• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
5  *
6  *  Pentium III FXSR, SSE support
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  */
9 
10 /*
11  * Handle hardware traps and faults.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/slab.h>
21 #include <linux/export.h>
22 
23 #if defined(CONFIG_EDAC)
24 #include <linux/edac.h>
25 #endif
26 
27 #include <linux/atomic.h>
28 #include <asm/traps.h>
29 #include <asm/mach_traps.h>
30 #include <asm/nmi.h>
31 #include <asm/x86_init.h>
32 #include <asm/nospec-branch.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/nmi.h>
36 
37 struct nmi_desc {
38 	spinlock_t lock;
39 	struct list_head head;
40 };
41 
42 static struct nmi_desc nmi_desc[NMI_MAX] =
43 {
44 	{
45 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
46 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
47 	},
48 	{
49 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
50 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
51 	},
52 	{
53 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
54 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
55 	},
56 	{
57 		.lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
58 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
59 	},
60 
61 };
62 
63 struct nmi_stats {
64 	unsigned int normal;
65 	unsigned int unknown;
66 	unsigned int external;
67 	unsigned int swallow;
68 };
69 
70 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
71 
72 static int ignore_nmis;
73 
74 int unknown_nmi_panic;
75 /*
76  * Prevent NMI reason port (0x61) being accessed simultaneously, can
77  * only be used in NMI handler.
78  */
79 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
80 
setup_unknown_nmi_panic(char * str)81 static int __init setup_unknown_nmi_panic(char *str)
82 {
83 	unknown_nmi_panic = 1;
84 	return 1;
85 }
86 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
87 
88 #define nmi_to_desc(type) (&nmi_desc[type])
89 
90 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
91 
nmi_warning_debugfs(void)92 static int __init nmi_warning_debugfs(void)
93 {
94 	debugfs_create_u64("nmi_longest_ns", 0644,
95 			arch_debugfs_dir, &nmi_longest_ns);
96 	return 0;
97 }
98 fs_initcall(nmi_warning_debugfs);
99 
nmi_max_handler(struct irq_work * w)100 static void nmi_max_handler(struct irq_work *w)
101 {
102 	struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
103 	int remainder_ns, decimal_msecs;
104 	u64 whole_msecs = ACCESS_ONCE(a->max_duration);
105 
106 	remainder_ns = do_div(whole_msecs, (1000 * 1000));
107 	decimal_msecs = remainder_ns / 1000;
108 
109 	printk_ratelimited(KERN_INFO
110 		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
111 		a->handler, whole_msecs, decimal_msecs);
112 }
113 
nmi_handle(unsigned int type,struct pt_regs * regs)114 static int nmi_handle(unsigned int type, struct pt_regs *regs)
115 {
116 	struct nmi_desc *desc = nmi_to_desc(type);
117 	struct nmiaction *a;
118 	int handled=0;
119 
120 	rcu_read_lock();
121 
122 	/*
123 	 * NMIs are edge-triggered, which means if you have enough
124 	 * of them concurrently, you can lose some because only one
125 	 * can be latched at any given time.  Walk the whole list
126 	 * to handle those situations.
127 	 */
128 	list_for_each_entry_rcu(a, &desc->head, list) {
129 		int thishandled;
130 		u64 delta;
131 
132 		delta = sched_clock();
133 		thishandled = a->handler(type, regs);
134 		handled += thishandled;
135 		delta = sched_clock() - delta;
136 		trace_nmi_handler(a->handler, (int)delta, thishandled);
137 
138 		if (delta < nmi_longest_ns || delta < a->max_duration)
139 			continue;
140 
141 		a->max_duration = delta;
142 		irq_work_queue(&a->irq_work);
143 	}
144 
145 	rcu_read_unlock();
146 
147 	/* return total number of NMI events handled */
148 	return handled;
149 }
150 NOKPROBE_SYMBOL(nmi_handle);
151 
__register_nmi_handler(unsigned int type,struct nmiaction * action)152 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
153 {
154 	struct nmi_desc *desc = nmi_to_desc(type);
155 	unsigned long flags;
156 
157 	if (!action->handler)
158 		return -EINVAL;
159 
160 	init_irq_work(&action->irq_work, nmi_max_handler);
161 
162 	spin_lock_irqsave(&desc->lock, flags);
163 
164 	/*
165 	 * most handlers of type NMI_UNKNOWN never return because
166 	 * they just assume the NMI is theirs.  Just a sanity check
167 	 * to manage expectations
168 	 */
169 	WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
170 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
171 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
172 
173 	/*
174 	 * some handlers need to be executed first otherwise a fake
175 	 * event confuses some handlers (kdump uses this flag)
176 	 */
177 	if (action->flags & NMI_FLAG_FIRST)
178 		list_add_rcu(&action->list, &desc->head);
179 	else
180 		list_add_tail_rcu(&action->list, &desc->head);
181 
182 	spin_unlock_irqrestore(&desc->lock, flags);
183 	return 0;
184 }
185 EXPORT_SYMBOL(__register_nmi_handler);
186 
unregister_nmi_handler(unsigned int type,const char * name)187 void unregister_nmi_handler(unsigned int type, const char *name)
188 {
189 	struct nmi_desc *desc = nmi_to_desc(type);
190 	struct nmiaction *n;
191 	unsigned long flags;
192 
193 	spin_lock_irqsave(&desc->lock, flags);
194 
195 	list_for_each_entry_rcu(n, &desc->head, list) {
196 		/*
197 		 * the name passed in to describe the nmi handler
198 		 * is used as the lookup key
199 		 */
200 		if (!strcmp(n->name, name)) {
201 			WARN(in_nmi(),
202 				"Trying to free NMI (%s) from NMI context!\n", n->name);
203 			list_del_rcu(&n->list);
204 			break;
205 		}
206 	}
207 
208 	spin_unlock_irqrestore(&desc->lock, flags);
209 	synchronize_rcu();
210 }
211 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
212 
213 static void
pci_serr_error(unsigned char reason,struct pt_regs * regs)214 pci_serr_error(unsigned char reason, struct pt_regs *regs)
215 {
216 	/* check to see if anyone registered against these types of errors */
217 	if (nmi_handle(NMI_SERR, regs))
218 		return;
219 
220 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
221 		 reason, smp_processor_id());
222 
223 	/*
224 	 * On some machines, PCI SERR line is used to report memory
225 	 * errors. EDAC makes use of it.
226 	 */
227 #if defined(CONFIG_EDAC)
228 	if (edac_handler_set()) {
229 		edac_atomic_assert_error();
230 		return;
231 	}
232 #endif
233 
234 	if (panic_on_unrecovered_nmi)
235 		panic("NMI: Not continuing");
236 
237 	pr_emerg("Dazed and confused, but trying to continue\n");
238 
239 	/* Clear and disable the PCI SERR error line. */
240 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
241 	outb(reason, NMI_REASON_PORT);
242 }
243 NOKPROBE_SYMBOL(pci_serr_error);
244 
245 static void
io_check_error(unsigned char reason,struct pt_regs * regs)246 io_check_error(unsigned char reason, struct pt_regs *regs)
247 {
248 	unsigned long i;
249 
250 	/* check to see if anyone registered against these types of errors */
251 	if (nmi_handle(NMI_IO_CHECK, regs))
252 		return;
253 
254 	pr_emerg(
255 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
256 		 reason, smp_processor_id());
257 	show_regs(regs);
258 
259 	if (panic_on_io_nmi)
260 		panic("NMI IOCK error: Not continuing");
261 
262 	/* Re-enable the IOCK line, wait for a few seconds */
263 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
264 	outb(reason, NMI_REASON_PORT);
265 
266 	i = 20000;
267 	while (--i) {
268 		touch_nmi_watchdog();
269 		udelay(100);
270 	}
271 
272 	reason &= ~NMI_REASON_CLEAR_IOCHK;
273 	outb(reason, NMI_REASON_PORT);
274 }
275 NOKPROBE_SYMBOL(io_check_error);
276 
277 static void
unknown_nmi_error(unsigned char reason,struct pt_regs * regs)278 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
279 {
280 	int handled;
281 
282 	/*
283 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
284 	 * Of course this makes having multiple 'unknown' handlers useless
285 	 * as only the first one is ever run (unless it can actually determine
286 	 * if it caused the NMI)
287 	 */
288 	handled = nmi_handle(NMI_UNKNOWN, regs);
289 	if (handled) {
290 		__this_cpu_add(nmi_stats.unknown, handled);
291 		return;
292 	}
293 
294 	__this_cpu_add(nmi_stats.unknown, 1);
295 
296 	pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
297 		 reason, smp_processor_id());
298 
299 	pr_emerg("Do you have a strange power saving mode enabled?\n");
300 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
301 		panic("NMI: Not continuing");
302 
303 	pr_emerg("Dazed and confused, but trying to continue\n");
304 }
305 NOKPROBE_SYMBOL(unknown_nmi_error);
306 
307 static DEFINE_PER_CPU(bool, swallow_nmi);
308 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
309 
default_do_nmi(struct pt_regs * regs)310 static void default_do_nmi(struct pt_regs *regs)
311 {
312 	unsigned char reason = 0;
313 	int handled;
314 	bool b2b = false;
315 
316 	/*
317 	 * CPU-specific NMI must be processed before non-CPU-specific
318 	 * NMI, otherwise we may lose it, because the CPU-specific
319 	 * NMI can not be detected/processed on other CPUs.
320 	 */
321 
322 	/*
323 	 * Back-to-back NMIs are interesting because they can either
324 	 * be two NMI or more than two NMIs (any thing over two is dropped
325 	 * due to NMI being edge-triggered).  If this is the second half
326 	 * of the back-to-back NMI, assume we dropped things and process
327 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
328 	 */
329 	if (regs->ip == __this_cpu_read(last_nmi_rip))
330 		b2b = true;
331 	else
332 		__this_cpu_write(swallow_nmi, false);
333 
334 	__this_cpu_write(last_nmi_rip, regs->ip);
335 
336 	handled = nmi_handle(NMI_LOCAL, regs);
337 	__this_cpu_add(nmi_stats.normal, handled);
338 	if (handled) {
339 		/*
340 		 * There are cases when a NMI handler handles multiple
341 		 * events in the current NMI.  One of these events may
342 		 * be queued for in the next NMI.  Because the event is
343 		 * already handled, the next NMI will result in an unknown
344 		 * NMI.  Instead lets flag this for a potential NMI to
345 		 * swallow.
346 		 */
347 		if (handled > 1)
348 			__this_cpu_write(swallow_nmi, true);
349 		return;
350 	}
351 
352 	/* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
353 	raw_spin_lock(&nmi_reason_lock);
354 	reason = x86_platform.get_nmi_reason();
355 
356 	if (reason & NMI_REASON_MASK) {
357 		if (reason & NMI_REASON_SERR)
358 			pci_serr_error(reason, regs);
359 		else if (reason & NMI_REASON_IOCHK)
360 			io_check_error(reason, regs);
361 #ifdef CONFIG_X86_32
362 		/*
363 		 * Reassert NMI in case it became active
364 		 * meanwhile as it's edge-triggered:
365 		 */
366 		reassert_nmi();
367 #endif
368 		__this_cpu_add(nmi_stats.external, 1);
369 		raw_spin_unlock(&nmi_reason_lock);
370 		return;
371 	}
372 	raw_spin_unlock(&nmi_reason_lock);
373 
374 	/*
375 	 * Only one NMI can be latched at a time.  To handle
376 	 * this we may process multiple nmi handlers at once to
377 	 * cover the case where an NMI is dropped.  The downside
378 	 * to this approach is we may process an NMI prematurely,
379 	 * while its real NMI is sitting latched.  This will cause
380 	 * an unknown NMI on the next run of the NMI processing.
381 	 *
382 	 * We tried to flag that condition above, by setting the
383 	 * swallow_nmi flag when we process more than one event.
384 	 * This condition is also only present on the second half
385 	 * of a back-to-back NMI, so we flag that condition too.
386 	 *
387 	 * If both are true, we assume we already processed this
388 	 * NMI previously and we swallow it.  Otherwise we reset
389 	 * the logic.
390 	 *
391 	 * There are scenarios where we may accidentally swallow
392 	 * a 'real' unknown NMI.  For example, while processing
393 	 * a perf NMI another perf NMI comes in along with a
394 	 * 'real' unknown NMI.  These two NMIs get combined into
395 	 * one (as descibed above).  When the next NMI gets
396 	 * processed, it will be flagged by perf as handled, but
397 	 * noone will know that there was a 'real' unknown NMI sent
398 	 * also.  As a result it gets swallowed.  Or if the first
399 	 * perf NMI returns two events handled then the second
400 	 * NMI will get eaten by the logic below, again losing a
401 	 * 'real' unknown NMI.  But this is the best we can do
402 	 * for now.
403 	 */
404 	if (b2b && __this_cpu_read(swallow_nmi))
405 		__this_cpu_add(nmi_stats.swallow, 1);
406 	else
407 		unknown_nmi_error(reason, regs);
408 }
409 NOKPROBE_SYMBOL(default_do_nmi);
410 
411 /*
412  * NMIs can page fault or hit breakpoints which will cause it to lose
413  * its NMI context with the CPU when the breakpoint or page fault does an IRET.
414  *
415  * As a result, NMIs can nest if NMIs get unmasked due an IRET during
416  * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
417  * if the outer NMI came from kernel mode, but we can still nest if the
418  * outer NMI came from user mode.
419  *
420  * To handle these nested NMIs, we have three states:
421  *
422  *  1) not running
423  *  2) executing
424  *  3) latched
425  *
426  * When no NMI is in progress, it is in the "not running" state.
427  * When an NMI comes in, it goes into the "executing" state.
428  * Normally, if another NMI is triggered, it does not interrupt
429  * the running NMI and the HW will simply latch it so that when
430  * the first NMI finishes, it will restart the second NMI.
431  * (Note, the latch is binary, thus multiple NMIs triggering,
432  *  when one is running, are ignored. Only one NMI is restarted.)
433  *
434  * If an NMI executes an iret, another NMI can preempt it. We do not
435  * want to allow this new NMI to run, but we want to execute it when the
436  * first one finishes.  We set the state to "latched", and the exit of
437  * the first NMI will perform a dec_return, if the result is zero
438  * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
439  * dec_return would have set the state to NMI_EXECUTING (what we want it
440  * to be when we are running). In this case, we simply jump back to
441  * rerun the NMI handler again, and restart the 'latched' NMI.
442  *
443  * No trap (breakpoint or page fault) should be hit before nmi_restart,
444  * thus there is no race between the first check of state for NOT_RUNNING
445  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
446  * at this point.
447  *
448  * In case the NMI takes a page fault, we need to save off the CR2
449  * because the NMI could have preempted another page fault and corrupt
450  * the CR2 that is about to be read. As nested NMIs must be restarted
451  * and they can not take breakpoints or page faults, the update of the
452  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
453  * Otherwise, there would be a race of another nested NMI coming in
454  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
455  */
456 enum nmi_states {
457 	NMI_NOT_RUNNING = 0,
458 	NMI_EXECUTING,
459 	NMI_LATCHED,
460 };
461 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
462 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
463 
464 #ifdef CONFIG_X86_64
465 /*
466  * In x86_64, we need to handle breakpoint -> NMI -> breakpoint.  Without
467  * some care, the inner breakpoint will clobber the outer breakpoint's
468  * stack.
469  *
470  * If a breakpoint is being processed, and the debug stack is being
471  * used, if an NMI comes in and also hits a breakpoint, the stack
472  * pointer will be set to the same fixed address as the breakpoint that
473  * was interrupted, causing that stack to be corrupted. To handle this
474  * case, check if the stack that was interrupted is the debug stack, and
475  * if so, change the IDT so that new breakpoints will use the current
476  * stack and not switch to the fixed address. On return of the NMI,
477  * switch back to the original IDT.
478  */
479 static DEFINE_PER_CPU(int, update_debug_stack);
480 #endif
481 
482 dotraplinkage notrace void
do_nmi(struct pt_regs * regs,long error_code)483 do_nmi(struct pt_regs *regs, long error_code)
484 {
485 	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
486 		this_cpu_write(nmi_state, NMI_LATCHED);
487 		return;
488 	}
489 	this_cpu_write(nmi_state, NMI_EXECUTING);
490 	this_cpu_write(nmi_cr2, read_cr2());
491 nmi_restart:
492 
493 #ifdef CONFIG_X86_64
494 	/*
495 	 * If we interrupted a breakpoint, it is possible that
496 	 * the nmi handler will have breakpoints too. We need to
497 	 * change the IDT such that breakpoints that happen here
498 	 * continue to use the NMI stack.
499 	 */
500 	if (unlikely(is_debug_stack(regs->sp))) {
501 		debug_stack_set_zero();
502 		this_cpu_write(update_debug_stack, 1);
503 	}
504 #endif
505 
506 	nmi_enter();
507 
508 	inc_irq_stat(__nmi_count);
509 
510 	if (!ignore_nmis)
511 		default_do_nmi(regs);
512 
513 	nmi_exit();
514 
515 #ifdef CONFIG_X86_64
516 	if (unlikely(this_cpu_read(update_debug_stack))) {
517 		debug_stack_reset();
518 		this_cpu_write(update_debug_stack, 0);
519 	}
520 #endif
521 
522 	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
523 		write_cr2(this_cpu_read(nmi_cr2));
524 	if (this_cpu_dec_return(nmi_state))
525 		goto nmi_restart;
526 
527 	if (user_mode(regs))
528 		mds_user_clear_cpu_buffers();
529 }
530 NOKPROBE_SYMBOL(do_nmi);
531 
stop_nmi(void)532 void stop_nmi(void)
533 {
534 	ignore_nmis++;
535 }
536 
restart_nmi(void)537 void restart_nmi(void)
538 {
539 	ignore_nmis--;
540 }
541 
542 /* reset the back-to-back NMI logic */
local_touch_nmi(void)543 void local_touch_nmi(void)
544 {
545 	__this_cpu_write(last_nmi_rip, 0);
546 }
547 EXPORT_SYMBOL_GPL(local_touch_nmi);
548