1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18 #include <trace/events/sunrpc.h>
19
20 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
21
22 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
23 static int svc_deferred_recv(struct svc_rqst *rqstp);
24 static struct cache_deferred_req *svc_defer(struct cache_req *req);
25 static void svc_age_temp_xprts(unsigned long closure);
26 static void svc_delete_xprt(struct svc_xprt *xprt);
27
28 /* apparently the "standard" is that clients close
29 * idle connections after 5 minutes, servers after
30 * 6 minutes
31 * http://www.connectathon.org/talks96/nfstcp.pdf
32 */
33 static int svc_conn_age_period = 6*60;
34
35 /* List of registered transport classes */
36 static DEFINE_SPINLOCK(svc_xprt_class_lock);
37 static LIST_HEAD(svc_xprt_class_list);
38
39 /* SMP locking strategy:
40 *
41 * svc_pool->sp_lock protects most of the fields of that pool.
42 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
43 * when both need to be taken (rare), svc_serv->sv_lock is first.
44 * The "service mutex" protects svc_serv->sv_nrthread.
45 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
46 * and the ->sk_info_authunix cache.
47 *
48 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
49 * enqueued multiply. During normal transport processing this bit
50 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
51 * Providers should not manipulate this bit directly.
52 *
53 * Some flags can be set to certain values at any time
54 * providing that certain rules are followed:
55 *
56 * XPT_CONN, XPT_DATA:
57 * - Can be set or cleared at any time.
58 * - After a set, svc_xprt_enqueue must be called to enqueue
59 * the transport for processing.
60 * - After a clear, the transport must be read/accepted.
61 * If this succeeds, it must be set again.
62 * XPT_CLOSE:
63 * - Can set at any time. It is never cleared.
64 * XPT_DEAD:
65 * - Can only be set while XPT_BUSY is held which ensures
66 * that no other thread will be using the transport or will
67 * try to set XPT_DEAD.
68 */
svc_reg_xprt_class(struct svc_xprt_class * xcl)69 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
70 {
71 struct svc_xprt_class *cl;
72 int res = -EEXIST;
73
74 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
75
76 INIT_LIST_HEAD(&xcl->xcl_list);
77 spin_lock(&svc_xprt_class_lock);
78 /* Make sure there isn't already a class with the same name */
79 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
80 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
81 goto out;
82 }
83 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
84 res = 0;
85 out:
86 spin_unlock(&svc_xprt_class_lock);
87 return res;
88 }
89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
90
svc_unreg_xprt_class(struct svc_xprt_class * xcl)91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
92 {
93 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
94 spin_lock(&svc_xprt_class_lock);
95 list_del_init(&xcl->xcl_list);
96 spin_unlock(&svc_xprt_class_lock);
97 }
98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
99
100 /**
101 * svc_print_xprts - Format the transport list for printing
102 * @buf: target buffer for formatted address
103 * @maxlen: length of target buffer
104 *
105 * Fills in @buf with a string containing a list of transport names, each name
106 * terminated with '\n'. If the buffer is too small, some entries may be
107 * missing, but it is guaranteed that all lines in the output buffer are
108 * complete.
109 *
110 * Returns positive length of the filled-in string.
111 */
svc_print_xprts(char * buf,int maxlen)112 int svc_print_xprts(char *buf, int maxlen)
113 {
114 struct svc_xprt_class *xcl;
115 char tmpstr[80];
116 int len = 0;
117 buf[0] = '\0';
118
119 spin_lock(&svc_xprt_class_lock);
120 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
121 int slen;
122
123 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
124 xcl->xcl_name, xcl->xcl_max_payload);
125 if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
126 break;
127 len += slen;
128 strcat(buf, tmpstr);
129 }
130 spin_unlock(&svc_xprt_class_lock);
131
132 return len;
133 }
134
svc_xprt_free(struct kref * kref)135 static void svc_xprt_free(struct kref *kref)
136 {
137 struct svc_xprt *xprt =
138 container_of(kref, struct svc_xprt, xpt_ref);
139 struct module *owner = xprt->xpt_class->xcl_owner;
140 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
141 svcauth_unix_info_release(xprt);
142 put_net(xprt->xpt_net);
143 /* See comment on corresponding get in xs_setup_bc_tcp(): */
144 if (xprt->xpt_bc_xprt)
145 xprt_put(xprt->xpt_bc_xprt);
146 xprt->xpt_ops->xpo_free(xprt);
147 module_put(owner);
148 }
149
svc_xprt_put(struct svc_xprt * xprt)150 void svc_xprt_put(struct svc_xprt *xprt)
151 {
152 kref_put(&xprt->xpt_ref, svc_xprt_free);
153 }
154 EXPORT_SYMBOL_GPL(svc_xprt_put);
155
156 /*
157 * Called by transport drivers to initialize the transport independent
158 * portion of the transport instance.
159 */
svc_xprt_init(struct net * net,struct svc_xprt_class * xcl,struct svc_xprt * xprt,struct svc_serv * serv)160 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
161 struct svc_xprt *xprt, struct svc_serv *serv)
162 {
163 memset(xprt, 0, sizeof(*xprt));
164 xprt->xpt_class = xcl;
165 xprt->xpt_ops = xcl->xcl_ops;
166 kref_init(&xprt->xpt_ref);
167 xprt->xpt_server = serv;
168 INIT_LIST_HEAD(&xprt->xpt_list);
169 INIT_LIST_HEAD(&xprt->xpt_ready);
170 INIT_LIST_HEAD(&xprt->xpt_deferred);
171 INIT_LIST_HEAD(&xprt->xpt_users);
172 mutex_init(&xprt->xpt_mutex);
173 spin_lock_init(&xprt->xpt_lock);
174 set_bit(XPT_BUSY, &xprt->xpt_flags);
175 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
176 xprt->xpt_net = get_net(net);
177 }
178 EXPORT_SYMBOL_GPL(svc_xprt_init);
179
__svc_xpo_create(struct svc_xprt_class * xcl,struct svc_serv * serv,struct net * net,const int family,const unsigned short port,int flags)180 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
181 struct svc_serv *serv,
182 struct net *net,
183 const int family,
184 const unsigned short port,
185 int flags)
186 {
187 struct sockaddr_in sin = {
188 .sin_family = AF_INET,
189 .sin_addr.s_addr = htonl(INADDR_ANY),
190 .sin_port = htons(port),
191 };
192 #if IS_ENABLED(CONFIG_IPV6)
193 struct sockaddr_in6 sin6 = {
194 .sin6_family = AF_INET6,
195 .sin6_addr = IN6ADDR_ANY_INIT,
196 .sin6_port = htons(port),
197 };
198 #endif
199 struct sockaddr *sap;
200 size_t len;
201
202 switch (family) {
203 case PF_INET:
204 sap = (struct sockaddr *)&sin;
205 len = sizeof(sin);
206 break;
207 #if IS_ENABLED(CONFIG_IPV6)
208 case PF_INET6:
209 sap = (struct sockaddr *)&sin6;
210 len = sizeof(sin6);
211 break;
212 #endif
213 default:
214 return ERR_PTR(-EAFNOSUPPORT);
215 }
216
217 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
218 }
219
220 /*
221 * svc_xprt_received conditionally queues the transport for processing
222 * by another thread. The caller must hold the XPT_BUSY bit and must
223 * not thereafter touch transport data.
224 *
225 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
226 * insufficient) data.
227 */
svc_xprt_received(struct svc_xprt * xprt)228 static void svc_xprt_received(struct svc_xprt *xprt)
229 {
230 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
231 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
232 return;
233 }
234
235 /* As soon as we clear busy, the xprt could be closed and
236 * 'put', so we need a reference to call svc_enqueue_xprt with:
237 */
238 svc_xprt_get(xprt);
239 smp_mb__before_atomic();
240 clear_bit(XPT_BUSY, &xprt->xpt_flags);
241 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
242 svc_xprt_put(xprt);
243 }
244
svc_add_new_perm_xprt(struct svc_serv * serv,struct svc_xprt * new)245 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
246 {
247 clear_bit(XPT_TEMP, &new->xpt_flags);
248 spin_lock_bh(&serv->sv_lock);
249 list_add(&new->xpt_list, &serv->sv_permsocks);
250 spin_unlock_bh(&serv->sv_lock);
251 svc_xprt_received(new);
252 }
253
svc_create_xprt(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags)254 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
255 struct net *net, const int family,
256 const unsigned short port, int flags)
257 {
258 struct svc_xprt_class *xcl;
259
260 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
261 spin_lock(&svc_xprt_class_lock);
262 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
263 struct svc_xprt *newxprt;
264 unsigned short newport;
265
266 if (strcmp(xprt_name, xcl->xcl_name))
267 continue;
268
269 if (!try_module_get(xcl->xcl_owner))
270 goto err;
271
272 spin_unlock(&svc_xprt_class_lock);
273 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
274 if (IS_ERR(newxprt)) {
275 module_put(xcl->xcl_owner);
276 return PTR_ERR(newxprt);
277 }
278 svc_add_new_perm_xprt(serv, newxprt);
279 newport = svc_xprt_local_port(newxprt);
280 return newport;
281 }
282 err:
283 spin_unlock(&svc_xprt_class_lock);
284 dprintk("svc: transport %s not found\n", xprt_name);
285
286 /* This errno is exposed to user space. Provide a reasonable
287 * perror msg for a bad transport. */
288 return -EPROTONOSUPPORT;
289 }
290 EXPORT_SYMBOL_GPL(svc_create_xprt);
291
292 /*
293 * Copy the local and remote xprt addresses to the rqstp structure
294 */
svc_xprt_copy_addrs(struct svc_rqst * rqstp,struct svc_xprt * xprt)295 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
296 {
297 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
298 rqstp->rq_addrlen = xprt->xpt_remotelen;
299
300 /*
301 * Destination address in request is needed for binding the
302 * source address in RPC replies/callbacks later.
303 */
304 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
305 rqstp->rq_daddrlen = xprt->xpt_locallen;
306 }
307 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
308
309 /**
310 * svc_print_addr - Format rq_addr field for printing
311 * @rqstp: svc_rqst struct containing address to print
312 * @buf: target buffer for formatted address
313 * @len: length of target buffer
314 *
315 */
svc_print_addr(struct svc_rqst * rqstp,char * buf,size_t len)316 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
317 {
318 return __svc_print_addr(svc_addr(rqstp), buf, len);
319 }
320 EXPORT_SYMBOL_GPL(svc_print_addr);
321
svc_xprt_has_something_to_do(struct svc_xprt * xprt)322 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
323 {
324 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
325 return true;
326 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
327 return xprt->xpt_ops->xpo_has_wspace(xprt);
328 return false;
329 }
330
svc_xprt_do_enqueue(struct svc_xprt * xprt)331 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
332 {
333 struct svc_pool *pool;
334 struct svc_rqst *rqstp = NULL;
335 int cpu;
336 bool queued = false;
337
338 if (!svc_xprt_has_something_to_do(xprt))
339 goto out;
340
341 /* Mark transport as busy. It will remain in this state until
342 * the provider calls svc_xprt_received. We update XPT_BUSY
343 * atomically because it also guards against trying to enqueue
344 * the transport twice.
345 */
346 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
347 /* Don't enqueue transport while already enqueued */
348 dprintk("svc: transport %p busy, not enqueued\n", xprt);
349 goto out;
350 }
351
352 cpu = get_cpu();
353 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
354
355 atomic_long_inc(&pool->sp_stats.packets);
356
357 redo_search:
358 /* find a thread for this xprt */
359 rcu_read_lock();
360 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
361 /* Do a lockless check first */
362 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
363 continue;
364
365 /*
366 * Once the xprt has been queued, it can only be dequeued by
367 * the task that intends to service it. All we can do at that
368 * point is to try to wake this thread back up so that it can
369 * do so.
370 */
371 if (!queued) {
372 spin_lock_bh(&rqstp->rq_lock);
373 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
374 /* already busy, move on... */
375 spin_unlock_bh(&rqstp->rq_lock);
376 continue;
377 }
378
379 /* this one will do */
380 rqstp->rq_xprt = xprt;
381 svc_xprt_get(xprt);
382 spin_unlock_bh(&rqstp->rq_lock);
383 }
384 rcu_read_unlock();
385
386 atomic_long_inc(&pool->sp_stats.threads_woken);
387 wake_up_process(rqstp->rq_task);
388 put_cpu();
389 goto out;
390 }
391 rcu_read_unlock();
392
393 /*
394 * We didn't find an idle thread to use, so we need to queue the xprt.
395 * Do so and then search again. If we find one, we can't hook this one
396 * up to it directly but we can wake the thread up in the hopes that it
397 * will pick it up once it searches for a xprt to service.
398 */
399 if (!queued) {
400 queued = true;
401 dprintk("svc: transport %p put into queue\n", xprt);
402 spin_lock_bh(&pool->sp_lock);
403 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
404 pool->sp_stats.sockets_queued++;
405 spin_unlock_bh(&pool->sp_lock);
406 goto redo_search;
407 }
408 rqstp = NULL;
409 put_cpu();
410 out:
411 trace_svc_xprt_do_enqueue(xprt, rqstp);
412 }
413 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
414
415 /*
416 * Queue up a transport with data pending. If there are idle nfsd
417 * processes, wake 'em up.
418 *
419 */
svc_xprt_enqueue(struct svc_xprt * xprt)420 void svc_xprt_enqueue(struct svc_xprt *xprt)
421 {
422 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
423 return;
424 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
425 }
426 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
427
428 /*
429 * Dequeue the first transport, if there is one.
430 */
svc_xprt_dequeue(struct svc_pool * pool)431 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
432 {
433 struct svc_xprt *xprt = NULL;
434
435 if (list_empty(&pool->sp_sockets))
436 goto out;
437
438 spin_lock_bh(&pool->sp_lock);
439 if (likely(!list_empty(&pool->sp_sockets))) {
440 xprt = list_first_entry(&pool->sp_sockets,
441 struct svc_xprt, xpt_ready);
442 list_del_init(&xprt->xpt_ready);
443 svc_xprt_get(xprt);
444
445 dprintk("svc: transport %p dequeued, inuse=%d\n",
446 xprt, atomic_read(&xprt->xpt_ref.refcount));
447 }
448 spin_unlock_bh(&pool->sp_lock);
449 out:
450 trace_svc_xprt_dequeue(xprt);
451 return xprt;
452 }
453
454 /**
455 * svc_reserve - change the space reserved for the reply to a request.
456 * @rqstp: The request in question
457 * @space: new max space to reserve
458 *
459 * Each request reserves some space on the output queue of the transport
460 * to make sure the reply fits. This function reduces that reserved
461 * space to be the amount of space used already, plus @space.
462 *
463 */
svc_reserve(struct svc_rqst * rqstp,int space)464 void svc_reserve(struct svc_rqst *rqstp, int space)
465 {
466 struct svc_xprt *xprt = rqstp->rq_xprt;
467
468 space += rqstp->rq_res.head[0].iov_len;
469
470 if (xprt && space < rqstp->rq_reserved) {
471 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
472 rqstp->rq_reserved = space;
473
474 if (xprt->xpt_ops->xpo_adjust_wspace)
475 xprt->xpt_ops->xpo_adjust_wspace(xprt);
476 svc_xprt_enqueue(xprt);
477 }
478 }
479 EXPORT_SYMBOL_GPL(svc_reserve);
480
svc_xprt_release(struct svc_rqst * rqstp)481 static void svc_xprt_release(struct svc_rqst *rqstp)
482 {
483 struct svc_xprt *xprt = rqstp->rq_xprt;
484
485 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
486
487 kfree(rqstp->rq_deferred);
488 rqstp->rq_deferred = NULL;
489
490 svc_free_res_pages(rqstp);
491 rqstp->rq_res.page_len = 0;
492 rqstp->rq_res.page_base = 0;
493
494 /* Reset response buffer and release
495 * the reservation.
496 * But first, check that enough space was reserved
497 * for the reply, otherwise we have a bug!
498 */
499 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
500 printk(KERN_ERR "RPC request reserved %d but used %d\n",
501 rqstp->rq_reserved,
502 rqstp->rq_res.len);
503
504 rqstp->rq_res.head[0].iov_len = 0;
505 svc_reserve(rqstp, 0);
506 rqstp->rq_xprt = NULL;
507
508 svc_xprt_put(xprt);
509 }
510
511 /*
512 * Some svc_serv's will have occasional work to do, even when a xprt is not
513 * waiting to be serviced. This function is there to "kick" a task in one of
514 * those services so that it can wake up and do that work. Note that we only
515 * bother with pool 0 as we don't need to wake up more than one thread for
516 * this purpose.
517 */
svc_wake_up(struct svc_serv * serv)518 void svc_wake_up(struct svc_serv *serv)
519 {
520 struct svc_rqst *rqstp;
521 struct svc_pool *pool;
522
523 pool = &serv->sv_pools[0];
524
525 rcu_read_lock();
526 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
527 /* skip any that aren't queued */
528 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
529 continue;
530 rcu_read_unlock();
531 dprintk("svc: daemon %p woken up.\n", rqstp);
532 wake_up_process(rqstp->rq_task);
533 trace_svc_wake_up(rqstp->rq_task->pid);
534 return;
535 }
536 rcu_read_unlock();
537
538 /* No free entries available */
539 set_bit(SP_TASK_PENDING, &pool->sp_flags);
540 smp_wmb();
541 trace_svc_wake_up(0);
542 }
543 EXPORT_SYMBOL_GPL(svc_wake_up);
544
svc_port_is_privileged(struct sockaddr * sin)545 int svc_port_is_privileged(struct sockaddr *sin)
546 {
547 switch (sin->sa_family) {
548 case AF_INET:
549 return ntohs(((struct sockaddr_in *)sin)->sin_port)
550 < PROT_SOCK;
551 case AF_INET6:
552 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
553 < PROT_SOCK;
554 default:
555 return 0;
556 }
557 }
558
559 /*
560 * Make sure that we don't have too many active connections. If we have,
561 * something must be dropped. It's not clear what will happen if we allow
562 * "too many" connections, but when dealing with network-facing software,
563 * we have to code defensively. Here we do that by imposing hard limits.
564 *
565 * There's no point in trying to do random drop here for DoS
566 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
567 * attacker can easily beat that.
568 *
569 * The only somewhat efficient mechanism would be if drop old
570 * connections from the same IP first. But right now we don't even
571 * record the client IP in svc_sock.
572 *
573 * single-threaded services that expect a lot of clients will probably
574 * need to set sv_maxconn to override the default value which is based
575 * on the number of threads
576 */
svc_check_conn_limits(struct svc_serv * serv)577 static void svc_check_conn_limits(struct svc_serv *serv)
578 {
579 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
580 (serv->sv_nrthreads+3) * 20;
581
582 if (serv->sv_tmpcnt > limit) {
583 struct svc_xprt *xprt = NULL;
584 spin_lock_bh(&serv->sv_lock);
585 if (!list_empty(&serv->sv_tempsocks)) {
586 /* Try to help the admin */
587 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
588 serv->sv_name, serv->sv_maxconn ?
589 "max number of connections" :
590 "number of threads");
591 /*
592 * Always select the oldest connection. It's not fair,
593 * but so is life
594 */
595 xprt = list_entry(serv->sv_tempsocks.prev,
596 struct svc_xprt,
597 xpt_list);
598 set_bit(XPT_CLOSE, &xprt->xpt_flags);
599 svc_xprt_get(xprt);
600 }
601 spin_unlock_bh(&serv->sv_lock);
602
603 if (xprt) {
604 svc_xprt_enqueue(xprt);
605 svc_xprt_put(xprt);
606 }
607 }
608 }
609
svc_alloc_arg(struct svc_rqst * rqstp)610 static int svc_alloc_arg(struct svc_rqst *rqstp)
611 {
612 struct svc_serv *serv = rqstp->rq_server;
613 struct xdr_buf *arg;
614 int pages;
615 int i;
616
617 /* now allocate needed pages. If we get a failure, sleep briefly */
618 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
619 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
620 if (pages >= RPCSVC_MAXPAGES)
621 /* use as many pages as possible */
622 pages = RPCSVC_MAXPAGES - 1;
623 for (i = 0; i < pages ; i++)
624 while (rqstp->rq_pages[i] == NULL) {
625 struct page *p = alloc_page(GFP_KERNEL);
626 if (!p) {
627 set_current_state(TASK_INTERRUPTIBLE);
628 if (signalled() || kthread_should_stop()) {
629 set_current_state(TASK_RUNNING);
630 return -EINTR;
631 }
632 schedule_timeout(msecs_to_jiffies(500));
633 }
634 rqstp->rq_pages[i] = p;
635 }
636 rqstp->rq_page_end = &rqstp->rq_pages[i];
637 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
638
639 /* Make arg->head point to first page and arg->pages point to rest */
640 arg = &rqstp->rq_arg;
641 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
642 arg->head[0].iov_len = PAGE_SIZE;
643 arg->pages = rqstp->rq_pages + 1;
644 arg->page_base = 0;
645 /* save at least one page for response */
646 arg->page_len = (pages-2)*PAGE_SIZE;
647 arg->len = (pages-1)*PAGE_SIZE;
648 arg->tail[0].iov_len = 0;
649 return 0;
650 }
651
652 static bool
rqst_should_sleep(struct svc_rqst * rqstp)653 rqst_should_sleep(struct svc_rqst *rqstp)
654 {
655 struct svc_pool *pool = rqstp->rq_pool;
656
657 /* did someone call svc_wake_up? */
658 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
659 return false;
660
661 /* was a socket queued? */
662 if (!list_empty(&pool->sp_sockets))
663 return false;
664
665 /* are we shutting down? */
666 if (signalled() || kthread_should_stop())
667 return false;
668
669 /* are we freezing? */
670 if (freezing(current))
671 return false;
672
673 return true;
674 }
675
svc_get_next_xprt(struct svc_rqst * rqstp,long timeout)676 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
677 {
678 struct svc_xprt *xprt;
679 struct svc_pool *pool = rqstp->rq_pool;
680 long time_left = 0;
681
682 /* rq_xprt should be clear on entry */
683 WARN_ON_ONCE(rqstp->rq_xprt);
684
685 /* Normally we will wait up to 5 seconds for any required
686 * cache information to be provided.
687 */
688 rqstp->rq_chandle.thread_wait = 5*HZ;
689
690 xprt = svc_xprt_dequeue(pool);
691 if (xprt) {
692 rqstp->rq_xprt = xprt;
693
694 /* As there is a shortage of threads and this request
695 * had to be queued, don't allow the thread to wait so
696 * long for cache updates.
697 */
698 rqstp->rq_chandle.thread_wait = 1*HZ;
699 clear_bit(SP_TASK_PENDING, &pool->sp_flags);
700 return xprt;
701 }
702
703 /*
704 * We have to be able to interrupt this wait
705 * to bring down the daemons ...
706 */
707 set_current_state(TASK_INTERRUPTIBLE);
708 clear_bit(RQ_BUSY, &rqstp->rq_flags);
709 smp_mb();
710
711 if (likely(rqst_should_sleep(rqstp)))
712 time_left = schedule_timeout(timeout);
713 else
714 __set_current_state(TASK_RUNNING);
715
716 try_to_freeze();
717
718 spin_lock_bh(&rqstp->rq_lock);
719 set_bit(RQ_BUSY, &rqstp->rq_flags);
720 spin_unlock_bh(&rqstp->rq_lock);
721
722 xprt = rqstp->rq_xprt;
723 if (xprt != NULL)
724 return xprt;
725
726 if (!time_left)
727 atomic_long_inc(&pool->sp_stats.threads_timedout);
728
729 if (signalled() || kthread_should_stop())
730 return ERR_PTR(-EINTR);
731 return ERR_PTR(-EAGAIN);
732 }
733
svc_add_new_temp_xprt(struct svc_serv * serv,struct svc_xprt * newxpt)734 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
735 {
736 spin_lock_bh(&serv->sv_lock);
737 set_bit(XPT_TEMP, &newxpt->xpt_flags);
738 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
739 serv->sv_tmpcnt++;
740 if (serv->sv_temptimer.function == NULL) {
741 /* setup timer to age temp transports */
742 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
743 (unsigned long)serv);
744 mod_timer(&serv->sv_temptimer,
745 jiffies + svc_conn_age_period * HZ);
746 }
747 spin_unlock_bh(&serv->sv_lock);
748 svc_xprt_received(newxpt);
749 }
750
svc_handle_xprt(struct svc_rqst * rqstp,struct svc_xprt * xprt)751 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
752 {
753 struct svc_serv *serv = rqstp->rq_server;
754 int len = 0;
755
756 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
757 dprintk("svc_recv: found XPT_CLOSE\n");
758 svc_delete_xprt(xprt);
759 /* Leave XPT_BUSY set on the dead xprt: */
760 goto out;
761 }
762 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
763 struct svc_xprt *newxpt;
764 /*
765 * We know this module_get will succeed because the
766 * listener holds a reference too
767 */
768 __module_get(xprt->xpt_class->xcl_owner);
769 svc_check_conn_limits(xprt->xpt_server);
770 newxpt = xprt->xpt_ops->xpo_accept(xprt);
771 if (newxpt)
772 svc_add_new_temp_xprt(serv, newxpt);
773 else
774 module_put(xprt->xpt_class->xcl_owner);
775 } else {
776 /* XPT_DATA|XPT_DEFERRED case: */
777 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
778 rqstp, rqstp->rq_pool->sp_id, xprt,
779 atomic_read(&xprt->xpt_ref.refcount));
780 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
781 if (rqstp->rq_deferred)
782 len = svc_deferred_recv(rqstp);
783 else
784 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
785 dprintk("svc: got len=%d\n", len);
786 rqstp->rq_reserved = serv->sv_max_mesg;
787 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
788 }
789 /* clear XPT_BUSY: */
790 svc_xprt_received(xprt);
791 out:
792 trace_svc_handle_xprt(xprt, len);
793 return len;
794 }
795
796 /*
797 * Receive the next request on any transport. This code is carefully
798 * organised not to touch any cachelines in the shared svc_serv
799 * structure, only cachelines in the local svc_pool.
800 */
svc_recv(struct svc_rqst * rqstp,long timeout)801 int svc_recv(struct svc_rqst *rqstp, long timeout)
802 {
803 struct svc_xprt *xprt = NULL;
804 struct svc_serv *serv = rqstp->rq_server;
805 int len, err;
806
807 dprintk("svc: server %p waiting for data (to = %ld)\n",
808 rqstp, timeout);
809
810 if (rqstp->rq_xprt)
811 printk(KERN_ERR
812 "svc_recv: service %p, transport not NULL!\n",
813 rqstp);
814
815 err = svc_alloc_arg(rqstp);
816 if (err)
817 goto out;
818
819 try_to_freeze();
820 cond_resched();
821 err = -EINTR;
822 if (signalled() || kthread_should_stop())
823 goto out;
824
825 xprt = svc_get_next_xprt(rqstp, timeout);
826 if (IS_ERR(xprt)) {
827 err = PTR_ERR(xprt);
828 goto out;
829 }
830
831 len = svc_handle_xprt(rqstp, xprt);
832
833 /* No data, incomplete (TCP) read, or accept() */
834 err = -EAGAIN;
835 if (len <= 0)
836 goto out_release;
837
838 clear_bit(XPT_OLD, &xprt->xpt_flags);
839
840 if (xprt->xpt_ops->xpo_secure_port(rqstp))
841 set_bit(RQ_SECURE, &rqstp->rq_flags);
842 else
843 clear_bit(RQ_SECURE, &rqstp->rq_flags);
844 rqstp->rq_chandle.defer = svc_defer;
845 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
846
847 if (serv->sv_stats)
848 serv->sv_stats->netcnt++;
849 trace_svc_recv(rqstp, len);
850 return len;
851 out_release:
852 rqstp->rq_res.len = 0;
853 svc_xprt_release(rqstp);
854 out:
855 trace_svc_recv(rqstp, err);
856 return err;
857 }
858 EXPORT_SYMBOL_GPL(svc_recv);
859
860 /*
861 * Drop request
862 */
svc_drop(struct svc_rqst * rqstp)863 void svc_drop(struct svc_rqst *rqstp)
864 {
865 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
866 svc_xprt_release(rqstp);
867 }
868 EXPORT_SYMBOL_GPL(svc_drop);
869
870 /*
871 * Return reply to client.
872 */
svc_send(struct svc_rqst * rqstp)873 int svc_send(struct svc_rqst *rqstp)
874 {
875 struct svc_xprt *xprt;
876 int len = -EFAULT;
877 struct xdr_buf *xb;
878
879 xprt = rqstp->rq_xprt;
880 if (!xprt)
881 goto out;
882
883 /* release the receive skb before sending the reply */
884 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
885
886 /* calculate over-all length */
887 xb = &rqstp->rq_res;
888 xb->len = xb->head[0].iov_len +
889 xb->page_len +
890 xb->tail[0].iov_len;
891
892 /* Grab mutex to serialize outgoing data. */
893 mutex_lock(&xprt->xpt_mutex);
894 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
895 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
896 len = -ENOTCONN;
897 else
898 len = xprt->xpt_ops->xpo_sendto(rqstp);
899 mutex_unlock(&xprt->xpt_mutex);
900 rpc_wake_up(&xprt->xpt_bc_pending);
901 svc_xprt_release(rqstp);
902
903 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
904 len = 0;
905 out:
906 trace_svc_send(rqstp, len);
907 return len;
908 }
909
910 /*
911 * Timer function to close old temporary transports, using
912 * a mark-and-sweep algorithm.
913 */
svc_age_temp_xprts(unsigned long closure)914 static void svc_age_temp_xprts(unsigned long closure)
915 {
916 struct svc_serv *serv = (struct svc_serv *)closure;
917 struct svc_xprt *xprt;
918 struct list_head *le, *next;
919
920 dprintk("svc_age_temp_xprts\n");
921
922 if (!spin_trylock_bh(&serv->sv_lock)) {
923 /* busy, try again 1 sec later */
924 dprintk("svc_age_temp_xprts: busy\n");
925 mod_timer(&serv->sv_temptimer, jiffies + HZ);
926 return;
927 }
928
929 list_for_each_safe(le, next, &serv->sv_tempsocks) {
930 xprt = list_entry(le, struct svc_xprt, xpt_list);
931
932 /* First time through, just mark it OLD. Second time
933 * through, close it. */
934 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
935 continue;
936 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
937 test_bit(XPT_BUSY, &xprt->xpt_flags))
938 continue;
939 list_del_init(le);
940 set_bit(XPT_CLOSE, &xprt->xpt_flags);
941 dprintk("queuing xprt %p for closing\n", xprt);
942
943 /* a thread will dequeue and close it soon */
944 svc_xprt_enqueue(xprt);
945 }
946 spin_unlock_bh(&serv->sv_lock);
947
948 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
949 }
950
call_xpt_users(struct svc_xprt * xprt)951 static void call_xpt_users(struct svc_xprt *xprt)
952 {
953 struct svc_xpt_user *u;
954
955 spin_lock(&xprt->xpt_lock);
956 while (!list_empty(&xprt->xpt_users)) {
957 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
958 list_del_init(&u->list);
959 u->callback(u);
960 }
961 spin_unlock(&xprt->xpt_lock);
962 }
963
964 /*
965 * Remove a dead transport
966 */
svc_delete_xprt(struct svc_xprt * xprt)967 static void svc_delete_xprt(struct svc_xprt *xprt)
968 {
969 struct svc_serv *serv = xprt->xpt_server;
970 struct svc_deferred_req *dr;
971
972 /* Only do this once */
973 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
974 BUG();
975
976 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
977 xprt->xpt_ops->xpo_detach(xprt);
978
979 spin_lock_bh(&serv->sv_lock);
980 list_del_init(&xprt->xpt_list);
981 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
982 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
983 serv->sv_tmpcnt--;
984 spin_unlock_bh(&serv->sv_lock);
985
986 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
987 kfree(dr);
988
989 call_xpt_users(xprt);
990 svc_xprt_put(xprt);
991 }
992
svc_close_xprt(struct svc_xprt * xprt)993 void svc_close_xprt(struct svc_xprt *xprt)
994 {
995 set_bit(XPT_CLOSE, &xprt->xpt_flags);
996 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
997 /* someone else will have to effect the close */
998 return;
999 /*
1000 * We expect svc_close_xprt() to work even when no threads are
1001 * running (e.g., while configuring the server before starting
1002 * any threads), so if the transport isn't busy, we delete
1003 * it ourself:
1004 */
1005 svc_delete_xprt(xprt);
1006 }
1007 EXPORT_SYMBOL_GPL(svc_close_xprt);
1008
svc_close_list(struct svc_serv * serv,struct list_head * xprt_list,struct net * net)1009 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1010 {
1011 struct svc_xprt *xprt;
1012 int ret = 0;
1013
1014 spin_lock_bh(&serv->sv_lock);
1015 list_for_each_entry(xprt, xprt_list, xpt_list) {
1016 if (xprt->xpt_net != net)
1017 continue;
1018 ret++;
1019 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1020 svc_xprt_enqueue(xprt);
1021 }
1022 spin_unlock_bh(&serv->sv_lock);
1023 return ret;
1024 }
1025
svc_dequeue_net(struct svc_serv * serv,struct net * net)1026 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1027 {
1028 struct svc_pool *pool;
1029 struct svc_xprt *xprt;
1030 struct svc_xprt *tmp;
1031 int i;
1032
1033 for (i = 0; i < serv->sv_nrpools; i++) {
1034 pool = &serv->sv_pools[i];
1035
1036 spin_lock_bh(&pool->sp_lock);
1037 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1038 if (xprt->xpt_net != net)
1039 continue;
1040 list_del_init(&xprt->xpt_ready);
1041 spin_unlock_bh(&pool->sp_lock);
1042 return xprt;
1043 }
1044 spin_unlock_bh(&pool->sp_lock);
1045 }
1046 return NULL;
1047 }
1048
svc_clean_up_xprts(struct svc_serv * serv,struct net * net)1049 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1050 {
1051 struct svc_xprt *xprt;
1052
1053 while ((xprt = svc_dequeue_net(serv, net))) {
1054 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1055 svc_delete_xprt(xprt);
1056 }
1057 }
1058
1059 /*
1060 * Server threads may still be running (especially in the case where the
1061 * service is still running in other network namespaces).
1062 *
1063 * So we shut down sockets the same way we would on a running server, by
1064 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1065 * the close. In the case there are no such other threads,
1066 * threads running, svc_clean_up_xprts() does a simple version of a
1067 * server's main event loop, and in the case where there are other
1068 * threads, we may need to wait a little while and then check again to
1069 * see if they're done.
1070 */
svc_close_net(struct svc_serv * serv,struct net * net)1071 void svc_close_net(struct svc_serv *serv, struct net *net)
1072 {
1073 int delay = 0;
1074
1075 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1076 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1077
1078 svc_clean_up_xprts(serv, net);
1079 msleep(delay++);
1080 }
1081 }
1082
1083 /*
1084 * Handle defer and revisit of requests
1085 */
1086
svc_revisit(struct cache_deferred_req * dreq,int too_many)1087 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1088 {
1089 struct svc_deferred_req *dr =
1090 container_of(dreq, struct svc_deferred_req, handle);
1091 struct svc_xprt *xprt = dr->xprt;
1092
1093 spin_lock(&xprt->xpt_lock);
1094 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1095 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1096 spin_unlock(&xprt->xpt_lock);
1097 dprintk("revisit canceled\n");
1098 svc_xprt_put(xprt);
1099 kfree(dr);
1100 return;
1101 }
1102 dprintk("revisit queued\n");
1103 dr->xprt = NULL;
1104 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1105 spin_unlock(&xprt->xpt_lock);
1106 svc_xprt_enqueue(xprt);
1107 svc_xprt_put(xprt);
1108 }
1109
1110 /*
1111 * Save the request off for later processing. The request buffer looks
1112 * like this:
1113 *
1114 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1115 *
1116 * This code can only handle requests that consist of an xprt-header
1117 * and rpc-header.
1118 */
svc_defer(struct cache_req * req)1119 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1120 {
1121 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1122 struct svc_deferred_req *dr;
1123
1124 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1125 return NULL; /* if more than a page, give up FIXME */
1126 if (rqstp->rq_deferred) {
1127 dr = rqstp->rq_deferred;
1128 rqstp->rq_deferred = NULL;
1129 } else {
1130 size_t skip;
1131 size_t size;
1132 /* FIXME maybe discard if size too large */
1133 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1134 dr = kmalloc(size, GFP_KERNEL);
1135 if (dr == NULL)
1136 return NULL;
1137
1138 dr->handle.owner = rqstp->rq_server;
1139 dr->prot = rqstp->rq_prot;
1140 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1141 dr->addrlen = rqstp->rq_addrlen;
1142 dr->daddr = rqstp->rq_daddr;
1143 dr->argslen = rqstp->rq_arg.len >> 2;
1144 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1145
1146 /* back up head to the start of the buffer and copy */
1147 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1148 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1149 dr->argslen << 2);
1150 }
1151 svc_xprt_get(rqstp->rq_xprt);
1152 dr->xprt = rqstp->rq_xprt;
1153 set_bit(RQ_DROPME, &rqstp->rq_flags);
1154
1155 dr->handle.revisit = svc_revisit;
1156 return &dr->handle;
1157 }
1158
1159 /*
1160 * recv data from a deferred request into an active one
1161 */
svc_deferred_recv(struct svc_rqst * rqstp)1162 static int svc_deferred_recv(struct svc_rqst *rqstp)
1163 {
1164 struct svc_deferred_req *dr = rqstp->rq_deferred;
1165
1166 /* setup iov_base past transport header */
1167 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1168 /* The iov_len does not include the transport header bytes */
1169 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1170 rqstp->rq_arg.page_len = 0;
1171 /* The rq_arg.len includes the transport header bytes */
1172 rqstp->rq_arg.len = dr->argslen<<2;
1173 rqstp->rq_prot = dr->prot;
1174 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1175 rqstp->rq_addrlen = dr->addrlen;
1176 /* Save off transport header len in case we get deferred again */
1177 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1178 rqstp->rq_daddr = dr->daddr;
1179 rqstp->rq_respages = rqstp->rq_pages;
1180 return (dr->argslen<<2) - dr->xprt_hlen;
1181 }
1182
1183
svc_deferred_dequeue(struct svc_xprt * xprt)1184 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1185 {
1186 struct svc_deferred_req *dr = NULL;
1187
1188 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1189 return NULL;
1190 spin_lock(&xprt->xpt_lock);
1191 if (!list_empty(&xprt->xpt_deferred)) {
1192 dr = list_entry(xprt->xpt_deferred.next,
1193 struct svc_deferred_req,
1194 handle.recent);
1195 list_del_init(&dr->handle.recent);
1196 } else
1197 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1198 spin_unlock(&xprt->xpt_lock);
1199 return dr;
1200 }
1201
1202 /**
1203 * svc_find_xprt - find an RPC transport instance
1204 * @serv: pointer to svc_serv to search
1205 * @xcl_name: C string containing transport's class name
1206 * @net: owner net pointer
1207 * @af: Address family of transport's local address
1208 * @port: transport's IP port number
1209 *
1210 * Return the transport instance pointer for the endpoint accepting
1211 * connections/peer traffic from the specified transport class,
1212 * address family and port.
1213 *
1214 * Specifying 0 for the address family or port is effectively a
1215 * wild-card, and will result in matching the first transport in the
1216 * service's list that has a matching class name.
1217 */
svc_find_xprt(struct svc_serv * serv,const char * xcl_name,struct net * net,const sa_family_t af,const unsigned short port)1218 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1219 struct net *net, const sa_family_t af,
1220 const unsigned short port)
1221 {
1222 struct svc_xprt *xprt;
1223 struct svc_xprt *found = NULL;
1224
1225 /* Sanity check the args */
1226 if (serv == NULL || xcl_name == NULL)
1227 return found;
1228
1229 spin_lock_bh(&serv->sv_lock);
1230 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1231 if (xprt->xpt_net != net)
1232 continue;
1233 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1234 continue;
1235 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1236 continue;
1237 if (port != 0 && port != svc_xprt_local_port(xprt))
1238 continue;
1239 found = xprt;
1240 svc_xprt_get(xprt);
1241 break;
1242 }
1243 spin_unlock_bh(&serv->sv_lock);
1244 return found;
1245 }
1246 EXPORT_SYMBOL_GPL(svc_find_xprt);
1247
svc_one_xprt_name(const struct svc_xprt * xprt,char * pos,int remaining)1248 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1249 char *pos, int remaining)
1250 {
1251 int len;
1252
1253 len = snprintf(pos, remaining, "%s %u\n",
1254 xprt->xpt_class->xcl_name,
1255 svc_xprt_local_port(xprt));
1256 if (len >= remaining)
1257 return -ENAMETOOLONG;
1258 return len;
1259 }
1260
1261 /**
1262 * svc_xprt_names - format a buffer with a list of transport names
1263 * @serv: pointer to an RPC service
1264 * @buf: pointer to a buffer to be filled in
1265 * @buflen: length of buffer to be filled in
1266 *
1267 * Fills in @buf with a string containing a list of transport names,
1268 * each name terminated with '\n'.
1269 *
1270 * Returns positive length of the filled-in string on success; otherwise
1271 * a negative errno value is returned if an error occurs.
1272 */
svc_xprt_names(struct svc_serv * serv,char * buf,const int buflen)1273 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1274 {
1275 struct svc_xprt *xprt;
1276 int len, totlen;
1277 char *pos;
1278
1279 /* Sanity check args */
1280 if (!serv)
1281 return 0;
1282
1283 spin_lock_bh(&serv->sv_lock);
1284
1285 pos = buf;
1286 totlen = 0;
1287 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1288 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1289 if (len < 0) {
1290 *buf = '\0';
1291 totlen = len;
1292 }
1293 if (len <= 0)
1294 break;
1295
1296 pos += len;
1297 totlen += len;
1298 }
1299
1300 spin_unlock_bh(&serv->sv_lock);
1301 return totlen;
1302 }
1303 EXPORT_SYMBOL_GPL(svc_xprt_names);
1304
1305
1306 /*----------------------------------------------------------------------------*/
1307
svc_pool_stats_start(struct seq_file * m,loff_t * pos)1308 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1309 {
1310 unsigned int pidx = (unsigned int)*pos;
1311 struct svc_serv *serv = m->private;
1312
1313 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1314
1315 if (!pidx)
1316 return SEQ_START_TOKEN;
1317 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1318 }
1319
svc_pool_stats_next(struct seq_file * m,void * p,loff_t * pos)1320 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1321 {
1322 struct svc_pool *pool = p;
1323 struct svc_serv *serv = m->private;
1324
1325 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1326
1327 if (p == SEQ_START_TOKEN) {
1328 pool = &serv->sv_pools[0];
1329 } else {
1330 unsigned int pidx = (pool - &serv->sv_pools[0]);
1331 if (pidx < serv->sv_nrpools-1)
1332 pool = &serv->sv_pools[pidx+1];
1333 else
1334 pool = NULL;
1335 }
1336 ++*pos;
1337 return pool;
1338 }
1339
svc_pool_stats_stop(struct seq_file * m,void * p)1340 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1341 {
1342 }
1343
svc_pool_stats_show(struct seq_file * m,void * p)1344 static int svc_pool_stats_show(struct seq_file *m, void *p)
1345 {
1346 struct svc_pool *pool = p;
1347
1348 if (p == SEQ_START_TOKEN) {
1349 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1350 return 0;
1351 }
1352
1353 seq_printf(m, "%u %lu %lu %lu %lu\n",
1354 pool->sp_id,
1355 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1356 pool->sp_stats.sockets_queued,
1357 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1358 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1359
1360 return 0;
1361 }
1362
1363 static const struct seq_operations svc_pool_stats_seq_ops = {
1364 .start = svc_pool_stats_start,
1365 .next = svc_pool_stats_next,
1366 .stop = svc_pool_stats_stop,
1367 .show = svc_pool_stats_show,
1368 };
1369
svc_pool_stats_open(struct svc_serv * serv,struct file * file)1370 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1371 {
1372 int err;
1373
1374 err = seq_open(file, &svc_pool_stats_seq_ops);
1375 if (!err)
1376 ((struct seq_file *) file->private_data)->private = serv;
1377 return err;
1378 }
1379 EXPORT_SYMBOL(svc_pool_stats_open);
1380
1381 /*----------------------------------------------------------------------------*/
1382