• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
4  *
5  * Copyright (C) 2005, Intec Automation Inc.
6  * Copyright (C) 2014, Freescale Semiconductor, Inc.
7  *
8  * This code is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/math64.h>
19 #include <linux/sizes.h>
20 
21 #include <linux/mtd/mtd.h>
22 #include <linux/of_platform.h>
23 #include <linux/spi/flash.h>
24 #include <linux/mtd/spi-nor.h>
25 
26 /* Define max times to check status register before we give up. */
27 
28 /*
29  * For everything but full-chip erase; probably could be much smaller, but kept
30  * around for safety for now
31  */
32 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
33 
34 /*
35  * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
36  * for larger flash
37  */
38 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
39 
40 #define SPI_NOR_MAX_ID_LEN	6
41 
42 struct flash_info {
43 	char		*name;
44 
45 	/*
46 	 * This array stores the ID bytes.
47 	 * The first three bytes are the JEDIC ID.
48 	 * JEDEC ID zero means "no ID" (mostly older chips).
49 	 */
50 	u8		id[SPI_NOR_MAX_ID_LEN];
51 	u8		id_len;
52 
53 	/* The size listed here is what works with SPINOR_OP_SE, which isn't
54 	 * necessarily called a "sector" by the vendor.
55 	 */
56 	unsigned	sector_size;
57 	u16		n_sectors;
58 
59 	u16		page_size;
60 	u16		addr_width;
61 
62 	u16		flags;
63 #define	SECT_4K			0x01	/* SPINOR_OP_BE_4K works uniformly */
64 #define	SPI_NOR_NO_ERASE	0x02	/* No erase command needed */
65 #define	SST_WRITE		0x04	/* use SST byte programming */
66 #define	SPI_NOR_NO_FR		0x08	/* Can't do fastread */
67 #define	SECT_4K_PMC		0x10	/* SPINOR_OP_BE_4K_PMC works uniformly */
68 #define	SPI_NOR_DUAL_READ	0x20    /* Flash supports Dual Read */
69 #define	SPI_NOR_QUAD_READ	0x40    /* Flash supports Quad Read */
70 #define	USE_FSR			0x80	/* use flag status register */
71 };
72 
73 #define JEDEC_MFR(info)	((info)->id[0])
74 
75 static const struct flash_info *spi_nor_match_id(const char *name);
76 
77 /*
78  * Read the status register, returning its value in the location
79  * Return the status register value.
80  * Returns negative if error occurred.
81  */
read_sr(struct spi_nor * nor)82 static int read_sr(struct spi_nor *nor)
83 {
84 	int ret;
85 	u8 val;
86 
87 	ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
88 	if (ret < 0) {
89 		pr_err("error %d reading SR\n", (int) ret);
90 		return ret;
91 	}
92 
93 	return val;
94 }
95 
96 /*
97  * Read the flag status register, returning its value in the location
98  * Return the status register value.
99  * Returns negative if error occurred.
100  */
read_fsr(struct spi_nor * nor)101 static int read_fsr(struct spi_nor *nor)
102 {
103 	int ret;
104 	u8 val;
105 
106 	ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
107 	if (ret < 0) {
108 		pr_err("error %d reading FSR\n", ret);
109 		return ret;
110 	}
111 
112 	return val;
113 }
114 
115 /*
116  * Read configuration register, returning its value in the
117  * location. Return the configuration register value.
118  * Returns negative if error occured.
119  */
read_cr(struct spi_nor * nor)120 static int read_cr(struct spi_nor *nor)
121 {
122 	int ret;
123 	u8 val;
124 
125 	ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
126 	if (ret < 0) {
127 		dev_err(nor->dev, "error %d reading CR\n", ret);
128 		return ret;
129 	}
130 
131 	return val;
132 }
133 
134 /*
135  * Dummy Cycle calculation for different type of read.
136  * It can be used to support more commands with
137  * different dummy cycle requirements.
138  */
spi_nor_read_dummy_cycles(struct spi_nor * nor)139 static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
140 {
141 	switch (nor->flash_read) {
142 	case SPI_NOR_FAST:
143 	case SPI_NOR_DUAL:
144 	case SPI_NOR_QUAD:
145 		return 8;
146 	case SPI_NOR_NORMAL:
147 		return 0;
148 	}
149 	return 0;
150 }
151 
152 /*
153  * Write status register 1 byte
154  * Returns negative if error occurred.
155  */
write_sr(struct spi_nor * nor,u8 val)156 static inline int write_sr(struct spi_nor *nor, u8 val)
157 {
158 	nor->cmd_buf[0] = val;
159 	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
160 }
161 
162 /*
163  * Set write enable latch with Write Enable command.
164  * Returns negative if error occurred.
165  */
write_enable(struct spi_nor * nor)166 static inline int write_enable(struct spi_nor *nor)
167 {
168 	return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
169 }
170 
171 /*
172  * Send write disble instruction to the chip.
173  */
write_disable(struct spi_nor * nor)174 static inline int write_disable(struct spi_nor *nor)
175 {
176 	return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
177 }
178 
mtd_to_spi_nor(struct mtd_info * mtd)179 static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
180 {
181 	return mtd->priv;
182 }
183 
184 /* Enable/disable 4-byte addressing mode. */
set_4byte(struct spi_nor * nor,const struct flash_info * info,int enable)185 static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
186 			    int enable)
187 {
188 	int status;
189 	bool need_wren = false;
190 	u8 cmd;
191 
192 	switch (JEDEC_MFR(info)) {
193 	case SNOR_MFR_MICRON:
194 		/* Some Micron need WREN command; all will accept it */
195 		need_wren = true;
196 	case SNOR_MFR_MACRONIX:
197 	case SNOR_MFR_WINBOND:
198 		if (need_wren)
199 			write_enable(nor);
200 
201 		cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
202 		status = nor->write_reg(nor, cmd, NULL, 0);
203 		if (need_wren)
204 			write_disable(nor);
205 
206 		return status;
207 	default:
208 		/* Spansion style */
209 		nor->cmd_buf[0] = enable << 7;
210 		return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
211 	}
212 }
spi_nor_sr_ready(struct spi_nor * nor)213 static inline int spi_nor_sr_ready(struct spi_nor *nor)
214 {
215 	int sr = read_sr(nor);
216 	if (sr < 0)
217 		return sr;
218 	else
219 		return !(sr & SR_WIP);
220 }
221 
spi_nor_fsr_ready(struct spi_nor * nor)222 static inline int spi_nor_fsr_ready(struct spi_nor *nor)
223 {
224 	int fsr = read_fsr(nor);
225 	if (fsr < 0)
226 		return fsr;
227 	else
228 		return fsr & FSR_READY;
229 }
230 
spi_nor_ready(struct spi_nor * nor)231 static int spi_nor_ready(struct spi_nor *nor)
232 {
233 	int sr, fsr;
234 	sr = spi_nor_sr_ready(nor);
235 	if (sr < 0)
236 		return sr;
237 	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
238 	if (fsr < 0)
239 		return fsr;
240 	return sr && fsr;
241 }
242 
243 /*
244  * Service routine to read status register until ready, or timeout occurs.
245  * Returns non-zero if error.
246  */
spi_nor_wait_till_ready_with_timeout(struct spi_nor * nor,unsigned long timeout_jiffies)247 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
248 						unsigned long timeout_jiffies)
249 {
250 	unsigned long deadline;
251 	int timeout = 0, ret;
252 
253 	deadline = jiffies + timeout_jiffies;
254 
255 	while (!timeout) {
256 		if (time_after_eq(jiffies, deadline))
257 			timeout = 1;
258 
259 		ret = spi_nor_ready(nor);
260 		if (ret < 0)
261 			return ret;
262 		if (ret)
263 			return 0;
264 
265 		cond_resched();
266 	}
267 
268 	dev_err(nor->dev, "flash operation timed out\n");
269 
270 	return -ETIMEDOUT;
271 }
272 
spi_nor_wait_till_ready(struct spi_nor * nor)273 static int spi_nor_wait_till_ready(struct spi_nor *nor)
274 {
275 	return spi_nor_wait_till_ready_with_timeout(nor,
276 						    DEFAULT_READY_WAIT_JIFFIES);
277 }
278 
279 /*
280  * Erase the whole flash memory
281  *
282  * Returns 0 if successful, non-zero otherwise.
283  */
erase_chip(struct spi_nor * nor)284 static int erase_chip(struct spi_nor *nor)
285 {
286 	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
287 
288 	return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
289 }
290 
spi_nor_lock_and_prep(struct spi_nor * nor,enum spi_nor_ops ops)291 static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
292 {
293 	int ret = 0;
294 
295 	mutex_lock(&nor->lock);
296 
297 	if (nor->prepare) {
298 		ret = nor->prepare(nor, ops);
299 		if (ret) {
300 			dev_err(nor->dev, "failed in the preparation.\n");
301 			mutex_unlock(&nor->lock);
302 			return ret;
303 		}
304 	}
305 	return ret;
306 }
307 
spi_nor_unlock_and_unprep(struct spi_nor * nor,enum spi_nor_ops ops)308 static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
309 {
310 	if (nor->unprepare)
311 		nor->unprepare(nor, ops);
312 	mutex_unlock(&nor->lock);
313 }
314 
315 /*
316  * Erase an address range on the nor chip.  The address range may extend
317  * one or more erase sectors.  Return an error is there is a problem erasing.
318  */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)319 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
320 {
321 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
322 	u32 addr, len;
323 	uint32_t rem;
324 	int ret;
325 
326 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
327 			(long long)instr->len);
328 
329 	div_u64_rem(instr->len, mtd->erasesize, &rem);
330 	if (rem)
331 		return -EINVAL;
332 
333 	addr = instr->addr;
334 	len = instr->len;
335 
336 	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
337 	if (ret)
338 		return ret;
339 
340 	/* whole-chip erase? */
341 	if (len == mtd->size) {
342 		unsigned long timeout;
343 
344 		write_enable(nor);
345 
346 		if (erase_chip(nor)) {
347 			ret = -EIO;
348 			goto erase_err;
349 		}
350 
351 		/*
352 		 * Scale the timeout linearly with the size of the flash, with
353 		 * a minimum calibrated to an old 2MB flash. We could try to
354 		 * pull these from CFI/SFDP, but these values should be good
355 		 * enough for now.
356 		 */
357 		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
358 			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
359 			      (unsigned long)(mtd->size / SZ_2M));
360 		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
361 		if (ret)
362 			goto erase_err;
363 
364 	/* REVISIT in some cases we could speed up erasing large regions
365 	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
366 	 * to use "small sector erase", but that's not always optimal.
367 	 */
368 
369 	/* "sector"-at-a-time erase */
370 	} else {
371 		while (len) {
372 			write_enable(nor);
373 
374 			if (nor->erase(nor, addr)) {
375 				ret = -EIO;
376 				goto erase_err;
377 			}
378 
379 			addr += mtd->erasesize;
380 			len -= mtd->erasesize;
381 
382 			ret = spi_nor_wait_till_ready(nor);
383 			if (ret)
384 				goto erase_err;
385 		}
386 	}
387 
388 	write_disable(nor);
389 
390 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
391 
392 	instr->state = MTD_ERASE_DONE;
393 	mtd_erase_callback(instr);
394 
395 	return ret;
396 
397 erase_err:
398 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
399 	instr->state = MTD_ERASE_FAILED;
400 	return ret;
401 }
402 
stm_get_locked_range(struct spi_nor * nor,u8 sr,loff_t * ofs,uint64_t * len)403 static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
404 				 uint64_t *len)
405 {
406 	struct mtd_info *mtd = &nor->mtd;
407 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
408 	int shift = ffs(mask) - 1;
409 	int pow;
410 
411 	if (!(sr & mask)) {
412 		/* No protection */
413 		*ofs = 0;
414 		*len = 0;
415 	} else {
416 		pow = ((sr & mask) ^ mask) >> shift;
417 		*len = mtd->size >> pow;
418 		*ofs = mtd->size - *len;
419 	}
420 }
421 
422 /*
423  * Return 1 if the entire region is locked, 0 otherwise
424  */
stm_is_locked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)425 static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
426 			    u8 sr)
427 {
428 	loff_t lock_offs;
429 	uint64_t lock_len;
430 
431 	stm_get_locked_range(nor, sr, &lock_offs, &lock_len);
432 
433 	return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
434 }
435 
436 /*
437  * Lock a region of the flash. Compatible with ST Micro and similar flash.
438  * Supports only the block protection bits BP{0,1,2} in the status register
439  * (SR). Does not support these features found in newer SR bitfields:
440  *   - TB: top/bottom protect - only handle TB=0 (top protect)
441  *   - SEC: sector/block protect - only handle SEC=0 (block protect)
442  *   - CMP: complement protect - only support CMP=0 (range is not complemented)
443  *
444  * Sample table portion for 8MB flash (Winbond w25q64fw):
445  *
446  *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
447  *  --------------------------------------------------------------------------
448  *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
449  *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
450  *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
451  *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
452  *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
453  *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
454  *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
455  *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
456  *
457  * Returns negative on errors, 0 on success.
458  */
stm_lock(struct spi_nor * nor,loff_t ofs,uint64_t len)459 static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
460 {
461 	struct mtd_info *mtd = &nor->mtd;
462 	u8 status_old, status_new;
463 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
464 	u8 shift = ffs(mask) - 1, pow, val;
465 
466 	status_old = read_sr(nor);
467 
468 	/* SPI NOR always locks to the end */
469 	if (ofs + len != mtd->size) {
470 		/* Does combined region extend to end? */
471 		if (!stm_is_locked_sr(nor, ofs + len, mtd->size - ofs - len,
472 				      status_old))
473 			return -EINVAL;
474 		len = mtd->size - ofs;
475 	}
476 
477 	/*
478 	 * Need smallest pow such that:
479 	 *
480 	 *   1 / (2^pow) <= (len / size)
481 	 *
482 	 * so (assuming power-of-2 size) we do:
483 	 *
484 	 *   pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
485 	 */
486 	pow = ilog2(mtd->size) - ilog2(len);
487 	val = mask - (pow << shift);
488 	if (val & ~mask)
489 		return -EINVAL;
490 	/* Don't "lock" with no region! */
491 	if (!(val & mask))
492 		return -EINVAL;
493 
494 	status_new = (status_old & ~mask) | val;
495 
496 	/* Only modify protection if it will not unlock other areas */
497 	if ((status_new & mask) <= (status_old & mask))
498 		return -EINVAL;
499 
500 	write_enable(nor);
501 	return write_sr(nor, status_new);
502 }
503 
504 /*
505  * Unlock a region of the flash. See stm_lock() for more info
506  *
507  * Returns negative on errors, 0 on success.
508  */
stm_unlock(struct spi_nor * nor,loff_t ofs,uint64_t len)509 static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
510 {
511 	struct mtd_info *mtd = &nor->mtd;
512 	uint8_t status_old, status_new;
513 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
514 	u8 shift = ffs(mask) - 1, pow, val;
515 
516 	status_old = read_sr(nor);
517 
518 	/* Cannot unlock; would unlock larger region than requested */
519 	if (stm_is_locked_sr(nor, ofs - mtd->erasesize, mtd->erasesize,
520 			     status_old))
521 		return -EINVAL;
522 
523 	/*
524 	 * Need largest pow such that:
525 	 *
526 	 *   1 / (2^pow) >= (len / size)
527 	 *
528 	 * so (assuming power-of-2 size) we do:
529 	 *
530 	 *   pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
531 	 */
532 	pow = ilog2(mtd->size) - order_base_2(mtd->size - (ofs + len));
533 	if (ofs + len == mtd->size) {
534 		val = 0; /* fully unlocked */
535 	} else {
536 		val = mask - (pow << shift);
537 		/* Some power-of-two sizes are not supported */
538 		if (val & ~mask)
539 			return -EINVAL;
540 	}
541 
542 	status_new = (status_old & ~mask) | val;
543 
544 	/* Only modify protection if it will not lock other areas */
545 	if ((status_new & mask) >= (status_old & mask))
546 		return -EINVAL;
547 
548 	write_enable(nor);
549 	return write_sr(nor, status_new);
550 }
551 
552 /*
553  * Check if a region of the flash is (completely) locked. See stm_lock() for
554  * more info.
555  *
556  * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
557  * negative on errors.
558  */
stm_is_locked(struct spi_nor * nor,loff_t ofs,uint64_t len)559 static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
560 {
561 	int status;
562 
563 	status = read_sr(nor);
564 	if (status < 0)
565 		return status;
566 
567 	return stm_is_locked_sr(nor, ofs, len, status);
568 }
569 
spi_nor_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)570 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
571 {
572 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
573 	int ret;
574 
575 	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
576 	if (ret)
577 		return ret;
578 
579 	ret = nor->flash_lock(nor, ofs, len);
580 
581 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
582 	return ret;
583 }
584 
spi_nor_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)585 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
586 {
587 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
588 	int ret;
589 
590 	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
591 	if (ret)
592 		return ret;
593 
594 	ret = nor->flash_unlock(nor, ofs, len);
595 
596 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
597 	return ret;
598 }
599 
spi_nor_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)600 static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
601 {
602 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
603 	int ret;
604 
605 	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
606 	if (ret)
607 		return ret;
608 
609 	ret = nor->flash_is_locked(nor, ofs, len);
610 
611 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
612 	return ret;
613 }
614 
615 /* Used when the "_ext_id" is two bytes at most */
616 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
617 		.id = {							\
618 			((_jedec_id) >> 16) & 0xff,			\
619 			((_jedec_id) >> 8) & 0xff,			\
620 			(_jedec_id) & 0xff,				\
621 			((_ext_id) >> 8) & 0xff,			\
622 			(_ext_id) & 0xff,				\
623 			},						\
624 		.id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),	\
625 		.sector_size = (_sector_size),				\
626 		.n_sectors = (_n_sectors),				\
627 		.page_size = 256,					\
628 		.flags = (_flags),
629 
630 #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags)	\
631 		.id = {							\
632 			((_jedec_id) >> 16) & 0xff,			\
633 			((_jedec_id) >> 8) & 0xff,			\
634 			(_jedec_id) & 0xff,				\
635 			((_ext_id) >> 16) & 0xff,			\
636 			((_ext_id) >> 8) & 0xff,			\
637 			(_ext_id) & 0xff,				\
638 			},						\
639 		.id_len = 6,						\
640 		.sector_size = (_sector_size),				\
641 		.n_sectors = (_n_sectors),				\
642 		.page_size = 256,					\
643 		.flags = (_flags),
644 
645 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags)	\
646 		.sector_size = (_sector_size),				\
647 		.n_sectors = (_n_sectors),				\
648 		.page_size = (_page_size),				\
649 		.addr_width = (_addr_width),				\
650 		.flags = (_flags),
651 
652 /* NOTE: double check command sets and memory organization when you add
653  * more nor chips.  This current list focusses on newer chips, which
654  * have been converging on command sets which including JEDEC ID.
655  *
656  * All newly added entries should describe *hardware* and should use SECT_4K
657  * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
658  * scenarios excluding small sectors there is config option that can be
659  * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
660  * For historical (and compatibility) reasons (before we got above config) some
661  * old entries may be missing 4K flag.
662  */
663 static const struct flash_info spi_nor_ids[] = {
664 	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
665 	{ "at25fs010",  INFO(0x1f6601, 0, 32 * 1024,   4, SECT_4K) },
666 	{ "at25fs040",  INFO(0x1f6604, 0, 64 * 1024,   8, SECT_4K) },
667 
668 	{ "at25df041a", INFO(0x1f4401, 0, 64 * 1024,   8, SECT_4K) },
669 	{ "at25df321a", INFO(0x1f4701, 0, 64 * 1024,  64, SECT_4K) },
670 	{ "at25df641",  INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
671 
672 	{ "at26f004",   INFO(0x1f0400, 0, 64 * 1024,  8, SECT_4K) },
673 	{ "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
674 	{ "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
675 	{ "at26df321",  INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
676 
677 	{ "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
678 
679 	/* EON -- en25xxx */
680 	{ "en25f32",    INFO(0x1c3116, 0, 64 * 1024,   64, SECT_4K) },
681 	{ "en25p32",    INFO(0x1c2016, 0, 64 * 1024,   64, 0) },
682 	{ "en25q32b",   INFO(0x1c3016, 0, 64 * 1024,   64, 0) },
683 	{ "en25p64",    INFO(0x1c2017, 0, 64 * 1024,  128, 0) },
684 	{ "en25q64",    INFO(0x1c3017, 0, 64 * 1024,  128, SECT_4K) },
685 	{ "en25qh128",  INFO(0x1c7018, 0, 64 * 1024,  256, 0) },
686 	{ "en25qh256",  INFO(0x1c7019, 0, 64 * 1024,  512, 0) },
687 	{ "en25s64",	INFO(0x1c3817, 0, 64 * 1024,  128, SECT_4K) },
688 
689 	/* ESMT */
690 	{ "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
691 
692 	/* Everspin */
693 	{ "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
694 	{ "mr25h10",  CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
695 
696 	/* Fujitsu */
697 	{ "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
698 
699 	/* GigaDevice */
700 	{ "gd25q32", INFO(0xc84016, 0, 64 * 1024,  64, SECT_4K) },
701 	{ "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
702 	{ "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
703 
704 	/* Intel/Numonyx -- xxxs33b */
705 	{ "160s33b",  INFO(0x898911, 0, 64 * 1024,  32, 0) },
706 	{ "320s33b",  INFO(0x898912, 0, 64 * 1024,  64, 0) },
707 	{ "640s33b",  INFO(0x898913, 0, 64 * 1024, 128, 0) },
708 
709 	/* ISSI */
710 	{ "is25cd512", INFO(0x7f9d20, 0, 32 * 1024,   2, SECT_4K) },
711 	{ "is25wp032", INFO(0x9d7016, 0, 64 * 1024,  64,
712 			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
713 	{ "is25wp064", INFO(0x9d7017, 0, 64 * 1024, 128,
714 			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
715 	{ "is25wp128", INFO(0x9d7018, 0, 64 * 1024, 256,
716 			SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
717 
718 	/* Macronix */
719 	{ "mx25l512e",   INFO(0xc22010, 0, 64 * 1024,   1, SECT_4K) },
720 	{ "mx25l2005a",  INFO(0xc22012, 0, 64 * 1024,   4, SECT_4K) },
721 	{ "mx25l4005a",  INFO(0xc22013, 0, 64 * 1024,   8, SECT_4K) },
722 	{ "mx25l8005",   INFO(0xc22014, 0, 64 * 1024,  16, 0) },
723 	{ "mx25l1606e",  INFO(0xc22015, 0, 64 * 1024,  32, SECT_4K) },
724 	{ "mx25l3205d",  INFO(0xc22016, 0, 64 * 1024,  64, 0) },
725 	{ "mx25l3255e",  INFO(0xc29e16, 0, 64 * 1024,  64, SECT_4K) },
726 	{ "mx25l6405d",  INFO(0xc22017, 0, 64 * 1024, 128, 0) },
727 	{ "mx25u6435f",  INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
728 	{ "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
729 	{ "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
730 	{ "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
731 	{ "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
732 	{ "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
733 	{ "mx66l1g55g",  INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
734 
735 	/* Micron */
736 	{ "n25q032",	 INFO(0x20ba16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
737 	{ "n25q032a",	 INFO(0x20bb16, 0, 64 * 1024,   64, SPI_NOR_QUAD_READ) },
738 	{ "n25q064",     INFO(0x20ba17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
739 	{ "n25q064a",    INFO(0x20bb17, 0, 64 * 1024,  128, SECT_4K | SPI_NOR_QUAD_READ) },
740 	{ "n25q128a11",  INFO(0x20bb18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
741 	{ "n25q128a13",  INFO(0x20ba18, 0, 64 * 1024,  256, SPI_NOR_QUAD_READ) },
742 	{ "n25q256a",    INFO(0x20ba19, 0, 64 * 1024,  512, SECT_4K | SPI_NOR_QUAD_READ) },
743 	{ "n25q512a",    INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
744 	{ "n25q512ax3",  INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
745 	{ "n25q00",      INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
746 
747 	/* PMC */
748 	{ "pm25lv512",   INFO(0,        0, 32 * 1024,    2, SECT_4K_PMC) },
749 	{ "pm25lv010",   INFO(0,        0, 32 * 1024,    4, SECT_4K_PMC) },
750 	{ "pm25lq032",   INFO(0x7f9d46, 0, 64 * 1024,   64, SECT_4K) },
751 
752 	/* Spansion -- single (large) sector size only, at least
753 	 * for the chips listed here (without boot sectors).
754 	 */
755 	{ "s25sl032p",  INFO(0x010215, 0x4d00,  64 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
756 	{ "s25sl064p",  INFO(0x010216, 0x4d00,  64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
757 	{ "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
758 	{ "s25fl256s1", INFO(0x010219, 0x4d01,  64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
759 	{ "s25fl512s",  INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
760 	{ "s70fl01gs",  INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
761 	{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024,  64, 0) },
762 	{ "s25sl12801", INFO(0x012018, 0x0301,  64 * 1024, 256, 0) },
763 	{ "s25fl128s",	INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
764 	{ "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024,  64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
765 	{ "s25fl129p1", INFO(0x012018, 0x4d01,  64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
766 	{ "s25sl004a",  INFO(0x010212,      0,  64 * 1024,   8, 0) },
767 	{ "s25sl008a",  INFO(0x010213,      0,  64 * 1024,  16, 0) },
768 	{ "s25sl016a",  INFO(0x010214,      0,  64 * 1024,  32, 0) },
769 	{ "s25sl032a",  INFO(0x010215,      0,  64 * 1024,  64, 0) },
770 	{ "s25sl064a",  INFO(0x010216,      0,  64 * 1024, 128, 0) },
771 	{ "s25fl004k",  INFO(0xef4013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
772 	{ "s25fl008k",  INFO(0xef4014,      0,  64 * 1024,  16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
773 	{ "s25fl016k",  INFO(0xef4015,      0,  64 * 1024,  32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
774 	{ "s25fl064k",  INFO(0xef4017,      0,  64 * 1024, 128, SECT_4K) },
775 	{ "s25fl132k",  INFO(0x014016,      0,  64 * 1024,  64, SECT_4K) },
776 	{ "s25fl164k",  INFO(0x014017,      0,  64 * 1024, 128, SECT_4K) },
777 	{ "s25fl204k",  INFO(0x014013,      0,  64 * 1024,   8, SECT_4K | SPI_NOR_DUAL_READ) },
778 
779 	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
780 	{ "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
781 	{ "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
782 	{ "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
783 	{ "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
784 	{ "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
785 	{ "sst25wf512",  INFO(0xbf2501, 0, 64 * 1024,  1, SECT_4K | SST_WRITE) },
786 	{ "sst25wf010",  INFO(0xbf2502, 0, 64 * 1024,  2, SECT_4K | SST_WRITE) },
787 	{ "sst25wf020",  INFO(0xbf2503, 0, 64 * 1024,  4, SECT_4K | SST_WRITE) },
788 	{ "sst25wf020a", INFO(0x621612, 0, 64 * 1024,  4, SECT_4K) },
789 	{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024,  8, SECT_4K) },
790 	{ "sst25wf040",  INFO(0xbf2504, 0, 64 * 1024,  8, SECT_4K | SST_WRITE) },
791 	{ "sst25wf080",  INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
792 
793 	/* ST Microelectronics -- newer production may have feature updates */
794 	{ "m25p05",  INFO(0x202010,  0,  32 * 1024,   2, 0) },
795 	{ "m25p10",  INFO(0x202011,  0,  32 * 1024,   4, 0) },
796 	{ "m25p20",  INFO(0x202012,  0,  64 * 1024,   4, 0) },
797 	{ "m25p40",  INFO(0x202013,  0,  64 * 1024,   8, 0) },
798 	{ "m25p80",  INFO(0x202014,  0,  64 * 1024,  16, 0) },
799 	{ "m25p16",  INFO(0x202015,  0,  64 * 1024,  32, 0) },
800 	{ "m25p32",  INFO(0x202016,  0,  64 * 1024,  64, 0) },
801 	{ "m25p64",  INFO(0x202017,  0,  64 * 1024, 128, 0) },
802 	{ "m25p128", INFO(0x202018,  0, 256 * 1024,  64, 0) },
803 
804 	{ "m25p05-nonjedec",  INFO(0, 0,  32 * 1024,   2, 0) },
805 	{ "m25p10-nonjedec",  INFO(0, 0,  32 * 1024,   4, 0) },
806 	{ "m25p20-nonjedec",  INFO(0, 0,  64 * 1024,   4, 0) },
807 	{ "m25p40-nonjedec",  INFO(0, 0,  64 * 1024,   8, 0) },
808 	{ "m25p80-nonjedec",  INFO(0, 0,  64 * 1024,  16, 0) },
809 	{ "m25p16-nonjedec",  INFO(0, 0,  64 * 1024,  32, 0) },
810 	{ "m25p32-nonjedec",  INFO(0, 0,  64 * 1024,  64, 0) },
811 	{ "m25p64-nonjedec",  INFO(0, 0,  64 * 1024, 128, 0) },
812 	{ "m25p128-nonjedec", INFO(0, 0, 256 * 1024,  64, 0) },
813 
814 	{ "m45pe10", INFO(0x204011,  0, 64 * 1024,    2, 0) },
815 	{ "m45pe80", INFO(0x204014,  0, 64 * 1024,   16, 0) },
816 	{ "m45pe16", INFO(0x204015,  0, 64 * 1024,   32, 0) },
817 
818 	{ "m25pe20", INFO(0x208012,  0, 64 * 1024,  4,       0) },
819 	{ "m25pe80", INFO(0x208014,  0, 64 * 1024, 16,       0) },
820 	{ "m25pe16", INFO(0x208015,  0, 64 * 1024, 32, SECT_4K) },
821 
822 	{ "m25px16",    INFO(0x207115,  0, 64 * 1024, 32, SECT_4K) },
823 	{ "m25px32",    INFO(0x207116,  0, 64 * 1024, 64, SECT_4K) },
824 	{ "m25px32-s0", INFO(0x207316,  0, 64 * 1024, 64, SECT_4K) },
825 	{ "m25px32-s1", INFO(0x206316,  0, 64 * 1024, 64, SECT_4K) },
826 	{ "m25px64",    INFO(0x207117,  0, 64 * 1024, 128, 0) },
827 	{ "m25px80",    INFO(0x207114,  0, 64 * 1024, 16, 0) },
828 
829 	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
830 	{ "w25x05", INFO(0xef3010, 0, 64 * 1024,  1,  SECT_4K) },
831 	{ "w25x10", INFO(0xef3011, 0, 64 * 1024,  2,  SECT_4K) },
832 	{ "w25x20", INFO(0xef3012, 0, 64 * 1024,  4,  SECT_4K) },
833 	{ "w25x40", INFO(0xef3013, 0, 64 * 1024,  8,  SECT_4K) },
834 	{ "w25x80", INFO(0xef3014, 0, 64 * 1024,  16, SECT_4K) },
835 	{ "w25x16", INFO(0xef3015, 0, 64 * 1024,  32, SECT_4K) },
836 	{ "w25x32", INFO(0xef3016, 0, 64 * 1024,  64, SECT_4K) },
837 	{ "w25q32", INFO(0xef4016, 0, 64 * 1024,  64, SECT_4K) },
838 	{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024,  64, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
839 	{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
840 	{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
841 	{ "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
842 	{ "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
843 	{ "w25q80", INFO(0xef5014, 0, 64 * 1024,  16, SECT_4K) },
844 	{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024,  16, SECT_4K) },
845 	{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
846 	{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
847 
848 	/* Catalyst / On Semiconductor -- non-JEDEC */
849 	{ "cat25c11", CAT25_INFO(  16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
850 	{ "cat25c03", CAT25_INFO(  32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
851 	{ "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
852 	{ "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
853 	{ "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
854 	{ },
855 };
856 
spi_nor_read_id(struct spi_nor * nor)857 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
858 {
859 	int			tmp;
860 	u8			id[SPI_NOR_MAX_ID_LEN];
861 	const struct flash_info	*info;
862 
863 	tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
864 	if (tmp < 0) {
865 		dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
866 		return ERR_PTR(tmp);
867 	}
868 
869 	for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
870 		info = &spi_nor_ids[tmp];
871 		if (info->id_len) {
872 			if (!memcmp(info->id, id, info->id_len))
873 				return &spi_nor_ids[tmp];
874 		}
875 	}
876 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n",
877 		id[0], id[1], id[2]);
878 	return ERR_PTR(-ENODEV);
879 }
880 
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)881 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
882 			size_t *retlen, u_char *buf)
883 {
884 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
885 	int ret;
886 
887 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
888 
889 	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
890 	if (ret)
891 		return ret;
892 
893 	ret = nor->read(nor, from, len, retlen, buf);
894 
895 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
896 	return ret;
897 }
898 
sst_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)899 static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
900 		size_t *retlen, const u_char *buf)
901 {
902 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
903 	size_t actual;
904 	int ret;
905 
906 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
907 
908 	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
909 	if (ret)
910 		return ret;
911 
912 	write_enable(nor);
913 
914 	nor->sst_write_second = false;
915 
916 	actual = to % 2;
917 	/* Start write from odd address. */
918 	if (actual) {
919 		nor->program_opcode = SPINOR_OP_BP;
920 
921 		/* write one byte. */
922 		nor->write(nor, to, 1, retlen, buf);
923 		ret = spi_nor_wait_till_ready(nor);
924 		if (ret)
925 			goto time_out;
926 	}
927 	to += actual;
928 
929 	/* Write out most of the data here. */
930 	for (; actual < len - 1; actual += 2) {
931 		nor->program_opcode = SPINOR_OP_AAI_WP;
932 
933 		/* write two bytes. */
934 		nor->write(nor, to, 2, retlen, buf + actual);
935 		ret = spi_nor_wait_till_ready(nor);
936 		if (ret)
937 			goto time_out;
938 		to += 2;
939 		nor->sst_write_second = true;
940 	}
941 	nor->sst_write_second = false;
942 
943 	write_disable(nor);
944 	ret = spi_nor_wait_till_ready(nor);
945 	if (ret)
946 		goto time_out;
947 
948 	/* Write out trailing byte if it exists. */
949 	if (actual != len) {
950 		write_enable(nor);
951 
952 		nor->program_opcode = SPINOR_OP_BP;
953 		nor->write(nor, to, 1, retlen, buf + actual);
954 
955 		ret = spi_nor_wait_till_ready(nor);
956 		if (ret)
957 			goto time_out;
958 		write_disable(nor);
959 	}
960 time_out:
961 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
962 	return ret;
963 }
964 
965 /*
966  * Write an address range to the nor chip.  Data must be written in
967  * FLASH_PAGESIZE chunks.  The address range may be any size provided
968  * it is within the physical boundaries.
969  */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)970 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
971 	size_t *retlen, const u_char *buf)
972 {
973 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
974 	u32 page_offset, page_size, i;
975 	int ret;
976 
977 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
978 
979 	ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
980 	if (ret)
981 		return ret;
982 
983 	write_enable(nor);
984 
985 	page_offset = to & (nor->page_size - 1);
986 
987 	/* do all the bytes fit onto one page? */
988 	if (page_offset + len <= nor->page_size) {
989 		nor->write(nor, to, len, retlen, buf);
990 	} else {
991 		/* the size of data remaining on the first page */
992 		page_size = nor->page_size - page_offset;
993 		nor->write(nor, to, page_size, retlen, buf);
994 
995 		/* write everything in nor->page_size chunks */
996 		for (i = page_size; i < len; i += page_size) {
997 			page_size = len - i;
998 			if (page_size > nor->page_size)
999 				page_size = nor->page_size;
1000 
1001 			ret = spi_nor_wait_till_ready(nor);
1002 			if (ret)
1003 				goto write_err;
1004 
1005 			write_enable(nor);
1006 
1007 			nor->write(nor, to + i, page_size, retlen, buf + i);
1008 		}
1009 	}
1010 
1011 	ret = spi_nor_wait_till_ready(nor);
1012 write_err:
1013 	spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
1014 	return ret;
1015 }
1016 
macronix_quad_enable(struct spi_nor * nor)1017 static int macronix_quad_enable(struct spi_nor *nor)
1018 {
1019 	int ret, val;
1020 
1021 	val = read_sr(nor);
1022 	write_enable(nor);
1023 
1024 	write_sr(nor, val | SR_QUAD_EN_MX);
1025 
1026 	if (spi_nor_wait_till_ready(nor))
1027 		return 1;
1028 
1029 	ret = read_sr(nor);
1030 	if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
1031 		dev_err(nor->dev, "Macronix Quad bit not set\n");
1032 		return -EINVAL;
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 /*
1039  * Write status Register and configuration register with 2 bytes
1040  * The first byte will be written to the status register, while the
1041  * second byte will be written to the configuration register.
1042  * Return negative if error occured.
1043  */
write_sr_cr(struct spi_nor * nor,u16 val)1044 static int write_sr_cr(struct spi_nor *nor, u16 val)
1045 {
1046 	nor->cmd_buf[0] = val & 0xff;
1047 	nor->cmd_buf[1] = (val >> 8);
1048 
1049 	return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2);
1050 }
1051 
spansion_quad_enable(struct spi_nor * nor)1052 static int spansion_quad_enable(struct spi_nor *nor)
1053 {
1054 	int ret;
1055 	int quad_en = CR_QUAD_EN_SPAN << 8;
1056 
1057 	write_enable(nor);
1058 
1059 	ret = write_sr_cr(nor, quad_en);
1060 	if (ret < 0) {
1061 		dev_err(nor->dev,
1062 			"error while writing configuration register\n");
1063 		return -EINVAL;
1064 	}
1065 
1066 	ret = spi_nor_wait_till_ready(nor);
1067 	if (ret) {
1068 		dev_err(nor->dev,
1069 			"timeout while writing configuration register\n");
1070 		return ret;
1071 	}
1072 
1073 	/* read back and check it */
1074 	ret = read_cr(nor);
1075 	if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
1076 		dev_err(nor->dev, "Spansion Quad bit not set\n");
1077 		return -EINVAL;
1078 	}
1079 
1080 	return 0;
1081 }
1082 
set_quad_mode(struct spi_nor * nor,const struct flash_info * info)1083 static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
1084 {
1085 	int status;
1086 
1087 	switch (JEDEC_MFR(info)) {
1088 	case SNOR_MFR_MACRONIX:
1089 		status = macronix_quad_enable(nor);
1090 		if (status) {
1091 			dev_err(nor->dev, "Macronix quad-read not enabled\n");
1092 			return -EINVAL;
1093 		}
1094 		return status;
1095 	case SNOR_MFR_MICRON:
1096 		return 0;
1097 	default:
1098 		status = spansion_quad_enable(nor);
1099 		if (status) {
1100 			dev_err(nor->dev, "Spansion quad-read not enabled\n");
1101 			return -EINVAL;
1102 		}
1103 		return status;
1104 	}
1105 }
1106 
spi_nor_check(struct spi_nor * nor)1107 static int spi_nor_check(struct spi_nor *nor)
1108 {
1109 	if (!nor->dev || !nor->read || !nor->write ||
1110 		!nor->read_reg || !nor->write_reg || !nor->erase) {
1111 		pr_err("spi-nor: please fill all the necessary fields!\n");
1112 		return -EINVAL;
1113 	}
1114 
1115 	return 0;
1116 }
1117 
spi_nor_scan(struct spi_nor * nor,const char * name,enum read_mode mode)1118 int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
1119 {
1120 	const struct flash_info *info = NULL;
1121 	struct device *dev = nor->dev;
1122 	struct mtd_info *mtd = &nor->mtd;
1123 	struct device_node *np = nor->flash_node;
1124 	int ret;
1125 	int i;
1126 
1127 	ret = spi_nor_check(nor);
1128 	if (ret)
1129 		return ret;
1130 
1131 	if (name)
1132 		info = spi_nor_match_id(name);
1133 	/* Try to auto-detect if chip name wasn't specified or not found */
1134 	if (!info)
1135 		info = spi_nor_read_id(nor);
1136 	if (IS_ERR_OR_NULL(info))
1137 		return -ENOENT;
1138 
1139 	/*
1140 	 * If caller has specified name of flash model that can normally be
1141 	 * detected using JEDEC, let's verify it.
1142 	 */
1143 	if (name && info->id_len) {
1144 		const struct flash_info *jinfo;
1145 
1146 		jinfo = spi_nor_read_id(nor);
1147 		if (IS_ERR(jinfo)) {
1148 			return PTR_ERR(jinfo);
1149 		} else if (jinfo != info) {
1150 			/*
1151 			 * JEDEC knows better, so overwrite platform ID. We
1152 			 * can't trust partitions any longer, but we'll let
1153 			 * mtd apply them anyway, since some partitions may be
1154 			 * marked read-only, and we don't want to lose that
1155 			 * information, even if it's not 100% accurate.
1156 			 */
1157 			dev_warn(dev, "found %s, expected %s\n",
1158 				 jinfo->name, info->name);
1159 			info = jinfo;
1160 		}
1161 	}
1162 
1163 	mutex_init(&nor->lock);
1164 
1165 	/*
1166 	 * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
1167 	 * with the software protection bits set
1168 	 */
1169 
1170 	if (JEDEC_MFR(info) == SNOR_MFR_ATMEL ||
1171 	    JEDEC_MFR(info) == SNOR_MFR_INTEL ||
1172 	    JEDEC_MFR(info) == SNOR_MFR_SST) {
1173 		write_enable(nor);
1174 		write_sr(nor, 0);
1175 	}
1176 
1177 	if (!mtd->name)
1178 		mtd->name = dev_name(dev);
1179 	mtd->priv = nor;
1180 	mtd->type = MTD_NORFLASH;
1181 	mtd->writesize = 1;
1182 	mtd->flags = MTD_CAP_NORFLASH;
1183 	mtd->size = info->sector_size * info->n_sectors;
1184 	mtd->_erase = spi_nor_erase;
1185 	mtd->_read = spi_nor_read;
1186 
1187 	/* NOR protection support for STmicro/Micron chips and similar */
1188 	if (JEDEC_MFR(info) == SNOR_MFR_MICRON) {
1189 		nor->flash_lock = stm_lock;
1190 		nor->flash_unlock = stm_unlock;
1191 		nor->flash_is_locked = stm_is_locked;
1192 	}
1193 
1194 	if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
1195 		mtd->_lock = spi_nor_lock;
1196 		mtd->_unlock = spi_nor_unlock;
1197 		mtd->_is_locked = spi_nor_is_locked;
1198 	}
1199 
1200 	/* sst nor chips use AAI word program */
1201 	if (info->flags & SST_WRITE)
1202 		mtd->_write = sst_write;
1203 	else
1204 		mtd->_write = spi_nor_write;
1205 
1206 	if (info->flags & USE_FSR)
1207 		nor->flags |= SNOR_F_USE_FSR;
1208 
1209 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1210 	/* prefer "small sector" erase if possible */
1211 	if (info->flags & SECT_4K) {
1212 		nor->erase_opcode = SPINOR_OP_BE_4K;
1213 		mtd->erasesize = 4096;
1214 	} else if (info->flags & SECT_4K_PMC) {
1215 		nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
1216 		mtd->erasesize = 4096;
1217 	} else
1218 #endif
1219 	{
1220 		nor->erase_opcode = SPINOR_OP_SE;
1221 		mtd->erasesize = info->sector_size;
1222 	}
1223 
1224 	if (info->flags & SPI_NOR_NO_ERASE)
1225 		mtd->flags |= MTD_NO_ERASE;
1226 
1227 	mtd->dev.parent = dev;
1228 	nor->page_size = info->page_size;
1229 	mtd->writebufsize = nor->page_size;
1230 
1231 	if (np) {
1232 		/* If we were instantiated by DT, use it */
1233 		if (of_property_read_bool(np, "m25p,fast-read"))
1234 			nor->flash_read = SPI_NOR_FAST;
1235 		else
1236 			nor->flash_read = SPI_NOR_NORMAL;
1237 	} else {
1238 		/* If we weren't instantiated by DT, default to fast-read */
1239 		nor->flash_read = SPI_NOR_FAST;
1240 	}
1241 
1242 	/* Some devices cannot do fast-read, no matter what DT tells us */
1243 	if (info->flags & SPI_NOR_NO_FR)
1244 		nor->flash_read = SPI_NOR_NORMAL;
1245 
1246 	/* Quad/Dual-read mode takes precedence over fast/normal */
1247 	if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
1248 		ret = set_quad_mode(nor, info);
1249 		if (ret) {
1250 			dev_err(dev, "quad mode not supported\n");
1251 			return ret;
1252 		}
1253 		nor->flash_read = SPI_NOR_QUAD;
1254 	} else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
1255 		nor->flash_read = SPI_NOR_DUAL;
1256 	}
1257 
1258 	/* Default commands */
1259 	switch (nor->flash_read) {
1260 	case SPI_NOR_QUAD:
1261 		nor->read_opcode = SPINOR_OP_READ_1_1_4;
1262 		break;
1263 	case SPI_NOR_DUAL:
1264 		nor->read_opcode = SPINOR_OP_READ_1_1_2;
1265 		break;
1266 	case SPI_NOR_FAST:
1267 		nor->read_opcode = SPINOR_OP_READ_FAST;
1268 		break;
1269 	case SPI_NOR_NORMAL:
1270 		nor->read_opcode = SPINOR_OP_READ;
1271 		break;
1272 	default:
1273 		dev_err(dev, "No Read opcode defined\n");
1274 		return -EINVAL;
1275 	}
1276 
1277 	nor->program_opcode = SPINOR_OP_PP;
1278 
1279 	if (info->addr_width)
1280 		nor->addr_width = info->addr_width;
1281 	else if (mtd->size > 0x1000000) {
1282 		/* enable 4-byte addressing if the device exceeds 16MiB */
1283 		nor->addr_width = 4;
1284 		if (JEDEC_MFR(info) == SNOR_MFR_SPANSION) {
1285 			/* Dedicated 4-byte command set */
1286 			switch (nor->flash_read) {
1287 			case SPI_NOR_QUAD:
1288 				nor->read_opcode = SPINOR_OP_READ4_1_1_4;
1289 				break;
1290 			case SPI_NOR_DUAL:
1291 				nor->read_opcode = SPINOR_OP_READ4_1_1_2;
1292 				break;
1293 			case SPI_NOR_FAST:
1294 				nor->read_opcode = SPINOR_OP_READ4_FAST;
1295 				break;
1296 			case SPI_NOR_NORMAL:
1297 				nor->read_opcode = SPINOR_OP_READ4;
1298 				break;
1299 			}
1300 			nor->program_opcode = SPINOR_OP_PP_4B;
1301 			/* No small sector erase for 4-byte command set */
1302 			nor->erase_opcode = SPINOR_OP_SE_4B;
1303 			mtd->erasesize = info->sector_size;
1304 		} else
1305 			set_4byte(nor, info, 1);
1306 	} else {
1307 		nor->addr_width = 3;
1308 	}
1309 
1310 	nor->read_dummy = spi_nor_read_dummy_cycles(nor);
1311 
1312 	dev_info(dev, "%s (%lld Kbytes)\n", info->name,
1313 			(long long)mtd->size >> 10);
1314 
1315 	dev_dbg(dev,
1316 		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
1317 		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1318 		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
1319 		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
1320 
1321 	if (mtd->numeraseregions)
1322 		for (i = 0; i < mtd->numeraseregions; i++)
1323 			dev_dbg(dev,
1324 				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
1325 				".erasesize = 0x%.8x (%uKiB), "
1326 				".numblocks = %d }\n",
1327 				i, (long long)mtd->eraseregions[i].offset,
1328 				mtd->eraseregions[i].erasesize,
1329 				mtd->eraseregions[i].erasesize / 1024,
1330 				mtd->eraseregions[i].numblocks);
1331 	return 0;
1332 }
1333 EXPORT_SYMBOL_GPL(spi_nor_scan);
1334 
spi_nor_match_id(const char * name)1335 static const struct flash_info *spi_nor_match_id(const char *name)
1336 {
1337 	const struct flash_info *id = spi_nor_ids;
1338 
1339 	while (id->name) {
1340 		if (!strcmp(name, id->name))
1341 			return id;
1342 		id++;
1343 	}
1344 	return NULL;
1345 }
1346 
1347 MODULE_LICENSE("GPL");
1348 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1349 MODULE_AUTHOR("Mike Lavender");
1350 MODULE_DESCRIPTION("framework for SPI NOR");
1351