will be exchanged
2301  * @message: describes the data transfers, including completion callback
2302  * Context: any (irqs may be blocked, etc)
2303  *
2304  * This call may be used in_irq and other contexts which can't sleep,
2305  * as well as from task contexts which can sleep.
2306  *
2307  * The completion callback is invoked in a context which can't sleep.
2308  * Before that invocation, the value of message->status is undefined.
2309  * When the callback is issued, message->status holds either zero (to
2310  * indicate complete success) or a negative error code.  After that
2311  * callback returns, the driver which issued the transfer request may
2312  * deallocate the associated memory; it's no longer in use by any SPI
2313  * core or controller driver code.
2314  *
2315  * Note that although all messages to a spi_device are handled in
2316  * FIFO order, messages may go to different devices in other orders.
2317  * Some device might be higher priority, or have various "hard" access
2318  * time requirements, for example.
2319  *
2320  * On detection of any fault during the transfer, processing of
2321  * the entire message is aborted, and the device is deselected.
2322  * Until returning from the associated message completion callback,
2323  * no other spi_message queued to that device will be processed.
2324  * (This rule applies equally to all the synchronous transfer calls,
2325  * which are wrappers around this core asynchronous primitive.)
2326  *
2327  * Return: zero on success, else a negative error code.
2328  */
spi_async(struct spi_device * spi,struct spi_message * message)2329 int spi_async(struct spi_device *spi, struct spi_message *message)
2330 {
2331 	struct spi_master *master = spi->master;
2332 	int ret;
2333 	unsigned long flags;
2334 
2335 	ret = __spi_validate(spi, message);
2336 	if (ret != 0)
2337 		return ret;
2338 
2339 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2340 
2341 	if (master->bus_lock_flag)
2342 		ret = -EBUSY;
2343 	else
2344 		ret = __spi_async(spi, message);
2345 
2346 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2347 
2348 	return ret;
2349 }
2350 EXPORT_SYMBOL_GPL(spi_async);
2351 
2352 /**
2353  * spi_async_locked - version of spi_async with exclusive bus usage
2354  * @spi: device with which data will be exchanged
2355  * @message: describes the data transfers, including completion callback
2356  * Context: any (irqs may be blocked, etc)
2357  *
2358  * This call may be used in_irq and other contexts which can't sleep,
2359  * as well as from task contexts which can sleep.
2360  *
2361  * The completion callback is invoked in a context which can't sleep.
2362  * Before that invocation, the value of message->status is undefined.
2363  * When the callback is issued, message->status holds either zero (to
2364  * indicate complete success) or a negative error code.  After that
2365  * callback returns, the driver which issued the transfer request may
2366  * deallocate the associated memory; it's no longer in use by any SPI
2367  * core or controller driver code.
2368  *
2369  * Note that although all messages to a spi_device are handled in
2370  * FIFO order, messages may go to different devices in other orders.
2371  * Some device might be higher priority, or have various "hard" access
2372  * time requirements, for example.
2373  *
2374  * On detection of any fault during the transfer, processing of
2375  * the entire message is aborted, and the device is deselected.
2376  * Until returning from the associated message completion callback,
2377  * no other spi_message queued to that device will be processed.
2378  * (This rule applies equally to all the synchronous transfer calls,
2379  * which are wrappers around this core asynchronous primitive.)
2380  *
2381  * Return: zero on success, else a negative error code.
2382  */
spi_async_locked(struct spi_device * spi,struct spi_message * message)2383 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2384 {
2385 	struct spi_master *master = spi->master;
2386 	int ret;
2387 	unsigned long flags;
2388 
2389 	ret = __spi_validate(spi, message);
2390 	if (ret != 0)
2391 		return ret;
2392 
2393 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2394 
2395 	ret = __spi_async(spi, message);
2396 
2397 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2398 
2399 	return ret;
2400 
2401 }
2402 EXPORT_SYMBOL_GPL(spi_async_locked);
2403 
2404 
2405 /*-------------------------------------------------------------------------*/
2406 
2407 /* Utility methods for SPI master protocol drivers, layered on
2408  * top of the core.  Some other utility methods are defined as
2409  * inline functions.
2410  */
2411 
spi_complete(void * arg)2412 static void spi_complete(void *arg)
2413 {
2414 	complete(arg);
2415 }
2416 
__spi_sync(struct spi_device * spi,struct spi_message * message,int bus_locked)2417 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2418 		      int bus_locked)
2419 {
2420 	DECLARE_COMPLETION_ONSTACK(done);
2421 	int status;
2422 	struct spi_master *master = spi->master;
2423 	unsigned long flags;
2424 
2425 	status = __spi_validate(spi, message);
2426 	if (status != 0)
2427 		return status;
2428 
2429 	message->complete = spi_complete;
2430 	message->context = &done;
2431 	message->spi = spi;
2432 
2433 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2434 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2435 
2436 	if (!bus_locked)
2437 		mutex_lock(&master->bus_lock_mutex);
2438 
2439 	/* If we're not using the legacy transfer method then we will
2440 	 * try to transfer in the calling context so special case.
2441 	 * This code would be less tricky if we could remove the
2442 	 * support for driver implemented message queues.
2443 	 */
2444 	if (master->transfer == spi_queued_transfer) {
2445 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2446 
2447 		trace_spi_message_submit(message);
2448 
2449 		status = __spi_queued_transfer(spi, message, false);
2450 
2451 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2452 	} else {
2453 		status = spi_async_locked(spi, message);
2454 	}
2455 
2456 	if (!bus_locked)
2457 		mutex_unlock(&master->bus_lock_mutex);
2458 
2459 	if (status == 0) {
2460 		/* Push out the messages in the calling context if we
2461 		 * can.
2462 		 */
2463 		if (master->transfer == spi_queued_transfer) {
2464 			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2465 						       spi_sync_immediate);
2466 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2467 						       spi_sync_immediate);
2468 			__spi_pump_messages(master, false);
2469 		}
2470 
2471 		wait_for_completion(&done);
2472 		status = message->status;
2473 	}
2474 	message->context = NULL;
2475 	return status;
2476 }
2477 
2478 /**
2479  * spi_sync - blocking/synchronous SPI data transfers
2480  * @spi: device with which data will be exchanged
2481  * @message: describes the data transfers
2482  * Context: can sleep
2483  *
2484  * This call may only be used from a context that may sleep.  The sleep
2485  * is non-interruptible, and has no timeout.  Low-overhead controller
2486  * drivers may DMA directly into and out of the message buffers.
2487  *
2488  * Note that the SPI device's chip select is active during the message,
2489  * and then is normally disabled between messages.  Drivers for some
2490  * frequently-used devices may want to minimize costs of selecting a chip,
2491  * by leaving it selected in anticipation that the next message will go
2492  * to the same chip.  (That may increase power usage.)
2493  *
2494  * Also, the caller is guaranteeing that the memory associated with the
2495  * message will not be freed before this call returns.
2496  *
2497  * Return: zero on success, else a negative error code.
2498  */
spi_sync(struct spi_device * spi,struct spi_message * message)2499 int spi_sync(struct spi_device *spi, struct spi_message *message)
2500 {
2501 	return __spi_sync(spi, message, 0);
2502 }
2503 EXPORT_SYMBOL_GPL(spi_sync);
2504 
2505 /**
2506  * spi_sync_locked - version of spi_sync with exclusive bus usage
2507  * @spi: device with which data will be exchanged
2508  * @message: describes the data transfers
2509  * Context: can sleep
2510  *
2511  * This call may only be used from a context that may sleep.  The sleep
2512  * is non-interruptible, and has no timeout.  Low-overhead controller
2513  * drivers may DMA directly into and out of the message buffers.
2514  *
2515  * This call should be used by drivers that require exclusive access to the
2516  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2517  * be released by a spi_bus_unlock call when the exclusive access is over.
2518  *
2519  * Return: zero on success, else a negative error code.
2520  */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)2521 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2522 {
2523 	return __spi_sync(spi, message, 1);
2524 }
2525 EXPORT_SYMBOL_GPL(spi_sync_locked);
2526 
2527 /**
2528  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2529  * @master: SPI bus master that should be locked for exclusive bus access
2530  * Context: can sleep
2531  *
2532  * This call may only be used from a context that may sleep.  The sleep
2533  * is non-interruptible, and has no timeout.
2534  *
2535  * This call should be used by drivers that require exclusive access to the
2536  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2537  * exclusive access is over. Data transfer must be done by spi_sync_locked
2538  * and spi_async_locked calls when the SPI bus lock is held.
2539  *
2540  * Return: always zero.
2541  */
spi_bus_lock(struct spi_master * master)2542 int spi_bus_lock(struct spi_master *master)
2543 {
2544 	unsigned long flags;
2545 
2546 	mutex_lock(&master->bus_lock_mutex);
2547 
2548 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2549 	master->bus_lock_flag = 1;
2550 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2551 
2552 	/* mutex remains locked until spi_bus_unlock is called */
2553 
2554 	return 0;
2555 }
2556 EXPORT_SYMBOL_GPL(spi_bus_lock);
2557 
2558 /**
2559  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2560  * @master: SPI bus master that was locked for exclusive bus access
2561  * Context: can sleep
2562  *
2563  * This call may only be used from a context that may sleep.  The sleep
2564  * is non-interruptible, and has no timeout.
2565  *
2566  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2567  * call.
2568  *
2569  * Return: always zero.
2570  */
spi_bus_unlock(struct spi_master * master)2571 int spi_bus_unlock(struct spi_master *master)
2572 {
2573 	master->bus_lock_flag = 0;
2574 
2575 	mutex_unlock(&master->bus_lock_mutex);
2576 
2577 	return 0;
2578 }
2579 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2580 
2581 /* portable code must never pass more than 32 bytes */
2582 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2583 
2584 static u8	*buf;
2585 
2586 /**
2587  * spi_write_then_read - SPI synchronous write followed by read
2588  * @spi: device with which data will be exchanged
2589  * @txbuf: data to be written (need not be dma-safe)
2590  * @n_tx: size of txbuf, in bytes
2591  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2592  * @n_rx: size of rxbuf, in bytes
2593  * Context: can sleep
2594  *
2595  * This performs a half duplex MicroWire style transaction with the
2596  * device, sending txbuf and then reading rxbuf.  The return value
2597  * is zero for success, else a negative errno status code.
2598  * This call may only be used from a context that may sleep.
2599  *
2600  * Parameters to this routine are always copied using a small buffer;
2601  * portable code should never use this for more than 32 bytes.
2602  * Performance-sensitive or bulk transfer code should instead use
2603  * spi_{async,sync}() calls with dma-safe buffers.
2604  *
2605  * Return: zero on success, else a negative error code.
2606  */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)2607 int spi_write_then_read(struct spi_device *spi,
2608 		const void *txbuf, unsigned n_tx,
2609 		void *rxbuf, unsigned n_rx)
2610 {
2611 	static DEFINE_MUTEX(lock);
2612 
2613 	int			status;
2614 	struct spi_message	message;
2615 	struct spi_transfer	x[2];
2616 	u8			*local_buf;
2617 
2618 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2619 	 * copying here, (as a pure convenience thing), but we can
2620 	 * keep heap costs out of the hot path unless someone else is
2621 	 * using the pre-allocated buffer or the transfer is too large.
2622 	 */
2623 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2624 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2625 				    GFP_KERNEL | GFP_DMA);
2626 		if (!local_buf)
2627 			return -ENOMEM;
2628 	} else {
2629 		local_buf = buf;
2630 	}
2631 
2632 	spi_message_init(&message);
2633 	memset(x, 0, sizeof(x));
2634 	if (n_tx) {
2635 		x[0].len = n_tx;
2636 		spi_message_add_tail(&x[0], &message);
2637 	}
2638 	if (n_rx) {
2639 		x[1].len = n_rx;
2640 		spi_message_add_tail(&x[1], &message);
2641 	}
2642 
2643 	memcpy(local_buf, txbuf, n_tx);
2644 	x[0].tx_buf = local_buf;
2645 	x[1].rx_buf = local_buf + n_tx;
2646 
2647 	/* do the i/o */
2648 	status = spi_sync(spi, &message);
2649 	if (status == 0)
2650 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2651 
2652 	if (x[0].tx_buf == buf)
2653 		mutex_unlock(&lock);
2654 	else
2655 		kfree(local_buf);
2656 
2657 	return status;
2658 }
2659 EXPORT_SYMBOL_GPL(spi_write_then_read);
2660 
2661 /*-------------------------------------------------------------------------*/
2662 
2663 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
__spi_of_device_match(struct device * dev,void * data)2664 static int __spi_of_device_match(struct device *dev, void *data)
2665 {
2666 	return dev->of_node == data;
2667 }
2668 
2669 /* must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)2670 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2671 {
2672 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2673 						__spi_of_device_match);
2674 	return dev ? to_spi_device(dev) : NULL;
2675 }
2676 
__spi_of_master_match(struct device * dev,const void * data)2677 static int __spi_of_master_match(struct device *dev, const void *data)
2678 {
2679 	return dev->of_node == data;
2680 }
2681 
2682 /* the spi masters are not using spi_bus, so we find it with another way */
of_find_spi_master_by_node(struct device_node * node)2683 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2684 {
2685 	struct device *dev;
2686 
2687 	dev = class_find_device(&spi_master_class, NULL, node,
2688 				__spi_of_master_match);
2689 	if (!dev)
2690 		return NULL;
2691 
2692 	/* reference got in class_find_device */
2693 	return container_of(dev, struct spi_master, dev);
2694 }
2695 
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)2696 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2697 			 void *arg)
2698 {
2699 	struct of_reconfig_data *rd = arg;
2700 	struct spi_master *master;
2701 	struct spi_device *spi;
2702 
2703 	switch (of_reconfig_get_state_change(action, arg)) {
2704 	case OF_RECONFIG_CHANGE_ADD:
2705 		master = of_find_spi_master_by_node(rd->dn->parent);
2706 		if (master == NULL)
2707 			return NOTIFY_OK;	/* not for us */
2708 
2709 		spi = of_register_spi_device(master, rd->dn);
2710 		put_device(&master->dev);
2711 
2712 		if (IS_ERR(spi)) {
2713 			pr_err("%s: failed to create for '%s'\n",
2714 					__func__, rd->dn->full_name);
2715 			return notifier_from_errno(PTR_ERR(spi));
2716 		}
2717 		break;
2718 
2719 	case OF_RECONFIG_CHANGE_REMOVE:
2720 		/* find our device by node */
2721 		spi = of_find_spi_device_by_node(rd->dn);
2722 		if (spi == NULL)
2723 			return NOTIFY_OK;	/* no? not meant for us */
2724 
2725 		/* unregister takes one ref away */
2726 		spi_unregister_device(spi);
2727 
2728 		/* and put the reference of the find */
2729 		put_device(&spi->dev);
2730 		break;
2731 	}
2732 
2733 	return NOTIFY_OK;
2734 }
2735 
2736 static struct notifier_block spi_of_notifier = {
2737 	.notifier_call = of_spi_notify,
2738 };
2739 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2740 extern struct notifier_block spi_of_notifier;
2741 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2742 
spi_init(void)2743 static int __init spi_init(void)
2744 {
2745 	int	status;
2746 
2747 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2748 	if (!buf) {
2749 		status = -ENOMEM;
2750 		goto err0;
2751 	}
2752 
2753 	status = bus_register(&spi_bus_type);
2754 	if (status < 0)
2755 		goto err1;
2756 
2757 	status = class_register(&spi_master_class);
2758 	if (status < 0)
2759 		goto err2;
2760 
2761 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2762 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2763 
2764 	return 0;
2765 
2766 err2:
2767 	bus_unregister(&spi_bus_type);
2768 err1:
2769 	kfree(buf);
2770 	buf = NULL;
2771 err0:
2772 	return status;
2773 }
2774 
2775 /* board_info is normally registered in arch_initcall(),
2776  * but even essential drivers wait till later
2777  *
2778  * REVISIT only boardinfo really needs static linking. the rest (device and
2779  * driver registration) _could_ be dynamically linked (modular) ... costs
2780  * include needing to have boardinfo data structures be much more public.
2781  */
2782 postcore_initcall(spi_init);
2783 
2784