• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Cell Broadband Engine OProfile Support
3  *
4  * (C) Copyright IBM Corporation 2006
5  *
6  * Author: David Erb (djerb@us.ibm.com)
7  * Modifications:
8  *	   Carl Love <carll@us.ibm.com>
9  *	   Maynard Johnson <maynardj@us.ibm.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version
14  * 2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/jiffies.h>
20 #include <linux/kthread.h>
21 #include <linux/oprofile.h>
22 #include <linux/percpu.h>
23 #include <linux/smp.h>
24 #include <linux/spinlock.h>
25 #include <linux/timer.h>
26 #include <asm/cell-pmu.h>
27 #include <asm/cputable.h>
28 #include <asm/firmware.h>
29 #include <asm/io.h>
30 #include <asm/oprofile_impl.h>
31 #include <asm/processor.h>
32 #include <asm/prom.h>
33 #include <asm/ptrace.h>
34 #include <asm/reg.h>
35 #include <asm/rtas.h>
36 #include <asm/cell-regs.h>
37 
38 #include "../platforms/cell/interrupt.h"
39 #include "cell/pr_util.h"
40 
41 #define PPU_PROFILING            0
42 #define SPU_PROFILING_CYCLES     1
43 #define SPU_PROFILING_EVENTS     2
44 
45 #define SPU_EVENT_NUM_START      4100
46 #define SPU_EVENT_NUM_STOP       4399
47 #define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
48 #define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
49 #define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
50 
51 #define NUM_SPUS_PER_NODE    8
52 #define SPU_CYCLES_EVENT_NUM 2	/*  event number for SPU_CYCLES */
53 
54 #define PPU_CYCLES_EVENT_NUM 1	/*  event number for CYCLES */
55 #define PPU_CYCLES_GRP_NUM   1	/* special group number for identifying
56 				 * PPU_CYCLES event
57 				 */
58 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
59 
60 #define NUM_THREADS 2         /* number of physical threads in
61 			       * physical processor
62 			       */
63 #define NUM_DEBUG_BUS_WORDS 4
64 #define NUM_INPUT_BUS_WORDS 2
65 
66 #define MAX_SPU_COUNT 0xFFFFFF	/* maximum 24 bit LFSR value */
67 
68 /* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
69  * To configure counter to send value every N cycles set counter to
70  * 2^32 - 1 - N.
71  */
72 #define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
73 
74 /*
75  * spu_cycle_reset is the number of cycles between samples.
76  * This variable is used for SPU profiling and should ONLY be set
77  * at the beginning of cell_reg_setup; otherwise, it's read-only.
78  */
79 static unsigned int spu_cycle_reset;
80 static unsigned int profiling_mode;
81 static int spu_evnt_phys_spu_indx;
82 
83 struct pmc_cntrl_data {
84 	unsigned long vcntr;
85 	unsigned long evnts;
86 	unsigned long masks;
87 	unsigned long enabled;
88 };
89 
90 /*
91  * ibm,cbe-perftools rtas parameters
92  */
93 struct pm_signal {
94 	u16 cpu;		/* Processor to modify */
95 	u16 sub_unit;		/* hw subunit this applies to (if applicable)*/
96 	short int signal_group; /* Signal Group to Enable/Disable */
97 	u8 bus_word;		/* Enable/Disable on this Trace/Trigger/Event
98 				 * Bus Word(s) (bitmask)
99 				 */
100 	u8 bit;			/* Trigger/Event bit (if applicable) */
101 };
102 
103 /*
104  * rtas call arguments
105  */
106 enum {
107 	SUBFUNC_RESET = 1,
108 	SUBFUNC_ACTIVATE = 2,
109 	SUBFUNC_DEACTIVATE = 3,
110 
111 	PASSTHRU_IGNORE = 0,
112 	PASSTHRU_ENABLE = 1,
113 	PASSTHRU_DISABLE = 2,
114 };
115 
116 struct pm_cntrl {
117 	u16 enable;
118 	u16 stop_at_max;
119 	u16 trace_mode;
120 	u16 freeze;
121 	u16 count_mode;
122 	u16 spu_addr_trace;
123 	u8  trace_buf_ovflw;
124 };
125 
126 static struct {
127 	u32 group_control;
128 	u32 debug_bus_control;
129 	struct pm_cntrl pm_cntrl;
130 	u32 pm07_cntrl[NR_PHYS_CTRS];
131 } pm_regs;
132 
133 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
134 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
135 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
136 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
137 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
138 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
139 
140 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
141 static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
142 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
143 
144 /*
145  * The CELL profiling code makes rtas calls to setup the debug bus to
146  * route the performance signals.  Additionally, SPU profiling requires
147  * a second rtas call to setup the hardware to capture the SPU PCs.
148  * The EIO error value is returned if the token lookups or the rtas
149  * call fail.  The EIO error number is the best choice of the existing
150  * error numbers.  The probability of rtas related error is very low.  But
151  * by returning EIO and printing additional information to dmsg the user
152  * will know that OProfile did not start and dmesg will tell them why.
153  * OProfile does not support returning errors on Stop.	Not a huge issue
154  * since failure to reset the debug bus or stop the SPU PC collection is
155  * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
156  * either.
157  */
158 
159 /*
160  * Interpetation of hdw_thread:
161  * 0 - even virtual cpus 0, 2, 4,...
162  * 1 - odd virtual cpus 1, 3, 5, ...
163  *
164  * FIXME: this is strictly wrong, we need to clean this up in a number
165  * of places. It works for now. -arnd
166  */
167 static u32 hdw_thread;
168 
169 static u32 virt_cntr_inter_mask;
170 static struct timer_list timer_virt_cntr;
171 static struct timer_list timer_spu_event_swap;
172 
173 /*
174  * pm_signal needs to be global since it is initialized in
175  * cell_reg_setup at the time when the necessary information
176  * is available.
177  */
178 static struct pm_signal pm_signal[NR_PHYS_CTRS];
179 static int pm_rtas_token;    /* token for debug bus setup call */
180 static int spu_rtas_token;   /* token for SPU cycle profiling */
181 
182 static u32 reset_value[NR_PHYS_CTRS];
183 static int num_counters;
184 static int oprofile_running;
185 static DEFINE_SPINLOCK(cntr_lock);
186 
187 static u32 ctr_enabled;
188 
189 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
190 
191 /*
192  * Firmware interface functions
193  */
194 static int
rtas_ibm_cbe_perftools(int subfunc,int passthru,void * address,unsigned long length)195 rtas_ibm_cbe_perftools(int subfunc, int passthru,
196 		       void *address, unsigned long length)
197 {
198 	u64 paddr = __pa(address);
199 
200 	return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
201 			 passthru, paddr >> 32, paddr & 0xffffffff, length);
202 }
203 
pm_rtas_reset_signals(u32 node)204 static void pm_rtas_reset_signals(u32 node)
205 {
206 	int ret;
207 	struct pm_signal pm_signal_local;
208 
209 	/*
210 	 * The debug bus is being set to the passthru disable state.
211 	 * However, the FW still expects atleast one legal signal routing
212 	 * entry or it will return an error on the arguments.	If we don't
213 	 * supply a valid entry, we must ignore all return values.  Ignoring
214 	 * all return values means we might miss an error we should be
215 	 * concerned about.
216 	 */
217 
218 	/*  fw expects physical cpu #. */
219 	pm_signal_local.cpu = node;
220 	pm_signal_local.signal_group = 21;
221 	pm_signal_local.bus_word = 1;
222 	pm_signal_local.sub_unit = 0;
223 	pm_signal_local.bit = 0;
224 
225 	ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
226 				     &pm_signal_local,
227 				     sizeof(struct pm_signal));
228 
229 	if (unlikely(ret))
230 		/*
231 		 * Not a fatal error. For Oprofile stop, the oprofile
232 		 * functions do not support returning an error for
233 		 * failure to stop OProfile.
234 		 */
235 		printk(KERN_WARNING "%s: rtas returned: %d\n",
236 		       __func__, ret);
237 }
238 
pm_rtas_activate_signals(u32 node,u32 count)239 static int pm_rtas_activate_signals(u32 node, u32 count)
240 {
241 	int ret;
242 	int i, j;
243 	struct pm_signal pm_signal_local[NR_PHYS_CTRS];
244 
245 	/*
246 	 * There is no debug setup required for the cycles event.
247 	 * Note that only events in the same group can be used.
248 	 * Otherwise, there will be conflicts in correctly routing
249 	 * the signals on the debug bus.  It is the responsibility
250 	 * of the OProfile user tool to check the events are in
251 	 * the same group.
252 	 */
253 	i = 0;
254 	for (j = 0; j < count; j++) {
255 		if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
256 
257 			/* fw expects physical cpu # */
258 			pm_signal_local[i].cpu = node;
259 			pm_signal_local[i].signal_group
260 				= pm_signal[j].signal_group;
261 			pm_signal_local[i].bus_word = pm_signal[j].bus_word;
262 			pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
263 			pm_signal_local[i].bit = pm_signal[j].bit;
264 			i++;
265 		}
266 	}
267 
268 	if (i != 0) {
269 		ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
270 					     pm_signal_local,
271 					     i * sizeof(struct pm_signal));
272 
273 		if (unlikely(ret)) {
274 			printk(KERN_WARNING "%s: rtas returned: %d\n",
275 			       __func__, ret);
276 			return -EIO;
277 		}
278 	}
279 
280 	return 0;
281 }
282 
283 /*
284  * PM Signal functions
285  */
set_pm_event(u32 ctr,int event,u32 unit_mask)286 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
287 {
288 	struct pm_signal *p;
289 	u32 signal_bit;
290 	u32 bus_word, bus_type, count_cycles, polarity, input_control;
291 	int j, i;
292 
293 	if (event == PPU_CYCLES_EVENT_NUM) {
294 		/* Special Event: Count all cpu cycles */
295 		pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
296 		p = &(pm_signal[ctr]);
297 		p->signal_group = PPU_CYCLES_GRP_NUM;
298 		p->bus_word = 1;
299 		p->sub_unit = 0;
300 		p->bit = 0;
301 		goto out;
302 	} else {
303 		pm_regs.pm07_cntrl[ctr] = 0;
304 	}
305 
306 	bus_word = GET_BUS_WORD(unit_mask);
307 	bus_type = GET_BUS_TYPE(unit_mask);
308 	count_cycles = GET_COUNT_CYCLES(unit_mask);
309 	polarity = GET_POLARITY(unit_mask);
310 	input_control = GET_INPUT_CONTROL(unit_mask);
311 	signal_bit = (event % 100);
312 
313 	p = &(pm_signal[ctr]);
314 
315 	p->signal_group = event / 100;
316 	p->bus_word = bus_word;
317 	p->sub_unit = GET_SUB_UNIT(unit_mask);
318 
319 	pm_regs.pm07_cntrl[ctr] = 0;
320 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
321 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
322 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
323 
324 	/*
325 	 * Some of the islands signal selection is based on 64 bit words.
326 	 * The debug bus words are 32 bits, the input words to the performance
327 	 * counters are defined as 32 bits.  Need to convert the 64 bit island
328 	 * specification to the appropriate 32 input bit and bus word for the
329 	 * performance counter event selection.	 See the CELL Performance
330 	 * monitoring signals manual and the Perf cntr hardware descriptions
331 	 * for the details.
332 	 */
333 	if (input_control == 0) {
334 		if (signal_bit > 31) {
335 			signal_bit -= 32;
336 			if (bus_word == 0x3)
337 				bus_word = 0x2;
338 			else if (bus_word == 0xc)
339 				bus_word = 0x8;
340 		}
341 
342 		if ((bus_type == 0) && p->signal_group >= 60)
343 			bus_type = 2;
344 		if ((bus_type == 1) && p->signal_group >= 50)
345 			bus_type = 0;
346 
347 		pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
348 	} else {
349 		pm_regs.pm07_cntrl[ctr] = 0;
350 		p->bit = signal_bit;
351 	}
352 
353 	for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
354 		if (bus_word & (1 << i)) {
355 			pm_regs.debug_bus_control |=
356 				(bus_type << (30 - (2 * i)));
357 
358 			for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
359 				if (input_bus[j] == 0xff) {
360 					input_bus[j] = i;
361 					pm_regs.group_control |=
362 						(i << (30 - (2 * j)));
363 
364 					break;
365 				}
366 			}
367 		}
368 	}
369 out:
370 	;
371 }
372 
write_pm_cntrl(int cpu)373 static void write_pm_cntrl(int cpu)
374 {
375 	/*
376 	 * Oprofile will use 32 bit counters, set bits 7:10 to 0
377 	 * pmregs.pm_cntrl is a global
378 	 */
379 
380 	u32 val = 0;
381 	if (pm_regs.pm_cntrl.enable == 1)
382 		val |= CBE_PM_ENABLE_PERF_MON;
383 
384 	if (pm_regs.pm_cntrl.stop_at_max == 1)
385 		val |= CBE_PM_STOP_AT_MAX;
386 
387 	if (pm_regs.pm_cntrl.trace_mode != 0)
388 		val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
389 
390 	if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
391 		val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
392 	if (pm_regs.pm_cntrl.freeze == 1)
393 		val |= CBE_PM_FREEZE_ALL_CTRS;
394 
395 	val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
396 
397 	/*
398 	 * Routine set_count_mode must be called previously to set
399 	 * the count mode based on the user selection of user and kernel.
400 	 */
401 	val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
402 	cbe_write_pm(cpu, pm_control, val);
403 }
404 
405 static inline void
set_count_mode(u32 kernel,u32 user)406 set_count_mode(u32 kernel, u32 user)
407 {
408 	/*
409 	 * The user must specify user and kernel if they want them. If
410 	 *  neither is specified, OProfile will count in hypervisor mode.
411 	 *  pm_regs.pm_cntrl is a global
412 	 */
413 	if (kernel) {
414 		if (user)
415 			pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
416 		else
417 			pm_regs.pm_cntrl.count_mode =
418 				CBE_COUNT_SUPERVISOR_MODE;
419 	} else {
420 		if (user)
421 			pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
422 		else
423 			pm_regs.pm_cntrl.count_mode =
424 				CBE_COUNT_HYPERVISOR_MODE;
425 	}
426 }
427 
enable_ctr(u32 cpu,u32 ctr,u32 * pm07_cntrl)428 static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
429 {
430 
431 	pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
432 	cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
433 }
434 
435 /*
436  * Oprofile is expected to collect data on all CPUs simultaneously.
437  * However, there is one set of performance counters per node.	There are
438  * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
439  * multiplex in time the performance counter collection on the two virtual
440  * CPUs.  The multiplexing of the performance counters is done by this
441  * virtual counter routine.
442  *
443  * The pmc_values used below is defined as 'per-cpu' but its use is
444  * more akin to 'per-node'.  We need to store two sets of counter
445  * values per node -- one for the previous run and one for the next.
446  * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
447  * pair of per-cpu arrays is used for storing the previous and next
448  * pmc values for a given node.
449  * NOTE: We use the per-cpu variable to improve cache performance.
450  *
451  * This routine will alternate loading the virtual counters for
452  * virtual CPUs
453  */
cell_virtual_cntr(unsigned long data)454 static void cell_virtual_cntr(unsigned long data)
455 {
456 	int i, prev_hdw_thread, next_hdw_thread;
457 	u32 cpu;
458 	unsigned long flags;
459 
460 	/*
461 	 * Make sure that the interrupt_hander and the virt counter are
462 	 * not both playing with the counters on the same node.
463 	 */
464 
465 	spin_lock_irqsave(&cntr_lock, flags);
466 
467 	prev_hdw_thread = hdw_thread;
468 
469 	/* switch the cpu handling the interrupts */
470 	hdw_thread = 1 ^ hdw_thread;
471 	next_hdw_thread = hdw_thread;
472 
473 	pm_regs.group_control = 0;
474 	pm_regs.debug_bus_control = 0;
475 
476 	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
477 		input_bus[i] = 0xff;
478 
479 	/*
480 	 * There are some per thread events.  Must do the
481 	 * set event, for the thread that is being started
482 	 */
483 	for (i = 0; i < num_counters; i++)
484 		set_pm_event(i,
485 			pmc_cntrl[next_hdw_thread][i].evnts,
486 			pmc_cntrl[next_hdw_thread][i].masks);
487 
488 	/*
489 	 * The following is done only once per each node, but
490 	 * we need cpu #, not node #, to pass to the cbe_xxx functions.
491 	 */
492 	for_each_online_cpu(cpu) {
493 		if (cbe_get_hw_thread_id(cpu))
494 			continue;
495 
496 		/*
497 		 * stop counters, save counter values, restore counts
498 		 * for previous thread
499 		 */
500 		cbe_disable_pm(cpu);
501 		cbe_disable_pm_interrupts(cpu);
502 		for (i = 0; i < num_counters; i++) {
503 			per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
504 				= cbe_read_ctr(cpu, i);
505 
506 			if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
507 			    == 0xFFFFFFFF)
508 				/* If the cntr value is 0xffffffff, we must
509 				 * reset that to 0xfffffff0 when the current
510 				 * thread is restarted.	 This will generate a
511 				 * new interrupt and make sure that we never
512 				 * restore the counters to the max value.  If
513 				 * the counters were restored to the max value,
514 				 * they do not increment and no interrupts are
515 				 * generated.  Hence no more samples will be
516 				 * collected on that cpu.
517 				 */
518 				cbe_write_ctr(cpu, i, 0xFFFFFFF0);
519 			else
520 				cbe_write_ctr(cpu, i,
521 					      per_cpu(pmc_values,
522 						      cpu +
523 						      next_hdw_thread)[i]);
524 		}
525 
526 		/*
527 		 * Switch to the other thread. Change the interrupt
528 		 * and control regs to be scheduled on the CPU
529 		 * corresponding to the thread to execute.
530 		 */
531 		for (i = 0; i < num_counters; i++) {
532 			if (pmc_cntrl[next_hdw_thread][i].enabled) {
533 				/*
534 				 * There are some per thread events.
535 				 * Must do the set event, enable_cntr
536 				 * for each cpu.
537 				 */
538 				enable_ctr(cpu, i,
539 					   pm_regs.pm07_cntrl);
540 			} else {
541 				cbe_write_pm07_control(cpu, i, 0);
542 			}
543 		}
544 
545 		/* Enable interrupts on the CPU thread that is starting */
546 		cbe_enable_pm_interrupts(cpu, next_hdw_thread,
547 					 virt_cntr_inter_mask);
548 		cbe_enable_pm(cpu);
549 	}
550 
551 	spin_unlock_irqrestore(&cntr_lock, flags);
552 
553 	mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
554 }
555 
start_virt_cntrs(void)556 static void start_virt_cntrs(void)
557 {
558 	init_timer(&timer_virt_cntr);
559 	timer_virt_cntr.function = cell_virtual_cntr;
560 	timer_virt_cntr.data = 0UL;
561 	timer_virt_cntr.expires = jiffies + HZ / 10;
562 	add_timer(&timer_virt_cntr);
563 }
564 
cell_reg_setup_spu_cycles(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)565 static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
566 			struct op_system_config *sys, int num_ctrs)
567 {
568 	spu_cycle_reset = ctr[0].count;
569 
570 	/*
571 	 * Each node will need to make the rtas call to start
572 	 * and stop SPU profiling.  Get the token once and store it.
573 	 */
574 	spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
575 
576 	if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
577 		printk(KERN_ERR
578 		       "%s: rtas token ibm,cbe-spu-perftools unknown\n",
579 		       __func__);
580 		return -EIO;
581 	}
582 	return 0;
583 }
584 
585 /* Unfortunately, the hardware will only support event profiling
586  * on one SPU per node at a time.  Therefore, we must time slice
587  * the profiling across all SPUs in the node.  Note, we do this
588  * in parallel for each node.  The following routine is called
589  * periodically based on kernel timer to switch which SPU is
590  * being monitored in a round robbin fashion.
591  */
spu_evnt_swap(unsigned long data)592 static void spu_evnt_swap(unsigned long data)
593 {
594 	int node;
595 	int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
596 	unsigned long flags;
597 	int cpu;
598 	int ret;
599 	u32 interrupt_mask;
600 
601 
602 	/* enable interrupts on cntr 0 */
603 	interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
604 
605 	hdw_thread = 0;
606 
607 	/* Make sure spu event interrupt handler and spu event swap
608 	 * don't access the counters simultaneously.
609 	 */
610 	spin_lock_irqsave(&cntr_lock, flags);
611 
612 	cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
613 
614 	if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
615 		spu_evnt_phys_spu_indx = 0;
616 
617 	pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
618 	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
619 	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
620 
621 	/* switch the SPU being profiled on each node */
622 	for_each_online_cpu(cpu) {
623 		if (cbe_get_hw_thread_id(cpu))
624 			continue;
625 
626 		node = cbe_cpu_to_node(cpu);
627 		cur_phys_spu = (node * NUM_SPUS_PER_NODE)
628 			+ cur_spu_evnt_phys_spu_indx;
629 		nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
630 			+ spu_evnt_phys_spu_indx;
631 
632 		/*
633 		 * stop counters, save counter values, restore counts
634 		 * for previous physical SPU
635 		 */
636 		cbe_disable_pm(cpu);
637 		cbe_disable_pm_interrupts(cpu);
638 
639 		spu_pm_cnt[cur_phys_spu]
640 			= cbe_read_ctr(cpu, 0);
641 
642 		/* restore previous count for the next spu to sample */
643 		/* NOTE, hardware issue, counter will not start if the
644 		 * counter value is at max (0xFFFFFFFF).
645 		 */
646 		if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
647 			cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
648 		 else
649 			 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
650 
651 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
652 
653 		/* setup the debug bus measure the one event and
654 		 * the two events to route the next SPU's PC on
655 		 * the debug bus
656 		 */
657 		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
658 		if (ret)
659 			printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
660 			       "SPU event swap\n", __func__);
661 
662 		/* clear the trace buffer, don't want to take PC for
663 		 * previous SPU*/
664 		cbe_write_pm(cpu, trace_address, 0);
665 
666 		enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
667 
668 		/* Enable interrupts on the CPU thread that is starting */
669 		cbe_enable_pm_interrupts(cpu, hdw_thread,
670 					 interrupt_mask);
671 		cbe_enable_pm(cpu);
672 	}
673 
674 	spin_unlock_irqrestore(&cntr_lock, flags);
675 
676 	/* swap approximately every 0.1 seconds */
677 	mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
678 }
679 
start_spu_event_swap(void)680 static void start_spu_event_swap(void)
681 {
682 	init_timer(&timer_spu_event_swap);
683 	timer_spu_event_swap.function = spu_evnt_swap;
684 	timer_spu_event_swap.data = 0UL;
685 	timer_spu_event_swap.expires = jiffies + HZ / 25;
686 	add_timer(&timer_spu_event_swap);
687 }
688 
cell_reg_setup_spu_events(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)689 static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
690 			struct op_system_config *sys, int num_ctrs)
691 {
692 	int i;
693 
694 	/* routine is called once for all nodes */
695 
696 	spu_evnt_phys_spu_indx = 0;
697 	/*
698 	 * For all events except PPU CYCLEs, each node will need to make
699 	 * the rtas cbe-perftools call to setup and reset the debug bus.
700 	 * Make the token lookup call once and store it in the global
701 	 * variable pm_rtas_token.
702 	 */
703 	pm_rtas_token = rtas_token("ibm,cbe-perftools");
704 
705 	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
706 		printk(KERN_ERR
707 		       "%s: rtas token ibm,cbe-perftools unknown\n",
708 		       __func__);
709 		return -EIO;
710 	}
711 
712 	/* setup the pm_control register settings,
713 	 * settings will be written per node by the
714 	 * cell_cpu_setup() function.
715 	 */
716 	pm_regs.pm_cntrl.trace_buf_ovflw = 1;
717 
718 	/* Use the occurrence trace mode to have SPU PC saved
719 	 * to the trace buffer.  Occurrence data in trace buffer
720 	 * is not used.  Bit 2 must be set to store SPU addresses.
721 	 */
722 	pm_regs.pm_cntrl.trace_mode = 2;
723 
724 	pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
725 						   event 2 & 3 */
726 
727 	/* setup the debug bus event array with the SPU PC routing events.
728 	*  Note, pm_signal[0] will be filled in by set_pm_event() call below.
729 	*/
730 	pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
731 	pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
732 	pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
733 	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
734 
735 	pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
736 	pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
737 	pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
738 	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
739 
740 	/* Set the user selected spu event to profile on,
741 	 * note, only one SPU profiling event is supported
742 	 */
743 	num_counters = 1;  /* Only support one SPU event at a time */
744 	set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
745 
746 	reset_value[0] = 0xFFFFFFFF - ctr[0].count;
747 
748 	/* global, used by cell_cpu_setup */
749 	ctr_enabled |= 1;
750 
751 	/* Initialize the count for each SPU to the reset value */
752 	for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
753 		spu_pm_cnt[i] = reset_value[0];
754 
755 	return 0;
756 }
757 
cell_reg_setup_ppu(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)758 static int cell_reg_setup_ppu(struct op_counter_config *ctr,
759 			struct op_system_config *sys, int num_ctrs)
760 {
761 	/* routine is called once for all nodes */
762 	int i, j, cpu;
763 
764 	num_counters = num_ctrs;
765 
766 	if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
767 		printk(KERN_ERR
768 		       "%s: Oprofile, number of specified events " \
769 		       "exceeds number of physical counters\n",
770 		       __func__);
771 		return -EIO;
772 	}
773 
774 	set_count_mode(sys->enable_kernel, sys->enable_user);
775 
776 	/* Setup the thread 0 events */
777 	for (i = 0; i < num_ctrs; ++i) {
778 
779 		pmc_cntrl[0][i].evnts = ctr[i].event;
780 		pmc_cntrl[0][i].masks = ctr[i].unit_mask;
781 		pmc_cntrl[0][i].enabled = ctr[i].enabled;
782 		pmc_cntrl[0][i].vcntr = i;
783 
784 		for_each_possible_cpu(j)
785 			per_cpu(pmc_values, j)[i] = 0;
786 	}
787 
788 	/*
789 	 * Setup the thread 1 events, map the thread 0 event to the
790 	 * equivalent thread 1 event.
791 	 */
792 	for (i = 0; i < num_ctrs; ++i) {
793 		if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
794 			pmc_cntrl[1][i].evnts = ctr[i].event + 19;
795 		else if (ctr[i].event == 2203)
796 			pmc_cntrl[1][i].evnts = ctr[i].event;
797 		else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
798 			pmc_cntrl[1][i].evnts = ctr[i].event + 16;
799 		else
800 			pmc_cntrl[1][i].evnts = ctr[i].event;
801 
802 		pmc_cntrl[1][i].masks = ctr[i].unit_mask;
803 		pmc_cntrl[1][i].enabled = ctr[i].enabled;
804 		pmc_cntrl[1][i].vcntr = i;
805 	}
806 
807 	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
808 		input_bus[i] = 0xff;
809 
810 	/*
811 	 * Our counters count up, and "count" refers to
812 	 * how much before the next interrupt, and we interrupt
813 	 * on overflow.	 So we calculate the starting value
814 	 * which will give us "count" until overflow.
815 	 * Then we set the events on the enabled counters.
816 	 */
817 	for (i = 0; i < num_counters; ++i) {
818 		/* start with virtual counter set 0 */
819 		if (pmc_cntrl[0][i].enabled) {
820 			/* Using 32bit counters, reset max - count */
821 			reset_value[i] = 0xFFFFFFFF - ctr[i].count;
822 			set_pm_event(i,
823 				     pmc_cntrl[0][i].evnts,
824 				     pmc_cntrl[0][i].masks);
825 
826 			/* global, used by cell_cpu_setup */
827 			ctr_enabled |= (1 << i);
828 		}
829 	}
830 
831 	/* initialize the previous counts for the virtual cntrs */
832 	for_each_online_cpu(cpu)
833 		for (i = 0; i < num_counters; ++i) {
834 			per_cpu(pmc_values, cpu)[i] = reset_value[i];
835 		}
836 
837 	return 0;
838 }
839 
840 
841 /* This function is called once for all cpus combined */
cell_reg_setup(struct op_counter_config * ctr,struct op_system_config * sys,int num_ctrs)842 static int cell_reg_setup(struct op_counter_config *ctr,
843 			struct op_system_config *sys, int num_ctrs)
844 {
845 	int ret=0;
846 	spu_cycle_reset = 0;
847 
848 	/* initialize the spu_arr_trace value, will be reset if
849 	 * doing spu event profiling.
850 	 */
851 	pm_regs.group_control = 0;
852 	pm_regs.debug_bus_control = 0;
853 	pm_regs.pm_cntrl.stop_at_max = 1;
854 	pm_regs.pm_cntrl.trace_mode = 0;
855 	pm_regs.pm_cntrl.freeze = 1;
856 	pm_regs.pm_cntrl.trace_buf_ovflw = 0;
857 	pm_regs.pm_cntrl.spu_addr_trace = 0;
858 
859 	/*
860 	 * For all events except PPU CYCLEs, each node will need to make
861 	 * the rtas cbe-perftools call to setup and reset the debug bus.
862 	 * Make the token lookup call once and store it in the global
863 	 * variable pm_rtas_token.
864 	 */
865 	pm_rtas_token = rtas_token("ibm,cbe-perftools");
866 
867 	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
868 		printk(KERN_ERR
869 		       "%s: rtas token ibm,cbe-perftools unknown\n",
870 		       __func__);
871 		return -EIO;
872 	}
873 
874 	if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
875 		profiling_mode = SPU_PROFILING_CYCLES;
876 		ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
877 	} else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
878 		   (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
879 		profiling_mode = SPU_PROFILING_EVENTS;
880 		spu_cycle_reset = ctr[0].count;
881 
882 		/* for SPU event profiling, need to setup the
883 		 * pm_signal array with the events to route the
884 		 * SPU PC before making the FW call.  Note, only
885 		 * one SPU event for profiling can be specified
886 		 * at a time.
887 		 */
888 		cell_reg_setup_spu_events(ctr, sys, num_ctrs);
889 	} else {
890 		profiling_mode = PPU_PROFILING;
891 		ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
892 	}
893 
894 	return ret;
895 }
896 
897 
898 
899 /* This function is called once for each cpu */
cell_cpu_setup(struct op_counter_config * cntr)900 static int cell_cpu_setup(struct op_counter_config *cntr)
901 {
902 	u32 cpu = smp_processor_id();
903 	u32 num_enabled = 0;
904 	int i;
905 	int ret;
906 
907 	/* Cycle based SPU profiling does not use the performance
908 	 * counters.  The trace array is configured to collect
909 	 * the data.
910 	 */
911 	if (profiling_mode == SPU_PROFILING_CYCLES)
912 		return 0;
913 
914 	/* There is one performance monitor per processor chip (i.e. node),
915 	 * so we only need to perform this function once per node.
916 	 */
917 	if (cbe_get_hw_thread_id(cpu))
918 		return 0;
919 
920 	/* Stop all counters */
921 	cbe_disable_pm(cpu);
922 	cbe_disable_pm_interrupts(cpu);
923 
924 	cbe_write_pm(cpu, pm_start_stop, 0);
925 	cbe_write_pm(cpu, group_control, pm_regs.group_control);
926 	cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
927 	write_pm_cntrl(cpu);
928 
929 	for (i = 0; i < num_counters; ++i) {
930 		if (ctr_enabled & (1 << i)) {
931 			pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
932 			num_enabled++;
933 		}
934 	}
935 
936 	/*
937 	 * The pm_rtas_activate_signals will return -EIO if the FW
938 	 * call failed.
939 	 */
940 	if (profiling_mode == SPU_PROFILING_EVENTS) {
941 		/* For SPU event profiling also need to setup the
942 		 * pm interval timer
943 		 */
944 		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
945 					       num_enabled+2);
946 		/* store PC from debug bus to Trace buffer as often
947 		 * as possible (every 10 cycles)
948 		 */
949 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
950 		return ret;
951 	} else
952 		return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
953 						num_enabled);
954 }
955 
956 #define ENTRIES	 303
957 #define MAXLFSR	 0xFFFFFF
958 
959 /* precomputed table of 24 bit LFSR values */
960 static int initial_lfsr[] = {
961  8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
962  15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
963  4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
964  3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
965  9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
966  2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
967  3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
968  14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
969  11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
970  6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
971  15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
972  7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
973  16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
974  15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
975  15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
976  10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
977  3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
978  3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
979  8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
980  8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
981  4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
982  16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
983  2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
984  14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
985  1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
986  6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
987  10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
988  10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
989  14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
990  7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
991  9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
992  14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
993  13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
994  5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
995  3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
996  6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
997  7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
998  6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
999 };
1000 
1001 /*
1002  * The hardware uses an LFSR counting sequence to determine when to capture
1003  * the SPU PCs.	 An LFSR sequence is like a puesdo random number sequence
1004  * where each number occurs once in the sequence but the sequence is not in
1005  * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1006  * the last value in the sequence.  Hence the user specified value N
1007  * corresponds to the LFSR number that is N from the end of the sequence.
1008  *
1009  * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
1010  * LFSR sequence is broken into four ranges.  The spacing of the precomputed
1011  * values is adjusted in each range so the error between the user specifed
1012  * number (N) of events between samples and the actual number of events based
1013  * on the precomputed value will be les then about 6.2%.  Note, if the user
1014  * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1015  * This is to prevent the loss of samples because the trace buffer is full.
1016  *
1017  *	   User specified N		     Step between	   Index in
1018  *					 precomputed values	 precomputed
1019  *								    table
1020  * 0		    to	2^16-1			----		      0
1021  * 2^16	    to	2^16+2^19-1		2^12		    1 to 128
1022  * 2^16+2^19	    to	2^16+2^19+2^22-1	2^15		  129 to 256
1023  * 2^16+2^19+2^22  to	2^24-1			2^18		  257 to 302
1024  *
1025  *
1026  * For example, the LFSR values in the second range are computed for 2^16,
1027  * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1028  * 1, 2,..., 127, 128.
1029  *
1030  * The 24 bit LFSR value for the nth number in the sequence can be
1031  * calculated using the following code:
1032  *
1033  * #define size 24
1034  * int calculate_lfsr(int n)
1035  * {
1036  *	int i;
1037  *	unsigned int newlfsr0;
1038  *	unsigned int lfsr = 0xFFFFFF;
1039  *	unsigned int howmany = n;
1040  *
1041  *	for (i = 2; i < howmany + 2; i++) {
1042  *		newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1043  *		((lfsr >> (size - 1 - 1)) & 1) ^
1044  *		(((lfsr >> (size - 1 - 6)) & 1) ^
1045  *		((lfsr >> (size - 1 - 23)) & 1)));
1046  *
1047  *		lfsr >>= 1;
1048  *		lfsr = lfsr | (newlfsr0 << (size - 1));
1049  *	}
1050  *	return lfsr;
1051  * }
1052  */
1053 
1054 #define V2_16  (0x1 << 16)
1055 #define V2_19  (0x1 << 19)
1056 #define V2_22  (0x1 << 22)
1057 
calculate_lfsr(int n)1058 static int calculate_lfsr(int n)
1059 {
1060 	/*
1061 	 * The ranges and steps are in powers of 2 so the calculations
1062 	 * can be done using shifts rather then divide.
1063 	 */
1064 	int index;
1065 
1066 	if ((n >> 16) == 0)
1067 		index = 0;
1068 	else if (((n - V2_16) >> 19) == 0)
1069 		index = ((n - V2_16) >> 12) + 1;
1070 	else if (((n - V2_16 - V2_19) >> 22) == 0)
1071 		index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1072 	else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1073 		index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1074 	else
1075 		index = ENTRIES-1;
1076 
1077 	/* make sure index is valid */
1078 	if ((index >= ENTRIES) || (index < 0))
1079 		index = ENTRIES-1;
1080 
1081 	return initial_lfsr[index];
1082 }
1083 
pm_rtas_activate_spu_profiling(u32 node)1084 static int pm_rtas_activate_spu_profiling(u32 node)
1085 {
1086 	int ret, i;
1087 	struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1088 
1089 	/*
1090 	 * Set up the rtas call to configure the debug bus to
1091 	 * route the SPU PCs.  Setup the pm_signal for each SPU
1092 	 */
1093 	for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1094 		pm_signal_local[i].cpu = node;
1095 		pm_signal_local[i].signal_group = 41;
1096 		/* spu i on word (i/2) */
1097 		pm_signal_local[i].bus_word = 1 << i / 2;
1098 		/* spu i */
1099 		pm_signal_local[i].sub_unit = i;
1100 		pm_signal_local[i].bit = 63;
1101 	}
1102 
1103 	ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1104 				     PASSTHRU_ENABLE, pm_signal_local,
1105 				     (ARRAY_SIZE(pm_signal_local)
1106 				      * sizeof(struct pm_signal)));
1107 
1108 	if (unlikely(ret)) {
1109 		printk(KERN_WARNING "%s: rtas returned: %d\n",
1110 		       __func__, ret);
1111 		return -EIO;
1112 	}
1113 
1114 	return 0;
1115 }
1116 
1117 #ifdef CONFIG_CPU_FREQ
1118 static int
oprof_cpufreq_notify(struct notifier_block * nb,unsigned long val,void * data)1119 oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1120 {
1121 	int ret = 0;
1122 	struct cpufreq_freqs *frq = data;
1123 	if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1124 	    (val == CPUFREQ_POSTCHANGE && frq->old > frq->new))
1125 		set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1126 	return ret;
1127 }
1128 
1129 static struct notifier_block cpu_freq_notifier_block = {
1130 	.notifier_call	= oprof_cpufreq_notify
1131 };
1132 #endif
1133 
1134 /*
1135  * Note the generic OProfile stop calls do not support returning
1136  * an error on stop.  Hence, will not return an error if the FW
1137  * calls fail on stop.	Failure to reset the debug bus is not an issue.
1138  * Failure to disable the SPU profiling is not an issue.  The FW calls
1139  * to enable the performance counters and debug bus will work even if
1140  * the hardware was not cleanly reset.
1141  */
cell_global_stop_spu_cycles(void)1142 static void cell_global_stop_spu_cycles(void)
1143 {
1144 	int subfunc, rtn_value;
1145 	unsigned int lfsr_value;
1146 	int cpu;
1147 
1148 	oprofile_running = 0;
1149 	smp_wmb();
1150 
1151 #ifdef CONFIG_CPU_FREQ
1152 	cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1153 				    CPUFREQ_TRANSITION_NOTIFIER);
1154 #endif
1155 
1156 	for_each_online_cpu(cpu) {
1157 		if (cbe_get_hw_thread_id(cpu))
1158 			continue;
1159 
1160 		subfunc = 3;	/*
1161 				 * 2 - activate SPU tracing,
1162 				 * 3 - deactivate
1163 				 */
1164 		lfsr_value = 0x8f100000;
1165 
1166 		rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1167 				      subfunc, cbe_cpu_to_node(cpu),
1168 				      lfsr_value);
1169 
1170 		if (unlikely(rtn_value != 0)) {
1171 			printk(KERN_ERR
1172 			       "%s: rtas call ibm,cbe-spu-perftools " \
1173 			       "failed, return = %d\n",
1174 			       __func__, rtn_value);
1175 		}
1176 
1177 		/* Deactivate the signals */
1178 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1179 	}
1180 
1181 	stop_spu_profiling_cycles();
1182 }
1183 
cell_global_stop_spu_events(void)1184 static void cell_global_stop_spu_events(void)
1185 {
1186 	int cpu;
1187 	oprofile_running = 0;
1188 
1189 	stop_spu_profiling_events();
1190 	smp_wmb();
1191 
1192 	for_each_online_cpu(cpu) {
1193 		if (cbe_get_hw_thread_id(cpu))
1194 			continue;
1195 
1196 		cbe_sync_irq(cbe_cpu_to_node(cpu));
1197 		/* Stop the counters */
1198 		cbe_disable_pm(cpu);
1199 		cbe_write_pm07_control(cpu, 0, 0);
1200 
1201 		/* Deactivate the signals */
1202 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1203 
1204 		/* Deactivate interrupts */
1205 		cbe_disable_pm_interrupts(cpu);
1206 	}
1207 	del_timer_sync(&timer_spu_event_swap);
1208 }
1209 
cell_global_stop_ppu(void)1210 static void cell_global_stop_ppu(void)
1211 {
1212 	int cpu;
1213 
1214 	/*
1215 	 * This routine will be called once for the system.
1216 	 * There is one performance monitor per node, so we
1217 	 * only need to perform this function once per node.
1218 	 */
1219 	del_timer_sync(&timer_virt_cntr);
1220 	oprofile_running = 0;
1221 	smp_wmb();
1222 
1223 	for_each_online_cpu(cpu) {
1224 		if (cbe_get_hw_thread_id(cpu))
1225 			continue;
1226 
1227 		cbe_sync_irq(cbe_cpu_to_node(cpu));
1228 		/* Stop the counters */
1229 		cbe_disable_pm(cpu);
1230 
1231 		/* Deactivate the signals */
1232 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1233 
1234 		/* Deactivate interrupts */
1235 		cbe_disable_pm_interrupts(cpu);
1236 	}
1237 }
1238 
cell_global_stop(void)1239 static void cell_global_stop(void)
1240 {
1241 	if (profiling_mode == PPU_PROFILING)
1242 		cell_global_stop_ppu();
1243 	else if (profiling_mode == SPU_PROFILING_EVENTS)
1244 		cell_global_stop_spu_events();
1245 	else
1246 		cell_global_stop_spu_cycles();
1247 }
1248 
cell_global_start_spu_cycles(struct op_counter_config * ctr)1249 static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1250 {
1251 	int subfunc;
1252 	unsigned int lfsr_value;
1253 	int cpu;
1254 	int ret;
1255 	int rtas_error;
1256 	unsigned int cpu_khzfreq = 0;
1257 
1258 	/* The SPU profiling uses time-based profiling based on
1259 	 * cpu frequency, so if configured with the CPU_FREQ
1260 	 * option, we should detect frequency changes and react
1261 	 * accordingly.
1262 	 */
1263 #ifdef CONFIG_CPU_FREQ
1264 	ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1265 					CPUFREQ_TRANSITION_NOTIFIER);
1266 	if (ret < 0)
1267 		/* this is not a fatal error */
1268 		printk(KERN_ERR "CPU freq change registration failed: %d\n",
1269 		       ret);
1270 
1271 	else
1272 		cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1273 #endif
1274 
1275 	set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1276 
1277 	for_each_online_cpu(cpu) {
1278 		if (cbe_get_hw_thread_id(cpu))
1279 			continue;
1280 
1281 		/*
1282 		 * Setup SPU cycle-based profiling.
1283 		 * Set perf_mon_control bit 0 to a zero before
1284 		 * enabling spu collection hardware.
1285 		 */
1286 		cbe_write_pm(cpu, pm_control, 0);
1287 
1288 		if (spu_cycle_reset > MAX_SPU_COUNT)
1289 			/* use largest possible value */
1290 			lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1291 		else
1292 			lfsr_value = calculate_lfsr(spu_cycle_reset);
1293 
1294 		/* must use a non zero value. Zero disables data collection. */
1295 		if (lfsr_value == 0)
1296 			lfsr_value = calculate_lfsr(1);
1297 
1298 		lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1299 						* register location
1300 						*/
1301 
1302 		/* debug bus setup */
1303 		ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1304 
1305 		if (unlikely(ret)) {
1306 			rtas_error = ret;
1307 			goto out;
1308 		}
1309 
1310 
1311 		subfunc = 2;	/* 2 - activate SPU tracing, 3 - deactivate */
1312 
1313 		/* start profiling */
1314 		ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1315 				cbe_cpu_to_node(cpu), lfsr_value);
1316 
1317 		if (unlikely(ret != 0)) {
1318 			printk(KERN_ERR
1319 			       "%s: rtas call ibm,cbe-spu-perftools failed, " \
1320 			       "return = %d\n", __func__, ret);
1321 			rtas_error = -EIO;
1322 			goto out;
1323 		}
1324 	}
1325 
1326 	rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1327 	if (rtas_error)
1328 		goto out_stop;
1329 
1330 	oprofile_running = 1;
1331 	return 0;
1332 
1333 out_stop:
1334 	cell_global_stop_spu_cycles();	/* clean up the PMU/debug bus */
1335 out:
1336 	return rtas_error;
1337 }
1338 
cell_global_start_spu_events(struct op_counter_config * ctr)1339 static int cell_global_start_spu_events(struct op_counter_config *ctr)
1340 {
1341 	int cpu;
1342 	u32 interrupt_mask = 0;
1343 	int rtn = 0;
1344 
1345 	hdw_thread = 0;
1346 
1347 	/* spu event profiling, uses the performance counters to generate
1348 	 * an interrupt.  The hardware is setup to store the SPU program
1349 	 * counter into the trace array.  The occurrence mode is used to
1350 	 * enable storing data to the trace buffer.  The bits are set
1351 	 * to send/store the SPU address in the trace buffer.  The debug
1352 	 * bus must be setup to route the SPU program counter onto the
1353 	 * debug bus.  The occurrence data in the trace buffer is not used.
1354 	 */
1355 
1356 	/* This routine gets called once for the system.
1357 	 * There is one performance monitor per node, so we
1358 	 * only need to perform this function once per node.
1359 	 */
1360 
1361 	for_each_online_cpu(cpu) {
1362 		if (cbe_get_hw_thread_id(cpu))
1363 			continue;
1364 
1365 		/*
1366 		 * Setup SPU event-based profiling.
1367 		 * Set perf_mon_control bit 0 to a zero before
1368 		 * enabling spu collection hardware.
1369 		 *
1370 		 * Only support one SPU event on one SPU per node.
1371 		 */
1372 		if (ctr_enabled & 1) {
1373 			cbe_write_ctr(cpu, 0, reset_value[0]);
1374 			enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1375 			interrupt_mask |=
1376 				CBE_PM_CTR_OVERFLOW_INTR(0);
1377 		} else {
1378 			/* Disable counter */
1379 			cbe_write_pm07_control(cpu, 0, 0);
1380 		}
1381 
1382 		cbe_get_and_clear_pm_interrupts(cpu);
1383 		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1384 		cbe_enable_pm(cpu);
1385 
1386 		/* clear the trace buffer */
1387 		cbe_write_pm(cpu, trace_address, 0);
1388 	}
1389 
1390 	/* Start the timer to time slice collecting the event profile
1391 	 * on each of the SPUs.  Note, can collect profile on one SPU
1392 	 * per node at a time.
1393 	 */
1394 	start_spu_event_swap();
1395 	start_spu_profiling_events();
1396 	oprofile_running = 1;
1397 	smp_wmb();
1398 
1399 	return rtn;
1400 }
1401 
cell_global_start_ppu(struct op_counter_config * ctr)1402 static int cell_global_start_ppu(struct op_counter_config *ctr)
1403 {
1404 	u32 cpu, i;
1405 	u32 interrupt_mask = 0;
1406 
1407 	/* This routine gets called once for the system.
1408 	 * There is one performance monitor per node, so we
1409 	 * only need to perform this function once per node.
1410 	 */
1411 	for_each_online_cpu(cpu) {
1412 		if (cbe_get_hw_thread_id(cpu))
1413 			continue;
1414 
1415 		interrupt_mask = 0;
1416 
1417 		for (i = 0; i < num_counters; ++i) {
1418 			if (ctr_enabled & (1 << i)) {
1419 				cbe_write_ctr(cpu, i, reset_value[i]);
1420 				enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1421 				interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1422 			} else {
1423 				/* Disable counter */
1424 				cbe_write_pm07_control(cpu, i, 0);
1425 			}
1426 		}
1427 
1428 		cbe_get_and_clear_pm_interrupts(cpu);
1429 		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1430 		cbe_enable_pm(cpu);
1431 	}
1432 
1433 	virt_cntr_inter_mask = interrupt_mask;
1434 	oprofile_running = 1;
1435 	smp_wmb();
1436 
1437 	/*
1438 	 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1439 	 * executed which manipulates the PMU.	We start the "virtual counter"
1440 	 * here so that we do not need to synchronize access to the PMU in
1441 	 * the above for-loop.
1442 	 */
1443 	start_virt_cntrs();
1444 
1445 	return 0;
1446 }
1447 
cell_global_start(struct op_counter_config * ctr)1448 static int cell_global_start(struct op_counter_config *ctr)
1449 {
1450 	if (profiling_mode == SPU_PROFILING_CYCLES)
1451 		return cell_global_start_spu_cycles(ctr);
1452 	else if (profiling_mode == SPU_PROFILING_EVENTS)
1453 		return cell_global_start_spu_events(ctr);
1454 	else
1455 		return cell_global_start_ppu(ctr);
1456 }
1457 
1458 
1459 /* The SPU interrupt handler
1460  *
1461  * SPU event profiling works as follows:
1462  * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
1463  * the debug bus using word 0 or 1.  The value of pm_signal[1] and
1464  * pm_signal[2] contain the necessary events to route the SPU program
1465  * counter for the selected SPU onto the debug bus using words 2 and 3.
1466  * The pm_interval register is setup to write the SPU PC value into the
1467  * trace buffer at the maximum rate possible.  The trace buffer is configured
1468  * to store the PCs, wrapping when it is full.  The performance counter is
1469  * initialized to the max hardware count minus the number of events, N, between
1470  * samples.  Once the N events have occurred, a HW counter overflow occurs
1471  * causing the generation of a HW counter interrupt which also stops the
1472  * writing of the SPU PC values to the trace buffer.  Hence the last PC
1473  * written to the trace buffer is the SPU PC that we want.  Unfortunately,
1474  * we have to read from the beginning of the trace buffer to get to the
1475  * last value written.  We just hope the PPU has nothing better to do then
1476  * service this interrupt. The PC for the specific SPU being profiled is
1477  * extracted from the trace buffer processed and stored.  The trace buffer
1478  * is cleared, interrupts are cleared, the counter is reset to max - N.
1479  * A kernel timer is used to periodically call the routine spu_evnt_swap()
1480  * to switch to the next physical SPU in the node to profile in round robbin
1481  * order.  This way data is collected for all SPUs on the node. It does mean
1482  * that we need to use a relatively small value of N to ensure enough samples
1483  * on each SPU are collected each SPU is being profiled 1/8 of the time.
1484  * It may also be necessary to use a longer sample collection period.
1485  */
cell_handle_interrupt_spu(struct pt_regs * regs,struct op_counter_config * ctr)1486 static void cell_handle_interrupt_spu(struct pt_regs *regs,
1487 				      struct op_counter_config *ctr)
1488 {
1489 	u32 cpu, cpu_tmp;
1490 	u64 trace_entry;
1491 	u32 interrupt_mask;
1492 	u64 trace_buffer[2];
1493 	u64 last_trace_buffer;
1494 	u32 sample;
1495 	u32 trace_addr;
1496 	unsigned long sample_array_lock_flags;
1497 	int spu_num;
1498 	unsigned long flags;
1499 
1500 	/* Make sure spu event interrupt handler and spu event swap
1501 	 * don't access the counters simultaneously.
1502 	 */
1503 	cpu = smp_processor_id();
1504 	spin_lock_irqsave(&cntr_lock, flags);
1505 
1506 	cpu_tmp = cpu;
1507 	cbe_disable_pm(cpu);
1508 
1509 	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1510 
1511 	sample = 0xABCDEF;
1512 	trace_entry = 0xfedcba;
1513 	last_trace_buffer = 0xdeadbeaf;
1514 
1515 	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1516 		/* disable writes to trace buff */
1517 		cbe_write_pm(cpu, pm_interval, 0);
1518 
1519 		/* only have one perf cntr being used, cntr 0 */
1520 		if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1521 		    && ctr[0].enabled)
1522 			/* The SPU PC values will be read
1523 			 * from the trace buffer, reset counter
1524 			 */
1525 
1526 			cbe_write_ctr(cpu, 0, reset_value[0]);
1527 
1528 		trace_addr = cbe_read_pm(cpu, trace_address);
1529 
1530 		while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1531 			/* There is data in the trace buffer to process
1532 			 * Read the buffer until you get to the last
1533 			 * entry.  This is the value we want.
1534 			 */
1535 
1536 			cbe_read_trace_buffer(cpu, trace_buffer);
1537 			trace_addr = cbe_read_pm(cpu, trace_address);
1538 		}
1539 
1540 		/* SPU Address 16 bit count format for 128 bit
1541 		 * HW trace buffer is used for the SPU PC storage
1542 		 *    HDR bits          0:15
1543 		 *    SPU Addr 0 bits   16:31
1544 		 *    SPU Addr 1 bits   32:47
1545 		 *    unused bits       48:127
1546 		 *
1547 		 * HDR: bit4 = 1 SPU Address 0 valid
1548 		 * HDR: bit5 = 1 SPU Address 1 valid
1549 		 *  - unfortunately, the valid bits don't seem to work
1550 		 *
1551 		 * Note trace_buffer[0] holds bits 0:63 of the HW
1552 		 * trace buffer, trace_buffer[1] holds bits 64:127
1553 		 */
1554 
1555 		trace_entry = trace_buffer[0]
1556 			& 0x00000000FFFF0000;
1557 
1558 		/* only top 16 of the 18 bit SPU PC address
1559 		 * is stored in trace buffer, hence shift right
1560 		 * by 16 -2 bits */
1561 		sample = trace_entry >> 14;
1562 		last_trace_buffer = trace_buffer[0];
1563 
1564 		spu_num = spu_evnt_phys_spu_indx
1565 			+ (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1566 
1567 		/* make sure only one process at a time is calling
1568 		 * spu_sync_buffer()
1569 		 */
1570 		spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1571 				  sample_array_lock_flags);
1572 		spu_sync_buffer(spu_num, &sample, 1);
1573 		spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1574 				       sample_array_lock_flags);
1575 
1576 		smp_wmb();    /* insure spu event buffer updates are written
1577 			       * don't want events intermingled... */
1578 
1579 		/* The counters were frozen by the interrupt.
1580 		 * Reenable the interrupt and restart the counters.
1581 		 */
1582 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1583 		cbe_enable_pm_interrupts(cpu, hdw_thread,
1584 					 virt_cntr_inter_mask);
1585 
1586 		/* clear the trace buffer, re-enable writes to trace buff */
1587 		cbe_write_pm(cpu, trace_address, 0);
1588 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1589 
1590 		/* The writes to the various performance counters only writes
1591 		 * to a latch.  The new values (interrupt setting bits, reset
1592 		 * counter value etc.) are not copied to the actual registers
1593 		 * until the performance monitor is enabled.  In order to get
1594 		 * this to work as desired, the performance monitor needs to
1595 		 * be disabled while writing to the latches.  This is a
1596 		 * HW design issue.
1597 		 */
1598 		write_pm_cntrl(cpu);
1599 		cbe_enable_pm(cpu);
1600 	}
1601 	spin_unlock_irqrestore(&cntr_lock, flags);
1602 }
1603 
cell_handle_interrupt_ppu(struct pt_regs * regs,struct op_counter_config * ctr)1604 static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1605 				      struct op_counter_config *ctr)
1606 {
1607 	u32 cpu;
1608 	u64 pc;
1609 	int is_kernel;
1610 	unsigned long flags = 0;
1611 	u32 interrupt_mask;
1612 	int i;
1613 
1614 	cpu = smp_processor_id();
1615 
1616 	/*
1617 	 * Need to make sure the interrupt handler and the virt counter
1618 	 * routine are not running at the same time. See the
1619 	 * cell_virtual_cntr() routine for additional comments.
1620 	 */
1621 	spin_lock_irqsave(&cntr_lock, flags);
1622 
1623 	/*
1624 	 * Need to disable and reenable the performance counters
1625 	 * to get the desired behavior from the hardware.  This
1626 	 * is hardware specific.
1627 	 */
1628 
1629 	cbe_disable_pm(cpu);
1630 
1631 	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1632 
1633 	/*
1634 	 * If the interrupt mask has been cleared, then the virt cntr
1635 	 * has cleared the interrupt.  When the thread that generated
1636 	 * the interrupt is restored, the data count will be restored to
1637 	 * 0xffffff0 to cause the interrupt to be regenerated.
1638 	 */
1639 
1640 	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1641 		pc = regs->nip;
1642 		is_kernel = is_kernel_addr(pc);
1643 
1644 		for (i = 0; i < num_counters; ++i) {
1645 			if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1646 			    && ctr[i].enabled) {
1647 				oprofile_add_ext_sample(pc, regs, i, is_kernel);
1648 				cbe_write_ctr(cpu, i, reset_value[i]);
1649 			}
1650 		}
1651 
1652 		/*
1653 		 * The counters were frozen by the interrupt.
1654 		 * Reenable the interrupt and restart the counters.
1655 		 * If there was a race between the interrupt handler and
1656 		 * the virtual counter routine.	 The virtual counter
1657 		 * routine may have cleared the interrupts.  Hence must
1658 		 * use the virt_cntr_inter_mask to re-enable the interrupts.
1659 		 */
1660 		cbe_enable_pm_interrupts(cpu, hdw_thread,
1661 					 virt_cntr_inter_mask);
1662 
1663 		/*
1664 		 * The writes to the various performance counters only writes
1665 		 * to a latch.	The new values (interrupt setting bits, reset
1666 		 * counter value etc.) are not copied to the actual registers
1667 		 * until the performance monitor is enabled.  In order to get
1668 		 * this to work as desired, the performance monitor needs to
1669 		 * be disabled while writing to the latches.  This is a
1670 		 * HW design issue.
1671 		 */
1672 		cbe_enable_pm(cpu);
1673 	}
1674 	spin_unlock_irqrestore(&cntr_lock, flags);
1675 }
1676 
cell_handle_interrupt(struct pt_regs * regs,struct op_counter_config * ctr)1677 static void cell_handle_interrupt(struct pt_regs *regs,
1678 				  struct op_counter_config *ctr)
1679 {
1680 	if (profiling_mode == PPU_PROFILING)
1681 		cell_handle_interrupt_ppu(regs, ctr);
1682 	else
1683 		cell_handle_interrupt_spu(regs, ctr);
1684 }
1685 
1686 /*
1687  * This function is called from the generic OProfile
1688  * driver.  When profiling PPUs, we need to do the
1689  * generic sync start; otherwise, do spu_sync_start.
1690  */
cell_sync_start(void)1691 static int cell_sync_start(void)
1692 {
1693 	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1694 	    (profiling_mode == SPU_PROFILING_EVENTS))
1695 		return spu_sync_start();
1696 	else
1697 		return DO_GENERIC_SYNC;
1698 }
1699 
cell_sync_stop(void)1700 static int cell_sync_stop(void)
1701 {
1702 	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1703 	    (profiling_mode == SPU_PROFILING_EVENTS))
1704 		return spu_sync_stop();
1705 	else
1706 		return 1;
1707 }
1708 
1709 struct op_powerpc_model op_model_cell = {
1710 	.reg_setup = cell_reg_setup,
1711 	.cpu_setup = cell_cpu_setup,
1712 	.global_start = cell_global_start,
1713 	.global_stop = cell_global_stop,
1714 	.sync_start = cell_sync_start,
1715 	.sync_stop = cell_sync_stop,
1716 	.handle_interrupt = cell_handle_interrupt,
1717 };
1718