• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
66 
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
73 
74 #include <asm/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
84 
85 /**
86  *	skb_panic - private function for out-of-line support
87  *	@skb:	buffer
88  *	@sz:	size
89  *	@addr:	address
90  *	@msg:	skb_over_panic or skb_under_panic
91  *
92  *	Out-of-line support for skb_put() and skb_push().
93  *	Called via the wrapper skb_over_panic() or skb_under_panic().
94  *	Keep out of line to prevent kernel bloat.
95  *	__builtin_return_address is not used because it is not always reliable.
96  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 		      const char msg[])
99 {
100 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 		 msg, addr, skb->len, sz, skb->head, skb->data,
102 		 (unsigned long)skb->tail, (unsigned long)skb->end,
103 		 skb->dev ? skb->dev->name : "<NULL>");
104 	BUG();
105 }
106 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
108 {
109 	skb_panic(skb, sz, addr, __func__);
110 }
111 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 	skb_panic(skb, sz, addr, __func__);
115 }
116 
117 /*
118  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119  * the caller if emergency pfmemalloc reserves are being used. If it is and
120  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121  * may be used. Otherwise, the packet data may be discarded until enough
122  * memory is free
123  */
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 	 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
126 
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 			       unsigned long ip, bool *pfmemalloc)
129 {
130 	void *obj;
131 	bool ret_pfmemalloc = false;
132 
133 	/*
134 	 * Try a regular allocation, when that fails and we're not entitled
135 	 * to the reserves, fail.
136 	 */
137 	obj = kmalloc_node_track_caller(size,
138 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 					node);
140 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 		goto out;
142 
143 	/* Try again but now we are using pfmemalloc reserves */
144 	ret_pfmemalloc = true;
145 	obj = kmalloc_node_track_caller(size, flags, node);
146 
147 out:
148 	if (pfmemalloc)
149 		*pfmemalloc = ret_pfmemalloc;
150 
151 	return obj;
152 }
153 
154 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
155  *	'private' fields and also do memory statistics to find all the
156  *	[BEEP] leaks.
157  *
158  */
159 
__alloc_skb_head(gfp_t gfp_mask,int node)160 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
161 {
162 	struct sk_buff *skb;
163 
164 	/* Get the HEAD */
165 	skb = kmem_cache_alloc_node(skbuff_head_cache,
166 				    gfp_mask & ~__GFP_DMA, node);
167 	if (!skb)
168 		goto out;
169 
170 	/*
171 	 * Only clear those fields we need to clear, not those that we will
172 	 * actually initialise below. Hence, don't put any more fields after
173 	 * the tail pointer in struct sk_buff!
174 	 */
175 	memset(skb, 0, offsetof(struct sk_buff, tail));
176 	skb->head = NULL;
177 	skb->truesize = sizeof(struct sk_buff);
178 	atomic_set(&skb->users, 1);
179 
180 	skb->mac_header = (typeof(skb->mac_header))~0U;
181 out:
182 	return skb;
183 }
184 
185 /**
186  *	__alloc_skb	-	allocate a network buffer
187  *	@size: size to allocate
188  *	@gfp_mask: allocation mask
189  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
190  *		instead of head cache and allocate a cloned (child) skb.
191  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
192  *		allocations in case the data is required for writeback
193  *	@node: numa node to allocate memory on
194  *
195  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
196  *	tail room of at least size bytes. The object has a reference count
197  *	of one. The return is the buffer. On a failure the return is %NULL.
198  *
199  *	Buffers may only be allocated from interrupts using a @gfp_mask of
200  *	%GFP_ATOMIC.
201  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)202 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
203 			    int flags, int node)
204 {
205 	struct kmem_cache *cache;
206 	struct skb_shared_info *shinfo;
207 	struct sk_buff *skb;
208 	u8 *data;
209 	bool pfmemalloc;
210 
211 	cache = (flags & SKB_ALLOC_FCLONE)
212 		? skbuff_fclone_cache : skbuff_head_cache;
213 
214 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
215 		gfp_mask |= __GFP_MEMALLOC;
216 
217 	/* Get the HEAD */
218 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
219 	if (!skb)
220 		goto out;
221 	prefetchw(skb);
222 
223 	/* We do our best to align skb_shared_info on a separate cache
224 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
225 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
226 	 * Both skb->head and skb_shared_info are cache line aligned.
227 	 */
228 	size = SKB_DATA_ALIGN(size);
229 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
230 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
231 	if (!data)
232 		goto nodata;
233 	/* kmalloc(size) might give us more room than requested.
234 	 * Put skb_shared_info exactly at the end of allocated zone,
235 	 * to allow max possible filling before reallocation.
236 	 */
237 	size = SKB_WITH_OVERHEAD(ksize(data));
238 	prefetchw(data + size);
239 
240 	/*
241 	 * Only clear those fields we need to clear, not those that we will
242 	 * actually initialise below. Hence, don't put any more fields after
243 	 * the tail pointer in struct sk_buff!
244 	 */
245 	memset(skb, 0, offsetof(struct sk_buff, tail));
246 	/* Account for allocated memory : skb + skb->head */
247 	skb->truesize = SKB_TRUESIZE(size);
248 	skb->pfmemalloc = pfmemalloc;
249 	atomic_set(&skb->users, 1);
250 	skb->head = data;
251 	skb->data = data;
252 	skb_reset_tail_pointer(skb);
253 	skb->end = skb->tail + size;
254 	skb->mac_header = (typeof(skb->mac_header))~0U;
255 	skb->transport_header = (typeof(skb->transport_header))~0U;
256 
257 	/* make sure we initialize shinfo sequentially */
258 	shinfo = skb_shinfo(skb);
259 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
260 	atomic_set(&shinfo->dataref, 1);
261 	kmemcheck_annotate_variable(shinfo->destructor_arg);
262 
263 	if (flags & SKB_ALLOC_FCLONE) {
264 		struct sk_buff_fclones *fclones;
265 
266 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
267 
268 		kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
269 		skb->fclone = SKB_FCLONE_ORIG;
270 		atomic_set(&fclones->fclone_ref, 1);
271 
272 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
273 		fclones->skb2.pfmemalloc = pfmemalloc;
274 	}
275 out:
276 	return skb;
277 nodata:
278 	kmem_cache_free(cache, skb);
279 	skb = NULL;
280 	goto out;
281 }
282 EXPORT_SYMBOL(__alloc_skb);
283 
284 /**
285  * __build_skb - build a network buffer
286  * @data: data buffer provided by caller
287  * @frag_size: size of data, or 0 if head was kmalloced
288  *
289  * Allocate a new &sk_buff. Caller provides space holding head and
290  * skb_shared_info. @data must have been allocated by kmalloc() only if
291  * @frag_size is 0, otherwise data should come from the page allocator
292  *  or vmalloc()
293  * The return is the new skb buffer.
294  * On a failure the return is %NULL, and @data is not freed.
295  * Notes :
296  *  Before IO, driver allocates only data buffer where NIC put incoming frame
297  *  Driver should add room at head (NET_SKB_PAD) and
298  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
299  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
300  *  before giving packet to stack.
301  *  RX rings only contains data buffers, not full skbs.
302  */
__build_skb(void * data,unsigned int frag_size)303 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
304 {
305 	struct skb_shared_info *shinfo;
306 	struct sk_buff *skb;
307 	unsigned int size = frag_size ? : ksize(data);
308 
309 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
310 	if (!skb)
311 		return NULL;
312 
313 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
314 
315 	memset(skb, 0, offsetof(struct sk_buff, tail));
316 	skb->truesize = SKB_TRUESIZE(size);
317 	atomic_set(&skb->users, 1);
318 	skb->head = data;
319 	skb->data = data;
320 	skb_reset_tail_pointer(skb);
321 	skb->end = skb->tail + size;
322 	skb->mac_header = (typeof(skb->mac_header))~0U;
323 	skb->transport_header = (typeof(skb->transport_header))~0U;
324 
325 	/* make sure we initialize shinfo sequentially */
326 	shinfo = skb_shinfo(skb);
327 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
328 	atomic_set(&shinfo->dataref, 1);
329 	kmemcheck_annotate_variable(shinfo->destructor_arg);
330 
331 	return skb;
332 }
333 
334 /* build_skb() is wrapper over __build_skb(), that specifically
335  * takes care of skb->head and skb->pfmemalloc
336  * This means that if @frag_size is not zero, then @data must be backed
337  * by a page fragment, not kmalloc() or vmalloc()
338  */
build_skb(void * data,unsigned int frag_size)339 struct sk_buff *build_skb(void *data, unsigned int frag_size)
340 {
341 	struct sk_buff *skb = __build_skb(data, frag_size);
342 
343 	if (skb && frag_size) {
344 		skb->head_frag = 1;
345 		if (page_is_pfmemalloc(virt_to_head_page(data)))
346 			skb->pfmemalloc = 1;
347 	}
348 	return skb;
349 }
350 EXPORT_SYMBOL(build_skb);
351 
352 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
353 static DEFINE_PER_CPU(struct page_frag_cache, napi_alloc_cache);
354 
__netdev_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)355 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
356 {
357 	struct page_frag_cache *nc;
358 	unsigned long flags;
359 	void *data;
360 
361 	local_irq_save(flags);
362 	nc = this_cpu_ptr(&netdev_alloc_cache);
363 	data = __alloc_page_frag(nc, fragsz, gfp_mask);
364 	local_irq_restore(flags);
365 	return data;
366 }
367 
368 /**
369  * netdev_alloc_frag - allocate a page fragment
370  * @fragsz: fragment size
371  *
372  * Allocates a frag from a page for receive buffer.
373  * Uses GFP_ATOMIC allocations.
374  */
netdev_alloc_frag(unsigned int fragsz)375 void *netdev_alloc_frag(unsigned int fragsz)
376 {
377 	fragsz = SKB_DATA_ALIGN(fragsz);
378 
379 	return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
380 }
381 EXPORT_SYMBOL(netdev_alloc_frag);
382 
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)383 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
384 {
385 	struct page_frag_cache *nc = this_cpu_ptr(&napi_alloc_cache);
386 
387 	return __alloc_page_frag(nc, fragsz, gfp_mask);
388 }
389 
napi_alloc_frag(unsigned int fragsz)390 void *napi_alloc_frag(unsigned int fragsz)
391 {
392 	fragsz = SKB_DATA_ALIGN(fragsz);
393 
394 	return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
395 }
396 EXPORT_SYMBOL(napi_alloc_frag);
397 
398 /**
399  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
400  *	@dev: network device to receive on
401  *	@len: length to allocate
402  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
403  *
404  *	Allocate a new &sk_buff and assign it a usage count of one. The
405  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
406  *	the headroom they think they need without accounting for the
407  *	built in space. The built in space is used for optimisations.
408  *
409  *	%NULL is returned if there is no free memory.
410  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)411 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
412 				   gfp_t gfp_mask)
413 {
414 	struct page_frag_cache *nc;
415 	unsigned long flags;
416 	struct sk_buff *skb;
417 	bool pfmemalloc;
418 	void *data;
419 
420 	len += NET_SKB_PAD;
421 
422 	/* If requested length is either too small or too big,
423 	 * we use kmalloc() for skb->head allocation.
424 	 */
425 	if (len <= SKB_WITH_OVERHEAD(1024) ||
426 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
427 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
428 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
429 		if (!skb)
430 			goto skb_fail;
431 		goto skb_success;
432 	}
433 
434 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 	len = SKB_DATA_ALIGN(len);
436 
437 	if (sk_memalloc_socks())
438 		gfp_mask |= __GFP_MEMALLOC;
439 
440 	local_irq_save(flags);
441 
442 	nc = this_cpu_ptr(&netdev_alloc_cache);
443 	data = __alloc_page_frag(nc, len, gfp_mask);
444 	pfmemalloc = nc->pfmemalloc;
445 
446 	local_irq_restore(flags);
447 
448 	if (unlikely(!data))
449 		return NULL;
450 
451 	skb = __build_skb(data, len);
452 	if (unlikely(!skb)) {
453 		skb_free_frag(data);
454 		return NULL;
455 	}
456 
457 	/* use OR instead of assignment to avoid clearing of bits in mask */
458 	if (pfmemalloc)
459 		skb->pfmemalloc = 1;
460 	skb->head_frag = 1;
461 
462 skb_success:
463 	skb_reserve(skb, NET_SKB_PAD);
464 	skb->dev = dev;
465 
466 skb_fail:
467 	return skb;
468 }
469 EXPORT_SYMBOL(__netdev_alloc_skb);
470 
471 /**
472  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
473  *	@napi: napi instance this buffer was allocated for
474  *	@len: length to allocate
475  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
476  *
477  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
478  *	attempt to allocate the head from a special reserved region used
479  *	only for NAPI Rx allocation.  By doing this we can save several
480  *	CPU cycles by avoiding having to disable and re-enable IRQs.
481  *
482  *	%NULL is returned if there is no free memory.
483  */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)484 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
485 				 gfp_t gfp_mask)
486 {
487 	struct page_frag_cache *nc;
488 	struct sk_buff *skb;
489 	void *data;
490 
491 	len += NET_SKB_PAD + NET_IP_ALIGN;
492 
493 	/* If requested length is either too small or too big,
494 	 * we use kmalloc() for skb->head allocation.
495 	 */
496 	if (len <= SKB_WITH_OVERHEAD(1024) ||
497 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
498 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
499 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
500 		if (!skb)
501 			goto skb_fail;
502 		goto skb_success;
503 	}
504 
505 	nc = this_cpu_ptr(&napi_alloc_cache);
506 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
507 	len = SKB_DATA_ALIGN(len);
508 
509 	if (sk_memalloc_socks())
510 		gfp_mask |= __GFP_MEMALLOC;
511 
512 	data = __alloc_page_frag(nc, len, gfp_mask);
513 	if (unlikely(!data))
514 		return NULL;
515 
516 	skb = __build_skb(data, len);
517 	if (unlikely(!skb)) {
518 		skb_free_frag(data);
519 		return NULL;
520 	}
521 
522 	/* use OR instead of assignment to avoid clearing of bits in mask */
523 	if (nc->pfmemalloc)
524 		skb->pfmemalloc = 1;
525 	skb->head_frag = 1;
526 
527 skb_success:
528 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
529 	skb->dev = napi->dev;
530 
531 skb_fail:
532 	return skb;
533 }
534 EXPORT_SYMBOL(__napi_alloc_skb);
535 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)536 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
537 		     int size, unsigned int truesize)
538 {
539 	skb_fill_page_desc(skb, i, page, off, size);
540 	skb->len += size;
541 	skb->data_len += size;
542 	skb->truesize += truesize;
543 }
544 EXPORT_SYMBOL(skb_add_rx_frag);
545 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)546 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
547 			  unsigned int truesize)
548 {
549 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
550 
551 	skb_frag_size_add(frag, size);
552 	skb->len += size;
553 	skb->data_len += size;
554 	skb->truesize += truesize;
555 }
556 EXPORT_SYMBOL(skb_coalesce_rx_frag);
557 
skb_drop_list(struct sk_buff ** listp)558 static void skb_drop_list(struct sk_buff **listp)
559 {
560 	kfree_skb_list(*listp);
561 	*listp = NULL;
562 }
563 
skb_drop_fraglist(struct sk_buff * skb)564 static inline void skb_drop_fraglist(struct sk_buff *skb)
565 {
566 	skb_drop_list(&skb_shinfo(skb)->frag_list);
567 }
568 
skb_clone_fraglist(struct sk_buff * skb)569 static void skb_clone_fraglist(struct sk_buff *skb)
570 {
571 	struct sk_buff *list;
572 
573 	skb_walk_frags(skb, list)
574 		skb_get(list);
575 }
576 
skb_free_head(struct sk_buff * skb)577 static void skb_free_head(struct sk_buff *skb)
578 {
579 	unsigned char *head = skb->head;
580 
581 	if (skb->head_frag)
582 		skb_free_frag(head);
583 	else
584 		kfree(head);
585 }
586 
skb_release_data(struct sk_buff * skb)587 static void skb_release_data(struct sk_buff *skb)
588 {
589 	struct skb_shared_info *shinfo = skb_shinfo(skb);
590 	int i;
591 
592 	if (skb->cloned &&
593 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
594 			      &shinfo->dataref))
595 		return;
596 
597 	for (i = 0; i < shinfo->nr_frags; i++)
598 		__skb_frag_unref(&shinfo->frags[i]);
599 
600 	/*
601 	 * If skb buf is from userspace, we need to notify the caller
602 	 * the lower device DMA has done;
603 	 */
604 	if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
605 		struct ubuf_info *uarg;
606 
607 		uarg = shinfo->destructor_arg;
608 		if (uarg->callback)
609 			uarg->callback(uarg, true);
610 	}
611 
612 	if (shinfo->frag_list)
613 		kfree_skb_list(shinfo->frag_list);
614 
615 	skb_free_head(skb);
616 }
617 
618 /*
619  *	Free an skbuff by memory without cleaning the state.
620  */
kfree_skbmem(struct sk_buff * skb)621 static void kfree_skbmem(struct sk_buff *skb)
622 {
623 	struct sk_buff_fclones *fclones;
624 
625 	switch (skb->fclone) {
626 	case SKB_FCLONE_UNAVAILABLE:
627 		kmem_cache_free(skbuff_head_cache, skb);
628 		return;
629 
630 	case SKB_FCLONE_ORIG:
631 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
632 
633 		/* We usually free the clone (TX completion) before original skb
634 		 * This test would have no chance to be true for the clone,
635 		 * while here, branch prediction will be good.
636 		 */
637 		if (atomic_read(&fclones->fclone_ref) == 1)
638 			goto fastpath;
639 		break;
640 
641 	default: /* SKB_FCLONE_CLONE */
642 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
643 		break;
644 	}
645 	if (!atomic_dec_and_test(&fclones->fclone_ref))
646 		return;
647 fastpath:
648 	kmem_cache_free(skbuff_fclone_cache, fclones);
649 }
650 
skb_release_head_state(struct sk_buff * skb)651 static void skb_release_head_state(struct sk_buff *skb)
652 {
653 	skb_dst_drop(skb);
654 #ifdef CONFIG_XFRM
655 	secpath_put(skb->sp);
656 #endif
657 	if (skb->destructor) {
658 		WARN_ON(in_irq());
659 		skb->destructor(skb);
660 	}
661 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
662 	nf_conntrack_put(skb->nfct);
663 #endif
664 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
665 	nf_bridge_put(skb->nf_bridge);
666 #endif
667 }
668 
669 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)670 static void skb_release_all(struct sk_buff *skb)
671 {
672 	skb_release_head_state(skb);
673 	if (likely(skb->head))
674 		skb_release_data(skb);
675 }
676 
677 /**
678  *	__kfree_skb - private function
679  *	@skb: buffer
680  *
681  *	Free an sk_buff. Release anything attached to the buffer.
682  *	Clean the state. This is an internal helper function. Users should
683  *	always call kfree_skb
684  */
685 
__kfree_skb(struct sk_buff * skb)686 void __kfree_skb(struct sk_buff *skb)
687 {
688 	skb_release_all(skb);
689 	kfree_skbmem(skb);
690 }
691 EXPORT_SYMBOL(__kfree_skb);
692 
693 /**
694  *	kfree_skb - free an sk_buff
695  *	@skb: buffer to free
696  *
697  *	Drop a reference to the buffer and free it if the usage count has
698  *	hit zero.
699  */
kfree_skb(struct sk_buff * skb)700 void kfree_skb(struct sk_buff *skb)
701 {
702 	if (unlikely(!skb))
703 		return;
704 	if (likely(atomic_read(&skb->users) == 1))
705 		smp_rmb();
706 	else if (likely(!atomic_dec_and_test(&skb->users)))
707 		return;
708 	trace_kfree_skb(skb, __builtin_return_address(0));
709 	__kfree_skb(skb);
710 }
711 EXPORT_SYMBOL(kfree_skb);
712 
kfree_skb_list(struct sk_buff * segs)713 void kfree_skb_list(struct sk_buff *segs)
714 {
715 	while (segs) {
716 		struct sk_buff *next = segs->next;
717 
718 		kfree_skb(segs);
719 		segs = next;
720 	}
721 }
722 EXPORT_SYMBOL(kfree_skb_list);
723 
724 /**
725  *	skb_tx_error - report an sk_buff xmit error
726  *	@skb: buffer that triggered an error
727  *
728  *	Report xmit error if a device callback is tracking this skb.
729  *	skb must be freed afterwards.
730  */
skb_tx_error(struct sk_buff * skb)731 void skb_tx_error(struct sk_buff *skb)
732 {
733 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
734 		struct ubuf_info *uarg;
735 
736 		uarg = skb_shinfo(skb)->destructor_arg;
737 		if (uarg->callback)
738 			uarg->callback(uarg, false);
739 		skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
740 	}
741 }
742 EXPORT_SYMBOL(skb_tx_error);
743 
744 /**
745  *	consume_skb - free an skbuff
746  *	@skb: buffer to free
747  *
748  *	Drop a ref to the buffer and free it if the usage count has hit zero
749  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
750  *	is being dropped after a failure and notes that
751  */
consume_skb(struct sk_buff * skb)752 void consume_skb(struct sk_buff *skb)
753 {
754 	if (unlikely(!skb))
755 		return;
756 	if (likely(atomic_read(&skb->users) == 1))
757 		smp_rmb();
758 	else if (likely(!atomic_dec_and_test(&skb->users)))
759 		return;
760 	trace_consume_skb(skb);
761 	__kfree_skb(skb);
762 }
763 EXPORT_SYMBOL(consume_skb);
764 
765 /* Make sure a field is enclosed inside headers_start/headers_end section */
766 #define CHECK_SKB_FIELD(field) \
767 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
768 		     offsetof(struct sk_buff, headers_start));	\
769 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
770 		     offsetof(struct sk_buff, headers_end));	\
771 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)772 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
773 {
774 	new->tstamp		= old->tstamp;
775 	/* We do not copy old->sk */
776 	new->dev		= old->dev;
777 	memcpy(new->cb, old->cb, sizeof(old->cb));
778 	skb_dst_copy(new, old);
779 #ifdef CONFIG_XFRM
780 	new->sp			= secpath_get(old->sp);
781 #endif
782 	__nf_copy(new, old, false);
783 
784 	/* Note : this field could be in headers_start/headers_end section
785 	 * It is not yet because we do not want to have a 16 bit hole
786 	 */
787 	new->queue_mapping = old->queue_mapping;
788 
789 	memcpy(&new->headers_start, &old->headers_start,
790 	       offsetof(struct sk_buff, headers_end) -
791 	       offsetof(struct sk_buff, headers_start));
792 	CHECK_SKB_FIELD(protocol);
793 	CHECK_SKB_FIELD(csum);
794 	CHECK_SKB_FIELD(hash);
795 	CHECK_SKB_FIELD(priority);
796 	CHECK_SKB_FIELD(skb_iif);
797 	CHECK_SKB_FIELD(vlan_proto);
798 	CHECK_SKB_FIELD(vlan_tci);
799 	CHECK_SKB_FIELD(transport_header);
800 	CHECK_SKB_FIELD(network_header);
801 	CHECK_SKB_FIELD(mac_header);
802 	CHECK_SKB_FIELD(inner_protocol);
803 	CHECK_SKB_FIELD(inner_transport_header);
804 	CHECK_SKB_FIELD(inner_network_header);
805 	CHECK_SKB_FIELD(inner_mac_header);
806 	CHECK_SKB_FIELD(mark);
807 #ifdef CONFIG_NETWORK_SECMARK
808 	CHECK_SKB_FIELD(secmark);
809 #endif
810 #ifdef CONFIG_NET_RX_BUSY_POLL
811 	CHECK_SKB_FIELD(napi_id);
812 #endif
813 #ifdef CONFIG_XPS
814 	CHECK_SKB_FIELD(sender_cpu);
815 #endif
816 #ifdef CONFIG_NET_SCHED
817 	CHECK_SKB_FIELD(tc_index);
818 #ifdef CONFIG_NET_CLS_ACT
819 	CHECK_SKB_FIELD(tc_verd);
820 #endif
821 #endif
822 
823 }
824 
825 /*
826  * You should not add any new code to this function.  Add it to
827  * __copy_skb_header above instead.
828  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)829 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
830 {
831 #define C(x) n->x = skb->x
832 
833 	n->next = n->prev = NULL;
834 	n->sk = NULL;
835 	__copy_skb_header(n, skb);
836 
837 	C(len);
838 	C(data_len);
839 	C(mac_len);
840 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
841 	n->cloned = 1;
842 	n->nohdr = 0;
843 	n->peeked = 0;
844 	C(pfmemalloc);
845 	n->destructor = NULL;
846 	C(tail);
847 	C(end);
848 	C(head);
849 	C(head_frag);
850 	C(data);
851 	C(truesize);
852 	atomic_set(&n->users, 1);
853 
854 	atomic_inc(&(skb_shinfo(skb)->dataref));
855 	skb->cloned = 1;
856 
857 	return n;
858 #undef C
859 }
860 
861 /**
862  *	skb_morph	-	morph one skb into another
863  *	@dst: the skb to receive the contents
864  *	@src: the skb to supply the contents
865  *
866  *	This is identical to skb_clone except that the target skb is
867  *	supplied by the user.
868  *
869  *	The target skb is returned upon exit.
870  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)871 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
872 {
873 	skb_release_all(dst);
874 	return __skb_clone(dst, src);
875 }
876 EXPORT_SYMBOL_GPL(skb_morph);
877 
878 /**
879  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
880  *	@skb: the skb to modify
881  *	@gfp_mask: allocation priority
882  *
883  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
884  *	It will copy all frags into kernel and drop the reference
885  *	to userspace pages.
886  *
887  *	If this function is called from an interrupt gfp_mask() must be
888  *	%GFP_ATOMIC.
889  *
890  *	Returns 0 on success or a negative error code on failure
891  *	to allocate kernel memory to copy to.
892  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)893 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
894 {
895 	int i;
896 	int num_frags = skb_shinfo(skb)->nr_frags;
897 	struct page *page, *head = NULL;
898 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
899 
900 	for (i = 0; i < num_frags; i++) {
901 		u8 *vaddr;
902 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
903 
904 		page = alloc_page(gfp_mask);
905 		if (!page) {
906 			while (head) {
907 				struct page *next = (struct page *)page_private(head);
908 				put_page(head);
909 				head = next;
910 			}
911 			return -ENOMEM;
912 		}
913 		vaddr = kmap_atomic(skb_frag_page(f));
914 		memcpy(page_address(page),
915 		       vaddr + f->page_offset, skb_frag_size(f));
916 		kunmap_atomic(vaddr);
917 		set_page_private(page, (unsigned long)head);
918 		head = page;
919 	}
920 
921 	/* skb frags release userspace buffers */
922 	for (i = 0; i < num_frags; i++)
923 		skb_frag_unref(skb, i);
924 
925 	uarg->callback(uarg, false);
926 
927 	/* skb frags point to kernel buffers */
928 	for (i = num_frags - 1; i >= 0; i--) {
929 		__skb_fill_page_desc(skb, i, head, 0,
930 				     skb_shinfo(skb)->frags[i].size);
931 		head = (struct page *)page_private(head);
932 	}
933 
934 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
935 	return 0;
936 }
937 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
938 
939 /**
940  *	skb_clone	-	duplicate an sk_buff
941  *	@skb: buffer to clone
942  *	@gfp_mask: allocation priority
943  *
944  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
945  *	copies share the same packet data but not structure. The new
946  *	buffer has a reference count of 1. If the allocation fails the
947  *	function returns %NULL otherwise the new buffer is returned.
948  *
949  *	If this function is called from an interrupt gfp_mask() must be
950  *	%GFP_ATOMIC.
951  */
952 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)953 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
954 {
955 	struct sk_buff_fclones *fclones = container_of(skb,
956 						       struct sk_buff_fclones,
957 						       skb1);
958 	struct sk_buff *n;
959 
960 	if (skb_orphan_frags(skb, gfp_mask))
961 		return NULL;
962 
963 	if (skb->fclone == SKB_FCLONE_ORIG &&
964 	    atomic_read(&fclones->fclone_ref) == 1) {
965 		n = &fclones->skb2;
966 		atomic_set(&fclones->fclone_ref, 2);
967 	} else {
968 		if (skb_pfmemalloc(skb))
969 			gfp_mask |= __GFP_MEMALLOC;
970 
971 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
972 		if (!n)
973 			return NULL;
974 
975 		kmemcheck_annotate_bitfield(n, flags1);
976 		n->fclone = SKB_FCLONE_UNAVAILABLE;
977 	}
978 
979 	return __skb_clone(n, skb);
980 }
981 EXPORT_SYMBOL(skb_clone);
982 
skb_headers_offset_update(struct sk_buff * skb,int off)983 static void skb_headers_offset_update(struct sk_buff *skb, int off)
984 {
985 	/* Only adjust this if it actually is csum_start rather than csum */
986 	if (skb->ip_summed == CHECKSUM_PARTIAL)
987 		skb->csum_start += off;
988 	/* {transport,network,mac}_header and tail are relative to skb->head */
989 	skb->transport_header += off;
990 	skb->network_header   += off;
991 	if (skb_mac_header_was_set(skb))
992 		skb->mac_header += off;
993 	skb->inner_transport_header += off;
994 	skb->inner_network_header += off;
995 	skb->inner_mac_header += off;
996 }
997 
copy_skb_header(struct sk_buff * new,const struct sk_buff * old)998 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
999 {
1000 	__copy_skb_header(new, old);
1001 
1002 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1003 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1004 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1005 }
1006 
skb_alloc_rx_flag(const struct sk_buff * skb)1007 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1008 {
1009 	if (skb_pfmemalloc(skb))
1010 		return SKB_ALLOC_RX;
1011 	return 0;
1012 }
1013 
1014 /**
1015  *	skb_copy	-	create private copy of an sk_buff
1016  *	@skb: buffer to copy
1017  *	@gfp_mask: allocation priority
1018  *
1019  *	Make a copy of both an &sk_buff and its data. This is used when the
1020  *	caller wishes to modify the data and needs a private copy of the
1021  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1022  *	on success. The returned buffer has a reference count of 1.
1023  *
1024  *	As by-product this function converts non-linear &sk_buff to linear
1025  *	one, so that &sk_buff becomes completely private and caller is allowed
1026  *	to modify all the data of returned buffer. This means that this
1027  *	function is not recommended for use in circumstances when only
1028  *	header is going to be modified. Use pskb_copy() instead.
1029  */
1030 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1031 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1032 {
1033 	int headerlen = skb_headroom(skb);
1034 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1035 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1036 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1037 
1038 	if (!n)
1039 		return NULL;
1040 
1041 	/* Set the data pointer */
1042 	skb_reserve(n, headerlen);
1043 	/* Set the tail pointer and length */
1044 	skb_put(n, skb->len);
1045 
1046 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1047 		BUG();
1048 
1049 	copy_skb_header(n, skb);
1050 	return n;
1051 }
1052 EXPORT_SYMBOL(skb_copy);
1053 
1054 /**
1055  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1056  *	@skb: buffer to copy
1057  *	@headroom: headroom of new skb
1058  *	@gfp_mask: allocation priority
1059  *	@fclone: if true allocate the copy of the skb from the fclone
1060  *	cache instead of the head cache; it is recommended to set this
1061  *	to true for the cases where the copy will likely be cloned
1062  *
1063  *	Make a copy of both an &sk_buff and part of its data, located
1064  *	in header. Fragmented data remain shared. This is used when
1065  *	the caller wishes to modify only header of &sk_buff and needs
1066  *	private copy of the header to alter. Returns %NULL on failure
1067  *	or the pointer to the buffer on success.
1068  *	The returned buffer has a reference count of 1.
1069  */
1070 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1071 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1072 				   gfp_t gfp_mask, bool fclone)
1073 {
1074 	unsigned int size = skb_headlen(skb) + headroom;
1075 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1076 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1077 
1078 	if (!n)
1079 		goto out;
1080 
1081 	/* Set the data pointer */
1082 	skb_reserve(n, headroom);
1083 	/* Set the tail pointer and length */
1084 	skb_put(n, skb_headlen(skb));
1085 	/* Copy the bytes */
1086 	skb_copy_from_linear_data(skb, n->data, n->len);
1087 
1088 	n->truesize += skb->data_len;
1089 	n->data_len  = skb->data_len;
1090 	n->len	     = skb->len;
1091 
1092 	if (skb_shinfo(skb)->nr_frags) {
1093 		int i;
1094 
1095 		if (skb_orphan_frags(skb, gfp_mask)) {
1096 			kfree_skb(n);
1097 			n = NULL;
1098 			goto out;
1099 		}
1100 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1101 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1102 			skb_frag_ref(skb, i);
1103 		}
1104 		skb_shinfo(n)->nr_frags = i;
1105 	}
1106 
1107 	if (skb_has_frag_list(skb)) {
1108 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1109 		skb_clone_fraglist(n);
1110 	}
1111 
1112 	copy_skb_header(n, skb);
1113 out:
1114 	return n;
1115 }
1116 EXPORT_SYMBOL(__pskb_copy_fclone);
1117 
1118 /**
1119  *	pskb_expand_head - reallocate header of &sk_buff
1120  *	@skb: buffer to reallocate
1121  *	@nhead: room to add at head
1122  *	@ntail: room to add at tail
1123  *	@gfp_mask: allocation priority
1124  *
1125  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1126  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1127  *	reference count of 1. Returns zero in the case of success or error,
1128  *	if expansion failed. In the last case, &sk_buff is not changed.
1129  *
1130  *	All the pointers pointing into skb header may change and must be
1131  *	reloaded after call to this function.
1132  */
1133 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1134 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1135 		     gfp_t gfp_mask)
1136 {
1137 	int i;
1138 	u8 *data;
1139 	int size = nhead + skb_end_offset(skb) + ntail;
1140 	long off;
1141 
1142 	BUG_ON(nhead < 0);
1143 
1144 	if (skb_shared(skb))
1145 		BUG();
1146 
1147 	size = SKB_DATA_ALIGN(size);
1148 
1149 	if (skb_pfmemalloc(skb))
1150 		gfp_mask |= __GFP_MEMALLOC;
1151 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1152 			       gfp_mask, NUMA_NO_NODE, NULL);
1153 	if (!data)
1154 		goto nodata;
1155 	size = SKB_WITH_OVERHEAD(ksize(data));
1156 
1157 	/* Copy only real data... and, alas, header. This should be
1158 	 * optimized for the cases when header is void.
1159 	 */
1160 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1161 
1162 	memcpy((struct skb_shared_info *)(data + size),
1163 	       skb_shinfo(skb),
1164 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1165 
1166 	/*
1167 	 * if shinfo is shared we must drop the old head gracefully, but if it
1168 	 * is not we can just drop the old head and let the existing refcount
1169 	 * be since all we did is relocate the values
1170 	 */
1171 	if (skb_cloned(skb)) {
1172 		/* copy this zero copy skb frags */
1173 		if (skb_orphan_frags(skb, gfp_mask))
1174 			goto nofrags;
1175 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1176 			skb_frag_ref(skb, i);
1177 
1178 		if (skb_has_frag_list(skb))
1179 			skb_clone_fraglist(skb);
1180 
1181 		skb_release_data(skb);
1182 	} else {
1183 		skb_free_head(skb);
1184 	}
1185 	off = (data + nhead) - skb->head;
1186 
1187 	skb->head     = data;
1188 	skb->head_frag = 0;
1189 	skb->data    += off;
1190 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1191 	skb->end      = size;
1192 	off           = nhead;
1193 #else
1194 	skb->end      = skb->head + size;
1195 #endif
1196 	skb->tail	      += off;
1197 	skb_headers_offset_update(skb, nhead);
1198 	skb->cloned   = 0;
1199 	skb->hdr_len  = 0;
1200 	skb->nohdr    = 0;
1201 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1202 	return 0;
1203 
1204 nofrags:
1205 	kfree(data);
1206 nodata:
1207 	return -ENOMEM;
1208 }
1209 EXPORT_SYMBOL(pskb_expand_head);
1210 
1211 /* Make private copy of skb with writable head and some headroom */
1212 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1213 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1214 {
1215 	struct sk_buff *skb2;
1216 	int delta = headroom - skb_headroom(skb);
1217 
1218 	if (delta <= 0)
1219 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1220 	else {
1221 		skb2 = skb_clone(skb, GFP_ATOMIC);
1222 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1223 					     GFP_ATOMIC)) {
1224 			kfree_skb(skb2);
1225 			skb2 = NULL;
1226 		}
1227 	}
1228 	return skb2;
1229 }
1230 EXPORT_SYMBOL(skb_realloc_headroom);
1231 
1232 /**
1233  *	skb_copy_expand	-	copy and expand sk_buff
1234  *	@skb: buffer to copy
1235  *	@newheadroom: new free bytes at head
1236  *	@newtailroom: new free bytes at tail
1237  *	@gfp_mask: allocation priority
1238  *
1239  *	Make a copy of both an &sk_buff and its data and while doing so
1240  *	allocate additional space.
1241  *
1242  *	This is used when the caller wishes to modify the data and needs a
1243  *	private copy of the data to alter as well as more space for new fields.
1244  *	Returns %NULL on failure or the pointer to the buffer
1245  *	on success. The returned buffer has a reference count of 1.
1246  *
1247  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1248  *	is called from an interrupt.
1249  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1250 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1251 				int newheadroom, int newtailroom,
1252 				gfp_t gfp_mask)
1253 {
1254 	/*
1255 	 *	Allocate the copy buffer
1256 	 */
1257 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1258 					gfp_mask, skb_alloc_rx_flag(skb),
1259 					NUMA_NO_NODE);
1260 	int oldheadroom = skb_headroom(skb);
1261 	int head_copy_len, head_copy_off;
1262 
1263 	if (!n)
1264 		return NULL;
1265 
1266 	skb_reserve(n, newheadroom);
1267 
1268 	/* Set the tail pointer and length */
1269 	skb_put(n, skb->len);
1270 
1271 	head_copy_len = oldheadroom;
1272 	head_copy_off = 0;
1273 	if (newheadroom <= head_copy_len)
1274 		head_copy_len = newheadroom;
1275 	else
1276 		head_copy_off = newheadroom - head_copy_len;
1277 
1278 	/* Copy the linear header and data. */
1279 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1280 			  skb->len + head_copy_len))
1281 		BUG();
1282 
1283 	copy_skb_header(n, skb);
1284 
1285 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1286 
1287 	return n;
1288 }
1289 EXPORT_SYMBOL(skb_copy_expand);
1290 
1291 /**
1292  *	skb_pad			-	zero pad the tail of an skb
1293  *	@skb: buffer to pad
1294  *	@pad: space to pad
1295  *
1296  *	Ensure that a buffer is followed by a padding area that is zero
1297  *	filled. Used by network drivers which may DMA or transfer data
1298  *	beyond the buffer end onto the wire.
1299  *
1300  *	May return error in out of memory cases. The skb is freed on error.
1301  */
1302 
skb_pad(struct sk_buff * skb,int pad)1303 int skb_pad(struct sk_buff *skb, int pad)
1304 {
1305 	int err;
1306 	int ntail;
1307 
1308 	/* If the skbuff is non linear tailroom is always zero.. */
1309 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1310 		memset(skb->data+skb->len, 0, pad);
1311 		return 0;
1312 	}
1313 
1314 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1315 	if (likely(skb_cloned(skb) || ntail > 0)) {
1316 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1317 		if (unlikely(err))
1318 			goto free_skb;
1319 	}
1320 
1321 	/* FIXME: The use of this function with non-linear skb's really needs
1322 	 * to be audited.
1323 	 */
1324 	err = skb_linearize(skb);
1325 	if (unlikely(err))
1326 		goto free_skb;
1327 
1328 	memset(skb->data + skb->len, 0, pad);
1329 	return 0;
1330 
1331 free_skb:
1332 	kfree_skb(skb);
1333 	return err;
1334 }
1335 EXPORT_SYMBOL(skb_pad);
1336 
1337 /**
1338  *	pskb_put - add data to the tail of a potentially fragmented buffer
1339  *	@skb: start of the buffer to use
1340  *	@tail: tail fragment of the buffer to use
1341  *	@len: amount of data to add
1342  *
1343  *	This function extends the used data area of the potentially
1344  *	fragmented buffer. @tail must be the last fragment of @skb -- or
1345  *	@skb itself. If this would exceed the total buffer size the kernel
1346  *	will panic. A pointer to the first byte of the extra data is
1347  *	returned.
1348  */
1349 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1350 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1351 {
1352 	if (tail != skb) {
1353 		skb->data_len += len;
1354 		skb->len += len;
1355 	}
1356 	return skb_put(tail, len);
1357 }
1358 EXPORT_SYMBOL_GPL(pskb_put);
1359 
1360 /**
1361  *	skb_put - add data to a buffer
1362  *	@skb: buffer to use
1363  *	@len: amount of data to add
1364  *
1365  *	This function extends the used data area of the buffer. If this would
1366  *	exceed the total buffer size the kernel will panic. A pointer to the
1367  *	first byte of the extra data is returned.
1368  */
skb_put(struct sk_buff * skb,unsigned int len)1369 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1370 {
1371 	unsigned char *tmp = skb_tail_pointer(skb);
1372 	SKB_LINEAR_ASSERT(skb);
1373 	skb->tail += len;
1374 	skb->len  += len;
1375 	if (unlikely(skb->tail > skb->end))
1376 		skb_over_panic(skb, len, __builtin_return_address(0));
1377 	return tmp;
1378 }
1379 EXPORT_SYMBOL(skb_put);
1380 
1381 /**
1382  *	skb_push - add data to the start of a buffer
1383  *	@skb: buffer to use
1384  *	@len: amount of data to add
1385  *
1386  *	This function extends the used data area of the buffer at the buffer
1387  *	start. If this would exceed the total buffer headroom the kernel will
1388  *	panic. A pointer to the first byte of the extra data is returned.
1389  */
skb_push(struct sk_buff * skb,unsigned int len)1390 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1391 {
1392 	skb->data -= len;
1393 	skb->len  += len;
1394 	if (unlikely(skb->data<skb->head))
1395 		skb_under_panic(skb, len, __builtin_return_address(0));
1396 	return skb->data;
1397 }
1398 EXPORT_SYMBOL(skb_push);
1399 
1400 /**
1401  *	skb_pull - remove data from the start of a buffer
1402  *	@skb: buffer to use
1403  *	@len: amount of data to remove
1404  *
1405  *	This function removes data from the start of a buffer, returning
1406  *	the memory to the headroom. A pointer to the next data in the buffer
1407  *	is returned. Once the data has been pulled future pushes will overwrite
1408  *	the old data.
1409  */
skb_pull(struct sk_buff * skb,unsigned int len)1410 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1411 {
1412 	return skb_pull_inline(skb, len);
1413 }
1414 EXPORT_SYMBOL(skb_pull);
1415 
1416 /**
1417  *	skb_trim - remove end from a buffer
1418  *	@skb: buffer to alter
1419  *	@len: new length
1420  *
1421  *	Cut the length of a buffer down by removing data from the tail. If
1422  *	the buffer is already under the length specified it is not modified.
1423  *	The skb must be linear.
1424  */
skb_trim(struct sk_buff * skb,unsigned int len)1425 void skb_trim(struct sk_buff *skb, unsigned int len)
1426 {
1427 	if (skb->len > len)
1428 		__skb_trim(skb, len);
1429 }
1430 EXPORT_SYMBOL(skb_trim);
1431 
1432 /* Trims skb to length len. It can change skb pointers.
1433  */
1434 
___pskb_trim(struct sk_buff * skb,unsigned int len)1435 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1436 {
1437 	struct sk_buff **fragp;
1438 	struct sk_buff *frag;
1439 	int offset = skb_headlen(skb);
1440 	int nfrags = skb_shinfo(skb)->nr_frags;
1441 	int i;
1442 	int err;
1443 
1444 	if (skb_cloned(skb) &&
1445 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1446 		return err;
1447 
1448 	i = 0;
1449 	if (offset >= len)
1450 		goto drop_pages;
1451 
1452 	for (; i < nfrags; i++) {
1453 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1454 
1455 		if (end < len) {
1456 			offset = end;
1457 			continue;
1458 		}
1459 
1460 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1461 
1462 drop_pages:
1463 		skb_shinfo(skb)->nr_frags = i;
1464 
1465 		for (; i < nfrags; i++)
1466 			skb_frag_unref(skb, i);
1467 
1468 		if (skb_has_frag_list(skb))
1469 			skb_drop_fraglist(skb);
1470 		goto done;
1471 	}
1472 
1473 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1474 	     fragp = &frag->next) {
1475 		int end = offset + frag->len;
1476 
1477 		if (skb_shared(frag)) {
1478 			struct sk_buff *nfrag;
1479 
1480 			nfrag = skb_clone(frag, GFP_ATOMIC);
1481 			if (unlikely(!nfrag))
1482 				return -ENOMEM;
1483 
1484 			nfrag->next = frag->next;
1485 			consume_skb(frag);
1486 			frag = nfrag;
1487 			*fragp = frag;
1488 		}
1489 
1490 		if (end < len) {
1491 			offset = end;
1492 			continue;
1493 		}
1494 
1495 		if (end > len &&
1496 		    unlikely((err = pskb_trim(frag, len - offset))))
1497 			return err;
1498 
1499 		if (frag->next)
1500 			skb_drop_list(&frag->next);
1501 		break;
1502 	}
1503 
1504 done:
1505 	if (len > skb_headlen(skb)) {
1506 		skb->data_len -= skb->len - len;
1507 		skb->len       = len;
1508 	} else {
1509 		skb->len       = len;
1510 		skb->data_len  = 0;
1511 		skb_set_tail_pointer(skb, len);
1512 	}
1513 
1514 	return 0;
1515 }
1516 EXPORT_SYMBOL(___pskb_trim);
1517 
1518 /* Note : use pskb_trim_rcsum() instead of calling this directly
1519  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)1520 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
1521 {
1522 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1523 		int delta = skb->len - len;
1524 
1525 		skb->csum = csum_block_sub(skb->csum,
1526 					   skb_checksum(skb, len, delta, 0),
1527 					   len);
1528 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
1529 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
1530 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
1531 
1532 		if (offset + sizeof(__sum16) > hdlen)
1533 			return -EINVAL;
1534 	}
1535 	return __pskb_trim(skb, len);
1536 }
1537 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
1538 
1539 /**
1540  *	__pskb_pull_tail - advance tail of skb header
1541  *	@skb: buffer to reallocate
1542  *	@delta: number of bytes to advance tail
1543  *
1544  *	The function makes a sense only on a fragmented &sk_buff,
1545  *	it expands header moving its tail forward and copying necessary
1546  *	data from fragmented part.
1547  *
1548  *	&sk_buff MUST have reference count of 1.
1549  *
1550  *	Returns %NULL (and &sk_buff does not change) if pull failed
1551  *	or value of new tail of skb in the case of success.
1552  *
1553  *	All the pointers pointing into skb header may change and must be
1554  *	reloaded after call to this function.
1555  */
1556 
1557 /* Moves tail of skb head forward, copying data from fragmented part,
1558  * when it is necessary.
1559  * 1. It may fail due to malloc failure.
1560  * 2. It may change skb pointers.
1561  *
1562  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1563  */
__pskb_pull_tail(struct sk_buff * skb,int delta)1564 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1565 {
1566 	/* If skb has not enough free space at tail, get new one
1567 	 * plus 128 bytes for future expansions. If we have enough
1568 	 * room at tail, reallocate without expansion only if skb is cloned.
1569 	 */
1570 	int i, k, eat = (skb->tail + delta) - skb->end;
1571 
1572 	if (eat > 0 || skb_cloned(skb)) {
1573 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1574 				     GFP_ATOMIC))
1575 			return NULL;
1576 	}
1577 
1578 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1579 		BUG();
1580 
1581 	/* Optimization: no fragments, no reasons to preestimate
1582 	 * size of pulled pages. Superb.
1583 	 */
1584 	if (!skb_has_frag_list(skb))
1585 		goto pull_pages;
1586 
1587 	/* Estimate size of pulled pages. */
1588 	eat = delta;
1589 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1590 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1591 
1592 		if (size >= eat)
1593 			goto pull_pages;
1594 		eat -= size;
1595 	}
1596 
1597 	/* If we need update frag list, we are in troubles.
1598 	 * Certainly, it possible to add an offset to skb data,
1599 	 * but taking into account that pulling is expected to
1600 	 * be very rare operation, it is worth to fight against
1601 	 * further bloating skb head and crucify ourselves here instead.
1602 	 * Pure masohism, indeed. 8)8)
1603 	 */
1604 	if (eat) {
1605 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1606 		struct sk_buff *clone = NULL;
1607 		struct sk_buff *insp = NULL;
1608 
1609 		do {
1610 			BUG_ON(!list);
1611 
1612 			if (list->len <= eat) {
1613 				/* Eaten as whole. */
1614 				eat -= list->len;
1615 				list = list->next;
1616 				insp = list;
1617 			} else {
1618 				/* Eaten partially. */
1619 
1620 				if (skb_shared(list)) {
1621 					/* Sucks! We need to fork list. :-( */
1622 					clone = skb_clone(list, GFP_ATOMIC);
1623 					if (!clone)
1624 						return NULL;
1625 					insp = list->next;
1626 					list = clone;
1627 				} else {
1628 					/* This may be pulled without
1629 					 * problems. */
1630 					insp = list;
1631 				}
1632 				if (!pskb_pull(list, eat)) {
1633 					kfree_skb(clone);
1634 					return NULL;
1635 				}
1636 				break;
1637 			}
1638 		} while (eat);
1639 
1640 		/* Free pulled out fragments. */
1641 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1642 			skb_shinfo(skb)->frag_list = list->next;
1643 			kfree_skb(list);
1644 		}
1645 		/* And insert new clone at head. */
1646 		if (clone) {
1647 			clone->next = list;
1648 			skb_shinfo(skb)->frag_list = clone;
1649 		}
1650 	}
1651 	/* Success! Now we may commit changes to skb data. */
1652 
1653 pull_pages:
1654 	eat = delta;
1655 	k = 0;
1656 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1657 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1658 
1659 		if (size <= eat) {
1660 			skb_frag_unref(skb, i);
1661 			eat -= size;
1662 		} else {
1663 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1664 			if (eat) {
1665 				skb_shinfo(skb)->frags[k].page_offset += eat;
1666 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1667 				eat = 0;
1668 			}
1669 			k++;
1670 		}
1671 	}
1672 	skb_shinfo(skb)->nr_frags = k;
1673 
1674 	skb->tail     += delta;
1675 	skb->data_len -= delta;
1676 
1677 	return skb_tail_pointer(skb);
1678 }
1679 EXPORT_SYMBOL(__pskb_pull_tail);
1680 
1681 /**
1682  *	skb_copy_bits - copy bits from skb to kernel buffer
1683  *	@skb: source skb
1684  *	@offset: offset in source
1685  *	@to: destination buffer
1686  *	@len: number of bytes to copy
1687  *
1688  *	Copy the specified number of bytes from the source skb to the
1689  *	destination buffer.
1690  *
1691  *	CAUTION ! :
1692  *		If its prototype is ever changed,
1693  *		check arch/{*}/net/{*}.S files,
1694  *		since it is called from BPF assembly code.
1695  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)1696 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1697 {
1698 	int start = skb_headlen(skb);
1699 	struct sk_buff *frag_iter;
1700 	int i, copy;
1701 
1702 	if (offset > (int)skb->len - len)
1703 		goto fault;
1704 
1705 	/* Copy header. */
1706 	if ((copy = start - offset) > 0) {
1707 		if (copy > len)
1708 			copy = len;
1709 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1710 		if ((len -= copy) == 0)
1711 			return 0;
1712 		offset += copy;
1713 		to     += copy;
1714 	}
1715 
1716 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1717 		int end;
1718 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1719 
1720 		WARN_ON(start > offset + len);
1721 
1722 		end = start + skb_frag_size(f);
1723 		if ((copy = end - offset) > 0) {
1724 			u8 *vaddr;
1725 
1726 			if (copy > len)
1727 				copy = len;
1728 
1729 			vaddr = kmap_atomic(skb_frag_page(f));
1730 			memcpy(to,
1731 			       vaddr + f->page_offset + offset - start,
1732 			       copy);
1733 			kunmap_atomic(vaddr);
1734 
1735 			if ((len -= copy) == 0)
1736 				return 0;
1737 			offset += copy;
1738 			to     += copy;
1739 		}
1740 		start = end;
1741 	}
1742 
1743 	skb_walk_frags(skb, frag_iter) {
1744 		int end;
1745 
1746 		WARN_ON(start > offset + len);
1747 
1748 		end = start + frag_iter->len;
1749 		if ((copy = end - offset) > 0) {
1750 			if (copy > len)
1751 				copy = len;
1752 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1753 				goto fault;
1754 			if ((len -= copy) == 0)
1755 				return 0;
1756 			offset += copy;
1757 			to     += copy;
1758 		}
1759 		start = end;
1760 	}
1761 
1762 	if (!len)
1763 		return 0;
1764 
1765 fault:
1766 	return -EFAULT;
1767 }
1768 EXPORT_SYMBOL(skb_copy_bits);
1769 
1770 /*
1771  * Callback from splice_to_pipe(), if we need to release some pages
1772  * at the end of the spd in case we error'ed out in filling the pipe.
1773  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)1774 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1775 {
1776 	put_page(spd->pages[i]);
1777 }
1778 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)1779 static struct page *linear_to_page(struct page *page, unsigned int *len,
1780 				   unsigned int *offset,
1781 				   struct sock *sk)
1782 {
1783 	struct page_frag *pfrag = sk_page_frag(sk);
1784 
1785 	if (!sk_page_frag_refill(sk, pfrag))
1786 		return NULL;
1787 
1788 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1789 
1790 	memcpy(page_address(pfrag->page) + pfrag->offset,
1791 	       page_address(page) + *offset, *len);
1792 	*offset = pfrag->offset;
1793 	pfrag->offset += *len;
1794 
1795 	return pfrag->page;
1796 }
1797 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)1798 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1799 			     struct page *page,
1800 			     unsigned int offset)
1801 {
1802 	return	spd->nr_pages &&
1803 		spd->pages[spd->nr_pages - 1] == page &&
1804 		(spd->partial[spd->nr_pages - 1].offset +
1805 		 spd->partial[spd->nr_pages - 1].len == offset);
1806 }
1807 
1808 /*
1809  * Fill page/offset/length into spd, if it can hold more pages.
1810  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)1811 static bool spd_fill_page(struct splice_pipe_desc *spd,
1812 			  struct pipe_inode_info *pipe, struct page *page,
1813 			  unsigned int *len, unsigned int offset,
1814 			  bool linear,
1815 			  struct sock *sk)
1816 {
1817 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1818 		return true;
1819 
1820 	if (linear) {
1821 		page = linear_to_page(page, len, &offset, sk);
1822 		if (!page)
1823 			return true;
1824 	}
1825 	if (spd_can_coalesce(spd, page, offset)) {
1826 		spd->partial[spd->nr_pages - 1].len += *len;
1827 		return false;
1828 	}
1829 	get_page(page);
1830 	spd->pages[spd->nr_pages] = page;
1831 	spd->partial[spd->nr_pages].len = *len;
1832 	spd->partial[spd->nr_pages].offset = offset;
1833 	spd->nr_pages++;
1834 
1835 	return false;
1836 }
1837 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)1838 static bool __splice_segment(struct page *page, unsigned int poff,
1839 			     unsigned int plen, unsigned int *off,
1840 			     unsigned int *len,
1841 			     struct splice_pipe_desc *spd, bool linear,
1842 			     struct sock *sk,
1843 			     struct pipe_inode_info *pipe)
1844 {
1845 	if (!*len)
1846 		return true;
1847 
1848 	/* skip this segment if already processed */
1849 	if (*off >= plen) {
1850 		*off -= plen;
1851 		return false;
1852 	}
1853 
1854 	/* ignore any bits we already processed */
1855 	poff += *off;
1856 	plen -= *off;
1857 	*off = 0;
1858 
1859 	do {
1860 		unsigned int flen = min(*len, plen);
1861 
1862 		if (spd_fill_page(spd, pipe, page, &flen, poff,
1863 				  linear, sk))
1864 			return true;
1865 		poff += flen;
1866 		plen -= flen;
1867 		*len -= flen;
1868 	} while (*len && plen);
1869 
1870 	return false;
1871 }
1872 
1873 /*
1874  * Map linear and fragment data from the skb to spd. It reports true if the
1875  * pipe is full or if we already spliced the requested length.
1876  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)1877 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1878 			      unsigned int *offset, unsigned int *len,
1879 			      struct splice_pipe_desc *spd, struct sock *sk)
1880 {
1881 	int seg;
1882 
1883 	/* map the linear part :
1884 	 * If skb->head_frag is set, this 'linear' part is backed by a
1885 	 * fragment, and if the head is not shared with any clones then
1886 	 * we can avoid a copy since we own the head portion of this page.
1887 	 */
1888 	if (__splice_segment(virt_to_page(skb->data),
1889 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1890 			     skb_headlen(skb),
1891 			     offset, len, spd,
1892 			     skb_head_is_locked(skb),
1893 			     sk, pipe))
1894 		return true;
1895 
1896 	/*
1897 	 * then map the fragments
1898 	 */
1899 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1900 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1901 
1902 		if (__splice_segment(skb_frag_page(f),
1903 				     f->page_offset, skb_frag_size(f),
1904 				     offset, len, spd, false, sk, pipe))
1905 			return true;
1906 	}
1907 
1908 	return false;
1909 }
1910 
skb_socket_splice(struct sock * sk,struct pipe_inode_info * pipe,struct splice_pipe_desc * spd)1911 ssize_t skb_socket_splice(struct sock *sk,
1912 			  struct pipe_inode_info *pipe,
1913 			  struct splice_pipe_desc *spd)
1914 {
1915 	int ret;
1916 
1917 	/* Drop the socket lock, otherwise we have reverse
1918 	 * locking dependencies between sk_lock and i_mutex
1919 	 * here as compared to sendfile(). We enter here
1920 	 * with the socket lock held, and splice_to_pipe() will
1921 	 * grab the pipe inode lock. For sendfile() emulation,
1922 	 * we call into ->sendpage() with the i_mutex lock held
1923 	 * and networking will grab the socket lock.
1924 	 */
1925 	release_sock(sk);
1926 	ret = splice_to_pipe(pipe, spd);
1927 	lock_sock(sk);
1928 
1929 	return ret;
1930 }
1931 
1932 /*
1933  * Map data from the skb to a pipe. Should handle both the linear part,
1934  * the fragments, and the frag list. It does NOT handle frag lists within
1935  * the frag list, if such a thing exists. We'd probably need to recurse to
1936  * handle that cleanly.
1937  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags,ssize_t (* splice_cb)(struct sock *,struct pipe_inode_info *,struct splice_pipe_desc *))1938 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1939 		    struct pipe_inode_info *pipe, unsigned int tlen,
1940 		    unsigned int flags,
1941 		    ssize_t (*splice_cb)(struct sock *,
1942 					 struct pipe_inode_info *,
1943 					 struct splice_pipe_desc *))
1944 {
1945 	struct partial_page partial[MAX_SKB_FRAGS];
1946 	struct page *pages[MAX_SKB_FRAGS];
1947 	struct splice_pipe_desc spd = {
1948 		.pages = pages,
1949 		.partial = partial,
1950 		.nr_pages_max = MAX_SKB_FRAGS,
1951 		.flags = flags,
1952 		.ops = &nosteal_pipe_buf_ops,
1953 		.spd_release = sock_spd_release,
1954 	};
1955 	struct sk_buff *frag_iter;
1956 	int ret = 0;
1957 
1958 	/*
1959 	 * __skb_splice_bits() only fails if the output has no room left,
1960 	 * so no point in going over the frag_list for the error case.
1961 	 */
1962 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1963 		goto done;
1964 	else if (!tlen)
1965 		goto done;
1966 
1967 	/*
1968 	 * now see if we have a frag_list to map
1969 	 */
1970 	skb_walk_frags(skb, frag_iter) {
1971 		if (!tlen)
1972 			break;
1973 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1974 			break;
1975 	}
1976 
1977 done:
1978 	if (spd.nr_pages)
1979 		ret = splice_cb(sk, pipe, &spd);
1980 
1981 	return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(skb_splice_bits);
1984 
1985 /**
1986  *	skb_store_bits - store bits from kernel buffer to skb
1987  *	@skb: destination buffer
1988  *	@offset: offset in destination
1989  *	@from: source buffer
1990  *	@len: number of bytes to copy
1991  *
1992  *	Copy the specified number of bytes from the source buffer to the
1993  *	destination skb.  This function handles all the messy bits of
1994  *	traversing fragment lists and such.
1995  */
1996 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)1997 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1998 {
1999 	int start = skb_headlen(skb);
2000 	struct sk_buff *frag_iter;
2001 	int i, copy;
2002 
2003 	if (offset > (int)skb->len - len)
2004 		goto fault;
2005 
2006 	if ((copy = start - offset) > 0) {
2007 		if (copy > len)
2008 			copy = len;
2009 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2010 		if ((len -= copy) == 0)
2011 			return 0;
2012 		offset += copy;
2013 		from += copy;
2014 	}
2015 
2016 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2017 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2018 		int end;
2019 
2020 		WARN_ON(start > offset + len);
2021 
2022 		end = start + skb_frag_size(frag);
2023 		if ((copy = end - offset) > 0) {
2024 			u8 *vaddr;
2025 
2026 			if (copy > len)
2027 				copy = len;
2028 
2029 			vaddr = kmap_atomic(skb_frag_page(frag));
2030 			memcpy(vaddr + frag->page_offset + offset - start,
2031 			       from, copy);
2032 			kunmap_atomic(vaddr);
2033 
2034 			if ((len -= copy) == 0)
2035 				return 0;
2036 			offset += copy;
2037 			from += copy;
2038 		}
2039 		start = end;
2040 	}
2041 
2042 	skb_walk_frags(skb, frag_iter) {
2043 		int end;
2044 
2045 		WARN_ON(start > offset + len);
2046 
2047 		end = start + frag_iter->len;
2048 		if ((copy = end - offset) > 0) {
2049 			if (copy > len)
2050 				copy = len;
2051 			if (skb_store_bits(frag_iter, offset - start,
2052 					   from, copy))
2053 				goto fault;
2054 			if ((len -= copy) == 0)
2055 				return 0;
2056 			offset += copy;
2057 			from += copy;
2058 		}
2059 		start = end;
2060 	}
2061 	if (!len)
2062 		return 0;
2063 
2064 fault:
2065 	return -EFAULT;
2066 }
2067 EXPORT_SYMBOL(skb_store_bits);
2068 
2069 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2070 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2071 		      __wsum csum, const struct skb_checksum_ops *ops)
2072 {
2073 	int start = skb_headlen(skb);
2074 	int i, copy = start - offset;
2075 	struct sk_buff *frag_iter;
2076 	int pos = 0;
2077 
2078 	/* Checksum header. */
2079 	if (copy > 0) {
2080 		if (copy > len)
2081 			copy = len;
2082 		csum = ops->update(skb->data + offset, copy, csum);
2083 		if ((len -= copy) == 0)
2084 			return csum;
2085 		offset += copy;
2086 		pos	= copy;
2087 	}
2088 
2089 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2090 		int end;
2091 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2092 
2093 		WARN_ON(start > offset + len);
2094 
2095 		end = start + skb_frag_size(frag);
2096 		if ((copy = end - offset) > 0) {
2097 			__wsum csum2;
2098 			u8 *vaddr;
2099 
2100 			if (copy > len)
2101 				copy = len;
2102 			vaddr = kmap_atomic(skb_frag_page(frag));
2103 			csum2 = ops->update(vaddr + frag->page_offset +
2104 					    offset - start, copy, 0);
2105 			kunmap_atomic(vaddr);
2106 			csum = ops->combine(csum, csum2, pos, copy);
2107 			if (!(len -= copy))
2108 				return csum;
2109 			offset += copy;
2110 			pos    += copy;
2111 		}
2112 		start = end;
2113 	}
2114 
2115 	skb_walk_frags(skb, frag_iter) {
2116 		int end;
2117 
2118 		WARN_ON(start > offset + len);
2119 
2120 		end = start + frag_iter->len;
2121 		if ((copy = end - offset) > 0) {
2122 			__wsum csum2;
2123 			if (copy > len)
2124 				copy = len;
2125 			csum2 = __skb_checksum(frag_iter, offset - start,
2126 					       copy, 0, ops);
2127 			csum = ops->combine(csum, csum2, pos, copy);
2128 			if ((len -= copy) == 0)
2129 				return csum;
2130 			offset += copy;
2131 			pos    += copy;
2132 		}
2133 		start = end;
2134 	}
2135 	BUG_ON(len);
2136 
2137 	return csum;
2138 }
2139 EXPORT_SYMBOL(__skb_checksum);
2140 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2141 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2142 		    int len, __wsum csum)
2143 {
2144 	const struct skb_checksum_ops ops = {
2145 		.update  = csum_partial_ext,
2146 		.combine = csum_block_add_ext,
2147 	};
2148 
2149 	return __skb_checksum(skb, offset, len, csum, &ops);
2150 }
2151 EXPORT_SYMBOL(skb_checksum);
2152 
2153 /* Both of above in one bottle. */
2154 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len,__wsum csum)2155 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2156 				    u8 *to, int len, __wsum csum)
2157 {
2158 	int start = skb_headlen(skb);
2159 	int i, copy = start - offset;
2160 	struct sk_buff *frag_iter;
2161 	int pos = 0;
2162 
2163 	/* Copy header. */
2164 	if (copy > 0) {
2165 		if (copy > len)
2166 			copy = len;
2167 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2168 						 copy, csum);
2169 		if ((len -= copy) == 0)
2170 			return csum;
2171 		offset += copy;
2172 		to     += copy;
2173 		pos	= copy;
2174 	}
2175 
2176 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2177 		int end;
2178 
2179 		WARN_ON(start > offset + len);
2180 
2181 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2182 		if ((copy = end - offset) > 0) {
2183 			__wsum csum2;
2184 			u8 *vaddr;
2185 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2186 
2187 			if (copy > len)
2188 				copy = len;
2189 			vaddr = kmap_atomic(skb_frag_page(frag));
2190 			csum2 = csum_partial_copy_nocheck(vaddr +
2191 							  frag->page_offset +
2192 							  offset - start, to,
2193 							  copy, 0);
2194 			kunmap_atomic(vaddr);
2195 			csum = csum_block_add(csum, csum2, pos);
2196 			if (!(len -= copy))
2197 				return csum;
2198 			offset += copy;
2199 			to     += copy;
2200 			pos    += copy;
2201 		}
2202 		start = end;
2203 	}
2204 
2205 	skb_walk_frags(skb, frag_iter) {
2206 		__wsum csum2;
2207 		int end;
2208 
2209 		WARN_ON(start > offset + len);
2210 
2211 		end = start + frag_iter->len;
2212 		if ((copy = end - offset) > 0) {
2213 			if (copy > len)
2214 				copy = len;
2215 			csum2 = skb_copy_and_csum_bits(frag_iter,
2216 						       offset - start,
2217 						       to, copy, 0);
2218 			csum = csum_block_add(csum, csum2, pos);
2219 			if ((len -= copy) == 0)
2220 				return csum;
2221 			offset += copy;
2222 			to     += copy;
2223 			pos    += copy;
2224 		}
2225 		start = end;
2226 	}
2227 	BUG_ON(len);
2228 	return csum;
2229 }
2230 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2231 
2232  /**
2233  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2234  *	@from: source buffer
2235  *
2236  *	Calculates the amount of linear headroom needed in the 'to' skb passed
2237  *	into skb_zerocopy().
2238  */
2239 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2240 skb_zerocopy_headlen(const struct sk_buff *from)
2241 {
2242 	unsigned int hlen = 0;
2243 
2244 	if (!from->head_frag ||
2245 	    skb_headlen(from) < L1_CACHE_BYTES ||
2246 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
2247 		hlen = skb_headlen(from);
2248 		if (!hlen)
2249 			hlen = from->len;
2250 	}
2251 
2252 	if (skb_has_frag_list(from))
2253 		hlen = from->len;
2254 
2255 	return hlen;
2256 }
2257 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2258 
2259 /**
2260  *	skb_zerocopy - Zero copy skb to skb
2261  *	@to: destination buffer
2262  *	@from: source buffer
2263  *	@len: number of bytes to copy from source buffer
2264  *	@hlen: size of linear headroom in destination buffer
2265  *
2266  *	Copies up to `len` bytes from `from` to `to` by creating references
2267  *	to the frags in the source buffer.
2268  *
2269  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2270  *	headroom in the `to` buffer.
2271  *
2272  *	Return value:
2273  *	0: everything is OK
2274  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
2275  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
2276  */
2277 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2278 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2279 {
2280 	int i, j = 0;
2281 	int plen = 0; /* length of skb->head fragment */
2282 	int ret;
2283 	struct page *page;
2284 	unsigned int offset;
2285 
2286 	BUG_ON(!from->head_frag && !hlen);
2287 
2288 	/* dont bother with small payloads */
2289 	if (len <= skb_tailroom(to))
2290 		return skb_copy_bits(from, 0, skb_put(to, len), len);
2291 
2292 	if (hlen) {
2293 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2294 		if (unlikely(ret))
2295 			return ret;
2296 		len -= hlen;
2297 	} else {
2298 		plen = min_t(int, skb_headlen(from), len);
2299 		if (plen) {
2300 			page = virt_to_head_page(from->head);
2301 			offset = from->data - (unsigned char *)page_address(page);
2302 			__skb_fill_page_desc(to, 0, page, offset, plen);
2303 			get_page(page);
2304 			j = 1;
2305 			len -= plen;
2306 		}
2307 	}
2308 
2309 	to->truesize += len + plen;
2310 	to->len += len + plen;
2311 	to->data_len += len + plen;
2312 
2313 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2314 		skb_tx_error(from);
2315 		return -ENOMEM;
2316 	}
2317 
2318 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2319 		if (!len)
2320 			break;
2321 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2322 		skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2323 		len -= skb_shinfo(to)->frags[j].size;
2324 		skb_frag_ref(to, j);
2325 		j++;
2326 	}
2327 	skb_shinfo(to)->nr_frags = j;
2328 
2329 	return 0;
2330 }
2331 EXPORT_SYMBOL_GPL(skb_zerocopy);
2332 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)2333 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2334 {
2335 	__wsum csum;
2336 	long csstart;
2337 
2338 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2339 		csstart = skb_checksum_start_offset(skb);
2340 	else
2341 		csstart = skb_headlen(skb);
2342 
2343 	BUG_ON(csstart > skb_headlen(skb));
2344 
2345 	skb_copy_from_linear_data(skb, to, csstart);
2346 
2347 	csum = 0;
2348 	if (csstart != skb->len)
2349 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2350 					      skb->len - csstart, 0);
2351 
2352 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2353 		long csstuff = csstart + skb->csum_offset;
2354 
2355 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2356 	}
2357 }
2358 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2359 
2360 /**
2361  *	skb_dequeue - remove from the head of the queue
2362  *	@list: list to dequeue from
2363  *
2364  *	Remove the head of the list. The list lock is taken so the function
2365  *	may be used safely with other locking list functions. The head item is
2366  *	returned or %NULL if the list is empty.
2367  */
2368 
skb_dequeue(struct sk_buff_head * list)2369 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2370 {
2371 	unsigned long flags;
2372 	struct sk_buff *result;
2373 
2374 	spin_lock_irqsave(&list->lock, flags);
2375 	result = __skb_dequeue(list);
2376 	spin_unlock_irqrestore(&list->lock, flags);
2377 	return result;
2378 }
2379 EXPORT_SYMBOL(skb_dequeue);
2380 
2381 /**
2382  *	skb_dequeue_tail - remove from the tail of the queue
2383  *	@list: list to dequeue from
2384  *
2385  *	Remove the tail of the list. The list lock is taken so the function
2386  *	may be used safely with other locking list functions. The tail item is
2387  *	returned or %NULL if the list is empty.
2388  */
skb_dequeue_tail(struct sk_buff_head * list)2389 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2390 {
2391 	unsigned long flags;
2392 	struct sk_buff *result;
2393 
2394 	spin_lock_irqsave(&list->lock, flags);
2395 	result = __skb_dequeue_tail(list);
2396 	spin_unlock_irqrestore(&list->lock, flags);
2397 	return result;
2398 }
2399 EXPORT_SYMBOL(skb_dequeue_tail);
2400 
2401 /**
2402  *	skb_queue_purge - empty a list
2403  *	@list: list to empty
2404  *
2405  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2406  *	the list and one reference dropped. This function takes the list
2407  *	lock and is atomic with respect to other list locking functions.
2408  */
skb_queue_purge(struct sk_buff_head * list)2409 void skb_queue_purge(struct sk_buff_head *list)
2410 {
2411 	struct sk_buff *skb;
2412 	while ((skb = skb_dequeue(list)) != NULL)
2413 		kfree_skb(skb);
2414 }
2415 EXPORT_SYMBOL(skb_queue_purge);
2416 
2417 /**
2418  *	skb_rbtree_purge - empty a skb rbtree
2419  *	@root: root of the rbtree to empty
2420  *	Return value: the sum of truesizes of all purged skbs.
2421  *
2422  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2423  *	the list and one reference dropped. This function does not take
2424  *	any lock. Synchronization should be handled by the caller (e.g., TCP
2425  *	out-of-order queue is protected by the socket lock).
2426  */
skb_rbtree_purge(struct rb_root * root)2427 unsigned int skb_rbtree_purge(struct rb_root *root)
2428 {
2429 	struct rb_node *p = rb_first(root);
2430 	unsigned int sum = 0;
2431 
2432 	while (p) {
2433 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2434 
2435 		p = rb_next(p);
2436 		rb_erase(&skb->rbnode, root);
2437 		sum += skb->truesize;
2438 		kfree_skb(skb);
2439 	}
2440 	return sum;
2441 }
2442 
2443 /**
2444  *	skb_queue_head - queue a buffer at the list head
2445  *	@list: list to use
2446  *	@newsk: buffer to queue
2447  *
2448  *	Queue a buffer at the start of the list. This function takes the
2449  *	list lock and can be used safely with other locking &sk_buff functions
2450  *	safely.
2451  *
2452  *	A buffer cannot be placed on two lists at the same time.
2453  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2454 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2455 {
2456 	unsigned long flags;
2457 
2458 	spin_lock_irqsave(&list->lock, flags);
2459 	__skb_queue_head(list, newsk);
2460 	spin_unlock_irqrestore(&list->lock, flags);
2461 }
2462 EXPORT_SYMBOL(skb_queue_head);
2463 
2464 /**
2465  *	skb_queue_tail - queue a buffer at the list tail
2466  *	@list: list to use
2467  *	@newsk: buffer to queue
2468  *
2469  *	Queue a buffer at the tail of the list. This function takes the
2470  *	list lock and can be used safely with other locking &sk_buff functions
2471  *	safely.
2472  *
2473  *	A buffer cannot be placed on two lists at the same time.
2474  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2475 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2476 {
2477 	unsigned long flags;
2478 
2479 	spin_lock_irqsave(&list->lock, flags);
2480 	__skb_queue_tail(list, newsk);
2481 	spin_unlock_irqrestore(&list->lock, flags);
2482 }
2483 EXPORT_SYMBOL(skb_queue_tail);
2484 
2485 /**
2486  *	skb_unlink	-	remove a buffer from a list
2487  *	@skb: buffer to remove
2488  *	@list: list to use
2489  *
2490  *	Remove a packet from a list. The list locks are taken and this
2491  *	function is atomic with respect to other list locked calls
2492  *
2493  *	You must know what list the SKB is on.
2494  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2495 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2496 {
2497 	unsigned long flags;
2498 
2499 	spin_lock_irqsave(&list->lock, flags);
2500 	__skb_unlink(skb, list);
2501 	spin_unlock_irqrestore(&list->lock, flags);
2502 }
2503 EXPORT_SYMBOL(skb_unlink);
2504 
2505 /**
2506  *	skb_append	-	append a buffer
2507  *	@old: buffer to insert after
2508  *	@newsk: buffer to insert
2509  *	@list: list to use
2510  *
2511  *	Place a packet after a given packet in a list. The list locks are taken
2512  *	and this function is atomic with respect to other list locked calls.
2513  *	A buffer cannot be placed on two lists at the same time.
2514  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2515 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2516 {
2517 	unsigned long flags;
2518 
2519 	spin_lock_irqsave(&list->lock, flags);
2520 	__skb_queue_after(list, old, newsk);
2521 	spin_unlock_irqrestore(&list->lock, flags);
2522 }
2523 EXPORT_SYMBOL(skb_append);
2524 
2525 /**
2526  *	skb_insert	-	insert a buffer
2527  *	@old: buffer to insert before
2528  *	@newsk: buffer to insert
2529  *	@list: list to use
2530  *
2531  *	Place a packet before a given packet in a list. The list locks are
2532  * 	taken and this function is atomic with respect to other list locked
2533  *	calls.
2534  *
2535  *	A buffer cannot be placed on two lists at the same time.
2536  */
skb_insert(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2537 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2538 {
2539 	unsigned long flags;
2540 
2541 	spin_lock_irqsave(&list->lock, flags);
2542 	__skb_insert(newsk, old->prev, old, list);
2543 	spin_unlock_irqrestore(&list->lock, flags);
2544 }
2545 EXPORT_SYMBOL(skb_insert);
2546 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)2547 static inline void skb_split_inside_header(struct sk_buff *skb,
2548 					   struct sk_buff* skb1,
2549 					   const u32 len, const int pos)
2550 {
2551 	int i;
2552 
2553 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2554 					 pos - len);
2555 	/* And move data appendix as is. */
2556 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2557 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2558 
2559 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2560 	skb_shinfo(skb)->nr_frags  = 0;
2561 	skb1->data_len		   = skb->data_len;
2562 	skb1->len		   += skb1->data_len;
2563 	skb->data_len		   = 0;
2564 	skb->len		   = len;
2565 	skb_set_tail_pointer(skb, len);
2566 }
2567 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)2568 static inline void skb_split_no_header(struct sk_buff *skb,
2569 				       struct sk_buff* skb1,
2570 				       const u32 len, int pos)
2571 {
2572 	int i, k = 0;
2573 	const int nfrags = skb_shinfo(skb)->nr_frags;
2574 
2575 	skb_shinfo(skb)->nr_frags = 0;
2576 	skb1->len		  = skb1->data_len = skb->len - len;
2577 	skb->len		  = len;
2578 	skb->data_len		  = len - pos;
2579 
2580 	for (i = 0; i < nfrags; i++) {
2581 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2582 
2583 		if (pos + size > len) {
2584 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2585 
2586 			if (pos < len) {
2587 				/* Split frag.
2588 				 * We have two variants in this case:
2589 				 * 1. Move all the frag to the second
2590 				 *    part, if it is possible. F.e.
2591 				 *    this approach is mandatory for TUX,
2592 				 *    where splitting is expensive.
2593 				 * 2. Split is accurately. We make this.
2594 				 */
2595 				skb_frag_ref(skb, i);
2596 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2597 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2598 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2599 				skb_shinfo(skb)->nr_frags++;
2600 			}
2601 			k++;
2602 		} else
2603 			skb_shinfo(skb)->nr_frags++;
2604 		pos += size;
2605 	}
2606 	skb_shinfo(skb1)->nr_frags = k;
2607 }
2608 
2609 /**
2610  * skb_split - Split fragmented skb to two parts at length len.
2611  * @skb: the buffer to split
2612  * @skb1: the buffer to receive the second part
2613  * @len: new length for skb
2614  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)2615 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2616 {
2617 	int pos = skb_headlen(skb);
2618 
2619 	skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
2620 				      SKBTX_SHARED_FRAG;
2621 	if (len < pos)	/* Split line is inside header. */
2622 		skb_split_inside_header(skb, skb1, len, pos);
2623 	else		/* Second chunk has no header, nothing to copy. */
2624 		skb_split_no_header(skb, skb1, len, pos);
2625 }
2626 EXPORT_SYMBOL(skb_split);
2627 
2628 /* Shifting from/to a cloned skb is a no-go.
2629  *
2630  * Caller cannot keep skb_shinfo related pointers past calling here!
2631  */
skb_prepare_for_shift(struct sk_buff * skb)2632 static int skb_prepare_for_shift(struct sk_buff *skb)
2633 {
2634 	int ret = 0;
2635 
2636 	if (skb_cloned(skb)) {
2637 		/* Save and restore truesize: pskb_expand_head() may reallocate
2638 		 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
2639 		 * cannot change truesize at this point.
2640 		 */
2641 		unsigned int save_truesize = skb->truesize;
2642 
2643 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2644 		skb->truesize = save_truesize;
2645 	}
2646 	return ret;
2647 }
2648 
2649 /**
2650  * skb_shift - Shifts paged data partially from skb to another
2651  * @tgt: buffer into which tail data gets added
2652  * @skb: buffer from which the paged data comes from
2653  * @shiftlen: shift up to this many bytes
2654  *
2655  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2656  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2657  * It's up to caller to free skb if everything was shifted.
2658  *
2659  * If @tgt runs out of frags, the whole operation is aborted.
2660  *
2661  * Skb cannot include anything else but paged data while tgt is allowed
2662  * to have non-paged data as well.
2663  *
2664  * TODO: full sized shift could be optimized but that would need
2665  * specialized skb free'er to handle frags without up-to-date nr_frags.
2666  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)2667 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2668 {
2669 	int from, to, merge, todo;
2670 	struct skb_frag_struct *fragfrom, *fragto;
2671 
2672 	BUG_ON(shiftlen > skb->len);
2673 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2674 
2675 	todo = shiftlen;
2676 	from = 0;
2677 	to = skb_shinfo(tgt)->nr_frags;
2678 	fragfrom = &skb_shinfo(skb)->frags[from];
2679 
2680 	/* Actual merge is delayed until the point when we know we can
2681 	 * commit all, so that we don't have to undo partial changes
2682 	 */
2683 	if (!to ||
2684 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2685 			      fragfrom->page_offset)) {
2686 		merge = -1;
2687 	} else {
2688 		merge = to - 1;
2689 
2690 		todo -= skb_frag_size(fragfrom);
2691 		if (todo < 0) {
2692 			if (skb_prepare_for_shift(skb) ||
2693 			    skb_prepare_for_shift(tgt))
2694 				return 0;
2695 
2696 			/* All previous frag pointers might be stale! */
2697 			fragfrom = &skb_shinfo(skb)->frags[from];
2698 			fragto = &skb_shinfo(tgt)->frags[merge];
2699 
2700 			skb_frag_size_add(fragto, shiftlen);
2701 			skb_frag_size_sub(fragfrom, shiftlen);
2702 			fragfrom->page_offset += shiftlen;
2703 
2704 			goto onlymerged;
2705 		}
2706 
2707 		from++;
2708 	}
2709 
2710 	/* Skip full, not-fitting skb to avoid expensive operations */
2711 	if ((shiftlen == skb->len) &&
2712 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2713 		return 0;
2714 
2715 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2716 		return 0;
2717 
2718 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2719 		if (to == MAX_SKB_FRAGS)
2720 			return 0;
2721 
2722 		fragfrom = &skb_shinfo(skb)->frags[from];
2723 		fragto = &skb_shinfo(tgt)->frags[to];
2724 
2725 		if (todo >= skb_frag_size(fragfrom)) {
2726 			*fragto = *fragfrom;
2727 			todo -= skb_frag_size(fragfrom);
2728 			from++;
2729 			to++;
2730 
2731 		} else {
2732 			__skb_frag_ref(fragfrom);
2733 			fragto->page = fragfrom->page;
2734 			fragto->page_offset = fragfrom->page_offset;
2735 			skb_frag_size_set(fragto, todo);
2736 
2737 			fragfrom->page_offset += todo;
2738 			skb_frag_size_sub(fragfrom, todo);
2739 			todo = 0;
2740 
2741 			to++;
2742 			break;
2743 		}
2744 	}
2745 
2746 	/* Ready to "commit" this state change to tgt */
2747 	skb_shinfo(tgt)->nr_frags = to;
2748 
2749 	if (merge >= 0) {
2750 		fragfrom = &skb_shinfo(skb)->frags[0];
2751 		fragto = &skb_shinfo(tgt)->frags[merge];
2752 
2753 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2754 		__skb_frag_unref(fragfrom);
2755 	}
2756 
2757 	/* Reposition in the original skb */
2758 	to = 0;
2759 	while (from < skb_shinfo(skb)->nr_frags)
2760 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2761 	skb_shinfo(skb)->nr_frags = to;
2762 
2763 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2764 
2765 onlymerged:
2766 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2767 	 * the other hand might need it if it needs to be resent
2768 	 */
2769 	tgt->ip_summed = CHECKSUM_PARTIAL;
2770 	skb->ip_summed = CHECKSUM_PARTIAL;
2771 
2772 	/* Yak, is it really working this way? Some helper please? */
2773 	skb->len -= shiftlen;
2774 	skb->data_len -= shiftlen;
2775 	skb->truesize -= shiftlen;
2776 	tgt->len += shiftlen;
2777 	tgt->data_len += shiftlen;
2778 	tgt->truesize += shiftlen;
2779 
2780 	return shiftlen;
2781 }
2782 
2783 /**
2784  * skb_prepare_seq_read - Prepare a sequential read of skb data
2785  * @skb: the buffer to read
2786  * @from: lower offset of data to be read
2787  * @to: upper offset of data to be read
2788  * @st: state variable
2789  *
2790  * Initializes the specified state variable. Must be called before
2791  * invoking skb_seq_read() for the first time.
2792  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)2793 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2794 			  unsigned int to, struct skb_seq_state *st)
2795 {
2796 	st->lower_offset = from;
2797 	st->upper_offset = to;
2798 	st->root_skb = st->cur_skb = skb;
2799 	st->frag_idx = st->stepped_offset = 0;
2800 	st->frag_data = NULL;
2801 }
2802 EXPORT_SYMBOL(skb_prepare_seq_read);
2803 
2804 /**
2805  * skb_seq_read - Sequentially read skb data
2806  * @consumed: number of bytes consumed by the caller so far
2807  * @data: destination pointer for data to be returned
2808  * @st: state variable
2809  *
2810  * Reads a block of skb data at @consumed relative to the
2811  * lower offset specified to skb_prepare_seq_read(). Assigns
2812  * the head of the data block to @data and returns the length
2813  * of the block or 0 if the end of the skb data or the upper
2814  * offset has been reached.
2815  *
2816  * The caller is not required to consume all of the data
2817  * returned, i.e. @consumed is typically set to the number
2818  * of bytes already consumed and the next call to
2819  * skb_seq_read() will return the remaining part of the block.
2820  *
2821  * Note 1: The size of each block of data returned can be arbitrary,
2822  *       this limitation is the cost for zerocopy sequential
2823  *       reads of potentially non linear data.
2824  *
2825  * Note 2: Fragment lists within fragments are not implemented
2826  *       at the moment, state->root_skb could be replaced with
2827  *       a stack for this purpose.
2828  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)2829 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2830 			  struct skb_seq_state *st)
2831 {
2832 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2833 	skb_frag_t *frag;
2834 
2835 	if (unlikely(abs_offset >= st->upper_offset)) {
2836 		if (st->frag_data) {
2837 			kunmap_atomic(st->frag_data);
2838 			st->frag_data = NULL;
2839 		}
2840 		return 0;
2841 	}
2842 
2843 next_skb:
2844 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2845 
2846 	if (abs_offset < block_limit && !st->frag_data) {
2847 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2848 		return block_limit - abs_offset;
2849 	}
2850 
2851 	if (st->frag_idx == 0 && !st->frag_data)
2852 		st->stepped_offset += skb_headlen(st->cur_skb);
2853 
2854 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2855 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2856 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2857 
2858 		if (abs_offset < block_limit) {
2859 			if (!st->frag_data)
2860 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2861 
2862 			*data = (u8 *) st->frag_data + frag->page_offset +
2863 				(abs_offset - st->stepped_offset);
2864 
2865 			return block_limit - abs_offset;
2866 		}
2867 
2868 		if (st->frag_data) {
2869 			kunmap_atomic(st->frag_data);
2870 			st->frag_data = NULL;
2871 		}
2872 
2873 		st->frag_idx++;
2874 		st->stepped_offset += skb_frag_size(frag);
2875 	}
2876 
2877 	if (st->frag_data) {
2878 		kunmap_atomic(st->frag_data);
2879 		st->frag_data = NULL;
2880 	}
2881 
2882 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2883 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2884 		st->frag_idx = 0;
2885 		goto next_skb;
2886 	} else if (st->cur_skb->next) {
2887 		st->cur_skb = st->cur_skb->next;
2888 		st->frag_idx = 0;
2889 		goto next_skb;
2890 	}
2891 
2892 	return 0;
2893 }
2894 EXPORT_SYMBOL(skb_seq_read);
2895 
2896 /**
2897  * skb_abort_seq_read - Abort a sequential read of skb data
2898  * @st: state variable
2899  *
2900  * Must be called if skb_seq_read() was not called until it
2901  * returned 0.
2902  */
skb_abort_seq_read(struct skb_seq_state * st)2903 void skb_abort_seq_read(struct skb_seq_state *st)
2904 {
2905 	if (st->frag_data)
2906 		kunmap_atomic(st->frag_data);
2907 }
2908 EXPORT_SYMBOL(skb_abort_seq_read);
2909 
2910 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2911 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)2912 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2913 					  struct ts_config *conf,
2914 					  struct ts_state *state)
2915 {
2916 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2917 }
2918 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)2919 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2920 {
2921 	skb_abort_seq_read(TS_SKB_CB(state));
2922 }
2923 
2924 /**
2925  * skb_find_text - Find a text pattern in skb data
2926  * @skb: the buffer to look in
2927  * @from: search offset
2928  * @to: search limit
2929  * @config: textsearch configuration
2930  *
2931  * Finds a pattern in the skb data according to the specified
2932  * textsearch configuration. Use textsearch_next() to retrieve
2933  * subsequent occurrences of the pattern. Returns the offset
2934  * to the first occurrence or UINT_MAX if no match was found.
2935  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)2936 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2937 			   unsigned int to, struct ts_config *config)
2938 {
2939 	struct ts_state state;
2940 	unsigned int ret;
2941 
2942 	config->get_next_block = skb_ts_get_next_block;
2943 	config->finish = skb_ts_finish;
2944 
2945 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2946 
2947 	ret = textsearch_find(config, &state);
2948 	return (ret <= to - from ? ret : UINT_MAX);
2949 }
2950 EXPORT_SYMBOL(skb_find_text);
2951 
2952 /**
2953  * skb_append_datato_frags - append the user data to a skb
2954  * @sk: sock  structure
2955  * @skb: skb structure to be appended with user data.
2956  * @getfrag: call back function to be used for getting the user data
2957  * @from: pointer to user message iov
2958  * @length: length of the iov message
2959  *
2960  * Description: This procedure append the user data in the fragment part
2961  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2962  */
skb_append_datato_frags(struct sock * sk,struct sk_buff * skb,int (* getfrag)(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length)2963 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2964 			int (*getfrag)(void *from, char *to, int offset,
2965 					int len, int odd, struct sk_buff *skb),
2966 			void *from, int length)
2967 {
2968 	int frg_cnt = skb_shinfo(skb)->nr_frags;
2969 	int copy;
2970 	int offset = 0;
2971 	int ret;
2972 	struct page_frag *pfrag = &current->task_frag;
2973 
2974 	do {
2975 		/* Return error if we don't have space for new frag */
2976 		if (frg_cnt >= MAX_SKB_FRAGS)
2977 			return -EMSGSIZE;
2978 
2979 		if (!sk_page_frag_refill(sk, pfrag))
2980 			return -ENOMEM;
2981 
2982 		/* copy the user data to page */
2983 		copy = min_t(int, length, pfrag->size - pfrag->offset);
2984 
2985 		ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2986 			      offset, copy, 0, skb);
2987 		if (ret < 0)
2988 			return -EFAULT;
2989 
2990 		/* copy was successful so update the size parameters */
2991 		skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2992 				   copy);
2993 		frg_cnt++;
2994 		pfrag->offset += copy;
2995 		get_page(pfrag->page);
2996 
2997 		skb->truesize += copy;
2998 		atomic_add(copy, &sk->sk_wmem_alloc);
2999 		skb->len += copy;
3000 		skb->data_len += copy;
3001 		offset += copy;
3002 		length -= copy;
3003 
3004 	} while (length > 0);
3005 
3006 	return 0;
3007 }
3008 EXPORT_SYMBOL(skb_append_datato_frags);
3009 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3010 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3011 			 int offset, size_t size)
3012 {
3013 	int i = skb_shinfo(skb)->nr_frags;
3014 
3015 	if (skb_can_coalesce(skb, i, page, offset)) {
3016 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3017 	} else if (i < MAX_SKB_FRAGS) {
3018 		get_page(page);
3019 		skb_fill_page_desc(skb, i, page, offset, size);
3020 	} else {
3021 		return -EMSGSIZE;
3022 	}
3023 
3024 	return 0;
3025 }
3026 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3027 
3028 /**
3029  *	skb_pull_rcsum - pull skb and update receive checksum
3030  *	@skb: buffer to update
3031  *	@len: length of data pulled
3032  *
3033  *	This function performs an skb_pull on the packet and updates
3034  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3035  *	receive path processing instead of skb_pull unless you know
3036  *	that the checksum difference is zero (e.g., a valid IP header)
3037  *	or you are setting ip_summed to CHECKSUM_NONE.
3038  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3039 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3040 {
3041 	unsigned char *data = skb->data;
3042 
3043 	BUG_ON(len > skb->len);
3044 	__skb_pull(skb, len);
3045 	skb_postpull_rcsum(skb, data, len);
3046 	return skb->data;
3047 }
3048 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3049 
3050 /**
3051  *	skb_segment - Perform protocol segmentation on skb.
3052  *	@head_skb: buffer to segment
3053  *	@features: features for the output path (see dev->features)
3054  *
3055  *	This function performs segmentation on the given skb.  It returns
3056  *	a pointer to the first in a list of new skbs for the segments.
3057  *	In case of error it returns ERR_PTR(err).
3058  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3059 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3060 			    netdev_features_t features)
3061 {
3062 	struct sk_buff *segs = NULL;
3063 	struct sk_buff *tail = NULL;
3064 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3065 	skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3066 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
3067 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3068 	struct sk_buff *frag_skb = head_skb;
3069 	unsigned int offset = doffset;
3070 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3071 	unsigned int headroom;
3072 	unsigned int len;
3073 	__be16 proto;
3074 	bool csum;
3075 	int sg = !!(features & NETIF_F_SG);
3076 	int nfrags = skb_shinfo(head_skb)->nr_frags;
3077 	int err = -ENOMEM;
3078 	int i = 0;
3079 	int pos;
3080 	int dummy;
3081 
3082 	__skb_push(head_skb, doffset);
3083 	proto = skb_network_protocol(head_skb, &dummy);
3084 	if (unlikely(!proto))
3085 		return ERR_PTR(-EINVAL);
3086 
3087 	csum = !head_skb->encap_hdr_csum &&
3088 	    !!can_checksum_protocol(features, proto);
3089 
3090 	headroom = skb_headroom(head_skb);
3091 	pos = skb_headlen(head_skb);
3092 
3093 	do {
3094 		struct sk_buff *nskb;
3095 		skb_frag_t *nskb_frag;
3096 		int hsize;
3097 		int size;
3098 
3099 		len = head_skb->len - offset;
3100 		if (len > mss)
3101 			len = mss;
3102 
3103 		hsize = skb_headlen(head_skb) - offset;
3104 		if (hsize < 0)
3105 			hsize = 0;
3106 		if (hsize > len || !sg)
3107 			hsize = len;
3108 
3109 		if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3110 		    (skb_headlen(list_skb) == len || sg)) {
3111 			BUG_ON(skb_headlen(list_skb) > len);
3112 
3113 			i = 0;
3114 			nfrags = skb_shinfo(list_skb)->nr_frags;
3115 			frag = skb_shinfo(list_skb)->frags;
3116 			frag_skb = list_skb;
3117 			pos += skb_headlen(list_skb);
3118 
3119 			while (pos < offset + len) {
3120 				BUG_ON(i >= nfrags);
3121 
3122 				size = skb_frag_size(frag);
3123 				if (pos + size > offset + len)
3124 					break;
3125 
3126 				i++;
3127 				pos += size;
3128 				frag++;
3129 			}
3130 
3131 			nskb = skb_clone(list_skb, GFP_ATOMIC);
3132 			list_skb = list_skb->next;
3133 
3134 			if (unlikely(!nskb))
3135 				goto err;
3136 
3137 			if (unlikely(pskb_trim(nskb, len))) {
3138 				kfree_skb(nskb);
3139 				goto err;
3140 			}
3141 
3142 			hsize = skb_end_offset(nskb);
3143 			if (skb_cow_head(nskb, doffset + headroom)) {
3144 				kfree_skb(nskb);
3145 				goto err;
3146 			}
3147 
3148 			nskb->truesize += skb_end_offset(nskb) - hsize;
3149 			skb_release_head_state(nskb);
3150 			__skb_push(nskb, doffset);
3151 		} else {
3152 			nskb = __alloc_skb(hsize + doffset + headroom,
3153 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3154 					   NUMA_NO_NODE);
3155 
3156 			if (unlikely(!nskb))
3157 				goto err;
3158 
3159 			skb_reserve(nskb, headroom);
3160 			__skb_put(nskb, doffset);
3161 		}
3162 
3163 		if (segs)
3164 			tail->next = nskb;
3165 		else
3166 			segs = nskb;
3167 		tail = nskb;
3168 
3169 		__copy_skb_header(nskb, head_skb);
3170 
3171 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3172 		skb_reset_mac_len(nskb);
3173 
3174 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3175 						 nskb->data - tnl_hlen,
3176 						 doffset + tnl_hlen);
3177 
3178 		if (nskb->len == len + doffset)
3179 			goto perform_csum_check;
3180 
3181 		if (!sg && !nskb->remcsum_offload) {
3182 			nskb->ip_summed = CHECKSUM_NONE;
3183 			nskb->csum = skb_copy_and_csum_bits(head_skb, offset,
3184 							    skb_put(nskb, len),
3185 							    len, 0);
3186 			SKB_GSO_CB(nskb)->csum_start =
3187 			    skb_headroom(nskb) + doffset;
3188 			continue;
3189 		}
3190 
3191 		nskb_frag = skb_shinfo(nskb)->frags;
3192 
3193 		skb_copy_from_linear_data_offset(head_skb, offset,
3194 						 skb_put(nskb, hsize), hsize);
3195 
3196 		skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3197 					      SKBTX_SHARED_FRAG;
3198 
3199 		while (pos < offset + len) {
3200 			if (i >= nfrags) {
3201 				BUG_ON(skb_headlen(list_skb));
3202 
3203 				i = 0;
3204 				nfrags = skb_shinfo(list_skb)->nr_frags;
3205 				frag = skb_shinfo(list_skb)->frags;
3206 				frag_skb = list_skb;
3207 
3208 				BUG_ON(!nfrags);
3209 
3210 				list_skb = list_skb->next;
3211 			}
3212 
3213 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
3214 				     MAX_SKB_FRAGS)) {
3215 				net_warn_ratelimited(
3216 					"skb_segment: too many frags: %u %u\n",
3217 					pos, mss);
3218 				goto err;
3219 			}
3220 
3221 			if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3222 				goto err;
3223 
3224 			*nskb_frag = *frag;
3225 			__skb_frag_ref(nskb_frag);
3226 			size = skb_frag_size(nskb_frag);
3227 
3228 			if (pos < offset) {
3229 				nskb_frag->page_offset += offset - pos;
3230 				skb_frag_size_sub(nskb_frag, offset - pos);
3231 			}
3232 
3233 			skb_shinfo(nskb)->nr_frags++;
3234 
3235 			if (pos + size <= offset + len) {
3236 				i++;
3237 				frag++;
3238 				pos += size;
3239 			} else {
3240 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3241 				goto skip_fraglist;
3242 			}
3243 
3244 			nskb_frag++;
3245 		}
3246 
3247 skip_fraglist:
3248 		nskb->data_len = len - hsize;
3249 		nskb->len += nskb->data_len;
3250 		nskb->truesize += nskb->data_len;
3251 
3252 perform_csum_check:
3253 		if (!csum && !nskb->remcsum_offload) {
3254 			nskb->csum = skb_checksum(nskb, doffset,
3255 						  nskb->len - doffset, 0);
3256 			nskb->ip_summed = CHECKSUM_NONE;
3257 			SKB_GSO_CB(nskb)->csum_start =
3258 			    skb_headroom(nskb) + doffset;
3259 		}
3260 	} while ((offset += len) < head_skb->len);
3261 
3262 	/* Some callers want to get the end of the list.
3263 	 * Put it in segs->prev to avoid walking the list.
3264 	 * (see validate_xmit_skb_list() for example)
3265 	 */
3266 	segs->prev = tail;
3267 
3268 	/* Following permits correct backpressure, for protocols
3269 	 * using skb_set_owner_w().
3270 	 * Idea is to tranfert ownership from head_skb to last segment.
3271 	 */
3272 	if (head_skb->destructor == sock_wfree) {
3273 		swap(tail->truesize, head_skb->truesize);
3274 		swap(tail->destructor, head_skb->destructor);
3275 		swap(tail->sk, head_skb->sk);
3276 	}
3277 	return segs;
3278 
3279 err:
3280 	kfree_skb_list(segs);
3281 	return ERR_PTR(err);
3282 }
3283 EXPORT_SYMBOL_GPL(skb_segment);
3284 
skb_gro_receive(struct sk_buff ** head,struct sk_buff * skb)3285 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3286 {
3287 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3288 	unsigned int offset = skb_gro_offset(skb);
3289 	unsigned int headlen = skb_headlen(skb);
3290 	unsigned int len = skb_gro_len(skb);
3291 	struct sk_buff *lp, *p = *head;
3292 	unsigned int delta_truesize;
3293 
3294 	if (unlikely(p->len + len >= 65536))
3295 		return -E2BIG;
3296 
3297 	lp = NAPI_GRO_CB(p)->last;
3298 	pinfo = skb_shinfo(lp);
3299 
3300 	if (headlen <= offset) {
3301 		skb_frag_t *frag;
3302 		skb_frag_t *frag2;
3303 		int i = skbinfo->nr_frags;
3304 		int nr_frags = pinfo->nr_frags + i;
3305 
3306 		if (nr_frags > MAX_SKB_FRAGS)
3307 			goto merge;
3308 
3309 		offset -= headlen;
3310 		pinfo->nr_frags = nr_frags;
3311 		skbinfo->nr_frags = 0;
3312 
3313 		frag = pinfo->frags + nr_frags;
3314 		frag2 = skbinfo->frags + i;
3315 		do {
3316 			*--frag = *--frag2;
3317 		} while (--i);
3318 
3319 		frag->page_offset += offset;
3320 		skb_frag_size_sub(frag, offset);
3321 
3322 		/* all fragments truesize : remove (head size + sk_buff) */
3323 		delta_truesize = skb->truesize -
3324 				 SKB_TRUESIZE(skb_end_offset(skb));
3325 
3326 		skb->truesize -= skb->data_len;
3327 		skb->len -= skb->data_len;
3328 		skb->data_len = 0;
3329 
3330 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3331 		goto done;
3332 	} else if (skb->head_frag) {
3333 		int nr_frags = pinfo->nr_frags;
3334 		skb_frag_t *frag = pinfo->frags + nr_frags;
3335 		struct page *page = virt_to_head_page(skb->head);
3336 		unsigned int first_size = headlen - offset;
3337 		unsigned int first_offset;
3338 
3339 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3340 			goto merge;
3341 
3342 		first_offset = skb->data -
3343 			       (unsigned char *)page_address(page) +
3344 			       offset;
3345 
3346 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3347 
3348 		frag->page.p	  = page;
3349 		frag->page_offset = first_offset;
3350 		skb_frag_size_set(frag, first_size);
3351 
3352 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3353 		/* We dont need to clear skbinfo->nr_frags here */
3354 
3355 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3356 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3357 		goto done;
3358 	}
3359 
3360 merge:
3361 	delta_truesize = skb->truesize;
3362 	if (offset > headlen) {
3363 		unsigned int eat = offset - headlen;
3364 
3365 		skbinfo->frags[0].page_offset += eat;
3366 		skb_frag_size_sub(&skbinfo->frags[0], eat);
3367 		skb->data_len -= eat;
3368 		skb->len -= eat;
3369 		offset = headlen;
3370 	}
3371 
3372 	__skb_pull(skb, offset);
3373 
3374 	if (NAPI_GRO_CB(p)->last == p)
3375 		skb_shinfo(p)->frag_list = skb;
3376 	else
3377 		NAPI_GRO_CB(p)->last->next = skb;
3378 	NAPI_GRO_CB(p)->last = skb;
3379 	__skb_header_release(skb);
3380 	lp = p;
3381 
3382 done:
3383 	NAPI_GRO_CB(p)->count++;
3384 	p->data_len += len;
3385 	p->truesize += delta_truesize;
3386 	p->len += len;
3387 	if (lp != p) {
3388 		lp->data_len += len;
3389 		lp->truesize += delta_truesize;
3390 		lp->len += len;
3391 	}
3392 	NAPI_GRO_CB(skb)->same_flow = 1;
3393 	return 0;
3394 }
3395 
skb_init(void)3396 void __init skb_init(void)
3397 {
3398 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3399 					      sizeof(struct sk_buff),
3400 					      0,
3401 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3402 					      NULL);
3403 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3404 						sizeof(struct sk_buff_fclones),
3405 						0,
3406 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3407 						NULL);
3408 }
3409 
3410 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)3411 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3412 	       unsigned int recursion_level)
3413 {
3414 	int start = skb_headlen(skb);
3415 	int i, copy = start - offset;
3416 	struct sk_buff *frag_iter;
3417 	int elt = 0;
3418 
3419 	if (unlikely(recursion_level >= 24))
3420 		return -EMSGSIZE;
3421 
3422 	if (copy > 0) {
3423 		if (copy > len)
3424 			copy = len;
3425 		sg_set_buf(sg, skb->data + offset, copy);
3426 		elt++;
3427 		if ((len -= copy) == 0)
3428 			return elt;
3429 		offset += copy;
3430 	}
3431 
3432 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3433 		int end;
3434 
3435 		WARN_ON(start > offset + len);
3436 
3437 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3438 		if ((copy = end - offset) > 0) {
3439 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3440 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3441 				return -EMSGSIZE;
3442 
3443 			if (copy > len)
3444 				copy = len;
3445 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3446 					frag->page_offset+offset-start);
3447 			elt++;
3448 			if (!(len -= copy))
3449 				return elt;
3450 			offset += copy;
3451 		}
3452 		start = end;
3453 	}
3454 
3455 	skb_walk_frags(skb, frag_iter) {
3456 		int end, ret;
3457 
3458 		WARN_ON(start > offset + len);
3459 
3460 		end = start + frag_iter->len;
3461 		if ((copy = end - offset) > 0) {
3462 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3463 				return -EMSGSIZE;
3464 
3465 			if (copy > len)
3466 				copy = len;
3467 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3468 					      copy, recursion_level + 1);
3469 			if (unlikely(ret < 0))
3470 				return ret;
3471 			elt += ret;
3472 			if ((len -= copy) == 0)
3473 				return elt;
3474 			offset += copy;
3475 		}
3476 		start = end;
3477 	}
3478 	BUG_ON(len);
3479 	return elt;
3480 }
3481 
3482 /**
3483  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3484  *	@skb: Socket buffer containing the buffers to be mapped
3485  *	@sg: The scatter-gather list to map into
3486  *	@offset: The offset into the buffer's contents to start mapping
3487  *	@len: Length of buffer space to be mapped
3488  *
3489  *	Fill the specified scatter-gather list with mappings/pointers into a
3490  *	region of the buffer space attached to a socket buffer. Returns either
3491  *	the number of scatterlist items used, or -EMSGSIZE if the contents
3492  *	could not fit.
3493  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3494 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3495 {
3496 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3497 
3498 	if (nsg <= 0)
3499 		return nsg;
3500 
3501 	sg_mark_end(&sg[nsg - 1]);
3502 
3503 	return nsg;
3504 }
3505 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3506 
3507 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3508  * sglist without mark the sg which contain last skb data as the end.
3509  * So the caller can mannipulate sg list as will when padding new data after
3510  * the first call without calling sg_unmark_end to expend sg list.
3511  *
3512  * Scenario to use skb_to_sgvec_nomark:
3513  * 1. sg_init_table
3514  * 2. skb_to_sgvec_nomark(payload1)
3515  * 3. skb_to_sgvec_nomark(payload2)
3516  *
3517  * This is equivalent to:
3518  * 1. sg_init_table
3519  * 2. skb_to_sgvec(payload1)
3520  * 3. sg_unmark_end
3521  * 4. skb_to_sgvec(payload2)
3522  *
3523  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3524  * is more preferable.
3525  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3526 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3527 			int offset, int len)
3528 {
3529 	return __skb_to_sgvec(skb, sg, offset, len, 0);
3530 }
3531 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3532 
3533 
3534 
3535 /**
3536  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3537  *	@skb: The socket buffer to check.
3538  *	@tailbits: Amount of trailing space to be added
3539  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3540  *
3541  *	Make sure that the data buffers attached to a socket buffer are
3542  *	writable. If they are not, private copies are made of the data buffers
3543  *	and the socket buffer is set to use these instead.
3544  *
3545  *	If @tailbits is given, make sure that there is space to write @tailbits
3546  *	bytes of data beyond current end of socket buffer.  @trailer will be
3547  *	set to point to the skb in which this space begins.
3548  *
3549  *	The number of scatterlist elements required to completely map the
3550  *	COW'd and extended socket buffer will be returned.
3551  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)3552 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3553 {
3554 	int copyflag;
3555 	int elt;
3556 	struct sk_buff *skb1, **skb_p;
3557 
3558 	/* If skb is cloned or its head is paged, reallocate
3559 	 * head pulling out all the pages (pages are considered not writable
3560 	 * at the moment even if they are anonymous).
3561 	 */
3562 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3563 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3564 		return -ENOMEM;
3565 
3566 	/* Easy case. Most of packets will go this way. */
3567 	if (!skb_has_frag_list(skb)) {
3568 		/* A little of trouble, not enough of space for trailer.
3569 		 * This should not happen, when stack is tuned to generate
3570 		 * good frames. OK, on miss we reallocate and reserve even more
3571 		 * space, 128 bytes is fair. */
3572 
3573 		if (skb_tailroom(skb) < tailbits &&
3574 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3575 			return -ENOMEM;
3576 
3577 		/* Voila! */
3578 		*trailer = skb;
3579 		return 1;
3580 	}
3581 
3582 	/* Misery. We are in troubles, going to mincer fragments... */
3583 
3584 	elt = 1;
3585 	skb_p = &skb_shinfo(skb)->frag_list;
3586 	copyflag = 0;
3587 
3588 	while ((skb1 = *skb_p) != NULL) {
3589 		int ntail = 0;
3590 
3591 		/* The fragment is partially pulled by someone,
3592 		 * this can happen on input. Copy it and everything
3593 		 * after it. */
3594 
3595 		if (skb_shared(skb1))
3596 			copyflag = 1;
3597 
3598 		/* If the skb is the last, worry about trailer. */
3599 
3600 		if (skb1->next == NULL && tailbits) {
3601 			if (skb_shinfo(skb1)->nr_frags ||
3602 			    skb_has_frag_list(skb1) ||
3603 			    skb_tailroom(skb1) < tailbits)
3604 				ntail = tailbits + 128;
3605 		}
3606 
3607 		if (copyflag ||
3608 		    skb_cloned(skb1) ||
3609 		    ntail ||
3610 		    skb_shinfo(skb1)->nr_frags ||
3611 		    skb_has_frag_list(skb1)) {
3612 			struct sk_buff *skb2;
3613 
3614 			/* Fuck, we are miserable poor guys... */
3615 			if (ntail == 0)
3616 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3617 			else
3618 				skb2 = skb_copy_expand(skb1,
3619 						       skb_headroom(skb1),
3620 						       ntail,
3621 						       GFP_ATOMIC);
3622 			if (unlikely(skb2 == NULL))
3623 				return -ENOMEM;
3624 
3625 			if (skb1->sk)
3626 				skb_set_owner_w(skb2, skb1->sk);
3627 
3628 			/* Looking around. Are we still alive?
3629 			 * OK, link new skb, drop old one */
3630 
3631 			skb2->next = skb1->next;
3632 			*skb_p = skb2;
3633 			kfree_skb(skb1);
3634 			skb1 = skb2;
3635 		}
3636 		elt++;
3637 		*trailer = skb1;
3638 		skb_p = &skb1->next;
3639 	}
3640 
3641 	return elt;
3642 }
3643 EXPORT_SYMBOL_GPL(skb_cow_data);
3644 
sock_rmem_free(struct sk_buff * skb)3645 static void sock_rmem_free(struct sk_buff *skb)
3646 {
3647 	struct sock *sk = skb->sk;
3648 
3649 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3650 }
3651 
3652 /*
3653  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3654  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)3655 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3656 {
3657 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3658 	    (unsigned int)sk->sk_rcvbuf)
3659 		return -ENOMEM;
3660 
3661 	skb_orphan(skb);
3662 	skb->sk = sk;
3663 	skb->destructor = sock_rmem_free;
3664 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3665 
3666 	/* before exiting rcu section, make sure dst is refcounted */
3667 	skb_dst_force(skb);
3668 
3669 	skb_queue_tail(&sk->sk_error_queue, skb);
3670 	if (!sock_flag(sk, SOCK_DEAD))
3671 		sk->sk_error_report(sk);
3672 	return 0;
3673 }
3674 EXPORT_SYMBOL(sock_queue_err_skb);
3675 
sock_dequeue_err_skb(struct sock * sk)3676 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3677 {
3678 	struct sk_buff_head *q = &sk->sk_error_queue;
3679 	struct sk_buff *skb, *skb_next;
3680 	unsigned long flags;
3681 	int err = 0;
3682 
3683 	spin_lock_irqsave(&q->lock, flags);
3684 	skb = __skb_dequeue(q);
3685 	if (skb && (skb_next = skb_peek(q)))
3686 		err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3687 	spin_unlock_irqrestore(&q->lock, flags);
3688 
3689 	sk->sk_err = err;
3690 	if (err)
3691 		sk->sk_error_report(sk);
3692 
3693 	return skb;
3694 }
3695 EXPORT_SYMBOL(sock_dequeue_err_skb);
3696 
3697 /**
3698  * skb_clone_sk - create clone of skb, and take reference to socket
3699  * @skb: the skb to clone
3700  *
3701  * This function creates a clone of a buffer that holds a reference on
3702  * sk_refcnt.  Buffers created via this function are meant to be
3703  * returned using sock_queue_err_skb, or free via kfree_skb.
3704  *
3705  * When passing buffers allocated with this function to sock_queue_err_skb
3706  * it is necessary to wrap the call with sock_hold/sock_put in order to
3707  * prevent the socket from being released prior to being enqueued on
3708  * the sk_error_queue.
3709  */
skb_clone_sk(struct sk_buff * skb)3710 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3711 {
3712 	struct sock *sk = skb->sk;
3713 	struct sk_buff *clone;
3714 
3715 	if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3716 		return NULL;
3717 
3718 	clone = skb_clone(skb, GFP_ATOMIC);
3719 	if (!clone) {
3720 		sock_put(sk);
3721 		return NULL;
3722 	}
3723 
3724 	clone->sk = sk;
3725 	clone->destructor = sock_efree;
3726 
3727 	return clone;
3728 }
3729 EXPORT_SYMBOL(skb_clone_sk);
3730 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype)3731 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3732 					struct sock *sk,
3733 					int tstype)
3734 {
3735 	struct sock_exterr_skb *serr;
3736 	int err;
3737 
3738 	serr = SKB_EXT_ERR(skb);
3739 	memset(serr, 0, sizeof(*serr));
3740 	serr->ee.ee_errno = ENOMSG;
3741 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3742 	serr->ee.ee_info = tstype;
3743 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3744 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
3745 		if (sk->sk_protocol == IPPROTO_TCP &&
3746 		    sk->sk_type == SOCK_STREAM)
3747 			serr->ee.ee_data -= sk->sk_tskey;
3748 	}
3749 
3750 	err = sock_queue_err_skb(sk, skb);
3751 
3752 	if (err)
3753 		kfree_skb(skb);
3754 }
3755 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)3756 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3757 {
3758 	bool ret;
3759 
3760 	if (likely(sysctl_tstamp_allow_data || tsonly))
3761 		return true;
3762 
3763 	read_lock_bh(&sk->sk_callback_lock);
3764 	ret = sk->sk_socket && sk->sk_socket->file &&
3765 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3766 	read_unlock_bh(&sk->sk_callback_lock);
3767 	return ret;
3768 }
3769 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)3770 void skb_complete_tx_timestamp(struct sk_buff *skb,
3771 			       struct skb_shared_hwtstamps *hwtstamps)
3772 {
3773 	struct sock *sk = skb->sk;
3774 
3775 	if (!skb_may_tx_timestamp(sk, false))
3776 		goto err;
3777 
3778 	/* Take a reference to prevent skb_orphan() from freeing the socket,
3779 	 * but only if the socket refcount is not zero.
3780 	 */
3781 	if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3782 		*skb_hwtstamps(skb) = *hwtstamps;
3783 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3784 		sock_put(sk);
3785 		return;
3786 	}
3787 
3788 err:
3789 	kfree_skb(skb);
3790 }
3791 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3792 
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)3793 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3794 		     struct skb_shared_hwtstamps *hwtstamps,
3795 		     struct sock *sk, int tstype)
3796 {
3797 	struct sk_buff *skb;
3798 	bool tsonly;
3799 
3800 	if (!sk)
3801 		return;
3802 
3803 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3804 	if (!skb_may_tx_timestamp(sk, tsonly))
3805 		return;
3806 
3807 	if (tsonly)
3808 		skb = alloc_skb(0, GFP_ATOMIC);
3809 	else
3810 		skb = skb_clone(orig_skb, GFP_ATOMIC);
3811 	if (!skb)
3812 		return;
3813 
3814 	if (tsonly) {
3815 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
3816 					     SKBTX_ANY_TSTAMP;
3817 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3818 	}
3819 
3820 	if (hwtstamps)
3821 		*skb_hwtstamps(skb) = *hwtstamps;
3822 	else
3823 		skb->tstamp = ktime_get_real();
3824 
3825 	__skb_complete_tx_timestamp(skb, sk, tstype);
3826 }
3827 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3828 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)3829 void skb_tstamp_tx(struct sk_buff *orig_skb,
3830 		   struct skb_shared_hwtstamps *hwtstamps)
3831 {
3832 	return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3833 			       SCM_TSTAMP_SND);
3834 }
3835 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3836 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)3837 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3838 {
3839 	struct sock *sk = skb->sk;
3840 	struct sock_exterr_skb *serr;
3841 	int err = 1;
3842 
3843 	skb->wifi_acked_valid = 1;
3844 	skb->wifi_acked = acked;
3845 
3846 	serr = SKB_EXT_ERR(skb);
3847 	memset(serr, 0, sizeof(*serr));
3848 	serr->ee.ee_errno = ENOMSG;
3849 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3850 
3851 	/* Take a reference to prevent skb_orphan() from freeing the socket,
3852 	 * but only if the socket refcount is not zero.
3853 	 */
3854 	if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3855 		err = sock_queue_err_skb(sk, skb);
3856 		sock_put(sk);
3857 	}
3858 	if (err)
3859 		kfree_skb(skb);
3860 }
3861 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3862 
3863 /**
3864  * skb_partial_csum_set - set up and verify partial csum values for packet
3865  * @skb: the skb to set
3866  * @start: the number of bytes after skb->data to start checksumming.
3867  * @off: the offset from start to place the checksum.
3868  *
3869  * For untrusted partially-checksummed packets, we need to make sure the values
3870  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3871  *
3872  * This function checks and sets those values and skb->ip_summed: if this
3873  * returns false you should drop the packet.
3874  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)3875 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3876 {
3877 	if (unlikely(start > skb_headlen(skb)) ||
3878 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3879 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3880 				     start, off, skb_headlen(skb));
3881 		return false;
3882 	}
3883 	skb->ip_summed = CHECKSUM_PARTIAL;
3884 	skb->csum_start = skb_headroom(skb) + start;
3885 	skb->csum_offset = off;
3886 	skb_set_transport_header(skb, start);
3887 	return true;
3888 }
3889 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3890 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)3891 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3892 			       unsigned int max)
3893 {
3894 	if (skb_headlen(skb) >= len)
3895 		return 0;
3896 
3897 	/* If we need to pullup then pullup to the max, so we
3898 	 * won't need to do it again.
3899 	 */
3900 	if (max > skb->len)
3901 		max = skb->len;
3902 
3903 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3904 		return -ENOMEM;
3905 
3906 	if (skb_headlen(skb) < len)
3907 		return -EPROTO;
3908 
3909 	return 0;
3910 }
3911 
3912 #define MAX_TCP_HDR_LEN (15 * 4)
3913 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)3914 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3915 				      typeof(IPPROTO_IP) proto,
3916 				      unsigned int off)
3917 {
3918 	switch (proto) {
3919 		int err;
3920 
3921 	case IPPROTO_TCP:
3922 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3923 					  off + MAX_TCP_HDR_LEN);
3924 		if (!err && !skb_partial_csum_set(skb, off,
3925 						  offsetof(struct tcphdr,
3926 							   check)))
3927 			err = -EPROTO;
3928 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3929 
3930 	case IPPROTO_UDP:
3931 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3932 					  off + sizeof(struct udphdr));
3933 		if (!err && !skb_partial_csum_set(skb, off,
3934 						  offsetof(struct udphdr,
3935 							   check)))
3936 			err = -EPROTO;
3937 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3938 	}
3939 
3940 	return ERR_PTR(-EPROTO);
3941 }
3942 
3943 /* This value should be large enough to cover a tagged ethernet header plus
3944  * maximally sized IP and TCP or UDP headers.
3945  */
3946 #define MAX_IP_HDR_LEN 128
3947 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)3948 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3949 {
3950 	unsigned int off;
3951 	bool fragment;
3952 	__sum16 *csum;
3953 	int err;
3954 
3955 	fragment = false;
3956 
3957 	err = skb_maybe_pull_tail(skb,
3958 				  sizeof(struct iphdr),
3959 				  MAX_IP_HDR_LEN);
3960 	if (err < 0)
3961 		goto out;
3962 
3963 	if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3964 		fragment = true;
3965 
3966 	off = ip_hdrlen(skb);
3967 
3968 	err = -EPROTO;
3969 
3970 	if (fragment)
3971 		goto out;
3972 
3973 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3974 	if (IS_ERR(csum))
3975 		return PTR_ERR(csum);
3976 
3977 	if (recalculate)
3978 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3979 					   ip_hdr(skb)->daddr,
3980 					   skb->len - off,
3981 					   ip_hdr(skb)->protocol, 0);
3982 	err = 0;
3983 
3984 out:
3985 	return err;
3986 }
3987 
3988 /* This value should be large enough to cover a tagged ethernet header plus
3989  * an IPv6 header, all options, and a maximal TCP or UDP header.
3990  */
3991 #define MAX_IPV6_HDR_LEN 256
3992 
3993 #define OPT_HDR(type, skb, off) \
3994 	(type *)(skb_network_header(skb) + (off))
3995 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)3996 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3997 {
3998 	int err;
3999 	u8 nexthdr;
4000 	unsigned int off;
4001 	unsigned int len;
4002 	bool fragment;
4003 	bool done;
4004 	__sum16 *csum;
4005 
4006 	fragment = false;
4007 	done = false;
4008 
4009 	off = sizeof(struct ipv6hdr);
4010 
4011 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4012 	if (err < 0)
4013 		goto out;
4014 
4015 	nexthdr = ipv6_hdr(skb)->nexthdr;
4016 
4017 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4018 	while (off <= len && !done) {
4019 		switch (nexthdr) {
4020 		case IPPROTO_DSTOPTS:
4021 		case IPPROTO_HOPOPTS:
4022 		case IPPROTO_ROUTING: {
4023 			struct ipv6_opt_hdr *hp;
4024 
4025 			err = skb_maybe_pull_tail(skb,
4026 						  off +
4027 						  sizeof(struct ipv6_opt_hdr),
4028 						  MAX_IPV6_HDR_LEN);
4029 			if (err < 0)
4030 				goto out;
4031 
4032 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4033 			nexthdr = hp->nexthdr;
4034 			off += ipv6_optlen(hp);
4035 			break;
4036 		}
4037 		case IPPROTO_AH: {
4038 			struct ip_auth_hdr *hp;
4039 
4040 			err = skb_maybe_pull_tail(skb,
4041 						  off +
4042 						  sizeof(struct ip_auth_hdr),
4043 						  MAX_IPV6_HDR_LEN);
4044 			if (err < 0)
4045 				goto out;
4046 
4047 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4048 			nexthdr = hp->nexthdr;
4049 			off += ipv6_authlen(hp);
4050 			break;
4051 		}
4052 		case IPPROTO_FRAGMENT: {
4053 			struct frag_hdr *hp;
4054 
4055 			err = skb_maybe_pull_tail(skb,
4056 						  off +
4057 						  sizeof(struct frag_hdr),
4058 						  MAX_IPV6_HDR_LEN);
4059 			if (err < 0)
4060 				goto out;
4061 
4062 			hp = OPT_HDR(struct frag_hdr, skb, off);
4063 
4064 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4065 				fragment = true;
4066 
4067 			nexthdr = hp->nexthdr;
4068 			off += sizeof(struct frag_hdr);
4069 			break;
4070 		}
4071 		default:
4072 			done = true;
4073 			break;
4074 		}
4075 	}
4076 
4077 	err = -EPROTO;
4078 
4079 	if (!done || fragment)
4080 		goto out;
4081 
4082 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
4083 	if (IS_ERR(csum))
4084 		return PTR_ERR(csum);
4085 
4086 	if (recalculate)
4087 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4088 					 &ipv6_hdr(skb)->daddr,
4089 					 skb->len - off, nexthdr, 0);
4090 	err = 0;
4091 
4092 out:
4093 	return err;
4094 }
4095 
4096 /**
4097  * skb_checksum_setup - set up partial checksum offset
4098  * @skb: the skb to set up
4099  * @recalculate: if true the pseudo-header checksum will be recalculated
4100  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)4101 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4102 {
4103 	int err;
4104 
4105 	switch (skb->protocol) {
4106 	case htons(ETH_P_IP):
4107 		err = skb_checksum_setup_ipv4(skb, recalculate);
4108 		break;
4109 
4110 	case htons(ETH_P_IPV6):
4111 		err = skb_checksum_setup_ipv6(skb, recalculate);
4112 		break;
4113 
4114 	default:
4115 		err = -EPROTO;
4116 		break;
4117 	}
4118 
4119 	return err;
4120 }
4121 EXPORT_SYMBOL(skb_checksum_setup);
4122 
4123 /**
4124  * skb_checksum_maybe_trim - maybe trims the given skb
4125  * @skb: the skb to check
4126  * @transport_len: the data length beyond the network header
4127  *
4128  * Checks whether the given skb has data beyond the given transport length.
4129  * If so, returns a cloned skb trimmed to this transport length.
4130  * Otherwise returns the provided skb. Returns NULL in error cases
4131  * (e.g. transport_len exceeds skb length or out-of-memory).
4132  *
4133  * Caller needs to set the skb transport header and free any returned skb if it
4134  * differs from the provided skb.
4135  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)4136 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4137 					       unsigned int transport_len)
4138 {
4139 	struct sk_buff *skb_chk;
4140 	unsigned int len = skb_transport_offset(skb) + transport_len;
4141 	int ret;
4142 
4143 	if (skb->len < len)
4144 		return NULL;
4145 	else if (skb->len == len)
4146 		return skb;
4147 
4148 	skb_chk = skb_clone(skb, GFP_ATOMIC);
4149 	if (!skb_chk)
4150 		return NULL;
4151 
4152 	ret = pskb_trim_rcsum(skb_chk, len);
4153 	if (ret) {
4154 		kfree_skb(skb_chk);
4155 		return NULL;
4156 	}
4157 
4158 	return skb_chk;
4159 }
4160 
4161 /**
4162  * skb_checksum_trimmed - validate checksum of an skb
4163  * @skb: the skb to check
4164  * @transport_len: the data length beyond the network header
4165  * @skb_chkf: checksum function to use
4166  *
4167  * Applies the given checksum function skb_chkf to the provided skb.
4168  * Returns a checked and maybe trimmed skb. Returns NULL on error.
4169  *
4170  * If the skb has data beyond the given transport length, then a
4171  * trimmed & cloned skb is checked and returned.
4172  *
4173  * Caller needs to set the skb transport header and free any returned skb if it
4174  * differs from the provided skb.
4175  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))4176 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4177 				     unsigned int transport_len,
4178 				     __sum16(*skb_chkf)(struct sk_buff *skb))
4179 {
4180 	struct sk_buff *skb_chk;
4181 	unsigned int offset = skb_transport_offset(skb);
4182 	__sum16 ret;
4183 
4184 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4185 	if (!skb_chk)
4186 		goto err;
4187 
4188 	if (!pskb_may_pull(skb_chk, offset))
4189 		goto err;
4190 
4191 	skb_pull_rcsum(skb_chk, offset);
4192 	ret = skb_chkf(skb_chk);
4193 	skb_push_rcsum(skb_chk, offset);
4194 
4195 	if (ret)
4196 		goto err;
4197 
4198 	return skb_chk;
4199 
4200 err:
4201 	if (skb_chk && skb_chk != skb)
4202 		kfree_skb(skb_chk);
4203 
4204 	return NULL;
4205 
4206 }
4207 EXPORT_SYMBOL(skb_checksum_trimmed);
4208 
__skb_warn_lro_forwarding(const struct sk_buff * skb)4209 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4210 {
4211 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4212 			     skb->dev->name);
4213 }
4214 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4215 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)4216 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4217 {
4218 	if (head_stolen) {
4219 		skb_release_head_state(skb);
4220 		kmem_cache_free(skbuff_head_cache, skb);
4221 	} else {
4222 		__kfree_skb(skb);
4223 	}
4224 }
4225 EXPORT_SYMBOL(kfree_skb_partial);
4226 
4227 /**
4228  * skb_try_coalesce - try to merge skb to prior one
4229  * @to: prior buffer
4230  * @from: buffer to add
4231  * @fragstolen: pointer to boolean
4232  * @delta_truesize: how much more was allocated than was requested
4233  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)4234 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4235 		      bool *fragstolen, int *delta_truesize)
4236 {
4237 	int i, delta, len = from->len;
4238 
4239 	*fragstolen = false;
4240 
4241 	if (skb_cloned(to))
4242 		return false;
4243 
4244 	if (len <= skb_tailroom(to)) {
4245 		if (len)
4246 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4247 		*delta_truesize = 0;
4248 		return true;
4249 	}
4250 
4251 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
4252 		return false;
4253 
4254 	if (skb_headlen(from) != 0) {
4255 		struct page *page;
4256 		unsigned int offset;
4257 
4258 		if (skb_shinfo(to)->nr_frags +
4259 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4260 			return false;
4261 
4262 		if (skb_head_is_locked(from))
4263 			return false;
4264 
4265 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4266 
4267 		page = virt_to_head_page(from->head);
4268 		offset = from->data - (unsigned char *)page_address(page);
4269 
4270 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4271 				   page, offset, skb_headlen(from));
4272 		*fragstolen = true;
4273 	} else {
4274 		if (skb_shinfo(to)->nr_frags +
4275 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4276 			return false;
4277 
4278 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4279 	}
4280 
4281 	WARN_ON_ONCE(delta < len);
4282 
4283 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4284 	       skb_shinfo(from)->frags,
4285 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4286 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4287 
4288 	if (!skb_cloned(from))
4289 		skb_shinfo(from)->nr_frags = 0;
4290 
4291 	/* if the skb is not cloned this does nothing
4292 	 * since we set nr_frags to 0.
4293 	 */
4294 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4295 		skb_frag_ref(from, i);
4296 
4297 	to->truesize += delta;
4298 	to->len += len;
4299 	to->data_len += len;
4300 
4301 	*delta_truesize = delta;
4302 	return true;
4303 }
4304 EXPORT_SYMBOL(skb_try_coalesce);
4305 
4306 /**
4307  * skb_scrub_packet - scrub an skb
4308  *
4309  * @skb: buffer to clean
4310  * @xnet: packet is crossing netns
4311  *
4312  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4313  * into/from a tunnel. Some information have to be cleared during these
4314  * operations.
4315  * skb_scrub_packet can also be used to clean a skb before injecting it in
4316  * another namespace (@xnet == true). We have to clear all information in the
4317  * skb that could impact namespace isolation.
4318  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)4319 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4320 {
4321 	skb->tstamp.tv64 = 0;
4322 	skb->pkt_type = PACKET_HOST;
4323 	skb->skb_iif = 0;
4324 	skb->ignore_df = 0;
4325 	skb_dst_drop(skb);
4326 	skb_sender_cpu_clear(skb);
4327 	secpath_reset(skb);
4328 	nf_reset(skb);
4329 	nf_reset_trace(skb);
4330 
4331 	if (!xnet)
4332 		return;
4333 
4334 	ipvs_reset(skb);
4335 	skb_orphan(skb);
4336 	skb->mark = 0;
4337 }
4338 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4339 
4340 /**
4341  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4342  *
4343  * @skb: GSO skb
4344  *
4345  * skb_gso_transport_seglen is used to determine the real size of the
4346  * individual segments, including Layer4 headers (TCP/UDP).
4347  *
4348  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4349  */
skb_gso_transport_seglen(const struct sk_buff * skb)4350 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4351 {
4352 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4353 	unsigned int thlen = 0;
4354 
4355 	if (skb->encapsulation) {
4356 		thlen = skb_inner_transport_header(skb) -
4357 			skb_transport_header(skb);
4358 
4359 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4360 			thlen += inner_tcp_hdrlen(skb);
4361 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4362 		thlen = tcp_hdrlen(skb);
4363 	}
4364 	/* UFO sets gso_size to the size of the fragmentation
4365 	 * payload, i.e. the size of the L4 (UDP) header is already
4366 	 * accounted for.
4367 	 */
4368 	return thlen + shinfo->gso_size;
4369 }
4370 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4371 
skb_reorder_vlan_header(struct sk_buff * skb)4372 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4373 {
4374 	int mac_len;
4375 
4376 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
4377 		kfree_skb(skb);
4378 		return NULL;
4379 	}
4380 
4381 	mac_len = skb->data - skb_mac_header(skb);
4382 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
4383 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
4384 			mac_len - VLAN_HLEN - ETH_TLEN);
4385 	}
4386 	skb->mac_header += VLAN_HLEN;
4387 	return skb;
4388 }
4389 
skb_vlan_untag(struct sk_buff * skb)4390 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4391 {
4392 	struct vlan_hdr *vhdr;
4393 	u16 vlan_tci;
4394 
4395 	if (unlikely(skb_vlan_tag_present(skb))) {
4396 		/* vlan_tci is already set-up so leave this for another time */
4397 		return skb;
4398 	}
4399 
4400 	skb = skb_share_check(skb, GFP_ATOMIC);
4401 	if (unlikely(!skb))
4402 		goto err_free;
4403 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
4404 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
4405 		goto err_free;
4406 
4407 	vhdr = (struct vlan_hdr *)skb->data;
4408 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
4409 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4410 
4411 	skb_pull_rcsum(skb, VLAN_HLEN);
4412 	vlan_set_encap_proto(skb, vhdr);
4413 
4414 	skb = skb_reorder_vlan_header(skb);
4415 	if (unlikely(!skb))
4416 		goto err_free;
4417 
4418 	skb_reset_network_header(skb);
4419 	skb_reset_transport_header(skb);
4420 	skb_reset_mac_len(skb);
4421 
4422 	return skb;
4423 
4424 err_free:
4425 	kfree_skb(skb);
4426 	return NULL;
4427 }
4428 EXPORT_SYMBOL(skb_vlan_untag);
4429 
skb_ensure_writable(struct sk_buff * skb,int write_len)4430 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4431 {
4432 	if (!pskb_may_pull(skb, write_len))
4433 		return -ENOMEM;
4434 
4435 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4436 		return 0;
4437 
4438 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4439 }
4440 EXPORT_SYMBOL(skb_ensure_writable);
4441 
4442 /* remove VLAN header from packet and update csum accordingly. */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)4443 static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4444 {
4445 	struct vlan_hdr *vhdr;
4446 	unsigned int offset = skb->data - skb_mac_header(skb);
4447 	int err;
4448 
4449 	__skb_push(skb, offset);
4450 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4451 	if (unlikely(err))
4452 		goto pull;
4453 
4454 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4455 
4456 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4457 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
4458 
4459 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4460 	__skb_pull(skb, VLAN_HLEN);
4461 
4462 	vlan_set_encap_proto(skb, vhdr);
4463 	skb->mac_header += VLAN_HLEN;
4464 
4465 	if (skb_network_offset(skb) < ETH_HLEN)
4466 		skb_set_network_header(skb, ETH_HLEN);
4467 
4468 	skb_reset_mac_len(skb);
4469 pull:
4470 	__skb_pull(skb, offset);
4471 
4472 	return err;
4473 }
4474 
skb_vlan_pop(struct sk_buff * skb)4475 int skb_vlan_pop(struct sk_buff *skb)
4476 {
4477 	u16 vlan_tci;
4478 	__be16 vlan_proto;
4479 	int err;
4480 
4481 	if (likely(skb_vlan_tag_present(skb))) {
4482 		skb->vlan_tci = 0;
4483 	} else {
4484 		if (unlikely(skb->protocol != htons(ETH_P_8021Q) &&
4485 			     skb->protocol != htons(ETH_P_8021AD)))
4486 			return 0;
4487 
4488 		err = __skb_vlan_pop(skb, &vlan_tci);
4489 		if (err)
4490 			return err;
4491 	}
4492 	/* move next vlan tag to hw accel tag */
4493 	if (likely(skb->protocol != htons(ETH_P_8021Q) &&
4494 		   skb->protocol != htons(ETH_P_8021AD)))
4495 		return 0;
4496 
4497 	vlan_proto = skb->protocol;
4498 	err = __skb_vlan_pop(skb, &vlan_tci);
4499 	if (unlikely(err))
4500 		return err;
4501 
4502 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4503 	return 0;
4504 }
4505 EXPORT_SYMBOL(skb_vlan_pop);
4506 
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)4507 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4508 {
4509 	if (skb_vlan_tag_present(skb)) {
4510 		unsigned int offset = skb->data - skb_mac_header(skb);
4511 		int err;
4512 
4513 		/* __vlan_insert_tag expect skb->data pointing to mac header.
4514 		 * So change skb->data before calling it and change back to
4515 		 * original position later
4516 		 */
4517 		__skb_push(skb, offset);
4518 		err = __vlan_insert_tag(skb, skb->vlan_proto,
4519 					skb_vlan_tag_get(skb));
4520 		if (err) {
4521 			__skb_pull(skb, offset);
4522 			return err;
4523 		}
4524 
4525 		skb->protocol = skb->vlan_proto;
4526 		skb->mac_len += VLAN_HLEN;
4527 
4528 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4529 		__skb_pull(skb, offset);
4530 	}
4531 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4532 	return 0;
4533 }
4534 EXPORT_SYMBOL(skb_vlan_push);
4535 
4536 /**
4537  * alloc_skb_with_frags - allocate skb with page frags
4538  *
4539  * @header_len: size of linear part
4540  * @data_len: needed length in frags
4541  * @max_page_order: max page order desired.
4542  * @errcode: pointer to error code if any
4543  * @gfp_mask: allocation mask
4544  *
4545  * This can be used to allocate a paged skb, given a maximal order for frags.
4546  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)4547 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4548 				     unsigned long data_len,
4549 				     int max_page_order,
4550 				     int *errcode,
4551 				     gfp_t gfp_mask)
4552 {
4553 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4554 	unsigned long chunk;
4555 	struct sk_buff *skb;
4556 	struct page *page;
4557 	gfp_t gfp_head;
4558 	int i;
4559 
4560 	*errcode = -EMSGSIZE;
4561 	/* Note this test could be relaxed, if we succeed to allocate
4562 	 * high order pages...
4563 	 */
4564 	if (npages > MAX_SKB_FRAGS)
4565 		return NULL;
4566 
4567 	gfp_head = gfp_mask;
4568 	if (gfp_head & __GFP_DIRECT_RECLAIM)
4569 		gfp_head |= __GFP_REPEAT;
4570 
4571 	*errcode = -ENOBUFS;
4572 	skb = alloc_skb(header_len, gfp_head);
4573 	if (!skb)
4574 		return NULL;
4575 
4576 	skb->truesize += npages << PAGE_SHIFT;
4577 
4578 	for (i = 0; npages > 0; i++) {
4579 		int order = max_page_order;
4580 
4581 		while (order) {
4582 			if (npages >= 1 << order) {
4583 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4584 						   __GFP_COMP |
4585 						   __GFP_NOWARN |
4586 						   __GFP_NORETRY,
4587 						   order);
4588 				if (page)
4589 					goto fill_page;
4590 				/* Do not retry other high order allocations */
4591 				order = 1;
4592 				max_page_order = 0;
4593 			}
4594 			order--;
4595 		}
4596 		page = alloc_page(gfp_mask);
4597 		if (!page)
4598 			goto failure;
4599 fill_page:
4600 		chunk = min_t(unsigned long, data_len,
4601 			      PAGE_SIZE << order);
4602 		skb_fill_page_desc(skb, i, page, 0, chunk);
4603 		data_len -= chunk;
4604 		npages -= 1 << order;
4605 	}
4606 	return skb;
4607 
4608 failure:
4609 	kfree_skb(skb);
4610 	return NULL;
4611 }
4612 EXPORT_SYMBOL(alloc_skb_with_frags);
4613