• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18 #include <trace/events/sunrpc.h>
19 
20 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
21 
22 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
23 static int svc_deferred_recv(struct svc_rqst *rqstp);
24 static struct cache_deferred_req *svc_defer(struct cache_req *req);
25 static void svc_age_temp_xprts(unsigned long closure);
26 static void svc_delete_xprt(struct svc_xprt *xprt);
27 
28 /* apparently the "standard" is that clients close
29  * idle connections after 5 minutes, servers after
30  * 6 minutes
31  *   http://www.connectathon.org/talks96/nfstcp.pdf
32  */
33 static int svc_conn_age_period = 6*60;
34 
35 /* List of registered transport classes */
36 static DEFINE_SPINLOCK(svc_xprt_class_lock);
37 static LIST_HEAD(svc_xprt_class_list);
38 
39 /* SMP locking strategy:
40  *
41  *	svc_pool->sp_lock protects most of the fields of that pool.
42  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
43  *	when both need to be taken (rare), svc_serv->sv_lock is first.
44  *	The "service mutex" protects svc_serv->sv_nrthread.
45  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
46  *             and the ->sk_info_authunix cache.
47  *
48  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
49  *	enqueued multiply. During normal transport processing this bit
50  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
51  *	Providers should not manipulate this bit directly.
52  *
53  *	Some flags can be set to certain values at any time
54  *	providing that certain rules are followed:
55  *
56  *	XPT_CONN, XPT_DATA:
57  *		- Can be set or cleared at any time.
58  *		- After a set, svc_xprt_enqueue must be called to enqueue
59  *		  the transport for processing.
60  *		- After a clear, the transport must be read/accepted.
61  *		  If this succeeds, it must be set again.
62  *	XPT_CLOSE:
63  *		- Can set at any time. It is never cleared.
64  *      XPT_DEAD:
65  *		- Can only be set while XPT_BUSY is held which ensures
66  *		  that no other thread will be using the transport or will
67  *		  try to set XPT_DEAD.
68  */
svc_reg_xprt_class(struct svc_xprt_class * xcl)69 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
70 {
71 	struct svc_xprt_class *cl;
72 	int res = -EEXIST;
73 
74 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
75 
76 	INIT_LIST_HEAD(&xcl->xcl_list);
77 	spin_lock(&svc_xprt_class_lock);
78 	/* Make sure there isn't already a class with the same name */
79 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
80 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
81 			goto out;
82 	}
83 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
84 	res = 0;
85 out:
86 	spin_unlock(&svc_xprt_class_lock);
87 	return res;
88 }
89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
90 
svc_unreg_xprt_class(struct svc_xprt_class * xcl)91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
92 {
93 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
94 	spin_lock(&svc_xprt_class_lock);
95 	list_del_init(&xcl->xcl_list);
96 	spin_unlock(&svc_xprt_class_lock);
97 }
98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
99 
100 /**
101  * svc_print_xprts - Format the transport list for printing
102  * @buf: target buffer for formatted address
103  * @maxlen: length of target buffer
104  *
105  * Fills in @buf with a string containing a list of transport names, each name
106  * terminated with '\n'. If the buffer is too small, some entries may be
107  * missing, but it is guaranteed that all lines in the output buffer are
108  * complete.
109  *
110  * Returns positive length of the filled-in string.
111  */
svc_print_xprts(char * buf,int maxlen)112 int svc_print_xprts(char *buf, int maxlen)
113 {
114 	struct svc_xprt_class *xcl;
115 	char tmpstr[80];
116 	int len = 0;
117 	buf[0] = '\0';
118 
119 	spin_lock(&svc_xprt_class_lock);
120 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
121 		int slen;
122 
123 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
124 				xcl->xcl_name, xcl->xcl_max_payload);
125 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
126 			break;
127 		len += slen;
128 		strcat(buf, tmpstr);
129 	}
130 	spin_unlock(&svc_xprt_class_lock);
131 
132 	return len;
133 }
134 
svc_xprt_free(struct kref * kref)135 static void svc_xprt_free(struct kref *kref)
136 {
137 	struct svc_xprt *xprt =
138 		container_of(kref, struct svc_xprt, xpt_ref);
139 	struct module *owner = xprt->xpt_class->xcl_owner;
140 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
141 		svcauth_unix_info_release(xprt);
142 	put_net(xprt->xpt_net);
143 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
144 	if (xprt->xpt_bc_xprt)
145 		xprt_put(xprt->xpt_bc_xprt);
146 	xprt->xpt_ops->xpo_free(xprt);
147 	module_put(owner);
148 }
149 
svc_xprt_put(struct svc_xprt * xprt)150 void svc_xprt_put(struct svc_xprt *xprt)
151 {
152 	kref_put(&xprt->xpt_ref, svc_xprt_free);
153 }
154 EXPORT_SYMBOL_GPL(svc_xprt_put);
155 
156 /*
157  * Called by transport drivers to initialize the transport independent
158  * portion of the transport instance.
159  */
svc_xprt_init(struct net * net,struct svc_xprt_class * xcl,struct svc_xprt * xprt,struct svc_serv * serv)160 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
161 		   struct svc_xprt *xprt, struct svc_serv *serv)
162 {
163 	memset(xprt, 0, sizeof(*xprt));
164 	xprt->xpt_class = xcl;
165 	xprt->xpt_ops = xcl->xcl_ops;
166 	kref_init(&xprt->xpt_ref);
167 	xprt->xpt_server = serv;
168 	INIT_LIST_HEAD(&xprt->xpt_list);
169 	INIT_LIST_HEAD(&xprt->xpt_ready);
170 	INIT_LIST_HEAD(&xprt->xpt_deferred);
171 	INIT_LIST_HEAD(&xprt->xpt_users);
172 	mutex_init(&xprt->xpt_mutex);
173 	spin_lock_init(&xprt->xpt_lock);
174 	set_bit(XPT_BUSY, &xprt->xpt_flags);
175 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
176 	xprt->xpt_net = get_net(net);
177 }
178 EXPORT_SYMBOL_GPL(svc_xprt_init);
179 
__svc_xpo_create(struct svc_xprt_class * xcl,struct svc_serv * serv,struct net * net,const int family,const unsigned short port,int flags)180 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
181 					 struct svc_serv *serv,
182 					 struct net *net,
183 					 const int family,
184 					 const unsigned short port,
185 					 int flags)
186 {
187 	struct sockaddr_in sin = {
188 		.sin_family		= AF_INET,
189 		.sin_addr.s_addr	= htonl(INADDR_ANY),
190 		.sin_port		= htons(port),
191 	};
192 #if IS_ENABLED(CONFIG_IPV6)
193 	struct sockaddr_in6 sin6 = {
194 		.sin6_family		= AF_INET6,
195 		.sin6_addr		= IN6ADDR_ANY_INIT,
196 		.sin6_port		= htons(port),
197 	};
198 #endif
199 	struct sockaddr *sap;
200 	size_t len;
201 
202 	switch (family) {
203 	case PF_INET:
204 		sap = (struct sockaddr *)&sin;
205 		len = sizeof(sin);
206 		break;
207 #if IS_ENABLED(CONFIG_IPV6)
208 	case PF_INET6:
209 		sap = (struct sockaddr *)&sin6;
210 		len = sizeof(sin6);
211 		break;
212 #endif
213 	default:
214 		return ERR_PTR(-EAFNOSUPPORT);
215 	}
216 
217 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
218 }
219 
220 /*
221  * svc_xprt_received conditionally queues the transport for processing
222  * by another thread. The caller must hold the XPT_BUSY bit and must
223  * not thereafter touch transport data.
224  *
225  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
226  * insufficient) data.
227  */
svc_xprt_received(struct svc_xprt * xprt)228 static void svc_xprt_received(struct svc_xprt *xprt)
229 {
230 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
231 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
232 		return;
233 	}
234 
235 	/* As soon as we clear busy, the xprt could be closed and
236 	 * 'put', so we need a reference to call svc_enqueue_xprt with:
237 	 */
238 	svc_xprt_get(xprt);
239 	smp_mb__before_atomic();
240 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
241 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
242 	svc_xprt_put(xprt);
243 }
244 
svc_add_new_perm_xprt(struct svc_serv * serv,struct svc_xprt * new)245 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
246 {
247 	clear_bit(XPT_TEMP, &new->xpt_flags);
248 	spin_lock_bh(&serv->sv_lock);
249 	list_add(&new->xpt_list, &serv->sv_permsocks);
250 	spin_unlock_bh(&serv->sv_lock);
251 	svc_xprt_received(new);
252 }
253 
svc_create_xprt(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags)254 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
255 		    struct net *net, const int family,
256 		    const unsigned short port, int flags)
257 {
258 	struct svc_xprt_class *xcl;
259 
260 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
261 	spin_lock(&svc_xprt_class_lock);
262 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
263 		struct svc_xprt *newxprt;
264 		unsigned short newport;
265 
266 		if (strcmp(xprt_name, xcl->xcl_name))
267 			continue;
268 
269 		if (!try_module_get(xcl->xcl_owner))
270 			goto err;
271 
272 		spin_unlock(&svc_xprt_class_lock);
273 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
274 		if (IS_ERR(newxprt)) {
275 			module_put(xcl->xcl_owner);
276 			return PTR_ERR(newxprt);
277 		}
278 		svc_add_new_perm_xprt(serv, newxprt);
279 		newport = svc_xprt_local_port(newxprt);
280 		return newport;
281 	}
282  err:
283 	spin_unlock(&svc_xprt_class_lock);
284 	dprintk("svc: transport %s not found\n", xprt_name);
285 
286 	/* This errno is exposed to user space.  Provide a reasonable
287 	 * perror msg for a bad transport. */
288 	return -EPROTONOSUPPORT;
289 }
290 EXPORT_SYMBOL_GPL(svc_create_xprt);
291 
292 /*
293  * Copy the local and remote xprt addresses to the rqstp structure
294  */
svc_xprt_copy_addrs(struct svc_rqst * rqstp,struct svc_xprt * xprt)295 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
296 {
297 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
298 	rqstp->rq_addrlen = xprt->xpt_remotelen;
299 
300 	/*
301 	 * Destination address in request is needed for binding the
302 	 * source address in RPC replies/callbacks later.
303 	 */
304 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
305 	rqstp->rq_daddrlen = xprt->xpt_locallen;
306 }
307 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
308 
309 /**
310  * svc_print_addr - Format rq_addr field for printing
311  * @rqstp: svc_rqst struct containing address to print
312  * @buf: target buffer for formatted address
313  * @len: length of target buffer
314  *
315  */
svc_print_addr(struct svc_rqst * rqstp,char * buf,size_t len)316 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
317 {
318 	return __svc_print_addr(svc_addr(rqstp), buf, len);
319 }
320 EXPORT_SYMBOL_GPL(svc_print_addr);
321 
svc_xprt_has_something_to_do(struct svc_xprt * xprt)322 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
323 {
324 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
325 		return true;
326 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
327 		return xprt->xpt_ops->xpo_has_wspace(xprt);
328 	return false;
329 }
330 
svc_xprt_do_enqueue(struct svc_xprt * xprt)331 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
332 {
333 	struct svc_pool *pool;
334 	struct svc_rqst	*rqstp = NULL;
335 	int cpu;
336 	bool queued = false;
337 
338 	if (!svc_xprt_has_something_to_do(xprt))
339 		goto out;
340 
341 	/* Mark transport as busy. It will remain in this state until
342 	 * the provider calls svc_xprt_received. We update XPT_BUSY
343 	 * atomically because it also guards against trying to enqueue
344 	 * the transport twice.
345 	 */
346 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
347 		/* Don't enqueue transport while already enqueued */
348 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
349 		goto out;
350 	}
351 
352 	cpu = get_cpu();
353 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
354 
355 	atomic_long_inc(&pool->sp_stats.packets);
356 
357 redo_search:
358 	/* find a thread for this xprt */
359 	rcu_read_lock();
360 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
361 		/* Do a lockless check first */
362 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
363 			continue;
364 
365 		/*
366 		 * Once the xprt has been queued, it can only be dequeued by
367 		 * the task that intends to service it. All we can do at that
368 		 * point is to try to wake this thread back up so that it can
369 		 * do so.
370 		 */
371 		if (!queued) {
372 			spin_lock_bh(&rqstp->rq_lock);
373 			if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) {
374 				/* already busy, move on... */
375 				spin_unlock_bh(&rqstp->rq_lock);
376 				continue;
377 			}
378 
379 			/* this one will do */
380 			rqstp->rq_xprt = xprt;
381 			svc_xprt_get(xprt);
382 			spin_unlock_bh(&rqstp->rq_lock);
383 		}
384 		rcu_read_unlock();
385 
386 		atomic_long_inc(&pool->sp_stats.threads_woken);
387 		wake_up_process(rqstp->rq_task);
388 		put_cpu();
389 		goto out;
390 	}
391 	rcu_read_unlock();
392 
393 	/*
394 	 * We didn't find an idle thread to use, so we need to queue the xprt.
395 	 * Do so and then search again. If we find one, we can't hook this one
396 	 * up to it directly but we can wake the thread up in the hopes that it
397 	 * will pick it up once it searches for a xprt to service.
398 	 */
399 	if (!queued) {
400 		queued = true;
401 		dprintk("svc: transport %p put into queue\n", xprt);
402 		spin_lock_bh(&pool->sp_lock);
403 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
404 		pool->sp_stats.sockets_queued++;
405 		spin_unlock_bh(&pool->sp_lock);
406 		goto redo_search;
407 	}
408 	rqstp = NULL;
409 	put_cpu();
410 out:
411 	trace_svc_xprt_do_enqueue(xprt, rqstp);
412 }
413 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
414 
415 /*
416  * Queue up a transport with data pending. If there are idle nfsd
417  * processes, wake 'em up.
418  *
419  */
svc_xprt_enqueue(struct svc_xprt * xprt)420 void svc_xprt_enqueue(struct svc_xprt *xprt)
421 {
422 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
423 		return;
424 	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
425 }
426 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
427 
428 /*
429  * Dequeue the first transport, if there is one.
430  */
svc_xprt_dequeue(struct svc_pool * pool)431 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
432 {
433 	struct svc_xprt	*xprt = NULL;
434 
435 	if (list_empty(&pool->sp_sockets))
436 		goto out;
437 
438 	spin_lock_bh(&pool->sp_lock);
439 	if (likely(!list_empty(&pool->sp_sockets))) {
440 		xprt = list_first_entry(&pool->sp_sockets,
441 					struct svc_xprt, xpt_ready);
442 		list_del_init(&xprt->xpt_ready);
443 		svc_xprt_get(xprt);
444 
445 		dprintk("svc: transport %p dequeued, inuse=%d\n",
446 			xprt, atomic_read(&xprt->xpt_ref.refcount));
447 	}
448 	spin_unlock_bh(&pool->sp_lock);
449 out:
450 	trace_svc_xprt_dequeue(xprt);
451 	return xprt;
452 }
453 
454 /**
455  * svc_reserve - change the space reserved for the reply to a request.
456  * @rqstp:  The request in question
457  * @space: new max space to reserve
458  *
459  * Each request reserves some space on the output queue of the transport
460  * to make sure the reply fits.  This function reduces that reserved
461  * space to be the amount of space used already, plus @space.
462  *
463  */
svc_reserve(struct svc_rqst * rqstp,int space)464 void svc_reserve(struct svc_rqst *rqstp, int space)
465 {
466 	struct svc_xprt *xprt = rqstp->rq_xprt;
467 
468 	space += rqstp->rq_res.head[0].iov_len;
469 
470 	if (xprt && space < rqstp->rq_reserved) {
471 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
472 		rqstp->rq_reserved = space;
473 
474 		if (xprt->xpt_ops->xpo_adjust_wspace)
475 			xprt->xpt_ops->xpo_adjust_wspace(xprt);
476 		svc_xprt_enqueue(xprt);
477 	}
478 }
479 EXPORT_SYMBOL_GPL(svc_reserve);
480 
svc_xprt_release(struct svc_rqst * rqstp)481 static void svc_xprt_release(struct svc_rqst *rqstp)
482 {
483 	struct svc_xprt	*xprt = rqstp->rq_xprt;
484 
485 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
486 
487 	kfree(rqstp->rq_deferred);
488 	rqstp->rq_deferred = NULL;
489 
490 	svc_free_res_pages(rqstp);
491 	rqstp->rq_res.page_len = 0;
492 	rqstp->rq_res.page_base = 0;
493 
494 	/* Reset response buffer and release
495 	 * the reservation.
496 	 * But first, check that enough space was reserved
497 	 * for the reply, otherwise we have a bug!
498 	 */
499 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
500 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
501 		       rqstp->rq_reserved,
502 		       rqstp->rq_res.len);
503 
504 	rqstp->rq_res.head[0].iov_len = 0;
505 	svc_reserve(rqstp, 0);
506 	rqstp->rq_xprt = NULL;
507 
508 	svc_xprt_put(xprt);
509 }
510 
511 /*
512  * Some svc_serv's will have occasional work to do, even when a xprt is not
513  * waiting to be serviced. This function is there to "kick" a task in one of
514  * those services so that it can wake up and do that work. Note that we only
515  * bother with pool 0 as we don't need to wake up more than one thread for
516  * this purpose.
517  */
svc_wake_up(struct svc_serv * serv)518 void svc_wake_up(struct svc_serv *serv)
519 {
520 	struct svc_rqst	*rqstp;
521 	struct svc_pool *pool;
522 
523 	pool = &serv->sv_pools[0];
524 
525 	rcu_read_lock();
526 	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
527 		/* skip any that aren't queued */
528 		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
529 			continue;
530 		rcu_read_unlock();
531 		dprintk("svc: daemon %p woken up.\n", rqstp);
532 		wake_up_process(rqstp->rq_task);
533 		trace_svc_wake_up(rqstp->rq_task->pid);
534 		return;
535 	}
536 	rcu_read_unlock();
537 
538 	/* No free entries available */
539 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
540 	smp_wmb();
541 	trace_svc_wake_up(0);
542 }
543 EXPORT_SYMBOL_GPL(svc_wake_up);
544 
svc_port_is_privileged(struct sockaddr * sin)545 int svc_port_is_privileged(struct sockaddr *sin)
546 {
547 	switch (sin->sa_family) {
548 	case AF_INET:
549 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
550 			< PROT_SOCK;
551 	case AF_INET6:
552 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
553 			< PROT_SOCK;
554 	default:
555 		return 0;
556 	}
557 }
558 
559 /*
560  * Make sure that we don't have too many active connections. If we have,
561  * something must be dropped. It's not clear what will happen if we allow
562  * "too many" connections, but when dealing with network-facing software,
563  * we have to code defensively. Here we do that by imposing hard limits.
564  *
565  * There's no point in trying to do random drop here for DoS
566  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
567  * attacker can easily beat that.
568  *
569  * The only somewhat efficient mechanism would be if drop old
570  * connections from the same IP first. But right now we don't even
571  * record the client IP in svc_sock.
572  *
573  * single-threaded services that expect a lot of clients will probably
574  * need to set sv_maxconn to override the default value which is based
575  * on the number of threads
576  */
svc_check_conn_limits(struct svc_serv * serv)577 static void svc_check_conn_limits(struct svc_serv *serv)
578 {
579 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
580 				(serv->sv_nrthreads+3) * 20;
581 
582 	if (serv->sv_tmpcnt > limit) {
583 		struct svc_xprt *xprt = NULL;
584 		spin_lock_bh(&serv->sv_lock);
585 		if (!list_empty(&serv->sv_tempsocks)) {
586 			/* Try to help the admin */
587 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
588 					       serv->sv_name, serv->sv_maxconn ?
589 					       "max number of connections" :
590 					       "number of threads");
591 			/*
592 			 * Always select the oldest connection. It's not fair,
593 			 * but so is life
594 			 */
595 			xprt = list_entry(serv->sv_tempsocks.prev,
596 					  struct svc_xprt,
597 					  xpt_list);
598 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
599 			svc_xprt_get(xprt);
600 		}
601 		spin_unlock_bh(&serv->sv_lock);
602 
603 		if (xprt) {
604 			svc_xprt_enqueue(xprt);
605 			svc_xprt_put(xprt);
606 		}
607 	}
608 }
609 
svc_alloc_arg(struct svc_rqst * rqstp)610 static int svc_alloc_arg(struct svc_rqst *rqstp)
611 {
612 	struct svc_serv *serv = rqstp->rq_server;
613 	struct xdr_buf *arg;
614 	int pages;
615 	int i;
616 
617 	/* now allocate needed pages.  If we get a failure, sleep briefly */
618 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
619 	WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
620 	if (pages >= RPCSVC_MAXPAGES)
621 		/* use as many pages as possible */
622 		pages = RPCSVC_MAXPAGES - 1;
623 	for (i = 0; i < pages ; i++)
624 		while (rqstp->rq_pages[i] == NULL) {
625 			struct page *p = alloc_page(GFP_KERNEL);
626 			if (!p) {
627 				set_current_state(TASK_INTERRUPTIBLE);
628 				if (signalled() || kthread_should_stop()) {
629 					set_current_state(TASK_RUNNING);
630 					return -EINTR;
631 				}
632 				schedule_timeout(msecs_to_jiffies(500));
633 			}
634 			rqstp->rq_pages[i] = p;
635 		}
636 	rqstp->rq_page_end = &rqstp->rq_pages[i];
637 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
638 
639 	/* Make arg->head point to first page and arg->pages point to rest */
640 	arg = &rqstp->rq_arg;
641 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
642 	arg->head[0].iov_len = PAGE_SIZE;
643 	arg->pages = rqstp->rq_pages + 1;
644 	arg->page_base = 0;
645 	/* save at least one page for response */
646 	arg->page_len = (pages-2)*PAGE_SIZE;
647 	arg->len = (pages-1)*PAGE_SIZE;
648 	arg->tail[0].iov_len = 0;
649 	return 0;
650 }
651 
652 static bool
rqst_should_sleep(struct svc_rqst * rqstp)653 rqst_should_sleep(struct svc_rqst *rqstp)
654 {
655 	struct svc_pool		*pool = rqstp->rq_pool;
656 
657 	/* did someone call svc_wake_up? */
658 	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
659 		return false;
660 
661 	/* was a socket queued? */
662 	if (!list_empty(&pool->sp_sockets))
663 		return false;
664 
665 	/* are we shutting down? */
666 	if (signalled() || kthread_should_stop())
667 		return false;
668 
669 	/* are we freezing? */
670 	if (freezing(current))
671 		return false;
672 
673 	return true;
674 }
675 
svc_get_next_xprt(struct svc_rqst * rqstp,long timeout)676 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
677 {
678 	struct svc_xprt *xprt;
679 	struct svc_pool		*pool = rqstp->rq_pool;
680 	long			time_left = 0;
681 
682 	/* rq_xprt should be clear on entry */
683 	WARN_ON_ONCE(rqstp->rq_xprt);
684 
685 	/* Normally we will wait up to 5 seconds for any required
686 	 * cache information to be provided.
687 	 */
688 	rqstp->rq_chandle.thread_wait = 5*HZ;
689 
690 	xprt = svc_xprt_dequeue(pool);
691 	if (xprt) {
692 		rqstp->rq_xprt = xprt;
693 
694 		/* As there is a shortage of threads and this request
695 		 * had to be queued, don't allow the thread to wait so
696 		 * long for cache updates.
697 		 */
698 		rqstp->rq_chandle.thread_wait = 1*HZ;
699 		clear_bit(SP_TASK_PENDING, &pool->sp_flags);
700 		return xprt;
701 	}
702 
703 	/*
704 	 * We have to be able to interrupt this wait
705 	 * to bring down the daemons ...
706 	 */
707 	set_current_state(TASK_INTERRUPTIBLE);
708 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
709 	smp_mb();
710 
711 	if (likely(rqst_should_sleep(rqstp)))
712 		time_left = schedule_timeout(timeout);
713 	else
714 		__set_current_state(TASK_RUNNING);
715 
716 	try_to_freeze();
717 
718 	spin_lock_bh(&rqstp->rq_lock);
719 	set_bit(RQ_BUSY, &rqstp->rq_flags);
720 	spin_unlock_bh(&rqstp->rq_lock);
721 
722 	xprt = rqstp->rq_xprt;
723 	if (xprt != NULL)
724 		return xprt;
725 
726 	if (!time_left)
727 		atomic_long_inc(&pool->sp_stats.threads_timedout);
728 
729 	if (signalled() || kthread_should_stop())
730 		return ERR_PTR(-EINTR);
731 	return ERR_PTR(-EAGAIN);
732 }
733 
svc_add_new_temp_xprt(struct svc_serv * serv,struct svc_xprt * newxpt)734 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
735 {
736 	spin_lock_bh(&serv->sv_lock);
737 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
738 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
739 	serv->sv_tmpcnt++;
740 	if (serv->sv_temptimer.function == NULL) {
741 		/* setup timer to age temp transports */
742 		setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
743 			    (unsigned long)serv);
744 		mod_timer(&serv->sv_temptimer,
745 			  jiffies + svc_conn_age_period * HZ);
746 	}
747 	spin_unlock_bh(&serv->sv_lock);
748 	svc_xprt_received(newxpt);
749 }
750 
svc_handle_xprt(struct svc_rqst * rqstp,struct svc_xprt * xprt)751 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
752 {
753 	struct svc_serv *serv = rqstp->rq_server;
754 	int len = 0;
755 
756 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
757 		dprintk("svc_recv: found XPT_CLOSE\n");
758 		svc_delete_xprt(xprt);
759 		/* Leave XPT_BUSY set on the dead xprt: */
760 		goto out;
761 	}
762 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
763 		struct svc_xprt *newxpt;
764 		/*
765 		 * We know this module_get will succeed because the
766 		 * listener holds a reference too
767 		 */
768 		__module_get(xprt->xpt_class->xcl_owner);
769 		svc_check_conn_limits(xprt->xpt_server);
770 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
771 		if (newxpt)
772 			svc_add_new_temp_xprt(serv, newxpt);
773 		else
774 			module_put(xprt->xpt_class->xcl_owner);
775 	} else {
776 		/* XPT_DATA|XPT_DEFERRED case: */
777 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
778 			rqstp, rqstp->rq_pool->sp_id, xprt,
779 			atomic_read(&xprt->xpt_ref.refcount));
780 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
781 		if (rqstp->rq_deferred)
782 			len = svc_deferred_recv(rqstp);
783 		else
784 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
785 		dprintk("svc: got len=%d\n", len);
786 		rqstp->rq_reserved = serv->sv_max_mesg;
787 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
788 	}
789 	/* clear XPT_BUSY: */
790 	svc_xprt_received(xprt);
791 out:
792 	trace_svc_handle_xprt(xprt, len);
793 	return len;
794 }
795 
796 /*
797  * Receive the next request on any transport.  This code is carefully
798  * organised not to touch any cachelines in the shared svc_serv
799  * structure, only cachelines in the local svc_pool.
800  */
svc_recv(struct svc_rqst * rqstp,long timeout)801 int svc_recv(struct svc_rqst *rqstp, long timeout)
802 {
803 	struct svc_xprt		*xprt = NULL;
804 	struct svc_serv		*serv = rqstp->rq_server;
805 	int			len, err;
806 
807 	dprintk("svc: server %p waiting for data (to = %ld)\n",
808 		rqstp, timeout);
809 
810 	if (rqstp->rq_xprt)
811 		printk(KERN_ERR
812 			"svc_recv: service %p, transport not NULL!\n",
813 			 rqstp);
814 
815 	err = svc_alloc_arg(rqstp);
816 	if (err)
817 		goto out;
818 
819 	try_to_freeze();
820 	cond_resched();
821 	err = -EINTR;
822 	if (signalled() || kthread_should_stop())
823 		goto out;
824 
825 	xprt = svc_get_next_xprt(rqstp, timeout);
826 	if (IS_ERR(xprt)) {
827 		err = PTR_ERR(xprt);
828 		goto out;
829 	}
830 
831 	len = svc_handle_xprt(rqstp, xprt);
832 
833 	/* No data, incomplete (TCP) read, or accept() */
834 	err = -EAGAIN;
835 	if (len <= 0)
836 		goto out_release;
837 
838 	clear_bit(XPT_OLD, &xprt->xpt_flags);
839 
840 	if (xprt->xpt_ops->xpo_secure_port(rqstp))
841 		set_bit(RQ_SECURE, &rqstp->rq_flags);
842 	else
843 		clear_bit(RQ_SECURE, &rqstp->rq_flags);
844 	rqstp->rq_chandle.defer = svc_defer;
845 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
846 
847 	if (serv->sv_stats)
848 		serv->sv_stats->netcnt++;
849 	trace_svc_recv(rqstp, len);
850 	return len;
851 out_release:
852 	rqstp->rq_res.len = 0;
853 	svc_xprt_release(rqstp);
854 out:
855 	trace_svc_recv(rqstp, err);
856 	return err;
857 }
858 EXPORT_SYMBOL_GPL(svc_recv);
859 
860 /*
861  * Drop request
862  */
svc_drop(struct svc_rqst * rqstp)863 void svc_drop(struct svc_rqst *rqstp)
864 {
865 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
866 	svc_xprt_release(rqstp);
867 }
868 EXPORT_SYMBOL_GPL(svc_drop);
869 
870 /*
871  * Return reply to client.
872  */
svc_send(struct svc_rqst * rqstp)873 int svc_send(struct svc_rqst *rqstp)
874 {
875 	struct svc_xprt	*xprt;
876 	int		len = -EFAULT;
877 	struct xdr_buf	*xb;
878 
879 	xprt = rqstp->rq_xprt;
880 	if (!xprt)
881 		goto out;
882 
883 	/* release the receive skb before sending the reply */
884 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
885 
886 	/* calculate over-all length */
887 	xb = &rqstp->rq_res;
888 	xb->len = xb->head[0].iov_len +
889 		xb->page_len +
890 		xb->tail[0].iov_len;
891 
892 	/* Grab mutex to serialize outgoing data. */
893 	mutex_lock(&xprt->xpt_mutex);
894 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
895 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
896 		len = -ENOTCONN;
897 	else
898 		len = xprt->xpt_ops->xpo_sendto(rqstp);
899 	mutex_unlock(&xprt->xpt_mutex);
900 	rpc_wake_up(&xprt->xpt_bc_pending);
901 	svc_xprt_release(rqstp);
902 
903 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
904 		len = 0;
905 out:
906 	trace_svc_send(rqstp, len);
907 	return len;
908 }
909 
910 /*
911  * Timer function to close old temporary transports, using
912  * a mark-and-sweep algorithm.
913  */
svc_age_temp_xprts(unsigned long closure)914 static void svc_age_temp_xprts(unsigned long closure)
915 {
916 	struct svc_serv *serv = (struct svc_serv *)closure;
917 	struct svc_xprt *xprt;
918 	struct list_head *le, *next;
919 
920 	dprintk("svc_age_temp_xprts\n");
921 
922 	if (!spin_trylock_bh(&serv->sv_lock)) {
923 		/* busy, try again 1 sec later */
924 		dprintk("svc_age_temp_xprts: busy\n");
925 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
926 		return;
927 	}
928 
929 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
930 		xprt = list_entry(le, struct svc_xprt, xpt_list);
931 
932 		/* First time through, just mark it OLD. Second time
933 		 * through, close it. */
934 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
935 			continue;
936 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
937 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
938 			continue;
939 		list_del_init(le);
940 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
941 		dprintk("queuing xprt %p for closing\n", xprt);
942 
943 		/* a thread will dequeue and close it soon */
944 		svc_xprt_enqueue(xprt);
945 	}
946 	spin_unlock_bh(&serv->sv_lock);
947 
948 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
949 }
950 
call_xpt_users(struct svc_xprt * xprt)951 static void call_xpt_users(struct svc_xprt *xprt)
952 {
953 	struct svc_xpt_user *u;
954 
955 	spin_lock(&xprt->xpt_lock);
956 	while (!list_empty(&xprt->xpt_users)) {
957 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
958 		list_del_init(&u->list);
959 		u->callback(u);
960 	}
961 	spin_unlock(&xprt->xpt_lock);
962 }
963 
964 /*
965  * Remove a dead transport
966  */
svc_delete_xprt(struct svc_xprt * xprt)967 static void svc_delete_xprt(struct svc_xprt *xprt)
968 {
969 	struct svc_serv	*serv = xprt->xpt_server;
970 	struct svc_deferred_req *dr;
971 
972 	/* Only do this once */
973 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
974 		BUG();
975 
976 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
977 	xprt->xpt_ops->xpo_detach(xprt);
978 
979 	spin_lock_bh(&serv->sv_lock);
980 	list_del_init(&xprt->xpt_list);
981 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
982 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
983 		serv->sv_tmpcnt--;
984 	spin_unlock_bh(&serv->sv_lock);
985 
986 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
987 		kfree(dr);
988 
989 	call_xpt_users(xprt);
990 	svc_xprt_put(xprt);
991 }
992 
svc_close_xprt(struct svc_xprt * xprt)993 void svc_close_xprt(struct svc_xprt *xprt)
994 {
995 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
996 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
997 		/* someone else will have to effect the close */
998 		return;
999 	/*
1000 	 * We expect svc_close_xprt() to work even when no threads are
1001 	 * running (e.g., while configuring the server before starting
1002 	 * any threads), so if the transport isn't busy, we delete
1003 	 * it ourself:
1004 	 */
1005 	svc_delete_xprt(xprt);
1006 }
1007 EXPORT_SYMBOL_GPL(svc_close_xprt);
1008 
svc_close_list(struct svc_serv * serv,struct list_head * xprt_list,struct net * net)1009 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1010 {
1011 	struct svc_xprt *xprt;
1012 	int ret = 0;
1013 
1014 	spin_lock_bh(&serv->sv_lock);
1015 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1016 		if (xprt->xpt_net != net)
1017 			continue;
1018 		ret++;
1019 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1020 		svc_xprt_enqueue(xprt);
1021 	}
1022 	spin_unlock_bh(&serv->sv_lock);
1023 	return ret;
1024 }
1025 
svc_dequeue_net(struct svc_serv * serv,struct net * net)1026 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1027 {
1028 	struct svc_pool *pool;
1029 	struct svc_xprt *xprt;
1030 	struct svc_xprt *tmp;
1031 	int i;
1032 
1033 	for (i = 0; i < serv->sv_nrpools; i++) {
1034 		pool = &serv->sv_pools[i];
1035 
1036 		spin_lock_bh(&pool->sp_lock);
1037 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1038 			if (xprt->xpt_net != net)
1039 				continue;
1040 			list_del_init(&xprt->xpt_ready);
1041 			spin_unlock_bh(&pool->sp_lock);
1042 			return xprt;
1043 		}
1044 		spin_unlock_bh(&pool->sp_lock);
1045 	}
1046 	return NULL;
1047 }
1048 
svc_clean_up_xprts(struct svc_serv * serv,struct net * net)1049 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1050 {
1051 	struct svc_xprt *xprt;
1052 
1053 	while ((xprt = svc_dequeue_net(serv, net))) {
1054 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1055 		svc_delete_xprt(xprt);
1056 	}
1057 }
1058 
1059 /*
1060  * Server threads may still be running (especially in the case where the
1061  * service is still running in other network namespaces).
1062  *
1063  * So we shut down sockets the same way we would on a running server, by
1064  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1065  * the close.  In the case there are no such other threads,
1066  * threads running, svc_clean_up_xprts() does a simple version of a
1067  * server's main event loop, and in the case where there are other
1068  * threads, we may need to wait a little while and then check again to
1069  * see if they're done.
1070  */
svc_close_net(struct svc_serv * serv,struct net * net)1071 void svc_close_net(struct svc_serv *serv, struct net *net)
1072 {
1073 	int delay = 0;
1074 
1075 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1076 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1077 
1078 		svc_clean_up_xprts(serv, net);
1079 		msleep(delay++);
1080 	}
1081 }
1082 
1083 /*
1084  * Handle defer and revisit of requests
1085  */
1086 
svc_revisit(struct cache_deferred_req * dreq,int too_many)1087 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1088 {
1089 	struct svc_deferred_req *dr =
1090 		container_of(dreq, struct svc_deferred_req, handle);
1091 	struct svc_xprt *xprt = dr->xprt;
1092 
1093 	spin_lock(&xprt->xpt_lock);
1094 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1095 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1096 		spin_unlock(&xprt->xpt_lock);
1097 		dprintk("revisit canceled\n");
1098 		svc_xprt_put(xprt);
1099 		kfree(dr);
1100 		return;
1101 	}
1102 	dprintk("revisit queued\n");
1103 	dr->xprt = NULL;
1104 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1105 	spin_unlock(&xprt->xpt_lock);
1106 	svc_xprt_enqueue(xprt);
1107 	svc_xprt_put(xprt);
1108 }
1109 
1110 /*
1111  * Save the request off for later processing. The request buffer looks
1112  * like this:
1113  *
1114  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1115  *
1116  * This code can only handle requests that consist of an xprt-header
1117  * and rpc-header.
1118  */
svc_defer(struct cache_req * req)1119 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1120 {
1121 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1122 	struct svc_deferred_req *dr;
1123 
1124 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1125 		return NULL; /* if more than a page, give up FIXME */
1126 	if (rqstp->rq_deferred) {
1127 		dr = rqstp->rq_deferred;
1128 		rqstp->rq_deferred = NULL;
1129 	} else {
1130 		size_t skip;
1131 		size_t size;
1132 		/* FIXME maybe discard if size too large */
1133 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1134 		dr = kmalloc(size, GFP_KERNEL);
1135 		if (dr == NULL)
1136 			return NULL;
1137 
1138 		dr->handle.owner = rqstp->rq_server;
1139 		dr->prot = rqstp->rq_prot;
1140 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1141 		dr->addrlen = rqstp->rq_addrlen;
1142 		dr->daddr = rqstp->rq_daddr;
1143 		dr->argslen = rqstp->rq_arg.len >> 2;
1144 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1145 
1146 		/* back up head to the start of the buffer and copy */
1147 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1148 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1149 		       dr->argslen << 2);
1150 	}
1151 	svc_xprt_get(rqstp->rq_xprt);
1152 	dr->xprt = rqstp->rq_xprt;
1153 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1154 
1155 	dr->handle.revisit = svc_revisit;
1156 	return &dr->handle;
1157 }
1158 
1159 /*
1160  * recv data from a deferred request into an active one
1161  */
svc_deferred_recv(struct svc_rqst * rqstp)1162 static int svc_deferred_recv(struct svc_rqst *rqstp)
1163 {
1164 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1165 
1166 	/* setup iov_base past transport header */
1167 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1168 	/* The iov_len does not include the transport header bytes */
1169 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1170 	rqstp->rq_arg.page_len = 0;
1171 	/* The rq_arg.len includes the transport header bytes */
1172 	rqstp->rq_arg.len     = dr->argslen<<2;
1173 	rqstp->rq_prot        = dr->prot;
1174 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1175 	rqstp->rq_addrlen     = dr->addrlen;
1176 	/* Save off transport header len in case we get deferred again */
1177 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1178 	rqstp->rq_daddr       = dr->daddr;
1179 	rqstp->rq_respages    = rqstp->rq_pages;
1180 	return (dr->argslen<<2) - dr->xprt_hlen;
1181 }
1182 
1183 
svc_deferred_dequeue(struct svc_xprt * xprt)1184 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1185 {
1186 	struct svc_deferred_req *dr = NULL;
1187 
1188 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1189 		return NULL;
1190 	spin_lock(&xprt->xpt_lock);
1191 	if (!list_empty(&xprt->xpt_deferred)) {
1192 		dr = list_entry(xprt->xpt_deferred.next,
1193 				struct svc_deferred_req,
1194 				handle.recent);
1195 		list_del_init(&dr->handle.recent);
1196 	} else
1197 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1198 	spin_unlock(&xprt->xpt_lock);
1199 	return dr;
1200 }
1201 
1202 /**
1203  * svc_find_xprt - find an RPC transport instance
1204  * @serv: pointer to svc_serv to search
1205  * @xcl_name: C string containing transport's class name
1206  * @net: owner net pointer
1207  * @af: Address family of transport's local address
1208  * @port: transport's IP port number
1209  *
1210  * Return the transport instance pointer for the endpoint accepting
1211  * connections/peer traffic from the specified transport class,
1212  * address family and port.
1213  *
1214  * Specifying 0 for the address family or port is effectively a
1215  * wild-card, and will result in matching the first transport in the
1216  * service's list that has a matching class name.
1217  */
svc_find_xprt(struct svc_serv * serv,const char * xcl_name,struct net * net,const sa_family_t af,const unsigned short port)1218 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1219 			       struct net *net, const sa_family_t af,
1220 			       const unsigned short port)
1221 {
1222 	struct svc_xprt *xprt;
1223 	struct svc_xprt *found = NULL;
1224 
1225 	/* Sanity check the args */
1226 	if (serv == NULL || xcl_name == NULL)
1227 		return found;
1228 
1229 	spin_lock_bh(&serv->sv_lock);
1230 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1231 		if (xprt->xpt_net != net)
1232 			continue;
1233 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1234 			continue;
1235 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1236 			continue;
1237 		if (port != 0 && port != svc_xprt_local_port(xprt))
1238 			continue;
1239 		found = xprt;
1240 		svc_xprt_get(xprt);
1241 		break;
1242 	}
1243 	spin_unlock_bh(&serv->sv_lock);
1244 	return found;
1245 }
1246 EXPORT_SYMBOL_GPL(svc_find_xprt);
1247 
svc_one_xprt_name(const struct svc_xprt * xprt,char * pos,int remaining)1248 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1249 			     char *pos, int remaining)
1250 {
1251 	int len;
1252 
1253 	len = snprintf(pos, remaining, "%s %u\n",
1254 			xprt->xpt_class->xcl_name,
1255 			svc_xprt_local_port(xprt));
1256 	if (len >= remaining)
1257 		return -ENAMETOOLONG;
1258 	return len;
1259 }
1260 
1261 /**
1262  * svc_xprt_names - format a buffer with a list of transport names
1263  * @serv: pointer to an RPC service
1264  * @buf: pointer to a buffer to be filled in
1265  * @buflen: length of buffer to be filled in
1266  *
1267  * Fills in @buf with a string containing a list of transport names,
1268  * each name terminated with '\n'.
1269  *
1270  * Returns positive length of the filled-in string on success; otherwise
1271  * a negative errno value is returned if an error occurs.
1272  */
svc_xprt_names(struct svc_serv * serv,char * buf,const int buflen)1273 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1274 {
1275 	struct svc_xprt *xprt;
1276 	int len, totlen;
1277 	char *pos;
1278 
1279 	/* Sanity check args */
1280 	if (!serv)
1281 		return 0;
1282 
1283 	spin_lock_bh(&serv->sv_lock);
1284 
1285 	pos = buf;
1286 	totlen = 0;
1287 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1288 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1289 		if (len < 0) {
1290 			*buf = '\0';
1291 			totlen = len;
1292 		}
1293 		if (len <= 0)
1294 			break;
1295 
1296 		pos += len;
1297 		totlen += len;
1298 	}
1299 
1300 	spin_unlock_bh(&serv->sv_lock);
1301 	return totlen;
1302 }
1303 EXPORT_SYMBOL_GPL(svc_xprt_names);
1304 
1305 
1306 /*----------------------------------------------------------------------------*/
1307 
svc_pool_stats_start(struct seq_file * m,loff_t * pos)1308 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1309 {
1310 	unsigned int pidx = (unsigned int)*pos;
1311 	struct svc_serv *serv = m->private;
1312 
1313 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1314 
1315 	if (!pidx)
1316 		return SEQ_START_TOKEN;
1317 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1318 }
1319 
svc_pool_stats_next(struct seq_file * m,void * p,loff_t * pos)1320 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1321 {
1322 	struct svc_pool *pool = p;
1323 	struct svc_serv *serv = m->private;
1324 
1325 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1326 
1327 	if (p == SEQ_START_TOKEN) {
1328 		pool = &serv->sv_pools[0];
1329 	} else {
1330 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1331 		if (pidx < serv->sv_nrpools-1)
1332 			pool = &serv->sv_pools[pidx+1];
1333 		else
1334 			pool = NULL;
1335 	}
1336 	++*pos;
1337 	return pool;
1338 }
1339 
svc_pool_stats_stop(struct seq_file * m,void * p)1340 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1341 {
1342 }
1343 
svc_pool_stats_show(struct seq_file * m,void * p)1344 static int svc_pool_stats_show(struct seq_file *m, void *p)
1345 {
1346 	struct svc_pool *pool = p;
1347 
1348 	if (p == SEQ_START_TOKEN) {
1349 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1350 		return 0;
1351 	}
1352 
1353 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1354 		pool->sp_id,
1355 		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1356 		pool->sp_stats.sockets_queued,
1357 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1358 		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1359 
1360 	return 0;
1361 }
1362 
1363 static const struct seq_operations svc_pool_stats_seq_ops = {
1364 	.start	= svc_pool_stats_start,
1365 	.next	= svc_pool_stats_next,
1366 	.stop	= svc_pool_stats_stop,
1367 	.show	= svc_pool_stats_show,
1368 };
1369 
svc_pool_stats_open(struct svc_serv * serv,struct file * file)1370 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1371 {
1372 	int err;
1373 
1374 	err = seq_open(file, &svc_pool_stats_seq_ops);
1375 	if (!err)
1376 		((struct seq_file *) file->private_data)->private = serv;
1377 	return err;
1378 }
1379 EXPORT_SYMBOL(svc_pool_stats_open);
1380 
1381 /*----------------------------------------------------------------------------*/
1382